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ABSTRACT 1 

 2 

Two correlative approaches to the challenge of ecological niche modeling (genetic 3 

algorithm, maximum entropy) were used to estimate the potential global distribution 4 

of the invasive fruit fly, Bactrocera invadens, based on associations between known 5 

occurrence records and a set of environmental predictor variables. The two models 6 

yielded similar estimates, largely corresponding to Equatorial climate classes with 7 

high levels of precipitation. The maximum entropy approach was somewhat more 8 

conservative in its evaluation of suitability, depending on thresholds for 9 

presence/absence that are selected, largely excluding areas with distinct dry seasons; 10 

the genetic algorithm models, in contrast, indicate that climate class as partly suitable. 11 

Predictive tests based on independent distributional data indicate that model 12 

predictions are quite robust. Field observations in Benin and Tanzania confirm 13 

relationships between seasonal occurrences of this species and humidity and 14 

temperature.  15 

 16 
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INTRODUCTION 1 

Fruit flies (Diptera: Tephritidae) are globally distributed, picture-winged flies 2 

of variable size. With >4000 species described, the family ranks among the most 3 

diverse groups of true flies (White & Elson-Harris, 1992; Thompson, 1999). Most are 4 

phytophagous, with larvae developing in the seed-bearing organs of plants. Although 5 

commonly named ‘fruit flies,’ larval development can take place in other parts of host 6 

plants besides fruits, including flowers and stems. About 35% of fruit fly species 7 

attack soft fruits, including many commercially important ones (White & Elson-8 

Harris, 1992).  9 

Several tephritids are critically important as fruit crop pests (Thompson, 1999). 10 

Economic impacts can be enormous, and control or eradication requires substantial 11 

budgets. For example, Dowell & Wange (1986) stated that establishment of major 12 

fruit fly threats to the Californian fruit industry would cause crop losses of US $910M 13 

yearly, and an eradication program would cost US $290M. Annual losses in the 14 

eastern Mediterranean (Israel, Palestinian Territories, Jordan) linked to fruit fly 15 

infestations are estimated at US $192M (Enkerlin & Mumford, 1997). Indirect losses 16 

resulting from quarantine restrictions imposed by importing countries to prevent entry 17 

and establishment of unwanted fruit fly species can also be enormous. Most 18 

economically important fruit fly pests belong to four genera: Anastrepha Schiner 19 

(New World Tropics), Bactrocera Macquart, Ceratitis MacLeay, and Dacus Fabricius 20 

(Old World Tropics). 21 

In recent decades, several Bactrocera species have been introduced accidentally in 22 

other parts of the world with established fruit industries in spite of quarantine 23 

procedures, often with major economic consequences. For example, the papaya fruit 24 

fly (B. papayae Drew & Hancock), introduced in Australia in 1995, led to a major 25 
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blockade of papaya exports from northern Queensland and major losses to local 1 

growers in 1995-1998. Only through an eradication program, costing US $32.5M, 2 

could the pest be eradicated and commercial trade restored (Cantrell et al., 2002). The 3 

carambola fruit fly (B. carambolae Drew & Hancock), introduced into Suriname, has 4 

lead to drastic export reductions in the region, threatening the US $1M annual export 5 

from Guyana to neighboring Caribbean countries (USDA/APHIS, 2000).  6 

Bactrocera invadens, a species native to Asia, was recorded for the first time on the 7 

African mainland in 2003 (Lux et al., 2003), and has already become a pest species of 8 

major concern to fruit growers. Here, we develop correlative ecological niche models 9 

(ENMs) for this species, which can be projected geographically to estimate the global 10 

distributional potential of the species (Peterson, 2003). ENMs are based on digital 11 

geospatial data layers and how they correlate with known occurrences of the species 12 

in its region of origin. We develop ENM predictions of invasive potential, and test 13 

them quantitatively in Africa to measure the predictive power of the methodology for 14 

anticipating the species’ global potential distribution. 15 

 16 

Invasion history and economic impact of Batrocera invadens 17 

In 2003, an unknown Bactrocera species was found in Kenya (Lux et al., 18 

2003). Taxonomic expertise showed that it was a member of the B. dorsalis complex, 19 

an Asian complex including several pest species (Drew & Hancock, 1994). Identical 20 

specimens from earlier surveys in Sri Lanka were initially classified as aberrant forms 21 

of B. dorsalis (Hendel), but eventually were re-identified as B. invadens (Drew et al., 22 

