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Abstract 

This dissertation describes the development of bioanalytical strategies for a 

group of experimental and known therapeutic agents and chemically related essential 

substances. The array of analytes include the antifolate methotrexate, its various 

(in)active metabolites and related bio-conjugates, plus several forms of folic acid family, 

a  group of essential substances not synthesized by mammalian species, but 

endogenously required in numerous biochemical processes.  These analytes all share a 

common structural feature, the heterocyclic pteridine ring system. Analyte identity 

results from variations of the ptereridine-ring system redox state, a result of minor 

structural variations of the heterocyclic ring and changes in conjugation status (i.e. 

polyglutamated or nanoparticle conjugated).  

Specific and sensitive detection of the individual species was of high interest, as 

the various chemical forms of these substances may constitute biomarkers for 

individualizing low dose MTX therapy in autoimmune diseases such as JIA, but is also 

required for the (pre)clinical studies of novel nano-device MTX drug delivery systems. 

The dissertation presents state-of-the-art bioanalytical methodology suitable for the 

specific determination of any specific analyte in the presence of all other analytes. The 

strategy for each particular analyte possesses its own unique strength and weakness, 

with the final strategy collectively being based on the specific structure and associated 

physical-chemical property of a given analyte, the biological environment, and the 

clinical question to be answered.   
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1.1 Establishment of Nomenclature 

This doctoral dissertation is centered around the development of bio-analytical 

methods for the detection of various biological and pharmaceutically relevant 

pteroylglutamic acid derivatives in biological matrices (figure 1). In a general sense, 

these molecules are composed of three different moieties (1) a pteridine ring system that 

is redox active, and changes oxidation state from the oxidized form to a 7,8-dihydro and 

a 5,6,7,8-tetrahydrofolate form (2) a para-aminobenzoic acid spacer (3) and a (γ-

poly)glutamated terminal chain (figure 1).  

 

 

 

Figure 1. Generic skeleton of biologically active pteroylglutamic acid derivatives. 

Common structural variations occur at the sites indicated by R, X, Y and Z. 
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 These entities play an important role in general human health as they are the 

chemical basis of the water-soluble B9 vitamins generally referred to as folate. For 

humans, folate is an essential vitamin necessary for normal cell growth and 

development and is aquired through the diet. The commonly accepted nomenclature for 

this vitamin is confusing because folic acid and folate are both commonly used to 

describe this vitamin, but in fact have different meanings. Based on established 

chemical nomenclature, one would believe the difference between folate and folic acid is 

just a proton. However, the term folic acid refers to pteroylglutamic acid which is the 

synthetic and most stable form of this vitamin with a fully oxidized pteridine ring system. 

In general the term folate is used for the naturally occurring, biologically active 

(polyglutamated) species, which posseses a reduced ring system with a variety of 

possible substitutions. A detailed description of these various folate structures can be 

found in section 1.3 of this dissertation. Throughout this dissertation the terms folate and 

folic acid (FA) will be used to refer to the natural and synthetic form respectively. 

 

1.2 The discovery of folate 

The discovery of folate has been closely related to the understanding of 

hematologic disorders and malignancies. In 1931, Lucy Wills reported the observation 

that macrocytic anemia during pregnancy was most predominant among women with 

vegetable, fruit and protein deficient diet[1]. She went on to discover that this anemia 

could be reversed through the addition of liver and yeast extracts to the diet, indicating 

the presence of an essential dietary component in these sources[2]. As is now well 
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known, such foods and extracts are a rich source of folate[3]. A decade after its first 

description, this component was isolated from 4 tons of spinach leaves in 1941 by 

Mitchell et al, and named “folic acid”[4]. This name was derived from the latin word for 

leaf, ‘folium’. It took another 2 years to elucidate the structure of folic acid and 

synthesize a pure crystalline form[5]. Once the synthetic for was available, folic acid 

proved to be effective in reversing several types of anemia[6-7]. 

 

1.3 The various folate forms 

On the molecular level, folic acid is composed of an oxidized pteridine ring, 

coupled to para-aminobenzoic acid and glutamic acid, leading to the name 

‘pteroylglutamic acid’ (figure 2)[8]. Soon after its synthesis it became apparent that the 

naturally occurring folates were usually structurally altered analogs of FA acid in three 

respects: (1) Reduction within the pteridine ring to 7,8-dihydrofolate (DHF) and further 

reduction to 5,6,7,8-tetrahydrofolate (THF). (2) The fully reduced form, THF, is subject to 

variations in carbon status at the N(5) and N(10) position, e.g. 5-methyl (5-MTHF), 5-

formyl-THF (5-FTHF), 10-formyl-THF (10-FTHF), 5,10-methylene-THF (5,10-METHF) 

and 5,10-methenyl-THF (5,10-MTHF) (figure 2), (3) Natural folates in foods and 

biological systems are almost exclusively in the (γ-linked) polyglutamated state (i.e. an 

increased number of glutamates). 
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Figure 2. Molecular structures of various folate species, the synthetic form folic acid 

(FA) and the naturally occurring forms of 7,8-dihydrofolate and 5,6,7,8-tetrahyrofolate 

(derivatives).   
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1.4 Folate uptake 

Folates are absorbed by the human body in the monoglutamyl form. Since dietary 

sources of the essential vitamin contain folates in the polyglutamated form, hydrolysis 

must occur in order to allow for efficient absorption. Folate hydrolysis occurs in the gut 

by the enzyme folyl-γ-glutamate carboxypeptidase (FGCP), a protein that is immobilized 

on the intestinal apical brush border. Deglutamated folate species are subsequently 

absorbed in the duodenum and upper part of the jejunum by the high-affinity proton-

coupled folate receptor (PCFT). After absorption, the bioavailable form present in the 

systemic circulation is 5-MTHF. Circulating 5-MTHF is then transported into the cell by 

the reduced folate carrier (RFC) or the folate receptors (FR) present on the cell 

membrane. Following folate internalization, the polyglutamation chain is reconstructed 

intracellularly by the enzyme folylpolyglutamate synthase (FPGS). A schematic overview 

of this process is shown in figure 3. 

1.5 Biological function of folates 

Biological active folate species consist of the various substituted forms of intra 

cellular tetrahydrofolate. These molecules function as substrates and coenzymes in the 

acquisition, transport and enzymatic processing of one-carbon units for amino acid and 

nucleic acid metabolism and metabolic regulation. Nucleic acid synthesis is facilitated by 

the role of carbon donating folates in the synthesis of purines and thymidylate and 

through deoxycytosine methylation. Furthermore, 5-MTHF is required in the 

regeneration of methionine from homocysteine, which is employed for various cellular 

methylation reactions and protein synthesis.  
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Figure 3. Schematic overview of folate uptake and transport from the intestine. 

Deglutamated folates are absorbed into the systemic circulation by the PCFT. 

Circulation 5-MTHF is internalized intracellularly trough either the reduced folate carrier 

or the family of folate receptors, after which polyglutamation by FPGS occurs. Figure 

adapted from Blom et al.[9] 

 

Due to the its multitude of functions, folate plays a pivotal role in the synthesis 

and maintenance of DNA, RNA and proteins. A general schematic representation of the 

intracellular folate cycle is given in figure 4.  
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 Folate deficiency and/or changes in folate isoform distribution have more recently 

been related to elevated blood homocysteine concentrations, which in turn is closely 

associated with various forms of vascular diseases, such as coronary heart disease and 

venous thrombosis[10]. Inadequate folate status during pregnancy increases the risk of 

neural tube defects and other birth defects[11]. Since folate species play a crucial role in 

the transmethylation reactions required for the biosynthesis of neurotransmitters, folate 

deficiency may also lead to depression[12-15]. Folate status also seems to play a role in 

the development of neurodegenerative disease such as in Alzheimers disease[16]. It has 

also been reported that an individual’s folate status is related to colon, cervical and 

breast cancers[17-18].  

 

Figure 4. Intracellular folate cycle. (figure is adapted and reproduced with permission 

from PharmGKB and Stanford University). 
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1.6 Antifolates 

 

Figure 5. Structures of two key antifolates, aminopterin (AMP) and the still widely used 

methotrexate (MTX). 

 

The first antifolates were developed as potential treatments for leukaemia. In the 

early 1940s the observation was made that leukemic lymphoblasts seen in the bone 

marrow of patients with acute lymphocytic leukaemia resembled the megaloblasts seen 

in pernicious anemia and was correlated with the observation of a low plasma folate 

status. Therefore it was postulated that acute leukaemias were the result of folate 

deficiency[19]. In an attempt to control the disease, patients were treated with FA, a 

strategy that led to the inverse of the desired effect, increasing in the number of 

leukemic cells within these patients. With FA identified as a proliferative factor, Heinle 

and Welch tried an opposite approach and demonstrated a decrease in leukemic cells in 

folate deficiency[20]. This observation triggered the development of folate anti-

metabolites/antagonists.  The first antifolate was developed in 1947 and is currently 

known as aminopterin[21] (AMP) (figure 5). A year later this compound was shown to 

cause temporarily remission in children with acute lymphocytic leukemia[22]. In the same 

year the less toxic analog of AMP, methotrexate (MTX) (figure 5), was introduced[23]. In 
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1956, it was demonstrated that MTX possessed a therapeutic index superior to that of 

AMP, and based on these results, MTX has supplanted AMP in the clinic.   

MTX therapy is now widely used for the treatment of a wide spectrum of cancers and 

tumors, including: leukemia[24], lymphoma[25], choriocarcinoma[26], head and neck 

cancer[27] and osteogenic sarcoma[28-30]. More recently the therapeutic scope of MTX 

has expanded to the treatment of various autoimmune diseases, such as, rheumatoid 

arthritis[31-32], juvenile idiopathic arthritis[33-36], and psoriasis[37-38] and for the prevention of 

graft-versus-host disease[39-40] after transplantation.  

 

1.7 MTX mechanism of action in cancer therapy 

The mechanism of action of MTX in high doses for anticancer therapy is well 

understood. As described in section 1.5 of the introduction, cells rely on a supply of fully 

reduced folates that drive a cascade of one-carbon reactions that are required for DNA 

synthesis and cell proliferation. MTX has a tight, but reversible, binding to the enzyme 

dihydrofolate reductase (DHFR), an enzyme that is responsible for the reduction of FA to 

DHF, and more importantly also facilitates the reduction of DHF to THF. Interfering with 

this enzymatic pathway will result in a buildup of partly oxidized folate species and a 

depletion of the biologically active fully reduced folates, therefore inhibiting the de novo 

purine synthesis pathway and other pathways that rely on reduced folate cofactors. MTX 

displays a stoichiometric binding to DHFR when the ratio of inhibitor to enzyme is low, 

however a complete blockade of DHFR requires an excess of unbound drug[41].  
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1.8 Polyglutamation 

An important aspect of folate homeostasis is the biological process of intracellular 

polyglutamation. Polyglutamation occurs by the sequential addition of glutamates to the 

gamma carboxylate of the terminal folate glutamate residue, resulting in a pool of folate 

polyglutamates (folatePGs). The intracellular, ATP dependant, process of 

polyglutamation is catalyzed by the enzyme folylpolyglutamate synthase (FPGS)[42]. 

Polyglutamation is an important biological process as it is responsible for increasing the 

size of the molecule, rendering it much more anionic, and as a result folate 

polyglutamates cannot diffuse outside the cell. The process of polyglutamation therefore 

allows for intracellular accumulation of folates against the extracellular space 

concentration gradient. Intracellular concentrations of folate are typically in the micro-

molar (µM) range, as opposed to the lower nano-molar (nM) range in plasma. The 

second important feature of polyglutamation is bioactivation, as polyglutamated folates 

have an increased cofactor affinity[43]. The intracellular enzyme gamma glutamyl 

hydrolase (GGH) is involved in the deglutamation of folatePGs. Since polyglutamation 

and deconjugation both are gamma-glutamate specific, the cell has the ability to tailor 

glutamate chain length without affecting other biomolecules such as peptides and 

proteins.  

MTX is a relatively poor substrate for FPGS but does compete with the other 

intracellular folates for polyglutamation. The polyglutamated forms of MTX are either 

equipotent or only marginally more potent DHFR inhibitors compared to native MTX. A 

decrease in MTX polyglutamation has been identified as an important source of clinical 

resistance to MTX. This indicates that MTX polyglutamation serves an important MTX 
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retention/accumulation mechanism rather increasing its DHFR blocking capabilities. The 

polyglutamated forms of MTX however are much more potent inhibitors of enzymes in 

the de novo purine synthesis pathway and pyrimidine synthesis pathway (figure 3). The 

Ki of the pentaglutamyl form of MTX was found to be 250 times higher for thymidylate 

synthase (TYMS), 2500 times higher for 5-aminoimidazole carboxamide ribotide 

transformylase (ATIC), and 30 times higher for  glycinamide ribonucleotide formyl 

transferase (GART) (figure 6)[44]. High-dose MTX in chemotherapy mechanistically 

works due to competitive blockade of DHFR. This is demonstrated by the effectiveness 

of leucovorin in reversing MTXs cytotoxic effect by repletion of the intracellular reduced 

folate pool. 

 

1.9 The development of novel antifolate drugs 

Attempts to further improve the spectrum of therapeutic activity and the 

effectiveness of MTX, as well as the observations of intrinsic and acquired resistance to 

MTX, has led to the search for novel antifolate entities and novel drug delivery strategies 

for the classic agent. The rationale behind the development of novel antifolates for the 

treatment of cancers has been extensively reviewed[45-46]. Briefly these new agents 

include the development of novel DHFR blockers with altered pharmacological features, 

targeting of different enzyme(s) in the folate pathway, modifications to improve affinity 

for FPGS to increase intracellular half-life, and finally “non-classical” lipophilic antifolates 

have been introduced that do not require transport or polyglutamation. Virtually all of 

these approaches are currently the topic of continuing investigations. 
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Figure 6. Cellular folate pathway with both folic acid and MTX represented. Red lines 

represent known inhibition of target enzymes with MTX. (figure reproduced with 

permission from PharmGKB and Stanford University). 
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1.10 Use of MTX in drug delivery systems for cancer treatment 

Site specific delivery of chemotherapy drugs is currently receiving renewed 

attention. Delivery of a drug to a specific tissue or cell type can be achieved by 

conjugating a chemotherapeutic agent to a base material that targets specific receptors. 

In principle the controlled delivery of chemotherapy agents allows for smaller doses of 

drug to be effective against cancer and minimizes collateral damage to the surrounding 

healthy cells and tissues.  MTX is an ideal candidate for such a strategy for 

aforementioned reasons.  

A promising experimental therapeutic for the improvement of the efficacy of MTX and 

the reduction of its side effects is a chemically elaborated generation 5 polyamidoamine 

nanoparticle (G5-PAMAM) (Avidimer Therapeutics, Ann Arbor, MI). Surface 

modifications of the nanoparticle include the incorporation of MTX and FA as the API 

and targeting vector respectively (G5-MTX-FA) (figure 7). As stated before, FA is an 

essential component for cell growth and is required in extreme amounts to support the 

rapid cellular division of cancer cells. Not surprisingly, an important characteristic of 

many cancer cells is the over expression of the folic acid receptor on the cell surface. 

Therefore conjugation of FA to a carrier system provides not only targeting, but also a 

potential internalization mechanism for these nanoparticle conjugated MTX over the free 

MTX. The efficacy of the G5-MTX-FA conjugate compared to free MTX has been 

demonstrated in several in-vitro [47] and in-vivo [48] studies. Mouse studies also 

demonstrated that MTX toxicity was significantly reduced when delivered as G5-MTX-FA 

as compared to the free drug, as indicated by the disappearance of typical high dose 

MTX side effects such as hair and weight loss[49].  
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Figure 7.  Chemical structure of G5-MTX-FA. The G5 PAMAM core is illustrated by the 

sphere (not scale). 

 

Although promising, these high molecular weight nanoparticles are challenging to 

characterize due to their polydispersity which is a result of the multistep synthetic 

procedure used for their preparation.  The inherent polydispersity, macromolecular size, 

and the use of structurally related pteridins (i.e. MTX and FA) of these nanoparticles 

generates a significant bioanalytical challenge for preclinical and clinical investigations. 

Chapter 2 and 3 of this dissertation review the history of these G5-MTX-FA 

nanoparticles and present bioanalytical methodology with high sensitivity and selectivity 

that is needed to support appropriate preclinical and/or clinical investigations of these 

experimental therapeutic agents. 
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1.11 Use of low dose MTX for the treatment of JIA 

JIA is one of the most common chronic diseases of childhood, affecting an 

estimated 300,000 children in the U.S. alone, and is an important cause of morbidity and 

disability in children[50]. Low dose (LD)-MTX intervention, although the most commonly 

used second-line therapeutic agent used to treat JIA worldwide, has shown considerable 

inter-individual variability in both clinical response and adverse reactions, regardless of 

age or disease.  Thus far, no predictive variables have been identified for outcomes in 

patients taking this medication, which is used alone and as an “anchor drug” for many 

rheumatic conditions. 

In contrast to the high dose use of MTX in cancer therapy, the mechanism of action 

of LD-MTX in the therapy of JIA is still not clearly understood. It is not due to DHFR 

inhibition alone since the therapeutic effects of MTX cannot be reversed with leucovorin. 

Although the mechanism is unclear, it is believed that the low dose mechanism of action 

is attributed to inhibition of several additional number of enzymes, including TYMS, 

GART and ATIC by intracellular MTX polyglutamates. MTX polyglutamates have a 

partially increased affinity for ATIC, with the pentaglutamate demonstrating a potency 

increase of 2500 times of that of free MTX. Inhibition of ATIC leads to a cascade of 

biological events resulting in release of adenosine, which is a potent endogenous anti-

inflammatory mediator. In other words, whereas the goal of high-dose MTX in cancer 

therapy is selective cell apoptosis, in LD-MTX the therapeutic aim is to perterb the 

various biochemical pathways of the cell to enhance the excretion of adenosine while 

minimizing cell damage and toxic effects.   
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The development of sensitive bioanalytical methodology for the detection of active 

MTX metabolites could provide an entry to the much needed objective of quantitative 

individualization of MTX therapy in JIA. Plasma MTX concentrations do not correlate to 

LD-MTX efficacy and/or toxicity in autoimmune diseases and therefore interest has 

shifted towards to detection of polyglutmated forms of MTX in human red blood cells 

(RBCs)[51]. In adult arthritis an individual’s RBC MTX polyglutamation status has been 

correlated to MTX effectiveness as well as toxicity[52-53]. However, more recent studies 

have failed to reproduce these results[54-55]. The measurement of RBC MTX 

polyglutamation status and its predictive value towards individualization of MTX therapy 

has not been investigated in JIA. 

In chapter 4 of this dissertation the performance of current methodology for RBC 

MTXPG determination is investigated. Based on the results obtained by this study, a 

novel bioanalytical method was developed which is suitable for the specific and sensitive 

measurement of MTXPG polyglutamation status in JIA. This method was applied to the 

analysis of a clinical cohort involving 100 JIA patients on weekly low dose MTX therapy 

in a collaborative effort with our colleagues at Children’s Mercy Hospital (KC, MO). The 

clinical relevance and its potential for guiding MTX therapy in JIA is discussed in 

appendix 1 and 2.  

Since the measurement of RBC MTXPGs appears to be a useful biomarker for  

individualization of MTX therapy in juveniles, analytical methodology suitable for clinical 

use is required. Chapter 5 and 6 of this dissertation present analytical methodology 

suitable for RBC MTXPG measurement in a clinical setting. 
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1.12 The measurement of folates 

            Since the polyglutamated forms of MTX are competitive inhibitors of various 

enzymes in the folate cycle, enzyme inhibition is a result of intracellular folate/MTX 

(polyglutamation) ratio. As folate is an essential nutrient (i.e. humans lack the ability to 

synthesize folate), an individuals folate status is the result of multiple factors including 

diet. The discrepancy currently noted in the literature about the usefulness of the 

measurement of MTXPG status in RA and JIA therapy, might be the result of the failure 

to recognize the MTX/folate antagonistic balance[55]. One must note that bioanalytical 

methodology for measured of folate isoforms and polyglutamation chain length has not 

been described in human tissues or cells[56]. The detection of both isoform and 

polyglutamation status is challenging from a specificity and sensitivity standpoint. 

Chapter 7 of this dissertation presents bioanalytical methodology for the detection of the 

folate isoform and polyglutamation chain length in the RBCs of JIA patients. The 

presented analytical methodology described was utilized for the determination of folate 

isoform and polyglutamation status of samples obtained from approximately 200 JIA 

patients, in a collaborative effort with our colleagues at Children’s Mercy Hospital (KC, 

MO).  

Approximately 100 patients were on MTX therapy and the other half of the cohort 

was comprised of JIA patients not on MTX therapy. The establishment of a MTX and 

non-MTX group in the patient cohort allows the establishment of a baseline folate status 

and reveals how MTX perturbation alters the intracellular folate cycle. Additionally the 

measurement of the intracellular folate distribution (i.e. isoform and polyglutamation) in 

combination with the measurement of MTXPGs gives us insight in the folate/antifolate 

species present within the cell that compete for similar enzymatic targets. As these 
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bioanalytical assays will lead to an increased understanding of the intracellular 

folate/MTX balance within the cell, it might be possible to describe a “folate signature” of 

MTX responders, or optimize (increase efficacy and reduce toxicity) MTX therapy based 

on quantitative values. This information is invaluable in guiding MTX therapy in JIA as 

alternative therapies are limited. 

  

1.13 Overall goal of the dissertation 

As can be concluded from the introduction, MTX is a versatile drug with a long 

history of clinical use. The more recent applications of MTX are its use for drug delivery, 

and the utilization of low dose MTX therapy for the treatment of autoimmune diseases. 

Classical plasma measurements of free MTX has been proven useful for the guidance of 

free MTX therapy for the treatment of cancers, but has limited value for these more 

recent applications. Therefore novel sensitive bioanalytical methods are needed to 

support the development of novel entities involving MTX and its metabolites, and for 

optimizing and individualizing MTX usage in low dosage regimes.  

From a bioanalytical perspective, the challenges involving the detection of novel MTX 

nanoparticle conjugates, MTX metabolites (polyglutamates) and the detection of folates 

are intimately related. This family of entities (folate or antifolate) all share a common 

pteridine moiety, where changes in compound identity are the result of a minor number 

of substitutions on the pteridine ring system. A similar argument can be made for the 

other end of the molecule, where MTX or folate glutamyl conjugation plays an important 

role (e.g. to a nanoparticle or a  ɣ-glutamyl-polypeptide). 
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This dissertation presents novel bioanalytical methods for the detection of (anti)folate 

species for these more recent MTX application areas. The relevance of the bioanalytical 

methods described in this dissertation is illustrated by direct clinical applications. The 

reader of this dissertation however, is encouraged to utilize the presented methods 

creatively as they are easy adaptable and could be applied to modern clinical 

investigations of antifolate therapy. An example of such an adaption is given in Chapter 

6, where a derivatization reaction initially developed for nanoparticle conjugated MTX 

determination in plasma was utilized for the determination of total MTXPG pool in human 

RBCs. Many techniques presented in this dissertation might also be relevant for the 

bioanalytical chemist working with clinicians in the optimization of MTX therapy in fields 

as psoriasis, adulthood arthritis, inflammatory bowel disease and cancer treatment.  
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2.1 Introduction 

 The following chapter deals with the bioanalytical method development of an 

experimental anticancer agent based on a chemically elaborated nanoparticle carrier. 

First the chemical structure and the physical chemical properties of the nanoparticle are 

described. Subsequently a (clinical relevant) metabolic pathway is proposed and 

analytical targets were selected based on this scheme. The remainder of the chapter 

presents analytical method development, validation, and application of the method to 

obtain preliminary pharmacokinetic data. 

 

2.1.1 Poly(amidoamine) dedritic nanocarriers 

Poly(amidoamine) (PAMAM) dendrimers are hyper-branched, spherical 

molecules with a well defined structure as a result of their stepwise repetitive synthetic 

route[1].  They are constructed around an ethylenediamine core unit, elaborated by 

repetitive alternating alkylation and amidation steps[2].  Each repetitive synthetic iteration 

results in the next dendrimer generation, which has increased size, molecular weight 

and (terminal) surface functional groups[3]. PAMAM dendrimers, the first commercial 

available dendrimers, are currently being touted as drug delivery platforms[4] as a result 

of their relatively monodisperse yet multivalent structure[5-6].  The internal cavities of 

PAMAM dendrimers are relatively hydrophobic and as a result have been utilized for 

encapsulation of poorly water soluble drugs[7], while the ionizable amines of the surface 

can undergo non-covalent electrostatic interactions with an acidic drug[8]. These drug-

dendrimer interactions provide an apparent enhancement of drug solubility[9], improved 
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bioavailability[10] and favorable release profiles. Taking advantage of their surface 

functional groups structural features to potentially achieve tissue specific targeting, these 

dendrimers have been conjugated with numerous molecules to created a chemically 

based drug delivery nanodevice (a number of conjugates are summarized by Cheng et 

al.)[5]. 

 

2.1.2 G5-MTX-FA 

G5-MTX-FA (Avidimer Therapeutics, Ann Arbor, MI) is a chemically elaborated 

generation 5 (G5) PAMAM dendrimer (figure 8). The present research focuses on the  

development of plasma assay methodology suitable to support preclinical evaluation of 

G5-MTX-FA as a targeted chemotherapeutic drug delivery device[11]. The nanodevice is 

a bi-functional G5-PAMAM dendrimer conjugate where the surface primary amine 

 

Figure 8. Chemical structure of G5-MTX-FA. The G5 PAMAM core is illustrated by the 

sphere (not scale). 
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groups have been largely blocked via acetylation[12] in order to reduce non-specific 

interactions and increase solubility[13]. Folic acid (FA) moieties are covalently bonded to 

the dendrimer surface in order to target the nanodevice towards over expressed folate 

receptors that are present on the cell surface of various forms of cancer cells[14]. 

Following receptor binding, the nanodevice appears to be internalized by folic acid 

receptor mediated endocytosis[15]. The therapeutically active agent methotrexate (MTX), 

also covalently attached to the dendrimer surface, is thus delivered to the cell. A detailed 

description of the synthesis procedure for this nanodevice is described elsewhere[16]. 

The efficacy of the G5-MTX-FA conjugate over free methotrexate has been 

demonstrated in several in-vitro[17] and in-vivo[18] studies.  

Based on this biological scenario, the obvious therapeutic goal is the clinical 

development of this potential site specific delivery system whereby the therapeutic agent 

MTX is effective at a lower overall dosage that maximizes effectiveness and minimizes 

side effects. Hence bioanalytical methodology of high sensitivity and selectivity is 

needed to support appropriate preclinical and/or clinical investigations. 

 

2.1.3 Proposed metabolic pathway of G5-MTX-FA 

Since MTX is conjugated through a potentially labile ester bond, G5-MTX-FA may 

release MTX in-vivo. The free MTX will then be subject to known metabolic pathways[19-

21] (figure 9). The major plasma metabolite, 7-hydroxymethotrexate (7OH-MTX), is 

known to exhibit approximately1/100 the bioactivity of MTX. Other known metabolites 

include various polyglutamates (PGs) and 4-amino-4-deoxy-N10-methylpteroic acid 

(DAMPA). Intracellular metabolism of MTX produces the various MTXPGs, which limit 
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the extrusion of MTX by active transport[22]. DAMPA, an inactive metabolite, appears to 

result mainly from oral administration of MTX where the drug substance undergoes 

extracellular metabolism by intestinal bacterial flora[23]. When one considers all of these 

aspects,  it is clear that one needs to develop plasma assay methodology for bound 

MTX (i.e., dendrimer associated), free MTX, and the major metabolite 7OH-MTX.  In 

contrast it is unnecessary to assay the MTXPG family of metabolites, since they are 

essentially trapped in an intracellular pool, nor DAMPA since G5-MTX-FA is intended 

only for vascular administration thus circumventing its formation.  

 

Figure 9. Proposed metabolic degradation scheme for G5-MTX-FA. 
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2.1.4 Reflection on analytical methodology 

As an analytical strategy for  plasma determination of G5-MTX-FA is devised, one 

must be aware that a number of structural deviations are introduced at different stages 

of its multistep synthesis procedure.  For example, in building the G5 PAMAM dendrimer 

core, various skeletal defects (i.e. missing arms, molecular loops, dimers and/or traces 

of trailing generations) result, and further, additional variability is introduced during the 

process of functionalizing the dendrimer surface[24].  

In the past, a variety of complementary analytical strategies have been utilized in 

order to characterize the degree of heterogeneity of such nanoparticles. Spectroscopic 

techniques include, but are not limited to: various types of NMR[12, 24-26], mass 

spectrometric methods (chemical ionization, fast atom bombardment, laser desorption, 

electrospray ionization and matrix assisted laser desorption/time of flight (MALDI-

TOF)[24, 27]) and low angle laser light scattering[1]. A number of separation methods 

including size exclusion chromatography (SEC)[1, 12, 24], capillary electrophoresis (CE) [24, 

28] and polyacrylamide gel electrophoresis[24] have been applied to PAMAM dendrimers. 

Reversed-phase liquid chromatography has been used to separate different generations 

of dendrimers[29] and in one report was able to partially resolve dendrimers of the same 

generation possessing surface modifications with minor variations[30].  

With regard to bioanalysis of G5-MTX-FA, such results are not particularly useful 

as one would expect broad or perhaps multiple unresolved peaks. Review of these 

various techniques immediately reveals that separation performance declines with 

increasing dendrimer size and/or (partial) surface elaboration, leading one to conclude 

that they are not suitable for bioanalysis of G5-MTX-FA in a biological matrix.   
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2.1.5 Analytical method requirements 

From an analytical perspective, due to imperfections in the synthetic preparation, 

G5-MTX-FA is a heterogeneous large molecule therapeutic; however, subsequent to 

dosing, this situation can potentially become even more complex, since there is the 

potential for step-wise release of MTX through ester cleavage.  Such a scenario would 

result in an altered nanodevice still possessing therapeutic potential but of lower MTX 

titer. Therefore any bioanalytical methodology should be capable of specific 

determination of total dendrimer associated MTX.  In the present report, the issues of 

macromolecular chromatographic inefficiency and analyte heterogeneity (G5-MTX-FA 

MTX titer) are addressed via a sample preparation step wherein the selective release of 

a highly fluorescent MTX reporter molecule (2,4-diamino-6-methylpteridine) is achieved.  

Assay of the reporter allows for selective and sensitive (low nM) determination by liquic 

chromatography with fluorescence detection (LC-FD) of G5-MTX-FA associated MTX. 

The remaining analytes of interest, free MTX and the metabolite 7OH-MTX, were 

determined by LC separation followed by online post column photochemical reaction 

with fluorescence detection. The developed methodology was used to obtain plasma 

pharmacokinetic profiles of G5-MTX-FA administered to rats by intravenous bolus and 

subcutaneous injections. 
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2.2 Experimental 

2.2.1 Materials  

HPLC grade N,N-dimethylformamide (DMF), Folic acid (FA), 30% solution of 

hydrogen peroxide (H2O2), methotrexate (MTX), potassium permanganate (KMnO4), 

sodium dithionite (Na2O4S2), sodium hydroxide (NaOH) and tris hydrochloride were 

obtained from Sigma-Aldrich. (St. Louis, MO).  Potassium phosphate monobasic 

(KH2PO4), Potassium phosphate dibasic (K2HPO4), Ammonium acetate and HPLC 

grade solvents acetonitrile (ACN) and methanol (MeOH) were obtained from Fisher 

Scientific (Fair Lawn, NJ). 7-Hydroxymethotrexate (7OH-MTX) was purchased from 

Synfine Research (Ontario, Canada). G5-MTX-FA was obtained from Avidimer 

Therapeutics. Blank heparin stabilized rat plasma (Sprague Dawley) was obtained from 

Bioreclamation, Inc (Westbury, NY).  

 

2.2.2 Instrumentation and Apparatus 

G5-MTX-FA System: This system consisted of two Shimadzu LC6A solvent 

delivery modules that were operated through a Shimadzu SCL-6B system controller. 

Sample introduction occured by a Shimadzu SIL-6B autosampler equipped with a 50 μL 

injection loop. A Phenomenex Luna C18(2), 5 µm, 100 Å, 250 x 2.0 mm analytical 

column was guarded by a Supelcosil LC-8, 5 µm, 2 x 2.1 mm guard column and 

maintained at 30°C by a Shimadzu CTO-6A column oven. Detection occurred by a 

Shimadzu RT-10Axl fluorescence detector with excitation and emission wavelengths of 

367 nm and 463 nm, respectively. The data was collected using TurboChrom V4.1. The 
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mobile phase used with this chromatograph consisted of solvent A: 15 mM tris-HCl 

adjusted to pH 6.8 by a 10% NaOH solution and solvent B: consisting of MeOH. The 

system was operated at a flow rate of 0.2 mL/min with 75% A and 25% B.  

Post column photo oxidation system: Solvent was delivered by a Shimadzu LC6A 

binary pumping system that was operated through a Shimadzu SIL-6B system controller. 

The sample was introduced by a Shimadzu SIL-6B autosampler equipped with a 100 μL 

injection loop. The separation was conducted on a Phenomenex Intertsil C18 (150 x 4.6 

mm) column with 5 µm particles with a 100 Å pore size that was protected by a 

Supelcosil LC-8, 5 µm, 2 x 4.0 mm guard column. Two meters of transparent Teflon 

tubing (0.012” id x 0.030” od), one meter in the center braided, was used as reactor coil 

and connected to the outlet of the column (total reactor coil volume 0.14 mL). An in-

house fabricated online photochemical reactor was constructed using a GE Germicidal 

9W lamp as a light source inside of the photochemical reactor (figure 10). Detection 

occurred by a Jasco FP-920 Intelligent Fluorescence Detector (excitation: 360nm and 

emission: 417nm) and data was collected by TurboChrom V4.1. The mobile phase used 

with this chromatograph consisted of solvent A: 975 mL 10 mM potassium phosphate 

buffer pH 6.2, 25 mL DMF and 1.5 mL 30% solution of H2O2 and solvent B: consisting of 

200 mL ACN, 800 mL H2O and 1.5 mL 30% solution of H2O2. The system was operated 

at a flow rate of 1.0 mL/min with 60% A and 40% B. A schematic of the instrument 

configuration is shown in figure 10. 
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Figure 10. Schematic of the post column photo-oxidation HPLC system 

 

2.2.3 Preparation of stock solutions, samples and calibration  

Stock solutions of MTX and 7OH-MTX were prepared according to an earlier 

method presented by Steinborner et al[31]. MTX was dissolved in 95% MeOH and 5% 

formic acid. 7-OHMTX was dissolved in 50% DMSO, 50% H2O. G5-MTX-FA is freely 

soluble and was dissolved in H2O. The stock solutions were diluted with water to the 

desired concentration and spiked into a 100 µL blank plasma matrix to yield calibration 

standards. The linearity and reproducibility of the G5-MTX-FA methodology was 

assessed by the analysis of calibrants (n=6) spiked with 0, 2, 4, 20 , 40, 100, 200, 300 

and 400 µg/mL. Samples spiked with similar concentrations were used to determine 
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intra-day (six replicate) and inter-day (18 replicates analysis conducted over 3 separate 

runs) precision and accuracy. The linearity and reproducibility of the free MTX and 7-

OHMTX methodology was assessed by the analysis of calibrants (n=6) spiked with 

0.075:0.010, 0.15:0.02, 0.75:0.1, 1.5:0.2, 3.7:0.5, 7.6:1.0. 11.4:1.5, 15.3:2.0 µM MTX:7-

OHMTX. Samples spiked with similar concentrations were used to determine intra-day 

(six replicates) precision and accuracy.  

 

2.2.4 Reduction reaction of G5-MTX-FA  

An aliquot of 100 µL of (spiked/sampled) plasma was diluted with a 1.0 M 

ammonium acetate solution to 800 µL in a plastic vial. Once all samples and calibrants 

were prepared they were placed in an in-house manufactured sample holder (details 

provided in supplemental section) that has the ability to lock the caps. Subsequently 200 

µL of a freshly prepared 50 mM Na2O4S2 solution was added and the vials were closed 

and secured by the holder. The entire holder was then vortexed for 10 seconds and 

placed into a water bath of boiling water. After 15 minutes the holder was removed from 

the water bath and stored in a refrigerator for 30 minutes. The cooled samples were 

removed from the holder and placed into a centrifuge for 5 minutes at 10,000 rpm to spin 

down denatured and precipitated plasma proteins. The supernatant was transferred into 

1.0 ml autosampler vials and 50 µL was injected into the G5-MTX-FA LC-FD HPLC 

system. 
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2.2.5 Sample preparation for MTX and 7OH-MTX analyses 

The first step for analysis of the free analyte fraction was protein precipitation 

achieved by adding 30 µL of 10% perchloric acid to 100 µL spiked or sampled plasma. 

The vial then was closed and vortexed for 10 seconds, and the precipitated proteins 

were spun down for 5 minutes at 1.000g. The deproteinized sample was diluted by 

addition of 900 µL of 100 mM ammonium bicarbonate solution (pH 8.0). Aliquots (950 

µL) of the diluted samples were subjected to Solid Phase Extraction (SPE), as described 

below. The recovered analytes were heated in 40 °C water and evaporated to dryness 

under a gentle stream of nitrogen. The residue was reconstituted in 200 µL of 100 mM 

ammonium bicarbonate (pH 8.0). The solution was transferred into a 1.0 mL 

autosampler vial with 350 µL insert and 100 µL was injected onto the post column photo-

oxidation HPLC system. 

