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ABSTRACT 

Understanding species’ distributions is a central theme of biodiversity studies. 

A combination of data derived from moderate and high spectral resolution satellite 

imagery (vegetation indices and hyperspectral narrow bands, respectively) was used 

to address questions regarding tree species’ distributions, vegetation phenology, and 

influences on bird seasonal movements in tropical rainforests. Vegetation indices 

were used in ecological niche modeling to predict movement patterns of a tropical 

canopy frugivorous bird in Central America: the predicted distributions generally 

recovered observed non-breeding ranges, but estimated lowland areas for the 

breeding range, which is restricted to middle elevations. Hyperspectral imagery 

provided sufficient spectral information to discriminate crowns of five different tree 

taxa that represent food resources for macaws and peccaries in southeastern Peru. 

Tree spectra showed significant temporal variation, suggesting that it is possible to 

study tree phenology remotely. Current and future developments of remote sensing 

techniques permit regional studies of ecosystem functions and structure. 
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CHAPTER I 

 

Vegetation Seasonality and Movement Patterns of a Tropical Frugivorous Bird: 

Clues from Remotely Sensed Vegetation Indices and Ecological Niche Modeling 

 

 

The dynamics of tree phenology represent a major determinant in the structure and 

function of forest ecosystems. In tropical regions, variation in availability of food 

resources such as fruit plays an important role in determining temporal, localized 

changes in animal communities. In Costa Rica, studies in the Caribbean lowlands 

(Levey 1988), in lower montane forest (Wenny and Levey 1998), and in higher-

elevation premontane wet forests (Loiselle and Blake 1991) depicted complex 

patterns of tree and shrub fruiting. Previous studies have concluded that fruit 

availability affects seasonal movements and elevational shifts of frugivorous birds, 

including records in quetzals (Pharomachus spp.), bellbirds (Procnias spp.), 

manakins (Pipridae), and euphonias (Blake and Loiselle 2002; Blake et al. 1990; 

Levey 1988; Loiselle and Blake 1991; Powell and Bjork 1995; Powell and Bjork 

2004; Skutch 1969; Slud 1964). Blake and Loiselle (2002) summarized the situation 

as, “we know relatively little about actual movement patterns and home-range sizes 

of most frugivores.”  

One of the few seasonal migrations that has received much-needed 

investigation is that of the Three-wattled Bellbird (Procnias tricarunculata; Powell 
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and Bjork 2004), a canopy frugivorous cotinga classified as Vulnerable, ranging from 

Nicaragua to Panama (BirdLife International 2008). Three distinct song types are 

recognized for this species (Kroodsma 2005), each in a different breeding area: one 

song type in northern Nicaragua and southern Honduras (“Nicaraguan” song type); 

another in the Tilarán Mountains of north-central Costa Rica (“Monteverde”); and a 

third in the Cordillera de Talamanca of southeastern Costa Rica and western Panama 

(“Panamanian”). Telemetry studies of a bellbird population breeding in Monteverde 

Cloud Forest Reserve (above 1300 m) revealed that individuals shift both in elevation 

and spatially (Powell and Bjork 2004; Fig. 1). Outside of the breeding season, radio-

tagged individuals were found on both the Pacific and Atlantic slopes, in both Costa 

Rica and Nicaragua. The study focused on migration patterns and implications for 

conservation in this population, including lack of protection of areas used outside of 

the breeding season; factors determining migration remain unknown, but are 

presumed to be related to variation in food resource availability and rainfall, which 

was one important impetus for this study.  

The effects of environmental variability on animal movements have been 

studied via climatic dimensions in ecological niche modeling (ENM) approaches, 

addressing short and long distance migration in monarch butterflies (Batalden et al. 