2005). 23 

Immediately subsequent to its discovery in Kenya, the species was recorded in several 24 

countries on the African mainland (Mwatawala et al., 2004, Drew et al., 2005). It is 25 
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now known to occur in tropical Africa from Senegal to Mozambique, as well as in the 1 

Comoro Islands in the Indian Ocean (De Meyer et al., 2007). The native range, known 2 

so far, ranges from Sri Lanka to southern India (Drew et al.¸2005; Sithanantham et 3 

al., 2006) with some isolated records from Bhutan (Drew et al., 2007). It is not clear 4 

whether Bhutan should be considered as part of the native range. The B. dorsalis 5 

species complex comprises several morphologically very similar taxa (Drew et al., 6 

2008). Other representatives of this complex occur in the same region (e.g., B. 7 

dorsalis and B. kandiensis; Drew & Hancock 1994). The native range of B. invadens 8 

is likely larger than currently assumed, since specimens may be misidentified as other 9 

representatives of the complex (see, for example, records for B. dorsalis distribution 10 

by Stephens et al., 2007). Therefore, the Bhutan records are considered here as part of 11 

the native range. 12 

This invasive species has major economic impacts, ranking among the most 13 

devastating pests of local horticultural products, particularly mango (Pouilles-14 

Duplaix, 2007). Research in West (Vayssières et al., 2005) and East Africa (Ekesi et 15 

al., 2006; Mwatawala et al., 2006a,b; Rwomushana et al., 2008) has demonstrated 16 

that it can become dominant in mango monocultures. In Benin, >60% losses due to 17 

fruit flies were recorded on main mango cultivars of economic interest in the second 18 

half of the mango season (Vayssières, 2007a), and phytosanitary pressure lead to 19 

uprooting mango plantations in one area (Borgou) in this country (Vayssières, 2007b). 20 

Native pest species such as the mango fruit fly [Ceratitis cosyra (Walker)] appear to 21 

be outcompeted by this invasive species, although pre-invasion data are largely 22 

lacking. In addition, B. invadens is polyphagous in nature, and has been reported from 23 

44 different hosts belonging to 23 plant families (De Meyer et al., 2007). 24 
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The timing and exact pathway of invasion by B. invadens into Africa are not known. 1 

An intensive 1999-2004 sampling program (Copeland et al., 2006) examined ~4000 2 

fruit samples (~980,000 pieces of fruit) from 882 plant taxa and 116 plant families 3 

from coastal and western Kenya, and from the Central Highlands. However, not until 4 

March 2003 was B. invadens collected in the coastal region (Lux et al., 2003). Fruit 5 

flies were sampled intensively in commercial mango orchards across coastal Guinea 6 

in West Africa in 1992-1996 (Vayssières & Kalabane, 2000) and Mali in 2000 7 

(Vayssières et al., 2004), but did not detect B. invadens; the first B. invadens 8 

specimens in that part of the African mainland were not detected until June 2004 9 

(Drew et al., 2005). This species’ presence in these countries before 2000 is, 10 

therefore, unlikely. Unfortunately, no similar studies were conducted at that time 11 

elsewhere in Africa where the fly currently occurs. That the first specimens were from 12 

the East African coast may indicate that the species’ port of entry was the East 13 

African coast, although clear proof is lacking. A brief outbreak of a methyl eugenol-14 

responding species in Mauritius in 1996, attributed to B. dorsalis (White et al., 2001), 15 

may actually have been B. invadens. The available non-teneral sample was recently 16 

re-examined, but results were inconclusive (White, 2006). In Asia, the earliest 17 

specimens date to 1993 in Sri Lanka (Drew et al., 2005), 2000 for Bhutan (Drew et 18 

al., 2007), and 2005 for India (Sithanantham et al., 2006). However, given likely 19 

confusion with B. dorsalis, careful revision of all Bactrocera material from that 20 

region is needed.  21 

 22 

MATERIAL AND METHODS 23 

Occurrence data 24 
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Native-range distributional data for B. invadens were derived from surveys in 1 