 

2.2.6 Solid Phase Extraction (SPE) 

A 100 mg, 1.0 ml Varian Bond Elute Strong Anion Exchange (SAX) SPE device 

was activated with 1.0 ml of MeOH. The column was equilibrated with 1.0 ml of 100 mM 

ammonium bicarbonate solution (pH 8.0). Then 950 µL of sample was applied. 

Interferences were washed from the column with 1.0 ml of 100 mM ammonium 

bicarbonate solution. The retained analytes were eluted by 1.0 ml of a soltution 

consisting of 95% MeOH and 5% formic acid. During extraction the SPE cartridges were 

mounted in a Waters vacuum manifold and the vacuum was adjusted to maintain a 

flowrate of approximately 0.5 ml/min through the cartridge.  
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2.2.7 Rat pharmacokinetic studies 

Animal studies were performed externally by Bolder BioPATH (Bolder, CO), 

including obtaining the appropriate ethical permission. A total of twelve female Lewis 

rats (Charles river, Wilmington, MA) were subjected to treatment in the study. Six 

animals were treated with 65 mg/kg G5-MTX-FA by intravenous injection, and six 

animals were dosed in the subcutaneous tissue in the back of the neck. The drug 

concentration in the saline vehicle was 13 mg/mL. Blood samples were drawn at trough, 

1 hr and 4 hr for three animals and at 0.5 hr, 2 hr and 8 hr for the remaining three 

animals of the group. Blood was collected in heparinized tubes and subsequently spun 

down to obtain the plasma fraction, which was snap frozen and shipped on dry ice. The 

received samples were stored at -70 °C for a month, and thawed before analysis.  
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2.3 Results and Discussion 

2.3.1 Analytical strategy for G5-MTX-FA MTX titer determination 

As noted in the introduction, G5-MTX-FA is a G5 PAMAM dendrimer core that 

has been chemically elaborated to result in a nanodevice whose surface primary amine 

groups have undergone several differing covalent modifications including acetylation, 

conjugation of glycidol, and attachment of folic acid (via an amide linkage) and 

methotrexate (via an ester linkage) (figure 8, 9).  Purely on a statistical basis, one would 

expect a relative degree of heterogeneity in the preparation of such an nanodevice, 

including the loading of the purported therapeutic agent MTX.  For example, a typical 

loading of MTX could be described as an average of 5.5 equivalents per dendrimer, but 

in actuality be constituted from a range of various dendrimer loadings.  Similarly, the 

same arguments can be made for all of the G5-PAMAM core modifications.  Since MTX 

is attached via an ester linkage, a site that is potentially susceptible to biochemical 

mediated hydrolysis, there is the possibility for the in vivo creation of additional 

heterogeneity with respect to dendrimer bound MTX, all with respect to a therapeutic 

agent of whose molecular weight is approximately 40,000 Daltons.  For the therapeutic 

evaluation of G5-MTX-FA, one will be concerned with all the dendrimer associated MTX 

species, i.e. the total G5-MTX-FA MTX titer irrespective of molecular species,  as well as 

any released MTX. Also as noted earlier, the chromatographic efficiency for a 

macromolecule, in this case approximately 40,000 Daltons, as compared to a typical 

small molecule, is significantly compromised. 
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Figure 11. Two routes of generating fluorescent pteridines involving cleavage of the C9-

N10 bond. A) Oxidative cleavage mediated by KMnO4 B) Reductive cleavage with 

Na2O4S2. 

 

In reviewing various derivatization reactions typical for methotrexate, one notes 

that the C9-N10 bond is labile to oxidation [32-38] and reduction [39] reactions, in either case 

resulting in the formation of  2,4 diaminopterin derivatives, each of which are known to 

be highly fluorescent (figure 11).  The utilization of such reactions in a sample 

preparation step creates a small molecule "reporter" that would exhibit excellent 

chromatographic properties and be highly detectable.  Furthermore in the case of G5-

MTX-FA, if this approach was quantitative, it would result in an amplification of analyte 

concentration on a molar basis since there is expected to be approximately 5-

equivalents of MTX to each dendrimer equivalent.  One must also note the similar 

reactions are applicable to bound FA, and depending on the overall sample preparation 

operations, it could represent an unwanted interference.  While these reactions have 

been applied to MTX determinations [19], application to dendrimer bound MTX (or FA) is 

unknown.  However, if successful, this strategy would effectively transform a large 

molecule analyte to a small molecule analyte, a highly attractive possibility. 
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2.3.2 Initial Evaluation of the Reporter Approach 

As noted above, in order to achieve MTX analysis by HPLC with fluorescence 

detection, MTX is commonly degraded by the oxidative pathway (figure 11A). This 

transformation has been performed by pre-column addition of KMnO4 
[32-34], but also can 

be performed post column with the use of H2O2 and photochemical initiation of the 

reaction[35-38]. Post-column degradation of dendrimer associated MTX is not a viable 

option since the degradation products of FA and MTX have similar excitation and 

emission profiles, resulting in a FA-MTX  total response rather than a specific response 

for G5-MTX-FA associated MTX. The application of pre-column oxidation to G5-MTX-FA 

by KMnO4, while being an effective derivatization method for unconjugated MTX (figure 

12A), resulted in a complex mixture of fluorescent products that could not be resolved by 

reversed phase LC (figure 12B). Far less known and applied is reduction of MTX by 

Na2O4S2 to form 2,4-diamino-6-methylpteridine (DAMP) (figure 11B). The yield of the 

reductive reaction has been reported to be 70% [39]. The application of this method to 

aqueous solutions of MTX is shown in (figure 12c), yielding a single peak.  Reduction of 

G5-MTX-FA followed by subsequent analysis by LC-FL yielded two distinct peaks (figure 

12D) that could be assigned as fluorescent methylpterines resulting from reduction of 

G5-MTX-FA associated FA and MTX, indicating successful release. Importantly, in 

contrast to the oxidative release result (figure 12B), the reductive approach (figure 12F) 

was devoid of the numerous chromatographic interferences observed by the oxidative 

method. 

 

http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Oxygen
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Figure 12. A) Chromatogram of free MTX degraded by the oxidative pathway B) 

Chromatogram of G5-MTX-FA subjected to the oxidative procedure C) Chromatogram of 

free MTX degraded by the reductive pathway D) Chromatogram of G5-MTX-FA 

subjected to the reductive procedure E) Chromatogram of blank rat plasma subjected to 

the reductive procedure F) Chromatogram of low concentrations of G5-MTX-FA 

subjected to the reductive procedure in rat plasma. 
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2.3.3 Rat plasma determination of G5-MTX-FA 

For plasma analysis, the original MTX reductive method reported the use of 

perchloric acid to achieve deproteinization prior to reduction. This approach was found 

to be incompatible with the G5-MTX-FA apparently due to quantitative co-precipitation 

with plasma proteins. Alternatively the Na2O4S2 mediated reduction of G5-MTX-FA in 

the plasma was evaluated. Reduction of a blank plasma sample at 100 °C led to the 

denaturation and precipitation of plasma proteins to the extent allowing for direct 

injection of the supernatant into the LC system without untoward consequences. The 

result obtained for blank rat plasma is illustrated by chromatogram of figure 12e, where it 

is may be noted that minimal biological noise was generated from the various plasma 

constituents. Subsequently, a G5-MTX-FA spiked rat plasma sample was treated in this 

fashion and, as illustrated in figure 12F, resulted in the successful release of the reporter 

DAMP from the nanodevice. In order to validate the bioanalytical assay, eight-point 

calibration runs involving six replicates were performed on three consecutive days (table 

1).  

 
Table 1. G5-MTX-FA intra- and inter-day precision and accuracy in a rat plasma matrix. 

  Intra-run (n=6) Inter-run (n=18) 

Nominal 
Concentration 

(µg/mL) 

Mean 
observed 

concentration 
(µg/mL) 

Precision       
(RSD %) 

 Mean 
Accuracy            
of target 

value 
(%) 

Mean 
observed 

concentration 
(µg/mL) 

Precision       
(RSD %) 

 Mean 
Accuracy            
of target 
value (%) 

400 391.1 4.9 97.8 403.1 9.0 100.8 
300 307.4 4.1 102.5 300.9 6.1 100.3 
200 202.6 6.5 101.3 200.4 6.8 100.2 
100 108.5 5.9 108.5 104.4 10.2 104.4 
40 39.8 5.5 99.5 38.7 6.7 96.6 
20 19.3 6.9 96.7 19.2 8.1 96.2 
4 3.9 6.9 97.6 3.8 8.5 95.3 
2 2.0 4.0 101.5 2.0 6.1 101.4 
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It was found that the procedure was linear over an G5-MTX-FA concentration range of 

2-400 µg/mL utilizing only 100 µL of plasma. Since G5-MTX-FA has an estimated 

molecular weight of 37 kDa, one could also express the results on a molar scale, 

ranging in a dynamic range from ~50 to 10,000 nM, covering the anticipated in-vivo 

concentration range of this experimental therapeutic. Inter-day and intra-day precision 

and accuracy were found to be well within the commonly accepted guidelines for a 

bioanalytical assay.   

 

2.3.4 Dog plasma determination of G5-MTX-FA 

 In-vivo toxicology studies of G5-MTX-FA were also conducted in Beagle dogs, 

along with the various rat studies. In order to support these studies, the suitability of the 

rat plasma method presented in section 2.3.3 was explored for the analysis of dog 

plasma samples. G5-MTX-FA spiked dog plasma gave similar chromatograms 

compared to G5-MTX-FA enriched rat plasma, indicating that the method could be 

directly transferred between these matrices. In order to assess the reproducibility and 

accuracy of the method in dog plasma, a similar validation experiment was performed as 

reported in section 2.3.3 (table 2). As demonstrated by table 1 and 2, the performance 

(precision and accuracy) of the reductive method for the analysis of G5-MTX-FA is 

similar in both, dog and rat plasma respectively. Inter- and intra-run accuracy and 

precision are well within the FDA guidelines of Crystal City defining that accuracy and 

precision should be within <15% in the calibration range, and <20% at the detection 

limit. Limits of detection were set 2ug/mL, however the precision of 8.7% at this value 

suggest limit of detection could be challenged further. 
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Table 2. Intra- and inter-day precision and accuracy in a Beagle plasma matrix. 
   Intra-run (n=6) Inter-run (n=18) 

Nominal 
Concentration 

(µg/mL) 

Mean 
observed 

concentration 
(µg/mL) 

Precision       
(RSD %) 

 Mean 
Accuracy            
of target 
value (%) 

Mean 
observed 

concentration 
(µg/mL) 

Precision       
(RSD %) 

 Mean 
Accuracy            
of target 
value (%) 

400 393.9 5.0 98.5 396.2 6.5 99.1 
300 309.6 4.1 103.2 302.9 5.4 101.0 
200 204.1 6.6 102.1 205.4 6.6 102.7 
100 109.3 5.0 109.3 107.1 7.8 107.1 
40 40.1 5.6 100.3 38.0 6.3 95.1 
20 19.5 6.9 97.4 19.0 7.8 94.8 
4 3.9 7.0 98.3 3.4 10.3 86.0 
2 2.0 4.0 102.3 1.9 8.7 92.5 

 

 

2.3.5 Determination of free MTX and 7OH-MTX 

Determination of in-vivo released MTX and the metabolite 7-OHMTX was 

accomplished by established methodology that involved liquid chromatography (LC) 

fractionation followed by post-column photochemistry ((PC(hv)) with fluorescence 

detection (FD)[35-38]. This approach allows for the separation and specific quantitation of 

MTX and various metabolites including 7O-HMTX and if necessary DAMPA. Since G5-

MTX-FA would only be dosed via intravenous injection, DAMPA was not an analytical 

target of the present effort. However, using the LC-PC(hv)-FD approach, the resulting 

methodology is such that DAMPA is not an interference with respect to MTX and 7OH-

MTX, and if required could be used for DAMPA determination. 

Separation of MTX and 7OH-MTX was conducted on a end-capped reversed 

phase C18 column. The selectivity factor of this column for the separation of MTX and 

7OH-MTX is not optimal, and as a result MTX and 7OH-MTX were only partially 

resolved, or lengthy analysis times are required in order to facilitate separation (figure 
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13A). It has been shown that the resolution between both compounds can be improved 

on a C18 column through the addition of dimethylformamide (DMF) to the mobile 

phase[36].  Using relatively small percentages of DMF as a mobile phase additive, 

typically 2.5% by volume, allowed for high separation selectivity with respect to the 

resolution of MTX and 7OH-MTX and an overall separation time of 10 minutes (figure 

13B, C, D). 

 

 

 

Figure 13. Separation of MTX and 7OH-MTX with A) no DMF in the mobile phase B) 1% 

DMF in the mobile phase C) 2.5% DMF in the mobile phase D) 5% DMF in the mobile 

phase. 
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Sensitive detection of both MTX and 7OH-MTX was achieved by optimization of 

the post column PTFE reaction coil length. Longer columns would allow for more 

sensitive detection of MTX, but lead to over oxidation of 7OH-MTX resulting in 

diminished detection sensitivity (figure 14). A compromise was made between both 

signals by using a reactor coil with a length of 1 meter, resulting in an 

exposure/residence time of the analytes in the photo reactor of about 4 seconds at a 

flow rate of 1.0 mL/min. This residence time maximizes the detection sensitivity of the 

MTX metabolite 7OH-MTX which is generally a present in lower concentrations that 

MTX itself in plasma, therefore maximizing the detection potential for this low abundance 

metabolite. 

 

Figure 14. Optimization of the fluorescence signal for MTX and 7OH-MTX by varying 

the reactor coil length and therefore reaction/residence time. 
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2.3.5.1 Determination of free MTX and 7OH-MTX out of rat plasma 

Sample preparation consisted of two straightforward steps. The analytes were first 

isolated in the supernatant obtained subsequent to perchloric acid mediated protein 

precipitation. In a second step the analytes were subjected to an SPE extraction, using a 

strong anion exchange (SAX) cartridge in order to reduce biological background (figure 

15A). The SPE step provided an interference free chromatographic window which was 

utilized for the isocratic separation of MTX and 7OH-MTX (figure 15B).  

 
Table 3. Intraday validation of free MTX in rat plasma 

Nominal MTX 
Concentration (µM) 

Mean observed 
concentration (µM) 

(n=6) 

Precision       
(RSD %) 

 Mean Accuracy            
of target value (%) 

15.3 15.2 2.0 99.3 
11.4 11.1 5.6 97.0 
7.6 7.8 7.3 102.9 
3.7 4.3 5.3 116.2 
1.5 1.4 11.3 96.6 
0.75 0.67 3.8 89.0 
0.15 0.14 6.1 94.4 
0.075 0.080 14.5 107.0 

 

Figure 15. A) Rat plasma interference removal by performing a SAX SPE extraction. B) 

rat plasma enriched with MTX and 7OH-MTX at various concentrations. 
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Assay specificity with regard to G5-MTX-FA associated MTX was investigated by the 

analysis of various spiked controls (concentrations as high as 0.1 mg/mL). G5-MTX-FA 

was not observed in any of the LC-PC(hv)-FD chromatograms, thus demonstrating the 

assay is specific for MTX and 7OH-MTX regardless of G5-MTX-FA concentrations. A 

limited validation (8 points calibration with 6 replications for each concentration) was 

performed since this methodology has been largely described in the literature (table 3 

and 4). The  limit of quantitation for MTX and 7OH-MTX  was determined to be 50 nM 

and 10 nM, respectively.  

 

2.3.5.2 Determination of free MTX and 7OH-MTX out of Beagle plasma 

As stated before in-vivo toxicology studies of G5-MTX-FA were also conducted in 

Beagle dogs. It was found that the free analyte method could be directly transferred from 

rat plasma to dog plasma without any alterations to the chromatographic system or 

sample preparation procedure. The method was validated according to a similar protocol 

Table 4. Intraday validation of free 7OH-MTX in rat plasma 

Nominal 7OH-MTX 
Concentration  

(µM) 

Mean observed  
concentration (µM) 

(n=6) 

Precision  
(RSD %) 

 Mean Accuracy  
of target value (%) 

2 2.0 3.4 101.10 
1.5 1.4 5.8 96.14 
1 1.1 7.6 105.04 

0.5 0.59 5.5 118.94 
0.2 0.18 9.4 91.49 
0.1 0.09 5.7 92.05 

0.02 0.020 4.9 99.62 
0.01 0.009 19.9 85.65 
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as in 2.3.5.1, running 6 replicates at 8 different concentrations (table 5 and 6). As 

illustrated by table 2 and 3 intra-day accuracy and precision are well within FDA 

guidelines for a bioanalytical assay, where deviations up to 20% are acceptable. 

 
Table 5. Intraday validation of free MTX in Beagle plasma 

Nominal MTX 
Concentration (µM) 

Mean observed 
concentration (µM) 

(n=6) 

Precision       
(RSD %) 

 Mean Accuracy            
of target value (%) 

15.3 14.5 3.6 94.5 
11.4 11.5 3.8 100.7 
7.6 8.1 0.7 106.1 
3.7 3.8 3.5 102.0 
1.5 1.3 4.1 89.8 
0.75 0.66 3.2 87.5 
0.15 0.13 5.4 83.3 
0.075 0.064 7.4 85.2 

 

 

 

 

 

Table 6. Intraday validation of free 7OH-MTX in Beagle plasma 

Nominal 7OH-MTX 
Concentration  

(µM) 

Mean observed  
concentration (µM) 

(n=6) 

Precision  
(RSD %) 

 Mean Accuracy  
of target value (%) 

2 1.9 3.3 95.2 
1.5 1.6 4.3 107.1 
1 1.2 2.4 119.1 

0.5 0.57 3.9 114.8 
0.2 0.22 4.3 108.6 
0.1 0.11 3.1 111.3 

0.02 0.019 3.2 95.4 
0.01 0.009 14.9 92.0 
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2.3.6 G5-MTX-FA Sample Preparation Issues 

Pre-column reduction for detection of G5-MTX-FA associated MTX is 

compromised by any (released) free MTX within the sample that will form the same 

fluorescent product upon degradation. In order to achieve specific detection of G5-MTX-

FA associated MTX, attempts were made to separate the nanodevice from free MTX. A 

variety of SPE sorbents including C18, SAX, WCX and PLEXA were explored in order 

to either retain the dendrimer conjugate with free MTX eluting in the void volume, or vice 

versa. The recovery of G5-MTX-FA after SPE extraction was found to be low, non-linear 

and highly irreproducible, with lower regions of the calibration curve affected more 

severely. Similar behavior of G5-MTX-FA was observed utilizing SEC and ultra-filtration 

materials. Significant analyte loss at low µM concentrations due to adsorption could be 

observed upon exposure of a standard solution of G5-MTX-FA to a glass surface. 

Previous work has reported that amine-terminated PAMAM dendrimers adsorb 

tenaciously to polar surfaces making chromatography on this class of compounds 

difficult[29]. In the present investigation, adsorption of a surface deactivated G5-MTX-FA 

dendrimer conjugate was observed, suggesting that the G5 PAMAM core may become 

partially exposed and available for interactions, perhaps due to an initial absorption and 

subsequent rearrangement of the three dimensional structure.  

 

2.3.7 Successful Sample Pretreatment of G5-MTX-FA 

Significant loss of G5-MTX-FA was encountered in all of the various sample 

preparation steps examined.  Reflecting upon this situation, these results are could be 

due to the numerous polar interaction sites of the macromolecule (numerous amide 
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moieties reside along each of the dendrimer arms), thus once a given untoward 

interaction occurs, a second and following interactions likely would occur, essentially 

providing a cascade of events leading to unwanted binding and loss of the 

macromolecule analyte.  However, as previously noted, reductive cleavage to provide a 

small molecule reporter was a highly successful approach to quantitation of G5-MTX-FA. 

If one subjected an untreated plasma sample to the reduction reaction, perhaps there 

would be a reproducible release of the reporter, which would remain in solution and not 

be subject to the various G5-MTX-FA loss processes previously observed. However, the 

consequence is that the total measured MTX concentration consists of G5-MTX-FA 

associated MTX and free MTX. Since free MTX can be determined accurately and 

independently of G5-MTX-FA associated MTX, one could perform both determinations 

and subtract the free MTX value from the apparent total to obtain G5-MTX-FA  

associated MTX.  As this strategy was devised, the in-vivo MTX release behavior of G5-

MTX-FA was not clear, but three scenarios could be expected. Category 1, none to very 

little (<1%) MTX is released from G5-MTX-FA. In this scenario free MTX could be 

determined accurately and the total MTX value obtained by the reductive method closely 

reflects G5-MTX-FA associated MTX with minimal correction required. Category 2, MTX 

release is significant but not the major product and total G5-MTX-FA requires correction. 

Category 3, there is a significant release of MTX from the nanodevice, with free MTX 

serving to dominate the total value as compared to G5-MTX-FA associated MTX.  
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*Concentrations of G5 associated MTX are based on the assumption that on spiked G5-average 
5.48 MTX molecules are attached. 

 

In order to analyze the feasibility of this approach, a number of cases with 

significant MTX release were simulated. Various samples were spiked with G5-MTX-FA 

and free MTX, divided into two separate aliquots, and analyzed by the reductive (total 

MTX obtained) and the LC-PC(hv)-FD method respectively (table 7). Analysis of the first 

3 cases in table 4  (falling in category 2) show that free MTX content was determined 

accurately and independently of G5-MTX-FA concentration. Subtraction of the free MTX 

content from the measured MTX total by the reductive method yielded the expected 

(known) G5-MTX-FA concentration, proving that subtraction is a viable method for 

category 2 cases. The last 3 cases could be assigned as category 3, having high free 

MTX content. Free MTX could again be determined accurately independently of G5-

MTX-FA content, however subtraction of free MTX content from the obtained MTX total 

did not result in accurate G5-MTX-FA associated MTX values. High standard deviations 

are however expected in this type of scenario, since a relatively large number (and its 

associated absolute standard deviation) is subtracted from a nearly equal number (with 

its standard deviation), resulting in a relatively small difference. A result observed for this 

Table 7. Method specificity and mathematical correction. 

MTX 
(µM)* 

Spiked Free 
MTX (µM) 

Total MTX in 
sample (µM) 

Total MTX 
Measured 

by 
reduction 

(µM) 

Free MTX 
measured 

(µM) 

Calculated 
G5 MTX 
content 

(µM) 

Mean 
Accuracy  

of G5-MTX 
value (%) 

23.0 3.9 26.9 25.9 3.9 22.0 95.6 
17.3 0.8 18.0 17.0 0.9 16.1 93.5 
11.5 1.6 13.1 13.2 1.6 11.7 101.5 
5.8 15.6 21.4 22.6 15.5 7.1 123.6 
2.3 7.8 10.1 9.5 7.7 1.8 79.9 
1.2 11.7 12.9 12.6 11.9 0.8 65.4 
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mathematical correction is a extremely large relative standard deviation, and thus 

imprecision associated with the G5-MTX-FA determination. As these results became 

available, information emerged indicating that category 1 describes the in-vivo fate of 

G5-MTX-FA for rats  (see the results provided in the application section), thus no further 

method development efforts were required. 

 

2.3.8 Stability 

Stability data is shown in table 8. The stability of G5-MTX-FA was studied at 

intermediate to high concentrations, so significant amounts of released MTX would be 

detectable. The derivatized product DAMP was found to be stable in the autosampler at 

room temperature for 24 hr illustrated by the small R.S.D. for repetitive analysis over this 

time course. All of the samples were analyzed within 24 hr this window. G5-MTX-FA 

spiked plasma samples were stable over three consecutive freeze-thaw cycles, and no 

free MTX due to ester cleavage could be detected. Prior work has described the stability 

of the MTX ester linkage to the nanodevice at pH 2.25 for 59 days at room temperature 

in highly aqueous media[30]. The percentage of released MTX was found to be less than 

1 percent, suggesting that the ester linkage not particularly labile. In order to 

demonstrate that the ester linkage is not hydrolyzed by esterases during sample 

processing, G5-MTX-FA spiked plasma samples were incubated at room temperature 

for 4 hours (exceeding standard processing time), and subsequently analyzed. Free 

MTX could not be detected, indicating that esterlinkage is stable in rat plasma during 

sample processing and handling. Samples from a pharmacokinetic study were stored for 
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a month before analysis occurred. G5-MTX-FA was found to be stable at -70 °C over 

this time frame (table 8). 

 

Table 8. Stability of G5-MTX-FA under various conditions (n=5) 
    

Storage condition 
G5-MTX-FA related MTX 
concentration (µg/mL) R.S.D. 

(%) 
Free MTX 

Free 7OH-
MTX 

  nominal measured measured measured 
Stability in autosampler 50 51.9 0.8 ND ND 

 
100 103.4 0.8 ND ND 

 
200 188.1 0.5 ND ND 

Freeze-thaw stability 50 47.5 10.1 ND ND 

 
100 102.9 3.9 ND ND 

 
200 198.9 4.0 ND ND 

Incubation at 25 °C (4h) 50 46.1 1.9 ND ND 

 
100 100.9 0.7 ND ND 

 
200 182.6 2.5 ND ND 

Stability at -20 °C (1 month) 50 54.6 4.5 ND ND 

 
100 104.2 7.7 ND ND 

  200 207.7 3.0 ND ND 
 
 

2.3.4 Reporter Chemistry for Determination of G5-MTX-FA Titer 

As noted in the introduction, characterization of the degree of surface modification 

of dendrimer conjugates is an analytical challenge. In order to determine an average 

MTX or FA titer of the G5-PAMAM derivatives, researchers have applied UV 

spectroscopy, gel permeation chromatography or have taken advantage of MTXs or FAs 

aromatic hydrogens on the para-aminobenzoic acid residue that appears downfield in a 

proton NMR spectrum[16]. The effectiveness of both strategies diminishes with increasing 

size, complexity and intermolecular interaction of dendrimer conjugates.  

The reductive release method demonstrated in the previous paragraph provides a 

potential complimentary strategy for determination of MTX titer. Assuming the yield of 
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reductive cleavage of the C9-N10 bridge in free MTX and G5 conjugated MTX is similar, 

the G5-MTX titer can be determined by running individual calibration curves. The 

difference in slope between individual calibration curves of free MTX and G5 conjugated 

MTX reveals the number of MTX molecules associated with G5 (equation 1).  

 

(Eq. 1) MTX loading = G5-MTX-FA related MTX slope / MTX std slope. 

 

Although not within the scope of method development, a similar argument could be 

made for determination of the FA loading of the nanodevice (equation 2).  

 

(Eq. 2) FA loading = G5-MTX-FA related FA slope / FA std slope. 

 

Various lots of G5-MTX-FA were supplied by Avidimer Therapeutics for valuation 

of MTX and FA titer (table 9). The MTX titer varied between 4.84 and 10.16 MTX 

molecules per nanoparticle. Lot 0505-001 of G5-MTX-FA was used for the analytical 

method development and was found to bear on average 5.15 molecules of MTX per G5 

PAMAM core unit, by the reductive method (table 9). Information provided by the 

supplier indicated approximately 5-6 MTX molecules per G5 PAMAM core unit could be 

expected, which is in substantial agreement with the present findings.  
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Table 9. G5-MTX-FA related MTX FA titer determination   
   

lot std [G5-MTX-FA] 
uM MTX area MTX - statistics MTX 

titer FA area FA - statistics FA 
titer 

123-34 

1 0.086 1411591 r^2: 0.998 

6.221 

69465 r^2: 0.993 

0.492 
2 0.171 3698321 228743 
3 0.342 6844653 

slope: 21571743 
334365 

slope: 953099 4 0.685 13581518 712390 
5 1.37 29421989 1217554 

0505-001 

1 0.081 1480690 r^2: 0.999 

5.151 

42701 r^2: 0.998 

0.322 
2 0.162 3197696 94691 
3 0.324 5768268 

slope: 17831219 
174527 

slope: 637559 4 0.6487 11721408 386135 
5 1.297 23257656 816670 

0147-135 

1 0.086 1718343 r^2: 0.998 

4.841 

40306 r^2: 0.998 

0.412 
2 0.172 4093268 142838 
3 0.346 7560776 

slope: 16741453 
287852 

slope: 792169 4 0.691 16051808 548374 
5 1.382 31118674 1085550 

06-02-0001 

1 0.089 1568317 r^2: 0.993 

5.901 

82331 r^2: 0.998 

0.492 
2 0.179 3781184 170311 
3 0.357 8095449 

slope: 20428177 
371968 

slope: 948106 4 0.714 14435970 706376 
5 1.428 - 1355976 

0083-112 

1 0.085 2681269 
r^2: 0.999 

10.161 

38670 
r^2: 0.997 

0.322 
2 0.169 5271335 97636 

3 0.338 11856236 
slope: 35184146 

204302 
slope: 618420 4 0.676 23316396 379370 

5 1.352 47191623 831796 
1 MTX standard curve statistics: r2: 0.999, slope: 3462379 

2FA standard curve statistics: r2: 0.986, slope: 1942248 
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G5-MTX-FA was found to bear on average 0.5 FA molecules per core unit, which 

was substantially different from the information supplied by the provider of G5-MTX-FA, 

which had indicated an average of 5 FA molecules covalently attached to the 

nanocarrier core. The nature of this discrepancy at this point is not understood, however 

the difference might be indicative of side reactions during coupling of FA or the 

introduction of structural modifications to the FA pteridine core in subsequent synthetic 

steps (reaction with glycidol and the addition of MTX). Detecting these minor FA 

modifications is challenging with the spectroscopic techniques described earlier in this 

introduction of this chapter. However, (slighty) structurally altered FA will behave 

differently upon reduction, possibly have different emission and excitation wavelengths, 

and will be separated by reversed phase chromatography, and thus (minor) variations 

chemical variations will lead to a diminished FA titer using this method.  

In order to investigate the effect of side reactions, the FA titer was determined on 

several isolated intermediates during the G5-MTX-FA synthesis procedure. The first step 

in the synthetic procedure is partial acylation of the PAMAM dendrimer core, followed by 

carbodiimide coupling of FA. Analysis of the FA coupled intermediate revealed by the 

reductive procedure indicated that 0.82 FA molecules were attached per dendrimer core 

unit, again significantly less than the suggested 5 FA molecules/dendrimer core unit 

(figure 16), but higher than the 0.32 FA/G5-MTX-FA measured on the final product. 
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 The next step in the synthetic procedure aims for derivitization of the remaining 

primairy amines on the surface of the PAMAM nanoparticle with glycidol (figure 17). 

Subjection of this 2nd intermediate to the reductive procedure reveals that there are 0.30 

FA molecules associated with the nanoparticle, indicating a further loss of roughly 2/3 of 

the FA molecules during this procedure. As suggested earlier in this paragraph, due to 

the high specificity of this method, a lower FA titer can also be observed due to covalent 

modifications on FA. Since characterization of G5-MTX-FA was not within the research 

scope, further studies to investigate the discrepancies between the various analysis 

methods were not conducted. However, it is important to note that the targeting vector of 

the nanodevice (FA) might have a covalently altered structure and largely presents itself 

in this fashion to the over expressed folate receptors on the cancer cell surface, rather 

than glutamyl linked native FA.  
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Figure 16. FA-titer determination (a) on a G5-MTX-FA intermediate (b) that has been 

partially acylated, followed by conjugation with FA. The FA-titer was determined at 0.82 

FA/core unit. 
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2.3.5 Application of the method 

The plasma reduction approach described above was utilized for analysis of 

plasma samples obtained form a toxicology study in rats. The rats were given doses of 

50, 200, 400 and 800mg/kg G5-MTX-FA by intavenous injection (IV). The early time 

point samples had to be diluted 1:10 prior to analysis (i.e after reduction) in order to 

reduce concentration and prevent detector over-ranging. G5-MTX-FA could be 

determined in all of the resulting plasma samples (Figure 18A). Free analytes, MTX and 

7OH-MTX, only could be detected in rats dosed at 800mg/kg. The MTX concentrations 

observed were low and quickly dropped below the limits of detection for the free analyte 

assay (Figure 18B). The plasma profile of MTX suggests, that at a given time point, the 

circulating free MTX mass accounts for ~0.06% of the total MTX mass. In prior work, 

stability of the MTX ester bond linkage to the nanodevice had been tested at pH 2.25 for 
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Figure 17. FA-titer determination (a) on a G5-MTX-FA intermediate that has been subjected 

to reaction with glycidol (b) The FA-titer was determined at 0.30 FA/core unit. 
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59 days at room temperature in highly aqueous media [30]. The percentage of released 

MTX was found to be less than 1 percent, suggesting that the ester linkage not 

particularly enzyme labile. In the present investigation, it appears that the ester bond is 

also stable in-vivo in the presence esterases and other endogenous compounds, 

however future work is needed to ascertain the hydrolysis rate constant in biological 

matrices. The presently described analytical methodology would allow for such a study, 

but is beyond the scope of the present work. 

Preliminary pharmacokinetic profiles of G5-MTX-FA in rats at dosages clinically 

more relevant were also obtained. Three animals received G5-MTX-FA at a dose of 65 

mg/kg by IV injection (Figure 18C), and three animals were treated with a similar dose 

by subcutaneous injection (SC) (Figure 18D). After IV injection, G5-MTX-FA appears to  

undergo a rapid distribution phase (Figure 18A, C) followed by rapid clearance from 

plasma, which is consistent with earlier reports [18]. G5-MTX-FA plasma concentrations 

observed,  when administered in the SC tissue, were typically much lower compared to 

the IV samples. The maximal G5-MTX-FA plasma concentration was observed 8 hours 

after administration (Figure 18D). For accurate pharmacokinetic modeling, an increased 

number of data points is required, especially with regard to the elimination phase. 

However, the sensitivity of the present analytical methodology was found adequate for 

the plasma analysis of G5-MTX-FA in rats and would support such a study. 
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Figure 18. A) G5-MTX-FA plasma PK profile of a 800mg/kg IV dosed rat. B) PK profile 

of G5-MTX-FA released MTX, same animal as shown in (A). C) G5-MTX-FA plasma PK 

profile of 65mg/kg IV dosed rats (n=3). D) G5-MTX-FA plasma PK profile of 65mg/kg SC 

dosed rats (n=3). 
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2.4 Conclusion 

  A bioanalytical assay is presented for the analysis of G5-MTX-FA associated 

MTX, released MTX and the major metabolite 7OH-MTX in plasma samples. Due to 

difficulties associated with various sample preparation approaches, a strategy was 

developed wherein the sample was divided into two aliquots with each being analyzed 

with differing but complementary methodology. The result was that one aliquot, without 

any other sample preparation steps, could be subjected to a reductive reaction to 

release a highly fluorescent reporter molecule. The second sample aliquot was used to 

determine any released MTX and the major metabolite 7OH-MTX after subjecting the 

sample to an appropriate SPE procedure followed by LC-PCR(hv)-FD. The analysis 

strategy for G5-MTX-FA associated MTX could not distinguish between conjugated and 

free MTX. However, it was demonstrated that the amount of MTX released in plasma by 

the nanodevice is insignificant, and as a result the presented strategy is specific for G5-

MTX-FA associated MTX. Free MTX and 7OH-MTX could be determined specifically, 

irrespective of the nanodevice concentration. The presented methodology was 

successfully used to establish a preliminary plasma pharmacokinetic profile of G5-MTX-

FA in rats. Finally, the reductive release method allows for the determination of glutamyl 

conjugated MTX titer of functionalized PAMAM polymers. 
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3.1 Introduction 

It has been shown that half life plays an important role in the effectiveness of 

dendritic nanoparticles[1-2]. The decline in blood concentration after nanoparticle 

administration results from elimination by the body. The elimination rate constant is 

predominantly a function of hepatic and renal clearance. The size of the dendritic 

nanoparticle plays an important role in its susceptibility towards renal clearance. There 

have been several recent reports that indicate that once the molecular weight of a 

spherical nanoparticle approaches 30,000 to 40,000 dalton, the renal excretion rate and 

the volume of distribution of the entity reduces significantly, resulting in longer circulation 

times and an increased half-life[3-4]. Based on size, it has been stated that the 

hydrodynamic radius of dendritic particles should at least approach that of a renal pore 

(~5 nm) to avoid elimination due to glomerular filtration[5]. The diameter of a generation 5 

PAMAM nanoparticle is about 5.3 nm, and the diameter of G5-MTX-FA will be slightly 

increased due to the additional surface modifications, placing it near the renal clearance 

cut-off values presented for these type of entities. The preliminary pharmacokinetic data 

presented in the previous chapter (Chapter 2, figure 18) revealed a relatively short half-

life of G5-MTX-FA, suggesting this nanoparticle is a candidate for renal clearance. 

Knowledge of the fraction of the drug excreted into urine is an important parameter in 

understanding how the human body handles the drug and provides useful information 

about the influence of renal disease. Accurate modeling of the fraction of the 

experimental therapeutic excreted into urine requires an analytical method for detection 

of the drug and its metabolites with a similar rationale presented in chapter 2.  
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The previous chapter described the reaction and chromatographic conditions for 

the detection of nanoparticle associated MTX and free MTX in plasma matrices. Initially 

it was believed that the method could be transferred with minor modifications (i.e. 

chromatographic conditions) towards urine analysis. However, it became apparent that 

besides a number of alterations to the chromatographic and sample preparation, the 

derivatization procedure did not proceed to desirable extent in urine. This chapter deals 

with the optimization of the derivatization reaction, sample preparation and 

chromatography of G5-MTX-FA in urine. 

