
Ecological Niche and Geographic Distribution of Human
Monkeypox in Africa
Rebecca S. Levine1, A. Townsend Peterson2, Krista L. Yorita3, Darin Carroll1, Inger K. Damon1, Mary G. Reynolds1*

1 Centers for Disease Control and Prevention, Poxvirus Program, Atlanta, Georgia, United States of America, 2 Natural History Museum and
Biodiversity Research Center, University of Kansas, Lawrence, Kansas, United States of America, 3 Centers for Disease Control and Prevention, Division
of Viral and Rickettsial Diseases, Atlanta, Georgia, United States of America

Monkeypox virus, a zoonotic member of the genus Orthopoxviridae, can cause a severe, smallpox-like illness in humans.
Monkeypox virus is thought to be endemic to forested areas of western and Central Africa. Considerably more is known about
human monkeypox disease occurrence than about natural sylvatic cycles of this virus in non-human animal hosts. We use
human monkeypox case data from Africa for 1970–2003 in an ecological niche modeling framework to construct predictive
models of the ecological requirements and geographic distribution of monkeypox virus across West and Central Africa. Tests of
internal predictive ability using different subsets of input data show the model to be highly robust and suggest that the
distinct phylogenetic lineages of monkeypox in West Africa and Central Africa occupy similar ecological niches. High mean
annual precipitation and low elevations were shown to be highly correlated with human monkeypox disease occurrence. The
synthetic picture of the potential geographic distribution of human monkeypox in Africa resulting from this study should
support ongoing epidemiologic and ecological studies, as well as help to guide public health intervention strategies to areas at
highest risk for human monkeypox.
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INTRODUCTION
Monkeypox virus, a member of the genus Orthopoxviridae, can cause

a serious, smallpox-like illness in humans. Since the global eradica-

tion of smallpox in 1977, monkeypox virus has been considered

the most problematic orthopoxvirus as regards human health [1].

Nonetheless, little is known about the geographic distribution,

ecology, natural reservoir, or intermediate zoonotic host(s) of the

virus. Human monkeypox is endemic to forested areas of West and

Central Africa, and is thought to be transmitted to humans

through contact with infected animals, and through person-to-

person spread [1–3].

Considerably more is known about human monkeypox disease

occurrence than about natural infections in non-human animal

hosts. More than 30 isolates have been cultured from human

clinical specimens, but monkeypox virus has been isolated only

once from a wild animal–a moribund rope squirrel (Funisciurus

anerythrus) captured in the Democratic Republic of the Congo

(DRC) [4].

A further question is whether West and Central African

monkeypox viruses occupy the same ecological niche. The zones

of West and Central African endemicity are geographically discon-

tinuous, and while hundreds of human cases have been reported in

Central African countries only a handful have been identified in

West Africa [5–13]. Phylogenetic analyses suggest that West and

Central African monkeypox virus strains form distinct clades, each

with variant subtypes [14,15] and several significant biological

features have been shown to differ between viruses in the two

clades [e.g., Central African strains are more likely to be trans-

mitted among humans, and to cause more severe illness, than West

African strains [15]. Whether these apparent disparities reflect

biological divergence sufficient to translate into distinct ecological

regimes (or animal reservoirs) bears investigation.

This study aims to develop predictive models describing the

ecological requirements and potential geographic distribution of

human monkeypox in Africa using an ecological niche modeling

approach [16]. This approach provides a foundation for testable

hypotheses regarding the geographic range of human monkeypox,

and provides a useful guide for identification of potential reservoir

hosts associated with transmission to humans. Results of this study

will have implications for understanding the ecology, natural

history, and epidemiology of this virus.