Sri Lanka during 1993-1996 (Tsuruta, unpubl. data) and from the literature 2 

(Sithanantham et al. 2006). Records from Bhutan were drawn from Drew et al. 3 

(2007). Sources for non-native (i.e., non-Asian) distributional data are summarized in 4 

Table 1, resulting from independent surveys conducted by the authors in different 5 

parts of Africa, supplemented by published records (Drew et al., 2005; White 2006). 6 

All records are based upon specimens clearly identified as B. invadens and 7 

differentiated from other taxa within the B. dorsalis complex. All, bar the records 8 

from southern India, were based on specimens for which identification was confirmed 9 

by taxonomic experts. After removal of duplicate records, 34 native and 192 non-10 

native records could be referenced to reasonably precise (i.e., to within 10 km) sites. 11 

This list is exhaustive, in the sense that it comprises all distributional data currently 12 

published, as well as extensive unpublished data made available for this study. The 13 

non-native data enable quantitative tests of the predictive ability of the ecological 14 

niche models regarding the geographic potential of the species.  15 

For georeferencing, when possible, we used coordinates from specimen labels. When 16 

such information was lacking, however, we extracted coordinates from electronic 17 

gazetteers, like GeoNet (http://earth-info.nga.mil/gns/html/index.html), or from 18 

specialized locality databases available in some institutions for their collections. 19 

Records were plotted on maps and inspected visually to detect obvious errors; 20 

peripheral records were investigated individually. 21 

Only occurrence data originating from the species’ native distribution were used to 22 

generate ENMs. Since no evidence indicates recent range expansion by B. invadens in 23 

Asia, and given that model predictions with and without the Bhutanese records 24 
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differed only slightly, we present here only results from models based on 1 

distributional data including the Bhutanese records (see above). 2 

 3 

Environmental data 4 

Raster geospatial data sets used to characterize environments across the native 5 

distributional area and worldwide consisted of ‘bioclimatic’ variables interpolated at 1 6 

km spatial resolution (Hijmans et al., 2005). Particular variables used included annual 7 

mean temperature, mean diurnal range, maximum temperature of warmest month, 8 

minimum temperature of coldest month, annual precipitation, and precipitation of the 9 

wettest and driest months. These particular climate dimensions were chosen to 10 

represent environmental dimensions relevant to distributions and survival of small 11 

arthropods, in particular fruit flies (Fletcher, 1989; Vargas et al., 1987; Vera et al., 12 

2002). No vegetation or land cover data layers were used owing to the heterogenous 13 

nature of habitats, including man-made horticultural environments, that can 14 

potentially be occupied by these species. Although host range can provide useful 15 

information with regard to species recognition in Bactrocera (Drew, 2004; Drew et 16 

al., 2008), this information remains incomplete for B. invadens, particularly as regards 17 

the native range. In addition, as the majority of point localities used in this study are 18 

derived from para-pheromone trapping surveys they do not comprise host data.  19 

 20 

Ecological niche modeling (ENM) 21 

Our approach is based on the idea of modeling species’ ecological niches, which are 22 

considered to constitute long-term stable constraints on species’ potential geographic 23 

distributions (Martínez-Meyer et al., 2004; Peterson, 2003; Peterson et al., 1999; 24 

Raxworthy et al., 2003; Wiens & Graham, 2005). Niche shifts have recently been 25 
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reported for some species (Broennimann et al., 2007; Fitzpatrick et al., 2007; Steiner 1 

et al., 2008), but niche shifts over short evolutionary time frames remain controversial 2 

(Peterson & Nakazawa, 2008). Ecological niches are herein defined as the set of 3 

conditions under which a species is able to maintain populations without immigration 4 

(Grinnell, 1917; Grinnell, 1924). Several avenues of research have demonstrated 5 

accurate predictions of invasive species’ potential distributions (Peterson, 2003; 6 

Peterson & Vieglais, 2001; Welk et al., 2002; Morrison et al., 2004; Thuiller et al., 7 

2005; De Meyer et al., 2008). Our approach consisted of four steps: (1) model 8 

ecological niche requirements based on known native-range occurrences of the 9 

species; (2) test the accuracy of the native range predictions by splitting the dataset 10 

into a training and testing set; (3) test the accuracy of non-native range predictions 11 