 

3.2 Experimental 

3.2.1 Materials  

HPLC grade N,N-dimethylformamide (DMF), folic acid (FA), 30% solution of 

hydrogen Peroxide (H2O2), methotrexate (MTX), potassium permanganate (KMnO4), 

sodium dithionite (Na2O4S2), sodium hydroxide (NaOH) and TRIS-hydrochloride were 

obtained from Sigma-Aldrich. (St. Louis, MO).  potassium phosphate monobasic 

(KH2PO4), potassium phosphate dibasic (K2HPO4), ammonium acetate and HPLC 

grade solvents acetonitrile (ACN) and methanol (MeOH) were obtained from Fisher 

Scientific (Fair Lawn, NJ). 7-hydroxymethotrexate (7OH-MTX) was purchased from 

Synfine Research (Ontario, Canada). G5-MTX-FA was obtained from Avidimer 

Therapeutics (Ann Arbor, MI). Blank heparin stabilized rat plasma (Sprague Dawley) , 

blank heparin stabilized dog plasma (Beagle) and blank unfiltered urine was obtained 

from Bioreclamation, Inc (Westbury, NY).  
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3.2.2 Instrumentation and Apparatus 

G5-MTX-FA System: This system consisted of two Shimadzu LC6A solvent 

delivery modules that were operated through a Shimadzu SCL-6B system controller. 

Sample introduction occured by a Shimadzu SIL-6B autosampler equipped with a 50 μL 

injection loop. A Phenomenex Luna C18(2), 5 µm, 100 Å, 250 x 2.0 mm analytical 

column was guarded by a Supelcosil LC-8, 5 µm, 2 x 2.1 mm guard column and 

maintained at 30°C by a Shimadzu CTO-6A column oven. Detection occurred by a 

Shimadzu RT-10Axl fluorescence detector with excitation and emission wavelengths of 

367 nm and 463 nm, respectively. The data was collected using TurboChrom V4.1. The 

mobile phase used with this chromatograph consisted of solvent A: 15 mM tris-HCl 

adjusted to pH 6.8 by a 10% NaOH solution and solvent B: consisting of MeOH. The 

system was operated at a flow rate of 0.2 mL/min with 75% A and 25% B, unless stated 

otherwise. 

Post column photo oxidation system: Solvent was delivered by a Shimadzu LC6A 

binary pumping system that was operated through a Shimadzu SIL-6B system controller. 

The sample was introduced by a Shimadzu SIL-6B autosampler equipped with a 100 μL 

injection loop. The separation was conducted on a Phenomenex Intertsil C18 (150 x 4.6 

mm) column with 5 µm particles with a 100 Å pore size that was protected by a 

Supelcosil LC-8, 5 µm, 2 x 4.0 mm guard column. Two meters of transparent Teflon 

tubing (0.012” id x 0.030” od), one meter in the center braided, was used as reactor coil 

and connected to the outlet of the column (total reactor coil volume 0.14 mL). An in-

house fabricated online photochemical reactor was constructed using a GE Germicidal 

9W lamp as a light source inside of the photochemical reactor. Detection occurred by a 
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Jasco FP-920 Intelligent Fluorescence Detector (excitation: 360nm and emission: 

417nm) and data was collected by TurboChrom V4.1. The mobile phase used with this 

chromatograph consisted of solvent A: 975 mL 10 mM potassium phosphate buffer pH 

6.2, 25 mL DMF and 1.5 mL 30% solution of H2O2 and solvent B: consisting of 200 mL 

ACN, 800 mL H2O and 1.5 mL 30% solution of H2O2. The system was operated at a 

flow rate of 1.0 mL/min with 60% A and 40% B, or as stated otherwise.  

 

3.2.3 Reduction reaction of G5-MTX-FA  

An aliquot of 100 µL of (spiked/sampled) urine was diluted with a 1.0 M 

ammonium acetate solution to 800 µL in a (1.5 mL) plastic vial. If plasma was added to 

the vial as well, the 100 µL urine samples was diluted 1:1 with rat plasma, prior to further 

dilution by the ammonium acetate solution. Once all samples and calibrants were 

prepared they were placed in an in-house manufactured sample holder (details provided 

in supplemental section) that has the ability to lock the caps. Subsequently 200 µL of a 

freshly prepared 50 mM Na2O4S2 solution was added and the vials were closed and 

secured by the holder. The entire holder was then vortexed for 10 seconds and placed 

into a boiling water bath. After 15 minutes the holder was removed from the water bath 

and stored in a refrigerator for 30 minutes. The cooled samples were removed from the 

holder and placed into a centrifuge for 5 minutes at 10,000 rpm (1,000 g) to spin down 

denatured and precipitated plasma proteins. The supernatant was transferred into 1.0 ml 

autosampler vials and 50 µL was injected into the G5-MTX-FA LC-Fl HPLC system. 
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3.2.4 Preparation of Stock Solutions, samples and calibration  

Stock solutions of MTX and 7OH-MTX were prepared according to an earlier 

method presented by Steinborner et al. MTX was dissolved in 95% MeOH and 5% 

Formic acid. 7-OHMTX was dissolved in 50% DMSO, 50% H2O. G5-MTX-FA is freely 

soluble and was dissolved in H2O. The stock solutions were diluted with water to the 

desired concentration and spiked into a 100 µL blank plasma matrix to yield calibration 

standards. The linearity and reproducibility of the G5-MTX-FA methodology was 

assessed by the analysis of calibrants (n=6) spiked with 25, 50, 125, 250, 375 and 500 

µg/mL for rat urine analysis, and concentrations of 13, 25, 63, 125, 188 and 250 µg/mL 

were used in combination with dog urine. Samples spiked with similar concentrations 

were used to determine intra-day (six replicate) and inter-day (18 replicates analysis 

conducted over 3 separate runs) precision and accuracy. The linearity and 

reproducibility of the free MTX and 7OH-MTX methodology was assessed by the 

analysis of calibrants (n=6). MTX and 7OH-MTX were spiked in as a mixture and 

concentrations are given in table 3 and 4. Samples spiked with similar concentrations 

were used to determine intra-day (six replicates) precision and accuracy.  

 

3.2.5 Sample preparation for MTX and 7OH-MTX analyses 

Spiked urine sample (volume 100 µL) were diluted by addition of 900 µL of 100 

mM ammonium bicarbonate solution (pH 8.0). Aliquots (950 µL) of the diluted samples 

were subjected to Solid Phase Extraction (SPE). The recovered analytes were heated in 

40 °C water and evaporated to dryness under a gentle stream of nitrogen. The residue 

was reconstituted in 200 µL of 100 mM ammonium bicarbonate (pH 8.0). The solution 
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was transferred into a 1.0 mL autosampler vial with a 350 µL liner and 100 µL was 

injected onto the post column photo-oxidation HPLC system. 

 

3.2.6 Solid Phase Extraction (SPE) 

A 500 mg, 1.0 ml Varian Bond Elute Strong Anion Exchange (SAX) SPE device 

was activated with 1.0 ml of MeOH. The column was equilibrated with 1.0 ml of 100 mM 

ammonium bicarbonate solution (pH 8.0). To the equilibrated column, 950 µL of sample 

was applied. Interferences were washed from the column with 1.0 ml of 100 mM 

ammonium bicarbonate solution. The retained analytes were eluted by 1.0 ml consisting 

of 95% MeOH and 5% formic acid. During extraction the SPE cartridges were mounted 

in a Waters vacuum manifold and the vacuum was adjusted to maintain a flowrate of 

approximately 0.5 ml/min through the cartridge.  

3.3 Results and Discussion 

3.3.1 Chromatographic Method Development 

Initial rat urine method development involving the detection of G5-FA-MTX 

associated MTX was started by evaluating the methods performance towards the urine 

matrix, utilizing the previously established plasma analysis protocol (chapter 2). The pilot 

experiments demonstrated a more complex biological background in urine as opposed 

to plasma, including co-elution of the analytes derivatization product (DAMP) with an 

unidentified endogenous compound (figure 19A). The two compounds were resolved by 

reduction of the modifier strength at the consequence of increased analysis time and 

reduction of analytical throughput (figure 19B, C). Separate batches of rat urine 
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demonstrated variable interference patterns (figure 19C, D), with one batch 

demonstrating a interferent (1) requiring the previously discussed increase in 

chromatographic analysis time. However this interferent did not appear in any of the 

other samples (figure 19D). Peak purity was checked by analysis of various blank urine 

matrices and no co-eluting/interfering compounds were detected in the elution window of 

DAMP using the LC-FL system. 

 The interference pattern of dog urine was substantially different compared to rat 

urine, requiring an additional chromatographic method (figure 20A). Dog urine contained 

a co-eluting compound with the analyte being retained for about 20 minutes, a 

separation time that provided an adequate separation in rat urine analysis. The co-

elution of these compounds is indicative of a poor selectivity factor between the 

compounds using a C18 stationary phase and methanol as the organic modifier. The 

interferent and analyte could be baseline separated in a lengthy chromatographic 

procedure requiring an analysis time of about 50 minutes and an isocratic separation 

with 5% MeOH (Figure 20, B, C). The resulting procedure suffered from a lack of sample 

throughput and broad peaks that reduced the limit of detection. A substantial 

improvement selectivity factor was achieved when the organic modifier was changed 

from MeOH to tetrahydrofuran (THF). The increased selectivity factor resulted in a fast 

isocratic separation of DAMP from endogenous interferences within 15 minutes (figure 

20, D).  It is important to note that the elution order of the interferent and reduction 

product has reversed, something that proved to be favorable for trace analysis, where 

small amounts of DAMP would otherwise have to be detected on the shoulder of a 

dominant peak resulting from the interferent.  
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Figure 19. HPLC-FL chromatograms of G5-MTX-FA spiked rat urine (derivatized). (1) 

endogenous interferent, (2) G5-MTX-FA reporter (DAMP). (A) Chromatogram obtained at 

25% B, 1 and 2 co-elute. (B) Chromatogram obtained at 20% B, 1 and 2 co-elute. (C) 

Chromatogram obtained at 15% B, 1 and 2 are separated. (D) Chromatogram of G5-

MTX-FA spiked in a different batch of rat urine where the major endogenous interferent 

(1) is not present. 
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Figure 20. HPLC-FL chromatograms of G5-MTX-FA spiked dog urine (derivatized). (1) 

endogenous interferent, (2) G5-MTX-FA reporter (DAMP). (A) Chromatogram obtained 

at 15% B, 1 and 2 co-elute. (B) Chromatogram obtained at 10% B, 1 and 2 co-elute. (C) 

Chromatogram obtained at 5% B, 1 and 2 are separated. (D) Chromatogram obtained 

with THF instead of MeOH as modifier, note that the elution order of the peaks 1 and 2 

is inverted. 
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3.3.2 Matrice Influence on the Derivatization Procedure 

Once the chromatographic variables were established, the G5-MTX-FA 

associated MTX analysis procedure in rat urine was validated. Surprisingly, the 

derivatization reaction that proved to be useful for the plasma analysis did not perform 

adequately in the urine matrix, both from a sensitivity and reproducibility (within and 

between days) perspective (figure 21, red trace). Analysis of the regression line slope 

indicates a relative yield for the G5-MTX-FA reduction reaction of 5.1% in rat urine when 

compared against a similar protocol utilizing rat plasma (figure 21, black trace). One 

might argue that a loss of 20 fold in sensitivity of the analytical method is (at least partly) 

compensated for by the fact that compounds that are primarily eliminated through the 

renal clearance pathway accumulate into urine, reducing the need for optimal limits of 

detection. However, additionally the derivatization reaction also proved to be 

irreproducible, demonstrating relative standard deviations up to 47% in the linear range, 

vastly exceeding acceptable error tolerances for bioanalytical method development. The 

low yield of the reaction in rat urine as opposed to rat plasma suggests that there is a 

reaction mediating factor present in plasma, and/or an effective reaction quenching 

component in urine.  

Early in the plasma method development process it was observed that the 

relative derivatization yield in the plasma matrice was 2.5 (figure 21, blue trace) times 

higher when compared to a similar procedure utilizing water opposed to plasma, 

supporting the hypothesis of the presence of a reaction mediating/catalyzing compound. 

This increase in apparent yield of reaction was not further investigated at the time, 

however the importance of a consistet matrix throughout preparation of standards and 
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samples was pointed in the previous chapter. Despite the favorable properties of the 

plasma matrix on the reaction, it is also clear that the urine matrix reduces the extent of 

the derivatization reaction to an addition degree, demonstrated by a significant lower 

yield of the derivatization reaction in urine compared to water (figure 21).  

Based on an extensive screening of sample preparation stratagies, chapter 2 

concludes that derivatization has to occur directly within the biological matrix to yield 

reproducible results, before exposure to any sample clean-up procedures. Within these 

borders the key to a successful analysis strategy for urine analysis would be optimizing 

the urine derivatization reaction so it behaves comparable to the plasma derivatization 

reaction, rather than including an extensive clean-up procedure. Improving the 

derivatization procedure requires an extensive knowledge of the various chemical 

pathways, so the reaction could be directed to yield the desired products. The following 

section will present a plausible reaction mechanism based on data that has appeared in 

the literature. 

 

Figure 21. Individual G5-MTX-FA calibration curves in various matrices. rat plasma 

(black line), rat urine (red line), water (blue line). 
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3.3. 4 Mechanism of Reduction 

 

 

Figure 22. Hypothesized derivatization scheme of G5-MTX-FA associated MTX in the 

presence of dithionite (only the MTX related reactions are shown). 

  

The reduction of MTX to 2,4-diamino-6-methylpteridine (DAMP) is a multistep 

chemical cascade, involving multiple electron transfer steps. A reaction scheme has 

been proposed by R.C Gurira et al., based on results obtained by various analytical 

techniques and electrochemical reduction (figure 22). Whilst making the assumption that 

G5-MTX-FA behaves similar to free MTX under reductive conditions, these observations 
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would also hold for the derivatization procedure of the nanoparticle. In an initial reduction 

step, MTX undergoes a 2 electron, 2 proton reduction to 5, 8-dihydro-MTX. Depending 

on the pH of the solution 5,8-dihydro-MTX tautomerizes to the more stable 7,8-dihydro-

MTX or a proton catalyzed cleavage of the C(9)-N(10) bond to yield DAMP. 7,8-dihydro-

MTX can undergo a reductive cleavage of the C(9)-N(10) bond, to yield 2,4-diamine-6-

methyl-7,8 dihydropteride (7,8-dihydroDAMP), which upon subsequent (auto)oxidation 

step gives raise to the desired fluorescent reporter DAMP. At this time it is unclear which 

kinetic pathway is dominating in the G5-MTX-FA derivatization procedure at pH 6.0 with 

excess dithionite, but independent of the kinetic pathway DAMP is generated. R.C 

Gurira et al also report that at pH 3-9 MTX and DAMP have similar reduction potentials. 

Considering the fact that the derivatization procedure utilizes a large molar excess of 

dithionite, it should be expected that any DAMP formed by the protoncatalyzed cleavage 

of the C(9)-N(10) bridge of 5,8-dihydro-MTX will be rapidly reduced to 7,8-dihydroDAMP 

until the dithionite is depleted, and then auto-oxidation to DAMP will occur. An additional 

reduction of 7,8-dihydroDAMP is possible to 2,4-diamino-6-methyl-5,6,7,8-

tetrahydropteridine, however this reduction has a potential of - 1.31 V at pH 6 and 

therefore does not occur with dithionite as reducing agent (- 0.66 V at pH 7). To 

conclude, it appears that the sodium dithionite mediated reduction of MTX follows the 

following pathway, MTX  7,8-dihydro-MTX  DAMP  7,8-dihydroDAMP  DAMP.   
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3.3.5 Adapting the Urine Derivatization Reaction 

As mentioned before 7,8-dihydroDAMP is a highly unstable compound which is 

susceptible for auto-oxidation to DAMP. From a detection point of view this is a desirable 

process, and it appears that there is a component in plasma that facilitates this auto-

oxidation. Whilst the compound(s) in plasma responsible for this behavior are unknown, 

it was hypothesized that various metals in plasma are responsible for this redox 

behavior. These metals are present in both, a free, and protein bound form where they 

are released upon denaturation of the protein in the incorporated boiling stage, possibly 

providing a constant oxidation factor in the procedure. In an attempt to address this 

auto-oxidation factor in plasma, various concentrations (0, 0.1, 1, 10 mM) of Fe3+ were 

added to the aqueous buffer solution before the derivatization procedure was started. 

The presence of Fe3+ greatly influenced the apparent yield of reaction, reaching a 

maximal effect at 1 mM (figure 23).  

 

Figure 23. Effect of Fe3+ concentration on reaction yield (fluorescence response) 
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It is tempting to believe that Fe3+ aids in the re-oxidation of 7,8-dihydroDAMP to 

DAMP. If this were true, the addition of Fe3+ post reduction should yield similar results. 

An experiment was conducted where 1 mM of Fe3+ was added prior and post reaction 

(figure 24 A). Independent of the stage of Fe3+ addition a similar increase in formation of 

DAMP was observed compared to a reference derivatization reaction in buffer. It was 

also observed that the overall yield was about 70% of that obtained when derivatizing in 

a plasma matrix. In order to investigate if the addition of Fe3+ was beneficial for G5-MTX-

FA urine analysis, a comparable experiment was performed using a rat urine matrix. The 

presence of Fe3+ during the derivatization reaction had similar beneficial effects as 

reported before. However, the addition of Fe3+ post derivatization did not demonstrate 

any increase in apparent reaction yield (figure 24 B).  

 

Figure 24. The influence of the stage of Fe3+ addition, aqueous reference, reduction in 

the presence of 1 mM Fe3+, and an reduction followed by the addition of 1 mM Fe3+. (A) 

aqueous matrix (B) rat urine matrix. 
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Elucidating the reaction mechanism was beyond the scope of this work. However 

on a speculative basis it seems plausible that due to the addition of Fe3+ post reaction, 

competing nucleophiles present in the urine matrix have a time window to scavenge the 

unstable/partly reduced 7,8-dihydroDAMP.  Since urine contains large quantities of 

organic molecules with reactive sulfur and nitrogen functional groups, nucleophilic 

addition reactions are a possibility, trapping and depleting 7,8-dihydroDAMP levels 

before reoxidation to DAMP could occur upon the addition of Fe3+. With the discovery 

that the presence of an oxidation factor/mediator during reduction was important in the 

derivatization procedure, a validation experiment was performed, using Fe3+ during the 

reduction of G5-MTX-FA in rat urine. It was found that sensitivity of the method had 

increased, but the precision of the method was still poor when compared to validation 

result of similar measurements out of plasma (figure 25).  

 

Figure 25. Comparison between the various matrix compositions and instrument 

response. G5-MTX-FA in plasma (black line), G5-MTX-FA in urine + Fe3+ (red line), G5-

MTX-FA in urine + plasma (blue line), G5-MTX-FA in urine (green line). 
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Since the reduction of MTX to DAMP occurs in a reproducible fashion, and 

plasma being identified as an important component of the derivatization reaction, it was 

tempting to believe that the addition of an aliquot of plasma to a urine sample would lead 

to precise and reproducible MTX derivatization. The addition of plasma to urine 

however, adds numerous endogenous interferences to the already complex biological 

sample. However it was expected, based on the observation that since the derivatization 

reaction of MTX in plasma resulted in relatively clean LC-FL chromatograms, the 

addition of rat plasma would not further complicate the chromatogram. Chromatograms 

of G5-MTX-FA derivatized in a plasma/urine matrix are presented in figure 26. As 

illustrated by figure 26 A and C, the addition of plasma to the urine matrix did not result 

in more complex chromatograms, demonstrating the feasibility of plasma enrichment of 

the urine sample, to mediate the derivatization reaction. 

In order to investigate if the addition of plasma to the urine matrix would yield the 

desired increase in robustness of the method, a single day calibration involving the 

analysis of urine samples containing 6 different concentrations in 5 replicates was 

performed (figure 25, blue line). The experiment indicated that precision and 

reproducibility of G5-MTX-FA reduction in a combined urine plasma matrix was greatly 

improved when compared to derivatization in Fe3+ enriched urine (figure 25, red line).  

The yield of the plasma mediated urine derivatization reactions is overall about 70% of 

that compared to reduction plasma, indicating that competing kinetic pathwats, trapping 

reduced forms of MTX derivatives during their transformation pathway to DAMP are still 

partially active. 
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Figure 26.  HPLC-FD chromatograms of derivatized G5-MTX-FA in various urine matrix 

compositions. (A) Blank  rat urine spiked with G5-MTX-FA. (B) 1 mM Fe3+ enriched rat 

urine spiked with G5-MTX-FA (C) G5-MTX-FA spiked in blank rat urine that was 

combined with an aliquot of rat plasma. 
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3.3.6 Validation of the G5-MTX-FA Associated MTX Analytical Procedure 

 As it appeared that the procedure was repeatable when rat plasma was used as 

an oxidative mediator, an extensive validation procedure was started utilizing rat and 

dog urine as model systems. The linear range, precision and accuracy of the method 

were assessed by analyzing 6 different G5-MTX-FA concentrations in 6 replicates. The 

reproducibility of the method was addressed by repeating the experiment for three 

consecutive days. Intra- and inter-run validation data involving the rat urine matrix is 

demonstrated in table 10.  The precision of the method was in general < 10% except for 

the most concentrated value, where the inter-run precision was 19.7%. The accuracy of 

the method was also acceptable with values in general deviating <10% from the target 

value. At the low end of the calibration curve some larger deviations are seen, however 

not exceeding 15%. A typical intra-day calibration plot can be described by the equation: 

y = 3.903 * 107x + 2.259 * 105, where (y) is the instrument response and (x) is the 

concentration of G5-MTX-FA in rat urine in mg/mL). The lowest intra-day correlation 

coefficient obtained was R² = 0.9985, spanning a 500 fold change in concentration 

range (0.025 – 0.500 mg/mL). The limit of quantification for G5-MTX-FA associated MTX 

was around 0.025mg per mL of rat urine.  

Intra- and inter-run validation data in dog urine is summarized in table 11.  The 

precision of the method was in general < 10% except for the most dilute value, where 

the inter-run precision was 31.6%.The accuracy of the method was also acceptable with 

values deviating in general <10% from the target value. The limit of quantification for G5-

MTX-FA associated MTX was around 0.025mg per mL of dog urine. A typical intra-day 

calibration plot can be described by the equation: y = 7.907* 107x - 1.645 * 105, where 
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(y) is the instrument response and (x) is the concentration of G5-MTX-FA in dog urine in 

mg/mL). The lowest intra-day correlation coefficient obtained was R² = 0.9992. 
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3.7 Free MTX and 7OH-MTX Analysis in Rat and Dog Urine 

 

Figure 27. Chromatograms of MTX and 7OH-MTX in rat urine extracts (A) and dog urine 

SPE extracts (B). 

 
As demonstrated in chapter 2, minor amounts of MTX are hydrolysed from the 

G5-MTX-FA nanoparticle in vivo. Liberated MTX will be a candidate for hepatic 

metabolism, transforming MTX in 7OH-MTX. Both of these entities are largely excreted 

into urine. A detection strategy for free MTX and 7OH-MTX in plasma has been 

presented in the previous chapter and involved reversed phase separation combined 

with post column photo chemical derivatization and fluorescence detection. Sample 

preparation occurred by strong anion exchange (SAX) solid phase extraction (SPE), 

followed by an evaporation and reconstitution step in order to obtain an RP-HPLC 

compatible sample. In the process of obataining an analysis strategy for free MTX and 

7OH-MTX the plasma method was evaluated towards a dog and rat urine matix. The 

high ionic strength in the urine matrix led to break through of the 100 mg SAX SPE 

cartridge, leading to low recoveries (10-20%) and irreproducible results. The analyte 

breakthrough was eliminated by increasing the bed volume of the SAX SPE cartridge to 
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500 mg. The use of these 500 mg cartridges resulted in recoveries >90% for both 

analytes and reproducible results. Furthermore the application of these cartridges led to 

relatively “clean” chromatograms where the analytes could be separated within 15 

minutes (figure 27 A and B). There were some hydrophobic interferences observed that 

had long retention times. In order to prevent the carryover of these more hydrophobic 

entities in a subsequent analysis, a step gradient was incorporated at the end of each 

run in order to clean the column.  

 Since the detection of free MTX and 7OH-MTX has been largely described in the 

literature, a limited intra-day validation was performed, demonstrating the viability of the 

presented method. The Intra-day precision and accuracy of the free analyte assay was 

determined by analyzing 6 replicates of standards spiked with six different MTX and 

7OH-MTX concentrations in both rat (table 12, 13) and dog urine (table 14, 15). The 

intra-day precision did not exceed 11.6% and in was in general well below 10%, both for 

dog and rat urine. The accuracy of assay in rat urine did not exceed 20% deviation at 

the limit of detection (1.6 µM), and was well within the limits for a bioanlytical assay over 

the remaining part of the linear range. Similar observations were made in the analysis of 

MTX and 7OH-MTX in dog urine. 
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Table 12. Intra-day validation of free MTX in rat urine 

Nominal Concentration 
(µM) 

Mean observed 
concentration (µM) 

(n=6) 

Precision       
(RSD %) 

 Mean Accuracy            
of target value (%) 

31.1 30.6 3.6 98.2 
23.3 23.7 1.8 101.7 
15.6 16.1 6.1 103.7 
7.8 7.9 7.2 101.0 
3.1 2.9 4.8 94.2 
1.6 1.3 9.2 81.1 

 

Table 13. Intra-day validation of free 7OH-MTX in rat urine 

Nominal Concentration 
(µM) 

Mean observed 
concentration (µM) 

(n=6) 

Precision       
(RSD %) 

 Mean Accuracy            
of target value (%) 

5.9 5.8 4.8 98.0 
4.4 4.5 1.7 103.0 
2.9 3.0 5.6 101.7 
1.5 1.5 8.1 99.2 
0.59 0.57 2.8 96.9 
0.29 0.26 11.6 88.8 
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Table 14. Intraday validation of free MTX in dog urine 

Nominal Concentration 
(µM) 

Mean observed 
concentration (µM) 

(n=6) 

Precision       
(RSD %) 

 Mean Accuracy            
of target value (%) 

36.6 35.9 7.9 98.0 
27.4 28.6 3.9 104.0 
18.3 17.3 10.0 94.3 
9.2 9.3 6.5 101.9 
3.7 4.0 10.4 108.3 
1.8 1.7 12.2 91.1 

 

Table 15. Intraday validation of free 7OH-MTX in dog urine 

Nominal Concentration 
(µM) 

Mean observed 
concentration (µM) 

(n=6) 

Precision       
(RSD %) 

 Mean Accuracy            
of target value (%) 

8.2 8.2 9.8 100.4 
6.1 6.3 6.6 103.8 
4.1 3.6 8.6 89.3 
2.0 2.0 3.5 99.7 
0.82 0.90 3.2 110.5 
0.42 0.50 11.0 123.0 
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3.4 Conclusion 

 The analysis and characterization of G5-MTX-FA imposes an analytical 

challenge. The detection of this entity in biological matrices is even further complicated 

by the presence of a large number of endogenous compounds. Attempts at isolating G5-

MTX-FA from a sample matrix by common sample preparation techniques such as SPE 

extraction have failed to give reproducible results and linear responses. The sodium 

dithionite mediated reduction of G5-MTX-FA associated MTX to DAMP gives rise to a 

highly detectable small molecule entity that does not demonstrate any of the negative 

physical chemical properties complicating intact G5-MTX-FA analysis. Interestingly, the 

matrix plays an important role in the chemical degradation pathway of G5-MTX-FA 

conjugated MTX to DAMP. The highest and most reproducible derivatization yields are 

obtained when there is a plasma component within the derivatization matrix, possibly 

aiding in the re-oxidation of 7,8 –dihydroDAMP to DAMP. This observation proved to be 

useful for the analysis of G5-MTX-FA associated MTX in dog and rat urine. Precision, 

accuracy and sensitivity of the urine assay were significantly improved when the 

derivatization occurred in the presence of an aliquot of rat plasma. Chromatographic 

analysis of dog and rat urine samples was complicated by a larger number of 

endogenous interferents. Both dog and rat urine needed matrix individualized 

chromatographic procedures. A co-eluting compound in dog urine could not be 

separated in an acceptable time frame using MeOH as the modifier, however a 

separation could be accomplished when the selectivity factor of the assay was adapted 

by using THF as the organic modifier. 
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 Detection of free MTX and 7OH-MTX was relatively straight forward, utilizing SAX 

SPE, followed by HPLC separation and post column photochemical degradation and 

fluorescence detection. It was observed that the bed volume of the SPE cartridge 

needed to be increased when dealing with samples with an increased ionic strength. 

Whereas an SAX SPE cartridge with an 100mg bed volume was adequate for plasma 

analysis, the bed volume needed to be increased to 500mg per SPE cartridge in order to 

prevent the analyte from breaking through during urine analysis. The same isocratic 

chromatographic separation could be performed independent of the matrix composition, 

however the detection of free analytes out of urine required the addition of a step 

gradient at the end of each analysis in order to eliminate hydrophobic contaminants from 

the chromatographic media. 

 In the animal studies discussed in chapter 2 urine was not collected. Due to this 

absence of urine samples, the methods presented have not been applied to animal urine 

samples in order to detect G5-MTX-FA associated MTX and related analytes in urine. 

The renal clearance rate of G5-MTX-FA has therefore not been determent yet, and 

animals studies need to be performed in order to adequately answer this question. 
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4.1 Introduction 

In adult populations, methotrexate (MTX) is one of the most commonly prescribed 

drugs for the treatment of rheumatoid arthritis (RA)[1-2]. In contrast to non-steroidal anti-

inflammatory drugs used to relieve the symptoms of RA, MTX is categorized as a 

disease modifying anti-rheumatic drug, i.e. an agent that reduces disease activity and 

slows the progression of joint damage.  MTX also forms the therapeutic cornerstone for 

pediatric patients suffering from Juvenile Idiopathic Arthritis (JIA)[3]. The efficacy, safety 

and relatively low toxicity of weekly low dose MTX therapy in children with JIA has been 

shown in a number of clinical trials[4-6]. 

Despite the fact that MTX is one of the best tolerated disease modifying drugs, 

there is a large inter-patient variability in clinical response and toxicity that is poorly 

understood in both RA and JIA. The MTX dose that provides an acceptable level of 

disease control varies greatly, and studies have been published indicating the presence 

and absence of a dose-response relationship. Measurement of MTX plasma 

concentrations in low dose MTX therapy is of little value since there is a lack of 

correlation between serum concentrations and disease activity, mainly because MTX is 

largely cleared from plasma within 24 hours by glomerular filtration and tubular secretion 

or is stored intracellularly as MTX polyglutamates (MTXPGs)[7-8] (figure 28).  

MTX is transported into cells by the reduced folate carrier where it is converted by 

folylpolyglutamate synthase to MTXPGs by sequential addition of glutamic acid residues 

at the γ position of the terminal glutamate residue[9].  Polyglutamation results in an 

overall increase in net negative charge, providing a cellular retention mechanism.  
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Figure 28. Structure of methotrexate and its polyglutamates. The common m/z 308.10 

fragment obtained by collision induced dissociation is illustrated by the dotted line. 

 

A number of studies have indicated that MTXPGs are the bioactive form of MTX, with 

pharmacological action related to MTXPGs concentration and population distribution[9-

11].  The anti-inflammatory action of MTX results from inhibition of enzymatic pathways 

involved in de novo purine synthesis, leading to increased concentrations of adenosine, 

which has the ability to serve as an anti-inflammatory agent[12].  Since intra-cellular 

MTXPGs appear to form the therapeutically active bioavailable pool, these substances 

obviously constitute an interesting analytical target to monitor and potentially utilize as a 

basis for optimization of MTX therapy. 

With MTX historically being used in high dose as an anti-cancer agent, analytical 

methods were focused on the detection of MTX[13] and MTXPGs[14] in plasma and urine, 
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mainly by chromatographic methods, rather than intracellular levels of MTXPGs.  

Current methodology for the determination of MTXPGs in human red blood Cells (RBCs) 

can be categorized into methods that detect the sum of MTXPGs, and methods that are 

able to determine cellular levels of individual MTXPGs, typically MTXPG1-5. 

Chromatographic methods for total MTXPG are based on an pre-chromatographic 

enzymatic de-glutamation step that converts the MTXPGs back to MTX.  Total MTX is 

then determined by LC separation (isocratic[15] or gradient elution[16]) and a subsequent 

post-column photochemical[17-18] (PCR(hν)) or electrochemical[19] reaction to form a 

product(s) amenable to fluorescent detection (FD).  Other reported strategies involve the 

use of radiochemical-ligand binding[20], enzymatic[21] and fluorescence polarization 

immunoassays[22].  Individual MTXPGs have been measured by coupling a fractionation 

step to earlier reported assays[23-24], leading to complicated labor intensive assays. The 

specificity of these non-chromatographic detection methods has been questioned due to 

discrepancies observed for results obtained by LC based methods[25].  In 2003, Dervieux 

et al. reported a strategy utilizing reversed-phase liquid chromatography post-column 

photochemical reaction (LC-PCR(hν)−FD) for detection of MTXPG1-7 in a single run[16].  

Surprisingly to date, mass spectrometry detection (MS) of (intra-cellular) MTXPG levels 

has received little attention. Recently Chen et al. reported an LC tandem mass 

spectrometry assay (LC-MS/MS) for the measurement of MTXPG1-5 in Caco-2 cells, 

leading to improved selectivity and lower detection limits[26].  However, no reports of LC-

MS/MS based methods for the detection of MTXPGs in RBCs have appeared in 

literature.  
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Presently our laboratory is collaborating with colleagues at Children's Mercy 

Hospitals and Clinics (Kansas City, MO) to investigate the MTXPG state in combination 

with genomic assesment of children undergoing therapy for JIA.  In the present work we 

evaluated the performance of an LC-PCR(hν)-FD, which was found to be problematic. 

As a result we have subsequently developed LC-MS/MS based methodology that is 

highly sensitive and specific for the detection of MTXPGs and appears to be superior to 

all previously reported methods. 
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4.2 Experimental 

4.2.1 Materials 

LC grade solvents acetonitrile (ACN) and methanol (MeOH) were obtained from 

Fisher Scientific (Fair Lawn, NJ, USA). Ammonium bicarbonate, N, N-

Dimethylhexylamine (DMHA) and methotrexate were purchased from Sigma-Aldrich (St 

Louis, MO, USA). Methotrexate polyglutamation standards 4-amino-10-

methylpteroyldiglutamic acid (MTXGlu2), 4-amino-10-methylpteroyltriglutamic acid 

(MTXGlu3), 4-amino-10-methylpteroyltetraglutamic acid (MTXGlu4), 4-amino-10-

methylpteroylpentaglutamic acid (MTXGlu5), 4-amino-10-methylpteroylhexaglutamic 

acid (MTXGlu6), 4-amino-10-methylpteroylheptaglutamic acid (MTXGlu7) were 

purchased as the ammonium salts from Schircks Laboratories (Jona, Switzerland). 

Oasis HLB solid phase extraction (SPE) cartridges (30mg) were obtained from Waters 

(Milford, MA, USA). 

 

4.2.2 Preparation of erythrocyte (RBC) lysates 

Blood samples (~5 ml) obtained from patients were centrifuged at low speed 

(2000 rpm) in a Beckman tabletop centrifuge to pellet the RBCs. After recovery of the 

plasma, the RBCs were suspended in an equal volume of sterile normal saline, mixed by 

gentle inversion and subjected to a second low speed centrifugation. The supernatant 

was discarded and the wash procedure was repeated a second time. After discarding 

the supernatant, the packed RBCs were divided into four aliquots and stored at -70°C 

until use. 
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4.2.3 LC-PCR(hν)-FD  

The LC-PCR(hv)-FD system consisted of two Shimadzu LC6A solvent delivery 

modules that were operated through a Shimadzu SIL-6B system controller. The sample 

was introduced by a Shimadzu SIL-6B autosampler equipped with a 100 μL injection 

loop. The separation was conducted on a Phenomenex Intertsil C18 (150 x 4.6 mm) 

column with 5 µm particles with a 100 Å pore size, that was protected by a Supelcosil 

LC-8, 5 µm, 2 x 4.0 mm guard column. The column was coupled to an in-house 

manufactured online photochemical reactor. Two meters of transparent Teflon tubing 

(0.012” id x 0.030” od) with 1 meter in the center braided was used as reactor coil. A GE 

Germicidal 9W lamp, GBX9/UVC lamp was used as light source inside of the 

photochemical reactor. Detection was accomplished using a Jasco FP-920 Intelligent 

Fluorescence Detector (excitation: 274nm and emission: 470nm) with the data recorded 

by TurboChrom V4.1. The mobile phase used with this chromatographic system 

consisted of solvent A:  10 mM Sodium Phosphate buffer pH 6.2 with 1.5 mL/L 30% 

H2O2 and solvent B: 20% ACN with 1.5 mL/L 30% H2O2. The system was operated at a 

flowrate of 1.0 mL/min with a gradient elution program of 10% B to 55% B in 15 minutes, 

followed by an isocratic hold for 5 minutes. The column was allowed to re-equilibrate for 

10 minutes at the initial conditions. Sample preparation was conducted according to the 

procedure described by Dervieux et al[16].   

