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Chapter 1 

Introduction 

 

The positive impact of viral vaccines on global health is difficult to overstate. Since 

Edward Jenner’s pioneering work in the late 18
th

 century, viral vaccines have proven 

their ability to control smallpox, poliomyelitis, yellow fever, rabies, measles, mumps, and 

rubella.
1, 2

 In developed countries, these diseases are now extremely rare if not 

completely eradicated. The continuing efforts of vaccinologists and virologists have lead 

to the conception, clinical evaluation, and licensure of several other virally-based 

vaccines, including those that protect against influenza, tick-borne encephalitis, varicella, 

hepatitis A and B, rotavirus, Japanese encephalitis, and human papilloma virus (HPV). 

Others are highly anticipated; among these are vaccines for human immunodeficiency 

virus (HIV), respiratory syncytial virus (RSV), and several other forms of hepatitis. 

While a variety of antigenic particles, including recombinant and purified viral protein 

monomers, are utilized in the formulation of current and next-generation vaccines, this 

work focuses on the application of a unique characterization technique to the stabilization 

of fully assembled vaccine candidate viruses and virus-like particles. A brief introduction 

to this technique shall be given, but first a short review of the use of whole viruses and 

other particles that contain certain virus-like properties as vaccines is warranted.  

A variety of supramolecular assemblies have been utilized in the laboratory 

development of new vaccines. These include (but are not limited to) virus-like particles 

(VLPs) and several types of lipid-based particulates such as liposomes, virosomes, 
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micelles, solid lipid nanoparticles (SLNs), and immune stimulating complexes 

(ISCOMs). In fact, at least three virosome formulations have been licensed for vaccine 

use in Europe and other non-US countries. Inflexal
®

 V and Epaxal
®

 are marketed by the 

Swiss company Crucell for protection against influenza and hepatitis A, respectively, 

while Solvay Healthcare (Belgium) offers Inviviac
®

, also for influenza.
3-7

 Although 

several other promising vaccine candidates have been produced in the lipid-based 

systems mentioned above (as well as others), the following paragraphs will focus only on 

the use of whole viruses and VLPs as vaccine antigens. The lipid-based systems have 

been well-reviewed
8-13

 and are less germane to the case studies that will be presented in 

subsequent chapters. 

In most cases, the intended result of vaccination is the prophylaxis of infection. 

Virally-based vaccines are formulations of either whole viruses or of virus-derived 

materials whose purpose is to elicit a protective immune response from the patient 

without conferring the pathology associated with actual infection by wild-type virus. 

While certain vaccines are composed of purified viral proteins as the primary antigen 

(e.g., subunit influenza vaccines
14-17

), the majority rely upon the enhanced 

immunogenicity of either attenuated or chemically inactivated whole viruses (or particles 

that resemble them). Vaccines that are composed of monomeric viral proteins are 

characterized by reduced immunogenicity and typically make use of adjuvants (chemical 

compounds which stimulate the immune system without themselves having any 

significant antigenic effect).
18, 19

 Whole viruses and particles that mimic natural viruses in 

terms of their size and the repetitive presentation of antigen on the particle surface, 

however, have been proposed to more effectively activate antigen-presenting cells 
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(APCs). These specialized cells of the innate immune system stimulate the induction of 

cell-based immunity through presentation of viral peptides bound to their surface major 

histocompatibility complex (MHC) proteins.
20-28

 Such antigen presentation is capable of 

stimulating not only CD8+ cytotoxic T lymphocytes (CTLs, via the MHC Class I 

pathway), but also CD4+ helper T cells (via the MHC Class II pathway) whose function 

is to stimulate the activation of B cells and CTLs. It is now generally accepted that both B 

and T cell responses to vaccination are required for the induction of long-lasting 

immunity, emphasizing the role of professional APCs such as dendritic cells (DCs) and 

macrophages in mounting a protective immune response.
29-32

  

Most human viral vaccines are composed of either killed or live, attenuated whole 

viruses. Besides their intrinsic instability, a concern regarding the use of live, attenuated 

viruses is the potential for reversion to virulence.
33-36

 Averse side effects to components 

of both killed and live virus formulations have also been reported; typically, these are 

allergic responses to animal derived proteins (e.g., gelatin in the measles-mumps-rubella 

vaccine or egg proteins in influenza vaccines).
37, 38

 An advantage in the case of live virus 

formulations, which are intended to infect and replicate non-pathogenically within the 

host, is the persistence of intact viral genomic materials (i.e., double- and single-stranded 

RNA or DNA), which have been shown to interact with Toll-like receptors expressed by 

APCs and trigger the release of pro-inflammatory cytokines that stimulate a more focused 

adaptive response.
39-48

 For this reason (and perhaps others), live virus formulations are 

generally more immunogenic in comparison to inactivated vaccines.
31

  

Other particulate systems that resemble viruses in size and presentation of antigen are 

being evaluated (and in a few cases, licensed) for use as vaccines. Perhaps foremost 
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among these are VLPs: self-assembled particles that form spontaneously upon 

recombinant expression of one or more structural viral proteins.
49-55

 While these particles 

contain none of the native viral genetic information (and thus are replication 

incompetent), they are otherwise structurally similar to native viruses - so much so that 

they can be administered as vaccines to induce a protective immune response. VLP-based 

vaccines have been licensed for both HPV
56-61

 and hepatitis B.
62, 63

 VLP vaccine 

candidates for Norwalk virus are now in clinical trials,
64-66

 with several others in 

preclinical development (including influenza VLPs,
67, 68

 and additional others that are 

reviewed in reference 69). Not only have these particles been produced for both 

enveloped and non-enveloped viral strains,
50, 69

 but also chimeric VLPs have been 

generated from the expression of proteins from multiple strains. The purpose of 

producing a chimeric VLP is to either confer altered tropism through the expression of 

non-native cell-targeting proteins, or simply to introduce new immunogens into a familiar 

vector whose manufacturing and purification requirements are already well-understood.
35, 

70-78
 In some cases even non-viral antigens have been incorporated; a phase I trial of 

hepatitis B VLPs containing epitopes from the malaria parasite Plasmodium falciparum 

was recently conducted. Unfortunately, although the vaccine was well-tolerated, it did not 

induce a strong immune response.
79

 VLPs as vaccines offer at least two significant 

advantages over whole viruses. First, as recombinant particles they are easily produced in 

insect, yeast, or mammalian cells. The scalability of such production systems offers 

obvious advantages over the egg-based production method used in several vaccine 

manufacturing processes (e.g., rabies, influenza).
80

 Second, the particles produced do not 

contain viral genomic material, so the costly (and in some cases dangerous) process of 
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viral inactivation is simplified if not abrogated. In a similar fashion, the problem of 

mammalian viral contaminants is abolished if a non-mammalian expression system is 

utilized.
50, 52, 81

 

A number of studies have been devoted to determining the mechanisms by which 

VLPs are able to induce a protective immune response, showing in some cases that VLPs 

do not require adjuvants in order to achieve potent immune stimulation. VLPs have been 

shown to induce cellular maturation and subsequent secretion of cytokines from DCs.
82

 

One study involving hepatitis B surface antigen showed that both macrophages and DCs 

are capable of processing and presenting fragments of the 22-nm particles via the MHC 

Class I pathway.
83

 This is true of VLPs derived from non-enveloped viruses such as 

HPV, 
84, 85

 as well as those derived from Ebola and Marburg viruses with intact viral 

envelopes.
86

 VLPs can activate both CD4+ and CD8+ lymphocytes, and also instigate 

humoral immunity.
34, 87-96

 One review
69

 points out that VLPs may actually have a 

therapeutic advantage over whole viruses in this context; certain viruses that infect DCs 

interfere with cellular activation and maturation through the expression of certain viral 

proteins,
97-99

 and even inactivated Marburg and Ebola viruses suppress the activation of 

DCs, apparently by the presence of one or more native proteins that are absent from 

VLPs.
86

 

The complex molecular architecture of viral assemblies and intricate system of 

immunological recognition events necessary to induce protective immunity can make the 

formulation of viral vaccines a difficult task. Mitigating the strong dependence of vaccine 

potency on storage temperature is perhaps foremost among the concerns of a formulation 

scientist; a large number of viral vaccines are characterized by thermal instability.
100-102
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Many vaccines that have high immunogenicity (e.g., unadjuvanted formulations of live, 

attenuated viruses) are formulated as lyophilized solids for this very reason. Adjuvant-

containing vaccines typically cannot be frozen, however; aluminum salt adjuvants (the 

only USFDA-approved adjuvants for human administration) are known to agglomerate 

upon freezing.
103, 104

 Recent work by Chen et al indicates a strong correlation between 

particle agglomeration and reduced potency of an aluminum salt-containing hepatitis B 

vaccine.
105

 On the other hand, Clausi et al have demonstrated that the aggregation of 

Alhydrogel
TM

 (a commercial aluminum hydroxide adjuvant) can be minimized or 

eliminated if faster drying rates are used, or if sufficient amounts of glass-forming 

excipients (such as trehalose) are added.
106

 The requirement (and industrial preference) 

that many vaccines be formulated as liquids means that they are susceptible to a 

multiplicity of chemical and physical degradation processes that must be characterized to 

support the development of stable formulations. Chemical degradation processes 

applicable to vaccines include the covalent modification of macromolecular components 

– often these are induced by light or the presence of chemical contaminants (e.g., 

oxidants), though processes such as the deamidation of asparagine residues will occur as 

a function of proton concentration (and protein structure).
107

 Physical degradation 

processes represent another important set of inactivation pathways applicable to all 

vaccine materials. Physical stability in this context refers to the propensity of vaccine 

macromolecular components to alter in some way their non-covalent physical properties 

(such as size, shape, morphology, etc.). Specific examples include changes in protein 

conformation, and particle aggregation or disintegration. Disruption of protein secondary, 

tertiary, or quaternary structure can result in the formation of partially unfolded, 
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aggregation-competent conformations.
108

 Another potential result of the structural 

disruption of vaccine proteins is loss of three-dimensional epitopes or other functional 

structures required for recognition by the immune system. A similar problem applies to 

whole viruses and virus-like particles; physical degradation in the form of particle 

aggregation, disintegration of viral capsids, or disruption of viral membranes can 

interfere with recognition by the immune system and/or infection of target cells. While 

chemical modifications to vaccine components are easily detected by well-established 

chromatographic and mass spectrometry-based techniques, a number of calorimetric, 

spectroscopic, and light scattering methods are available that enable characterization of 

the physical stability of macromolecular systems, including virally-based vaccine 

candidates. A brief and general description of a relevant subset of these techniques will 

be given here, while notes on their specific application will appear in the case studies 

outlined in following chapters. 

Differential scanning calorimetry (DSC) is a relatively simple technique that can 

yield quantitative comparisons of the thermostabilty of vaccine formulations.
109-113

 Since 

it is a general method that measures the change in heat capacity as a function of 

temperature,
114, 115

 it typically does not provide molecular level detail when used in the 

characterization of complex macromolecular assemblies. Rigorous thermodynamic 

analysis can be performed using DSC data when the measured transitions are reversible, 

but this is rarely observed in the case of complicated, multicomponent particles such as 

viruses and VLPs. One drawback to DSC is that, in comparison to light scattering and 

spectroscopic techniques, it typically requires samples of higher concentration to 

accurately measure reproducible thermal transitions 
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Both static and dynamic light scattering measurements are useful in the analysis of 

the physical stability of macromolecular systems, including viral particulates.
116-120

 Static 

light scattering (SLS) can be used to determine the molecular weight and radius of 

gyration of particles in solution. As the intensity of scattered light depends on the 

refractive index increment as well as the size and shape of scattering particles,
114

 SLS is 

also sensitive to physical alterations that lead to changes in particle refractive index (e.g., 

changes in particle density due to swelling). Dynamic light scattering (DLS) methods 

make direct measurements of particle hydrodynamic radii through mathematical analysis 

of fluctuations in the intensity of scattered light caused by the particles’ Brownian motion 

within a small solution volume,
121

 and are thus well-suited to detecting changes in 

particle size due to aggregation, swelling, or disintegration.
122-124

 

 A variety of spectroscopic techniques are applicable to the physical 

characterization of vaccine materials. Circular dichroism (CD) and fluorescence 

spectroscopies are among the most versatile and widely-implemented, though high-

resolution second derivative ultraviolet (UV) absorption spectroscopy has also been used 

in many cases for the characterization of vaccines and other protein-containing 

materials.
125-128

 CD, which detects differences between sample absorption of right- and 

left-handed circularly polarized light, is used to monitor the secondary structure of 

proteins when the incident light is from the far-UV region.
114, 129

 Due to electronic 

transitions that are controlled by the interaction between amide group electric and 

magnetic dipole transition moments,
130

 secondary structural elements (i.e., α-helix, β-

sheet, random coil, etc.) have characteristic spectral signatures that result from the 

repeating conformation of the amide polypeptide backbone.
114, 131

 The intrinsic 
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fluorescence of proteins is due to the aromatic side chains of phenylalanine, tryptophan, 

and tyrosine, although the fluorescence of tryptophan is of much greater magnitude (and 

utility) due to its significantly higher quantum yield. Due to their apolar character, the 

side chains of aromatic amino acids are often located in solvent-restricted domains of 

ordered proteins. As the fluorescence properties of these residues are sensitive to the 

polarity of their local environment, intrinsic fluorescence measurements are commonly 

used to detect the presence of non-native protein tertiary structural conformations that 

result from changes to the solvent accessibility of amino acid fluorophores.
132-136

 

Extrinsic fluorescence methods that make use of small molecular probes to detect 

physical changes to macromolecular systems are also available.
137

 The use of these 

compounds also generally relies on the response of their fluorescence properties to the 

polarity of their local environment. The structural variety and small size of these 

molecules allows the selection of probes that display affinity for specific viral structures, 

such as non-polar protein regions
138-140

 or the lipid bilayer
141, 142

 that surrounds enveloped 

viruses. 

 The use of biophysical characterization methods as formulation tools for virus-

derived vaccines relies on the widely accepted relationship between macromolecular 

structure and function. In the context of viral systems, the techniques described above 

cannot be used to derive high-resolution (atomic level) descriptions of physical stability. 

On the other hand, viruses and VLPs are composed of macromolecular structural 

elements that have well-defined physical structures essential for their normal functions in 

vivo. Such virus-derived particles are therefore normally characterized by well-defined 

size and shape parameters, and also typically yield reproducible spectroscopic signatures 
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that can be detected by an assortment of complementary techniques. As the signals from 

these techniques derive from the well-defined structural elements of viral particulates, 

changes in their values can reasonably be assigned to alterations in critical structural 

features responsible for immunogenicity. One challenge in the use of these measurements 

as formulation tools is the integration of signals from the oft-required large number of 

techniques required to obtain a comprehensive representation of the physical stability of 

complex particles. One way to overcome this difficulty is the use of a relatively recent 

vector-based visualization technique that is capable of synthesizing a large number of 

biophysical measurements from a variety of techniques into an empirical phase diagram 

(EPD) that represents changes in physical state as a function of relevant stress factors.
127, 

143-145
 While other, high-resolution structural techniques such as nuclear magnetic 

resonance (NMR) and X-ray crystallography literally strive to obtain atomic-level 

pictures of macromolecular systems, the EPD approach is somewhat opposite. The basis 

of this approach is the construction of an abstract, highly dimensional vector-based 

description of the system under scrutiny. This completely mathematical representation of 

the system is then subjected to a series of linear algebraic operations, allowing distillation 

of a large number of vector components (directly obtained from the original biophysical 

dataset) into a three-color block diagram that discriminates the most important physical 

alterations by analysis of their relative magnitudes. These physical alterations are 

represented by boundaries between colored blocks (phases) that appear as a function of 

stress factors applied in the original experiments. The following chapters present a series 

of case-studies in which this approach has been applied to the stabilization of several 
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viral vaccine candidates, including VLPs for Norwalk and influenza viruses, as well as a 

live, attenuated measles virus. 
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Chapter 2 

Physical Stabilization of Norwalk Virus-Like Particles 

 

Overview 

Norwalk Virus (NV) and Norwalk-like viruses, collectively known as 

Noroviruses, are recognized as the most common cause of viral gastroenteritis among 

adults in the United States.
1
 It is estimated that more than 40% of foodborne outbreaks of 

gastroenteritis are attributable to Noroviruses.
2
 These highly contagious viruses can be 

transmitted by contaminated food, water, or direct person-to-person contact.
3
 Norovirus 

outbreaks have been documented on cruise ships, at daycare centers and schools, and 

among members of the military.
4
 Severe illness is rare, but unusual complications can 

occur in the elderly, in children, and in immunocompromised individuals.  

Since its discovery more than thirty years ago, NV has become one of the most 

extensively studied and best-understood viruses of the genus Norovirus. NV is a 

nonenveloped virus with a unique capsid composed almost entirely of 180 copies of a 58 

kDa protein (VP1).
5
 A few copies of a small basic protein, the minor capsid protein 

(VP2), are also present in the virions, and are believed to be important for stabilization of 

the icosahedral structure.
6
  

Several expression systems have been developed for the production of VP1, 

including baculovirus-infected insect cells,
7
 bacteria,

8
 yeast,

9
 and transgenic plants.