(trained using all native records) using all available African distributional records; and 12 

(3) project the niche model globally to identify areas putatively susceptible to 13 

invasion.  The global projection was based on a niche model trained using all the 14 

native range records.  Other studies have used the software package CLIMEX to 15 

describe potential distributions of invasive fruit fly species (e.g., Yonow & Sutherst 16 

1998; Sutherst et al., 2000; Vera et al., 2002; Stephens et al., 2007).  CLIMEX differs 17 

from correlative ENM techniques in that it simulates mechanisms considered to limit 18 

geographical distributions of  species in relation climate (Sutherst 2003; Stephens et 19 

al., 2007). 20 

 21 

We used two correlative ENM techniques to estimate the potential distribution of this 22 

species—a genetic algorithm (GARP; Stockwell & Peters 1999) and a maximum 23 

entropy method (Maxent; Phillips et al. 2006), both on default settings. These two 24 

techniques provided contrasting results in recent comparisons of niche modeling 25 
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techniques (Elith et al., 2006; Peterson et al., 2007; Peterson et al., 2008). GARP is an 1 

evolutionary-computing approach to discovery of nonrandom associations between 2 

occurrences and raster GIS data layers that describe potentially relevant aspects of 3 

ecological landscapes. As GARP has been used widely (Peterson 2001; Anderson et 4 

al., 2002; Stockwell & Peterson 2002; Anderson et al., 2003; Peterson 2005), we do 5 

not present detailed descriptions of the methodology herein. In general, all analyses 6 

were run on default settings, and the best-subsets procedure (Pearson et al., 2007) was 7 

used to choose a subset of models for further consideration, which were then summed 8 

to produce a single grid summarizing model agreement in predicting presence versus 9 

absence. This grid was converted to a binary prediction of presence versus absence by 10 

choosing the lowest threshold at which the species was known to occur (Rice et al., 11 

2003). The result was a set of binary grids summarizing the geographic extents of the 12 

environmental niche calculated by GARP for the species.  13 

 14 

Maxent estimates the ecological niche of a species by determining the distribution of 15 

maximum entropy, subject to the constraint that the expected value of each 16 

environmental variable (or functions of these) under this estimated distribution 17 

matches its empirical average (Phillips et al., 2006). Maxent makes use of presence 18 

records and a set of background values (pseudoabsences) drawn from the entire study 19 

region. We used default parameters in Maxent (version 1.3.0) to produce models: 20 

feature selection automatic, regularization multiplier at unity, maximum iterations 21 

500, convergence threshold 10-5, and random test percentage at zero. The result is a 22 

set of probabilities that sum to unity across the entire study area; to make values more 23 

manageable, these suitability indices are usually presented as logistic transformations 24 
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of cumulative probabilities (Phillips et al., 2006), with values ranging 0-100 (low to 1 

high suitability). 2 

 3 

 Spatial predictions of presence and absence can include two types of error: omission 4 

(predicted absence in areas of actual presence) and commission (predicted presence in 5 

areas of actual absence; Fielding & Bell, 1997). Because GARP is a random-walk 6 

procedure, it does not produce unique solutions; consequently, we followed best-7 

practices approaches to identifying optimal subsets of resulting replicate models 8 

(Anderson et al., 2003). In particular, we developed 100 replicate models; of these 9 

models, we retained the 20 with lowest extrinsic omission error rates, and then 10 

retained the 10 models with intermediate extrinsic commission error (i.e., we 11 

discarded the 10 models with area predicted present showing greatest deviations from 12 

the overall median area predicted present across all low-omission models). This ‘best 13 

subset’ of models was summed pixel by pixel to produce final predictions of potential 14 

distributions in the form of grids with values ranging from 0 (all models agree in 15 

predicting absence) to 10 (all models agree in predicting presence). Since the two 16 

modeling techniques produce different sorts of output with very different frequency 17 

distributions, correct choice of thresholds becomes critical in interpreting the resulting 18 

maps (Peterson et al., 2007). As such, we used the lowest training presence threshold 19 

approach (LTPT) of Pearson et al. (2007): specifically, we inspected the native-range 20 

occurrence information relative to the raw outputs from GARP and Maxent. We 21 

determined the lowest predictive level at which any training presence point was 22 

predicted, and used that level as a minimum criterion for prediction of presence 23 