 

4.2.4 Sample preparation for LC-MS/MS analysis 

Packed RBCs obtained from patients were thawed prior to sample workup and 

analysis. A 200 µL aliquot was transferred into a plastic vial and subsequently 210 µL of 
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water was added to ensure complete lysis of the red blood cells. The vial was closed 

and vortexed for 10 seconds yielding a suspension. Protein precipitation was performed 

by addition of 40 µL of 70% perchloric acid, immediately followed by vortex mixing for 20 

seconds or until complete precipitation had visually occurred.  The precipitated 

suspension was centrifuged for 5 minutes at 13,000 RPM, resulting in a clear solution 

with an aggregate at the bottom of the vial. The solution was diluted by the addition of 

550 µL of water and subjected to SPE. The SPE procedure consisted of 5 steps.  First 

the cartridge was activated with 2 mL of MeOH.  Second, the cartridge was equilibrated 

with 2 mL of a 0.1% aqueous formic acid solution. Third, 950 µL of sample was applied 

to the cartridge. Fourth, the cartridge was washed with 2 mL of the equilibration buffer. 

Fifth, analytes were eluted with 4 mL of a MeOH:3% NH4OH (9:1) solution.  The flow 

through the cartridge was adjusted to approximately 1.0 mL per minute during all steps.  

The eluent was evaporated to dryness under a gentle stream of nitrogen, while heating 

at 40° C in a waterbath. Analytes were redissolved in 300 µL of mobile phase A, 

vortexed for 20 seconds and transferred to an auto-sampler vial with 250 µL liner. 

 

4.2.5 Preparation of standards 

Methotrexate (polyglutamation) standards were dissolved in 100 mM NH4HCO3 

buffer. Individual standards were combined and diluted to generate stock solutions 

containing each of the standards at a concentration of 1 µM, 100 nM and 10 nM.  Stock 

solutions were stored at -80 °C and prepared on weekly basis. In order to validate the 

method, six-point calibration plots were constructed by analyzing methotrexate 

(polyglutamation) standards with concentrations of: 0, 2.5, 5, 10, 50, 100 nM. These 
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standards were prepared by spiking the appropriate volume of stock solution in 200 µL 

of blank RBCs obtained from healthy individual RBC donors. A seven-point calibration 

(0, 0.5, 1, 5, 10, 50, 100 nM) was performed for the analysis of patient samples. The 

calibration standards were treated the same as patient samples, with the exception that 

the volume of water used to lyse the cells was lowered by the volume of stock solution 

used to spike the calibration standard. 

 

4.2.6 Liquid chromatography with MS detection 

Solvent was delivered either by a Waters Associates Alliance 2695 

Chromatographic System, or a Waters Acquity UPLC. Separation occurred on a 50 x 

1.00 mm Phenomenex Synergy Hydro-RP LC column, packed with 4 µm, 80 Å particles. 

The column was guarded by a Supelcosil LC-8, 5 µm, 2 x 2.1 mm cartridge in the 

appropriate Supelcosil holder. The mobile phase consisted of (A) 10 mM NH4HCO3 

buffer with 5 mM DMHA adjusted to pH 7.5 with HCO2H, (B) consisted out of ACN with 

5mM DMHA. The total flow rate was set to 200 µL/min. The solvent program for elution 

consisted of an isocratic hold at 90% A for 1 minute, followed by a linear gradient to 70% 

A in 9 minutes and was held for 2 minutes. The column was re-equilibrated for 8 minutes 

at 90% A. The injection volume using a Waters Associates Alliance 2695 

Chromatographic System was 100 µL. Needle wash solution for this chromatograph 

consisted out of a basic solution of 50% 0.1 M NH4OH: 50% MeOH. A Waters Acquity 

UPLC was equipped with a 20 µL loop and 100 µL sample syringe. Strong needle wash 

consisted out of 70% MeOH: 30% H2O, weak needle was consisted out of 5% MeOH: 

95% H2O. 
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4.2.7 Mass Spectrometry 

Instrumentation was a  Micromass Quattro Ultima “triple” quadrupole mass spectrometer 

(Manchester UK) equipped with an electrospray ionization source. The instrument was 

operated in positive ion mode. Source parameters, including the cone voltage for each 

analyte were optimized by maximizing the area under the curve of multiple LC runs of 

the standard mixture at various programs. The probe capillary was optimized at 3.0kV, 

and the desolvation and source temperatures were set to 400 °C and 125 °C, 

respectively. The cone voltage was optimized by maximizing the area under the curve 

for each individual analyte by repetitive IP-LC runs varying the cone voltage. The cone 

gas flow rate was optimized at 80L/hr, the desolvation and nebulizer gas flow rate was 

adjusted for maximum signal of analyte. Argon was used for collision induced 

dissociation (CID) and the cell vacuum was set at 2.4 x 10-3 mbar.  Q1 and Q3 were set 

to transmit ions with a resolution of 0.8 u FWHH.  Multiple Reaction Monitoring (MRM) 

parameters (table 16) including precursor ions, product ions and collision energy were 

optimized by direct infusion of the individual analytes dissolved in 80% A and 20% B at 

10 µM, closely resembling chromatographic conditions. 
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Table 16. MRM parameters used for the LC/MS/MS analysis of MTXPGs. 

Analyte 
Precursor ion 

(m/z) 
Product ion 

(m/z) 
Cone Voltage 

(V) 
Collision energy 

(V) 
MTXGlu1 455.2 308.10 20 20 
MTXGlu2 584.3 308.10 20 26 
MTXGlu3 713.3 308.10 20 33 
MTXGlu4 842.3 308.10 20 40 
MTXGlu5 971.3 308.10 20 48 
MTXGlu6 1100.4 308.10 20 56 
MTXGlu7 1229.4 308.10 20 64 

 

4.3 Results and Discussion 

4.3.1 Performance of the LC-PCR(hν)-FD Method 

Dervieux et al. presented the use of LC-PCR(hν)-FD for the detection of MTXPGs in 

2003[16]. To date, this is still the only published chromatographic method for the 

detection of individual MTXPG species. The authors claimed the method to be sensitive 

and to exhibit the required selectivity with minimal biological interferences.  However, the 

authors do note that the method lacks the ability to robustly separate and quantify long-

chain MTXPGs. When the published methodology was implemented in-house in order to 

analyze RBCs obtained from JIA patients on MTX therapy, the results of Figure 29 were 

observed. Improvements over the Dervieux method were achieved by utilizing a 

Phenomenex Intertsil C18 column instead of the reported Waters Terra MS C18 column 

with similar dimensions. A baseline separation with improved chromatographic efficiency 

and peak symmetry (note the similar time frame for the separation with narrower peaks, 

i.e. improved efficiency) of a 50 nM spiked MTXPG1-7 mixture in water is demonstrated 

in Figure 29A).  
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Figure 29. Chromatograms of calibrators in water, blank RBCs and a patient. A) 

Chromatogram of  MTXPG standards spiked at a final concentration of 50nM/each in 

water. This chromatogram is presented in B, C and D as the dotted line for reference 

purpose. B) Example chromatogram of a RBC blank from an individual donor with  an 

endogenous interferent in the elution window of MTXPG4. C) Example chromatogram of 

a RBC blank from an individual donor with an endogenous interferent in the elution 

window of MTX. D) Example chromatogram of RBCs from a patient on low dose (7.5mg) 

MTX.  
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However, even with improved chromatographic performance, blank RBCs collected from 

eight healthy individuals showed a variety of endogenous interferences with variable 

retention times. The chromatograms of two of these individuals are shown in Figure 29B 

and 29C. Figure 29B shows a chromatogram of a blank RBC lysate from a healthy 

donor containing a significant interference that would, based on its retention time, falsely 

identify and quantitate as MTXPG4. This individual also has another peak eluting near 

the MTXPG2 standard that could be misinterpreted as MTXPG2 and thus lead to over 

estimation. Another chromatogram of a healthy RBC donor is shown in Figure 29C, 

demonstrating a contaminant that would be falsely identified as MTX by this method. A 

chromatogram of a patient on weekly low dose (7.5 mg) MTX therapy is presented in 

Figure 29D. By comparing Figures 29B, 29C and 29D, it is obvious that these interfering 

peaks can significantly influence measured concentrations of individual MTXPGs, 

leading to a gross over estimation of MTXPGtotal and skew the MTXPG “fingerprint” 

within the RBC. Despite the fact that the original work reported quantitation of MTXPGs 

in individual patients on MTX therapy, it appeared blank RBCs were obtained from a 

blood bank and pooled before preparation of the RBC calibration standards. The use of 

pooled RBCs could have led to an average blank RBC picture, disguising individual 

analyte variations due to dilution.   

The nature of these interferences is unknown at this point, but likely to be folate 

related since a number of folates share the same chromatographic behavior and 

fluorescent spectroscopic properties as MTX under these conditions[27-28]. MTX as a 

folate antagonist has been shown to interfere with the folate cycle by blocking key 

enzymes, which could lead to a buildup of oxidized folate (polyglutamated) species[10-11].  

In a worst case scenario, this could lead to false identification and over estimation of 
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MTXPGs in patients on MTX therapy, as compared to situation presently demonstrated 

by the individual RBC blanks (figure 29B and 29C). These observations dictated the 

need for development of a more specific and sensitive method for the present research. 

The approach taken was based on LC separation followed by tandem mass 

spectrometry detection. 

 

4.3.2 Chromatographic conditions for mass spectrometry  

The chromatographic performance of several supports (Waters Atlantis T3,  

Altech Alltima and Phenomenex Synergy) was screened for the separation of MTXPGs 

in the reversed phase mode. The Phenomenex Synergy Hydro RP column provided the 

highest selectivity factor together with symmetrical peaks for the MTXPGs, especially for 

MTPG5-7, analytes that were poorly resolved by the other columns, likely due to 

unfavorable secondary retention mechanisms. In order to separate MTXPGs a pH > 5.0 

(resulting in proportionally higher anionic character for longer PGs) was required, 

resulting in elution inversely proportional to polyglutamation number.  The highly anionic 

character of the MTXPGs in this pH range led to poor retention, leading to organic 

concentrations at the low limit (i.e. a 0.5%-3% B gradient was used). The highly aqueous 

elution conditions were found to suppress overall ionization efficiency, with the most 

severe effects observed for the longer polyglutamates. 

Garratt et al. presented the use of DMHA as volatile ion-pair reagent in reversed-

phase ion-pair (IP) chromatography mass spectrometry for the analysis of a broad 

spectrum of folate polyglutamates[29]. In the present case, a similar concentration of 

DMHA (5 mM) led to improved retention and successful separation of MTXPG1-7 within 
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10 minutes. The elution order of MTXPGs was observed to be directly proportional to the 

number of glutamate residues. The pH of the mobile phase was buffered at 7.5, the pH 

limit at which the column was reported to be stable and thus maximizing ionization of the 

glutamate carboxylates.   

 

4.3.3 LC-MS/MS conditions 

MTXPG standards were screened in positive and negative ion ESI mode, in the 

presence and absence of DMHA. In contrast to folate polyglutamates being reported to 

have an overall more favorable signal-to-noise ratio in negative ion mode, MTXPGs 

were found to ionize more efficient in positive ion mode. In the absence of DMHA (in 

reversed phase LC-mode), it was found that longer polyglutamates formed increasingly 

higher multiple charged species (i.e. doubly and triply charged), that were more 

susceptible to formation of unfavorable sodium clusters (Figure 30A, 30B and 30C). The 

use of DMHA as the ion-pairing reagent, led to the nearly exclusive formation of the 

singly charged species, [M+H]+. MTX was susceptible to the formation of a 

[M+DMHA+H]+ cluster (Figure 30D), an effect that was significantly reduced in longer 

MTXPGs (Figure 30E and 30F). Interestingly the observed instrument response 

between the singly charged species of the individual MTXPGs was found to be virtually 

identical, with MTX being slightly lower due to formation of the [M+DMHA+H]+ cluster. It 

was found that a low cone voltage was optimal for all MTXPGs (table 16).  
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Figure 30. Ionization characteristics comparison of MTXPGs in reversed phase 

chromatography (left) and ion-pair chromatography (right). A) MTX under reversed 

phase conditions forms a singly charged ion. B) MTXPG4 forms a singly and doubly 

charged ion under reversed phase conditions. C) MTXPG7 forms under reversed phase 

conditions the singly charged ions, doubly charged ions that form sodium adducts, and 

triply charged ions. D) MTX forms mainly the singly charged species and a DMHA 

adduct in IP-mode. E) MTXPG4 forms an exclusively singly charged molecule in IP-

mode. F) MTXPG7 forms an exclusively singly charged molecule in IP-mode. 
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Collision induced dissociation of MTX and the polyglutamates yielded a consistant 

pattern of product ions (figure 31) including an abundant product ion at m/z 308.10, 

corresponding to the 4-amino-10methylpteroyl fragment (figure 28). This m/z 308.10 

fragment was selected as product ion for all of the MTXPGs in multi reaction monitoring 

(MRM). The collision energy was optimized for the product ion by infusion of the 

individual analytes (table 16) and was found to proportionally increase with glutamation 

number. 

 

 

 

Figure 31. Product ion spectra of MTX (A) and MTXPG4 (B). 
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4.3.4 Sample preparation from erythrocytes 

The most commonly used sample preparation for the LC analysis of MTXPGs out 

of RBCs involves addition of an aliquot of water to assist in lysis of RBCs, followed by a 

perchloric acid protein precipitation step and direct injection of the supernatant. This 

procedure results in diluted samples of high ionic strength that are incompatible with 

LC/MS. In an effort to desalt, clean-up and pre-concentrate MTXPGs from RBCs the 

performance of silica based reversed phase C18 and strong anion-exchange (SAX) 

solid-phase extraction phases were investigated.  It was found that higher order PGs 

were not retained by the C18 cartridge, whereas their recovery was incomplete and 

inconsistent from the SAX cartridge. Reproducible recovery and strong retention of all 

MTXPGs was obtained by the use of a Oasis HLB SPE cartridge (30 mg), that has a 

polymeric stationary phase. Clean extracts were eluted and evaporated to dryness and 

reconstituted in a small volume, effectively reducing dilution of the samples prior to 

analysis. 

Ideally, the use of an isotopically labeled internal standard is preferred in this 

multistep sample preparation procedure. However, d3-MTX is extremely costly to 

purchase or synthesize[30], and isotopically labeled MTXPGs are not commercially 

available. As an alternative internal standard, the anti-folate aminopterin (AMP) is 

used[26]. It was found that AMP is poorly retained under LC-IP conditions, suffering from 

matrix effects, and as a result was found unsuitable as internal standard. With a suitable 

internal standard not being readily available, the method was performed with external 

calibration. 
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Table 17. Intra- and inter-day precision, accuracy and analyte recovery results 
      Intra-run (n=5) Inter-run (n=20) 

Analyte 

Nominal RBC 
Concentration 

(nM) 
Precision       
(RSD %) 

Mean 
observed 

concentration 
(nmol/L) 

 Mean 
Accuracy            
of target 
value (%) 

Precision       
(RSD %) 

Mean 
observed 

concentration 
(nmol/L) 

 Mean 
Accuracy            
of target 
value (%) 

MTXPG1 2.5 12.6 2.5 100.0 19.2 2.2 88.6 

 
5 11.3 4.8 96.8 16.3 5.4 107.2 

 
10 17.1 10.7 106.6 15.4 10.8 107.8 

 
50 15.2 50.8 101.6 10.3 51.0 102.0 

 
100 11.9 98.7 98.7 11.8 101.1 101.1 

MTXPG2 2.5 11.9 2.6 102.4 19.1 2.3 93.0 

 
5 8.4 5.0 99.2 11.4 5.0 100.1 

 
10 10.7 9.4 94.2 10.6 10.6 106.3 

 
50 7.9 52.3 104.5 12.5 51.2 102.4 

 
100 9.1 98.3 98.3 9.6 99.0 99.0 

MTXPG3 2.5 19.3 2.4 95.2 23.7 2.5 99.6 

 
5 8.8 5.1 101.6 12.9 5.0 99.1 

 
10 9.5 11.0 109.8 11.9 10.5 105.4 

 
50 14.9 50.0 100.0 10.2 50.1 100.2 

 
100 9.0 98.8 98.8 10.2 99.4 99.4 

MTXPG4 2.5 14.2 2.56 102.4 14.5 2.4 94.8 

 
5 3.0 5.04 100.8 11.6 5.2 103.4 

 
10 4.0 9.28 92.8 12.0 10.5 105.0 

 
50 4.6 52.18 104.4 11.9 51.3 102.6 

 
100 6.8 98.5 98.5 9.0 98.1 98.1 

MTXPG5 2.5 20.0 2.4 95.2 16.9 2.3 93.0 

 
5 8.1 5.1 102.4 10.4 5.1 102.9 

 
10 11.4 9.5 94.8 11.4 10.6 106.4 

 
50 7.7 53.2 106.5 12.0 51.2 102.4 

 
100 7.2 97.2 97.2 8.5 98.1 98.1 

MTXPG6 2.5 15.4 1.9 76.8 20.7 2.2 89.0 

 
5 13.8 5.1 101.0 14.5 5.2 103.1 

 
10 12.2 10.1 100.8 10.8 10.8 107.9 

 
50 6.8 52.2 104.3 10.9 50.8 101.7 

 
100 5.8 97.1 97.1 8.9 98.1 98.1 

MTXPG7 2.5 20.6 2.6 102.4 15.5 2.4 95.6 

 
5 6.9 4.9 97.2 9.7 5.1 102.4 

 
10 3.2 9.5 95.2 9.2 10.4 104.4 

 
50 7.6 54.2 108.5 10.5 51.1 102.3 

  100 6.6 96.3 96.3 7.2 98.4 98.4 
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4.3.5 Method performance 

Simultaneous MRM analysis of blank RBCs from different individual donors, 

demonstrated that endogenous compounds contributed minimal background noise 

(Figure 32A). Standards spiked at low concentration (5 nM) in RBCs eluted free of 

interferences (Figure 32B). Initially the method was developed and validated on a 

Waters Acquity UPLC platform equipped with a 20 µL sample loop. Table 17 

summarizes the intra- and inter-day precision and accuracy of the analytical assay at 

MTXPG concentrations spiked at 2.5 nM, 5 nM, 10 nM, 50 nM and 100 nM in 200 µL of 

RBCs respectively. Mean extraction recoveries for the total procedure (protein 

precipitation + SPE and evaporation with reconstitution) were 31.2% for MTXPG1, 

33.4% for MTXPG2, 39.6% for MTXPG3, 44.2% for MTXPG4, 43.0% for MTXPG5, 

50.6% for MTXPG6 and 47.8% for MTXPG7. Low, but reproducible recoveries were 

mainly attributed to the protein precipitation step, that has reported recoveries of around 

60%[16]. The intra-run precision was within an RSD of 3.0 and 20.0% and the inter-run 

precision was between 7.2 and 23.7% (table 17). Lower Limits of quantitation (LLOQ) 

were determined as the lowest concentration that resulted in a RSD ≤ 20% for intra-day 

precision. As a result the LLOQs were found to be about 2.5 nM for all of the individual 

MTXPGs using a 20 µL loop volume in combination with a Waters Acquity LC platform. 

At the LLOQ the signal to noise ratio was between 15:1 and 25:1 depending on the 

analyte. The Limit of detection (LOD) was derived from the LLOQ according to the 

equation LOD = (0.33*LLOQ). LODs were 0.8 nM for all of the individual MTXPGs. 

Regression analysis of various calibrants spiked with MTXPG concentrations ranging 
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from 2.5 to 100 nM, spanning the anticipated concentration range in patients, revealed a 

linear relationship between instrument response and analyte concentration (table 18).  

Finally, in order to further improve sensitivity the method was transferred from a 

Waters Acquity to a Waters 2695 platform that would allow for 100 µL injection volumes 

(over 20 µL) effectively yielding a factor of five increase in sample loading. It was found 

that an 100 µL injection volume could be successfully focused on the head of 

chromatography column leading to an increase in sensitivity of a factor five without the 

loss of separation efficiency (Figure 32B and 32C), note that the detected mass is 100 

fmol in both cases), resulting in LLOQs of 0.5 nM for individual MTXPGs. LOD for each 

MTXPG were determined to be 0.2 nM. However, it was found that the use of the 2695 

platform was prone to carryover, and as a result extensive needle cleaning steps and 

the use of blank wash injections had to be included in order to eliminate carryover.  

 

 
Table 18. Inter-day variation in calibration lines for MTXPG standards 

Analyte Slope ± SD R2 ± SD 

MTXPG1 1.012 ± 0.060 0.9993 ± 0.0007 
MTXPG2 0.991 ± 0.020 0.9993 ± 0.0005 
MTXPG3 0.999 ± 0.010 0.9993 ± 0.0007 
MTXPG4 0.982 ± 0.013 0.9992 ± 0.0005 
MTXPG5 0.982 ± 0.013 0.9992 ± 0.0005 
MTXPG6 0.981 ± 0.010 0.9991 ± 0.0010 
MTXPG7 0.986 ± 0.012 0.9986 ± 0.0019 
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Figure 32. A) Representative Blank RBC standard for different lots of RBCs. B) Low 

concentration (5nM) calibrant in the RBC analyzed by the Waters Acquity platform (20 

µL injection, injected mass 100 fmol). C) Low concentration (1 nM) calibrant in the RBC 

analyzed by the Waters 2695 Alliance platform (100 µL injection, injected mass 100 

fmol).  

 

Using large volume injections, an unidentified endogenous compound was observed 

that exhibits the same m/z as MTX and forms a 308.10 fragment, resulting in a peak in 

the MTX channel (Figure 32C). This molecule was separated from MTX and as a result 
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does not interfere with the analysis. The presence of such a compound has been 

reported in LC-MS/MS analysis of MTXPGs in Caco-2 cells as well[26]. Since the mono-

isotopic mass of DMHA is equal to that of a glutamyl residue (129 Da), the formation of 

DMHA clusters led to the appearance of a lower MTXPGn in the MRM channel of a 

MTXPGn+1. The intensity of this DMHA adduct is most abundant for MTX and 

significantly lower for the other MTXPGs (Figure 30 and 32C). DMHA clusters were 

found to not affect quantitative analysis since all PGs are baseline separated and 

clusters formed from lower laying MTXPG are easily identified since they have identical 

retention times. The use of N,N-dimethylpentylamine or N,N-dimethylheptylamine as ion-

pairing reagents will be explored in the future in an effort to circumvent this issue.  

 

4.3.6 Clinical application of the method 

The LC-MS/MS methodology was used to analyze the MTXPG distribution in 

RBC samples from 100 JIA patients on MTX therapy, in an effort to develop correlations 

to genomic variations (the object of a separate investigation) and potentially serve as the 

basis for the rational development of individualized therapeutic regimens. The Waters 

2695 platform was calibrated between 0.5 nM and 100 nM for each MTXPG. A typical 

patient chromatogram and resulting RBC MTXPG concentrations obtained by this 

method are shown in figure 33A and 33B. MTXPG3 was determined to be the major 

species in most of the samples, which is consistent with a prior publication[31]. The 

improved sensitivity of the LC-MS/MS method led to the observation and low nano molar 

detection and quantitation (<1 nM) of long chain MTXPG6-7 in a high number of samples. 

These MTXPGs were not observed in patient RBCs by earlier methods consistent with 
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reported 2 nM detection limits.  Since no standards are available for MTXPG8 nor higher 

polyglutamates, samples with high levels of MTXPGtotal were tentatively reanalyzed for 

the presence of MTXPG8-12 using the common product ion and extrapolated collision 

energies. Despite various efforts, MTXPG8-12 were not detected in any patient RBC 

samples. The detection and quantitation of long chain MTXPGs5-7 at low concentration 

is of particular clinical interest since these species are associated with increased 

potency over short chain MTXPGs. The sensitivity of this newly developed method 

would also allow for pharmacokinetics analysis of long chain MTXPGs. In a study by 

Dalrymple et al., using LC-PCR(hv)-FD, the elimination half-life of MTXPG4-5 could not 

be accurately determined due to a lack of sensitivity for these species[32].  

 

 

Figure 33. A) Typical total ion current LC/MS/MS chromatogram obtained from RBCs of 

a patient on MTX therapy. B) Individual MRM channels used to construct (A) for the 

seven MTXPGs. 
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4.3.7 Post analysis clean-up from ion pair agent 

DMHA cluster ions in the mass spectrometer [DMHA+H]+, [DMHA+CH3CN+H]+, 

and [DMHA+HCl+H]+, persist well after the DMHA solvent reservoirs are removed from 

the chromatograph.  A significant reservoir is the chromatograph itself, requiring 100’s of 

mLs of organic solvent with 1% FA to purge (using the wet prime function on the 2695) 

the system. Attention to washing the large stainless steel fritted filters in the solvent 

bottles speeds up removal of DMHA derived ions from the chromatograph. ESI source 

contamination is quickly reduced by flowing about 50 mL of clean solvent (e.g. not 

through the chromatograph),  reducing the [DMHA+H]+ ion to  about 2-3 times the most 

abundant ion in the typical low m/z ESI “solvent blast”. Complete removal of this 

background ion requires source block and first hexapole cleaning on the Quattro Ultima 

source. 

 

4.3.8 Patient data 

The method presented in this chapter was used for  MTXPG profiling of more 

than 100 JIA patients on low dose MTX. The MTX polyglutamation distribution is given in 

table 19. Data analysis was performed by our collaborators at Children’s Mercy 

Hospitals (Kansas City, MO) and results are published (appendix 1 and 2). Appendix 1 

also describes the patients demographics of this study. To summarize our findings, the 

route of MTX administration was a determining factor upon MTX polyglutamation 

distribution (appendix 1). The MTXPG chain length increased when patients received 

MTX in the subcutaneous tissue, as opposed to oral dosage. We have also 

demonstrated that longer MTXPGs are associated with liver toxicity, one of the common 



 
 

129 
 

adverse effects in MTX treatment in RA and JIA (appendix 2). A full discussion of all the 

results is beyond the scope of this dissertation, but readers are encouraged to review 

appendix 1 and 2. 

 

4.4 Conclusions 

The measurement of MTXPGs in RBCs is challenging due to the presence of 

endogenous interferences, low concentrations within RBCs and poor chromatographic 

behavior of longer polyglutamates, typically MTXPG5-7. The use of an improved sample 

preparation strategy for clean up and sample pre-concentration followed by an 

innovative chromatographic procedure with tandem mass spectrometry detection led to 

the robust separation and detection of MTXPG1-7 within 10 minutes in patient RBC 

samples. The use of DMHA as an ion-pairing agent was beneficial in both, 

chromatographic separation and mass spectrometry detection. Triple quadrupole mass 

spectrometers have become widely available and are currently routinely applied in 

clinical settings for therapeutic drug monitoring, thus allowing for widespread adaption of 

the described methodology. The new analytical approach should enhance knowledge of 

MTX metabolomics by providing a quantitative MTXPG “fingerprint” in patient RBCs. 

Such information has the potential to aid in individually optimized MTX dosing. This 

could result in reduction of side effects and provide valuable information in regard to 

interpretation of MTX pharmacogenomical data, a field that is currently receiving 

increased attention.  

 
 
 
 
 



 
 

130 
 

 
 
Table 19. JIA patient MTXPG profile 

      MTXPG concentration (nM) 
Patient MTXPG1 MTXPG2 MTXPG3 MTXPG4 MTXPG5 MTXPG6 MTXPG7 

1 28.4 14.5 50.1 21.9 6.7 0 0 
2 17 12.7 26.1 4.7 1 0.4 0 
3 27.8 12.9 36.2 8.9 1.5 0 0 
4 11.6 6.3 10.6 2.3 0.7 0.1 0 
5 33.4 17.3 35.5 10.6 2.2 0.4 0 
6 17.1 15.2 23.6 3.5 0.7 0.3 0 
7 20.4 19.5 80.4 32.6 9 0.3 0.4 
8 11.7 6.4 4 0.9 0.5 0 0 
9 3 8.2 9.7 1.5 0.4 0.1 0 

10 21.7 18.3 50.8 19 4.7 0.3 0 
11 16.1 11.2 14.8 2.4 0.5 0.1 0 
12 17.7 18.1 76.7 32.7 9.6 0.4 0.2 
13 5.9 8.5 24.1 10 3.1 0.1 0 
14 3.8 3 29.1 22.2 11.8 0.2 0 
15 76 13.4 38.9 13.2 3.8 0.2 0 
16 2.6 6 19.1 8.3 2.1 0.1 0 
17 42.4 18.4 64.5 28.7 8.3 0.3 0 
18 24.8 13.6 47 22.7 8.7 0.2 0 
19 15.3 16.6 21.8 2.8 0.6 0.1 0 
20 4 7.5 41.4 21.7 6.3 0.1 0 
21 0.1 0.6 7.6 3.7 1.4 0.1 0 
22 15 13.4 22.2 4 0.8 0 0 
23 13.7 11.2 40.7 13.8 3.1 0.1 0 
24 14.4 11.3 18.5 2.2 0.5 0 0 
25 1.3 2 6.3 2.1 0.4 0 0 
26 25.8 25 37.1 6.6 1.1 0 0 
27 9.6 10 20.8 4.8 0.8 0 0 
28 24.1 18.8 60.7 19.9 4.7 0.2 0 
29 3.7 7.1 44.3 25.2 8.8 0.1 0 
30 22.3 12.9 46 16.6 4.4 0.6 0 
31 11.3 9.8 47.2 29 10.8 0.4 0 
32 0.4 0.7 11.5 5.9 2 0.1 0 
33 27.9 15.9 77.4 42.4 14.8 0.4 0 
34 6.3 4.4 13.6 8.1 3.4 0.1 0 
35 15.2 11.1 48.4 32.6 15.6 0.4 0 
36 12.2 14.6 35.9 12.8 3.4 0.3 0 
37 20.4 11.5 6.3 0.4 0.3 0 0 
38 11.5 6.7 27.6 14.6 5 0.3 0 
39 46.1 20 51.5 16.7 4.7 0.3 0 
40 19.5 13.4 40 19.8 6.7 0 0 
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Table 19. continued 
      MTXPG concentration (nM) 

Patient MTXPG1 MTXPG2 MTXPG3 MTXPG4 MTXPG5 MTXPG6 MTXPG7 
40 19.5 13.4 40 19.8 6.7 0 0 
41 6.5 12.5 27.9 7.7 1.8 0.1 0.2 
42 10.8 12.8 36.8 9 1.8 0.1 0 
43 30.5 16 44.8 18 4.3 0.5 0 
44 32.3 3.7 3 0.3 0.7 0.1 0 
45 49.8 28.3 79.5 39.8 12.4 0.5 0 
46 1.1 0.6 12.2 7.9 3.1 0.2 0 
47 4.9 8.9 36 22.8 12.6 1 0 
48 6.2 7.1 61.2 39.1 15 0.3 0 
49 11.6 10.1 48.1 23 6.6 0.2 0 
50 23.5 12.4 25.9 9.1 2.7 0.3 0.3 
51 17.5 15.9 18.6 2.2 0.5 0.2 0.1 
52 14.8 9.1 32.2 10.5 2.3 0.2 0 
53 4.2 8.6 31.1 20.3 10.6 0.1 0 
54 7.8 6.9 26.8 7.9 1.6 0.2 0.1 
55 3.8 5.6 19 5.4 1.5 0.2 0 
56 28 18.6 42.1 12.6 2.6 0.2 0.2 
57 24.7 13.6 47.6 19.1 5.9 0.2 0 
58 21 17.6 17.8 3.6 0.6 0 0.1 
59 22.4 20.8 53.1 14.6 3 0.2 0.1 
60 14.7 10.4 64.5 42.6 20.3 0.6 0.1 
61 24.7 15.6 27.5 10.3 3 0.1 0.4 
63 23.2 16.3 20.8 2.3 0.5 0 0 
64 18 8.4 27.4 8.6 2.1 0.2 0 
65 25 18.5 13.7 1.1 0.2 0.1 0 
66 19.1 14.1 24.5 3.9 0.6 0.1 0 
67 2.8 5.8 19.2 7.1 1.8 0 0 
68 3.1 6.3 19.3 8 2.2 0.1 0.1 
69 44.2 11.7 29.9 7.9 1.5 0.1 0 
70 5.9 5.4 8.4 1.6 0.1 0.1 0 
71 18.2 13.3 33.8 8.7 1.4 0.1 0 
72 17.2 11.5 62.9 32.3 9.8 0.2 0 
73 0.7 0.8 0.7 0.9 0.9 0.8 0 
74 15.5 20.2 83.2 41.6 13.7 0.4 0 
75 13.1 16.8 45.9 19.3 5.7 0.2 0 
76 13.9 12.5 43.7 16.2 4.2 0.3 0 
77 15.5 8.5 32.5 15 5.2 0 0 
78 16.3 6.7 4.9 0.5 0.2 0 0 
79 18.9 15.4 34.4 7.6 1.1 0.1 0 
80 24.5 18.4 52.8 23.3 6.6 0.4 0 
81 19.7 9 2.2 0 0 0 0 
82 

       83 9 13.1 50.7 21.8 7.9 0.3 0 
84 12.7 15.4 73.1 31.3 9.3 0.2 0.1 
85 17.6 12.9 67.6 38.7 17.2 0.5 0.1 
86 0.1 4.9 15.7 3.5 1 0.1 0 
87 13.1 10.1 9.2 1 0.2 0 0.1 
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Table 19. JIA patient MTXPG profile 
      MTXPG concentration (nM) 

Patient MTXPG1 MTXPG2 MTXPG3 MTXPG4 MTXPG5 MTXPG6 MTXPG7 
88 15.1 9.3 56.2 8.3 0 0 0 
89 7.6 12.6 89.7 26 6.3 0.3 0 
90 18 15.7 103.1 52.8 23.8 0.5 0 
91 9.7 8.4 21.2 3.5 0.7 0 0 
92 5.4 4.3 27.3 12.3 4.5 0 0 
93 6 6.6 11.7 1.6 0.3 0 0 
94 12.7 19.4 114.1 40.8 13.6 

  95 19.6 14.6 42.9 7.6 1.3 0.2 0 
96 28.2 19.2 63.3 12.4 2.3 0.2 0 
97 17.9 11.2 87.1 61.6 39.8 0.7 0.2 
98 23.1 9.5 26.2 5.9 1.2 

  99 21.5 13.1 84.9 38.5 14.2 0.3 0 
100 19.4 18 60 19.4 4.9 0.2 0 
101 40.8 19 48 7.3 1.1 0 0 
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5.1 Introduction 

In chapter 4 a novel LC/MS/MS method for the detection of MTXPGs in human 

erythrocytes was presented[1]. Whilst the performance of the method was adequate for 

reliable analysis of a limited amount of patient RBC samples in an academic research 

setting, the throughput of the entire analytical procedure is too low for routine operation 

in a clinical environment. First, the method relied on a laborious sample preparation 

strategy using multiple clean-up stages. In an initial work up step the sample was 

exposed to perchloric acid to facilitate protein precipitation and release MTXPGs from 

the biological matrix. As a result the pH and ionic strength of this solution were 

incompatible with the RP-IP chromatographic method. Furthermore the high ionic 

strength of the sample was also problematic for mass spectrometric detection, and as a 

result a lengthy SPE desalting procedure was incorporated. A multistep sample 

preparation is undesirable in a clinical environment as it significantly increases the 

chance of error. As errors are unavoidably introduced in every operation, the total error 

is a reflection of the error introduced by the individual components. Additionally 

complicated sample preparation schemes are prone to gross error introduced by the 

laboratory operator. A single and simple sample preparation procedure is therefore of 

high interest by the clinical laboratory. 

 The second disadvantage of the method presented in chapter 4 is that as a result 

of the use of N,N-dimethylhexylamine as an ionparing agent in the mobile phase cross 

talk between the various SRM channels was observed. Since DMHA is isobaric with the 

addition of a  glutamate residue, the MTXPGn + DMHA adduct will cause crosstalk in the 

higher order MTXPGn+1 SRM channel. In the previous chapter it was hypothesized that 

the use of an IP-agent with a differentiating mass would eliminate this adverse effect. 
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The use of N,N-dimethylpentylamine (DMPA) and N,N-dimethylheptylamine (DMHPA) 

were suggested as examples of such compounds. Additionally the elimination of 

crosstalk would negate the need for baseline separation as the various MTXPGs could 

be separated in the gas phase. A shortened chromatographic procedure is of great 

clinical interest as it would increase throughput and reduce the occupancy of the 

procedure on costly equipment (e.g. mass spectrometers).  

 A third disadvantage of the method is that due to the lack of a suitable internal 

standard external calibration was performed. The use of external calibration in the 

analysis of samples from biological samples by LC/MS/MS is undesirable since it does 

not account for signal alterations (ion suppression) induced by a varying matrix 

composition (matrix effects).   In this chapter the various aspects of the assay that need 

to be altered to facilitate clinical MTXPG methodology are investigated and discussed. 

Improvements are presented in sample preparation, chromatographic and calibration 

procedures.  