2007), and austral migration (Joseph and Stockwell 2000) and Nearctic-Neotropical 

migration (Martínez-Meyer et al. 2004; Nakazawa et al. 2004) in birds. While 

monarch butterflies wintering ranges showed a shift in the ecological dimensions of 

breeding ranges, many birds studied tracked the same ecological regimes between 
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breeding ranges in North America and wintering ranges in Central and South America 

(“niche followers”); a smaller subset of the species studied changed their ecological 

conditions between the two seasons (“niche switchers”). Such findings support the 

hypothesis that long distance, seasonal migration evolved in bird populations locally 

tracking resources (Levey and Stiles 1992).  

The aims of this study are twofold: (1) to investigate the relationship between 

vegetation seasonality and known movement patterns of the Monteverde bellbird 

population, and (2) to predict the potential distribution of a different population, for 

which no information regarding breeding sites or migration patterns is available. 

Toward the first objective, we analyzed the variation in the Enhanced Vegetation 

Index (EVI; Huete et al. 1994) derived from the satellite Moderate Resolution 

Imaging Spectroradiometer (MODIS), as related to known migration sites. Vegetation 

indices have been shown to correlate well with phenological changes in temperate 

forests (Fisher and Mustard 2007; Studer et al. 2007; Zhang et al. 2003); in tropical 

areas, vegetation indices are able to capture phenological differences in the canopies 

between dry and wet seasons (Huete et al. 2002; Xiao et al. 2006).  Hence, here, we 

compared sites used by Monteverde bellbirds at different times of the year in terms of 

EVI variability, to assess whether such variation exists, and if it correlates with 

observed seasonal migration patterns.  

 Toward the second objective, we focused on a population that resides part of 

the year in Corcovado National Park, Costa Rica, of the Panamanian song type. 

Assuming constancy of species ecological characteristics throughout the year 
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(Nakazawa et al. 2004), we applied ENM to estimate potential distributions for 

breeding and non-breeding seasons, based on observed occurrences and vegetation 

indices as input data. Vegetation indices have been used in remote sensing studies to 

estimate canopy characteristics, such as leaf area index, and chlorophyll and water 

content (Houborg et al. 2007). In ENM, the Normalized Difference Vegetation Index 

(NDVI; Tucker 1979) has been used successfully, as vegetation seasonality and type 

parameter, to address diverse challenges (Cayuela et al. 2006; Ferreira de Siqueira et 

al. 2009; Osborne et al. 2001; Osborne and Suárez-Seoane 2007; Peterson et al. 2005; 

Roura-Pascual et al. 2004; Sarasola et al. 2008); more recently, Leaf Area Index 

(LAI; Chen et al. 1997) has been used to estimate vegetation productivity in studies 

predicting species’ distributions in the Neotropics (Buermann et al. 2008; Prates-

Clark et al. 2008). 

We include in this study three vegetation indices, two new to the ENM 

framework. The aim is to describe canopy characteristics and phenological changes 

between seasons that may influence the movements of bellbirds. Since the migration 

patterns of this species remain largely unknown, this study provides a first-pass 

assessment of the potential areas used throughout the year. 

 

1. Methods 

1.1. Bellbird seasonal movements and EVI variation 

We followed Powell and Bjork (2004) in delineating sites used by Monteverde 

bellbirds through the year, as follows. Three stages are well defined (Fig. 1, Table 1): 
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breeding in Monteverde Cloud Forest Reserve (April to June), migration to the 

Atlantic lowlands of northern Nicaragua (October to December), and migration to the 

Pacific lowlands in Costa Rica (December to March). We randomly selected 10% of 

the total number of 500 m resolution pixels inside polygons delineating each 

distributional area (Fig.1). Similarly, we selected random pixels from across the 

larger regions of the Pacific and Atlantic lowlands and the middle elevations (1000 - 

1800 m), representing ~5% of the total number of pixels.  