(versus absence) in non-native regions. 24 

 25 
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Model testing 1 

To evaluate the model predictions, we offer two sets of tests. First, we developed 2 

initial models across the native range region based on a subset of available data, in 3 

which 10 randomly chosen points were set aside (for testing) prior to model 4 

development; this procedure was repeated twice, with different random subsamples. 5 

Statistical significance of these predictions was assessed using the cumulative 6 

binomial probability approach described below. Second we assessed the predictive 7 

ability in Africa (using African records) for a model that was calibrated using all 8 

records from the native region. Given the rather crude resolution of this initial 9 

exploration, we assumed that different invaded-range occurrences were independent, 10 

neglecting possible effects of spatial autocorrelation. Because our goal was predicting 11 

global invasive potential, we tested model predictivity with the null hypothesis that 12 

the observed coincidence between prediction and test points was no better than chance 13 

expectations.  14 

The most common mode of evaluating niche models in recent literature is via the area 15 

under the curve in a receiver operating characteristic (ROC) analysis (e.g., Elith et al. 16 

2006). ROC analysis, however, is not appropriate to the present situation for two 17 

reasons: (1) ROCs require absence data, which are not available in the present case; 18 

and (2) ROCs weight type 1 and type 2 errors equally, but the focus on invasive 19 

potential would weight omission error more heavily than commission error (Soberón 20 

and Peterson, 2005; Peterson et al., 2008). However, we use an adaptation of the ROC 21 

curve approach as a means of assessing predictive ability visually, plotting omission 22 

on an inverse scale (= “sensitivity”) against proportion of area predicted present (an 23 

estimator of 1 – specificity; Phillips et al., 2006, Peterson et al., 2008). 24 
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Models were tested using binomial tests that incorporate dimensions of correct 1 

prediction of both presences (based on success in predicting independent test data) 2 

and absences (based on proportion of the area predicted present, which is taken as the 3 

probability of a success). Given that B. invadens has as yet only invaded Africa 4 

broadly, the universe of testing was taken as Africa (including Madagascar and the 5 

Comoro Islands) south of 18°N. Models were tested at the LTPT threshold described 6 

above. 7 

 8 

RESULTS 9 

Fig. 1 shows the known distributional information for B. invadens from its 10 

native range (Asia) and non-native distributional areas (Africa and the Indian Ocean). 11 

The projections of the two ENMs for the native range (Fig. 2) were similar: both 12 

indicate Sri Lanka and southern India as highly suitable. GARP predicted higher 13 

suitability in coastal regions (particularly the east coast) and the Ganges Delta in 14 

Bangladesh, while Maxent indicated suitability more restricted to isolated pockets in 15 

these parts when high threshold values are taken into account only. When lower 16 

thresholds were included in Maxent, the predicted areas were more similar between 17 

the two methods (Fig. 2)—we note that the LTPT for Maxent was 0.027 out of 100, 18 

whereas for GARP it was 8 out of 10. Testing model predictions by the two 19 

algorithms based on two separate random subsets, predictions from both models were 20 

significantly (P < 0.05) better than random expectations. For example, in one of the 21 

random subsamplings, the GARP model predicted 11.5% of the area present, but 22 

managed to predict 9 of 10 independent test points correctly; similarly, the Maxent 23 

model predicted 14.7% of the area present, but predicted all 10 test points correctly--24 

the associated binomial probabilities were both lower than 10-9.  The training and 25 
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testing sets may not be completely independent, as the native-range occurrence 1 

records are clustered in a small region; however, model predictions were also tested 2 

with records from the invaded range in Africa (see below). 3 

Projecting niche models to Africa and Madagascar (Fig. 3) again yielded similar 4 

predictions between the two methods, with Maxent again appearing more 5 

conservative. Both models predicted high suitability in the Equatorial rain forest belt 6 

and the East African coastal regions. The GARP model predicted higher suitability in 7 

areas farther removed from the coast, particularly in Ivory Coast in the west, and 8 