10
 

Recombinantly-expressed VP1 monomers spontaneously assemble into non-replicating, 

non-pathogenic virus-like particles (NV-VLPs). NV-VLPs are morphologically identical 
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to native capsids, with a T=3 icosahedral symmetry and a diameter of approximately 38 

nm.
7
 NV-VLPs have been shown to be immunogenic in mice and humans

11,12
, inducing 

systemic and mucosal responses. Since NV infects the gastrointestinal tract, 

immunization strategies that elicit enhanced mucosal responses may play an important 

role in development of an efficacious vaccine.
12

  

Interest in using VLPs as vaccine antigens has been fueled by the recent licensure 

of a VLP-based vaccine that protects against different types of human papillomavirus 

(HPV).
13

 VLPs are also being considered as antigens for vaccination against other 

virally-mediated pathologies, including human immunodeficiency virus (HIV)
14

 and 

influenza virus.
15

 Although VLPs are generally considered more stable than attenuated 

viral vaccines,
16-18

 formulation activities for pharmaceutical application should consider 

stabilization of their native particulate structure. 

We recently characterized the stability of NV-VLPs over a broad range of pH and 

temperature.
19

 The resulting empirical phase diagram
20,21

 indicated significant NV-VLP 

conformational stability at neutral and acidic pH up to 55 °C. However, over the same pH 

range, temperatures at or greater than ~ 60 °C caused extensive NV-VLP aggregation.
19

 

In the current work, this latter observation served to define the conditions used to screen 

an excipient library for substances that would inhibit the rate of particle aggregation. 

Those excipients shown to inhibit aggregation were subjected to more rigorous analyses 

in attempts to elucidate their mode of action. Several excipients were found to enhance 

the conformational stability of NV-VLPs, as well as inhibit their aggregation under stress 

conditions. 



 

 39 

Materials 

Purified Norwalk virus-like particles (NV-VLPs) were obtained from LigoCyte 

Pharmaceuticals, Inc. Reagents and materials used for purification of NV-VLPs are as 

follows. Sodium phosphate, ammonium sulfate, and Sepharose
®

 CL6-B resin were 

purchased from Sigma Aldrich (St. Louis, Missouri). Hydroxyapatite resin, CHT Type II, 

and methyl-hydrophobic interaction (Me-HIC) resins were obtained from Bio-Rad 

(Hercules, CA). PBS pH 6.5 solution and 0.2 µm cellulose acetate syringe filters were 

supplied by Fisher Chemical (Fair Lawn, NJ). Ten kDa nominal mol. wt. cutoff 

(NMWCO) Amicon ultrafiltration concentrators were obtained from Millipore (Billerica, 

MA), and 10 kDa NMWCO Slide-A-Lyzer dialysis cassettes were purchased from Pierce 

(Rockford, IL).  

D-sucrose was obtained from Fluka/Sigma-Aldritch Chemie GmbH (St. Louis, 

Missouri). D-lactose monohydrate, glycerol, D-sorbital, and dextrose were obtained from 

Sigma-Aldrich (St. Louis, Missouri). D-mannitol was obtained from Fisher Chemical 

(Fairlawn, New Jersey), and α,α-trehalose dihydrate was purchased from Ferro 

Pfanstiehl Laboratories, Inc. (Waukegan, Illinois). Concentrated stock solutions of the 

aforementioned compounds were prepared by dissolution in 20 mM citrate/phosphate 

(CP) buffer, pH 5 or 7 (reported final concentrations are weight-by-volume (w/v) percent, 

except for glycerol, for which the concentration is reported as volume (v/v) percent). 

Following dissolution, the pH was adjusted to 7 with NaOH or HCl. Chitosan glutamate 

(Protasan
TM

 UP G 213) was obtained from NovaMatrix, FMC BioPolymer AS (Drammen 

Norway). A 1% weight-by-volume chitosan solution was prepared by dissolution in 20 



 

 40 

mM acetate buffer, pH 5. Following dissolution, the pH was adjusted to 5 with NaOH or 

HCl. Other library compounds were obtained as described elsewhere.
22

 

ANS (8-anilino-1-naphthalene sulfonate) was from Molecular Probes (Eugene, 

Oregon); a 10 mM stock solution was prepared by dissolution of ANS in 

dimethylsulfoxide (DMSO, Fisher Chemical). 

 

Methods 

Purification of NV-VLPs 

Norwalk VP1 monomers were expressed in a baculovirus-transformed 

Spodoptera frugiperda (Sf9) ovarian cell line as described by Jiang, et al.
7
 Intact NV-

VLPs were purified as follows: 5-6 days post infection, cellular milieu was cleared by 

centrifugation at 1000 x g for 10 min at 4 °C. All other steps were conducted at room 

temperature. One L of clarified supernatant fraction was loaded at 10 mL/min onto a 100 

mL CHT column previously equilibrated with 10 column volumes (CV) of buffer A (5 

mM sodium phosphate buffer, pH 6.5), followed by continued washing with buffer A at 

10 mL/min until baseline was reached (~ 2 CV). Using 5 CV of buffer B (150 mM 

sodium phosphate, pH 6.8), NV-VLPs were eluted at a flow rate of 10 mL/min from the 

CHT column and collected in 100 mL volumes. Aliquots from collected fractions were 

analyzed by SDS-PAGE and Coomassie staining. Fractions that contained NV-VLP 

protein were pooled, and solid ammonium sulfate was added to a final concentration of 

0.6 mM and stirred until the ammonium sulfate was dissolved. Pooled fractions were 

loaded at 10 mL/min onto a 100 mL Me-HIC column previously equilibrated with 5 CV 

of buffer C (100 mM sodium phosphate, pH 6.8 supplemented with 2.4 M ammonium 



 

 41 

sulfate). The Me-HIC column was then washed with buffer C until the UV trace returned 

to baseline (~ 3 CV), followed by a second wash with 10 CV of buffer D (100 mM 

sodium phosphate, pH 6.8 supplemented with 1.68 M ammonium sulfate), both at 10 

mL/min flow rate. NV-VLPs eluted from the Me-HIC column using 100% buffer B at 10 

mL/min were collected into 10 mL fractions, and aliquots were removed for analysis by 

SDS-PAGE and Coomassie staining. Fractions that contained NV-VLPs were pooled, 

and further purified using a 400 mL gravity flow size exclusion column with Sepharose
®

 

CL6-B resin previously equilibrated with 3 CV of PBS, pH 6.5 at 10 mL/min flow rate. 

The exclusion volume fractions with UV absorbance were collected, concentrated using a 

10 kDa nominal mol. wt. cutoff (NMWCO) concentrator, and dialyzed extensively 

against deionized water using a 10 kDa dialysis cassette. The retentate was sterile filtered 

with a syringe filter and stored in water at 4 °C.  

 

Screening of stabilizers 

 An aggregation kinetic assay was used to screen a library of primarily GRAS 

excipients for their ability to prevent aggregation of NV-VLPs at 60 °C at pH 5. These 

conditions were based on studies reported previously.
19

 A complete description of the 

library is given elsewhere.
22

 Optical density (OD) measurements at 360 nm of NV-VLP 

samples in the presence of various excipients were taken every 2.5 minutes over the 

course of 1 h with a Hewlett-Packard 8453 UV-Visible diode-array spectrophotometer 

(Agilent, Palo Alto, California) equipped with a Peltier temperature controller. A NV-

VLP concentration of 50 µg/mL was employed for all experiments; samples were 
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prepared in duplicate. Compounds that inhibited aggregation of NV-VLPs relative to a 

control sample (prepared without excipients) were selected for further study. 

 

Circular dichroism spectroscopy 

Circular dichroism (CD) spectra were acquired with a Jasco J-810 

spectropolarimeter (Tokyo, Japan) equipped with a Peltier temperature control device and 

a six position sample holder. The effect of temperature on the secondary structure of NV-

VLPs (in the presence or absence of excipients) was investigated by monitoring the CD 

signal at 222 nm as the temperature was ramped at a rate of 15 °C/hour. Measurements 

were taken every 0.5 °C over the temperature range of 10-90 ºC. Duplicate samples of 

NV-VLPs were prepared at a concentration of 100 µg/mL for all experiments. Baseline 

measurements were taken of buffer prepared with the appropriate concentration of 

excipient(s) and subtracted from the measurements made of NV-VLP-containing samples 

prior to data analysis. For ease of data comparison, CD measurement values were 

normalized between 0 and -1.  

 

Fluorescence spectroscopy 

Fluorescence of the molecular probe ANS was used to characterize stabilization 

of the tertiary structure of NV-VLPs by various excipients. A 10 mM solution of ANS in 

DMSO was added to NV-VLP samples prepared with and without excipients to give a 

final ANS concentration of 80 µM. Using an excitation wavelength of 385 nm, the 

fluorescence intensity of ANS at 485 nm was recorded every 2.5 °C over the temperature 

range of 10-85 °C; a temperature ramp rate of 15 °C/min was employed for these 
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experiments. Fluorescence measurements were made with a Photon Technologies 

International, Inc. (Birmingham, New Jersey) Quanta Master fluorometer equipped with 

a temperature-controlled four-position cell holder. Duplicate NV-VLP samples were 

prepared at a protein concentration of 100 µg/mL. Baseline spectra of samples composed 

of buffer, ANS, and excipient (where applicable) were subtracted from each sample 

spectrum prior to analysis. Fluorescence intensity measurements were normalized 

between 0 and 1 to facilitate comparisons between data sets. 

 

Differential scanning calorimetry 

Calorimetric measurements of NV-VLP samples prepared with and without 

excipients were performed with a VPCap-DSC autosampling differential scanning 

microcalorimeter (MicroCal, LLC, Northampton, Massachusetts). A scan rate of 60 

°C/hour was used over the temperature range 10-115 °C. Duplicate samples prepared at a 

NV-VLP concentration of 500 µg/mL were loaded into 96-well plates and maintained at 

4 °C in the instrument autosampler. Scans of NV-VLPs in the presence of excipient were 

compared to reference thermograms of samples containing excipient alone in buffer (no 

NV-VLPs). Data analysis was performed using the MicroCal LLC DSC plug-in for the 

Origin 7.0 software package. 

 

Results 

Screening for inhibitors of NV-VLP aggregation 

The rate of aggregation of NV-VLPs at 60 °C and pH 5.0, measured as the 

increase in optical density at 360 nm over time, was used to screen for potential 
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stabilizers. These conditions were selected based on preliminary studies and the apparent 

phase boundaries identified in the previously reported empirical phase diagram (EPD).
19

 

A library of 30 (primarily GRAS) compounds, including carbohydrates, detergents, 

amino acids, and polyions
22

 were screened for their ability to inhibit NV-VLP 

aggregation. Although aggregation was measured, the observed changes may also reflect 

alterations in structure (conformational changes) that are responsible for the subsequent 

particle association.  

Based on the kinetic aggregation assay, several of the excipients displayed the 

ability to inhibit aggregation of NV-VLPs (Figure 2.1). These include chitosan glutamate 

(a polysaccharide), the disaccharides lactose, trehalose, and sucrose (not shown), and the 

monosaccharide dextrose. In addition, glycerol, sorbitol, and mannitol (not shown) were 

also effective in preventing aggregation of NV-VLPs. Each of the excipients listed were 

selected for more detailed study to examine their specific influence on the structural 

stability of the NV-VLPs.  

 

Circular dichroism studies 

The effect of various stabilizers on the stability of NV-VLP secondary structural 

elements was studied by monitoring the ellipticity at 222 nm over the course of a 

temperature ramp from 10-90 °C. Using this method, an increase in the midpoint 

temperature at which structural transitions occur (Tm) is interpreted as increased stability. 

Figure 2.2 shows representative CD melting curves for NV-VLPs formulated with 

selected excipients. The results, summarized in Table 2.1, indicate that both sugars and 

polyols stabilized the NV-VLP secondary structure as evidenced by shifts to higher Tm 
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values relative to control samples (i.e., NV-VLPs without stabilizers). NV-VLPs alone at 

pH 7 have a Tm of 61.0 °C, while NV-VLPs formulated with various excipients 

manifested increased Tm values in the range of 64.1 – 69.6 °C (∆Tm ~ 3-9 °C). Chitosan 

glutamate, which is poorly soluble at pH 7, was tested at pH 5, and yielded a Tm of 70 °C 

at a concentration of 0.75 % (w/v). Unfortunately, at pH 5 a clean scan of a control 

sample of NV-VLPs was not obtained due to extensive aggregation. The consequent low 

signal-to-noise ratio precluded accurate calculation of the Tm in this case. 

The ability of certain excipients to stabilize NV-VLP secondary structure was also 

shown to be concentration-dependent. As illustrated in Figure 2.3, most of the selected 

stabilizers exhibited a concentration-dependent increase in stabilization as reflected by an 

elevated Tm. 

 

Fluorescence studies 

The ability of various stabilizers to protect NV-VLP tertiary structure against 

thermal perturbation was assessed using the fluorescent molecular probe ANS. ANS 

preferentially binds apolar protein regions resulting in an increase in fluorescence at 485 

nm. In an aqueous system, the majority of the non-polar side chains of a protein in the 

native state are typically buried and not solvent-accessible. Thermally-induced structural 

perturbations tend to increase exposure of apolar protein regions, which in turn results in 

increased binding of ANS and a corresponding increase in fluorescence. Figure 2.4 shows 

an example of the effect of temperature on the fluorescence intensity of ANS in the 

presence of NV-VLPs and selected excipients. All of the excipients listed in section 3.1 

displayed the ability to inhibit NV-VLPs tertiary structural transitions (see Table 2.1). At 
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pH 7, the control sample exhibited a Tm of 58.7 °C, while NV-VLPs formulated with the 

various sugars and polyols produced Tm values in the range of 60.8 – 64.4 °C. At pH 5, 

the control sample had a Tm of 63.4 °C, while NV-VLPs in the presence of chitosan 

glutamate or a combination of chitosan glutamate and sucrose had slightly elevated Tm 

values of 65.4 and 65.3 °C, respectively. 

The effect of selected excipients on NV-VLP tertiary structure was also 

concentration dependent. Figure 2.5 illustrates the relationship between Tm and 

concentration of the excipients sucrose, trehalose, and sorbitol. For the disaccharides, 

incremental increases in excipient concentration yielded a quasi-linear increase in Tm 

over the concentration range examined. Sorbitol, on the other hand, conferred increasing 

stability up to a concentration of 20%, but decreased the Tm at 25%. 

 

Differential scanning calorimetry 

Consistent with previous work,
19

 DSC thermograms of NV-VLP suspensions 

showed two endothermic transitions when fit to a non-two-state model (representative 

examples of baseline subtracted raw thermograms are shown in Figure 2.6). The Tm 

values measured for NV-VLPs in the presence of various excipients are summarized in 

Table 2.2. While the spectroscopic results reported above indicate improved overall 

stability of NV-VLPs when formulated with excipients, the DSC experimental results 

were somewhat less predictable. Improved stability, implied by increased Tm values, was 

inconsistent – in fact, many of the excipients actually reduced the Tm values, especially 

for Tm2 (i.e., the transition occurring at higher temperature). Figure 2.7 compares the 

DSC thermograms of NV-VLPs in the presence of selected excipients, showing that 
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while there may not have been a dramatic effect on the Tm values compared to the control 

sample, each of the excipients did seem to exert a unique influence on the thermal 

energies required for each of the two transitions. As an example, the Tm1 peak area of the 

control sample was almost six times larger than that of Tm2, indicating that greater 

thermal energy was required to produce the initial transition. In contrast, in the NV-VLP 

sample formulated with 20% dextrose, both transition peaks had nearly identical areas, 

implying that the associated energies were similar in magnitude. 

Once again, the effect of incrementally increasing the concentration of selected 

stabilizers was examined, this time by DSC. Figure 2.8 shows the effect of increasing 

concentration of either sucrose (pH 7) or chitosan glutamate (pH 5) in NV-VLP 

suspensions. In terms of Tm values, increasing concentrations of chitosan glutamate 

yielded higher Tm values for both of the transitions. Sucrose, on the other hand, had little 

effect on Tm1 and actually reduced the value of Tm2. With respect to the relative transition 

peak areas, Tm1 was clearly dominant in the control sample. However, as the 

concentration of sucrose was increased, the Tm2 peak area increased relative to Tm1 and 

eventually became dominant at a sucrose concentration of 40%. In contrast, increasing 

concentrations of chitosan glutamate had little effect on Tm2 peak areas. Tm1 peak areas, 

on the other hand, increased substantially at 0.5% chitosan glutamate but diminished to 

near control sample levels at 0.75%. 

 

Discussion 

The analysis of physical changes in the active ingredient(s) of a vaccine under 

pharmaceutically-relevant stress conditions (e.g., changes in temperature, pH, etc.) 
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provides information that can be used for rational design of formulations with superior 

stability characteristics. In the preceding sections, a simple, rapid process for identifying 

physical stabilizers of NV-VLPs in aqueous suspension is described. This approach was 

used previously to guide the formulation of other vaccine candidates, including 

respiratory syncytial virus (RSV), malaria, and anthrax.
22-24

 In the current study, a variety 

of sugars and polyols were shown to inhibit the rate of aggregation of NV-VLPs in 

solution. Based on previous studies with these particles,
19

 thermally-induced aggregation 

appears to be the result of interactions between NV-VLP capsid proteins that have 

adopted non-native conformations: most probably, exposure of apolar amino acid side-

chains to the aqueous solvent promotes intermolecular interactions that result in capsid 

aggregation. Based on this assumption, stabilizers that prevent aggregation may exert 

their effect by stabilizing the native state of the capsid proteins, allowing apolar 

functional groups to remain buried in protein interiors or at subunit interfaces. On the 

other hand, the stabilizers could have simply interfered with the protein-protein 

interactions that are responsible for the aggregation process. Therefore, structural 

integrity of the antigen cannot be inferred based on lack of aggregation alone.  