Additionally the question was raised if the MTX metabolite, 7OH-MTX could be 

measured and observed in RBCs. A pair of reports by Baggott et al. demonstrate the 

presence of 7OH-MTX in the urine of RA patients on MTX therapy[2-3]. The urine 

concentration of 7OH-MTX was found to be highly variable (14 fold) over a small patient 

population and it was hypothesized that patients that extensively catabolize MTX to 

7OH-MTX would have a less efficacious response to MTX therapy. The researchers 

continue and hypothesize that based on a small amount of data a phenotype exists that 

is able to produce large amounts of 7OH-MTX. Since the metabolite is also subject to 

polyglutamation by polyglutamaylsynthase, this metabolite would be competing with 

MTX, limiting its polyglutamation and therefore enhancing MTX excretion. Finally the 
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researchers hypothesize: “The variability of MTXPGs concentrations in RBCs could be a 

function of MTX catabolism to 7OH-MTX; 7-OH-MTX could also displace MTX from the 

active site of other folate metabolizing enzymes” (quote). 

Interestingly it has been demonstrated that concentrations of 7OH-MTX in the 

bone marrow are about 3-10 times higher in children receiving low-dose oral MTX[4]. As 

the RBCs develop in the bone marrow and are metabolic inactive after erythropoiesis[5], 

these cells are considered to be representative of the (anti)-folate status within the bone 

marrow[6-7]. Therefore it is tempting to believe 7OH-MTX is present in RBCs, and if so, is 

there a correlation between interpatient MTXPG variability and the ability of these 

patients to catabolize MTX to 7OH-MTX? 

  The presence and detection of 7OH-MTX in its native or polyglutamated form in 

human erythrocytes has not been described in the literature. The detection of this class 

of MTX metabolites is complicated by the fact that 7OH-MTX is available on a limited 

commercial basis and the family of polyglutamates cannot be purchased from a 

commercial source. At the end of this chapter a strategy is presented for the detection of 

7OH-MTXPGs in human RBCs. The focus of the assay was to answer the question: is 

7OH-MTX(PGs) present in significant levels in RBCs? Rather than presenting a full 

quantitative assay that would require the synthesis of the various standards, this chapter 

presents a semi-quantitative approach. The development of a more quantitative 

approach would be the obvious next step if RBCs were found to be a suitable biomarker 

for this biotransformation. 
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5.2 Experimental 

5.2.1 Materials 

LC grade solvents acetonitrile (ACN) and methanol (MeOH) were obtained from 

Fisher Scientific (Fair Lawn, NJ, USA). Ammonium bicarbonate, N, N-

Dimethylpentylamine (DMPA), N, N-Dimethylhexylamine (DMHA), N,N-

Dimethylheptylamine (DMHPA) and methotrexate were purchased from Sigma-Aldrich 

(St Louis, MO, USA). Methotrexate polyglutamation standards 4-amino-10-

methylpteroyldiglutamic acid (MTXGlu2), 4-amino-10-methylpteroyltriglutamic acid 

(MTXGlu3), 4-amino-10-methylpteroyltetraglutamic acid (MTXGlu4), 4-amino-10-

methylpteroylpentaglutamic acid (MTXGlu5), 4-amino-10-methylpteroylhexaglutamic 

acid (MTXGlu6), 4-amino-10-methylpteroylheptaglutamic acid (MTXGlu7) were 

purchased as the ammonium salts from Schircks Laboratories (Jona, Switzerland). 7-

hydroxymethotrexate (7OH-MTX) was obtained from Synfine Research (Ontario, 

Canada). 

 

5.2.2 Preparation of erythrocyte (RBC) lysates 

Blood samples (~5 ml) obtained from patients were centrifuged at low speed 

(2000 rpm) in a Beckman tabletop centrifuge to pellet the RBCs. After recovery of the 

plasma, the RBCs were suspended in an equal volume of sterile normal saline, mixed by 

gentle inversion and subjected to a second low speed centrifugation. The supernatant 

was discarded and the wash procedure was repeated a second time. After discarding 
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the supernatant, the packed RBCs were divided into four aliquots and stored at -70°C 

until use. 

 

5.2.3 Sample preparation for LC-MS/MS analysis 

Packed RBCs obtained from patients were thawed prior to sample workup and 

analysis. A 200 µL aliquot was transferred into a plastic vial and subsequently 200 µL of 

a modified “Wilson and Horne” extraction buffer was added to ensure complete lysis of 

the red blood cells. The buffer was a 50 mM HEPES/CHES buffer at pH 7.85. The vial 

was closed and vortexed for 10 seconds yielding a suspension. The closed vials were 

placed in the in-house fabricated sample holder (chapter 2) and “sandwiched” to lock the 

lids. The entire sample holder was placed in boiling water for 5 minutes and after 

removal from the waterbath allowed to cool for 30 minutes. The boiled vials were placed 

into a centrifuge and spun at 13,000 RPM for 5 minutes. The supernatant was 

transferred to an auto-sampler vial with 250 µL liner. 

  

5.2.4 Preparation of standards 

Methotrexate (polyglutamation) standards were dissolved in 100 mM NH4HCO3 

buffer. Individual standards were combined and diluted to generate stock solutions 

containing each of the standards at a concentration of 1 µM, 100 nM and 10 nM.  Stock 

solutions were stored at -80 °C and prepared on weekly basis. In order to validate the 

method six-point calibration plots were constructed by analyzing methotrexate 

(polyglutamation) standards with concentrations of: 0, 1, 5, 10, 50, 100 nM. These 
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standards were prepared by spiking the appropriate volume of stock solution in 200 µL 

of blank RBCs obtained from healthy individual RBC donors. A seven-point calibration 

(0, 0.5, 1, 5, 10, 50, 100 nM) was performed for the analysis of patient samples. The 

calibration standards were treated the same as patient samples, with the exception that 

the volume of water used to lyse the cells was lowered by the volume of stock solution 

used to spike the calibration standard. 

 

5.2.5 Liquid Chromatography with MS detection 

Solvent was delivered by a Waters Acquity UPLC. A Waters Acquity UPLC was 

equipped with a 50 µL loop and 250 µL sample syringe. Strong needle wash consisted 

of 70% MeOH: 30% H2O, weak needle consisted of 5% MeOH: 95% H2O. Separation 

occurred on a 50 x 1.00 mm Waters BEH C18, packed with 1.7 µm particles. The 

column was guarded by a Waters Vanguard pre-column, 2.1 x 5 mm. The mobile phase 

consisted of (A) 10 mM NH4HCO3 buffer with 5 mM of the desired ion-pair adjusted to 

pH 7.5 with HCO2H, (B) consisted out of ACN with 5mM of the desired ion-pairing agent. 

The total flow rate was set to 200 µL/min. Various gradient elution profiles were used, 

the details are given in the text. Re-equilibration occurred by a step gradient to initial 

conditions followed by a equilibration time of 2 minutes.  

 

5.2.6 Mass Spectrometry 

Instrumentation was a  Micromass Quattro Ultima “triple” quadrupole mass 

spectrometer (Manchester UK) equipped with an electrospray ionization source. The 
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instrument was operated in positive ion mode. Source parameters, including the cone 

voltage for each analyte were optimized by maximizing the area under the curve of 

multiple LC runs of the standard mixture at various programs. The probe capillary was 

optimized at 3.0kV, and the desolvation and source temperatures were set to 400 °C 

and 125 °C, respectively. The cone voltage was optimized by maximizing the area under 

the curve for each individual analyte by repetitive IP-LC runs varying the cone voltage. 

The cone gas flow rate was optimized at 80L/hr, the desolvation and nebulizer gas flow 

rate was adjusted for maximum signal of analyte. Argon was used for collision induced 

dissociation (CID) and the cell vacuum was set at 2.4 x 10-3 mbar.  Q1 and Q3 were set 

to transmit ions with a resolution of 0.8 u FWHH.  Multiple Reaction Monitoring (MRM) 

parameters (table 20) including precursor ions, product ions and collision energy were 

optimized by direct infusion of the individual analytes dissolved in 80% A and 20% B at 

10 µM, closely resembling chromatographic conditions. 
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Table 20. MRM parameters used for the LC/MS/MS analysis of the various pteroyl based entities. 

Analyte Molecular 
Formula 

Precursor ion 
(m/z) 

Product ion 
(m/z) 

Cone 
Voltage (V) 

Collision 
Energy (V) 

ESI 
mode 

MTXGlu1 C20H23N8O5+ 455.2 308.1 20 20 + 
MTXGlu2 C25H31N9O8+ 584.3 308.1 20 26 + 

MTXGlu3 
C30H39N10O11
+ 713.3 308.1 20 33 + 

MTXGlu4 
C35H47N11O14
+ 842.3 308.1 20 40 + 

MTXGlu5 
C40H55N12O17
+ 971.3 308.1 20 48 + 

MTXGlu6 
C45H63N13O20
+ 1100.4 308.1 20 56 + 

MTXGlu7 
C50H71N14O23
+ 1229.4 308.1 20 64 + 

       7OH-MTX C20H23N8O6+ 471.1 324.3 15 20 + 

       7OH-MTX C20H21N8O6- 469.1 340.1 25 24 - 
7OH-MTXGlu2 C25H29N8O9- 598.1 340.1 30 31 - 
7OH-MTXGlu3 C30H37N8O12- 727.2 451.1 40 32 - 
7OH-MTXGlu4 C35H45N8O15- 856.2 451.1 50 37 - 
7OH-MTXGlu5 C40H53N8O18- 985.3 451.1 55 45 - 
7OH-MTXGlu6 C45H61N8O21- 1114.4 451.1 60 50 - 
7OH-MTXGlu7 C50H69N8O24- 1243.4 451.1 70 59 - 

       FA C19H20N7O6+ 442.2 295.1 30 20 + 
FAGlu2 C24H28N7O9+ 571.2 295.1 30 26 + 
FAGlu3 C29H36N7O12+ 700.2 295.1 30 33 + 
FAGlu4 C34H44N7O15+ 829.3 295.1 30 40 + 
FAGlu5 C39H52N7O18+ 958.3 295.1 30 48 + 
FAGlu6 C44H60N7O21+ 1087.4 295.1 30 56 + 
FAGlu7 C49H68N7O24+ 1216.4 295.1 30 64 + 

       FA C19H18N7O6- 440.2 311.1 25 24 - 
FAGlu2 C24H26N7O9- 569.2 311.1 30 31 - 
FAGlu3 C29H34N7O12- 689.2 422.3 40 32 - 
FAGlu4 C34H42N7O15- 827.3 422.3 50 37 - 
FAGlu5 C39H50N7O18- 956.3 422.3 55 45 - 
FAGlu6 C44H58N7O21- 1085.4 422.3 60 50 - 
FAGlu7 C49H66N7O24- 1214.4 422.3 70 59 - 
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5.3 Results and Discussion 

5.3.1 Column selection 

 As described in Chapter 4, the Waters UPLC platform, including autosampler with 

peak needle had to be utilized to avoid carry-over of the longer chain polyglutamates. 

The UPLC pumps can generate up to 15,000 psi of pressure, which allows 

chromatographers to overcome the high backpressures associated with the use of small 

particles. The use of chromatographic columns packed the stationary phase dispersed in 

small particles is highly advantages in chromatography as it minimizes chromatographic 

band broadening associated with using high linear velocities. These high linear velocities 

are desirable in chromatography as they minimize gradient delay and allow for swift 

separation of the analytes.  As the goal of this chapter was the development of a 

MTXPG LC/MS/MS assay with increased throughput tailored for clinical use, these small 

particle chromatography columns in combination with the UPLC demonstrate 

tremendous potential. In an attempt to use the UPLC to its fullest potential the method 

was transferred to a Waters 1.7 µm BEH C18 column. This column was selected due to 

its close resemblance to the previously used Phenomenex material, in an attempt to 

minimize change in retention/separation mechanism. The BEH columns are based on a 

trifunctional ligand bonding chemistry, resulting in elevated stabilities in basic media (up 

to pH 11). Due to the relatively high pH of the separation (pH 7.5 - 8.0) this extra stability 

in the basic pH range is desirable if one wishes to operate this assay on a day to day 

basis handling a large amount of samples and automated data handling requiring fixed 

retention times. The exact method transfer will be discussed in the following sections. 



 
 

148 
 

5.3.2 Ion-pair selection 

 

Figure 34. Properties of the various ion-pair reagents evaluated for LC/MS/MS analysis 

of MTXPGs. 

As mentioned in the introduction N,N-dimethylpentylamine (DMPA) and N,N-

dimethylheptylamine (DMHPA) were evaluated as alternatives to DMHA in an attempt to 

eliminate crosstalk between the various MTXPG channels (figure 34). DMPA varies from 

the previously used DMHA by a one carbon shorter alkyl-chain, resulting in a lower 

boiling point and less hydrophobic character. The inverse is true for DMPHA. A low 

boiling point of the IP-agent is generally considered to be advantageous in IP-mass 

spectrometry, since milli-molar concentrations in the mobile phase need to be 

desolvated and evaporated by the ESI-source. The lower boiling DMPA is however 

significantly less hydrophobic compared to DMHPA. The hydrophobicity of the IP-agent 

plays an important role in RP-IP chromatography, as the IP-agent has to dynamically 

load the hydrophobic chromatographic media. This process is driven by the equilibrium 

constant between the IP-agent and the hydrophobic solid support. In other words, a 

more hydrophobic IP-agent will be present at a higher concentration on the solid phase 
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and therefore introduce more chromatographic selectivity in the separation method (if 

mobile phase concentration is kept constant). To conclude, the ideal IP-agent from a 

mass spectrometric point of view would be DMPA  DMHA  DMHPA, and from a 

chromatographers stand point DMHPA  DMHA  DMPA (disregarding the crosstalk 

when DMHA is used). In order to identify the ideal IP-agent chromatograms were 

obtained by analyzing 100 nM aqueous mixtures of MTPG1-7. The concentration of the 

IP in the mobile phase was fixed to 5 mM independent of the IP-agent used. A 

concentration of 5 mM DMHA was found to be optimal by Garrett and colleagues[8] for 

the separation of folate polyglutamates, and further optimization was not attempted. 

Note that this concentration is typically one to two orders of magnitude below of 

commonly used IP concentrations in LC-UV/FL type of assays, due to adverse effect in 

ESI at elevated concentrations. Isocratic separations of MTXPG1-7 with DMPA (figure 

35A), DMHA (figure 35B) and DMHPA (figure 35C) are demonstrated in figure 35. In 

accordance with the hypothesis, it was observed that DMPA demonstrated the lowest 

selectivity factor (i.e note the separation of the various analytes) and analytes were 

retained fairly poorly, requiring only 10% organic for an isocratic separation of all of the 

analytes within a time-frame of 10 minutes. DMHPA demonstrated the highest selectivity 

factor of the IP-agents under investigation, and yielded the sharpest and most 

symmetrical peaks. A gradient separation was developed for both IP-agents with an 

emphasis on achieving rapid separation (figure 36). A gradient separation of MTXPG1-7 

using DMPA as IP agent is show in figure 36A. The gradient consisted out of an isocratic 

hold of 10%B for 1 minute in order to focus the analytes on the head of the 

chromatography column.  
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Figure 35. Isocratic separations of aqueous mixtures of MTXPGs demonstrating 

selectivity differences between the ion pair reagents. Each chromatogram is obtained 

with the IP concentration fixed at 5 mM. (A) Separation obtained with DMPA, (B) 

Separation obtained with DMHA, (C) Separation obtained with DMHPA. 
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The isocratic hold was followed by a linear gradient with a steepness of 1.8% min-1 

increase in B concentration. Using these settings, analytes were separated in a 

timeframe of 3.5 minutes following analyte introduction. A gradient program was also 

developed for the separation of MTXPG1-7 with DMHPA as the IP agent (figure 36B). 

The initial analyte focusing step that was required using DMPA as IP agent could be 

circumvented by using a weak mobile phase composition (but still higher eluting strength 

when compared to DMPA) during injection (17.5% B), followed by a “ballistic” gradient of 

8% min-1 increase in B concentration. The high selectivity factor observed in the assay 

with DMHPA as IP-reagent results in a baseline separation of aqueous MTXPG1-7 within 

2.5 minutes. Again peaks were sharper using DMHPA as the IP agent under gradient 

conditions. The signal to noise ratio was also more favorable for (MRM) signals obtained 

from a 100 nM MTXPG1-7 mixture, probably as a result of the beneficial effects obtained 

by the increased organic modifier strength required for timely elution of the MTXPGs 

(note signal intensities in figure 36A and B). The expected negative effect using DMHPA 

upon MS-ionization was not observed, but could be disguised by the increase in modifier 

strength. Nevertheless the effect can be neglected and chromatographic advantages 

obtained using DMHPA outweigh other considerations. 

 Whilst the timeframe separation time of 2.5 minutes for the seven MTX 

metabolites was desirable from the throughput perspective, chromatographic peaks 

widths became narrow and challenged the data acquisition rate of the Ultima mass 

spectrometer (note the beveled peaks in figure 36). It was found that the average 

amounts of scans during the peak was about 5 (figure 37A), where a minimum amount 

of 9 datapoints through the peak is generally considered to adequate.  
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Figure 36. Gradient profiles used to achieve a fast separation of the various MTXPGs. 

The gradient steepness is illustrated by the redline. (A) Gradient separation using 

DMPA. (B) Gradient separation using DMHPA. (note the differences in gradient 

steepness). 



 
 

153 
 

 

Figure 37. Width of the MTX peak in the chromatogram based on a “scan number” axis, 

illustrating the number of datapoints through the chromatographic peak.  

 

The amount of scans through the peak could be increased by slowing the “ballistic” 

gradient down to a more moderate 4% change in B per min (figure 37B). The more 

shallow gradient doubled the amount of scans through the peak, allowing for about 10 

scans through the peak. As a consequence the analysis time was increased to 4.5 

minutes per sample (figure 38F). Whereas the scan rate of the Waters Ultima triple 

quadrupole mass spectrometer is the bottle neck for sample throughput in this 

procedure, the current generation of modern mass spectrometers have shorter cycle 

times and will be able to operate under the more demanding rapid elution conditions. As 

a result there is a tremendous increase in the data acquisition rate and thus these type 

of detectors would for the fast separations presented earlier.  



 
 

154 
 

 

Figure 38. Illustration of crosstalk between the various SRM channels. (A) MTX DMHA 

adduct appears in MTXPG2 MRM channel. (B) MTX channel, (C) TIC using DMHA as 

ion-pair reagent. (D) Using DMHPA no signal is generated by the lower MTX SRM 

channel. (E) MTX channel, (F) TIC using DMPHA as the ion-pair reagent. 
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 With the establishment of DMHPA as the preferred IP-agent, the effect of adduct 

formation on the LC/MS/MS assay using MRM monitoring was investigated. The DMHA 

method demonstrated crosstalk from a MTXPGn channel (figure 38B) in the “next” 

MTXPGn+1 channel (figure 38A). As hypothesized this interference due to adduct 

formation was not observed once DMHPA was used as the IP reagent (figure 38D, E). It 

can therefore be concluded that when analyzing sequential metabolites (in this case 

polyglutamates), the mass of the IP-agent in LC/MS/MS should not be isobaric with the 

molecular change of the analyte due to metabolism.  

 

5.3.3 Sample preparation 

 A major drawback of the MTXPG analysis method presented in chapter 4 was the 

laborious procedure required to render the biological sample into a solution that could be 

introduced into the chromatograph. Chapter 4 describes the various strategies that had 

been explored in order to obtain a viable sample preparation strategy. All strategies 

explored as alternatives to the acid protein precipitation followed by SPE extraction were 

found to be ineffective. However, heat extraction, a sample preparation strategy that was 

applied successfully in G5-MTX-FA analysis was not explored. Additionally heat 

extraction has been presented in prior literature to extract various folate(polyglutamates) 

from a number of tissues at pH 7.85 [9-10]. The fact that MTXPGs are structural 

analogues of folatePGs suggests this technique could be useful for the extraction of 

MTXPGs in a simple step. An extraction in a single step at physiological pH would be 

highly desirable in this IP-LC/MS/MS analysis procedure as it would result in a mobile 

phase compatible sample that could be directly inject able into the HPLC system without 
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the need for additional sample workup.  The heat extraction of folates requires a very 

specific buffer, consisting of ascorbic acid as the anti-oxidant, mercaptoethanol to 

scavange formaldehyde released by ascorbic acid, and a HEPES/CHES buffer system 

that fixes the pH at 7.85. In the field of folate analysis commonly referred to as the 

“Wilson and Horne” buffer, named after the scientists that demonstrated the 

effectiveness of this buffer system for the stabilization of folate extracts (more about this 

buffer system will be presented in chapter 7). Since MTXPGs are more (redox) stable 

compared to the various folates, a modified buffer was explored where ascorbic acid and 

mercaptoethanol were excluded from the buffer. This buffer proved to be successful for 

the extraction of MTXPGs from RBCs. Overall recovery based on a limit study (n=1) 

appears to be around 60% for the individual MTXPGs, similar to acid mediated 

extraction.  

A full validation is presented in the next section of this chapter, demonstrating the 

reproducibility of this procedure.The advantage of the presented heat extraction 

procedure is the fact that protein bound analytes are liberated and proteins are 

precipitated simultaneously in one operation. After centrifugation a clear, sometimes 

slightly red supernatant (figure 39C, D) can be recovered and injected into the 

chromatograph without any deterioration in chromatographic of the analytical column for 

several hundreds of injections (guard columns were changed at 100 injection intervals, 

due to a slight increase in backpressure). The pH of the extraction solution was found to 

be important parameter to control, if the pH differentiated significantly from 7.85 a 

blackish slurry was obtained upon heat extraction (figure 39A, E). The slurry could not 

be separated by centrifugation and is obviously incompatible with HPLC/UPLC systems 

(figure 39B, F).  
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Figure 39. The influence of the pH during sample preparation (boiling). An aliquot of 200 

µL of RBCs were combined with 200 µL of buffer. (A) A solution with a pH of 6.0 was 

boiled, leading into a blackish sludge. (B) The sludge could not be separated by 

centrifugation. (C) Boiling at pH 7.85 leads to reddish “pudding”. (D) Centrifugation lead 

to separation, with the debris at the bottom the vial. (E) Boiling at pH 10.0 lead to similar 

results as pH 6.0, forming a sludge. (F) Again the sludge could not be separated. 
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5.3.4 Selection of internal standards 

 The validation results presented in chapter 4 for the MTXPG LC/MS/MS method 

revealed a precision that was in general between 10-15%, approaching the acceptable 

limits set by FDA guidelines for a bioanalytical assay[11].  It was therefore hypothesized 

that calibration relative to an internal standard could result in a reduction of the analysis 

error (i.e. improvement of the precision) and therefore would be beneficial. Furthermore 

the sample preparation approach presented in this chapter lacks the additional cleanup 

step provided by SPE extraction, making this faster and easier method more susceptible 

to matrix effects. The magnitude of suppression of the ion formation due to matrix effects 

was assessed by post column infusion of an aqueous MTXPG1-7 solution. During the 

infusion a representative, (blank) boiled RBC extract was injected in the 

chromatographic system and the change in signal intensity was monitored throughout 

the gradient elution profile. Ion suppression due to endogenous components in the 

worked up RBC matrix will result in a reduction of the analyte signal (figure 40A) (For a 

review on these techniques please refer to Annesley[12].). RBC samples from different 

individual donors (n=5) were analyzed using this strategy. A chromatographic window 

(between 4-5 minutes) was identified that demonstrated significant ion-supression, 

affecting the analysis of MTXPG1 and MTXPG2. (figure 40A and B, red area) (Please 

note that these experiments were conducted using a significantly slowed gradient, 

improving resolution aiding in the visualization of the areas of interest). The longer chain 

MTXPGs3-7 eluted in a chromatographic window where signal intensity was relatively 

stable and did not seem to be affected by matrix effects in any of the RBC samples 

screened (figure 40A and B, green area).  
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Figure 40. The influence of matrix effects on the quantitation of MTXPGs. (A) a constant 

infusion of MTXPGs1-7. Dips in the signal are indicative of suppression of ion formation. 

(B) MTXPGs enriched RBC extract. (C) Separation of aqueous FAPGs standards 

allowing for retention time comparison. The red area illustrates a part of the 

chromatogram where matrix effects were observed. The green part illustrates a relatively 

unaffected part of the chromatogram.  
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 As discussed earlier, the use of isotopically labeled internal standards mimicking 

the structure of the analytes is a hallmark in bio-analytical mass spectrometry[13]. 

However obtaining and synthesizing these internal standards is not always trivial, as is 

the case for MTXPGs. Synthesizing a deuterated (d3) version of MTX is for instance 

more complicated than one would expect at a first glance[14], and the complexity 

increases rapidly as the polyglutamates are required as well. Based on the observed ion 

suppression pattern it was hypothesized that the assay would benefit from the 

incorporation of minimally two internal standards; one internal standard representative of 

the suppressed chromatographic window affecting MTX and MTXPG2, and another 

internal standard serving the more stable signal area of the chromatogram where 

MTXPG3-7 are eluting.  

 Since the elution window of MTX and MTXPG2 is the most extensively effected, 

an isotopically labeled standard for these analytes would be highly desirable. As d3-MTX 

is commercially available and d3-MTXPG2 is not, d3-MTX was purchased and used as in 

internal standard for both MTX and MTXPG2. The remaining polyglutamates (MTXPG3-

7) are in a relatively stable region of the chromatogram, justifying the use of a pseudo 

internal standard. Folic acid is available in its polyglutamates commercially and several 

reports suggest that FA in its native or polyglutamate is absent in RBCs. Assuming there 

is no endogenous background of FAPG(s) this series would be a good candidate to 

serve as a internal standard due to its related structure to MTX. As a result of the 

chromatographic methods selectivity towards increasing anionic character with 

increasing polyglutamate chainlenght, the longer chain FAPGs(4-7) eluted closely to the 

MTXPGs(4-7) (figure 40, B and C). Since MTXPG3-7 are in a relatively clean area of the 
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chromatogram, (i.e. free from ion suppression) FAPG4 was selected to serve as internal 

standard for MTXPG3-7.  

 In order to check if FAPGs are present endogenously within RBC cells, RBCs 

from various donors (n=10) were screened for FAPGs (figure 41B, C, D). A number of 

RBC donors showed the presence of FAPG5-7, in contrast to what various publications 

suggest (measuring deglutamated FA). The highest concentrations measured were 

however low and FAPG4 was not detected in any samples, suggesting that this 

molecule was suitable for use as an internal standard. An additional safety level was 

however added to the method by fixing the concentration of FAPG4 at a slightly elevated 

level (50 nM) to negate effects of unexpected low endogenous concentrations of 

FAPG4.  

 Today, validation is considered essential component of the development of a 

clinical bio-analytical assay before it is applied to patient care[15].The newly described 

method, including heat extraction and fast chromatographic separation (see figure 43 for 

a representative chromatogram) was validated in a similar fashion as described in 

chapter 4. The data of the validation on four consecutive days is presented in table 21. 

The precision of the method was significantly increased as a result of the reduction of 

the number of sampling handling steps and the incorporation of internal standards. 

Overall the method was precise and accurate to 1 nM, with the exeption of the longer 

polyglutamates (MTXPG5-7). Correlations of the individual analytes were found to 

approach an R2 of 0.999, similar to earlier reported values.  

   



 
 

162 
 

 
 
 

Figure 41. Chromatograms of folic acid polyglutamates separations. (A) separation of an 50nM 

aqueous mixture of FAPG1-7. (B) JIA patients on MTX therapy with no detected FA in the 

donated RBC sample. (C) JIA patient with FAPG5-6 detected in concentrations <2.5 nM. (D) 

Chromatogram of an RBC sample from a JIA patient with FAPG5-7 detected at concentrations 

<10 nM. 
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Table 21. Intra- and inter-day precision and accuracy results 
      Intra-run (n=5) Inter-run (n=20) 

Analyte 

Nominal RBC 
Concentration 

(nM) 
Precision       
(RSD %) 

Mean 
observerd 

concentration 
(nmol/L) 

 Mean 
Accuracy            
of target 
value (%) 

Precision       
(RSD %) 

Mean 
observerd 

concentration 
(nmol/L) 

 Mean 
Accuracy            
of target 
value (%) 

MTXPG1 100 7.5 100.6 100.6 5.1 100.3 100.3 

 
50 4.6 50.1 100.1 6.7 50.3 100.6 

 
10 2.7 9.4 93.5 4.9 9.5 95.5 

 
5 7.6 4.9 97.6 10.9 4.8 96.7 

 
1 10.8 1.1 106.0 18.4 1.0 102.5 

MTXPG2 100 2.2 101.5 101.5 5.4 101.3 101.3 

 
50 5.3 48.6 97.2 8.3 49.7 98.1 

 
10 2.6 9.8 97.5 6.4 9.7 96.9 

 
5 13.6 5.1 102.0 11.4 4.9 98.9 

 
1 11.2 1.0 98.0 14.0 1.0 101.5 

MTXPG3 100 4.4 98.9 98.9 5.0 100.7 100.7 

 
50 11.4 51.9 103.8 8.0 50.2 100.3 

 
10 1.9 9.1 91.3 7.8 9.2 91.9 

 
5 3.8 4.8 96.8 6.3 4.9 97.2 

 
1 11.0 1.0 104.0 14.7 1.1 106.5 

MTXPG4 100 1.1 98.8 98.8 5.3 100.4 100.4 

 
50 11.3 52.0 104.0 8.1 50.5 101.0 

 
10 4.5 9.0 90.3 6.9 9.2 92.5 

 
5 3.7 4.9 98.8 5.8 4.7 94.4 

 
1 11.2 1.0 102.0 14.9 1.1 108.0 

MTXPG5 100 1.6 98.6 98.6 5.3 100.2 100.2 

 
50 11.8 51.8 103.6 8.3 50.8 101.5 

 
10 3.3 9.5 94.8 7.5 9.2 91.9 

 
5 6.2 4.9 98.8 14.2 4.6 92.8 

 
1 30.3 1.1 108.0 31.4 1.1 113.0 

MTXPG6 100 2.7 99.5 99.5 7.0 99.2 99.2 

 
50 11.0 51.3 102.6 8.6 51.3 102.7 

 
10 5.0 9.1 90.5 7.6 9.5 94.9 

 
5 9.3 4.8 96.8 9.4 4.8 96.1 

 
1 8.6 1.0 104.0 32.7 1.1 107.0 

MTXPG7 100 2.1 97.9 97.9 8.2 96.7 96.7 

 
50 10.5 52.5 105.1 8.7 52.9 105.9 

 
10 5.0 9.8 97.8 8.7 10.1 100.6 

 
5 7.4 4.6 92.0 18.7 4.8 96.1 

  1 22.1 1.1 108.0 60.1 1.1 105.5 
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5.3.5 Detection of 7OH-MTX 

 

 

Figure 42. An injection of a 10nM 7OH-MTX aqueous solution in both positive ion mode (A) and 

negative ion mode (B). Mass spectrometry setting can be found in table 1. 

 

As discussed in the introduction 7OH-MTX is a degradation product resulting from 

MTX catabolism. The measurement of these species might give provide addition insight 

of the MTX/folate metabolism of the individual RA patient and therefore provides a more 

extensive picture of all entities competing for enzymes that are responsible for folate 

biotransformation. 
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 The development of an analytical strategy for 7OH-MTXPGs is complicated by 

the fact that polyglutamyl standards are not commercially available and synthesis is not 

straight forward due to the nature of the glutamyl-linkage, where individual glutamate 

building blocks are connected through the amino acid side chain (gamma-carboxylate). 

However based on the fragmentation pattern of these type of species one could 

tentatively scout for these entities using specific SIM detection schemes by the triple 

quadrupole mass spectrometer. Such a study would not allow for reliable and robust 

quantitation but should demonstrate the presence or absence of this group of MTX 

metabolites within RBCs and could be followed up by more sophisticated studies if 

desired. 

 Initial method development was initiated by investigating the ionization behavior 

of 7OH-MTX.  Interestingly it was found that in contrast to MTXPGs, 7OH-MTX (as the 

parent) was ionized more efficiently in negative ion-mode. Using MRM monitoring 

negative ion-mode was also found to more sensitive (figure 42B) as opposed to positive 

mode (figure 9 A) when applied to the detection of 10 nM aqueous 7OH-MTX standards. 

In order to estimate the fragmentation behavior of 7OH-MTXPG in negative ion-mode, a 

study was conducted using folic acid polyglutamates (FAPG1-7). Folate acid 

polyglutamates are commercially available and based on the assumption that 7OH-

MTXPGs have similar gas phase properties as FAPGs one could extrapolate MS-SRM 

settings such as parent m/z, daughter m/z, cone voltage and collision energy. The 

results of the study are presented in table 20. The most dominant fragment was the for 

PG1-2 loss of the glutamate chain, whereas the fragmentation of higher order 

polyglutamates (PG3-7) were forming predominantly the monoglutamate fragment. This 
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was different to what was reported by Garrett et al, who had indicated the glutamate 

fragment with an m/z of 127.8 was the dominant fragment[8].  

 Using these extrapolated settings for 7OH-MTXPGs, erythrocyte samples from 

JIA patients on MTX therapy were screened for the presence of 7OH-MTXPGs. Since 

the hypothesis was that the presence of high amounts of 7OH-MTXPGs could enhance 

the excretion of MTX(PGs) patient samples were selected (n=10) with low-intermediate 

amounts of MTXPGtotal and screened for the presence of 7OH-MTXPGs. None of the 

patients out of the group tested positive for the presence of 7OH-MTXPGs. As the 

absence of 7OH-MTX could also be the result of poor MTX absorption in general by the 

individual, patients with high intracellular levels of MTXPGtotal were also screened for the 

MTX metabolites (n=10). Again none of the patients tested positive for the presence of 

7OH-MTX within donated RBC samples. An example is given in figure 43, figure 43A 

shows a baseline signal indicating the absence of 7OH-MTXPGs. The various MTXPGs 

are demonstrated in figure 43B. The fact that 7OH-MTX was not observed in any of the 

analyzed RBC samples suggest that this MTX metabolite is not present in RBCs. Based 

on the earlier reported high abundance of this metabolite in the bone marrow this is 

surprising. One could argue that 7OH-MTX was not observed could be due to a vast 

difference in fragmentation behavior in ESI- between 7OH-MTXPGs and FAPGs, and 

setting extrapolation fails. To appropriately address this concern one would need 

isolated standards of the 7OH-MTXPGs and optimize MS/MS settings by infusion of 

these compounds. However, the success of extrapolating MS/MS settings is proven 

using structurally related compounds in the final data chapter of this thesis dealing with 

folate analysis. Furthermore, the analytical strategy presented in the following chapter 

for the expedient detection of MTXPGtotal was not able to detect 7OH-MTX as well. 
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Based on these observations it is tempting to conclude that 7OH-MTX is not present (in 

significant amounts) within erythrocytes of JIA patients on weekly low dose MTX 

therapy.  

 

 

Figure 43. Example RBC chromatograms of a JIA patient on MTX therapy. (A) Chromatogram 

of 7OH-MTX(PGs) (B) Chromatogram of MTXPGs 
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5.4 Conclusion 

The analytical methodology presented in the previous chapter (chapter 4) has 

been adapted for clinical use. Significant improvements were made on a number of 

facets of the assay. First, an improved sample preparation strategy was presented 

where the analytes were liberated using heat extraction. Proteins were denatured in the 

same step, and thus after centrifugation, a supernatant was obtained that could be 

introduced in the chromatograph. Second, DMHPA was found to be a more suitable ion-

pairing agent when compared to DMHA and DMPA. Using DMHPA, chromatographic 

resolution between the analytes was increased, peak shape improved and fast gradient 

elution could be applied to separate the analytes within 4.5 minutes. Faster separation is 

chromatographically possible, but will need a mass spectrometer that clears the “ion 

path” faster than the Waters Ultima triple quadrupole mass spectrometer, such as the 

newer Xevo TQ. Third, the incorporation of d3-MTX and FAPG4 as internal standards 

(together with a less complicated sample preparation procedure) resulted in an improved 

precision, when compared to the assay that used solely external calibration.  

 An assay was developed for the detection of 7OH-MTX using electrospray 

ionization in negative ion mode. Due to the absence of polyglutamation standards the 

mass spectrometry settings were extrapolated based on the behavior gas phase 

behaver of FAPG homologues. RBC samples obtained from a number of JIA patients 

that displayed low, intermediate and high intracellular concentrations of MTXPGs were 

screened for the presence of 7OH-MTX. Interestingly, no 7OH-MTX in its native or 

polyglutamated form could be detected.  
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6.1 Introduction 

The antifolate methotrexate (MTX) (4-amino-10-methylpteroylglutamic acid) 

administered in low dose, on a weekly basis, is widely used for the treatment of 

rheumatoid arthritis (RA) [1] and juvenile idiopathic arthritis (JIA) [2]. MTX is the first-line 

therapy for RA patients exhibiting inadequate disease control from treatment with non-

steroidal anti-inflammatory drugs [3]. In low-dose this disease-modifying drug is generally 

well tolerated and considered safe, however there is a substantial percentage of patients 

who have poor response to MTX or develop adverse reactions [4]. This can be partly 

explained by a poorly understood inter-patient variation in the dose of MTX required to 

achieve a desirable level of disease control, making it difficult to optimize and 

individualize therapy. It has recently been shown that the measurement of MTX and its 

polyglutamate metabolites (MTXPGs) in red blood cells (RBCs), an easily accessible 

space thought to reflect the intra-cellular state, could be a useful tool in individualizing 

MTX therapy [5-8].  