Tanzania and Mozambique in the east. Also, the latitudinal limits identified by GARP 9 

predictions were broader, especially southwards, with high suitability being predicted 10 

for much of the Angolan and Mozambican coastlines; these differences were less 11 

dramatic once lower thresholds were considered in Maxent. The same tendencies are 12 

observed in global projections (Fig. 4): GARP predicted somewhat broader potential 13 

distributional areas in tropical South America and Southeast Asia (particularly 14 

Thailand, Cambodia, and Vietnam). The only areas where Maxent indicated broader 15 

potential distributional areas than GARP are in parts of Borneo, Papua New Guinea, 16 

and the western Amazon. 17 

We used the non-native populations of B. invadens in Africa as a means of testing 18 

model predictivity regarding suitable areas for the species globally. Omission error 19 

was minimal—3 of 192 invaded-range test points were excluded from model 20 

predictions in each case. In both cases, model predictions were considerably better 21 

than expectations under random (null) models (binomial tests, both P < 10-14), 22 

indicating that both approaches offer significant predictivity regarding the global 23 

potential distribution of the species. Inspecting ROC plots for the two model 24 

predictions based on independent testing data on a landscape distant from that where 25 
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the models were trained, it is clear that the two models are similar in performance. 1 

Maxent appears to perform better at middle-level omission values, while GARP 2 

appears to perform better at lower omission values (Fig. 5).  3 

 4 

DISCUSSION 5 

Models in ecological dimensions 6 

The two niche modeling algorithms employed in this study present a similar 7 

overall picture, although Maxent is somewhat more conservative. Comparing with the 8 

updated Köppen-Geiger Climate classification (Kottek et al., 2006), most suitable 9 

areas identified by our models fall within the Equatorial climate categories (minimum 10 

temperatures >18°C), especially Af (Equatorial rainforest, fully humid) and Am 11 

(Equatorial monsoon). The GARP model also assigns high suitability to a large part of 12 

the Aw (Equatorial savannah with dry winter) climate class. 13 

This result suggests that B. invadens prefers hot and humid environments. Annual 14 

precipitation must be high, although it does not have to be continuous. Equatorial 15 

monsoon type climate (Am) is defined as a climate with a short dry season, but with 16 

still sufficient moisture to keep the soil humid throughout the year. Equatorial 17 

savannah climate type has a distinct dry period with driest-month precipitation of <60 18 

mm. Continuous presence of B. invadens in Af amd Am climates is not as-yet 19 

supported by field data, for lack of field studies, but presence in Aw climates is now 20 

amply demonstrated. Mwatawala et al. (2006b) trapped B. invadens in orchards in the 21 

Morogoro region of central Tanzania continuously for 61 weeks in 2004-2005. 22 

Morogoro is situated in the transition zone between bimodal and unimodal rainfall 23 

belts in Tanzania with a distinct dry season: B. invadens is present year-round, 24 

although populations increase dramatically during the rainy season. Similar 25 
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observations were made in Benin, in areas also demonstrating fly activity during a 1 

clear dry season (Vayssières, 2004; Vayssières et al., 2005).  2 

Stephens et al. (2007) developed a model for the closely related B. dorsalis using a 3 

different approach (CLIMEX). The optimal climate suitability for Africa identified in 4 

that study corresponds reasonably well with optimal conditions for B. invadens, 5 

although some marked differences are evident. The CLIMEX model for B. dorsalis 6 

predicts optimal suitability further south along the South African coast (representing a 7 

warm temperate climate type, fully humid, with hot summers), while parts of the 8 

interior of Tanzania and northern Mozambique and parts of Nigeria were rated as less 9 

suitable. Non-native populations of B. dorsalis in Hawaii, have been rated to prefer 10 

humid areas (Vargas et al., 1989, 1990); hence, the climatic optimal conditions for the 11 

two species likely overlap broadly. Studies on niche partitioning in areas where both 12 

taxa occur are, however, lacking.  13 

 14 

Model predictivity 15 

Despite the fact that the great majority of known occurrences fall within predicted 16 

areas, some isolated occurrences of B. invadens in other ecological situations are 17 

known. Observations show that the species can occur in lowland moist and dry 18 

savannah in western Africa, the Sudan, and Zambia, which present climates with 19 

longer dry periods and hot conditions during part of the year. Some of these 20 

occurrences may correspond to anthropogenic microclimates (see, e.g., Coetzee, 21 