If the antigenicity of NV-VLPs relies on epitopes that exist in the native state,
25

 

additional analytical methods must be employed to examine how stabilizers impart their 

effects. To this end, the effect of each excipient on NV-VLP protein secondary and 

tertiary structure was examined by spectroscopic techniques. From within the group of 

excipients chosen for detailed analyses, all were shown to stabilize both the secondary 

and tertiary structure of NV-VLPs. This result is not unexpected, given that sugars and 

polyols have been shown to be effective stabilizers in other vaccine formulations
22-24,26
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and are well-known general stabilizers of protein structure.
27,28

 Compounds such as those 

studied here are proposed to stabilize the protein native-state through a “preferential 

hydration” mechanism, in which the presence of osmolyte-like molecules in solution 

lowers the free energy of the native state relative to structurally disrupted forms.
29

 On the 

other hand, Tm values measured in the presence of sorbitol above a concentration of 20% 

indicate either no improvement (Figure 2.3) or a decrease (Figure 2.5) in conformational 

stability. It is possible that, at concentrations in the range of 20 to 25%, sorbitol is able to 

bind directly to the surface of NV-VLPs and thereby reduce their conformational 

stability. The number of replicates performed in these experiments does not permit 

statistical discrimination between the mean values reported, however, so the possibility of 

experimental error should be taken into account when analyzing these data. It should also 

be noted that, in general, the transition temperatures detected by ANS fluorescence are 

always lower than those observed by CD (2-5 °C on average). This may suggest the 

existence of a molten globule-like conformational intermediate, but further experiments 

are necessary to fully demonstrate the presence of such an intermediate in the unfolding 

of NV-VLPs. 

 X-ray crystallographic studies
5
 of the NV-VLP revealed an icosahedral structure 

formed from repeating, non-covalently bound pentameric structures composed of dimers 

of VP1. The two principal domains of VP1 are denoted P (protruding) and S (shell). The 

P domain is proposed to coordinate interactions to form VP1 dimers, while the S domain 

is responsible for dimer-dimer interactions. Calorimetric studies conducted on non-

stabilized NV-VLPs by Ausar et al
19

 have shown that each of the two domains exhibits a 
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distinct thermal transition. The intensities of the two transitions differ, with the more 

intense of the two assigned to the P domain.  

In the present work, thermograms of control NV-VLPs at pH 5 (Figure 2.8) 

showed two distinct transitions at temperatures consistent with those observed by Ausar 

et al. Chitosan glutamate at 0.5% concentration caused an increase in both transition 

temperatures and a considerable increase in Tm1 peak area, suggesting that the increased 

stability was primarily attributable to stabilization of the P domain. At 0.75% chitosan 

glutamate concentration, transition temperatures were increased slightly above those 

observed at 0.5% chitosan glutamate, but the peak area of Tm1 was diminished to near 

that of the control (Figure 2.8). This complex, concentration-dependent behavior suggests 

that the apparent increased thermal stability was due to multiple mechanisms.  

When NV-VLPS were formulated at pH 7 with the various polyols, mono-, or 

disaccharides, the observed effects on thermal stability were not straightforward. The Tm 

of the transition corresponding to the P domain, (i.e., the transition of greatest intensity) 

changed relative to the Tm of the S domain transition. This effect was dependent on the 

excipient and its concentration (Figures 2.7 and 2.8). In most cases, the relative 

intensities of the two transitions also change, confounding the assignment of either peak 

to a particular domain of VP1. Only sucrose, at a concentration of 20%, increased the 

midpoint temperature of both transitions. No other excipient was able to increase the 

thermal stability of the higher temperature transition at pH 7, and only a few were able to 

increase the Tm of the lower temperature transition. The differential effect that many of 

the potential stabilizers produced on NV-VLP thermal stability (i.e., increasing Tm1 while 

reducing Tm2) could be due to the fact that the monomeric protein has two strongly 
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delineated subdomains that serve separate functions and presumably are subject to 

different molecular environments while contributing to the overall NV-VLP structure. 

Clearly, additional study is required to elucidate this complex behavior. In addition, care 

must be taken when using Tm values to predict stability of macromolecular systems at 

temperatures much lower than the Tm (e.g., storage conditions). Given the temperature 

dependant nature of destabilizing processes such as protein unfolding, it is possible that 

observations of increased stability in the presence of excipients based on Tm values may 

not necessarily be predictive of increased conformational stability at lower temperatures. 

On the other hand, the successful use of Tm values in the empirical rank-ordering of 

potential formulations has been demonstrated in numerous cases.
30-32

 Finally, we 

emphasize that the stability of NV-VLPs in the presence of excipients has only been 

measured from a purely physical standpoint. Future work should address evaluating these 

potential stabilizers for their ability to preserve the antigenicity and/or inhibit the rate of 

chemical degradation of NV-VLPs. 
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Table 2.1. Summary of results from circular dichroism and ANS fluorescence 

studies of NV-VLPs in the presence of selected compounds. All samples were 

prepared at pH 7, with the exception of those that contained chitosan, which were 

prepared at pH 5. Tm values are in units of °C. 

 CD    ANS  
Excipient 

Excipient 

Concentration 
Tm SD ∆∆∆∆Tm  Tm SD ∆∆∆∆Tm 

none 

(control, pH 7) 
- 61.0 0.0 -  58.7 0.1  

20% 64.8 0.1 3.8  61.8 0.0 3.1 

30% 65.6 0.0 4.6  63.6 0.6 4.9 

 

Sucrose 

 
40% 69.6 0.5 8.6  64.4 0.1 5.7 

20% 65.5 0.1 4.5  62.3 0.3 3.6 

30% 66.3 0.6 5.3  63.1 0.3 4.4 

 

Trehalose 

 
40% 68.4 0.6 7.4  64.4 0.1 5.7 

15% 64.8 0.5 3.8  62.0 0.7 3.3 

20% 67.2 0.2 6.2  62.8 0.1 4.1 

 

Sorbitol 

 
25% 67.2 0.1 6.2  62.0 0.4 3.3 

Mannitol 15% 66.7 0.4 5.7  61.5 0.2 2.8 

Lactose 15% 67.8 0.1 6.8  61.3 0.2 2.6 

Glycerol 20% 64.1 0.7 3.1  60.8 0.2 2.1 

Dextrose 20% 69.2 0.2 8.2  62.7 0.3 4.0 

none 

(control, pH 5) 
- - - -  63.4 0.3 - 

0.50% 69.5 0.1 -  - - - 
Chitosan 

0.75% 70.0 0.4 -  65.4 0.0 2.0 

Combination:  

Sucrose 2% 

Chitosan 0.20% 

69.9 

 

0.1 

 

- 

 
 

65.3 

 

0.3 

 

1.9 
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Table 2.2. Summary of results from differential scanning calorimetry studies of NV-

VLP stability in the presence of selected excipients at various concentrations.  All 

samples were prepared at pH 7, with the exception of those that contained chitosan, 

which were prepared at pH 5. 

 Tm1 (°C)  
 

 Tm2 (°C)  

Excipient 
Excipient 

Concentration 
Mean SD ∆∆∆∆Tm1 

 
Mean SD ∆∆∆∆Tm2 

none 

(control, pH 7) 
- 62.3 0.2 - 

 
68.9 0.0 - 

20% 63.9 0.1 1.6  70.5 0.2 1.6 

30% 62.3 0.0 -0.1  64.9 0.1 -4.0 

  

Sucrose 

  
40% 62.5 0.3 0.2  65.2 0.3 -3.7 

20% 61.7 0.2 -0.6  64.5 0.1 -4.4 

30% 64.1 0.3 1.8  65.3 0.3 -3.5 

  

Trehalose 

  
40% 63.8 0.9 1.5  65.5 0.1 -3.4 

15% 61.6 0.0 -0.8  64.5 0.1 -4.3 

20% 62.8 0.7 0.5  65.1 0.2 -3.7 

  

Sorbitol 

  
25% 62.0 0.2 -0.4  65.0 0.1 -3.8 

Mannitol 15% 62.1 0.2 -0.2  64.9 0.0 -4.0 

Lactose 15% 62.2 0.1 -0.2  64.7 0.2 -4.1 

Glycerol 20% 62.1 0.1 -0.3  64.1 0.0 -4.8 

Dextrose 20% 64.6 0.3 2.3  66.8 0.2 -2.1 

none 

(control, pH 5) 
- 67.3 0.1 - 

 
83.5 0.1 - 

0.50% 70.1 0.4 2.9  90.7 0.8 7.2 
Chitosan 

0.75% 70.7 0.1 3.4  92.3 0.2 8.7 
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Figure 2.1. Kinetics of aggregation of NV-VLPs in the presence of excipients. 

Optical density measurements at 360 nm were taken every 2.5 min. Samples were 

prepared in duplicate at pH 5 and analyzed at 60 °C. Data points shown are mean 

values (error bars omitted for simplicity). 

 .
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Figure 2.2. The effect of various excipients on the stability of the secondary 

structure of NV-VLPs, as evaluated by CD spectroscopy. The ellipticity at 222 nm of 

NV-VLPs in the presence of lactose, glycerol, dextrose, or mannitol was determined 

as a function of temperature at pH 7. Data shown are mean values (n=3), ±±±± the 

standard deviation (error bars). 
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Figure 2.3. The effect of excipient concentration on the secondary structure stability 

of NV-VLPs, evaluated by CD spectroscopy. (A) As an example, the ellipticity at 222 

nm of NV-VLPs in the presence of sucrose at various concentrations is shown as a 

function of temperature at pH 7. (B) The concentration dependence of NV-VLP 

stabilization for the excipients sucrose, trehalose, and sorbitol is illustrated. Data 

shown are mean values (n=3), ±±±± the standard deviation (error bars). 
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Figure 2.4. The effect of various excipients on the stability of the tertiary structure 

of NV-VLPs as evaluated by ANS fluorescence spectroscopy. The fluorescence 

intensity at 485 nm of ANS in the presence of NV-VLPs formulated with lactose, 

dextrose, chitosan, or chitosan/sucrose was monitored as a function of temperature 

at the indicated pH values. Data shown are mean values (n=3), ±±±± the standard 

deviation (error bars). 
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Figure 2.5. The effect of excipient concentration on the tertiary structure stability of 

NV-VLPs evaluated by ANS fluorescence spectroscopy. (A) As an example, the 

fluorescence intensity at 485 nm of ANS in the presence NV-VLPs formulated with 

sorbitol at various concentrations is shown as a function of temperature at pH 7. (B) 

The concentration dependence of NV-VLP stabilization for the excipients sucrose, 

trehalose, and sorbitol is illustrated. Data shown are mean values (n=3), ±±±± the 

standard deviation (error bars). 
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Figure 2.6. The thermostability of NV-VLPs was determined by differential 

scanning calorimetry. Raw baseline subtracted thermograms of unstabilized NV-

VLPs at pH 5 and 7 are shown as representative examples.  
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Figure 2.7. DSC analysis of NV-VLPs in the presence of selected excipients at pH 7. 
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Figure 2.8. The effect of excipient concentration on NV-VLP thermal stability, as 

measured by DSC. NV-VLPs were formulated in solution with increasing amounts 

of sucrose at pH 7 (left), or chitosan at pH 5 (right). 
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Chapter 3 

Stabilization of Measles Virus for Vaccine Formulation 

 

Overview 

Measles, an acute respiratory infection caused by a highly contagious 

paramyxovirus, remains a leading cause of death in children worldwide. On the other 

hand, given that there is no known animal reservoir for the disease, as well as the 

effectiveness of vaccination with live attenuated virus, measles is considered to be 

eradicable. In fact, the World Health Organization (WHO) reported a 60% decrease in 

measles mortality between 1999 and 2005, attributing the decline to improved 

vaccination efforts.
1
  

Cost is a significant factor when considering improvement to vaccination 

programs in developing countries. One way to reduce vaccine costs is to generate 

vaccines with improved stability characteristics; vaccines that do not require a cold chain, 

for example, should be cheaper to deliver and store. Furthermore, a loss in activity of the 

vaccine under suboptimal storage conditions is thought to contribute significantly to less 

effective vaccination programs.
2
 The existing commercially available measles vaccines 

(e.g., Attenuvax
®

, by Merck, Inc.) are lyophilized formulations of attenuated live virus in 

the presence of multiple stabilizers. Although WHO requires that these vaccines maintain 

a minimum titer of 1000 TCID50 for 1 week when stored at 37 °C, these vaccines can 

exceed the requirement by maintaining the minimum titer for up to 4 weeks. Once 
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reconstituted, however, the vaccine loses 50% of its potency when stored for 1 h at room 

temperature.
3
  

Excipients in the Attenuvax
®

 formulation include sorbitol, sodium phosphate, 

sucrose, sodium chloride, hydrolyzed gelatin, human albumin, and components of fetal 

calf serum,
4
 each one having been separately identified as a viral stabilizer through the 

use of a plaque assay. While this empirical approach has led to vaccines with adequate 

stability for use in the developed world, we propose the use of a more systematic method 

that has already been employed to stabilize a variety of macromolecular systems,
5, 6

 

including virally based vaccines.
7
 This approach is based upon a method that allows 

global visualization of changes in physical structure. First, a comprehensive 

characterization of the molecule or molecular system is conducted under various stress 

conditions (e.g., temperature, pH, ionic strength, etc.) through the use of a variety of 

biophysical techniques. The data obtained from these measurements are then used to 

generate a colored empirical phase diagram (EPD) showing regions of differential 

physical stability as a function of two different stress factors. From a formulation 

perspective, an EPD can be used in at least two ways. First, it can give an indication of 

solution conditions that might be used in stable formulations. Second, those conditions 

which correspond to apparent phase boundaries (i.e., transitions between regions of 

differing stability) can be used to develop screening assays to identify stabilizers. One 

advantage of this approach is that it allows the formulator to view multiple data sets in a 

single image, as well as conditions of “meta-stability”. 

Physical measurements (spectroscopy, calorimetry, etc.) of macromolecules or 

macromolecular assemblies can often be used to derive medium-resolution molecular 
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descriptions of protein conformation, size, and shape.
8
 In the case of a viral system, such 

detailed interpretations are generally not possible due to the variety of contributions to 

each piece of experimental data. The pleomorphic measles virion is composed of multiple 

copies of six different structural proteins (designated N, M, F, H, P, and L), a single copy 

of negative-sense single stranded RNA, and a host cell-derived lipid bilayer. The 

experimental data from such a composite system, while unable to directly discriminate 

structural detail, can still be used to identify conditions under which structural alterations 

occur (even if the precise nature of the these changes is unclear). The question then arises 

as to whether these experimentally measured changes are sufficient to serve as a basis for 

the long term stabilization of something as complex as an enveloped virus. Here we 

present the results of a comprehensive biophysical characterization of the measles virus 

(MV), as well as EPD-informed screening of potential stabilizers. Subsequent biological 

experiments show that excipients identified by this process are able to preserve viral 

infectivity. 

 

Materials 

MV stocks were obtained from the Mayo Clinic (Rochester, MN). This is not 

wild-type virus; rather, it is a recombinant virus (based on the Edmonston B vaccine 

strain) encoding the human thyroidal iodide symporter (NIS).
9
  

Unless otherwise noted, all potential excipients (see Table 3.1) were obtained 

from Sigma-Aldrich (St. Louis, MO). Type A porcine gelatin was from Dynagel 

(Calumet City, IL) or Gelita USA (Chicago, IL). D-trehalose and D-sucrose were from 

Ferro-Pfanstiehl Laboratories, Inc. (Waukegan, IL). D-mannitol, calcium chloride, 
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sodium citrate, citric acid, and sodium phosphate dibasic anhydrous were from Fisher 

Chemical (Fair Lawn, NJ). Concentrated excipient solutions were prepared by dissolution 

into 20 mM citrate/phosphate (CP) buffer pH 5.5 (final concentrations are reported as 

weight-by-volume percent, except for glycerol, for which the concentration is reported as 

volume percent). The pH was adjusted after dissolution using HCl or NaOH. Final 

solutions were filtered using a 0.22 µm Durapore
®

 (PVDF) membrane (Millipore, 

Billerica, MA). 

6-dodecanoyl-2-dimethylaminonaphthalene (laurdan) and 8-anilino-1-naphthalene 

sulphonate (ANS) were obtained from Molecular Probes (Eugene, OR); a 1.2 mM stock 

solution of laurdan and a 10 mM solution of ANS were prepared by dissolution in 

dimethylsulfoxide (DMSO, Fisher Chemical). 

 

Methods 

Virus Purification 

Viral stocks received from the Mayo Clinic were further purified by 

ultracentrifugation to remove residual soluble proteins and cellular debris. A Beckman-

Coulter OptimaMax ultracentrifuge fitted with an MLS 50 rotor was used to pellet the 

virus for 1 h at 62,700 x g and 4 °C. The supernatant was discarded and the resulting 

pellet resuspended in 20 mM pH 7 CP buffer. The process was repeated and the final 

pellet resuspended to a protein concentration of ~ 1 mg/mL. Prior to the estimation of 

protein concentration, the suspension was filtered to remove aggregates with a 0.45-µm 

low protein binding Durapore
®

 (PVDF) membrane (Millipore, Billerica, MA). Protein 

concentration was estimated by a BCA (bicinchoninic acid) colorimetric technique 
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(Pierce, Rockford, IL). The purity of viral preparations, based on polyacrylamide gel and 

Western blot analysis (not shown), is estimated to be > 70%. 