Whilst the exact mechanism of action of MTX in RA/JIA is poorly understood [9-10], 

its therapeutic effect is attributed to the various MTXPGs rather than MTX itself  [11-13]. 

Various methods to measure intra-cellular levels of MTXPGs have appeared recently in 

the literature. These strategies can be categorized as methods that measure the total 

amount of polyglutamated MTX (i.e. as a total pool) (MTXPGtotal) and methods that 

measure and quantify each MTXPG individually, up to the hepta-glutamate. Individual 

concentrations of MTXPGs in RBCs have been measured by HPLC with a post-

separation photochemical (PCR(hv)) derivatization followed by fluorescence detection 

(FD) [6], and more recently by an ion-pair HPLC method followed by tandem mass 
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spectrometry (LC/MS/MS) [14]. Currently, the LC/MS/MS method is the most specific and 

sensitive assay for detection of MTXPGs. Whilst these methods give a detailed 

presentation of the intra-cellular MTX metabolome, calibration is required for each 

MTXPG, necessitating the use of expensive standards.  Further, gradient elution 

separation is required to compensate for differences in chromatographic behavior of the 

different MTXPGs, typically resulting in a relatively long run and re-equilibration times. 

Clinically, the relevance of individual MTXPG concentrations or population distribution is 

not fully understood, and as a result the various polyglutamates are often summed to a 

total or alternatively, grouped as short chain (MTXPG1-2) and long chain (MTXPG3-5) [5-6] 

pools.   

MTXPGtotal methods utilize the plasma enzyme ɣ-glutamyl hydrolase to 

deglutamate the various MTXPGs into MTX (in a similar fashion as folate 

polyglutamates) [15]. Typically, an aliquot of human plasma is added to a RBC lysate as a 

source of ɣ-glutamyl hydrolase, followed by a lengthy incubation period ranging from 6 to 

14 hours at 37 °C. The amount of MTX after deglutamation (reflecting the MTXPGtotal) is 

generally measured by HPLC- PCR(hv)-FD [6, 16]. The post column oxidative degradation 

used by these methods generates a fluorescent pteridine derivative by cleaving the C9-

N10 bond of MTX(PGs) [17-18] (figure 44a). Hence, the only function of the elaborate 

deglutamation procedure is to circumvent chromatographic resolution between the 

various polyglutamates.  

We hypothesized that a precolumn derivatization strategy leading to cleavage C9-

N10 bond of MTX(PGs) would circumvent the tedious deglutamation step and as a result 

increase sample throughput, reduce the number of sample preparation steps and avoid 

the addition of blank human plasma and the ensuring incubation period. The presently 
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proposed analytical method would possess the attributes of being rapid and economical, 

an attractive alternative for the routine monitoring of total intra-cellular MTX related 

species in JIA and RA patients, while still providing a quantitative basis for 

individualization of MTX therapy.  
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6.2 Materials and Methods 

6.2.1 Chemicals and reagents 

Methotrexate (MTX) was purchased from Sigma Aldrich (St. Louis, MO, USA) and 

methotrexate polyglutamates (MTXPG) 2-7 were purchased from Schircks Laboratories 

(Jona, Switzerland). 2,4-diamino-6-methylpteridine (DAMP) was obtained from ChemDiv 

(San Diego, CA). HPLC grade methanol (MeOH), sodium phosphate monobasic and 

ammonium bicarbonate were purchased from Sigma Aldrich (St. Louis, MO, USA). 

Ammonium acetate and sodium phosphate dibasic were acquired from Fisher Scientific 

(Fairtown, NJ, USA). Sodium dithionite was purchased from Riedel – de Haën (Seelze, 

Germany). Demineralized water was produced by Labconco Waterpro PS (Labconco 

Corporation, Kansas City, MO, USA). Blank Red blood cells (RBCs) were drawn from 

healthy volunteers on site. 

6.2.2 Chromatographic separation 

Solvent was delivered by a binary pumping system containing two Shimadzu 

LC6A pumps. The sample was introduced by a Shimadzu SIL-6B auto injector equipped 

with a 50µL injection loop and a 50% water/50% ACN wash solution. Detection was 

accomplished by a Shimadzu RF-10Axl fluorescence detector using an excitation - 

emission wavelength of 367 nm and 463 nm, respectively, with a bandwith of 15nm. 

Chromatography was performed using a Phenomenex Inertsil ODS-3 analytical column 

(150 x 4.6mm) packed with 5µ 100 Å particles.  The analytical column was guarded 

using a Supelcosil LC-8 guard column (5µ, 2 x 4.0mm). Mobile phase A consisted of 10 

mM ammonium acetate in water and mobile phase B was 100% methanol. An isocratic 

mobile phase containing 30% B at a flow rate of 1 mlmin -1 was used for the separation.  
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6.2.3 Stock solutions and buffers 

Phosphate buffers (1.0 M) of pH 5.5, 6.0, 6.5, 7.0 and 7.5 were obtained by 

blending a 1.0 M monobasic sodium phosphate solution with a 1.0 M dibasic sodium 

phosphate solution to achieve the targeted pH. MTX and MTXPGs were dissolved 0.10 

M  ammonium bicarbonate buffer to prepared 1.0 mM master stock solutions. The 

working stock solutions containing the appropriate concentrations of the analytes were 

created by further dilution of the master stocks solutions with water. All stock solutions 

were prepared daily prior to each experiment.  

 

6.2.4 Preparation of erythrocyte (RBC) lysates 

Blood samples (~5 ml) obtained from patients were centrifuged at low speed 

(2000 rpm) in a Beckman tabletop centrifuge to pellet the RBCs. After removal of 

plasma, the RBCs were suspended in an equal volume of sterile normal saline, mixed by 

gentle inversion and subjected to a second low speed centrifugation. The supernatant 

was discarded and the wash procedure was repeated a second time. After discarding 

the supernatant, the packed RBCs were divided into aliquots and stored at -70° C until 

use. 

 

6.2.5 Derivatization protocol 

A general derivatization procedure was established. An 100 µL aliquot of patient 

or blank RBCs was transferred to an Eppendorf reaction vial and was spiked with one of 

the analytes. The volume was adjusted to 200 µL using deionized water and/or aqueous 
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calibration solutions of MTX to obtain spiked RBCs of the appropriate concentration. The 

remaining mixture was subsequently homogenized via vortex mixing for 5 seconds. The 

pH of the homogenate was adjusted by the addition of 600 µL of pH 6.0 phosphate 

buffer followed by an additional 5 second vortex step. The samples were placed in an in-

house constructed sample holder that was able to pressure seal the caps of the 

Eppendorf reaction vials. The total reaction volume was brought to 1.0 mL by addition of 

200 µL of a freshly prepared solution of 10 mg/mL sodium dithionite. After sodium 

dithionite addition to each vial, the lids were closed and the entire holder inverted 5 

times, then vortexed for 10 seconds to ensure complete mixing (this step was found to 

be extremely important in obtaining reproducible results). The sample holder was then 

placed in boiling water for 15 minutes to facilitate the reduction reaction and precipitate 

proteins. After the reaction period, the sample holder was refrigerated at 7° C for 30 

minutes. The reaction vials were subjected to centrifugation (13,000 rpm for 5 minutes), 

and the resulting supernatant transferred to a 1.0 mL autosampler vials for subsequent 

determination.  

 

6.2.6 Yield determination and validation 

In order to determine the yield of the reduction, 100 µL  of RBCs (n=5) were spiked with 

MTX to 1.0 µM and subjected to the derivatization procedure. The reduction yield was 

obtained by comparing the spiked RBC samples to an aqueous DAMP standard 

calibration curve (0.1, 0.5, 1.0, 1.5, 2 µM) . Method validation consisted of determination 

of MTX spiked RBCs at 10, 25, 50, 100, 250 and 500 nM in 5 replicates on four 

consecutive days.  
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6.3 Results and discussion 

6.3.1 Selection of the Derivatization Reaction and Format 

The order of operations within an overall methodology has significant analytical 

implications.  For example, the conduct of a derivatization reaction in the pre- versus 

post-column format defines the nature of the data obtained. Conduct of a post-column 

derivatization reaction allows for separation of the various analytes of interest prior to 

formation of an analytical reporter product.  In contrast, pre-column derivatization of a 

family of analytes may lead to the formation of a common product and thus loss of 

analytical identity.  As noted previously, there are clinical situations where determination 

of the total concentration of all related species is sufficient and desirable, rather than 

determination of each individual analytical species. 

 

 

 

Figure 44. The labile C9-N10 bond in MTX can be cleaved in oxidative (A) and reductive 

(B) environments. The resulting fluorescent derivative is either carboxylated or 

methylated at the C6 position, depending on the chemistry selection. 
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Continuing with the concept of total analyte determination, as previously noted, the C9-

N10 bond in methotrexate is chemically labile to oxidative [6, 16-18] and reductive [19] 

environments to yield fluorescent pteridine derivatives (figure 44). These different 

processes lead to different products, with oxidative cleavage leading to the formation of 

2,4-diaminopteridine-6-carboxylic acid (DAPC) (figure 44a) while reduction cleavage 

leads to 2,4-diamino-6-methylpteridine (DAMP) (figure 44b). A prior publication suggests 

that the reductive product DAMP exhibits more favorable fluorescence properties as 

compared to the oxidative product DAPC, with a yield of approximately 70% being 

realized when the analyte is present in plasma [19]. 

In previous studies (Chapter 2 and 3), it was found that sodium dithionite 

reductive mediated reductive cleavage of the C9-N10 bond may be extended to the 

situation where  MTX is conjugated to a macromolecular carrier via the glutamyl residue.  

The apparent generality of this reaction lead to the present hypothesis that sodium 

dithionite reductive mediated reduction could be used to measure MTXPGtotal (DAMP 

serves as a common reporter molecule for each MTXPG).  In another consideration with 

respect to the choice of an oxidative versus reductive process to mediate C9-N10 

cleavage, the previous investigation had also shown the reductive procedure to result in 

significantly less chromatographic interferences as compared to the oxidative procedure. 

With any bioanalytical method, simplistic and efficient sample preparation is a hallmark 

of a robust method. In the present case, it was observed that by conducting the 

reductive procedure directly in plasma (reaction for 15 minutes in boiling water), efficient 

protein denaturation was accomplished, and after centrifugation, the supernatant could 

be directly analyzed by HPLC-FL. When this procedure was investigated for the analysis 

of MTXPGtotal in human RBCs, the chromatograms of figure 45 were obtained. A DAMP 
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reference standard dissolved in water was used to optimize chromatographic conditions 

(figure 45a). Blank human RBCs showed no significant interference originating from 

endogenous molecules during the elution window of DAMP (figure 45a). Due to the low 

background a rapid isocratic separation was possible, leading to an analysis time of just 

7 minutes per sample. In order to validate the hypothesis that the various MTXPGs 

would yield the same product (DAMP), the various individual MTXPGs were spiked in 

similar concentrations and derivatized in human RBCs obtained from individuals not 

treated with MTX. Identical chromatograms were generated regardless of the derivatized 

MTXPG (figure 45b).  

 

 

 

Figure 45.  (A) Illustration of a blank RBC chromatogram (black line), showing no 

endogenous interference during the elution of the DAMP derivatization product (blue 

line). (B) 7 individual chromatograms of RBC samples, each spiked with a different 

MTXPG standard (1-7). 
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6.3.2 Yield Optimization and Comparison 

Deen and coworkers stated in their plasma method that no increase in fluorescent 

signal was observed after 15 minutes of reaction time and/or an increase in dithionite 

concentrations[19]. Similar observations were made with the reaction in the RBC matrix. 

The influence of the pH on the reduction reaction of MTX with an RBCs matrix was 

investigated at pH 5.5, 6.0, 6.5, 7.0 and 7.5 (table 22). The highest fluorescence was 

obtained at pH values of 5.5 and 6.0. In order to maximize the buffer capacity of the 

phosphate buffer, a pH of 6.0 was selected. It has been shown that patients on MTX 

therapy show large inter-patient variability in MTXPG distributions (short-chain or long-

chain MTXPGs being dominant). Since MTXPGtotal is calculated as the sum of all 

glutamation species from MTXPG1 (parent) to MTXPG7, it was essential that 

derivatization of the various MTXPGs proceed with similar yields in order to avoid 

analytical bias due to differences in the MTXPG population distribution. MTXPG1-7 were 

individually (n=5) spiked at 1.0 µM in the RBC matrix and subjected to the reductive 

procedure (table 23). The average yield of reaction was 61.6% yield, with MTXPG2 

giving the highest (65.1%) and MTXPG7 lowest (56.6%) yield.  

 

Table 22. pH influence on reaction yield 
pH Relative yield Precision (RSD %) 
5.5 1.00 1.5 
6.0 0.96 3.2 
6.5 0.74 2.2 
7.0 0.56 3.4 
7.5 0.41 3.3 
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The MTXPG7 reduction yield was significantly lower than the mean using the student t-

test at the 95% convidence interval. However, this standard is very hygroscopic and had 

visually picked up some water during storage. Therefore it was concluded that reaction 

yield between the different MTXPGs was identical, with observed differences being 

caused by minor variations in the purities of the commercially obtained MTXPG 

standards. As a result, the analytical method can be calibrated with reference to MTX 

thus avoiding the need for specialized expensive MTXPG standards. 

Table 23. Reduction Yields of various MTXPGs 
  

  Concentration (µM) Found (µM) 
Yield 
(%) RSD (%) 

MTX 1.00 0.62 62 1.8 
MTXPG2 1.00 0.65 65 1.4 
MTXPG3 1.00 0.61 61 1.1 
MTXPG4 1.00 0.64 64 2.0 
MTXPG5 1.00 0.63 63 0.6 
MTXPG6 1.00 0.59 59 1.3 
MTXPG7 1.00 0.57 57 2.8 
 

6.3.3 Matrix influence 

During method development it was observed that sodium dithionite-mediated 

reduction to yield DAMP was matrix dependent. Unexpectedly, in aqueous solutions the 

reaction was less efficient (absolute yield was about 5-10%) as compared to RBC matrix 

(yield about 62%). As this variation was of considerable concern, further experimentation 

was conducted in an effort to establish the nature of this variability and to define 

conditions leading to reproducibility.  RBCs from four separate individual donors were 

spiked (n=5) with an equal amount of MTX and subsequently analyzed (table 24). The 

various lots of RBCs did not significantly affect the derivatization yield and as a result the 

ability of the method to quantitate MTXPGtotal in individual RBC samples is not 
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compromised. Since the derivatization proceeds more efficiently in RBCs than water, it 

was established that it is very important to keep RBC volumes between calibrants and 

samples constant during the derivatization process, or in other words an identical matrix 

must be maintained for all samples, unknowns or standards, being subjected to sodium 

dithionite reduction.  

Table 24. Yield of reaction in various individual RBC donors. 
RBC Donor Spiked (nM) Found (nM) Yield (%) RSD (%) (n=3) 

1 100 109.5 109.5 11.4 
2 100 107.7 107.7 1.5 
3 100 111.7 111.7 4.3 
4 100 107.8 107.8 1.6 

 

6.3.4 Method Validation 

Using MTX the method was validated on four consecutive days at six different 

concentrations from 10-500 nM, representing a clinically relevant MTXPGtotal range 

reported in RBCs (table 25). The intra-run mean accuracy of the target value was 

between 98.1 % and 106.0 %. The intra-run precision was between 1.2 % and 8.8 %. 

The limit of quantification was determined to be 10 nM MTXPGtotal. The limit of 

detection, defined as 3 times the signal to noise ratio, was 4 nM MTXPGtotal. Four 

different calibration curves at different days revealed a linear relationship between peak 

area and concentration of the prepared RBC standards, with correlation coefficients r2 > 

0.999 for each day. A typical calibration curve was described by the following linear 

equation: y = 376.7x + 832.1, where y is peak area and x is concentration added in 

nMThe derivatization procedure results in a 10-fold sample dilution, however limits of 

quantification were within assay requirements, so no effort were made to preconcentrate 

the sample prior to injection. 
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6.3.5 Stability 

The stability of the reporter molecule (DAMP) was investigated at three different 

concentrations (10.0, 50.0 and 250.0 nM). After sample processing the samples were 

placed in the autosampler and analyzed 24 hours later (table 26). Sample deterioration 

was not observed, indicating that the processed samples are stable for at least 24 hours 

at room temperature, which is sufficient for analysis. The freeze-thaw stability was 

investigated in a similar manner (table 26). Recently, Hroch et al have reported sample 

instability when multiple freeze-thaw cycles were applied (method of detection was 

enzymatic deglutamation followed by HPLC-(PCR(hv)-FD) [16]. A significantly lower value 

(47%) was observed, especially after the third free-thaw cycle. This instability was not 

observed when these freeze-thaw cycled samples were analyzed by the presented 

methodology. 

 

 

 

 

Table 25. Intra- and inter-day precision and accuracy results  
  Intra-run (n=5)   Inter-run (n=20) 

Nominal RBC 
MTXPG 

concentration 
(nM) 

Mean 
observed 

concentration 
(nmol/L) 

Mean 
Accuracy 
of target 
value (%) 

Precision 
(RSD %)   

Mean 
observed 

concentration 
(nmol/L) 

Mean 
Accuracy 
of target 
value (%) 

Precision 
(RSD %) 

10 10.6 106.0 5.6 
 

10.0 99.7 9.6 
25 25.7 102.7 2.3 

 
24.8 99.2 7.5 

50 50.0 100.0 8.8 
 

49.6 99.2 6.1 
100 98.1 98.1 3.2 

 
98.7 98.7 4.1 

250 250.6 100.2 2.6 
 

253.2 101.3 2.1 
500 500.0 100.0 1.2   498.7 99.7 1.6 



 
 

187 
 

Table 26. Freeze-thaw stability and stability of the derivatization product  
 Storage condition Concentration of MTXPGtotal in nM R.S.D. (%) (n=3) 

  nominal measured 
Stability in autosampler (24h) 10 10.0 13.4 

 
50 50.2 6.1 

 
250 250.2 5.8 

Freeze-thaw stability (3 cycles) 10 9.4 24.4 

 
50 48.3 13.3 

  250 242.3 5.9 
 

6.3.6 Patient samples analyzed by the MTXPGtotal assay and LC/MS/MS 

 

Figure 46. Chromatograms of a patient with a relative high concentration of MTXPGtotal 

(black line) and a patient with lower MTXPGtotal (blue line) are demonstrated. A worked 

up RBC blank is included for reference purposes (red line). 
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Patient samples were analyzed by the MTXPGtotal method (figure 46) and compared 

with our previously reported LC/MS/MS methodology (figure 47). The LC/MS/MS 

method was specific for each MTXPG, leading to quantification of individual MTXPGs 

which were added to provide MTXPGtotal.  Results obtained by the different methods 

correlated well (R2 = 0.983) and therefore respond comparable to changes in 

intracellular levels of MTXPGtotal within patient RBCs. The relationship between the 

methods could be described by the following equation: y = 1.32x + 5.3, where y is the 

response in nM measured by the reductive method and x is the response in nM 

measured by the LC-MS/MS method.  

 

Figure 47. Correlation between MTXPGtotal concentrations in 10 patients obtained by  

LC-MS/MS and the presented reductive method. 
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Analysis of the equation reveals that the reductive procedure yields on average a 32% 

higher MTXPGtotal value when compared to LC/MS/MS. It has been shown that another 

MTX metabolite, 7OH-MTX, can accumulate to a significant extend in bone marrow and 

certain tissues[20]. Since red blood cells are generally considered to be a biomarker for 

the (anti)folate status in the bone marrow[21], it was hypothesized that these elevated 

levels could be due to the presence of 7OH-MTX in RBCs. In order to check the 

specificity of the reductive method towards 7OH-MTX, RBCs were spiked with MTX and 

7OH-MTX respectively. It was found that the reductive method was less sensitive 

towards 7OH-MTX and more importantly was able to distinguish between the 7OH-MTX 

and MTX (figure 48), eliminating the possibility of measuring elevated MTXPGtotal levels 

due to the presence of 7OH-MTX in the patient samples. While the nature of the 

discrepancy between the reductive method and LC/MS/MS remains unknown, it is to be 

noted that interfering backgrounds have been observed when HPLC-FL was used in 

conjunction with the post-column photochemical derivatization. As a result, when 

comparing and reporting absolute MTXPGtotal concentrations the analysis strategy 

should be taken into account, but despite the absolute value attained, the approach 

provides a clear indication of MTXPGtotal that should be of clinical value.  
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Figure 48. Chromatogram of MTX and 7OH-MTX enriched RBCs. The reductive 

products DAMP and 7OH-DAMP were baseline separated.  

 

6.4 Conclusion 

The measurement of RBC MTXPGs has potential to aid in optimization and 

individualization of MTX therapy in JIA and RA. Despite the clinical advantages of 

monitoring RBC MTXPGs this tool is currently not commonly used. Analytical methods 

that allow for the determination of intra-cellular MTXPGs are rather labor intensive 

and/or require the use of specialized equipment. Furthermore, the throughput of these 

methods is low and cost of analysis is high, thus making their implications in a clinical 
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environment challenging. In this report a method is presented for rapid analysis of 

MTXPGtotal status in human RBCs. The analytical procedure is a simple “one pot” pre-

column reaction involving reagent addition and heating for 15 minutes. After 

centrifugation the supernatant is introduced into a conventional HPLC system equipped 

with a fluorescence detector, without the need for further workup. By performing the 

derivatization reaction pre-column, a time consuming (6-14h) commonly used de-

glutamation procedure utilizing blank human plasma, becomes obsolete. Using the 

described procedure the total sample preparation time for a 50 sample run should not 

exceed 1-1.5 hours. The chromatographic run time per sample is 7 minutes using 

isocratic elution conditions. The rapid chromatographic procedure in combination with 

the uncomplicated sample preparation procedure should allow for same day sample 

determinations. Clinical results obtained by the reductive procedure correlated well with 

an earlier published LC/MS/MS method, however obtained absolute RBC MTXPGtotal 

concentrations were on average 30% higher, likely due to the enhanced selectivity 

accorded with the more elaborate and expensive instrumentation required for LC/MS/MS 

determinations. 
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7.1 Introduction 

7.1.1 The MTX folate relationship 

Following analytical method development, our group has identified patterns of MTXPGs 

that are associated with MTX toxicity, but not response (see chapter 4, 5, 6 for 

analytical method development and appendix 1 and 2 for the clinical discussion of the 

results). Whilst predictors of drug induced toxicity are of great clinical value, MTX 

therapy would further benefit from the identification of biomarkers that are indicative of 

drug response. During RBC MTXPG analysis it was realized an important part of the 

cellular milieu was not taken into account, namely the cellular folate content and 

polyglutamation distribution of this folate pool.  

The role that folate (supplementation) plays in MTX efficacy and toxicity has been 

a subject of debate across disciplines.  As a potent anti-folate drug, side-effects of MTX 

are also consistent with symptoms of folate deficiency, and baseline plasma and RBC 

folate concentrations have been shown to be negatively correlated with MTX toxicity 

scores[1]. Folate supplementation for the treatment of MTX related side-effects has been 

shown to be effective in diminishing MTX toxicity in vitro [2] and in vivo [1, 3], however, the 

effect that supplemental folic acid has upon MTX efficacy is still unclear.  Although a 

small number of clinical studies designed to investigate folic acid supplementation in JIA 

have suggested no substantial effect upon drug efficacy [3-4], studies in psoriasis have 

shown greater improvement in skin scores in subjects on MTX monotherapy [5].  This 

same study also showed that the percent improvement in skin scores correlated with an 

increased MTXPG / Plasma folate concentration ratio, suggesting more effective folate 

inhibition may result in improved drug response. Recently (2010) L. Stamp et al. also 
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reported the lack of correlation between disease outcome and MTXPG concentrations 

in adult rheumatoid arthritis[6]. However, in the same study it was noted that erythrocyte 

folate content (measured by a standardized clinical assay) was significantly higher in 

patients with higher disease activity, suggesting a link between folate levels and disease 

activity. Interestingly (not noted by Stamp), the association between MTX and declining 

intra-cellular folate concentrations has been drawn in various in vitro[7-9] and in vivo[10] 

studies. Despite a number of encouraging clinical observations, there remains a 

substantial lack of clarity on the effect that cellular folate status may have upon MTX 

response. 

As mentioned in the introduction (chapter 1) MTX(PGs) alters the activity of 

multiple enzymes within the folate cycle and therefore it is likely that regular intracellular 

folate metabolism will be distorted (figure 49). Since total folate content seems to be 

correlated to MTX efficacy, the next question to be answered is: how much of each 

folate isoforms is present (i.e. redox/methylation forms), what is its polyglutamation 

population distribution and how does MTX therapy affect this folate metabolism? In 

order to address this research question a folate control group and a group of JIA 

patients on MTX therapy were established. The folate control group included 100 JIA 

patients that were not on MTX therapy, and the MTX group consisted of the 110 

patients that were analyzed earlier for MTXPGs. Whole blood samples were drawn from 

all patients for the purpose of comprehensive RBC folate analysis (i.e. quantitation of 

folate isoforms and polyglutamation distribution). The comprehensive folate analysis of 

RBCs is however complicated by the fact that such an analysis strategy has not 

appeared in the literature yet.  
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Figure 49. Cellular folate pathway with both folic acid and MTX represented. Red lines 

represent known inhibition of target enzymes with MTX. (figure reproduced with 

permission from PharmGKB and Stanford University). 
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7.1.2 RBC folate content 

 Until a decade ago it was believed that the only folate form present in RBCs was 

the polyglutamyl form of 5-MTHF[11]. More recent studies have indicated that an 

important exception are subjects homozygous for C677T polymorphism in the 

methylenetetrahydrofolate reductase (MTHFR) gene[12-13]. Individuals that display this 

single nucleotide polymorphism (SNPs) produce a thermolabile version of MTHFR, 

where an alanine residue is substituted by valine. The thermolabile variant losses about 

50% of its activity, impairing the reduction of 5,10-methyleneTHF to 5-MTHF. As a 

consequence, subjects with the 677 TT genotype have increased amounts of non-

methylTHFs (i.e. 5-FTHF, 10-FTHF, 5,10-MTHF and THF) within their RBCs, when 

compared to 677 CT or CC genotypes[11, 13-14]. The introduction of more sensitive and 

specific detectors such as LC-MS/MS has revealed that non-methylTHFs are also 

present in 677 CC and CT genotypes, but concentrations are typically low (i.e. <10% of 

total folate content)[13]. Analytical techniques for the measurement of folates in RBCs 

should therefore be able to discriminate between various folate isoforms and 

polyglutamation state. 

 

7.1.3 Analyte selection 

Folate isoforms continuously interconvert in the biological system, donating 

methyl groups and changing redox states, mostly by reversible but sometimes 

irreversible pathways (figure 49). Since the barriers for interconvertion are generally low, 

one has to be aware of the stability, or lack of stability of the folates of interest. Folate 

stability therefore directly influences analytical method development; it determines what 
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species could be measured and in some cases the measured folate form might be 

indicative of an entire subset of closely related folate isoforms. Detailed studies (using 

LC-MS/MS) of folate stability and interconversion have recently appeared in the 

literature[15]. The following section will discuss the consequences and implications of 

stability results presented by these papers in regard to folatepolyglutamyl analysis out of 

RBCs.  

 A chemical view of the folate cycle is demonstrated in figure 50. Folic acid (fully 

oxidized pterine ringsystem) is a synthetic form of folate, used for folic acid fortification in 

foods due to its high chemical stability. Low amounts of this folate form have been 

reported in RBCs, but generally this folate is not measured. Folic acid gets reduced by 

dihydrofolate reductase (DHFR) to dihydrofolic acid. Dihydrofolic acid (DHF) is highly 

unstable and has therefore not been measured human RBCs. About 50% of DHF 

reoxidizes to FA during folate extraction, and thus measured FA reflects the sum of the 

“oxidized folate forms” (FA + degraded DHF)[16]. DHF is further reduced by DHFR to 

tetrahydrofolate (THF), which is the entry to the biologically active folates, however no 

biological activity has been reported for THF itself. THF is unstable, but can be assayed 

for if acidic conditions are avoided. THF can be stabilized in the analytical procedure by 

the use of the Wilson and Horne buffer (pH 7.85, containing ascorbic acid and 

mercaptoethanol)[17-18]. Significant levels of THF have been reported in MTHFR 677 TT 

genotypes[11, 13-14, 16, 19-20]. In biological systems THF is formylated to 10-

formyltetrahydrofolate (10-FTHF) and interconverts to the much more stable 5-

formyltetrahydrofolate (5-FTHF)[15]. In biological systems formylated folates are utilized 

or further reduced to 5,10-MTHF, an interconversion that is also pH dependent. At acid 

pH (<1.5) the 5,10-MTHF form is exclusively formed, at basic pH values (≥ 8.5), 
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hydration occurs to 10-FTHF which slowly interconverts to 5-FTHF. Usually 

chromatographic mobile phases are acidic and therefore formylated species are 

measured as 5,10-MTHF. As a result of this rapidly established equilibrium, 5-FTHF, 10-

FTHF and 5,10-MTHF are grouped together as “non-methylTHFs” [11-14, 16, 19-20]. In 

biological systems 5,10-MTHF gets reduced to 5,10-METHF, a highly unstable 

compound that has not been observed in RBCs[19]. Next to instability it also has been 

suggested that the compound is readily used within the cell, therefore no significant 

buildup occurs. METHF is irreversibly reduced to 5-MTHF, the dominant form of folates 

in RBCs. 5-MTHF is considered the most stable of the reduced folates[21]. 

 Based on stability, detectability and biological occurrence, it was concluded that 

the desired analytical assay would be able to measure the polylgutamation status of the 

following folate isoforms: FA (representing the partly oxidized folates: FA and DHF), 

THF, 5-FTHF or 5,10-MTHF (representing the non methyl folates: 5-FTHF, 10-FTHF and 

5,10-MTHF) and 5-MTHF. 

   

7.1.4 Analytical methods for RBC folate measurement 

Clinical methods for the determination of folate consist of the microbiological 

assay[22-23] and various immunoassays or competitive protein binding assays[24-25]. 

Although sensitive, these assays only measure total folate concentrations, and therefore 

do not differenciate between folate isoforms or polyglutamation distribution[11]. The 

presence of antifolates, including MTX, may inhibit bacterial growth and therefore lead 

to underestimation of folate concentrations in patients on MTX therapy[26], limiting its 

usefulness for a comparative folate study of JIA patients on and off MTX therapy. 
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Furthermore, results obtained by these methods demonstrate considerable variability [27-

28]. More recently, various HPLC methods have appeared for the measurement of 

folates in biological matrices. The performance of these methods for folate analysis has 

been extensively reviewed by Quinlivian et al[26]. Briefly, these chromagraphic based 

assays demonstrate improved specificity when compared to the microbiological assay 

and immunoassay, but they often lack sensitivity. More sensitive folate measurement 

can be achieved by LC with fluorescence detection, however not all folates demonstrate 

intrinsic fluorescence and therefore this strategy does not allow for comprehensive 

folate determination[29].  

The sensitivity of these assays can be increased by using a folate affinity 

precolumn and a multi-channel electrochemical detector. This strategy allows for the 

measurement of the various folate isoforms, and additionally polylgutamation chain 

length[30]. Disadvantages are that folate affinity columns are unstable (lifetime of 48 h) 

and binding efficiencies are based on folate isoform, an issue that is further complicated 

by the absence of reliable internal standards for this technique. Gas chromatography-

mass spectrometry methods have for folate analysis have also been presented. These 

techniques require complex sample preparation schemes, where folates are treated 

with acid to cleave the different polyglutamated species to para-

aminobenzoylglutamates[31-32].  

Unfortunately, many of the discussed methods have limited utility for rigorous 

population studies due to complex sample pretreatment, loss of folate identity and do 

not compensate appropriately for folate interconversion and degradation during sample 

analysis. The use of stable isotope dilution LC-MS/MS eliminates many of the earlier 
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described problems and recently, the first HPLC mass spectrometry based methods for 

the detection of folates in human plasma[14, 20, 33-35], whole blood[11, 14, 16, 19, 35] and 

urine[35] have appeared in the literature. Folates are quantitated in the monoglutamated 

form using [13C5]-labeled internal standards, mimicking the exact structure of the folate 

species of interest. Erythrocyte folate is typically not directly measured as the various 

folates are present in the polyglutamated form and extraction is challenging. Whilst 

some of the aforementioned publications may suggest that erythrocyte folate is 

measured, these methods in fact measure whole blood folate content after 

deglutamation[11, 16, 19]. The folates originating from the RBCs can be calculated after 

correction for the plasma folate content. These strategies have demonstrated accurate 

quantitation of whole blood/erythrocyte folates, but as a result of the deglutamation 

procedure, the polyglutamation distribution is lost.  

Semi-quantitative comprehensive folate measurement (including polylgutamation 

status) has been reported for spinach using ion-pair LC-MS/MS[36], and using 

hydrophilic interaction chromatography for folate profiling of bacteria[37]. Whilst these 

methods illustrate the ability of LC/MS/MS for the measurement of folate 

polyglutamates, the absence of (internal)standards renders these methods unsuitable 

for the reproducible, comprehensive measurement of folates present in RBCs in a large 

clinical cohort. A method for quantitative comprehensive RBC folate measurement has 

not appeared in the literature, but as illustrated by a number of recent publications, 

LC/MS/MS analysis clearly has the required sensitivity and specificity for the detection 

of the various folate isoforms, including their polyglutamation distribution. This chapter 

deals with analytical method development of a comprehensive folate detection strategy 
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in patient RBCs. The presented method has to be applicable for the analysis of large 

data sets and should demonstrate robustness and reproducibility to the extent that 

biological variations induced by MTX therapy can be accurately quantitated. 

 

 

 

 

Figure 50. The folate cycle from a chemical perspective. 
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7.2 Experimental 

7.2.1 Materials 

LC grade solvents acetonitrile (ACN) and methanol (MeOH) were obtained from 

Fisher Scientific (Fair Lawn, NJ, USA). Ammonium bicarbonate, Ascorbic acid, 2-

mercaptoethanol (MCE), N, N-dimethylheptylamine (DMHPA) and methotrexate (MTX) 

were purchased from Sigma-Aldrich (St Louis, MO, USA). Methotrexate polyglutamation 

standards 4-amino-10-methylpteroyldiglutamic acid (MTXPG2), 4-amino-10-

methylpteroyltriglutamic acid (MTXPG3), 4-amino-10-methylpteroyltetraglutamic acid 

(MTXPG4), 4-amino-10-methylpteroylpentaglutamic acid (MTXPG5), 4-amino-10-

methylpteroylhexaglutamic acid (MTXPG6), 4-amino-10-methylpteroylheptaglutamic acid 

(MTXPG7) were purchased as the ammonium salts from Schircks Laboratories (Jona, 

Switzerland). Folates obtained from this source were folicacid/pteroicacid (FA), 

pteroyldiglutamic acid (FAPG2), pteroyltriglutamic acid (FAPG3), pteroyltetraglutamic 

acid (FAPG4), pteroylpentaglutamic acid (FAPG5), pteroylhexaglutamic acid (FAPG6), 

pteroylheptaglutamic acid (FAPG7),  5-formyl-5,6,7,8-tetrahydropteroic acid (5-FTHF), ),  

5-formyl-5,6,7,8-tetrahydropteroyldiglutamic acid (5-FTHFPG2), 5-formyl-5,6,7,8-

tetrahydropteroyltriglutamicacid (5-FTHFPG3), 5-formyl-5,6,7,8-tetrahydropteroyl-

tetraglutamic acid (5-FTHFPG4), 5-formyl-5,6,7,8-tetrahydropteroylpentaglutamic acid 

(5-FTHFPG5), 5-formyl-5,6,7,8-tetrahydropteroylhexaglutamic acid (5-FTHFPG6), 7,8-

dihydrofolate (DHF), 5,6,7,8-tetrahydrofolate (THF), 5-methyltetrahydrofolate (5-MTHF), 

5,10-methenyltetrahydrofolate (5,10-MTHF), 5,10-methylenetetrahydrofolate (5,10-

METHF).  
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 [13C5]-folicacid ([13C5]-FA), [13C5]-tetrahydrofolicacid ([13C5]-THF), [13C5]-5-

methyltetrahydrofolate ([13C5]-5-MTHF) and [13C5]-5-formyltetrahydrofolate ([13C5]-5-

FTHF) were obtained from Merck Eprova (Schaffhausen, Switzerland).  

 

7.2.2 Preparation of erythrocyte (RBC) lysates and plasma 

Blood samples (~5 ml) obtained from patients were centrifuged at low speed 

(2000 rpm) in a Beckman tabletop centrifuge to pellet the RBCs. After recovery of the 

plasma, the RBCs were suspended in an equal volume of sterile normal saline, mixed by 

gentle inversion and subjected to a second low speed centrifugation. The supernatant 

was discarded and the wash procedure was repeated a second time. After discarding 

the supernatant, the packed RBCs were divided into four aliquots and stored at -70°C 

until use. 

 

7.2.3 Analysis of folate polyglutamation distribution 

Folate polyglutamates were determined using packed RBC samples. An aliquot of 

200µL of packed RBCs was diluted 1:1 with a pH 7.85 HEPES/CHES buffer containing 

1% Ascorbic acid and 10 mM MCE, in order to ensure complete RBC lyses and stabilize 

released folates. Following lyses the RBC extracts were placed in boiling water for 5 

minutes to induce protein denaturation. The denatured proteins were packed on the 

bottom of the vial by centrifugation, using a similar protocol as presented in chapter 5. 