MATERIALS AND METHODS

Human Monkeypox Occurrence Data
Locations of known occurrences of human monkeypox in the

endemic regions of Africa were compiled though comprehensive

literature search and analysis of Centers for Disease Control and

Prevention (CDC) and World Health Organization (WHO) data

collections compiled from outbreak investigations and surveillance

activities. For this study, a human monkeypox case was defined as

a published report or a non-redundant, unpublished case (with

supporting laboratory evidence) recorded in CDC or WHO

monkeypox data collections. Cases recorded by WHO during the

years 1970–1986 were classified based on results of findings from

electron microscopy, virus culture, and/or serology (P. Formenty,

personal communication 2004). CDC’s current case definition

requires laboratory evidence of monkeypox virus in clinical
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specimens demonstrated via polymerase chain reaction (PCR),

electron microscopy, or tissue culture [17].

For ecological niche modeling (ENM) analyses, occurrence

locations were considered only once, with no weighting to account

for multiple cases at single locations, thus minimizing potential

confounding attributable to (rare) instances of person-to-person

transmission. Our tally of spatially unique human monkeypox

cases was 371 distinct locations. However, given geographic

complexities and incomplete gazetteer databases, not all named

locations (villages) could be assigned exact point coordinates—

only 156 human monkeypox occurrences could be assigned

geographic latitude and longitude coordinates accurate to at least

one minute.

Geographic Data
Environmental data sets input into Genetic Algorithm for Rule-Set

Prediction (GARP) for ENM came from three principal sources.

(1) Climatic data averaged over the period 1961–1990, including

data layers (‘coverages’) summarizing mean annual temperature,

mean maximum monthly temperature, mean minimum monthly

temperature, diurnal temperature range, mean annual precipita-

tion, wet days, and ground frost days, were drawn from the Inter-

governmental Panel on Climate Change (IPCC; native resolution

,506,50 km; http://ipcc-ddc.cru.uea.ac.uk/). (2) Land-surface

data summarizing elevation, aspect, water flow accumulation,

water flow direction, and compound topographic index (a measure

of the tendency of water to pool) were obtained from the U.S.

Geological Survey’s Hydro-1K data set (native resolution 161 km;

http://edc.usgs.gov/products/elevation/gtopo30/hydro/). Final-

ly, (3) summarized land cover across Africa were drawn from the

University of Maryland Global Land Cover Facility (http://glcf.

umiacs.umd.edu/index.shtml). All data layers were generalized to

a pixel resolution of ,106,10 km (0.160.1u) for analysis, in view

of some georeferencing imprecision for occurrence localities.

Ecological Niche Modeling
We define the ecological niche of a species as the set of environ-

mental conditions within which it is able to maintain populations

without immigration [18,19]. Ecological niches and associated

potential geographic distributions can be approximated via

correlative approaches that relate known point-occurrence data

to digital GIS data layers summarizing spatial variation in relevant

environmental dimensions [20]. The algorithm used for generat-

ing ENMs was the GARP (GARP version 1.1.3) [21,22]. GARP

is an evolutionary-computing method that builds models based

on non-random associations between known occurrence points

for species and sets of GIS coverages describing the ecological

landscape. Occurrence data are used by GARP as follows: 50% of

occurrence data points are set aside for an independent test of

model quality (extrinsic testing data); 25% are used for developing

models (training data); and 25% are used for tests of model quality

internal to GARP (intrinsic testing data). Distributional data are

converted to raster layers, and by random sampling from areas of

known presence (training and intrinsic test data) and areas of

‘pseudoabsence’ (areas lacking known presences), two data sets are

created, each of 1250 points; these data sets are used for rule

generation and model testing, respectively [21,22].

The genetic algorithm produces a logic model, rather than

a strictly derived mathematical model. An initial condition (first

rule applied) is created in GARP by application of a single inferen-

tial tool randomly selected from a defined set. This set includes 4

basic rule types (bioclimatic rules, atomic rules, range rules and

logistic regression), each of which implements a different method

for building prediction models. Subsequent combinations of rules

with specially defined operators (e.g. crossover, mutation) are then

used to modify the initial rules, and through iteration and

optimization, models are ‘‘evolved’’. After each modification, the

quality of the rule is tested (to maximize both significance and

predictive accuracy) and a size-limited set of the best rules is

retained. Because rules are tested based on independent data

(intrinsic test data), performance values reflect the expected

(general) performance of the rule, an independent verification

that gives a more reliable estimate of true rule performance. The

final result is a set of rules that can be projected onto a map to

produce a potential geographic distribution for the species under

investigation.