 

Biophysical Characterization 

Triplicate samples of 100 µg/mL viral protein in 20 mM CP buffer were prepared 

over the range of pH 4-8 at one unit intervals by diluting the pH 7 stock solution with 

buffer at the appropriate pH. Subsequent temperature-dependent biophysical 

measurements were made over the range of 10-82.5 °C with a temperature ramp rate of 

15 °C/h. 

Dynamic light scattering (DLS) measurements were obtained with a Brookhaven 

Instrument Corporation system (Holtzille, NY). Incident light at 532 nm was generated 

with a 125 mW diode-pumped laser. Except where noted, measurements of the mean 

effective particle diameter were made as previously described.
10

 The mean scattering 

intensity from triplicate samples at each temperature T was calculated by normalizing 

each measured value prior to taking the average <a’T, b’T, c’T> (where aT, bT, and cT 

represent measurements of three independently prepared samples). Normalized values 

a’T, b’T, and c’T were calculated as  

a’T = (aT/amax) x max(a, b, c)        (3.1) 

b’T = (bT/bmax) x max(a, b, c)       (3.2) 

c’T = (cT/cmax) x max(a, b, c)        (3.3)  

Circular dichroism spectroscopy (CD) measurements were obtained with a Jasco 

(Tokyo, Japan) J-810 spectrophotometer. Composite (5 accumulations) spectra of MV 

were taken at a scan rate of 20 nm/min and a data pitch of 0.5 nm. Variable temperature 
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experiments monitoring the CD signal at 222 nm were conducted to detect changes in 

viral protein secondary structure as a function of temperature. Origin
®

 software 

(OriginLab Corporation, Northampton, MA) was used to calculate midpoint transition 

temperature (Tm) values by fitting the temperature dependent CD data to sigmoidal 

functions. 

Fluorescence spectra were measured with a step size of 1 nm using a Photon 

Technology International fluorometer (Birmingham, New Jersey). Slit widths of 4 nm 

were employed for intrinsic and ANS fluorescence, while those experiments utilizing 

laurdan were conducted using 3 nm slits. Spectral peak positions were determined by a 

polynomial fit and derivative analysis using Origin
®

.  

The intrinsic fluorescence emission spectra of the aromatic amino acids 

tryptophan and tyrosine were collected over the range of 300-400 nm after sample 

excitation at 280 nm.  

The extrinsic fluorescence of the amphiphilic fluorescent probe ANS in the 

presence of MV particles was also monitored as a function of temperature. ANS is known 

to have affinity for apolar sites in proteins; it displays weak fluorescence in solution, but, 

when bound, typically displays enhanced and shifted emission intensities.
11

 Samples of 

MV containing 77 µM ANS were excited at 385 nm and emission spectra were collected 

from 425 to 550 nm.  

Another molecular probe, laurdan, was used to monitor the fluidity of the viral 

envelope as a function of temperature. The chemical structure of laurdan is such that it 

readily incorporates into lipid bilayers. During the transition from a gel (less fluid) to a 

liquid crystalline (more fluid) phase, there is an increase in membrane hydration. This 
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increase in water content shifts the emission of laurdan excited at 340 nm from 

approximately 440 nm to around 480-490 nm. A generalized polarization (GP) of laurdan 

fluorescence has been defined as  

GP = (I440-I480)/ (I440+I480)        (3.4) 

where Ix = intensity at wavelength x.
12

 Therefore, greater GP values indicate a membrane 

that is less fluid, and vice versa. MV samples containing 8.5 µM laurdan were incubated 

at 10 °C in the dark for 30 min prior to excitation at 340 nm. Emission spectra were 

collected over the range of 400 to 525 nm. Midpoint transition temperatures were 

calculated as for CD data. 

 

Empirical Phase Diagram 

 The empirical phase diagram is a visual representation of the entire 

characterization data set as a single image. Apparent phase transitions (i.e., changes in 

color) representing changes in the physical state of the virus are displayed as a function 

of temperature and pH. Because no equilibrium may be present across the colored phases, 

these are not thermodynamic phase diagrams. Briefly, the EPD is created by constructing 

a vector representation of the entire data set. First, an n-dimensional vector is constructed 

for every combination of temperature and pH for which a measurement has been taken. 

The components of the vector are normalized experimental measurements (at the 

corresponding temperature and pH) from all of the characterization techniques employed 

(i.e., n represents the number of experimental data sets). The projectors of these vectors 

are then calculated and summed into an n x n density matrix with n eigenvectors and n 

eigenvalues. The three eigenvectors with the greatest eigenvalues are generally sufficient 
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to represent the bulk (>90%) of the data set, and these are therefore used to transform the 

original n-dimensional vectors to 3 dimensions. The resulting three dimensional vectors 

are then used to generate a three-color (RGB) “map” of the experimental data. A more 

complete description of the generation of EPDs has been given elsewhere.
13

 The 

assignment of colors to these vectors is arbitrary, so the individual colors themselves are 

not meaningful. Rather, only changes in color are used to detect changes in the physical 

state of the virus.  

 

High-throughput screening of GRAS excipients 

Plate-based screening of a potential excipient library
7
 was performed with a 

SpectraMax M5 tunable microplate reader equipped with a temperature-controlled 

sample chamber (Molecular Devices Corp, Sunnyvale, CA). Measurements of triplicate 

samples prepared at pH 5.5 in 96-well plates were taken every 1.5 min. The pH value 

used in these experiments was selected because it lies at an apparent phase boundary in 

the EPD (see Results). 

 

Aggregation-based excipient screening 

Viral aggregation in the presence or absence of potential stabilizers was 

monitored by measurements of optical density at 360 nm (OD360). Samples were prepared 

at a viral protein concentration of 160 µg/mL and monitored at 55 °C over the course of 

90 min. 
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Laurdan-based excipient screening 

Fluorescence of the molecular probe laurdan at 37 °C was used to monitor the 

effect of various excipients on the fluidity of the viral membrane. Samples were prepared 

at a viral protein concentration of 100 µg/mL and a laurdan concentration of 3 µM. The 

samples were then excited at 340 nm and the emission at 440 and 490 nm was monitored 

over the course of 2 h. Generalized polarization was calculated according to Equation 3.4. 

 

Infectivity assay 

  MV stocks for the plaque-based infectivity experiments were obtained from the 

Serum Institute of India Limited (Pune, India). This is an attenuated vaccine virus strain 

(Edmonston-Zagreb) produced from human MRC-5 cell culture in roller bottles. The 

virus was harvested by washing the cells with Minimum Essential Medium (MEM, 

Eagle, with Hank's salt, L-glutamine, and sodium bicarbonate). The harvest fluids were 

received from the Serum Institute as frozen liquid aliquots. These were thawed and used 

without further purification. Stock solutions of each potential stabilizer were prepared as 

3x concentrates in 20 mM citrate-phosphate buffer and then adjusted to pH 7 with 1 N 

HCl or NaOH. Unstabilized vaccine aliquots of 15 mL were thawed in a ~ 20 °C water 

bath immediately before formulation. Vaccine formulations were prepared by a 1:2 

dilution of the excipient concentrates into unstabilized Edmonston-Zagreb virus in MEM. 

The resulting formulations were aliquoted into duplicate samples and tested immediately 

and after approximately 24 h at 21 °C in a measles plaque assay. The measles plaque 

assay was performed with Vero cells in 24-well plates according to the procedure 

outlined by Schrag et al.
14
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Results 

Biophysical characterization of MV 

The size of the measles virus was examined by a combination of static and 

dynamic light scattering. Figure 3.1 shows changes in the scattered light intensity and 

effective hydrodynamic diameter of MV as a function of temperature. At pH 4 and 5, 

there is a sharp decline in scattered light intensity starting at 25 and 35 °C, respectively 

(Figure 3.1A). These data reflect extensive aggregation at low pH, as precipitated 

material was visually observed in these samples. An increase in scattered light intensity 

starting at around 40 °C is seen for MV at pH 6, while the virus at pH 7 and 8 exhibits an 

immediate but gradual decline in scattered light until approximately 50 °C. Little to no 

change in particle size is shown for samples at or above pH 6 (Figure 3.1B/C). In 

contrast, an acidic environment (pH 4 and 5) appears to induce immediate aggregation, 

with aggregate size and measurement variability increasing at elevated temperatures. The 

DLS measurements are only accurate for particle sizes below 1 µm, so the size of 

particles at pH 4 and 5 should be interpreted on a relative (rather than absolute) basis 

only. 

Far-UV circular dichroism provides information about the secondary structure of 

macromolecular systems. Both the CD spectra and the unfolding curves reflect additive 

contributions from the several different viral proteins, although they are presumably 

dominated by contributions from the most abundant of these proteins (e.g., the N, M, and 

P proteins).
15

 Thus, as expected, the thermal transitions are very broad. The CD spectra of 

MV show a minimum around 222 nm at each pH, as well as a secondary minimum near 

208 nm at pH 6-8 (Figure 3.2). MV at pH 4 and 5 shows substantially lower CD signal 
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than samples prepared at more neutral pH values. This could be due to pH-dependant loss 

of helical character, but increased light scattering due to particle aggregation may be 

enhancing the observed differences. The H protein has recently been shown to be mainly 

composed of β-sheet secondary structural elements.
16

 For this reason, the H protein is 

presumed not to be the major contributor to the CD spectra of MV. Thermally induced 

changes in viral protein secondary structure were detected by monitoring the CD at 222 

nm as a function of temperature (Figure 3.3).  These measurements were normalized 

between 0 and -1 for ease of visualization. Comparison of the melting curves 

corresponding to samples prepared over the pH range 4-8 indicates a dependence of 

structural stability on pH. At pH 4 and 5, the midpoint transition temperatures (Tm) fall 

between 23 and 30 °C, while for the higher pH samples, the Tm increases to 56-57 °C. 

This apparent increase in secondary structural stability at higher pH is consistent with 

visual observations of particle aggregation at pH 4 and 5.     

Intrinsic fluorescence measurements were employed to detect changes in the 

tertiary structure of viral proteins. Discontinuous shifts in the position of the protein 

intrinsic emission peak or in emission intensity at a particular wavelength can often be 

used to detect temperature-induced structural changes. In the case of MV, samples across 

the pH range 4-7 show a gradual temperature-dependent blue shift in peak position that 

starts at 10 °C (Figure 3.4). The samples at pH 8 also show a blue shift with increasing 

temperature, but the shift is more gradual up to 53 °C. Above 53 °C, the peak position at 

pH 8 shifts more drastically to shorter wavelengths. Comparison of the peak positions at 

10 °C in Figure 3.4 suggests a dependence on pH; as the acidity of the sample is 

increased, the peak position shifts to shorter wavelengths. Peak position values could not 
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be determined across the entire temperature range for all samples because light scattering 

due to particle aggregation obscured the fluorescence emission. The fluorescence 

intensity at 322 nm (Figure 3.4), which is due primarily to tryptophan residues, declines 

with increasing temperature for all samples (note that these values have been normalized 

between 0 and 1 for ease of visualization). The expected thermal quenching of MV 

fluorescence is illustrated by samples at pH 7 and 8, which exhibit a smooth curvilinear 

decline in fluorescence intensity as the temperature is increased. At pH 6, a curvilinear 

profile similar to that displayed by the more alkaline samples is juxtaposed with a slight 

increase in fluorescence at about 45 °C. In contrast, the samples at pH 4 and 5 show a 

sharp and nearly immediate decrease in fluorescence intensity as the temperature is raised 

above 10 °C. This effect is more pronounced at pH 4 than 5, but both cases are reflective 

of particle aggregation. 

Fluorescence measurements of ANS in the presence of MV were also obtained as 

another way to detect temperature-induced structural changes. At 10 °C, the peak 

emission wavelength is seen to be moderately dependent on sample pH, shifting from 

around 468 nm at pH 4 to almost 470 nm at pH 8 (Figure 3.5). An emission maximum 

between 468 and 470 nm generally indicates that the probe is extensively bound. The 

peak position at pH 4 shows an increase in measurement variability as the temperature is 

increased, but remains relatively stable up to approximately 60 °C, above which an 

abrupt shift to shorter wavelengths can be seen. At pH 5 and low temperature, ANS peak 

emission occurs at around 469 nm and stays constant up to 45 °C, after which a shift to 

longer wavelengths is observed. This red shift in ANS emission suggests a reduction in 

probe binding and continues across the temperature range. The behavior at pH 5 of ANS 
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in the presence of MV is unique in this regard; the temperature-induced shifts in peak 

position for samples prepared at either pH 4 or from pH 6 to 8 are to shorter wavelengths. 

At pH 6, the peak position remains constant at about 469 nm up to 35 °C, above which it 

declines smoothly to almost 465 nm at the upper extreme of the temperature range. The 

peak position at pH 7 also begins around 469 nm, and shows a slight (< 1 nm) decline 

between 10 and 50 °C, after which the rate of decline increases significantly. The 

emission peak at pH 8 occurs near 470 nm at low temperature. As the temperature is 

increased, the peak position remains more or less constant up to about 50 °C, above 

which it falls to approximately 463 nm at 83 °C. The intensity of ANS fluorescence 

(normalized between 0 and 1 for ease of visualization) at 469 nm is also depicted as a 

function of temperature (Figure 3.5). At pH 4, ANS emission intensity declines sharply as 

the temperature is increased above 12.5 °C. A similar decrease is exhibited by the plot 

corresponding to pH 5, where a slightly shallower decline in emission intensity begins 

around 20 °C. The plots for samples from pH 6 to 8 are also very similar to one another. 

Evidence for a structural transition beginning at around 40 °C is seen in each trace as a 

slight increase in emission intensity superimposed over the (expected) curvilinear decline 

due to intrinsic thermal quenching.  

Fluorescence of the molecular probe laurdan was used to characterize the fluidity 

of the viral envelope as a function of temperature. Figure 3.6A illustrates representative 

fluorescence spectra of laurdan in the presence of MV. In Figure 3.6B, the generalized 

polarization (GP) is plotted versus temperature. At each pH, a transition from the gel to 

the liquid crystalline state is observed as the temperature is increased. The midpoints of 

these transitions (Tm) vary according to pH; samples at pH 6 and 7 have their Tm near 50 
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°C, while samples at pH 5 or 8 show a slightly lower Tm around 47 °C. Although the Tm 

values at pH 5 and 8 are very similar, it should be noted that the more acidic sample 

achieves a much higher degree of membrane hydration at elevated temperatures. The GP 

trace for samples at pH 4 emphasizes the sensitivity of membrane hydration to acidic 

conditions in several ways: first the initial GP value is quite low, indicating significant 

hydration even at low temperature. In addition, the Tm occurs close to 30 °C, indicating a 

significant reduction in membrane stability. 

 

Empirical phase diagram 

As described above, the results from the various techniques were synthesized into 

a multi-dimensional vector space, from which an EPD that permits ensemble 

visualization of the entire data set was generated (Figure 3.7). The EPD of MV shows 

similar behavior (color) between pH 4 and 5, and from pH 6 to 8. Closer inspection, 

however, reveals at least half a dozen regions of differing stability for MV (although the 

colors themselves are relative, the different phases are defined according to color 

continuity). One phase can clearly be seen in green for pH 4 and 5 at low temperatures. 

There is a step-shaped transition region above this phase that reflects the fact that major 

structural transitions were detected for low pH samples by all of the techniques between 

20 and 35 °C. The blue and purple phases above this transition region may reflect particle 

aggregation, a phenomenon that was visually observed at elevated temperature in samples 

prepared at low pH (the colors in these regions may differ due to the divergence in ANS 

peak position a high temperatures). Also, increased membrane fluidity at elevated 

temperatures was observed for all samples, and probably contributes to similarities in 
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color at elevated temperature across the pH range. Again, the data across all techniques 

indicate that MV particles behave similarly when exposed to pH 6 or 8. This is 

particularly true of the GP data, in which the temperature dependent traces (Figure 3.6) at 

each pH between 6 and 8 exhibit only minor differences. This fact is reflected by 

similarities in the phase diagram at these pH values, especially at lower temperatures; 

differences in the diagram between pH 6 and 8 above the transition region (~ 45 °C) may 

be due to differences in behavior at high temperature as detected by DLS. At pH 7, the 

phases are less well-defined and transitions occur over a wider range of temperatures. 

This is attributed to the fact that transitions detected at pH 7 by the various techniques are 

often broader than those measured at pH 6 or 8. Finally, there is a greenish phase at low 

temperature (< 25 °C) that appears at pH 7 but not for pH 6 or 8. This phase appears to be 

due to increased low-temperature stability at pH 7 of the CD signal at 222 nm, and is 

presumed to reflect a “native-like” state of the virus.  