The two sets of pixels were used to compare MODIS EVI temporal variability 

between regions and sites visited by bellbirds. EVI is calculated as a ratio between 

red, blue, and near infrared reflectance channels, and was developed for measuring 

photosynthetic activity in high biomass regions; the blue channel is used to reduce 

atmospheric influences (Huete et al. 2002). Since the Monteverde population study 

was carried out in 1992 - 1995, but MODIS became functional only in 2000 (Justice 

et al. 2002), we used EVI 16-day time series for year 2004, at 500 m resolution. We 

choose year 2004 to match the timing of our observations of another population of 

bellbirds, in Corcovado National Park (see below). None of the two periods (1992-

1995 and 2004) was recorded as either moderate or strong El Niño or La Niña years 

(http://ggweather.com/enso/oni.htm), so average rainfall should be comparable. Two 

16-day average EVI datasets were available for download for each month of 2004 

with two exceptions (January and November), of which only one 16-day average 

dataset was available. We also used a MODIS land cover product expressed as plant 

functional type (Sun and Liang 2008), which we downloaded for year 2004 at 500 m 
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resolution (https://lpdaac.usgs.gov/); this dataset was used to mask areas not holding 

forest. We calculated basic statistics (mean, median, minimum, and maximum) of 

EVI values to assess temporal variation at the regional and bellbird site scales. 

 

1.2. Ecological niche modeling – algorithms and data input 

Ecological niche modeling tools have been applied to investigate various aspects of 

species distribution and ecology (Araújo et al. 2008; Gaubert et al. 2006; Nyári et al. 

2006; Oberhauser and Peterson 2004; Pearson and Dawson 2005; Peterson 2003, 

2006a, b; Peterson et al. 2007; Peterson et al. 1999; Raxworthy et al. 2003; Thuiller et 

al. 2005; Ullah et al. 2007). We use the term “niche” according to Grinnell (1917): 

the set of environmental conditions that determines a species distribution. Different 

techniques, from simple bioclimatic envelopes and logistic regressions to more 

complicated neural networks and genetic algorithms, require sets of known presences 

and environmental data in the form of raster grids to build models of a species 

ecological niche. We applied two different ecological niche modeling tools, Genetic 

Algorithm for Rule Set Projection (GARP, Stockwell and Peters 1999) and maximum 

entropy (Maxent, Phillips et al. 2006), to study seasonal changes in the ecological 

distribution of bellbirds observed at Corcovado National Park, Costa Rica.  

GARP generates rules about species’ environmental requirements based on 

presence points and associated environmental data, tests these rules with other known 

presences, and then modifies and tests again the rules, in an iterative process. The 

best set of rules (i.e., those that best explain the given data, tested via fitness 
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functions) is then projected onto geography to estimate the species’ potential 

distribution. We used the DesktopGARP implementation, and ran 100 models with a 

50% split of occurrence data into training (model building) and testing (of models 

produced) sets. Following the recommendations of Anderson et al. (2003) for 

selecting optimal models, we ran 100 models and used an omission error threshold of 

20% of distribution, and commission error of 50 % of distribution. Omission error is 

calculated based on known presences predicted absent, which can generally be 

regarded as a model failure. Commission error is based on the areas predicted present 

for which no known presences are available, thus not necessarily a model failure, and 

as such a wider range of commission error values is acceptable (Anderson et al. 

2003). 

We also employed Maxent, a modeling tool based on the Gibbs probability 

distribution function, to find the maximum entropy distribution: the most spread-out 

probability distribution given a set of constraints (Phillips et al. 2006). The 

constraints, called features, are derived from the input environmental variables, and 

can be linear (unmodified variables), quadratic (variables squared), product (product 

of two variables), threshold (binary transformation of a variable using a threshold), 

and hinge (variable constant below a threshold). The optimal combination of features 

depends on the number of presence points available; the “auto” setting on the Maxent 

interface allows the program to select the features to be used based on the number of 

occurrences available. Fewer feature types are used when few presence points are 

available; model complexity increases when larger presence datasets are available. 
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We used Maxent 3.1.0, with the default settings for most parameters, including the 

regularization multiplier, which controls the commission error of the models. The 

default options have been optimized recently using datasets that varied in complexity 

and geographic representation (Phillips and Dudík 2008). We used the “raw” output 

option, which generates models with original probability distribution values (as 

opposed to logistic or cumulative transforms), and a 50% random split of the presence 

points into training and testing of predictions.   