To produce a final prediction model (map), 10 individual

GARP models were created, each with 100,000 maximum itera-

tions and a convergence criterion of 0.0001. The final prediction

maps were produced by summing these 10 high-quality models.

Color gradations are used to indicate the proportion of times out

of 10 that specific areas (pixels) were included in the predicted

distribution of human monkeypox.

Model quality was evaluated via the independent testing data

subsets that were set aside prior to modeling. In general we

compared observed coincidence between model predictions and

test data with random expectations. A X2 test was used to compare

observed success in predicting distributions of test points with

those expected under random (null) models (proportional area

predicted present provides an estimate of occurrence points

correctly predicted were the prediction to be random with respect

to the distribution of the test points).

Identification of Key Environmental Factors
To assess the relative importance of the individual ecological para-

meters, a jackknife procedure was performed, involving construc-

tion of a series of ENMs, each systematically omitting one of the n

layers, following procedures outlined by Peterson and Cohoon

[23]. This manipulation resulted in n - 1 maps, each representing

the predicted distribution of the disease without consideration of

the information in a particular parameter; effects of these mani-

pulations were summarized by a calculation of percent difference

(across all pixels in the map) from the map produced using all

variables.

The empirical contribution of the information contained in each

layer toward creation of the comprehensive ENM (i.e., the

statistical significance of each parameter within the overall model)

was assumed using a single sample Student’s t-test (H0 = 0) to

evaluate differences in the mean number of pixel matches between

the comprehensive ENM (based on n variables) and each derived

ENM (based on n-1 variables). To accomplish this test, each pixel

in the map (N = 654,754) was assigned a value between 0 and 10

corresponding to the frequency of positive prediction in the 10

summed models (see above). The mean difference in predicted

level for matched pixels across the population of pixels in the

comprehensive versus derived ENMs was then compared to

a hypothesized value of zero (signifying that the derived and

comprehensive ENMs were identical). Kappa statistics were also

used to assess levels of agreement between the comprehensive and

derived ENMs.

Model Robustness
To provide a test of the ability of our ENMs to predict the distribu-

tion of human monkeypox cases into areas from which no input

data are present, we used a spatially stratified subsetting procedure

that we term the ‘quadrant test’ (see [24] for another example) to

Niche of Monkeypox in Africa
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challenge model predictive ability. We focused on monkeypox

occurrences in Central Africa for this test (West African sample

sizes were not adequate to permit subsampling), separating them

into 4 quadrants based on their locations above and below the

median longitude and latitude on the overall data set from Central

Africa (21.733uE and 0.387uS, respectively). Two quadrants (e.g.,

the northeast and southwest quadrants) were used to train ENMs,

and occurrences in the other two quadrants (northwest and

southeast) were used as an independent test of model pre-

dictability. The test was then repeated reversing training and

testing quadrants. Binomial probabilities were used to assess the

degree to which observed levels of agreement exceeded expecta-

tions under null models of no assumed association.

Characterization and Comparison of Ecological

Niches
In addition to the overall ENM, we developed ENMs for West and

Central African occurrences separately to assess whether the two

monkeypox clades occur in humans under similar ecological

conditions. Sample sizes were divergent—146 from Central Africa

versus 8 from West Africa (two adjacent localities in south-central

Nigeria were excluded from this analysis, as viral specimens were

unavailable for genetic analysis, and so could not be characterized

as belonging to either West or Central African clades of monkey-

pox virus [15].

To permit visualization of ecological niches of various sets of

occurrences analyzed, we related the geographic projection of the

ENMs to the original environmental data layers to reconstruct

ecological variation across the landscape and the conditions under

which the species was predicted to be able to occur. To accomplish

this, an intermediate table had to be constructed, which linked

ENM predictions with environmental conditions pixel by pixel.