 

Excipient screening 

A library of generally recognized as safe (GRAS) excipients
7
 was screened for 

compounds exhibiting the ability to physically stabilize MV particles in solution. Based 

on the EPD, two high-throughput (HTP) screening assays were developed. The first is 

selective of those excipients that inhibit aggregation of the virus under challenge 

conditions of temperature and pH, while the second utilizes fluorescence of the molecular 

probe laurdan to determine which excipients are able to stabilize the viral envelope (also 

under stress conditions of temperature and pH).  
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Based on analysis of the empirical phase diagram, a screening assay based on 

turbidity changes at 360 nm (OD360) was developed to measure the aggregation of MV at 

pH 5.5 and 55 °C. This particular degradation pathway may be the result of a variety of 

structural or conformational changes in the virus. A number of excipients, including 

certain mono- and disaccharides, amino acids, and sugar alcohols were observed to 

inhibit the aggregation of MV (Table 3.1). To further refine this list, a second screening 

assay was developed to search for potential stabilizers on the basis of their ability to 

stabilize the viral envelope using laurdan fluorescence. To judge the stability of the viral 

membrane from data generated by this assay, the GP of laurdan in the presence of MV 

was examined as a function of time. The GP calculated at t = 0 reflects the initial 

hydration state of the membrane, while the difference between the maximum and 

minimum GP values is related to the extent of change in the hydration state and fluidity 

of the membrane. A smaller difference between these values presumably reflects a 

greater stabilizing effect. Finally, the time at which the minimum value is reached reflects 

the kinetics of membrane hydration; a longer time to reach a minimum value is assumed 

to reflect superior stabilization characteristics. Using these criteria, the excipients 

ascorbic acid, diethanolamine, malic acid, sodium citrate, proline, lysine, pluronic F-68, 

lactose, dextrose, trehalose, sorbitol, sucrose, and mannitol all appear to confer stability 

to the viral membrane (data not shown). This is obviously a significant portion of the 

total set of excipients tested; the list may be further refined by choosing those excipients 

that also inhibit aggregation. A final list of potential stabilizers can then be created by 

choosing only one representative excipient from each molecular class (e.g., polyols, 

sugars, amino acids, etc.). On this basis, gelatin, lactose, proline, malic acid, myo-
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inositol, and mannitol were selected for further evaluation (gelatin was not particularly 

effective in protecting the viral envelope, but was included because of its dramatic effect 

on the inhibition of aggregation). Myo-inositol was included in this final list of potential 

stabilizers because in research conducted at the University of Colorado, myo-inositol has 

been identified as a good stabilizing excipient in dry powder measles vaccine 

formulations prepared by CO2-Assisted Nebulization with a Bubble Dryer
®

.
17

 Citrate, 

another good stabilizer, was included in all samples as a buffer component. 

To determine the optimum concentration of the six excipients chosen for further 

study, each was re-examined using the aggregation-based screening assay, this time at 

multiple concentrations. Each of the excipients demonstrated a strong dependence of 

aggregation inhibition on concentration (data not shown). A change was made in the 

study at this point; gelatin from fish skin was replaced as a potential stabilizer by the 

more pharmaceutically acceptable gelatin derived from porcine skin. According to the 

aggregation-based screening assay, the porcine gelatin did not display the same ability to 

inhibit aggregation as the fish-derived alternative (inhibition of aggregation was < 25% 

for all concentrations tested). Despite its poor performance in the optimization 

experiment, porcine gelatin was selected for further study at a concentration of 2.5 % w/v 

due to the success of the initial material. The other excipients were chosen for further 

study at the following concentrations: myo-inositol – 0.15 M, malic acid – 0.15 M, 

lactose – 15 % w/v, proline – 0.15 M, mannitol – 10 % w/v.  
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Structural studies of MV in the presence of excipients 

To obtain more detailed information regarding the specific effect of each selected 

stabilizer on the physical stability of MV, the virus was studied in the presence of these 

compounds (at the optimum concentrations given above) by CD, laurdan fluorescence, 

and right-angle static light scattering. The goal of using these methods was to determine 

the effect of each stabilizer on viral protein secondary structure, viral membrane integrity, 

and particle aggregation, respectively. To make these final experiments more relevant to 

a potential final vaccine formulation, each sample was prepared at pH 7 (in addition to 

being near physiological pH, the phase diagram indicates superior physical stability at pH 

7). Each formulation was analyzed as a function of increasing temperature from 10 to 85 

°C. 

The normalized CD at 222 nm of MV in the presence of selected excipients was 

measured as a function of temperature (not shown). Due to interference from the 

excipients, analysis of CD data for MV in the presence of gelatin or proline was not 

performed. Fitting the data to a sigmoidal function allows determination of an apparent 

Tm that can be used to compare the stability of MV protein secondary structure in the 

presence of each potential stabilizer. Based on these Tm values, none of the excipients 

tested appeared to significantly stabilize MV protein secondary structure. 

The fluorescence of laurdan in the presence of MV and stabilizer allows 

determination of the effect of these compounds on the GP of the viral membrane. The Tm 

of the membrane transition was determined for each sample (Table 3.2). Based on a 

comparison of these Tm values, mannitol, malic acid, and myo-inositol all increased the 

stability of the viral membrane. While each of the other three excipients did not improve 
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the Tm of MV, proline strongly reduced (relative to the control) the overall change in GP 

across the experimental temperature range (data not shown). In this sense it appears to 

perform better than myo-inositol, which induces a very wide dispersion in GP as the 

temperature is varied.   

Light scattering by MV in the presence of each excipient was also measured 

during the laurdan experiments (Figure 3.8) by monitoring the fluorescence excitation 

peak. Changes in the intensity of light scattered by MV particles in solution as a function 

of temperature can reflect aggregation as well other large-scale structural events (e.g., 

swelling of viral particles). In the presence of gelatin, there is a very shallow decline in 

the light scattering of MV from 10 to 50 °C, and additional evidence of structural 

changes is seen as subsequent small increases in light scattering - one starting at 50 °C, 

and another at 70 °C. Light scattering by MV in the presence of lactose is fairly constant 

from 10 to 40 °C, but above 40 °C there is a decrease in light scattering up to 73 °C and 

another small decrease starting at 80 °C. When formulated with proline, mannitol or 

myo-inositol, MV exhibits a curvilinear decrease in light scattering between 10 and 60 

°C. Above 60 °C, a small increase in light scattering is observable for all three 

formulations. While the magnitude of the decrease between 10 and 60 °C is similar when 

the virus is formulated with either myo-inositol or mannitol, an even greater decrease in 

light scattering is seen in this temperature range when MV is formulated with proline. 

When MV is in the presence of malic acid, a small decrease in light scattering is 

observable between 10 and 48 °C, after which the light scattering remains fairly constant.  

 



 

 86 

Infectivity assays 

So far, we have described a number of techniques that were used to infer various 

aspects of the physical stability of MV. To determine whether increased physical stability 

(as measured by these techniques) can be correlated to the preservation of biological 

activity, a cell culture-based infectivity assay was performed employing vaccine quality 

MV in the presence of each of the selected stabilizers. After formulation with excipient, 

MV was stored for 24 h at 21 °C. Following thermal challenge, Vero cells were infected 

with each of the formulations and analyzed for infection. Due to significant variability in 

the count of plaque-forming units (pfu) for the unstabilized measles vaccine, results are 

reported as percent retained infectivity after 24 h of room temperature incubation. The 

results of this standard plaque-based assay (Figure 3.9) indicate that formulations 

containing porcine gelatin (2.5% w/v), mannitol (10% w/v), malic acid (0.15 M), proline 

(0.15 M), or myo-inositol (0.15 M) were able (on average) to retain their infectivity as 

compared to formulations with either lactose (15% w/v) or with only 20 mM pH 7 

citrate-phosphate buffer. It should be noted that the error in measurements made for 

formulations containing mannitol or malic acid is large enough to prevent the conclusion 

that these formulations are statistically superior to the formulation containing only 

citrate-phosphate buffer. 

   

Discussion 

A comprehensive biophysical characterization of MV has been conducted through 

the use of several spectroscopic and light-scattering techniques, permitting a description 

of the physical stability of the virus as a function of temperature and pH, two 
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pharmaceutically relevant stress factors. While we have attempted to utilize a large 

number of analytical techniques in the characterization experiments to obtain as much 

information as possible, several other techniques (e.g., calorimetry, Raman and/or FTIR 

spectroscopy) could have been utilized had experimental resources been unlimited. CD 

measurements of viral particles at each experimental pH reveal a loss of secondary 

structure as a function of temperature. This effect manifests at higher temperatures as 

sample pH is increased, indicating that MV physical stability is highly compromised in 

an acidic environment. The position of the MV intrinsic fluorescence maximum below 

330 nm suggests that the viral amino acid indole chromophores on average reside in a 

relatively apolar environment. This could at least partially reflect the presence of these 

side chains in the interior of MV proteins, or it could be that significant numbers of 

aromatic residues are present in the membrane spanning regions of the viral envelope 

proteins (i.e., F and H) and are thus normally exposed to the highly apolar regions of the 

lipid bilayer. At low pH, there is also probably some contribution from the burial of 

chromophores by aggregation, given that light scattering and CD data show clear 

evidence of viral aggregation at low temperature and precipitation under acidic 

conditions (i.e., at pH 4-5). Thermally-induced protein unfolding would manifest as a 

peak shift to >330 nm; the absence of such a shift should be especially noted and 

contrasts with the CD results. This suggests that scattering may prevent the structural 

transitions from being detected. Measurements of ANS fluorescence were also made as 

an alternative way of probing viral structure. While changes in the fluorescence of ANS 

in the presence of protein can indicate that apolar protein regions are becoming more 

accessible to the probe, a complicating factor is the presence of the MV viral envelope, 
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which itself contains significant apolar character. Given that the probe appears in all 

samples to be highly bound at low temperature, the probability that the probe is 

interacting with the bilayer seems high. Another complicating factor is the possibility of 

charge-charge interactions between the ionized probe and charged or polar protein 

residues. Nevertheless, shifts in ANS fluorescence spectra are presumably reflective of 

structural changes in the virus, whatever their nature. This reasonable assumption 

underlines the utility of the phase diagram approach in the analysis of spectral data 

pertaining to the physical stability of viral samples. At pH 4 and 5, the strong reduction in 

ANS fluorescence intensity and large shifts in peak position, both as a function of 

temperature, agree well with the aforementioned evidence of particle aggregation. The 

ANS peak position at pH 6, 7, and 8 shifts to shorter wavelengths as temperature is 

increased, suggesting that temperature-induced structural changes result in increased 

solvent exposure of apolar regions of the virus. The extent of change in peak position is 

least at pH 7, suggesting greater physical stability at neutral pH. Additional extrinsic 

fluorescence measurements of the dye laurdan, used to measure the stability of the viral 

envelope, exhibit evidence of structural disruption (membrane hydration) starting at 20 

°C or lower. For samples at pH 6 and above, this is much lower than the onset 

temperatures of structural events measured by the other techniques, suggesting that the 

viral envelope may be a weak point in the overall physical stability of MV above pH 5. 

While a detailed molecular model of MV physical stability cannot be derived 

from these data, their conversion to a vector space of reduced dimensions permits a fairly 

comprehensive visual representation of stability in the form of an EPD. While the precise 

mechanisms of physical degradation are not revealed by the EPD, such diagrams can be 
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used as the first step in a rational process to identify physical stabilizers.
5-7

 Based on the 

EPD’s apparent phase boundaries, two assays were designed for the purpose of screening 

possible stabilizers of MV particles in solution. Compounds from a variety of molecular 

categories (e.g., sugars, sugar-alcohols, amino acids) were shown to protect the viral 

membrane and inhibit particle aggregation under stress conditions.  

The infectivity of MV is almost certainly heavily dependent on both the 

conformational stability of the viral proteins and the integrity of the viral membrane. For 

this reason, CD, laurdan fluorescence, and right-angle light scattering were used in an 

attempt to determine more specifically the physical effects of the best performing 

stabilizers identified by the two screening assays. CD measurements indicate that none of 

the identified compounds stabilize viral protein secondary structure. As a result, we 

cannot conclude that these agents inhibit aggregation by actually preserving the native 

state of viral proteins, or that they simply interfere with protein association by direct 

effects on protein-protein interactions. Additional studies that measure the stabilizing 

effect of excipients on viral protein tertiary structure are necessary to determine whether 

the excipients stabilize the native state of the viral proteins. It would not be surprising if 

such studies showed at least some of the excipients do stabilize protein conformation, 

given the well-known ability of some of them to stabilize protein native states through a 

preferential hydration mechanism.
18-20

 The laurdan experiments suggest that at least some 

of the stabilizers also function by inhibiting hydration of the viral envelope. In the case of 

mannitol and malic acid, the compounds exert their effect by increasing the temperature 

(Tm) at which the membrane fluidizes. In the case of proline, the magnitude of the overall 

change in membrane hydration is reduced. Additionally, relative to a neat sample at pH 7 
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(Figure 3.1), MV formulations containing lactose, gelatin, and malic acid are resistant to 

temperature-induced changes in viral density (e.g., swelling of viral particles). Given the 

apparently diverse effects of the six potential excipients on MV physical stability, the 

ultimate test of the utility of these stabilizers was their evaluation by an accelerated 

stability study in which viral integrity was measured by a cell culture-based infectivity 

assay. The infectivity data show that the infectivity of attenuated live virus intended for 

vaccine purposes is protected by formulations containing mannitol, myo-inositol, proline, 

malic acid, or gelatin (Figure 3.9). That at least three of these five excipients were found 

to stabilize the viral envelope emphasizes the critical role played by the membrane in 

preserving the integrity of the virus. This is not surprising, given that the two viral 

proteins responsible for virus-host interaction (i.e., H and F proteins) reside at least 

partially within the bilayer encompassing the viral matrix.
21

 A more hydrated bilayer 

would be more polar due to the presence of water molecules, potentially disrupting its 

interactions with apolar residues that are typically found at the surface of transmembrane 

protein regions.
22, 23

 The resulting change in free energy as these interactions are altered 

may be enough to promote conformational changes that interfere with viral attachment 

and fusion.  

The fact that five of the six potential stabilizers identified in our studies were able 

to preserve the infectivity of MV at least partially validates the EPD/HTP-screening 

approach to the stabilization of macromolecular systems such as enveloped viruses. 

Another interesting implication of this success is that the physical changes that are 

responsible for losses of MV activity must occur in the majority of viral particles even 

though most of them are presumably inactive. The current work could be improved by 
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further studies that elucidate the mechanism(s) by which the stabilizers inhibit 

aggregation of viral particles. In addition, we have not addressed the issue of chemical 

degradation (e.g., oxidation, deamidation, etc.), which usually plays an equally important 

role in the stability of macromolecular systems.
24-27

 Most importantly, however, the 

identification of these MV stabilizers can be used to aid the construction of more robust 

formulations of this important vaccine. 
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Table 3.1. Inhibition of aggregation of MV in the presence of various compounds 

(listed in order of their effectiveness in preventing aggregation). 

 

Excipient Concentration 
Inhibition of Aggregation

a
 

(%) 

Gelatin (fish skin) 2.5% 98 

Lactose 10% 98 

Gelatin (fish skin) 5% 94 

Dextrose 20% 89 

Mannitol 10% 88 

Sodium Citrate 0.2 M 75 

Malic Acid 0.15 M 75 

Sorbitol 20% 72 

Sucrose 20% 71 

Trehalose 20% 69 

Lactose 20% 69 

Aspartic Acid 0.075 M 69 

Diethanolamine 0.3 M 67 

Sodium Citrate 0.1 M 66 

Glycerol 20% 62 

Lactic Acid 0.15 M 62 

Sorbitol 10% 59 

Glutamic Acid 0.15 M 58 

Guanidine 0.3 M 52 

Dextrose 10% 52 

Glycerol 10% 44 

Proline 0.3 M 43 

Arginine 0.3 M 42 

Sucrose 10% 40 

a 
Relative to a control sample at t = 90 min. Inhibition of aggregation calculated as (1-

OD360 sample/OD360 control) x 100%.  The relative standard deviation in these calculated 

values was ≤ 10 %. 
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Table 3.1, continued. 

Excipient Concentration 
Inhibition of Aggregation

a
 

(%) 

Lysine 0.3 M 39 

Tween 20 0.1% 39 

Trehalose 10% 31 

Brij 35 0.1% 19 

Glycine 0.3 M 16 

Tween 20 0.05% 14 

Brij 35 0.05% 6 

Albumin 1% 6 

Tween 20 0.01% -2 

Tween 80 0.05% -7 

Pluronic F-68 0.01% -7 

Pluronic F-68 0.1% -12 

2-OH propyl γ-CD
b 5% -15 

Tween 80 0.01% -17 

α-Cyclodextrin 2.5% -19 

2-OH propyl β-CD
b
 5% -19 

2-OH propyl β-CD
b
 10% -20 

Brij 35 0.01% -21 

Tween 80 0.1% -22 

Pluronic F-68 0.05% -23 

Histidine 0.3 M -28 

Albumin 2.5% -30 

2-OH propyl γ-CD
b
 10% -31 

Ascorbic acid 0.15 M -656 

Albumin 5% -1426 
 

a 
Relative to a control sample at t = 90 min. Inhibition of aggregation calculated as (1-

OD360 sample/OD360 control) x 100%. The relative standard deviation in these calculated 

values was ≤ 10 %. 

 
b 

CD = cyclodextrin. 
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Table 3.2. Midpoint transition temperature (Tm) of dye-labeled MV in the presence 

of selected stabilizers, as calculated from the GP of laurdan fluorescence. 