Occurrence data used in modeling characterized spatial positions of 

individuals from the population of bellbirds that occupies an area close to the Pacific 

coast on the Osa Peninsula (Fig. 1), in Corcovado National Park. We observed males 

calling from subcanopy perches in 14 - 25 March 2004, and recorded their locations 

using geographic positioning systems (GPS). In all, we accumulated 18 GPS 

locations of adult and immature males. All adult males sang the Panamanian dialect.  

For environmental variables we downloaded MOD13Q1 MODIS data 

products for 2004, at 250 m resolution. The tiles covering Nicaragua, Costa Rica, and 

Panama were mosaicked to match the approximate extent of the species’ distribution, 

and reprojected to geographic projection using Modis Reprojection Tool version 4.0 

(https://lpdaac.usgs.gov/lpdaac/); the same application was used to extract relevant 

layers (EVI, reflectance bands, and pixel reliability quality assurance). We masked 

out all pixels flagged as cloud-contaminated in the pixel reliability dataset. MODIS 

bands from the red (band 1), near infrared (band 2), and middle infrared (band 7) 

ranges were used to calculate in ENVI 4.5 (ITT Visual Information Solution) the Red 
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Index (RI, Gitelson et al. 2005) and the Normalized Difference Water Index (NDWI, 

Gao 1996) as 

 

RI = (band 2 / band 1) – 1 

NDWI = (band 2 – band 7) / (band 2 + band 7) 

 

EVI, RI, and NDWI have been shown to estimate leaf area index, chlorophyll 

content, and vegetation water content, respectively (Houborg et. al 2007). We 

considered these canopy parameters to be informative regarding vegetation 

phenological stages. Based on the timing of the known Monteverde population 

migration phases, we generated nine environmental datasets for ENM experiments for 

Corcovado bellbirds, each dataset containing the above three vegetation indices for 

the time period selected (Table 1). To train models, we used vegetation indices for the 

first two weeks and last two weeks of March separately, to coincide with our field 

observations. We used this approach to account for the fact that any vegetation 

changes occurring between beginning and end of March do not trigger seasonal 

movements of bellbirds. The extent of these two datasets was set to Osa Peninsula 

(Fig. 1) as an assumption of the population’s mobility, which defined areas for 

pseudoabsence sampling (Stockwell and Peterson 2002) required in both GARP and 

Maxent. Selecting a subset of the overall model training region for ENM implies 

reduced mobility of species and limits the algorithms to exploring a subset of the 

species’ space of potentially suitable abiotic conditions (Soberón and Peterson 2005). 
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However, our aim was that of modeling the ecological niche of Corcovado population 

and exploring its spatial and temporal variability. As such, we projected the two 

March models separately onto the other seven datasets, across an area extending from 

Nicaragua to Panama. We intersected the two resulting outputs for each period to map 

areas predicted as suitable in both cases, using the lowest presence threshold 

approach (Pearson et al. 2007): the model output suitability value at which all known 

occurrences are predicted present. This approach allowed for changing both Maxent’s 

continuous outputs (probability distribution values) and GARP’s categorical ones 

(model agreement values) to binary outputs (presence-absence) under a 0% omission 

threshold. All analyses were run separately for GARP and Maxent models in ArcGIS 

9.2 (ESRI Inc.).  