The supernatant was transferred to an autosampler vial with a 300 µL liner and analyzed 

by IP-LC-MS/MS.  
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7.2.4 Whole blood preparation 

Prior to analysis, a 5 µL internal standard solution (I.S.) containing 1000 nM of 

each (anti)folate isoform [13C5]-FA, [13C5]-THF, [13C5]-5-MTHF, [13C5]-5-FTHF and D3-

MTX was added to a 50 µL aliquot of whole blood, resulting in an I.S. concentration of 

100 nM in whole blood. The sample was further diluted to 250 µL with a solution of 1% 

ascorbic acid at pH 4.0. The pH of the resulting solution was determined to be 4.7. 

Folates(PGs) in the solution were deglutamated by incubating the solution for 3 hours at 

37 ˚C. The deglutamated lysates were further worked up by the SPE method of Huang 

et al[19] (unsuccessful), or by performing a protein precipitation with 40 µL of a 70% 

perchloric acid solution (successful). Proteins were separated by centrifugation, 

following the protocol presented in chapter 5. The supernatant was transferred into an 

autosample vial with a 300 µL liner and analyzed by LC-MS/MS. 

 

7.2.5 Plasma analysis 

Sample preparation for plasma folate LC/MS/MS analysis occurred according to 

Huang et al[19]. Briefly, To each plasma sample (300 µL) was added Wilson and Horne 

buffer (200 µL) containing 1% ascorbic acid and 10 mM 2-mercaptoethanol. After the 

addition of 30 µL internal standard solution (I.S. contained 100nM of each anti-folate 

isoform [13C5]-FA, [13C5]-THF, [13C5]-5-MTHF, [13C5]-5-FTHF and D3-MTX) the samples 

were thoroughly mixed (the resulting I.S. concentration is 10nM for each analyte). Water 

(1 mL) containing 1% ascorbic acid and 1% methanol was added prior to purification 

using C18 SPE columns. Please refer to Huang et al. for SPE protocol[19].  
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7.2.6 Chromatographic analysis 

Analysis of folate polyglutamation distribution: using the mobile phases and 

chromatographic system (i.e. column, guard column etc.) as described in chapter 5. An 

altered gradient elution profile was used. First analytes were focused on the head of the 

column for 2 minutes at 5% B. A linear gradient was used to 35% B in 8 minutes. A step 

gradient was used to return to initial conditions, and the column was allowed to re-

equilibrate for 3 minutes, resulting in a total runtime of 13 minutes per injection. During 

the analyte focusing phase, flow from the analytical column was diverted to waste, to 

prevent non-volatile materials from entering the mass spectrometer. Each sample was 

analyzed in duplicate, first the various 5-MTHF(PGs) were measured, and in a second 

injection 5-FTHF(PGs) were measured. Each 25 patients (50 injections) a 50nM 

MTXPG1-7 mixture was analyzed to monitor sensitivity drifts of the mass spectrometer. 

 

Analysis of plasma and whole blood folate distribution: The chromatographic 

system was as described in chapter 4 and 5. Chromatography was conducted on a 50 x 

2.1 mm Phenomenex kinetex column using C18 core-shell particles. Mobile phase A 

consisted out of water containing 5% acetic acid, and mobile phase B was a blend of 

72.5% ACN, 22.5 % MeOH and 5% acetic acid. Gradient elution was used for the 

separation of the various mono-glutamate folates, starting with an isocratic hold for 1 

minute at 1% B, followed by a linear increase to 40% B for 5 minutes. Directly after the 

elution gradient, a step gradient was used to return to initial conditions and the column 

was allowed to re-equilibrate for 2 minutes. Analysis volumes were 50 µL for both, 

plasma and whole blood extracts.  
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7.2.7 Mass Spectrometry 

The instrumentation utilized was a  Micromass Quattro Ultima “triple” quadrupole 

mass spectrometer (Manchester UK) equipped with an electrospray ionization (ESI) 

source. The instrument was operated in positive ion mode. Source parameters, including 

the cone voltage for each analyte were optimized by maximizing the area under the 

curve of multiple LC runs of the standard mixture at various programs. The probe 

capillary was optimized at 3.0 kV, and the desolvation and source temperatures were set 

to 400 °C and 125 °C, respectively. The cone gas flow rate was optimized at 80 L/hr, the 

desolvation and nebulizer gas flow rate was adjusted for maximum signal of analyte. 

Argon was used for collision induced dissociation (CID) and the cell vacuum was set at 

2.4 x 10-3 mbar.  Q1 and Q3 were set to transmit ions with a resolution of 0.8 u FWHH.  

Multiple Reaction Monitoring (MRM) parameters (table 27) including precursor ions, 

product ions and collision energy were optimized by direct infusion of the individual 

analytes dissolved in 80% A and 20% B at 10 µM, closely resembling chromatographic 

conditions. 
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Table 27. MRM parameters used for the LC/MS/MS analysis of the various pteroyl based entities. 

Analyte 
Molecular 
Formula 

Precursor 
ion (m/z) 

Product ion 
(m/z) 

Cone 
Voltage (V) 

Collision 
Energy (V) 

ESI 
mode 

FA C19H20N7O6
+ 442.2 295.1 30 20 + 

FAGlu2 C24H28N8O9
+ 571.2 295.1 30 26 + 

FAGlu3 C29H36N9O12
+ 700.2 295.1 30 33 + 

FAGlu3 C34H44N10O15
+ 829.2 295.1 30 40 + 

FAGlu5 C39H52N11O18
+ 958.3 295.1 30 48 + 

FAGlu6 C44H60N12O21
+ 1087.4 295.1 30 56 + 

FAGlu7 C49H68N13O24
+ 1216.4 295.1 30 64 + 

       FA C19H18N7O6
- 440.2 311.1 25 24 - 

FAGlu2 C24H26N8O9- 569.2 311.1 30 31 - 
FAGlu3 C29H34N9O12- 689.2 422.3 40 32 - 
FAGlu4 C34H42N10O15- 827.3 422.3 50 37 - 
FAGlu5 C39H50N11O18- 956.3 422.3 55 45 - 
FAGlu6 C44H58N12O21- 1085.4 422.3 60 50 - 
FAGlu7 C49H66N13O24- 1214.4 422.3 70 59 - 

       5-FTHF C20H24N7O7
+ 470.2 327.1 30 20 + 

5-FTHFGlu2 C25H32N8O10
+ 603.2 327.1 30 26 + 

5-FTHFGlu3 C30H40N9O13
+ 732.3 327.1 30 33 + 

5-FTHFGlu4 C35H48N10O16
+ 861.3 327.1 30 40 + 

5-FTHFGlu5 C40H56N11O19
+ 990.3 327.1 30 48 + 

5-FTHFGlu6 C45H64N12O22
+ 1119.4 327.1 30 56 + 

5-FTHFGlu7 C50H72N13O25
+ 1248.4 327.1 30 64 + 

5-FTHFGlu8 C55H80N14O28
+ 1377.5 327.1 30 70 + 

5-FTHFGlu9 C60H88N15O31
+ 1506.5 327.1 30 76 + 

5-FTHFGlu10 C65H96N16O34
+ 1635.5 327.1 30 82 + 

5-FTHFGlu11 C70H104N17O37
+ 1764.5 327.1 30 88 + 

       5-FTHF C20H22N7O7
- 468.2 315.0 25 20 - 

5-FTHFGlu2 C25H30N8O10
- 601.2 315.0 35 26 - 

5-FTHFGlu3 C30H38N9O13
- 730.3 454.2 40 33 - 

5-FTHFGlu4 C35H46N10O16
- 859.3 454.2 50 40 - 

5-FTHFGlu5 C40H54N11O19
- 988.4 454.2 60 48 - 

5-FTHFGlu6 C45H62N12O22
- 1117.4 454.2 70 56 - 

5-FTHFGlu7 C50H70N13O25
- 1246.5 454.2 80 64 - 

5-FTHFGlu8 C55H78N14O28
- 1375.5 454.2 90 70 - 
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Table 27. continued 

Analyte 
Molecular 
Formula 

Precursor 
ion (m/z) 

Product ion 
(m/z) 

Cone 
Voltage (V) 

Collision 
Energy (V) 

ESI 
mode 

5-MTHF C20H26N7O6
+ 460.2 313.1 30 20 + 

5-MTHFGlu2 C25H34N8O9
+ 589.2 313.1 30 26 + 

5-MTHFGlu3 C30H42N9O12
+ 718.3 313.1 30 33 + 

5-MTHFGlu4 C35H50N10O15
+ 847.3 313.1 30 40 + 

5-MTHFGlu5 C40H58N11O18
+ 976.4 313.1 30 48 + 

5-MTHFGlu6 C45H66N12O21
+ 1105.4 313.1 30 56 + 

5-MTHFGlu7 C50H74N13O24
+ 1234.4 313.1 30 64 + 

5-MTHFGlu8 C55H82N14O27
+ 1363.5 313.1 30 70 + 

5-MTHFGlu9 C60H90N15O30
+ 1492.5 313.1 30 76 + 

5-MTHFGlu10 C65H98N16O33
+ 1621.5 313.1 30 82 + 

5-MTHFGlu11 C70H106N17O36
+ 1750.6 313.1 30 88 + 

       THF C19H24N7O6
+ 444.2 299.1 30 20 + 

THFGlu2 C24H32N8O9
+ 575.2 299.1 30 26 + 

THFGlu3 C29H40N9O12
+ 704.3 299.1 30 33 + 

THFGlu4 C34H48N10O15
+ 833.3 299.1 30 40 + 

THFGlu5 C39H56N11O18
+ 962.4 299.1 30 48 + 

THFGlu6 C44H64N12O21
+ 1091.4 299.1 30 56 + 

THFGlu7 C49H72N13O24
+ 1220.4 299.1 30 64 + 

THFGlu8 C54H80N14O27
+ 1349.5 299.1 30 70 + 

THFGlu9 C59H88N15O30
+ 1478.5 299.1 30 76 + 

THFGlu10 C64H96N16O33
+ 1607.5 299.1 30 82 + 

THFGlu11 C69H104N17O36
+ 1736.6 299.1 30 88 + 

       DHF C19H22N7O6
+ 442.2 297.1 30 20 + 

       5,10-MTHF C20H22N7O6
+ 456.2 412.1 25 32 + 

       13C5-FA C19H20N7O6
+ 447.2 295.1 30 20 + 

13C5-THF C19H24N7O6
+ 451.2 299.1 30 20 + 

13C5-5MTHF C20H26N7O6
+ 465.2 313.1 30 20 + 

13C5-5,10-MTHF C20H22N7O6
+ 461.2 416.1 25 32 + 
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7.3 Results and discussion 

7.3.1 The development of a quantitative assay (rationale) 

7.3.1.1 The folate standard problem 

Table 28. Commercial availability of various folate standards 
     

Folate (methylation/redox state) 
Length of the glutamyl-chain 

Source if available 
1 2 3 4 5 6 7 

Folic acid X X X X X X X Schircks  
7,8-Dihydrofolate X - - - - - - Schircks  
5,6,7,8-Tetrahydrofolate X - - - - - - Schircks  
5-Methyltetrahydrofolate X - - - - - - Schircks  
5-Formyltetrahydrofolate X X X X X X - Schircks  
10-Formyltetrahydrofolate O - - - - - - Schircks  
5,10-Methylenetetrahydrofolate X - - - - - - Schircks  
5,10-Methenyltetrahydrofolate X - - - - - - Schircks  
13C5-Folic acid X - - - - - - Merck Eprova 
13C5-Tetrahydrofolate X - - - - - - Merck Eprova 
13C5-5-Formyltetrahydrofolate X - - - - - - Merck Eprova 
13C5-5-Methyltetrahydrofolate X - - - - - - Merck Eprova 
13C5-5,10-Methenyltetrahydrofolate O - - - - - - Merck Eprova 
X = commercially available and purchased, - indicates that compounds were not commercially available, 
O = indicates commercially available but the compound was not obtained 
 
The development of a comprehensive folate detection strategy (i.e the detection of 

redox, methylation and polyglutamation state) within RBCs is complicated by the limited 

availability of standards. Whilst (13C5-labelled) folates are generally available in the 

various methylation and redox states as the monoglutamates, their polyglutamated 

forms are in general unavailable on a commercial basis (table 28). The only 

polyglutamated folate species that could be obtained in a sequential series were the folic 

acid polyglutamates (1-7) and 5-formyltetrahydrofolate polyglutamates (1-6). As 

discussed earlier one would expect 5-methyltetrahydrofolate as the dominant folate 

species within RBCs donated by individuals that were genotyped as MTHFR 677 CC 
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homozygotes or CT heterozygotes (accounting for 90% of the Caucasian population). 

Significant levels of THF and 5-formylTHF/5,10-methenylTHF (depending on pH of the 

analyzed solution) have been reported in individual that were classified as MTHFR 677 

TT homozygotes. With the exception of 5-formylTHF, that is available up to the 

hexaglutamyl chain, standards of the most biologically relevant polyglutamated folates of 

interest for this research are commercially unavailable. The absence of these standards 

complicates the development of a quantitative analytical assay. First the mass 

spectrometer cannot be tuned for the specific compounds, and second the absence of 

standards eliminate the possibility to appropriately calibrate the analytical procedure.  

 The synthesis of the commercially unavailable folate polyglutamation standards is 

a complicated task, and requires the use of cell culture methodology or a partially 

purified folylpolyglutamase enzyme. The purification of the various folates is further 

complicated by the fact that different redox-forms readily can readily interconvert 

depending on pH and/or the presence of oxygen. Furthermore one has to realize that 

the measurement of folates in human erythrocytes is even further complicated by the 

endogenous nature of folates. Even if folate standards were available or obtained, 

external calibration would still be impossible since folate depleted (i.e. blank) RBCs are 

not available. Quantification using these standards could however occur by the standard 

addition method. The standard addition quantification method relies on enrichment 

(addition) of a number of aliquots of the sample with known amounts of calibrants. After 

analysis of these samples, an analyte concentration can be obtained through 

extrapolation. Since basically each sample is calibrated in its own matrix, standard 

addition is rather labor intensive and due to the fact that sample splitting has to occur a 

much larger sample size is required. As RBC sample size was limited (100 – 200 µL of 
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RBCs depending on the sample) together with the level of difficulty involving synthesis of 

the standards, this strategy was abandoned. While the synthesis of stable isotope 

enriched folate standards would eliminate the need for standard addition quantification, 

this solution requires a complex and costly synthetic procedure. As the implications and 

applications of comprehensive folate are not yet understood this strategy was not 

pursued either. Based on these various considerations it was concluded that analytical 

method development had to occur with the use of commercially available standards, 

despite certain limitations. 

 

7.3.1.2 A (semi-)quantitative assay for the measurement of the folateome in RBCs 

 Since the goal of analytical method development was the comprehensive 

measurement of folates within the RBCs of JIA patients, in order to measure variations 

in folate (polylgutamation) status, we designed a (semi)-quantitative analysis strategy 

staying within the constraints that commercially available standards had to be used. 

Recently a number of LC-MS/MS have been presented for the quantitative “indirect” 

measurement of intracellular folate concentrations within RBCs. Whilst each publication 

presented a unique sample preparation method, the analysis strategy was common and 

relied on a folate deglutamation procedure using a whole blood sample of the patient 

(details will be presented in section 7.3.3.2. of this chapter). As a result of the 

deglutamation procedure utilizing whole blood, the folates are quantitated as the 

monoglutamate species and represent whole blood folate content, rather than RBC 

concentrations of the individual. Since whole blood is largely composed of a plasma and 

RBC components, the measured concentration is the result of the sum of the folate 
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contribution by each individual component. Thus if the folate plasma concentration is 

known besides whole blood folate concentration, RBC folate content can be calculated 

according to the method of Lamers et al.[38] (eq. 3).  

 

hematocrit
hematocritxfolatePlasmaxfolatebloodwholefolateRBC ))100(()100( −−

=       Eq. 3 

  

The advantage of this strategy is two-fold. 1) Deglutamation liberates the various 

polyglutamates and measurement of deglutamated species reduces number of folate 

metabolites that have to be tracked by LC-MS/MS. An additional advantage is that the 

redox/methylation status remains unaltered during this process, effectively converting a  

distribution of metabolites (i.e. polyglutamates) to a single measurable species, and thus 

enhancing its detectablility. 2) Stable isotope labeled monoglutamyl-folate standards of 

all of the folates of interest are commercially available (table 28), allowing for accurate 

quantification using stable isotope dilution LC-MS/MS. 

There are also disadvantages to this strategy, such as the requirement for an 

additional assay, detecting plasma folate content. However, because of the similarities in 

whole blood and plasma folate measurement this development is reasonably 

straightforward. A more severe disadvantage of the strategy presented in the previous 

paragraph is loss of the polyglutamation distribution fingerprint within the RBC, an 

essential component of our desired assay.  

It was hypothesized that this information could be obtained by the incorporation of 

a third assay (in addition to the folate whole blood and plasma measurements) using 

isolated RBCs from the patient. It is reasonable to assume that the clinical assay for the 
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determination of MTXPG status could be transferred (including sample preparation) into 

a method for the detection of the various folate polyglutamates. Since most of the 

polyglutamated folates are not available this assay would provide a more semi-

quantitative/or relative “snapshot” of folate distribution within the RBC. A schematic 

overview of the total analysis strategy is presented in figure 51. The following sections 

will deal with the development of the individual assays; whole blood folate analysis, 

plasma folate analysis, and RBC polyglutamation profiling respectively.  

 
 
Figure 51. Schematic overview of the proposed analytical method for comprehensive 

erythrocyte folate measurement. 
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7.3.2 Polyglutamation profiling 

7.3.2.1 Polyglutamation profiling on a relative basis using patient RBCs 

As stated in the method development rationale (section 7.3.1), the measurement of the 

folate polyglutamation distribution is challenged by the absence of standards, and 

therefore quantitation is virtually impossible since calibration cannot be accomplished. 

However to investigate the influence of MTX therapy on the folate distribution (using 

RBCs) in JIA patients an absolute quantitative measurement of this distribution is not a 

requirement, since one is interested in the MTX induced folate polyglutamation 

variability. Therefore the hall-mark of the polyglutamation profiling assay became; 

reproducible measurement of the relative polyglutamyl distribution of the various folate 

methylation/redox states. The term relative polyglutamyl distribution should be 

interpreted as measurement of the “observed” or relative distribution by mass 

spectrometry, rather than measurement of the true folate polyglutamation distribution on 

an absolute quantitative basis, that would require standards and calibration to correct for 

differences in recovery and instrument related sensitivity of the individual analytes.  

 

7.3.2.2 FolatePGs mass spectrometry settings. 

Based on the successful separation of FAPG1-7 in chapter 5 (internal standard 

selection for MTXPG analysis), it was hypothesized that the IP-LC/MS/MS method 

presented in chapter 4 and 5 could be applied in a slightly modified fashion for the 

measurement of the remaining folatepolyglutamates (THF, 5-MTHF, 5,10-MTHF and 5-

FMTHF). Since polyglutamation standards of THF and 5-MTHF and 5,10-MTHF were 
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unavailable mass spectrometer settings for MRM had to be estimated. It was observed 

that the sequential polyglutamates of MTX, FA and 5-FTHF under positive ESI 

conditions all produced predominantly the singly charged (M+H+) ion. Furthermore all of 

these molecules yielded a charged pteroate species upon collision induced dissociation. 

This pteroyl residue serves as the common reporter ion for all of the explored 

polyglutamated species. In order to maximize the signal for the charged pteroyl 

fragment, it was observed that a linear increase in collision energy was necessary 

(figure 52A for FAPGs, figure 52B for 5-FTHFPGs, and figure 52C for MTXPGs). 

Furthermore the fragmentation behavior of the pteroyl chain appeared to be 

independent of ring redox/methylation state. Based on these observations, MRM 

settings for the measurement of 5-MTHFPG1-12, THFPG1-12, FAPG8-12 and 5-FTHFPG7-

12 were extrapolated (table 27).  

 

Figure 52. Collision energy plots for optimal formation of the pteroyl residue by MS/MS.  
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7.3.2.3 Folatepolyglutamate extraction from RBCs 

 In order to measure RBC folate distribution, folate extraction has to occur, and 

thus a sample preparation procedure had to be developed. As mentioned earlier in the 

dissertation, (anti-)folates are highly protein/tissue bound in mammalian tissues and are 

not readily available for analysis/extraction. Therefore it is reasonable to assume that 

folate extraction suffers from the same problems that were reported for MTXPG 

extraction in chapter 4 and 5. Furthermore, extraction of the various folates is further 

complicated by unique (in)stabilities associated with each folate form. For example, acid 

extraction that was useful for the extraction of MTXPGs, as described in chapter 4, could 

not be applied for folate extraction as THF demonstrates poor acid stability. As MTXPGs 

could be released from the RBCs by heat extraction (chapter 5) a similar strategy was 

explored for the extraction of folates. To stabilize the folate pool, packed RBC samples 

were diluted in a 1 to 1 ratio with a pH 7.85 Wilson and Horne buffer, including ascorbic 

acid and mercaptoethanol. The interconversion stability of various deglutamated folate 

forms under these conditions within the RBC matrix has been demonstrated by 

Smulders et al[16]. The interconversion stability of the polyglutamates of interest (i.e. 5-

MTHF and THF) could not be tested but were assumed to be stable since the 

problematic molecular interconversions are associated with the pteroyl functionality of 

the polyglutamated folate molecules, as opposed to the poylglutamatyl chain length.  

Another concern is deglutamation stability during sample preparation. Since the 

packed RBCs immediately washed following isolation, the presence of the 

deglutamation enzyme (pteroylpoly-ɣ-glutamylcarboxypeptidase) is highly unlikely. 

Furthermore the pH of the RBC lysate of 7.85 is too alkaline for optimal human 
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pteroylpoly-ɣ-glutamylcarboxypeptidase activity, and thus deglutamation is not expected. 

In order to demonstrate the absence of folate deglutamation during the sample 

preparation procedure, a 1:1 diluted RBC sample with extraction buffer was enriched 

with 100 nM of hexa-glutamyl folic acid. The hemolysate was allowed to incubate for 15 

minutes, before folates were extracted by a 5 minute boiling extraction. Three replicate 

experiments demonstrated that deglutamation does not occur within this time frame. As 

the other polyglutamated folates were not available for testing, the glutamyl chain of the 

additional folates were assumed to be stable during sample extraction. 

 

7.3.2.4 Chromatography and RBC folate polyglutamation analysis 

 As standards were unavailable, the chromatography method initially developed 

for the analysis of MTXPGs (chapter 5) was adapted for RBC folate extracts. RBC 

samples, drawn from eight healthy volunteers on site, were used for folate method 

development as they were readily available. Each volunteer was genotyped for MTHR 

polymorphism, as this appears to be the main predictor of intracellular folate 

redox/methylation state distribution. It was found that all of the available donors fell 

either in the 677 CC or 677 CT category, meaning that their folate pool was largely (> 

90%) present in the methylated form (5-MTHF). These RBC samples therefore provided 

a solid basis for the development of the 5-MTHFPG assay. Using these RBCs, a fast 

separation of the 5-MTHFPG species was obtained using gradient elution, consisting of 

a 2 minute isocratic hold at 5% B (focusing the analytes), followed by a rapid gradient to 

35% B in 8 minutes (gradient profile is illustrated in figure 53A).   
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 The optimized chromatographic procedure was applied for polyglutamation 

profiling of a JIA patient on MTX therapy (figure 53B, demonstrating the total ion 

current). The various 5-MTHFPGs were separated within 10 minutes, and the 

polyglutamation length appears to be centered around 5-6 glutamyl residues (please 

note that this is an observed distribution). The same data is also presented in figure 54, 

where the individual channels are plotted as opposed to the total ion current (figure 53 

B). Using the individual SIR channels, it became appearant that 5-MTHF was distributed 

between 3 and 10 glutamyl residues.  

 As mentioned before 5-FTHF(PGs), 10-FTHF(PGs) and 5,10-MTHF(PGs) readily 

interconvert in an pH governed equilibrium process. At acidic pH values the dehydrated 

form 5,10-MTHF dominates, and at alkaline pH values the formylated (hydrated) forms 

are exclusively formed. The sample pH is often altered during sample preparation, 

disturbing the equilibrium between these folate forms. Therefore these different folates 

are often analyzed as a group, at acidic pH (measurement of 5,10-MTHF) or alkaline pH 

(measurement of 5-FTHF). The analysis of the formylated (monoglutamated) form is not 

commonly performed as it requires the use of basic mobile phases that are in general 

incompatible with silica-based chromatography columns. Furthermore peak shapes in 

general are poor for this particular analyte.  

Since the pH during RBC folatepolyglutamate extraction has to be close to 8, in 

order to accomplish precipitation of the proteins (chapter 5 figure 39), the equilibrium 

between 5-FTHF(PGs), 10-FTHF(PGs) and 5,10-MTHF(PGs) lies exclusively in favor of 

5-FTHF(PGs). Additionally, the pH of the mobile phase was also fixed at 8.0, and 

therefore 5-FTHF was identified as the analytical reporter for this folate pool. From the 

analysis of the polyglutamyl-5-MTHFs it became clear that long polyglutamate chains 
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could be expected, and since these standards are not available, the method was 

optimized using RBC samples.  

As the content of non-methyl folates is low in MTHFR 677 CC and 677 C>T 

phenotypes , which are also the phenotypes of the healthy voluntary RBC donors, these 

RBCs samples were found to be inadequate for 5-FTHFPG method development. 

Patient 46 of the folate group was identified as a 677 TT homozygote and therefore it is 

expected that the folate distribution in the RBC sample of this patient is shifted from the 

methylated- towards the non-methylated (i.e. formylated, THF, 5,10-MTHF) form, 

providing a basis for initial method development, as formylated species are typically the 

highest in this phenotype.  

A chromatogram of the RBC extract from patient 46, analyzing for 5-FTHFPG 

species is demonstrated  in figure 55. A similar polyglutamation distribution was 

observed for the 5-FTHFPGs when compared to the 5-MTHFPGs (figure 53B), 

demonstrating the ability of the chromatographic method to measure 5-FTHFPGs in 

addition to the 5-MTHFPGs. In general however, chromatograms for 5-FTHFPGs were 

much more complicated to analyze, due to the appearance of an additional peak (figure 

55). The peak was well separated for 5-FTHFPG4-5, but the resolution between the two 

compounds diminishes quickly when polylgutamation chain length was further 

increased. It was hypothesized that the additional peak indicated the presence of 10-

FTHF. As the difference between 5-FTHF and 10-FTHF is the position of the 

formylgroup, both compounds are isobaric. Furthermore, these compounds could not be 

separated by collision induced dissociation in the gas phase as the formylgroup remains 

on the measured pteroyl-fragment. For the dominant species 5-THFPG5-6 signal 
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integration was in particular compromised by the large elution volume of the 5-FTHF/10-

FTHF mixture, increasing the chance of co-integration of interferents.  

 THF could also be measured in its polyglutamated form, in the RBC sample of a 

JIA patient, classified as a 677 TT phenotype (figure 56). Despite the fact that 

polyglutamation profiling was technically possible, the patient group was not analyzed 

for THFPGs, because THF could not be accurately quantitated by the whole blood assay 

(section 7.3.3.3).  

 

7.3.2.5 Multiple injects for polyglutamation profiling of various folate 

redox/methylation states 

 As described in chapter 5 the scan rate of the Ultima mass spectrometer limits 

the amounts the amount of SIR channels that could be monitored simultaneously. 

Therefore, when analyzing patient samples, multiple chromatographic runs per sample 

were made, with each injection being specific for a class of folates (1st run detecting 5-

MTHF, 2nd sample introduction detecting 5-FTHF, etc). A faster scanning instrument 

would be desirable in these experiments as it would allow for simultaneous 

determination of the various analytes in a single run, reducing the required sample 

volume and increasing sample throughput 
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7.3.2.6 Robustness of the polyglutamation assay, response factors and data 

interpretation 

The previous section demonstrates the ability of the analysis method to measure 5-

MTHFPGs, 5-FTHFPGs and THFPGs, however reproducibility has to be addressed if 

one wishes to compare the polyglutamation distribution of the two large patients pools 

(JIA patients on MTX therapy (n=100), and JIA patients without MTX treatment (n=100)). 

As the goal of the polyglutamation analysis method was to measure the relative 

distribution of the various folate polyglutamates (i.e. a polyglutamate is expressed as a 

fraction (%) of the total folate distribution (100%) of a certain methylation/redox state), 

drifts in overall sensitivity of the detector, variations in volumes due to pipetting error etc, 

will not affect the observed polyglutamation pattern, and in that regard the method can 

be considered robust. However, during method development for MTXPG analysis, it was 

observed that a “dirty” ion-path in the mass spectrometer led to diminishing sensitivity of 

the instrument, with the high molecular weight compounds affected more severely. This 

type of drift was not much of a concern in MTXPG analysis as timely calibration corrects 

for such processes. However in relative quantitation experiments, with analytes 

displaying a wide mass range, such a drift in sensitivity should be accounted for as this 

sensitivity diminishment in high molecular weight detection would result in a change in 

relative appearance of the folate polyglutamates (i.e. the observed distribution would 

shift to shorter polyglutamyl length). In order to minimize the effects of mass related 

sensitivity drifts of the mass spectrometer on the folate polyglutamation data set, all 

patient samples were sequentially analyzed after a thorough instrument cleaning (i.e. 

front-end, hexapoles and transfer lenses). The drift in mass related instrument sensitivity 
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was probed by the analysis of an aqueous solution (50 nM) of MTXPGs1-7 after each 

batch of 25 injections. The use of MTXPG1-7 over FAPG1-7 was made on a stability 

basis, with MTXPG1-7 demonstrating excellent aqueous stability, allowing repetitive 

analysis of the same solution over the 4 days time course of folate polyglutamation 

analysis. From the relative response of the various MTXPGs one could estimate the 

mass related sensitivity drifts of the mass spectrometer and correct accordingly using 

the concept of response factors. Chromatograms of the MTXPG mixture after 0, 100, 

200 and 400 folatepolyglutamate injections are demonstrated in figure 57. It was 

observed that while overall sensitivity of the mass spectrometer changed a factor 1.5 

(note the y-axis scale), the observed relative distribution of the various MTXPG 

molecules was not affected. Therefore it was believed that correction, using response 

factors was unnecessary and for all of the analyzed samples, polyglutamation patterns 

are reflective of their true relative peak areas. 
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Figure 53. Method development for the detection of 5-MTHFPGs, (A) optimal gradient 

for rapid separation of the various 5-MTHFPGS. (B) Total ion current chromatogram 

demonstrating the separation of 5-MTHFPG3-10 in a RBC extract obtained from a donor 

that was a MTHFR 677 CC genotype. 
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Figure 54. Individual MRM channels for each 5-MTHFPG. 
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Figure 55. 5-FTHFPGs chromatogram of a RBC extract obtained from patient 46 in the 

folate control group that was identified as a MTHFR 677 TT homozygote. 
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Figure 56. Chromatogram analyzing the RBC extract from patient 46 for THFPGs. 
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Figure 57. Analysis of an aqueous 50 nM MTXPG1-7 mixture to monitor (mass related) 

sensitivity drifts of the mass spectrometer during the folate polyglutamation profiling of 

patient RBCs. The sensitivity was relatively constant over the entire sample set, and 

therefore correction using response factors was not necessary. 
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7.3.3 Whole blood folate analysis  

 The previous section described method development for the relative 

measurement of folate polyglutamation status. As presented in section 7.3.1, the 

quantification of RBC folate has to occur through an alternative indirect route, involving 

folate analysis in whole blood and plasma, due to absence of standards. The first step, 

in whole blood analysis is cell lysis and deglutamation of the various 

folatepolyglutamates to their mono-glutamyl-analogs. Since isotope labeled mono-

glutamyl-folate standards are commercially available, folates can be quantified 

accurately using stable isotope dilution mass spectrometery. The following sections deal 

with the individual analytical components required for successful whole blood folate 

analysis. 

 

7.3.3.1 Deglutamation 

Folate deglutamation is catalyzed by the pteroylpoly-ɣ-glutamylcarboxypeptidase 

enzyme. This enzyme has also been called pteroyl-y-glutamate hydrolase, or folate 

hydrolase, and even the misleading term folate conjugase has been used. For the folate 

analysis in various food products external sources of pteroylpoly-ɣ-

glutamylcarboxypeptidase are used. Commonly used sources of pteroylpoly-ɣ-

glutamylcarboxypeptidase are: hog kidney, chicken pancreas or rat plasma. The pH 

range where optimal enzyme activity is obtained varies with the enzyme source, from 

4.5 for hog kidney to 7.5 for chicken pancreas pteroylpoly-ɣ-glutamaylcarboxypeptidase.  

Pteroylpoly-ɣ-glutamylcarboxypeptidase is also present in the human plasma, 

where it plays an important role in the deglutamation of consumed folates, a process 
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which is essential for folate absoption and bioavalability. Researchers have taken 

advantage of the presence of pteroyl-ɣ-glutamylcarboxypeptidase in plasma, by using it 

as an “auto-deconjugase” in human whole blood folate assays, where red blood cell lysis 

is induced to expose their folate content to the plasma pteroyl-ɣ-

glutamylcarboxypeptidase enzyme, resulting in folate deglutamation. 

The optimal conditions for folate polylgutamate conversion have been the subject 

of a number of recent papers discussing methodology for the measurement of RBC 

folate concentent. As each of the presented analytical methods was geared to folate 

measurement in the monoglutamated or diglutamated form, reproducible analytical 

recovery of the deglutamation process was the hall-mark. In 2005 Fazili et al. published 

a report where the important reaction (i.e. deglutamation) variables, pH, temperature 

and time required to obtain quantitative deglutamation were investigated. It was 

concluded optimal deconjugation condition consisted of 3 a hour incubation of the 

hemolysate, at a pH of 4.7, with the temperature fixed at 37 ˚C. Furthermore it was 

demonstrated that by the use of ascorbic acid as anti-oxidant, folate interconversion was 

avoided through the entire procedure.  

Whilst this method of preparing deconjugated folate hemolysates has been 

generally accepted, the incubation period has often been shorter (in contrast to what 

Fazili had demonstrated). Smulders et al. used deconjugation times of 90 minutes, 

Zhang et al. used 4 hours at room temperature. As we have developed a strategy to 

measure the various individual folate polyglutamates, we studied the deglutamation 

behavior of 5-MTHPGs in whole blood at pH 4.7, incubated at 37˚C (figure 58 A). At 0 

minutes of incubation (the pH of the solution was adjusted to 4.7 and titrated back up to 

approximately pH 7.8 with HEPES/CHES buffer before placing it in boiling water) a 
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spectrum of 5-MTHF species were observed up to 5-MTHFPG9. After 10 minutes of 

incubation the observed polyglutamation picture had shifter significantly in towards the 

short chain mono- and di-glutametes (figure 58B), demonstrating the deglutamation 

capability of human plasma. After 60 minutes of incubation (figure 58C), the 

deglutamation was 97.4% complete (i.e. 97.4% was in the 5-MTHF monoglutamate form 

and 2.6% was in the diglutamate form). After 2 hours the deglutamation procedure was 

99.3% complete (figure 58D). 5-MTHF could not be detected after 3 hours of incubation 

(results not shown), consistent with the statements made by Fazili. Conveniently the 100 

µL pH whole blood lysate could be adjusted to 4.7 by the addition of 100 µL of a 10 g/L 

(1% W/W) solution of ascorbic acid solution, therefore redox stabilization and pH 

adjustment occurred in a single step. 
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Figure 58. Deglutamation of erythrocyte folates in a whole blood lysate. (A) 

Instantaneous analysis of the diluted whole blood sample. (B) analysis after 10 minutes 

of incubation. (C) analysis after 1 hour of incubation. (D) analysis after 2 hours of 

incubration, revealing almost complete deglutamation 
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7.3.3.2 Whole blood mono-glutamyl-folate analysis 

The previous section demonstrates that folates in their polyglutmated form can be 

quantitatively converted to their mono-glutamyl analogs, using a tightly controlled 

deglutamation process. The quantitation of the various mono-glutamyl-folates using 

stable isotope dilution LC-MS/MS has been described by a select number of recent 

publications. Analysis parameters described by these publications formed the basis for 

method development of our clinical whole blood polyglutamation assay, where analysis 

of a large samples sets is a expected.  