2004). For example, the B. invadens collecting sites in the Sudan (Fig. 1) are 22 

irrigation schemes along the Blue Nile River: although situated in low-rainfall 23 

savannah habitat, these irrigated areas are typically very humid and partly under 24 
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cultivation, with suitable host plants such as mango, citrus, guava, and banana. 1 

However, such is not the case for the other sites in Zambia and West Africa.  2 

These discrepancies can be caused by two factors: incomplete sampling in the native 3 

region or actual niche differentiation in the non-native populations. It is plausible that 4 

the currently available native-range occurrence data are incomplete (cf. above). 5 

Bactrocera invadens might then have a much broader ecological niche in its native 6 

range. We should also take into consideration that these particular habitat types 7 

(lowland wet and dry savannah) are not present in the native distributional area, so the 8 

modeling algorithms have been presented with incomplete data on the species’ 9 

distributional potential in such habitats: regions with similar climate conditions are 10 

found in central and northern India, but B. invadens records are not available from 11 

these regions. A more thorough inventory for the species in its native region, or at 12 

least detailed inspection and re-evaluation of Bactrocera records from the region, 13 

might present additional information that could improve the models. Currently, 14 

however, such information is not available. 15 

In case of niche differentiation in invaded regions, two elements are known to cause 16 

exotic species to expand beyond their predicted climate envelope. It may result from 17 

adaptive changes in the fundamental niche of the species or changes in the realized 18 

niche (i.e. fundamental niche constrained by biotic interactions) (Broennimann et al., 19 

2007). Given the short time span between detection of the invasion and the 20 

observation of presence beyond the predicted range, the likelihood that evolutionary 21 

change has occurred that might have affected the fundamental niche of the species 22 

seems unlikely. More likely, release from biotic constraints like enemy release, 23 

(Colautti et al., 2004) has an effect on the realized niche of B. invadens. As such, 24 

caution should be taken with regard to the boundaries of the models presented here, 25 
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since these isolated records indicate some potential for the taxon to occur outside 1 

them. The fly’s abundance in these areas is unclear for lack of continuous trapping 2 

data.  3 

 4 

Potential threat of B. invadens outside its native range 5 

Given the apparent rapid spread of B. invadens across Africa, and its impact on local 6 

horticulture, the risk of this species being introduced, establishing and invading other 7 

regions of the world should be considered. Our models indicate regions of the world 8 

that are climatically suitable for the species, but they do not indicate regions that will 9 

necessarily become invaded by the species. For a species to invade in a new region, it 10 

must overcome a series of challenges (Richardson and van Wilgen, 2004; De Meyer 11 

et al., 2008). Richardson and van Wilgen (2004) listed six barriers that a species has 12 

to overcome to become invasive in a new region. Our analyses are only able to assess 13 

one of them: the likelihood of the species surviving in the new region. Regions highly 14 

suitable for the species as indicated by the models are more likely to be invaded than 15 

regions that have a low suitability. In Africa, for example, most of West Africa, 16 

Central Africa, and Madagascar, and parts of East Africa, are indicated as highly 17 

suitable by the models. Large regions of the Neotropics are also indicated as being 18 

suitable, as is most of Southeast Asia. A comprehensive assessment of invasion risk 19 

for this species for various parts of the world will require that other barriers be 20 

assessed (Thuiller et al., 2005), which will require better knowledge of the species’ 21 

basic biology and natural history.  22 

As we have not explored all of the invasion challenges that non-native species face, 23 

our maps should not be interpreted as maps of invasion risk or likelihood of 24 

establishment. However, a region presenting suitable climatic conditions for the 25 
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species is likely more vulnerable than one presenting unsuitable conditions. Regions 1 

highlighted as highly suitable by the models include areas already invaded by the 2 

species, giving some confidence in the models. Although the species has invaded 3 

several parts of Africa, we cannot be certain about risk of individuals being 4 

introduced to other regions (e.g., Neotropics or Southeast Asia), and whether 5 

propagule pressure will be sufficient to enable the species to establish there. Insights 6 

into propagule pressure can be obtained by examining the volume of trade between 7 

regions where the fly currently occurs and those regions that have suitable climate 8 

conditions (Thuiller et al., 2005).  9 

Another important consideration is whether individuals introduced to these areas can 10 

survive the local conditions long enough to breed successfully. An important element 11 

in this respect will be interspecific competition with native fruit flies. Most regions 12 

identified as being at risk already have established fruit fly faunas, comprising native 13 

species and sometimes previously introduced exotics: polyphagous species, infesting 14 

diverse fruits that also act as hosts for B. invadens, are already present. Duyck et al. 15 