Excipient Concentration Tm (°C) 

none - 44.2 ± 2.1 

porcine gelatin 2.5% 36.9 ± 1.2 

myo-inositol 0.15 M 47.4 ± 0.4 

malic acid 0.15 M 47.8 ± 1.3 

lactose 15% 38.7 ± 1.3 

proline 0.15 M 39.7 ± 0.1 

mannitol 10% 50.7 ± 1.5 
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Figure 3.1. (A) MV static light scattering intensity is shown as a function of 

temperature. Each point represents the mean of three normalized measurements, as 

described in the Materials and Methods section. (B and C) The effective diameter of 

MV, as determined by dynamic light scattering, is shown as a function of 

temperature. Each point represents the mean value calculated from triplicate 

samples. All measurements were taken at 90° from the 562 nm light source. Each 

measurement is composed of 5 accumulations. Error bars represent the standard 

deviation. 
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Figure 3.2. Far-UV circular dichroism of MV at 10 °C. A loss of viral protein 

secondary structure is exhibited at low pH. 
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Figure 3.3. CD of MV at 222 nm is shown as a function of temperature. Each point 

represents the mean of normalized measurements from three independently 

prepared samples (measurements were normalized between 0 and -1 for ease of 

visualization). The error bars represent the standard deviation. 
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Figure 3.4. Intrinsic fluorescence of MV. The average peak position (n = 3) is shown 

as a function of temperature. The lower right panel shows the fluorescence intensity 

at 322 nm, also as a function of temperature (the mean of three normalized 

measurements is reported). Error bars represent the standard deviation. 
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Figure 3.5. Fluorescence of ANS in the presence of MV. The average peak position (n 

= 3) is shown as a function of temperature. The lower right panel shows the 

fluorescence intensity at 469 nm, also as a function of temperature (the mean of three 

normalized measurements is reported). The error bars represent the standard 

deviation. 
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Figure 3.6. Fluorescence of laurdan in the presence of MV. Representative example 

spectra obtained at pH 7 and various temperatures are shown in (A). Spectra were 

corrected by subtracting the spectrum at each temperature of a buffer sample 

containing an equal concentration of dye. Generalized polarization (GP) of laurdan 

fluorescence in the presence of MV is shown in (B) as a function of temperature. 

Each point represents the mean GP of triplicate samples. Error bars represent the 

standard deviation. 
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Figure 3.7. Empirical phase diagram (EPD) of MV. Data used to generate the EPD 

were measurements of mean effective diameter, intensity of (562 nm) light scattered 

at 90°, CD at 222 nm, intrinsic fluorescence intensity at 322 nm, ANS peak position, 

ANS fluorescence intensity at 469 nm, and GP of laurdan fluorescence.  
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Figure 3.8. Intensity of light scattered by MV in the presence of various stabilizers is 

presented as a function of temperature. (A) shows the raw values, and (B) shows the 

intensity normalized between 0 and 1. In each panel, the points represent mean 

values (n = 3). Error bars represent the standard deviation. 
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Figure 3.9. Results of plaque-based infectivity assays. Formulations of live, 

attenuated virus with the indicated stabilizers were incubated for 24 h at 21 °C. The 

percent infectivity relative to a sample measured prior to incubation is reported. 

Error bars represent the standard deviation. 
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Chapter 4 

Influenza Virus-Like Particles: Physical Degradation Pathways and 

Identification of Stabilizers 

 

Overview 

Respiratory infection by the influenza virus is a significant cause of mortality and 

morbidity worldwide.
1
 Vaccination is the most effective measure for preventing infection 

and reducing the impact of epidemics caused by this highly contagious respiratory 

pathogen.
2
 Nearly all of the commercially available influenza vaccines use the two main 

viral surface proteins hemagglutinin (HA) and neuraminidase (NA) as their primary 

antigens, but frequent mutation or reassortment of the segmented viral genome 

necessitates seasonal reformulation of the vaccine with antigens derived from currently 

circulating strains. Although humans are susceptible to infection by three genetically 

distinct types of influenza viruses (A, B, and C), the A strain is by far the most dangerous 

due to its greater rate of mutation. Small changes in the amino acid sequence of the HA 

and NA proteins (antigenic drift) are the cause of annual epidemics, while large changes 

(antigenic shift) result in less frequent but more destructive pandemics.
3
  

As of 2005, the World Health Organization (WHO) considered the (type A) avian 

H1N5 influenza subtype to be the most likely cause of the next pandemic. 

Simultaneously, WHO acknowledged that current global manufacturing capacity is 

insufficient to meet global vaccine needs in the event of such a catastrophe.
2
 Subtypes of 

influenza A that are currently circulating among humans include the H1N1, H1N2, and 
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H3N2 viruses. The typical inactivated influenza vaccine is derived from virus grown in 

the allantoic cavity of embryonated chicken eggs,
1
 making the production process both 

costly and time-consuming. To provide a cheaper and more easily scalable alternative, a 

recombinant virus-like particle (VLP) that contains H1N1 influenza HA (as the 

uncleaved precursor HA0) and NA proteins has been produced in an insect 

cell/baculoviral expression system, using the murine leukemia virus (MLV) gag protein 

as the budding engine for particle formation.
4
 VLP-based influenza vaccines have been 

shown in small scale studies to be safe and immunogenic and sometimes even to provide 

protection from infection by multiple viral subtypes.
5-8

 

As an early developmental step towards the creation of a commercially viable 

vaccine, we have conducted studies to identify physical stabilizers of influenza VLPs. 

Utilizing a method developed in our laboratory that has already been successfully applied 

to the stabilization of vaccine-related proteins,
9, 10, 10

 virus-like particles,
11, 12

 and 

enveloped viruses,
13, 14

 we have conducted a comprehensive physical characterization of 

influenza VLPs to direct the selection of physical stabilizers from a library of potential 

excipients. Multiple biophysical techniques, each sensitive to a different level of physical 

structure, have been used to measure changes in the physical state of VLPs in solution as 

a function of temperature and pH. The data from all techniques were synthesized into an 

empirical phase diagram (EPD) that allows visual identification of major physical 

changes induced by temperature and pH stress. The EPD was then used to determine the 

optimal formulation pH, and to develop a screening assay for the identification of 

stabilizers. We present here the results of the biophysical characterization as well as 

EPD-based screening for physical stabilizers of influenza VLPs. 
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Materials 

Unless otherwise noted, all potential stabilizers (see Results) were obtained from 

Sigma-Aldrich (St. Louis, MO). Guanidine HCl, calcium chloride dihydrate, dextrose, D-

mannitol, citric acid, and sodium phosphate dibasic were from Fisher Chemical (Fair 

Lawn, NJ). Type A porcine gelatin was purchased from Dynagel (Calumet City, IL) and 

D-sucrose and D-trehalose from Ferro-Pfanstiehl Laboratories, Inc. (Waukegan, IL). 

Ectoin (ultra pure) was provided by Bitop AG (Witten, Germany), and NV10 was 

obtained from Expedeon (formerly Novexin, Cambridge, UK). Concentrated excipient 

solutions were prepared by dissolution into 20 mM citrate/phosphate (CP) buffer of the 

appropriate pH. The pH was then adjusted (if necessary) to the target pH using 

concentrated NaOH or HCl. Final stock solutions were filtered with a 0.22-µm 

Durapore
®

 (PVDF) membrane syringe filter (Millipore, Billerica, MA). Concentrations 

are reported in molarity or as percent weight-by-volume. 

6-dodecanoyl-2-dimethylaminonaphthalene (laurdan) and 8-anilino-1-naphthalene 

sulphonate (ANS) were purchased from Molecular Probes (Eugene, OR). A 1.2 mM 

stock solution of laurdan and a 10 mM solution of ANS were prepared by dissolution in 

dimethylsulfoxide (DMSO, Fisher Chemical). 

 

Methods 

Preparation of VLPs for characterization 

VLPs were produced in cultured Sf9 cells infected with a “triple gene” 

recombinant baculovirus.
4
 VLPs were prepared for characterization by dialysis into CP 

buffer at each unit pH from 4 to 8.  Buffer ionic strength was maintained at 0.1 using 
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NaCl. Material recovered from the dialysis cassettes (10,000 MWCO, Pierce, Rockford, 

IL) was concentrated at 4 °C with an Amicon
®

 Ultra ultracentrifugation device (10,000 

MWCO, Millipore, Billerica, MA) at 3,150 x g. The protein concentration of the retentate 

was estimated by a BCA (bicinchoninic acid) colorimetric technique (Pierce, Rockford, 

IL). Unless otherwise noted, triplicate samples were prepared at a final protein 

concentration of 90 µg/mL by diluting the retentate with 20 mM CP buffer of the 

appropriate pH. 

 

Trypsin treatment of surface hemagglutinin 

Trypsin (Sigma, final concentration 5 µg/mL) was added to VLP stock solutions 

(0.26 mg/mL viral protein in 30% sucrose/Tris-buffered saline, pH 7.4) and incubated for 

5 min in a 2-8 °C cold room. After incubation, a three-fold molar excess of trypsin 

inhibitor from soybean (Fluka) was added and the resulting solution passed through a 

0.45-µm syringe filter (Millipore). Samples were then dialyzed into the appropriate CP 

buffer and concentrated as described above, but using 100,000 MWCO dialysis tubing 

(Spectrum Laboratories, Rancho Dominguez, CA). Cleavage of HA, as well as non-

cleavage of MLV gag, was confirmed by western blot analysis (not shown). 

 

Dynamic light scattering 

Dynamic light scattering (DLS) was used to measure changes in the mean 

effective diameter of VLPs as a function of increasing temperature. Measurements were 

taken with a Brookhaven Instrument Corporation system (Holtzille, NY). Incident light at 

532 nm was generated by a 125 mW diode-pumped laser. Scattered light was collected at 
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90° to the incident beam, and a digital autocorrelator (BI-9000AT) was used to create the 

autocorrelation function. Five measurements were taken every 2.5 °C over the range of 

10-85 °C. Cumulant analysis was used to extract particle diffusion coefficients from the 

correlation function and convert them to particle diameters by means of the Stokes-

Einstein equation. It should be noted that the effective diameter calculated by this method 

is accurate for particles of diameter < 1 µm – the values obtained from measurements of 

larger particles should be used for qualitative comparison only. In addition to particle 

size, the second cumulant of the distribution of particle diffusion coefficients was also 

extracted from the correlation function as a measure of sample polydispersity.  

 

Circular dichroism spectroscopy 

Circular dichroism spectroscopy (CD) measurements were made with a Jasco J-

810 spectrophotometer, using a sensitivity setting of 100 mdeg, a response time of 2 sec, 

and a band width of 1 nm. Composite (3-5 accumulations) spectra of VLPs were obtained 

at a scan rate of 20 nm/sec and a data pitch of 0.5 nm/sec. Variable temperature 

experiments monitoring the CD signal at 227 nm were conducted to detect changes in 

total VLP protein secondary structure as a function of temperature. Measurements were 

taken every 0.5 °C over the range of 10-90 °C, with a temperature ramp rate of 15 °C/h 

and a delay time of 2 sec. Midpoint transition temperature (Tm) values were determined 

by mathematically fitting the temperature dependent data to a sigmoidal function using 

the Origin
®

 data analysis software. Both the spectra and the heating traces reflect additive 

contributions from the three different proteins, although they are presumably dominated 

by contributions from the most abundant of these proteins. The MLV gag protein has 
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been shown to be 3-4 times more abundant than the HA protein in these VLPs, while the 

abundance of HA is perhaps an order of magnitude greater than that of NA.
4
 

 

Fluorescence spectroscopy 

Unless otherwise noted, fluorescence emission spectra were collected every 2.5 

°C over the range 10-85 °C using a Photon Technology International fluorometer 

(Birmingham, NJ). The temperature was increased at a rate of 15 °C/h, with a step size of 

1 nm and an integration time of 1 sec used for all measurements. Static light scattering 

was also monitored during fluorescence experiments through the use of a second detector 

(oriented 180° from the fluorescence detector).  Using the Origin
®

 software package, 

emission peak positions were determined by derivative analysis and Tm values were 

determined by mathematically fitting the temperature dependent data to a sigmoidal 

function. 

The intrinsic fluorescence of the aromatic amino acids tryptophan and tyrosine 

was employed to identify changes in VLP protein tertiary structure as a function of 

temperature. Upon excitation at 280 nm, fluorescence emission spectra were collected 

from 300 to 380 nm. Excitation and emission slit widths were set to 3 and 4 nm, 

respectively. 

The fluorescence emission of 8-anilino-1-naphthalene sulphonate (ANS) in the 

presence of VLPs was utilized as an alternative method to monitor the stability of viral 

protein tertiary structure. ANS, a small molecule that is known to have affinity for the 

apolar regions of proteins, displays weak fluorescence in solution, but, when bound, 

exhibits enhanced and (usually blue) shifted emission intensities.
15

 The fluorescence 
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emission spectra of VLP samples prepared with 70 µM ANS were collected from 425 to 

550 nm after excitation at 385 nm. While measuring ANS fluorescence, the excitation 

and emission slit widths were both set to 4 nm. 

Another molecular probe, 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan), 

was used to directly monitor thermally-induced changes in the fluidity of the VLP 

membrane. The chemical structure of laurdan contains a long acyl chain attached to 

derivatized naphthalene, thus allowing it to readily incorporate into lipid bilayers. An 

increase in membrane hydration can drive a transition in bilayer fluidity from a gel (less 

fluid) to a liquid crystalline (more fluid) phase. When excited at 340 nm, an increase in 

membrane water content shifts the emission of laurdan from approximately 440 nm to 

around 490 nm. A useful parameter is the generalized polarization (GP), defined
16

 as  

GP = (I440-I480)/ (I440+I480)            (4.1) 

where Ix = intensity at wavelength x. Therefore decreasing GP values indicate an increase 

in membrane fluidity, and vice versa. Slit widths for laurdan experiments were set to 2 

nm (excitation) and 5 nm (emission). 

 

Empirical phase diagram 

Please refer to Chapter 3 for a description of the algorithm for generating 

empirical phase diagrams. 

 

Excipient screening 

The aggregation of VLPs at pH 6 and 60 °C was monitored by measurements of 

turbidity (optical density at 350 nm, OD350) as a function of time. Duplicate samples of 
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VLPs in the presence or absence of various GRAS agents were prepared at a protein 

concentration of 55 µg/mL by diluting the concentrated retentate (see above) with 20 mM 

CP buffer and/or a concentrated excipient solution of the appropriate pH. Measurements 

were taken every 30 sec over a period of two h using a temperature-controlled Agilent 

8453 spectrophotometer (Palo Alto, CA). 

 

Results 

Dynamic light scattering 

DLS measurements of VLP suspensions show evidence of both pH- and 

temperature-induced changes in particle size (Figure 4.1A). At low temperatures, the 

particle size at pH 4 or 5 is 2-3 times greater than at pH 6-8, indicating that significant 

aggregation and/or swelling is induced by acidic pH. Samples at pH 4 do not show a 

temperature-induced change in particle size until about 75 °C, after which a gradual 

increase in effective diameter is observed. On the other hand, a sharp increase in particle 

size at pH 5 is seen at about 50 °C, with another possible increase at about 75-80 °C. 

Samples at each pH from 6-8 are stable to increasing temperature up until about 58 °C, 

above which samples at pH 6 and 7 show a marked increase in particle size. Samples at 

pH 8 also show evidence of an increase in size at about 60 °C. The size increase in the 

latter case is relatively small and may be due to swelling of VLPs rather than aggregation. 

In general, the polydispersity of the VLPs (Figure 4.1C) was seen to increase with 

increasing acidity. The polydispersity of samples at pH 4 and 5 remained nearly constant 

across the temperature range, while samples at pH 6 and above show an increase in 

polydispersity near 60 °C, consistent with the changes seen in the size data. 
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The intensity of scattered light was also recorded during the DLS measurements 

(Figure 4.1B). Normalized values are reported because instrument settings are optimized 

for each sample, precluding meaningful direct sample-to-sample comparisons. In general, 

an increase in particle size or particle refractive index (relative to the solvent) will result 

in an increase in scattered light intensity. It should be noted, however, that a reduction in 

refractive index as a result of decreased particle density (e.g., due to swelling) would 

manifest itself as a lower scattering intensity. This is the best explanation of the data for 

samples at pH 8, where a smooth and gradual reduction of scattered light intensity is seen 

over the majority of the temperature ramp. There is a slight disruption of the curvilinear 

decline around 60 °C that corresponds to the increase in effective diameter seen for these 

samples in Figure 4.1A.  Plots of light scattered by samples at pH 5 also show evidence 

of structural alterations occurring around 60 °C, manifested by a sharp decrease in 

scattered light intensity. The plots corresponding to pH 6 and 7 are similar, with the 

decrease in scattered light occurring at higher temperatures (~ 75 °C). These decreases 

could be due to settling of precipitated material out of the incident light beam, consistent 

with the interpretation of the size data given above. The trace for pH 4 shows only a 

gradual decrease in intensity, with no sharp changes that correlate with measured changes 

in particle diameter (an exception is the transient reduction in scattering intensity from 

30-35 °C, but see the results of laurdan fluorescence experiments below). 

 

Circular dichroism studies 

From pH 4 to 8, the CD spectra of influenza VLPs display minima near 210 and 

227 nm, suggesting the presence of significant helical character across the pH range of 
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interest (Figure 4.2A). The loss of signal with increasing temperature (Figure 4.2B) is 

indicative of a temperature-dependent loss of secondary structure. To further investigate 

this effect, the signal at 227 nm was monitored as a function of temperature (Figure 4.3). 

Observed sharp changes in the CD signal are consistent with temperature-dependent 

protein structural transitions. Samples at pH 6 show the highest Tm at around 55 °C. 

Samples of increasing acidity have markedly reduced Tm values of 38 (pH 4) and 47 °C 

(pH 5), while samples at pH 7 or 8 are very similar with Tm values of 53 and 51 °C, 

respectively. The shapes of the melting curves suggest multiple components, presumably 

reflecting the heterogeneous nature of the system. 