 

1.3. GARP and Maxent models – analyzing Corcovado bellbird migration patterns  

Our aim was to generate time-dependent potential distributions for birds observed in 

Corcovado National Park in March 2004, to track seasonal variations in potential 

areas of occupancy, and to analyze them based on known migration patterns of the 

Monteverde population. For the latter purpose, we looked at the proportion of area 

predicted present at the seven different times of the year by region: Osa Peninsula, 

Pacific lowlands, and Atlantic lowlands, and at elevations of 1000 - 1800 m, the latter 

to represent the altitudinal component, as described in the migration of Monteverde 

bellbirds. We calculated numbers of pixels predicted present, out of the total number 

of pixels available; given that cloud cover varied between time periods, the total 
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number of pixels available for modeling was not always the same. For this reason, we 

calculated the number of masked cloud pixels for each time period, and used these 

numbers to establish lower bounds (i.e., if all cloud pixels were predicted absent) and 

upper bounds (i.e., if all cloud pixels were predicted present) of proportional areas 

predicted present.  

 

2. Results    

2.1. EVI variation at Monteverde bellbird population sites 

We noted different patterns of EVI seasonal variation in the descriptive statistics 

between regions (Fig. 2). Forests on the Atlantic lowlands were less variable in terms 

of mean EVI values, which remained around 5000 throughout the year. Clearer 

separation between seasons was observed in the Pacific lowlands, where average EVI 

values did not exceed 5000 until late in the season (May), most likely due to the 

differences in rainfall and consequently pronounced dry and wet seasons. Even more 

variable are middle elevations: here, mean EVI values remained largely < 5000 from 

January to July, but then rose between August and October.  

 Monteverde birds are present in the Atlantic lowlands of southeastern 

Nicaragua between the end of October and December (Fig.1), during which time the 

mean and range of EVI values of areas that they use match those of the overall 

Atlantic region (Fig. 2). However, sites they use between January and March in the 

Pacific region are less typical of the broader Pacific lowlands region, being generally 

higher than surrounding areas (Fig. 2). Their middle elevation breeding site 
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(Monteverde Cloud Forest reserve) does not match the observed regional mean EVI 

values: rather, it is generally represented by a narrow interval of the observed 

variability; only towards the end of the breeding season (i.e., in June) do the two 

datasets become comparable in terms of means and overall variation.  

 

2.2. Predicting movement  patterns of Corcovado bellbirds 

The distributions obtained by summing GARP models based on each of the two 

environmental datasets for March separately (Table 1) predicted all Corcovado 

occurrences as suitable at lowest presence threshold of 1 model out of 10; each model 

individually had zero omission error (based on the testing dataset). Since predicting 

each occurrence point seemed a trivial task, we elevated the threshold to at least half 

of the 10 models predicting the species present, thus placing more weight on model 

agreement. GARP projections identified no suitable areas for the last two time 

periods (July and October), probably because environmental conditions were 

markedly different and March models could not be extrapolated onto those 

conditions. Maxent experiments extrapolated from March conditions, on the other 

hand, were successful in identifying suitable areas, including at the lowest presence 

threshold, for all projected time periods.  

Aside from this discrepancy, GARP and Maxent predictions were comparable 

in terms of areas predicted present across regions and time periods (Fig. 3).  The 

proportion of the Osa Peninsula predicted present was higher than any other region in 

all time periods except December. The Pacific lowlands as a whole decreased in 
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proportional area predicted present from December to March and increased 

afterwards. The Atlantic lowlands showed similar trends, although the decrease was 

less pronounced, probably due to the absence of marked dry-wet seasons. Middle 

elevations had the smallest areas predicted present; an increase was observed for 

April to June (breeding season), compared to January and March predictions (non-

breeding). This trend was clearer in the GARP predictions. ENM projections were 

noticeably very restricted for the middle elevations, which seem only marginally 

suitable for the bellbirds through much of the year. 