(2004) stated that where polyphagous tephritid species have been introduced in areas 16 

already occupied by a polyphagous tephritid, interspecific competition has generally 17 

resulted in a decrease in numbers and niche shifts of the previously established 18 

species, without leading to complete exclusion. Duyck et al. (2004, 2007) assumed 19 

that life-history strategy could be a determining factor in this competition.  20 

In Africa, most native polyphagous pests, such as Ceratitis capitata, express r-21 

selected traits. Invasive Bactrocera species, on the other hand, display more K-22 

selected traits. From the case studies presented by Duyck et al. (2004, 2007), K-23 

selected species appear to be better invaders. In the case of B. invadens on the African 24 

mainland, some details seem to confirm this hypothesis. Data from Nguruman Rift 25 
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Valley Province in Kenya show that the principal pest detected in monitoring traps in 1 

mango orchards, was C. cosyra prior to 2003, but has gradually been replaced by B. 2 

invadens since then (S. Ekesi, unpubl. data). Although pre-invasion data are lacking, 3 

Mwatawala et al. (2006a, b) showed that, in Tanzania, B. invadens is the major pest 4 

species in hosts such as mangoes, which were initially predominantly infested by 5 

native Ceratitis species such as C. cosyra. The latter seems to be displaced in large 6 

part by the former. However, abiotic factors may also determine different use of host 7 

resources. Vayssières et al. (2005), for example, showed that C. cosyra is still 8 

dominant during the dry season, but B. invadens dominates during the rainy season, 9 

probably reflecting its preference for humid environments. Whether the presence of C. 10 

cosyra in the dry season is the result of a shift due to interspecific pressure from the 11 

invasive species is, however, not clear for lack of comparative data predating the 12 

invasion. A better understanding of both the various biotic and abiotic factors, and of 13 

the particular interspecific competition mechanisms is needed for a more complete 14 

predictive model for invasive fruit flies such as B. invadens.  15 
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Table 1: Distribution records for Bactrocera invadens with georeferences in decimal 1 

degrees. A = non-native records; O = native records 2 

Fig. 1: Fig. 1 Distribution records for B. invadens. Native records in India (Ind), Sri-3 

Lanka (Sri) and Bhutan (Bhu). Non-native records in Africa. 4 

Fig. 2: Predicted distribution of Bactrocera invadens in its native range in Asia, using 5 

genetic algorithm for rule-set prediction (GARP) and maximum entropy method 6 

(Maxent). White, predicted absence, as indicated by the LTPT thresholding; shades of 7 

grey indicate higher levels of prediction (chosen arbitrarily),,with black the highest 8 

strength for predicted presence.  9 

Fig. 3: Predicted distribution of Bactrocera invadens in Africa and Madagascar, using 10 

genetic algorithm for rule-set prediction (GARP) and maximum entropy method 11 

(Maxent). White, predicted absence, as indicated by the LTPT thresholding; shades of 12 

grey indicate higher levels of prediction (chosen arbitrarily),,with black the highest 13 

strength for predicted presence. 14 

Fig. 4: Predicted distribution of Bactrocera invadens globally, using genetic algorithm 15 

for rule-set prediction (GARP) and maximum entropy method (Maxent). White, 16 

predicted absence, as indicated by the LTPT thresholding; shades of grey indicate 17 

higher levels of prediction (chosen arbitrarily),,with black the highest strength for 18 

predicted presence. 19 

Fig. 5: Comparison of accumulation of predictive ability vs. proportion of area 20 

(Africa) predicted present in genetic algorithm for rule-set prediction (GARP) and 21 

maximum entropy method (Maxent) models. 22 
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