This table was then exported in ASCII format and imported into

programs for graphing [25].

RESULTS
The human monkeypox occurrence data set consisted of 156

unique localities, including 8 from West Africa, 146 from Central

Africa (N = 146), and 2 from Nigeria that could not be assigned

unambiguously to one group or the other for lack of viral

specimens for molecular characterization [9] (Figure 1).

Using the full set of human monkeypox occurrences, the overall

ENM (Figure 2) predicted potential distributional areas over most

humid forest areas of Africa, including much of the DRC, Republic

of Congo, Cameroon, and Gabon. A break in predicted favorable

habitat occurs in western Cameroon and western Nigeria, leaving

isolated patches of predicted potential distributional area in Ghana,

Togo, Ivory Coast, Liberia, Sierra Leone, and Guinea. In East

Africa, several isolated locations in Tanzania, Mozambique, and

Madagascar are also predicted as potentially suitable.

The relative contribution of each environmental dimension to

the overall predictive model of human monkeypox occurrence was

assessed using the jackknife procedure (Table 1). All layers except

‘frost days’ (p = 0.11) were found to have statistically significant

contributions to the model but exclusion of annual mean precipi-

tation, flow direction, and land cover resulted in the greatest

deviations, suggesting that these layers had substantial influence on

the model. Overall, this analysis pointed strongly to annual mean

precipitation as the key environmental dimension in model, as its

exclusion resulted in a substantial drop in agreement with the

model (0.63) and the largest deviation in mean pixel matches

(21.48).

The quadrant tests allowed us to examine the generality and

predictive ability of the ENMs developed in this study. We divided

Figure 1. Occurrence locations of human monkeypox. Circles show partitioning of the 156 point occurrences into Central African (red), West Africa
(blue), and unclassified (green) monkeypox genotypes.
doi:10.1371/journal.pone.0000176.g001
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Central Africa into four quadrants (Figure 3), and generated

ENMs based on two of them, to be tested via occurrences in the

other two. In general, ENMs based on two of the four quadrants

were able to predict most of the independent occurrence points—

54 of 75 points for on-diagonal quadrants predicting off-diagonal

quadrants, and 57 of 71 points for off-diagonal quadrants

predicting on-diagonal quadrants; this degree of predictive ability

was unexpectedly good, as compared with null hypotheses of no

association (binomial probabilities, both P,0.001). These results

suggest that the ENMs are robustly predicting the general picture

of occurrences of human monkeypox cases, even into broad areas

for which no input data are available.

To assess whether West and Central African human monkey-

pox cases occupy similar or divergent ecological niches, ENMs

were developed for each region individually, and projected to the

other region (Figure 4). The Central African ENM predicted 6 of

8 West African points successfully, and the West African ENM

predicted 45 of 146 Central African occurrences; both results were

significantly higher levels of agreement between niche projections

and independent test occurrence data than would be expected by

chance (binomial tests, both P,0.001). The ENM generated based

only on the 8 monkeypox occurrences from West Africa predicted

a smaller overall area for monkeypox in Central Africa. Nonethe-

less, these results suggest that the ecological niche of human

monkeypox cases is generally similar in West and Central Africa.

The general characteristics of observed human monkeypox

occurrence locations in West and Central Africa are summarized

in Table 2, where several differences are evident—e.g., elevation

and maximum precipitation are lower in West African occur-

rences, and minimum temperature is higher. A final exploratory

step in visualizing modeled African human monkeypox niches in

environmental dimensions involved assessment of how predicted

use relates to availability of conditions across landscapes in both

West and Central Africa. Figure 5 shows visualizations in 3

dimensions that illustrate broad trends. In general, West African

monkeypox is shown to occupy a restricted subset of conditions

relative to Central African monkeypox cases, but overall the two

ENMs coincide closely. The sharp break observable in the figure

for mean annual precipitation (Figure 5) indicates a concrete

decision rule chosen by the GARP algorithm; this pattern is

consistent with results of the jackknife analysis, in which removal

of precipitation from ENM development resulted in large increases

in area predicted habitable.