7.3.3.3 LC/MS/MS method development 

Separation of the various folate forms is commonly performed by reversed phase 

chromatography. As a consequence, the pH of the mobile phase is kept low (i.e. acidic) 

to enhance chromatographic retention by avoiding charge formation on the glutamyl 

residue. J.D.M. Patring et al., investigated ionization efficiency of the various mono-

glutamyl folates under different acidic mobile phase conditions[39]. It was demonstrated 

that the optimal resolution and sensitivity was obtained by using a mobile phase that 

consisted of an aqueous blend of acetonitrile with an aliquot of methanol, acidified by 

acetic acid. The consequence of the use of low pH mobile phases is that 5-formyl- and 

10-formylTHF dehydrate to 5,10-MTHF, and thus sample preparation and analytical 

targets have been defined accordingly. Based on previously reported RBC folate 

compositions, analytes were identified as FA, THF, 5-MTHF, 5,10-MTHF (representative 

for the 5,10-MTHF, 5-FTHF and 10-FTHF group). Furthermore as these JIA patients are 

on MTX therapy, MTX quantification was desirable as well. The structures of the target 

analytes together with their internal standard are presented in figure 59. 
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Figure 59. (mono-glutamyl) Analytes of interest with their corresponding isotope labeled 

internal standard. All analytes are [13C5]-labeled in the glutamic acid residue, with the 

exception of MTX that has a D3 methyl group.  
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Prior to LC method development, mass spectrometer settings such as 

electrospray ionization mode (positive or negative), cone voltage and collision energy 

required for SIR of the folates of interest were optimized. It was found that the ionization 

mode had little effect on the absolute ionization efficiency (i.e. MS1 signal) of the folates 

in their monoglutamate form, with the exception of 5,10 methenylTHF that was only 

detectable in positive ion-mode due to the fixed positive charge. A comparison between 

positive and negative electrospray ionization for representative folate is demonstrated in 

figure 60A and 60C, where a 1 µM solution of 5-methylTHF is infused in the MS (note 

the signal intensity in the right top of each quadrant).   

In contrast to the absolute ionization efficiency, the fragmentation behavior of the 

various folates was found to be much more favorable in positive ion mode (figure 60B 

and 60D). The buildup of a positive charge in the molecule together with relatively low 

collision energies (25 eV) leads to a clean intra molecular fragmentation of the amide 

bond, linking the glutamic acid to the pteroyl moiety (m/z 313). The efficiency of this gas 

phase reaction appears to be close to 100% (note signal intensity) in positive mode. 

Fragmentation in negative ion-mode required elevated collision energies (35 eV) and led 

to the formation of a wide spectrum of fragment ions. Furthermore, as a result of the 

various competing fragmentation pathways, signal generated by the most abundant ion 

was an order of magnitude lower (m/z 329.1), compared to the intensity of the pteroyl 

fragment obtained in positive ion-mode. Whilst this example discusses the optimal 

settings for 5-methyltetrahydrofolate, it was found to be representative for all of the 

folates of interest. 

Fragmentation spectra of MTX, 5-MTHF, THF and 5,10-MTHF are presented in 

figures 61-64, along with the fragmentation spectra of their stable isotope labeled 
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versions. The spectra of FA, 13C5-FA and 3C5-5,10-MTHF are not presented in this 

dissertaion, however MS parameters were optimized in a similar manner as the other 

folates. 

 

7.3.3.4 A sample preparation and chromatographic method for the detection of the 

target folates 

The analysis of THF in addition to FA, 5-MTHF, 5,10-MTHF and MTX is 

complicated by the fact that THF is not stable in acidic samples. Huang and colleagues  

developed an analysis strategy to address this issue by analyzing an extracted (C18 

SPE) whole blood patient sample twice[19]. First the whole blood folate extract was 

analyzed for FA, 5-MTHF and THF and the remainder of the extract was acidified by the 

addition of an aliquot of 1M HCl. Three hours after acidification, 5-FTHF and 10-FTHF 

were quantitatively converted to 5,10-MTHF and the sample was re-analyzed for 5,10-

MTHF content. Analysis occurred by chromatographic methodology involving gradient 

elution and had a cycle time of 25 minutes. Since each whole blood sample has to be 

analyzed twice, quantitation of whole blood folate would require approximately one hour 

of instrument time per sample.  

Since our study consisted of whole blood samples obtained from 200 participants, 

the re-analysis of the samples would result in an excess of 400 analysis using LC-

MS/MS, requiring over 400 hours of instrument time for whole blood analysis. This 

excluding the plasma and RBC analysis time that would be required for the 

determination of erythrocyte folatepolyglutamation. In attempt to reduce analysis time, a 

faster chromatographic method was developed using a phenomenex kinetex C18 
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column. The stationary phase for this type of columns consists of fused core C18 silica 

particles, resulting in short analyte diffusion distances. The chromatographic properties 

of a fused core particle (3 µM) therefore mimic that of much smaller particle (1.7 µM). 

Since the column is effectively packed with larger particles, these columns typically do 

not demonstrate the high back-pressures associated with actual small particle columns, 

and therefore linear velocities can be increased without reaching excessive back-

pressures. 

The mobile phase conditions described by J.D.M. Patring and colleagues[39] were 

used in combination with the Phenomenex Kinetex chromatographic column. A gradient 

elution program was developed consisting of a 1 minute isocratic hold at 1% B, allowing 

focusing of the analytes on the head of the chromatographic column (especially 

necessary since large volume of sample is introduced).  After the focusing phase, a 

gradient was initiated with a steepness of 6% increase in B per minute to 6 minutes 

(reaching 30% B). The gradient was followed by a step-gradient and re-equilibration for 

2 minutes, resulting in a total runtime of 8 minutes. A representative chromatogram is 

presented in figure 65. Calibrations reports for the various [13C5]-folates are 

demonstrated in figure 66. Calibrations were linear in the 10 to 1000 range for each 

folate form, except THF, and correlation coefficients were adequate, except for THF. 

Using this analysis procedure, analytical throughput was effectively enhanced by a 

factor of 3. 

When the presented whole blood analysis strategy was applied towards whole 

blood sample analysis of our large patient set, it was discovered that the sample 

preparation strategy did not yield adequately clean extracts. Repetitive injection of whole 

blood samples extracts lead to clogging of the chromatographic material in typically 10-
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30 injections. Furthermore chromatographic peak shape changed and peak splitting 

started to occur, indicating an alternative retention mechanism, possibly induced by 

coating of the chromatographic media by residual proteins in the sample extract. Various 

guard columns in a number of sizes were explored in an attempt to increase the number 

of samples that could be analyzed sequentially, but none of these attempts were 

successful. Next an additional boiling step was incorporated prior to folate extraction by 

SPE. It was hypothesized that this boiling step would denature the majority of the 

proteins, allowing removal by centrifugation and avoiding breakthrough of these entities 

during SPE. Again, analysis of 10 to 30 sample extracts would lead to a clogged guard 

column in the chromatographic system and prevented further analysis. It was therefore 

concluded that whilst the presented sample preparation method involving SPE extraction 

was useful for the analysis of a limited amount of samples, it was not suitable for routine 

clinical analysis or analysis of larger sample sets. 

In an attempt to develop a more robust folate extraction procedure, acid and 

organic mediated protein precipitations were explored. Organic mediated protein 

precipitations resulted in low but reproducible recoveries. The recovery for THF and FA 

was about 10-15% and resulted in detection limits in the order of 50-100 nM for THF and 

FA. These folates are typically present in lower concentrations in whole blood, and 

therefore this sample preparation strategy was abandoned. This sample preparation 

strategy could however be revisited when a more sensitive mass spectrometer is used.  

Perchloric acid mediated protein precipitation such as presented in chapter 4 lead 

to clean whole blood extracts that did not lead to increases in backpressure as observed 

when using SPE. Perchloric acid protein precipitation is typically performed by two 

uncomplicated steps. First, an aliquot of 70% perchloric acid was added to the whole 
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blood lysate to induce protein precipitation. In a second step the precipitated proteins 

are removed by centrifugation, yielding a chromatographic compatible extract. As a 

result perchloric acid protein precipitation was found to be a convenient sample 

preparation technique suitable for the analysis of a large number of sample. The 

disadvantage of acid mediated protein precipitation is that THF is degraded during the 

procedure. Attempts were made to stabilize THF, such as direct neutralization following 

protein precipitation, but none of these attempts resulted in reproducible THF analysis.   

THF is the most unstable of the folate forms identified as analytical targets. As 

mentioned before, THF is so unstable that 20% degradation occurs instantaneously 

upon dissolving the standard[16]. This instability raises the question as to if THF values 

could be reproducibly obtained, in order to provide a basis for inter patient pool 

comparisons. Furthermore, this instability required a complicated sample preparation 

process (i.e. SPE extraction) and analysis schemes (re-analysis after acidification) that 

were not suitable for analysis of larger sample sets. Perchloric acid protein precipitation 

was identified as a simple robust sample preparation procedure that was suitable for the 

analysis of large sample sets for FA, 5-MTHF and 5,10-MTHF. Based on the arguments 

presented above, the analysis of THF in whole blood extracts was abandoned. All 

patients were analyzed by the perchloric acid protein precipitation method. Example 

chromatograms of perchloric acid precipitated whole blood extracts from a MTHFR 677 

CC healthy volunteer, and a JIA patient on MTX therapy identified as a MTHFR 677 TT 

homozygote, are demonstrated in figure 67 and 68. A typical calibration report for the 

folates of interest (i.e. 5-MTHF, 5,10-MTHF, MTX and FA) is given in figure 69. Whole 

blood folate values for all the patients in the study are presented in table 30.  
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Figure 60. Ionization and fragmentation behavior of 5-MTHF under positive ionization 

conditions (A) and (B) and negative ionization conditions (C) and (D). (A) MS1 scan from 

400-500 m/z showing the parent at 460m/z. (B) fragmentation for the parent (m/z 460) to 

form the charged pteroyl residue with a mass of 313. (C) in negative ion-mode the 

deprotonated form of 5-MTHF was detected by the MS1 scan (m/z 458), sensitivity was 

about 20% higher when compared to detection in positive mode. (D) fragmentation of 

the negatively charged parent yielded a wide spectrum of fragment ions. 
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Figure 61. Fragmentation spectrum of 5-FTHF and its internal standard ([13C5])-5-FTHF 

in positive ion-mode. 
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Figure 62. Fragmentation spectrum of 5-MTHF and its internal standard ([13C5])-5-

MTHF in positive ion-mode. 
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Figure 63. Fragmentation spectrum of THF and its internal standard ([13C5])THF in 

positive ion-mode. 
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Figure 64. Fragmentation spectrum of MTX and its internal standard D3-MTX in positive 

ion-mode. 



 
 

250 
 

 
 
 

Figure 65. Whole blood folate chromatogram, folate exctration occurred according to 

Huang and colleagues. 
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Figure 66. Calibration plots for [13C5]-5-MTHF, [13C5]-FA, [13C5]-THF and [13C5]-5,10-

MTHF out of whole blood. Sample extraction occurred according to Huang and 

colleagues using SPE extraction 
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Figure 67. Whole blood extract chromatogram of MTHFR CC genotype healthy 

volunteer 
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Figure 68. Whole blood extract chromatogram of JIA patient 22 on MTX therapy 
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Figure 69. Calibration plots for [13C5]-5-MTHF, [13C5]-FA, [13C5]-5,10-MTHF, and D3-

MTX extracted from whole blood. Sample extraction occurred by perchloric acid protein 

protein precipitation. 
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7.3.4 Plasma folate analysis 

For the calculation of RBC folate content, whole blood folate concentrations need to be 

corrected for the plasma folate content. In contrast to the earlier reported whole blood 

and RBC analysis, plasma folate analysis is relatively straight forward as folates reside 

in the monoglutamyl form within plasma and are not protein or tissue bound. Therefore 

deglutamation can be circumvented, extraction is uncomplicated, and the appropriate 

isotopically labeled standards are available through commercial sources, allowing for 

accurate quantitation using stable isotope dilution LC-MS/MS. Plasma folate analysis 

occurred by sample preparation according to Huang et al., followed by LC-MS/MS using 

the chromatographic method presented for whole blood analysis. The analysis of SPE 

extracted plasma samples did not lead to the increasing backpressures and clogging of 

analytical guard columns after a limited amount of injections, that occured during whole 

blood analysis as previously noted. Therefore the folate extraction procedure was not 

altered and sample extracts were analyzed twice. In the primary injection of the extract 

FA, 5-MTHF and THF were quantititated. Following the first analysis, samples were 

acidified and re-analyzed for 5,10-MTHF and MTX. Representative patient plasma 

chromatograms are presented in figure 70. Typical calibration curves for FA, 5-MTHF, 

THF, 5,10-MTHF and MTX in plasma are presented in figure 71. Correlation coefficients 

0.998 or better, and the intercept of the calibration curves was equal to 0 at the 95% 

confidence interval. The results of the JIA patients plasma analysis are presented in 

table 30 folate control group, and for the group on MTX therapy. Typically folate 

plasma folate values were relatively low (30 nM) and predominantly in the 5-MTHF form, 

conform earlier reports using LC-MS/MS for plasma analysis. 
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Figure 70. Plasma folate chromatogram for JIA patient 91 on MTX therapy. MRM 

channels for THF, [13C5]-THF, 5-MTHF, [13C5]-5-MTHF, FA, [13C5]-FA, 5,10-MTHF, 

[13C5]- 5,10-MTHF, MTX, and D3-MTX are displayed individually. 
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Figure 71. Calibration reports using for the various folate forms and MTX, measured in 

plasma extracts. Calibrations were linear and correlation coefficients were acceptable. 
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7.3.5 Patient Results 

 
 
RBC samples from JIA patients for the folate control group (n=100) and for the MTX 

group were analyzed by the presented comprehensive folate measurement strategy 

(table 30 attached at the end of the chapter). Analysis of the obtained results is being 

conducted in conjunction with our collaborators at Children’s Mercy Hospitals, and was 

beyond the scope of this dissertation. At the time of dissertation preparation, analysis of 

the patients data was still in progress, however a brief summary of the obtained 

preliminary clinical relevant results is provided below. 

  Subjects on MTX had expectedly lower folate isoform concentrations than those 

not on MTX including 5-MTHF (678.6 ± 281.2 nmol/L vs. 1022.2 ± 489.3 nmol/L, 

p<0.0001) and 5,10-MTHF (68.4 ± 77.0 nmol/L vs. 91.7 ± 106.3 nmol/L, p=0.04). 5-

MTHFPG relative distribution analysis revealed higher proportions of long chain 

polyglutamates in patients receiving MTX over the control group, suggesting an up- 

regulation of folate polyglutamation status when a cell reaches a folate depleted state 

(table 29). Increasing folate polyglutamation status upon folate depletion has been 

observed in various rat tissues before[40].  

Of all clinical variables tested (including the use of folate supplementation) only 

MTX dose (in mg/kg) was inversely related to 5-MTHF concentrations (p=0.0009). More 

importantly, it was also observed that study participants with active arthritis had higher 
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concentrations of summed RBC folates than those without active arthritis (p=0.01), 

suggesting a correlation between folate status and disease activity.  

 

7.4 Conclusion 

 The quantitative measurement of erythrocyte folate isoform in combination with 

polyglutamation status is an analytical challenge at various levels. The complex nature 

arises from the fact that standards are largely unavailable, extraction is complicated, 

folates are unstable, interconversion is dependant of analytical conditions, analytes are 

present at low levels, and changes in polyglutamation status alters physical chemical 

properties. This chapter of the dissertation was centered around dealing with each of 

these variables and the presented analytical method was ultimately a compromise 

between all of these factors. Erythrocyte polyglutamayl folate isoforms were measured 

semi-quantitatively using whole blood and its individual components. Pools of folate 

isoforms were quantitatively measured in whole blood after deglutamation by stable 

isotope dilution LC-MS/MS strategies. Erythrocyte folate isoforms were quantitatively 

established after plasma folate determination. Finally, polyglutamation distribution was 

measured on a relative basis using erythrocyte extracts in combination with IP-LC-

MS/MS. The combined method was applied towards the analysis of two JIA patients 

groups, with and without MTX therapy. A total of over 200 patients were analyzed and 

data analysis revealed a correlation between a patients folate status and disease 

activity. Since a patients folate status seems to play a major role in disease activity the 

comprehensive measurement of folates might provide a quantitative basis for 

individualization of patient therapy in the future.  
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8.1 General conclusions 

This dissertation focused on development of analytical detection strategies for 

pharmaceutically relevant compounds including: the antifolate MTX, its (in)active 

metabolites, its conjugates, and endogenous folates in biological systems. All of the 

target analytes share a common structural feature, the pteroyl ring system, analyte 

identity is resulting from limited variations in ring redox state, minor structural 

substitutions of the pteridine ring, and changes in conjugation status (i.e. polyglutamated 

or nanoparticle conjugated). Specific and sensitive detection of the individual species is 

of high interest as they may constitute biomarkers for individualizing low dose MTX 

therapy in autoimmune diseases such as JIA, but is also required for the (pre)clinical 

studies of novel MTX drug delivery entities. In this dissertation various assays are 

presented for the specific determination of these analytes in the presence of each other. 

Each of these strategies has their own strengths and weaknesses, and the appropriate 

analysis strategy is dependent on the nature of the analyte, its biological environment, 

stability and the clinical question to be answered.    

 Chapter 2 and 3 of this dissertation focused on bioanalytical method development 

for a G5-MTX-FA nanoparticle. The effectiveness of this experimental therapeutic for the 

treatment of neoplastic diseases has been demonstrated in various in vitro [1] and in 

vivo [2] studies. Continued development requires the establishment of bioanalytical 

methodology in order to appropriately study the in vivo behavior (i.e. MTX release profile 

etc), pharmacokinetics and dosing regimen of the entity. Since the nanoparticle was 

designed as a delivery system for MTX, analytical targets were identified as nanoparticle 

conjugated MTX, nanoparticle released (free) MTX and (free) 7OH-MTX, a product 
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resulting from MTX metabolism. The specific measurement of these diverse entities was 

accomplished by an innovative cascade of complementary assays. First total MTX 

content (i.e. the sum of free and G5-MTX-FA related MTX) was determined in the 

sample by initiating a non-selective reductive cleavage of the C(9)-N(10) bridge in MTX. 

The resulting fluorescent pteridine derivative could subsequently be determined by 

reversed phase separation and fluorescence detection. A second assay involving HPLC 

separation followed by online postcolumn photochemical degradation of the same C(9)-

N(10) bond was then used to reveal the MTX origin (i.e. free or dendrimer conjugated).  

 The newly developed methodology was validated in plasma and urine obtained 

from rats and dogs. The validated method was applied to determine the in vivo 

pharmacokinetics of G5-MTX-FA in animals, dosed at various different concentrations 

by either a bolus IV injection or through the subcutaneous tissue. The nanoparticle did 

not demonstrate significant release of MTX in the systemic circulation, indicating that the 

conjugate linkage is esterase stable and observed therapeutic effects cannot be 

attributed to free MTX generated by rapid release from the MTX-nanoparticle conjugate.     

 Chapter 4 and 5 address bioanalytical method development for MTX polyglutamyl 

conjugates, which are bioactive metabolites of MTX, and present in human erythrocytes 

of JIA patients on MTX therapy. Erythrocyte MTXPGs content is currently of high interest 

, as it may provide a biomarker for therapeutical guidance of MTX treatment in RA[3]. 

However such strategy was conceived to the present investigation and had not 

previously been applied to JIA patients. The present work was conducted in 

collaboration with Childrens Mercy Hospital (KC, MO). The Initial plan were to implement 

a previously described HPLC postcolumn reactor method for the measurement of 
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MTXPG in a cohort involving JIA patients (n=99). Trial experiments revealed the 

approach to be inadequate, thus necessitating the development of methodology of 

improved sensitivity and selectivity.  The approach ultimately employed was a ion-pair 

based HPLC separation, coupled with tandem mass spectrometric detection for 

MTXPGs present in human erythrocytes.  

This methodology was applied towards the analysis of erythrocyte samples 

obtained from 99 JIA patients on MTX therapy. Analysis of the intracellular MTXPG 

distribution revealed the route of administration (oral vs subcutaneous) as a primary 

determinant of intracellular MTX glutamate chain elongation (appendix 1)[4]. Furthermore 

JIA patients that were encountering liver toxicity (defined as an elevated liver function 

test) had a tendency to form longer intracellular MTXPGs (appendix 2)[5]. Attempts to 

correlate intracellular MTXPG levels to MTXs efficacy in JIA were unsuccessful, and 

recently similar observations are being reported in adulthood arthritis[6].  

Due to the discrepancies in findings between different research groups, the utility 

of erythrocyte MTXPG determination is still an unresolved clinical issue[3]. Larger 

standardized studies are required in order to fully understand the clinical impact of these 

measurements, supported by more specific and sensitive bioanalytical assays, as 

presented in chapter 4 and 5.  The observation that MTXPG population distribution is 

related to drug induced toxicity and is dependent of route of administration, advocates 

for the routine measurement of erythrocyte MTXPGs in JIA, especially in an attempt to 

reduced drug induced toxicity, which is the primary cause of MTX discontinuation.  
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 Chapter 7 of the dissertation focuses on the comprehensive measurement of 

folate isoform and polyglutamation distribution in human erythrocytes. The assay was 

developed with the intent to measure the influence of low-dose MTX therapy upon folate 

homeostasis, as it was hypothesized that the antagonist (MTX)/agonist (folate) ratio 

within the cell is important for MTX efficacy and toxicity. Semi-quantitative 

comprehensive folate measurement was accomplished by the development of a 

cascade of highly specific and sensitive LC tandem mass spectrometric assays. First, 

the various folate isoforms were quantitated individually utilizing a deglutamated whole 

blood sample and stable isotope dilution techniques. A second assay determined the 

plasma folate contribution in a similar manner. Erythrocyte folate content was calculated 

by the method of Lamers[7] utilizing plasma and whole blood folate concentrations. As 

folates were quantitated in the monoglutamyl form, the folate polyglutamation fingerprint 

was lost. The folate polyglutamation fingerprint was determined by performing a third 

assay where intact folates were extracted from erythrocytes, with relative quantitation 

accomplished by ion-pair LC separation followed by tandem mass spectrometry, in the 

absence of an isotopic standard.  

 The method was utilized to determine the impact of MTX therapy on the folate 

status of a JIA pediatric population by analyzing blood samples obtained from 

approximately 100 JIA patients not on MTX, and 100 JIA patients on MTX therapy (in a 

collaborative effort with Childrens Mercy Hospitals KC, MO). It was found that patients 

on MTX had on average a statistically significant lower folate status. Furthermore patient 

folate status correlated with the effectiveness of MTX therapy, indicated by the fact that 

individuals with low(er) erythrocyte folate status were more likely to be responders to 
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MTX therapy and disease more adequately controlled. Although not yet confirmed this 

might be indicative of an important balance between agonist and antagonist within the 

biological system.  

It is acknowledged that this study has limitations. It is a cross-sectional analysis of 

patients suffering from JIA supplied by a single center, which is a design that does not 

allow us to dynamically follow up trends over time or related to disease activity. 

However, this is the largest cohort of JIA patients reported to date, and data has been 

obtained by the most advanced bioanalytical methods in the field to date, providing a 

detailed description of intracellular red blood cell folate isoform, polyglutamation and 

antifolate (MTX) polyglutamation status. At the time of dissertation preparation, it is 

unclear and impossible to predict what the exact impact will be of the presented bio-

analytical methodology in the field of JIA. Larger more controlled patient studies are 

necessary to prove its usefulness in guiding JIA therapy in the future. However the 

potential of simultaneous MTXPG and comprehensive folate measurement to 

differentiate various patient phenotypes has been demonstrated in this dissertation by a 

single center study. With the bioanalytical methods in place, the next step is up to 

collaborative research between the bioanalyst and physician to gain an understanding in 

how to utilize the presented methodology, and translate raw bioanalytical measurements 

ultimately in the optimization of MTX treatment in the pediatric population. 
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8.2 Future directions of pteroyl analysis 

Overall, the presented bioanalytical methods are validated and their robustness 

has been demonstrated extensively. An exception is the folate methodology, where the 

limited availability of (isotope) labeled standards complicated method development, 

validation and quantitation. As suggested in the previous section, larger patient studies 

are required to validate our initial observations and further investigate the importance of 

folate measurement during MTX therapy. However such studies do need to be backed 

up by stable and standardized bioanalytical methods to avoid assay induced bias. 

Ideally the quantitation of folatePG species in human erythrocytes requires the synthesis 

of stable isotope labeled standards of each folate polyglutamyl form of interest. This 

dissertation suggests that these biological relevant folate species include the isoforms of 

5-MTHF, 5-FTHF, 10-FTHF, 5,10-MTHF and THF. Furthermore the ɣ-glutamyl chain 

length of these standards needs to span from 3-10 residues minimally. Although the 

synthesis of many of these entities has not been reported to date, it appears that 

synthesis could be accomplished by the use of biological  or chemical (solid phase or 

solution) procedures, utilizing specialized building blocks. 

  The presented bioanalytical methodology may also have potential application in 

other clinical areas where MTX is commonly used, or where folate metabolism is critical 

such as oncology[8], dermatology[9], gastroenterology[10-12], neurology[13], genetics[14], and 

maternal fetal medicine[15]. Gastrointestinal toxicity and hepatotoxicity from the drug limit 

its use in all conditions and there are no predictors to help clinicians identify patients at 

risk for these effects, nor the full understanding of how to optimize therapy to a specific 

patient.  Additionally, alterations in maternal folate have been linked to congenital heart 
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disease[16], neural tube defects[16], and Down syndrome[14], therefore the bioanalytical 

measurement of folates, and if relevant antifolates, has the potential to impact diverse 

patient populations in several fields in medicine 



 
 

290 
 

8.3 References 

[1] T. P. Thomas, I. J. Majoros, A. Kotlyar, J. F. Kukowska-Latallo, A. Bielinska, A. 
Myc, J. R. Baker, Targeting and Inhibition of Cell Growth by an Engineered 
Dendritic Nanodevice. Journal of Medicinal Chemistry. 2005, 48, 3729. 

 
[2] J. F. Kukowska-Latallo, K. A. Candido, Z. Cao, S. S. Nigavekar, I. J. Majoros, T. 

P. Thomas, L. P. Balogh, M. K. Khan, J. R. Baker, Jr., Nanoparticle Targeting of 
Anticancer Drug Improves Therapeutic Response in Animal Model of Human 
Epithelial Cancer. Cancer Res. 2005, 65, 5317. 

 
[3] M. Danila, L. Hughes, E. Brown, S. Morgan, J. Baggott, D. Arnett, S. Bridges, 

Measurement of Erythrocyte Methotrexate Polyglutamate Levels: Ready for 
Clinical Use in Rheumatoid Arthritis? , Current Rheumatology Reports. 2010, 12, 
342. 

 
[4] M. L. Becker, L. van Haandel, R. Gaedigk, A. Lasky, M. Hoeltzel, J. Stobaugh, J. 

S. Leeder, Analysis of intracellular methotrexate polyglutamates in patients with 
juvenile idiopathic arthritis: Effect of route of administration on variability in 
intracellular methotrexate polyglutamate concentrations. Arthritis & Rheumatism. 
2010, 62, 1803. 

 
[5] M. L. Becker, R. Gaedigk, L. van Haandel, B. Thomas, A. Lasky, M. Hoeltzel, H. 

Dai, J. Stobaugh, J. S. Leeder, The effect of genotype on methotrexate 
polyglutamate variability in juvenile idiopathic arthritis and association with drug 
response. Arthritis & Rheumatism. 2010, n/a. 

 
[6] L. K. Stamp, J. L. O'Donnell, P. T. Chapman, M. Zhang, J. James, C. Frampton, 

M. L. Barclay, Methotrexate polyglutamate concentrations are not associated with 
disease control in rheumatoid arthritis patients receiving long-term methotrexate 
therapy. Arthritis & Rheumatism. 2010, 62, 359. 

 
[7] Y. Lamers, R. Prinz-Langenohl, S. Bramswig, K. Pietrzik, Red blood cell folate 

concentrations increase more after supplementation with [6S]-5-
methyltetrahydrofolate than with folic acid in women of childbearing age. Am J 
Clin Nutr. 2006, 84, 156. 

 
[8] M. C. Hum, B. A. Kamen, Folate, antifolates, and folate analogs in pediatric 

oncology. Invest New Drugs. 1996, 14, 101. 
 
[9] C. A. Bangert, M. I. Costner, Methotrexate in dermatology. Dermatol Ther. 2007, 

20, 216. 
 
[10] M. Yakut, Y. Ustun, G. Kabacam, I. Soykan, Serum vitamin B(12) and folate 

status in patients with inflammatory bowel diseases. Eur J Intern Med. 2010, 21, 
320. 

 



 
 

291 
 

[11] V. Giljaca, G. Poropat, D. Stimac, C. Gluud, Methotrexate for primary biliary 
cirrhosis. Cochrane Database Syst Rev. 2010, CD004385. 

 
[12] G. Rogler, Gastrointestinal and liver adverse effects of drugs used for treating 

IBD. Best Pract Res Clin Gastroenterol. 2010, 24, 157. 
 
[13] J. L. Fuh, Homocysteine, cognition and brain white matter hyperintensities. Acta 

Neurol Taiwan. 2010, 19, 150. 
 
[14] F. Coppede, E. Grossi, F. Migheli, L. Migliore, Polymorphisms in folate-

metabolizing genes, chromosome damage, and risk of Down syndrome in Italian 
women: identification of key factors using artificial neural networks. BMC Med 
Genomics. 2010, 3, 42. 

 
[15] S. H. Zeisel, Importance of methyl donors during reproduction. Am J Clin Nutr. 

2009, 89, 673S. 
 
[16] H. J. Blom, Y. Smulders, Overview of homocysteine and folate metabolism. With 

special references to cardiovascular disease and neural tube defects. J Inherit 
Metab Dis. 2010. 

 
 



 
 

292 
 

 

 

 

 

 

 

 

 

 

 

Appendices 



 
 

293 
 

 

 

 

 

 

 

 

 

 

 

Appendix 1: Analysis of Intracellular Methotrexate Polyglutamates in 
Patients with Juvenile Idiopathic Arthritis. 
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Abstract 
 
Objective. Intracellular methotrexate (MTX) polyglutamates (MTXGlu) have been shown 

to be potentially useful biomarkers of clinical response in adult patients with rheumatoid 

arthritis. The present study was undertaken to measure intracellular MTXGlu 

concentrations in a cohort of patients with juvenile idiopathic arthritis (JIA) to determine 

the predictors of MTXGlu variability in these patients.  

Methods. Blood samples were obtained from patients with JIA who were being treated 

with a stable dose of MTX for >3 months. Clinical data were collected by chart review. 

Concentrations of MTXGlu1–7 in red blood cell lysates were quantitated using an 

innovative ionpairing chromatography procedure, with detection by mass spectrometry. 

Results. Patients with JIA from a single center (n = 99; mean ± SD age 117.8 ± 56.5 

months, 69 female) were included in the analysis. The mean ± SD dose of MTX was 

0.51 ± 0.25 mg/kg per week, with a median treatment duration of 18 months 

(interquartile range 3–156 months). MTX was administered subcutaneously in 66 

patients (67%). Fifty-six patients (57%) had active arthritis at the time of the clinic visit. 

Totalintracellular MTXGlu (MTXGluTOT) concentrations varied 40-fold, with a mean ± SD 

total concentration of 85.8 ± 48.4 nmoles/liter. Concentrations of each MTXGlusubtype 

(MTXGlu1–7) were measured individually and as a percentage of MTXGluTOT in each 

patient. 

MTXGlu3 was the most prominent subtype identified, comprising 42% of MTXGluTOT, 

and the interindividual variability in the concentration of MTXGlu3 was the most highly 

correlated with that of MTXGluTOT (r = 0.96). The route of MTX administration was 

significantly associated with MTXGlu1–5 subtypes; higher concentrations of MTXGlu1-2 
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were observed in patients receiving oral doses of MTX, whereas higher concentrations 

of MTXGlu3–5 were observed in patients receiving subcutaneous doses of MTX (P < 

0.0001).  

Conclusion. In this cohort of patients with JIA, the MTXGluTOT concentration varied 

40-fold. Individual MTXGlu metabolites (MTXGlu1–7), which have, until now, not been 

previously reported in patients with JIA, were detected. The route of MTX administration 

contributed to the variability in concentrations of MTXGlu1–5. 

 

For complete publication see: 

M. L. Becker, L. van Haandel, R. Gaedigk, A. Lasky, M. Hoeltzel, J. Stobaugh, J. S. 

Leeder, Analysis of intracellular methotrexate polyglutamates in patients with juvenile 

idiopathic arthritis: Effect of route of administration on variability in intracellular 

methotrexate polyglutamate concentrations. Arthritis & Rheumatism. 2010, 62, 1803. 
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Appendix 2: The Effect of Genotype on Methotrexate Polyglutamate 
Variability in Juvenile Idiopathic Arthritis and Association with Drug 

Response 
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Abstract 

Objective: Response and toxicity to methotrexate (MTX) are unpredictable in Juvenile 

Idiopathic Arthritis (JIA). Intracellular MTX polyglutamates (MTXGlu) have shown 

promise as a predictor of drug response. We investigated genetic predictors of MTXGlu 

variability and associations between MTXGlu and drug response in JIA. 

Methods: This is a single center cross-sectional study evaluating JIA patients on 

stabledoses of MTX at a tertiary care children’s hospital. After obtaining informed 

consent, blood was drawn from 104 JIA patients during routine MTX screening labs. 

Clinical data was collected by chart review. Genotyping for 34 SNPs in 18 genes within 

the MTX metabolic pathway was performed. An ion-pairing chromatographic procedure 

with mass spectrometric detection measured MTXGlu1-7.  

Results: MTXGlu analysis and genotyping was completed in 104 patients. K-means 

clustering resulted in 3 distinct patterns of MTX polyglutamation. Cluster 1 had low RBC 

MTXGlu concentrations, cluster 2 had moderately high RBC MTXGlu1+2 concentrations, 

and cluster 3 had high concentrations of MTXGlu, specifically MTXglu3-5. SNPs in the 

purine and pyrimidine synthesis pathway, as well as the adenosine pathway were 

significantly associated with cluster subtype. The cluster with high concentrations of 

MTXGlu3-5 was associated with elevated liver function studies (LFTs), and there were 

higher concentrations of MTXGlu3-5 in children who reported GI side effects and LFT 

elevation. No association was noted between MTXGlu and active arthritis. 

Conclusions: MTXGlu remains a potentially useful tool for determining outcomes of JIA 

patients on MTX. The genetic predictors of MTXGlu variability may also contribute to the 

better understanding of MTX intracellular biotransformation. 
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For complete publication see: 

M. L. Becker, R. Gaedigk, L. van Haandel, B. Thomas, A. Lasky, M. Hoeltzel, H. Dai, J. 

Stobaugh, J. S. Leeder, The effect of genotype on methotrexate polyglutamate variability 

in juvenile idiopathic arthritis and association with drug response. Arthritis & 

Rheumatism. 2010, online first. 
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Appendix 3: LC-MS/MS Method for the Determination of 

Carbamathione in Human Plasma 
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Abstract 

Liquid chromatography-tandem mass spectrometry methodology is described for the 

determination of S-(N,N-diethylcarbamoyl)glutathione (carbamathione) in human plasma 

samples. Sample preparation consisted of a straightforward perchloric acid medicated 

protein precipitation, with the resulting supernatant containing the carbamathione 

(recovery ~98%).  For optimized chromatography/mass spec detection a carbamathione 

analog, S-(N,N-di-i-propylcarbamoyl)glutathione, was synthesized and used as the 

internal standard. Carbamathione was found to be stable over the pH 1-8 region over 

the timeframe necessary for the various operations of the analytical method. Separation 

was accomplished via reversed-phase gradient elution chromatography with analyte 

elution and re-equilibration accomplished within 8 minutes.  Calibration was established 

and validated over the concentration range of 0.5-50 nM, which is adequate to support 

clinical investigations.  Intra- and inter-day accuracy and precision determined and found 

to be < 4% and < 10%, respectively.  The methodology was utilized to demonstrate the 

carbamathione plasma-time profile of a human volunteer dosed with disulfiram (250 

mg/d).  Interestingly, an unknown but apparently related metabolite was observed with 

each human plasma sample analyzed.   

 

For complete publication see: 

A.A.M. Heemskerk, L. van Haandel, J.M. Woods, E. F. McCance-Katz, T. D. Williams, J. 

F. Stobaugh, M. D. Faiman, LC-MS/MS Method for the Determination of Carbamathione 

in Human Plasma. JPBA. 2010, online first. 
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Appendix 4: Phenylisothiocyanate as a Multiple Chemical 

Dimension Reagent for the Relative Quantitation of Protein 

Nitrotyrosine 
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Abstract 

A highly selective sequential derivatization sequence has been developed for the 

transformation of 3-nitrotyrosine to a 2-anilino-benzoxazole derivative. This sequence 

can be applied to any ortho-nitrophenol, such as 3-nitrotyrosine or 3-nitrotyrosine 

residues present in proteins and/or peptides as a result of oxidative stress. The 

sequence involves a standard 

reduction of the nitro functional group to the corresponding amine using aqueous 

dithionite, followed by aqueous solution coupling with phenylisothiocyanate (PITC) and 

then eventual product formation by a photochemical mediated intramolecular cyclization 

of the intermediate thiourea. While this cyclization step has been effected numerous 

times by various reagents commonly used in synthetic organic chemistry, many 

requiring non-aqueous reaction media, the present transformation appears to the be first 

description this reaction using 350 nm light in aqueous media. The resulting overall 

transformation provides a specific mass shift signature of 116 amu when conducted with 

1H5-PITC and 121 amu with 2H5-PITC, thus forming the basis of relative quantitation by 

MS detection. In preliminary experiments, relative quantitation was accomplished for the 

decapeptide angiotensin I that had been subjected to nitration. 

 

For complete publication see:  

L. van Haandel, J. Killmer, X. Li, C. Schöneich, J. F. Stobaugh. Phenylisothiocyanate as 

a Multiple Chemical Dimension Reagent for the Relative Quantitation of Protein 

Nitrotyrosine. Chromatographia, 2008, 7-8, 507 
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