 

Intrinsic fluorescence studies 

The intrinsic fluorescence emission peak position was determined for all samples 

as a function of temperature (Figure 4.4). In each case, a slight decrease in peak position 

over the temperature range ~ 10-40 °C is followed by a sharp transition to longer 

wavelengths. For protein samples, a thermally-induced red shift in peak maximum is 

observed when fluorescent amino acid side chains are exposed to an environment of 

increased polarity. This is consistent with an unfolding event in which amino acid 

fluorophores, normally at least partially buried in the apolar protein core, are exposed to 

the aqueous solvent. At temperatures between 55-65 °C (depending on pH) the peak 

maximum returns to shorter wavelengths, consistent with the observed aggregation of 

VLPs at elevated temperatures. The (normalized) emission intensity at 330 nm was also 

plotted as a function of temperature (Figure 4.4). In the absence of structural transitions, 

such plots typically exhibit a smooth curvilinear decline in emission intensity with 
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increasing temperature due to the intrinsic effect of temperature. Deviations from the 

curvilinear profile occur for all samples in the range 45-65 °C, confirming that the 

environments of intrinsic fluorophores are altered upon heating. 

 

ANS fluorescence studies 

The peak position (≥ 470 nm) and high intensity of ANS fluorescence emission in 

the presence of VLPs indicates that ANS is bound to apolar regions of these 

macromolecular complexes at low temperature. As previously indicated, this is not 

surprising given the presence of the lipid bilayer. Plots of ANS emission peak position as 

a function of temperature (Figure 4.5) display a temperature-dependent shift to shorter 

wavelengths in all samples, followed in some cases (i.e., for pH 5, 6, and 7) by a shift to 

longer wavelengths. In all samples, the extent of change in peak position (2-3 nm) is 

much less than that observed by intrinsic fluorescence. The high variability of the peak 

position and noise at elevated temperature make it difficult to draw substantial 

conclusions from these data. The relative intensity of ANS at 485 nm (Figure 4.5) 

manifests more definite evidence of temperature-induced exposure of apolar motifs. This 

is true in particular for the plots of samples at pH 5-8, in which a slight increase in 

emission intensity (beginning near 38 °C at pH 5 and 43 °C at pH 6-8) is seen 

superimposed over the curvilinear decline in emission that corresponds to the expected 

non-specific thermal quenching of fluorescence.  
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Laurdan fluorescence studies 

Plots of generalized polarization (GP) as a function of temperature (Figure 4.6) 

indicate a gradual increase in VLP membrane hydration (fluidity) upon heating. Not 

surprisingly, the pH of VLP suspensions has an effect on the rate and extent of membrane 

hydration. At low temperatures, the extent of membrane hydration (i.e., GP values) for all 

samples is very similar. Above 40 °C, samples at pH 4 consistently show the least change 

in membrane hydration, and, in general, samples prepared at low pH are slower to 

incorporate water molecules into the bilayer as the temperature is increased (notice that 

the temperature for which GP = 0 increases for more acidic samples). While the GP 

values of samples prepared at pH 4, 7, or 8 vary in a sigmoidal fashion with temperature, 

samples at pH 5 and 6 show a quasi-linear decline in GP over the temperature range 

examined. The extent of membrane hydration is greatest at high temperature (that is, 

above 75 °C) for samples at pH 5 and 6. 

Static light scattering at 340 nm was also monitored during laurdan fluorescence 

experiments (data not shown). While these data were essentially similar to the static light 

scattering measured during the DLS experiments, the transient drop in scattered light 

intensity observed for samples at pH 4 (Figure 4.1B, 30-35 °C) was not detected during 

this additional experiment, suggesting that it may have been an artifact. 

 

Empirical phase diagram 

An empirical phase diagram (Figure 4.7) was generated from the temperature-

dependent data presented in the preceding sections. Approximately 10 different phases 

can be seen over the experimental space, with the largest phase (pH 6-8, low temperature, 
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blue) corresponding to the least structurally disrupted state of the VLPs. There is a 

transition region that appears above this phase between 35 and 55 °C for pH 6-7, and 

from 35 to 50 °C at pH 8 (purple). The variably colored area above 60 °C for pH 6 and 7 

corresponds to particle aggregation. The lack of significant aggregation at pH 8 yields a 

phase at high temperature (dark red) that is different than that seen at pH 6 or 7. At pH 4 

and 5, two different phases are seen at low temperature, both representing significant 

structural disruption (light blue). Additional temperature-induced conformational changes 

give rise to multiple phases above 35 °C in the low pH region (green/orange). The 

apparent phase boundaries between pH 5 and 6 and above 40 °C represent conditions of 

intermediate stability, providing a starting point for the development of an excipient 

screening assay.  

 

Excipient screening 

A library of GRAS (generally recognized as safe) compounds was screened for 

potential stabilizers of VLPs in solution. Utilizing the empirical phase diagram that was 

produced from characterization studies (Figure 4.7), a screening assay was developed to 

identify excipients that prevent VLP aggregation (the most apparent physical degradation 

process). Although the choice of initial temperature and pH conditions for the screening 

assay was guided by the phase diagram (see preceding section), the final conditions were 

optimized to enhance subtle differences between potential stabilizers. Depending on the 

behavior of the control samples, percent inhibition of aggregation (Table 4.1) was 

calculated at either t = 15 or t = 30 minutes - whichever represented the time of maximal 

aggregation. The most promising aggregation-inhibiting compounds were found in a 
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variety of molecular classes, including detergents, polyols, amino acids, sugars, and sugar 

alcohols.  

 

Effect of individual stabilizers 

Using the top performing aggregation inhibitors from several molecular classes - 

namely, trehalose, glycerol, sorbitol, lysine, and diethanolamine (given the propensity of 

detergents to disrupt lipid bilayers, the apparent success of Tween 20 and Brij 35 as 

aggregation inhibitors may be artifactual) – CD and fluorescence measurements of VLPs 

in the presence of potential excipients were conducted. The solution pH was set to 7 for 

these experiments, to more closely approximate an actual vaccine formulation. 

As described in the Methods section, variable-temperature CD measurements 

were employed to determine if any of the selected compounds stabilize viral protein 

secondary structure (not illustrated). Of all the compounds tested, only sorbitol appeared 

to have a possible stabilizing effect on the secondary structure of viral proteins; the Tm of 

sorbitol-containing samples (55 °C) is slightly elevated relative to the control (54 °C), but 

formulations containing the other potential excipients show Tm values in the range of 50 

°C (trehalose) to 53 °C (lysine).  

The intrinsic fluorescence method was employed to measure the effect of 

potential stabilizers on viral protein tertiary structure. Plots of the emission peak position 

versus temperature (Figure 4.8) show a transition from approximately 329 nm to 336 nm 

that begins at or near 40 °C for most of the formulations tested. The exception is the 

formulation containing lysine, which exhibits its fluorescence peak near 344 nm at low 

temperature and shows evidence of a possible transition to slightly longer wavelengths 
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(+1-2 nm) starting at 43 °C (the error in these measurements prevents the conclusion that 

the shift is statistically significant). The Tm of the control is 51 °C. Diethanolamine is not 

an effective stabilizer, inducing a Tm of 49 °C, while formulations containing glycerol, 

trehalose, and sorbitol all show slightly elevated Tm values of 52, 53, and 54 °C, 

respectively. Static light scattering collected during these experiments (data not shown) 

indicated similar behavior among all formulations except the one containing lysine. In the 

presence of lysine, light scattering intensity was reduced greater than tenfold, suggesting 

structural disruption of the VLPs. 

Laurdan fluorescence was used to measure the effect of several compounds on the 

fluidity of the viral membrane as a function of increasing temperature. In these 

experiments, those potential excipients which thus far exhibited weak or no positive 

effect on physical stability (i.e., diethanolamine, glycerol, and lysine) were removed and 

replaced with glycine, ectoin, and NV10. Glycine was introduced due to a personal 

communication stating that it may stabilize the influenza HA and/or NA proteins. Ectoin 

(an organic osmolyte) and NV10 (a 5 kDa linear carbohydrate polymer) were tested as 

potential novel stabilizers of the viral membrane, based on reports of their general 

effectiveness in stabilizing macromolecular systems.
17

 Upon visual inspection of the 

temperature-dependent GP data (Figure 4.9), one or two of the compounds tested appear 

to inhibit the gel-to-liquid crystal transition. Again using sigmoidal fits to approximate 

the data, Tm values were extracted in order to quantitatively compare the effects of each 

stabilizer. As compared to a control sample (Tm = 52 °C), formulations containing 

sorbitol or ectoin have slightly higher Tm values of 54 °C. Given the magnitude of error 

associated with these measurements, however, the apparent increase in Tm is probably not 
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significant in both cases. On the other hand, glycine and trehalose do seem to exert a 

significant stabilizing effect with Tm values of 59 and 60 °C, respectively. NV10 has a 

negative effect on the stability of the viral envelope, inducing (relative to the control) 

lower GP values (increased membrane hydration) at temperatures above 20 °C. The Tm 

calculated for the NV10 formulation is 46 °C. 

 

Discussion 

A composite biophysical approach has been used to identify stabilizers of an 

influenza-based virus-like particle designed as a vaccine antigen. The signals from a 

variety of spectroscopic and light-scattering techniques were mathematically combined in 

the form of an EPD to enable visualization of the most important changes in physical 

structure resulting from exposure to stress conditions (i.e., temperature and pH). 

Consistent with prior analyses of enveloped viruses,
13, 18

 the data suggest a high degree of 

structural disruption at pH 4 and 5 even at low temperatures, with greater stability and 

structural similarity from pH 6 to 8 up to ~ 40 °C.  Based on the EPD and analysis of data 

derived from the individual techniques, VLPs prepared at pH 7 are the most resistant to 

temperature-induced physical disruption. Even though the EPD shows a high degree of 

similarity between pH 6 and 7, the most conservative approach is to formulate as far as 

possible from apparent phase boundaries. Such a phase boundary is obvious between pH 

5 and 6. Interestingly, many of the fluorescence-based techniques imply very few 

differences in structure between these conditions; upon inspection, it can be seen that the 

CD and DLS data are responsible for the major differences seen.  
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DLS was employed to monitor particle aggregation, one of the most important 

physical degradation processes detected for influenza VLPs. Although there is a well-

known low pH-induced conformational change in influenza HA that leads to fusion of the 

viral envelope with the host endosomal membrane in vivo,
19-21

 the uncleaved HA 

precursor (present in these particles) has been shown not to induce fusion of lipid 

bilayers.
22

 VLPs with trypsin-cleaved HA were observed at pH 5 and 6 by DLS to 

produce aggregates at 10 °C with an average hydrodynamic diameter greater than 1 µm 

(Figure 4.10), suggesting that VLPs with uncleaved HA aggregate due to some pH-

dependent mechanism other than HA-mediated membrane fusion. Whether this is due to 

unfolding of HA or other viral protein(s) should be the subject of further study.  

Regardless of mechanism, the serial decrease in size with increasing pH at 10 °C 

indicates a significant dependence on proton concentration in the aggregation behavior of 

influenza VLPs. At pH 8, where the proton concentration is relatively low, the measured 

size increase upon heating is not nearly as dramatic as pH 3-7 and may be due to particle 

swelling rather than aggregation.  

The presence of double minima near 210 and 227 nm in the CD spectra of 

influenza VLPs suggests appreciable helical content. Given that the influenza 

neuraminidase is composed primarily of β-structure,
23

 it is probable that the majority of 

the CD signal derives from the other two viral proteins within the VLPs. Both influenza 

hemagglutinin
24

 and MLV gag
25, 26

 have been shown to have substantial amounts of 

helical character. The shapes of the thermal transitions demonstrate both the 

heterogeneity of these proteins as well as perhaps the non-two-state nature of the 

transitions.  While the wide range of calculated Tm values (37-55 °C) across samples 
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prepared at various pH levels indicates that pH has a strong effect on the secondary 

structural stability of the VLP proteins, it should be noted for low-pH samples that the 

appearance of aggregates may be artificially lowering the CD signal at elevated 

temperature. On the other hand, it is clear that low-pH secondary structural alterations 

begin at temperatures well below those at which thermally-induced aggregation was 

detected by DLS. 

Based on changes in the intrinsic fluorescence of viral aromatic amino acids, the 

tertiary structures of the VLP proteins respond similarly to increasing temperature over 

the pH range. For all samples, a thermally-induced red shift in the peak maximum is 

observed, indicating that fluorescent amino acid side chains become more exposed to an 

environment of increased polarity. Between 50 and 55 °C at pH 4, 5, and 8, and around 

60 °C for pH 6 and 7, the red-shift reverses and an increase in fluorescence intensity is 

observed. This indicates a return to an environment of decreased polarity, and in the case 

of samples of pH < 8, can be correlated to particle aggregation.  

Fluorescent dyes were useful tools in the identification of subtle responses by 

VLPs to changes in solution temperature and/or pH. Not unexpectedly, ANS was able to 

bind extensively to all samples at low temperature, probably due to the presence of the 

host cell-derived lipid membrane. Analysis of ANS fluorescence intensity as a function 

of temperature was more effective in detecting differences in samples across the pH 

range and reflects the relative physical instability of VLPs in acidic media. The use of 

laurdan to monitor changes in membrane fluidity was also sensitive to physical changes 

in influenza VLPs. Previous characterization studies of enveloped viruses
13, 14

 seem to 

indicate that the lipid bilayer is no less immune than viral proteins to pharmaceutically 
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relevant stress conditions such as temperature and pH. This is similarly valid in the 

context of the VLPs under investigation, which, in addition to the membrane itself, are 

composed almost entirely of membrane-associated proteins. Thus, no component of these 

particles is independent of the membrane, and it can readily be appreciated how changes 

in membrane hydration might influence the overall physical stability of influenza VLPs. 

Aggregation was the most dramatic physical degradation pathway observed 

during the biophysical characterization of influenza VLPs. Although increased 

temperature is required to cause aggregation between pH 6 and 7, VLPs were seen to 

aggregate even at low temperature at pH 5 and below (no aggregation was measured 

above pH 7). This fact is reflected below 40 °C in the EPD as an obvious apparent phase 

boundary between pH 5 and 6. A central assumption of the EPD-based approach to 

physical stabilization is that such boundaries provide potential conditions for the 

screening of physical stabilizers. The rationale behind this concept is that if the 

macromolecular system is (relatively) unstressed, the relevant degradation pathways will 

not be (either kinetically or thermodynamically) significant enough to distinguish 

between a reasonably small subset of possible stabilizers. On the other hand, if the system 

is exposed to more extreme conditions, chemical stabilizers may be insufficient to 

prevent stress-induced transitions to (more degraded) low-energy states. In this case, the 

process of particle aggregation under mildly acidic conditions could be due to the 

structural perturbation of one or more viral proteins into a non-native aggregation-

competent state.
27

 A variety of GRAS compounds were found to inhibit particle 

aggregation through the use of a screening assay operated under conditions of meta-

stability identified using the EPD. The most effective of these compounds include 
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diethanolamine, glycerol, sorbitol, trehalose, and lysine. Based on light scattering and 

fluorescence data, the apparent stabilization against aggregation by lysine appeared to 

involve a complete disruption of VLP structure resulting in solvent exposure of normally 

buried amino acid fluorophores and accompanying particle disintegration. Sorbitol and 

trehalose, however, were seen to stabilize the tertiary structure of viral proteins, while 

glycerol and diethanolamine exhibited more or less neutral effects on both tertiary and 

secondary structure. Given that glycerol and diethanolamine reduce the aggregation of 

VLPs without preventing changes in protein tertiary structure, it seems likely that these 

compounds exert their effect by directly interfering with protein-protein interactions. 

Sorbitol and trehalose, on the other hand, do delay the unfolding of VLP protein tertiary 

structure in accelerated degradation studies, suggesting that the prevention of aggregation 

by these two compounds occurs due to the preservation of native-like protein structure(s). 

This kind of protein stabilization by sugars and polyols has been studied extensively and 

is thought in most cases to be due to non-specific effects such as preferential hydration.
28-

30
 There is the potential for specific effects as well. With the exception of lysine, there is 

some similarity between the chemical structures of the other stabilizers to sialic acid, the 

natural ligand of the influenza HA protein. Whether the stablizers are able to bind 

directly to HA spikes on the surface of influenza VLPs is unknown at this time. Finally, 

trehalose and glycine may possess the ability to stabilize viral envelope-like strucutures 

by arresting the process of temperature-induced membrane hydration. The ability of 

trehalose to increase the gel-to-liquid-crystalline phase transition temperature in 

multilamellar vesicles is well-known,
31-33

 and has been proposed to operate by means of 

direct replacement of water molecules bound to lipid carbonyls
31

 or by inducing a closer 
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lipid packing arrangement as a result of increased interfacial tension.
32

 It is possible that 

glycine in this case is operating through a similar mechanism. Of all the compounds 

studied, trehalose appears to be the most effective physical stabilizer due to its ability to 

prevent VLP aggregation, stabilize VLP protein tertiary structure, and prevent 

temperature-induced hydration of the lipid bilayer.  

To summarize, we have employed a biophysical approach to characterize the 

stability of influenza VLPs as a function of temperature and pH, two pharmaceutically 

relevant stress factors. While the use of accelerated stability-indicating assays is a 

common approach, we were able to create and use a visual representation of the entire 

characterization data set to identify optimal conditions for screening of potential 

stabilizers. Subsequently, we were able to identify three effective physical stabilizers of 

influenza VLPs. While additional work is needed to determine the optimal 

concentration(s) of these stabilizing compounds, their ability to stabilize when used in 

combination, and their influence on the antigenicity of influenza VLPs, our preliminary 

identification of potential stabilizers should be useful in the development of stable 

vaccine formulations. 
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Table 4.1. Extent of aggregation of influenza VLPs in the presence of various 

potential stabilizers (grouped by class). 