Cloud cover affected predictions most in May, when the uncertainty of the 

proportion of area predicted present for all regions was larger than the actual areas 

predicted present. Maxent predictions for July were also greatly affected by clouds. In 

October, only the prediction for the Osa Peninsula had very large confidence intervals 

in response to cloud contamination. Cloud cover made pixel-by-pixel comparisons of 

predicted distributions across time periods impossible: that is, most pixels were 

cloud-contaminated during one or more time periods. Clearly, cloud cover remains a 

major obstacle in obtaining complete satellite images in the Tropics, especially ones 

with high spatial and temporal resolution. 

      

3. Discussion 

The natural history of Procnias tricarunculata is not well understood, so any 

inquiries into seasonal movements must remain subject to assumptions. Indeed, here, 

the data about breeding season are inferential, as practically no nests have been 
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described (Snow 2004; Stiles and Skutch 1989). According to Snow (1982), 

considering frequencies of calls and courtship displays, the breeding season probably 

lasts from February to July. Stiles and Skutch (1989) estimated that the breeding 

season might last from March to June, based on gonadal measurements from museum 

specimens and on display records. The limited numbers of specimens and limited 

locality data are inadequate to permit even a rough estimate of movement patterns, or 

breeding or seasonal distributions. Indeed, the information available is also often 

contradictory: e.g., high elevation records on Tenorio and Miravalles volcanoes 

during the non-breeding season (Slud 1964) and museum specimens from Irazú 

volcano in February. Given this paucity of information, the present study is intended 

to provide initial information on spatiotemporal environmental variation, from a 

bellbird’s point of view.  

Our analysis of vegetation seasonality expressed through EVI for known 

seasonal distributional areas of Monteverde bellbirds showed that the Atlantic 

distributional area correlates with the general, regional variability patterns, whereas 

the Pacific sites are less representative of the region’s phenology. The breeding site in 

the middle elevation range overlaps with a narrow subset of available seasonal 

vegetation dynamics. As such, the extent of suitable conditions at this site seems to be 

very restricted in terms of acceptable variation in the EVI.  

Similarly, only a small percentage of the middle elevation areas was predicted 

as suitable for the Corcovado population of bellbirds when analyzed using ENM 

tools. It may be possible that breeding areas at middle elevations present a much-
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reduced manifestation of the general conditions that are suitable for the bellbirds. 

According to previous ENM applications to migratory birds (Joseph and Stockwell 

2000; Nakazawa et al. 2004), if Corcovado bellbirds track the same suite of 

ecological conditions through time (“niche followers”), across the Atlantic and 

Pacific lowlands, these patterns are comparable to Monteverde population 

movements. That, as in our models identified by ecological requirements, breeding 

areas show much-reduced potential areas compared with non-breeding season is 

intriguing, suggesting that (if the species is a niche follower) reasons other than 

vegetation phenology and food resources may take the birds to the middle elevations 

to breed. Fretwell (1980) suggested that birds migration behavior evolved to avoid 

nest predation; nest predation has been suggested as an alternative explanation to 

seasonality of food resources for altitudinal migration in the Tropics (Loiselle and 

Blake 1991). A recent study (Boyle 2008) tested this hypothesis on an altitudinal 

gradient in Costa Rica using artificial nests, and found that nest predation declined 

with increased elevation. Since our ENMs are based entirely on abiotic factors, such 

biotic interactions are not included in our models.  

However, our aim was to estimate ecological niches that allowed us to explore 

distributional areas apparently suitable for bellbirds at different times of the year, 

from the standpoint of vegetation seasonality. Our results show that the Pacific and 

Atlantic lowlands are more broadly suitable than middle elevations at all times of the 

year analyzed. Biotic factors such as elevated nest predation in the lowlands may thus 

provide an explanation for the suitability patterns described via ENM, in contrast with 
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those observed for the Monteverde population via radio-tracking of individuals. 

However, we equally cannot eliminate the possibility that Corcovado bellbirds may 

not favor middle elevations for breeding, in which case our predicted distributions 

might indeed be correct. Since we have no field data regarding breeding or seasonal 

movements, we cannot refute the hypothesis of Corcovado bellbirds breeding at 

elevational ranges different than Monteverde bellbirds. This alternative implies that 

additional field research is necessary to establish with certitude the breeding sites for 

this population. 