DISCUSSION
Our human monkeypox ENMs predict potential distributional

areas for the disease throughout much of the Congo Basin,

including parts of the DRC, Republic of Congo, Gabon, Central

African Republic, Equatorial Guinea, and Cameroon, as well as

small regions in West Africa in Nigeria, Ivory Coast, Sierra Leone,

Liberia, Ghana, and Togo. This prediction generally coincides

with the distribution of humid lowland evergreen tropical forest

across Africa. Similar to parallel studies of Ebola virus distribu-

tions) [26], the model also identifies areas of potentially favorable

habitat in East Africa–outside of regions of known human

monkeypox disease occurrence–in Tanzania, Madagascar, and

Mozambique. Interpretation of such disjunct potential distribu-

tional areas is complex—intervening areas that are apparently not

favorable may limit dispersal of the host of monkeypox virus, and

the virus may thus not occur in these areas [20]. The distributional

area of monkeypox virus predicted by this model is based

fundamentally on past identification and reporting of human

cases. Any substantial under-reporting of (locally endemic) cases,

particularly from geographic areas outside the current zone of

prediction, would potentially alter our results. However, there is

little evidence to suggest that endemic human monkeypox disease

exists beyond the boundaries identified in this study.

Table 1. Summary of statistical analysis of ‘jackknife
procedure’ used to determine environmental importance of
ecological parameters (environmental layers).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Map layer excluded Difference from all-layers map

Mean{ Std Dev P value % different# Kappa

Aspect 0.227 1.1201 ,.0001 14.90913 0.8471

Diurnal temp range 20.162 1.462 ,.0001 16.00786 0.8074

Elevation 20.266 1.265 ,.0001 14.59951 0.8366

Flow accumulation 20.014 0.9739 ,.0001 12.44882 0.8683

Flow direction 20.362 1.0288 ,.0001 11.30027 0.818

Frost days 20.005 1.0807 0.1063* 13.99543 0.8562

Land cover 0.3947 1.1047 ,.0001 15.73201 0.8418

Precipitation 21.484 2.1541 ,.0001 26.04734 0.62996

Minimum temp 0.2259 1.0138 ,.0001 13.24499 0.8606

Mean temp 20.204 1.1033 ,.0001 13.09959 0.8392

Maximum temp 20.298 1.4251 ,.0001 13.2078 0.8063

Topographic index 20.026 0.957 ,.0001 12.70847 0.8627

Wet days 20.134 1.2503 ,.0001 14.66416 0.833

({)The mean pixel value is represented with a negative integer if elimination of
the given ecological layer from the model resulted in an increased overall area
of prediction relative to the comprehensive model, whereas a positive integer
indicates a smaller area of prediction without the layer.

(#) Percent of pixel values that fell outside 1 standard deviation of the mean
pixel value from the comprehensive model.

(*) Indicates exclusion of this layer from the model resulted in no significant
difference.

(6) Indicates exclusion caused model agreement to drop below minimal
significance, suggesting loss of internal accuracy in the absence of this layer.

doi:10.1371/journal.pone.0000176.t001..
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Figure 2. Overall predicted distribution of human monkeypox based on
ecological niche modeling. Darker shades indicate areas with greater
model agreement in prediction of suitability for monkeypox. Green
points indicate input occurrences used in model development.
doi:10.1371/journal.pone.0000176.g002
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Figure 3. Summary of quadrant analyses of model robustness. (A) Central African human monkeypox occurrences divided into quadrants above and
below the median longitude and latitude. (B) Modeled distribution created using only off-diagonal (b/d, red circles) input data. (C) Modeled
distribution created using only on-diagonal (a/c, blue circles) input data. Darker shades indicate areas with greater model agreement in predicting
area as suitable for monkeypox. Human monkeypox occurrence locations indicated by triangles were not used in model construction.
doi:10.1371/journal.pone.0000176.g003