Excipient 
Concentration 

(molarity or % w/v) 

Inhibition
a
  

(%) 

Ascorbic acid 0.15 M -338.1
b 

Aspartic Acid 0.075 M -13.5
b 

Lactic Acid
 

0.15 M 21.8
+
 

Malic Acid 0.15 M 16.2 

     

Arginine 0.3 M 70.0 

Diethanolamine 0.3 M 67.4 

Guanidine HCl 0.3 M 30.1 

Histidine 0.3 M 30.2 

Lysine 0.3 M 70.1 

Proline 0.3 M 21.7 

Glycine 0.3 M 12.1 

     

Brij 35 0.01% 67.7 

Brij 35 0.05% 36.9 

Brij 35 0.10% 60.0 

     

Tween 20
 

0.01% 60.3
+
 

Tween 20
 

0.05% 98.5
+
 

Tween 20 0.10% 91.2
+ 

Tween 80 0.01% 57.9 

Tween 80 0.05% 45.1 

Tween 80 0.10% 52.6 

   

Pluronic F-68
 

0.01% 3.4
+
 

Pluronic F-68
 

0.05% 65.4
+
 

Pluronic F-68
 

0.10% 43.1
+
 

   

Albumin (human)
 

1% -55.2
b
 

Albumin (human)
 

2.5% -1597.3
b
 

Albumin (human)
 

5% -1778.7
b
 

 

a
Relative to the control at t = 15 minutes

+
 or t = 30 minutes.  Inhibition calculated 

as (1-OD350 sample/OD350 control)(100%). The relative standard deviation in these 

calculated values was ≤ 10 %.  

b
A negative percent inhibition value indicates that the excipient enhanced 

aggregation. 
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Table 4.1, continued. 

Excipient 
Concentration 

(molarity or % w/v) 

Inhibition
a
 

(%) 

Gelatin (porcine)
 

2.5% 11.7
+
 

Gelatin (porcine)
 

5% -54.7
+b

 

     

Lactose
 

10% -20.6
+b

 

Lactose 15% 60.5 

Lactose
 

20% 75.0
+
 

Trehalose
 

10% -227.5
+b

 

Trehalose 15% -2.9
b 

Trehalose
 

20% 84.2
+
 

Dextrose  10% 25.9 

Dextrose 15% 58.0 

Dextrose  20% 66.7 

Sucrose
 

10% -113.3
+b

 

Sucrose
 

20% 28.4
+
 

   

Mannitol
 

10% -19.5
b
 

Sorbitol
 

10% -66.1
+b

 

Sorbitol 15% 45.2 

Sorbitol
 

20% 80.1
+
 

Glycerol 5% 23.4 

Glycerol 10% 82.3 

Glycerol 15% 41.8 

Glycerol 20% 69.1 

     

-Cyclodextrin
 

2.5% -91.2
b
 

2-OH propyl -CD
c 

5% 19.2 

2-OH propyl -CD
c 

10% 249.2
d
 

2-OH propyl -CD
c 

5% 27.4 

2-OH propyl -CD
c 

10% 12.1 
 

a
Relative to the control sample at t = 15 minutes

+ 
or t = 30 minutes.   Inhibition 

calculated as (1-OD350 sample/OD350 control)(100%). The relative standard deviation 

in these calculated values was ≤ 10 %. 

b
A negative percent inhibition value indicates that the excipient enhanced 

aggregation. 

c
CD = cyclodextrin. 

d
This percent inhibition value is misleading.  The sample precipitated during 

analysis, apparently lowering the optical density value. 
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Figure 4.1. Dynamic light scattering by influenza VLPs. Effective diameter (A), 

static light scatting intensity (B), and sample polydispersity (C) are plotted as a 

function of temperature. Each point represents the mean of three independent 

samples, and error bars show the standard deviation. 
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Figure 4.2. Circular dichroism spectra of influenza VLPs. Low temperature (10 °C) 

spectra at each unit pH from 4 to 8 (A) and pH 7 spectra at a variety of 

temperatures (B) are presented. 
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Figure 4.3. The response of influenza VLP protein secondary structure to thermal 

stress. The normalized (-1 to 0) CD at 227 nm is presented as a function of 

temperature. Each point represents the mean of three independent samples, and 

error bars show the standard deviation. 
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Figure 4.4. Intrinsic fluorescence peak position of influenza VLPs as a function of 

temperature. Also presented as a function of temperature (lower right) is the 

normalized (0 to 1) intensity of fluorescence at 330 nm. Each point represents the 

mean of three independent samples, and error bars show the standard deviation. 
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Figure 4.5. Fluorescence of ANS as a probe of influenza VLP physical structure. The 

wavelength of peak emission is presented as a function of temperature. Also 

presented as a function of temperature (lower right) is the normalized (0 to 1) 

intensity of ANS fluorescence at 485 nm. Each point represents the mean of three 

independent samples, and error bars show the standard deviation. 
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Figure 4.6. Generalized polarization of laurdan fluorescence in the presence of 

influenza VLPs as a function of temperature.  Each point represents the mean of 

three independent samples, and error bars show the standard deviation. 
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Figure 4.7. Empirical phase diagram derived from biophysical characterization of 

influenza VLPs. The EPD is prepared from temperature-dependent effective 

diameter, static light scattering, polydispersity, CD at 227 nm, intrinsic fluorescence 

(peak position and relative intensity at 330 nm), ANS fluorescence (peak position 

and relative intensity at 485 nm), and GP of laurdan fluorescence data collected 

across the pH range from 4 to 8. 
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Figure 4.8. The intrinsic fluorescence of influenza VLPS in the presence of selected 

stabilizers. The position (wavelength) of the peak emission is presented as a function 

of temperature. Each point represents the mean of two independent samples, and 

error bars show the standard deviation. 
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Figure 4.9. Generalized polarization of fluorescence by laurdan in the presence of 

influenza VLPs formulated with selected stabilizers, presented as a function of 

temperature. Each point represents the mean of two independent samples, and 

error bars show the standard deviation. 



 

 145 

0 10 20 30 40 50 60 70 80 90

10
2

10
3

10
4

10
5

10
6

0 10 20 30 40 50 60 70 80 90

0.0

0.2

0.4

0.6

0.8

1.0

5 6 7

0

500

1000

1500

2000

2500

3000

B

E
ff
e
c
ti
v
e

D
ia
m
e
te
r 
(n
m
)

Temperature (°C)

 pH 5 cleaved

 pH 6 cleaved

 pH 7 cleaved

 pH 5   pH 7  

 pH 6  

N
o
rm
a
liz
e
d

S
c
a
tt
e
ri
n
g
 I
n
te
n
s
it
y

Temperature (°C)

 pH 5 cleaved

 pH 6 cleaved

 pH 7 cleaved

 pH 5   pH 7

 pH 6

A

C

E
ff
e
c
ti
v
e

D
ia
m
e
te
r 
(n
m
)

pH

 cleaved

 uncleaved

Figure 4.10. Comparison of VLPs with trypsin-cleaved HA to uncleaved VLPs by 

dynamic light scattering. As a function of temperature, particles with cleaved HA 

show differences in both scattering intensity (A) and average particle size (B). At 

low temperature, size differences are observed at pH 5 and 6 (C). Each point 

represents the mean of three independent samples, and error bars show the 

standard deviation. 
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Chapter 5 

Conclusions and Future Directions 

 

The formulation of vaccines has traditionally been a challenging task. In 

particular, the development of thermostable vaccines that can be effectively delivered to 

cold chain-deficient regions is a slow, difficult, and currently sometimes impossible 

process. In the case of vaccines against viral diseases, we have hypothesized that this 

difficulty is due in large part to a requirement that spatially complex neutralizing epitopes 

be preserved over the course of a vaccine’s shelf-life, often (but not always) within a 

native viral supramolecular structure. Unfortunately for vaccine developers, there are a 

wide variety of physical degradation processes that can disrupt these epitopes, and some 

of them can have significant effects on vaccine potency.
1
 For this reason, the central 

focus of this dissertation has been the application of a multi-faceted biophysical, EPD-

based approach to the identification of stabilizers that prevent the loss of non-covalent 

native viral structures. While the EPD method of data analysis has been applied 

successfully to the characterization and stabilization of a broad spectrum of potentially 

therapeutic macromolecular systems,
2-17

 it has not (with one recent exception
18

) been 

applied to particles as massive or complex as viruses and virus-like particles. For 

example, the Norwalk VLP (discussed in Chapter 2), which is the most structurally 

uncomplicated particle among our four case studies, is composed of 180 self-assembled 

protein monomers and has a total particulate mass above 10 MDa.
19

 The major questions 

posed by this work are two-fold: first, is the EPD-based approach to stabilization 
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applicable in the case of these large, structurally complicated particles, and, if so, how 

can the findings from these case studies be applied to improve the use of this technique in 

the development of future viral vaccine formulations? 

Perhaps the most important application of the EPD-based approach to vaccine 

stabilization is the determination of optimal stress conditions to be used in the screening 

of chemical libraries for potential stabilizing excipients. As mentioned in preceding 

chapters, the use of appropriate stress parameters during screening experiments can be 

critical to the ability to discriminate between highly effective and marginally effective 

stabilizers. If the selected stress conditions are too stringent, the formulation scientist 

risks destruction of the therapeutic entity to an extent such that the stabilizing effects 

from even the most efficacious of potential excipients are not observable. On the other 

hand, if the screening conditions are chosen such that significant degradation pathways 

are either kinetically or thermodynamically inhibited, the differences between highly 

effective and marginally effective stabilizers may not be apparent. The most significant 

physical degradation process observed among the four viral vaccine candidates stabilized 

in this work was particle aggregation, and for all of the candidates studied a number of 

aggregation-inhibiting compounds were identified by high- or medium-throughput 

screening assays. Furthermore, in each of the case studies, there was an extremely wide 

range observed in the degree of aggregation inhibition by various compounds from the 

chemical library, sometimes even between compounds belonging to the same molecular 

class (e.g., disaccharides). This suggests that the screening conditions were chosen 

appropriately in each case, which is in itself is a partial validation of the EPD-based 

approach. Although there are a variety of potential causes for the observed aggregation of 
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these potential protein-based therapeutics,
20

 it is reasonable to suggest that there are just a 

few general mechanisms by which these compounds are able to inhibit viral aggregation. 

The first possibility is that they work by preventing the transition of one or more viral 

components into a non-native, aggregation-competent conformation. Alternatively, the 

compounds which inhibit aggregation may have little to no preservative effect on the 

native conformation of viral components, and simply interfere with the agglomeration of 

particles whether they are structurally disrupted or not. An additional possibility is that 

certain compounds may actually disrupt or somehow disintegrate viral particles, thereby 

abolishing the diagnostic signal presumed to be reflective of particle aggregation (e.g., 

time-dependent optical density measurements at 360 nm) - this phenomenon was 

observed for lysine in the presence of influenza VLPs. To discriminate between these 

three possibilities, additional spectroscopic studies were performed on viral particles in 

the presence of potential stabilizers to determine whether they exert their stabilizing 

effects on one or more aspects of viral structure in particular. The measles project was an 

exception in which the number of desirable post-screening studies was limited by the 

availability of viral material.  

By and large, those compounds that inhibited the aggregation of viral particles 

exhibited a combination of the different mechanisms described above – certain ones were 

observed to stabilize one or more aspects of the viral architecture (i.e., viral protein 

tertiary or secondary structure, or fluidity of the viral envelope), while others did not have 

a detectable effect on any of the specific aspects of viral structure that were studied. This 

finding emphasizes the requirement that additional studies be conducted after the initial 

screening experiments to determine exactly which of the possible mechanisms are 
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functioning; clearly, the compounds that belong to the former group are the most 

desirable from a vaccine formulation perspective, since the native state of the virus 

should be most effective in stimulating a robust and protective immune response. While 

these experiments demand the availability of additional purified viral stocks, the amount 

of raw material and other laboratory resources required for preformulation studies 

conducted in this manner should in many cases still be significantly less than if animal 

challenge, cell-based, or antibody-based (e.g., ELISA) assays are utilized as primary 

screening tools. In this sense, it is reasonable to conclude that the EPD-based approach is 

an appropriate method for the identification of optimal excipient screening conditions, 

with the caveat that additional studies must be performed in the presence of any 

stabilizers identified by the screening assay.  

The low pH-induced aggregation of viral particles observed in both the influenza 

and measles vaccine candidates characterized suggests an opportunity to further optimize 

the EPD-based approach for the stabilization of enveloped viral vaccines. The two EPDs 

generated by these studies all show strong apparent phase transitions that manifest as a 

function of pH, usually between pH 5 and 6. Severe particle aggregation was observed 

even at low temperatures in all three systems when the viral particles were suspended in 

buffer of pH 5 or lower. In the case of the influenza VLP, the structural sensitivity to pH 

in this region can at least partially be attributed to well-known conformational changes in 

the proteins that are responsible for fusion of the viral envelope with the lipid bilayer of 

host cells. The membrane-bound fusion proteins possessed by all enveloped viruses serve 

to deliver the viral genome to the cytosol of infected cells either directly from the host 

cell surface in a pH-independent manner (e.g., measles
21

), or from the interior of a 
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maturing endosome in response to reduced pH (e.g., rabies and influenza).
22, 23

 Indeed, 

these viruses (or parent viruses in the case of VLPs) have evolved in such a way that 

enveloped, infection-competent particles are never exposed to acidity greater than that of 

the endosome during their normal infection cycles, which is in contrast to the Norwalk 

and other viruses which infect the gastrointestinal tract and thus require insensitivity to 

low pH. 

Based on the results of the studies presented here, the presence of a viral envelope 

and its associated proteins confers a high sensitivity to pH – but this might have been 

predicted from the wealth of available virology literature. Furthermore, it is already 

known that the fusion proteins that are partially responsible for the sensitivity of viral 

structure to acidic pH are of great importance to vaccine efficacy – that is, they contain 

critical epitopes that are recognized by the neutralizing immunoglobulins generated by a 

protective immune response.
24-27

 Therefore, the preservation of the native structures of 

these proteins is an important component of successful vaccine formulation. For this 

reason, characterization studies for the purpose of formulation were probably not 

enhanced by measurements conducted at pH 4 or below. The use of a single technique 

that is sensitive to particle aggregation (such as DLS), rather than the full complement of 

biophysical techniques, could help rule out the need for additional measurements if low-

temperature aggregation is observed to great extent. In retrospect, a better use of the 

resources spent for those measurements at pH 4 or below would have been analysis of 

samples at half-unit pH values near the apparent phase boundaries observed at higher pH 

(i.e., pH 5.5, 6.5, and perhaps even 7.5). Performing these additional measurements 

(instead of ones at the extremely low pH levels characterized by a high degree of 
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temperature-independent aggregation) could enhance the sensitivity of the EPD in two 

ways. First, significantly greater resolution on the pH axis would be obtained, which may 

be of use in the identification of optimal conditions to be used in excipient screening 

assays. The molecular switches responsible for viral protein conformation changes are 

not completely understood for all of the viral species studied here, but in many cases their 

response to pH may be tightly regulated such that incremental changes in proton 

concentration may lead to the appearance of unique physical states that could be detected 

by the EPD. Second, significant particle aggregation at any one pH value has 

considerable effects on the entire EPD. The algorithm used to generate an EPD was 

designed to highlight changes in the signals measured by a variety of separate techniques 

- in other words, the composite data signal at any one particular combination of 

temperature and pH is compared to the entire set of data and tested for difference. If it is 

significantly different from the data in neighboring parts of the diagram (i.e., similar 

combination of temperature and pH), a color change will result and the presence of a new 

physical state will be implied. Whether a difference is significant, however, depends on 

the range of values present in the data set. If the range of values is small, small 

differences will appear significant. If the range is wide, small changes will be ignored. 

Thus, a wide range in particle size imparted by high levels of aggregation will override 

small, potentially important changes that occur even in other regions of the diagram. In 

addition, particle aggregation has effects on the signal obtained by other techniques as 

well – for example, the scattering from aggregated material can result in the artificial loss 

of signal in any of several spectroscopic techniques. This phenomenon has the potential 

to influence the entire phase diagram (for the same reason given above), even if it is only 
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observed at a single pH value. Therefore, excluding from the EPD algorithm extremes of 

pH that do not assist either the identification of optimal formulation pH or conditions to 

be used in excipient screening assays may yield more useful diagrams.  

Finally, the biophysical data set generated by characterization studies in our 

laboratory is currently subjected to the EPD-generating algorithm without any 

preprocessing. The complex structure of viral particles, however, often leads to a high 

degree of heterogeneity that manifests in the data as noise. This noise can sometimes be 

detected by the EPD in non-useful ways – in other words, noise in the data can appear as 

local and transient phase transitions, or mottling, in the EPD. The use of data 

preprocessing in the form of mathematical noise reduction techniques (such as 

smoothing) is already being explored by other students in our laboratory, but it is worth 

mentioning here as another potential avenue for improvement. Overall, however, the EPD 

represents an extremely versatile technique for the visualization of changes in the 

physical state of viral vaccines; this fact is reflected by the increasing adoption of this 

technique by both large and small commercial vaccine developers. It will be exciting to 

see what new applications and innovations result from its continued development. 
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