Figure 4. Ecological niche modeling results for West and Central African monkeypox. Eight West African and 146 Central African human monkeypox
occurrences are indicated with green and blue circles, respectively. (A) Modeled distribution created using only Central African (blue) input data; (B)
Modeled distribution created using only West African (green) input data. The vertical line (7.33uE longitude) denotes division between West and
Central Africa. Nigerian occurrences were excluded from model development. Darker shades indicate areas with greater model agreement in
prediction of potential suitability for monkeypox.
doi:10.1371/journal.pone.0000176.g004

Figure 5. Visualizations of modeled monkeypox virus ecological niches in two-dimensional environmental spaces. Shown are all available habitat in
the area of observation (dark blue diamonds); comprehensive monkeypox niche (pink); Central African niche (yellow), West African niche (light blue).
doi:10.1371/journal.pone.0000176.g005
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The ENMs presented herein were generated using an

evolutionary-computing approach designed to capture the broad

ecological conditions associated with human monkeypox occur-

rence. The result is a predictive model rather than an observa-

tionally determined ecologic niche. Several empirical tests of

internal predictive ability, however, indicate that the models are

quite robust and general—that is, that they can anticipate the

geographic distributions of independent data sets used in testing. A

potential criticism of this approach for determining disease

distribution is that little new information is generated, and that

the analysis simply leads to ‘‘finding the forests,’’ in this case, the

humid evergreen tropical forests of Africa. However, several lines

of evidence contradict this notion—rather a bounded ecological

space associated with presence of monkeypox virus has been

identified within forested areas. This is suggested by the identifi-

cation of mean annual precipitation rather than land cover as the

key factor in the predicted monkeypox niche, as well as inclusion

of effects of elevation and aspect as influential elements in the

model. These restricted conditions likely point to a reservoir

species, an intermediate host, or particulars of transmission that

are highly dependent upon the same parameters.

To date, the reservoir species(s) of monkeypox virus remains

undetermined. While previous studies have examined various

species of African rodents and primates as possible reservoir

species, imported rodents were implicated in the 2003 outbreak of

monkeypox that occurred in the United States of America. Given

our assumption that endemic human disease distribution in Africa

is likely to coincide with the reservoir or intermediate host species

distribution, the predicted map of human monkeypox presented

here should assist in the determination of likely reservoir

candidates [26,27]. In addition, understanding the boundaries of

probable endemic disease occurrence should help to guide public

health investigators in to determining whether outbreaks of human

monkeypox are likely due to an introduced or locally circulating

source of virus.

Our ENMs may also provide insights into other aspects of human

monkeypox disease outbreaks. Although current molecular genetic

and epidemiologic evidence indicates the existence of biologically

and genetically distinct monkeypox virus forms (14,15) in West and

Central Africa, they are very similar ecologically. Subtle differences

can be seen in ecological conditions associated with human

monkeypox in the two regions—in general, human monkeypox in

West Africa occurs in hotter, wetter conditions, and at lower

elevations than in the Congo Basin—but these differences could

simply reflect differences in habitat availability between the two

regions or could result from the very small sample size of occurrences

available to us from West Africa for model development [28].

In this study, ENM technology was used to predict the

distribution of human monkeypox, and to identify ecological

factors putatively associated with disease occurrence. The results of

this study should impact our understanding of naturally-occurring

human monkeypox and influence our expectations of where it may

occur, and which species are likely to serve as transmission vehicles

of the virus to humans. This study illustrates both the strengths and

challenges of the ENM approach in understanding biological

phenomena in remote and poorly studied regions. The small

sample sizes of monkeypox case localities available—particularly

for West Africa—may not reflect accurately the real prevalence of

the disease. On the other hand, the end product of the ENM

approach can serve as the foundation for additional hypothesis-

driven ecological and epidemiologic research.
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doi:10.1371/journal.pone.0000176.t002..
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