 Our findings support the previous concerns regarding the anthropogenic 

pressure on lowland forests, and the importance of these ecosystems during the non-

breeding season for the bellbirds (Powell and Bjork 2004), as well as for many other 

altitudinal migrants (Loiselle and Blake 1991; Powell and Bjork 1995; Rosselli 1994; 

Stiles 1983). Given that lowland forests in Costa Rica have experienced the highest 

deforestation rates in the past two decades (Sánchez-Azofeifa et al. 2001), and in light 

of the reduced potential distributional areas identified by the ENMs, the future of the 

bellbirds is likely to be very challenging. The three-wattled bellbird was added to the 

list of threatened birds of Costa Rica over a decade ago (Collar et al. 1994). Its 

vulnerable status requires concentrated conservation efforts; however, the large gap 

of information about the biology and migration of this species will affect the 

efficiency of conservation measurements undertaken. 
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Table 1: Temporal coverage of environmental datasets used in ecological niche modeling 
experiments and corresponding stages in the annual cycle of Monteverde population of three-
wattled bellbirds. Datasets used for training the models are marked with an asterisk. 
  
Dataset Time period Location and status 

1 3 - 15 December 2003 Atlantic lowlands, in migration 

2 1 - 16 January 2004 Pacific lowlands, in migration 

3* 5 - 21 March 2004 Pacific lowlands, in migration 

4* 21 March - 5 April 2004 Pacific lowlands, in migration 

5 6 - 21 April 2004 Monteverde Reserve, breeding 

6 8 - 23 May 2004 Monteverde Reserve, breeding 

7 9 - 24 June 2004 Monteverde Reserve, breeding 

8 11 - 26 July 2004 Atlantic lowlands, in migration 

9 15 - 30 October 2004 Atlantic lowlands, in migration 
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Figure 1: Seasonal migration of Three-Wattled Bellbirds breeding in Monteverde 
Cloud Forest Reserve, Costa Rica. Pacific lowlands sites are depicted in light gray. 
Adapted from Powell and Bjork (2004).
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Figure 2: Seasonality of enhanced vegetation index (EVI) across the study region. 
Regional variation depicted in light gray and specific migration sites in black, with 
means represented by squares and triangles, respectively; upper quartile corresponds
to 75% of values, lower quartile to 25%, and whiskers to 95% and 5%. Two 16-day 
periods per month were used, except for January and November, each represented by 
only one 16-day period.
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Figure 3: Proportion of regional areas predicted present using ecological niche modeling 
tools, by region and time period analyzed. Osa Peninsula depicted as a sub-region of the 
Pacific region. Bars correspond to errors if cloud pixels are considered: upper bar if all 
cloud pixels predicted present, lower bar if all predicted absent.



CHAPTER II 

 

Using Hyperspectral Satellite Imagery for Regional Inventories: a Test with 

Tropical Emergent Trees from the Amazon Basin 

 

 

The field of remote sensing provides powerful tools to address diverse questions in 

biology. Availability of reliable sources of information-rich satellite imagery like the 

Landsat platform has enabled study of diverse topics, such as mapping habitat use by 

caribou (Bechtel et al. 2004), identifying migratory bird habitat (Sader et al. 1991), 

and comparing tree diversity in protected versus logged forests (Foody and Cutler 

2003). We are exploring ways in which remote sensing tools can inform the study of 

tropical frugivorous animals via characterizing availability of resources in time and 

space (Fleming et al. 1987; Levey 1988; Loiselle and Blake 1991; Price 2004). To 

understand better the seasonal movements and habitat needs of these animals, much-

improved knowledge of the distribution and phenology of tropical trees is necessary. 

The difficulty, however, lies in the broad, geographic scale of this challenge: detailed 

phenological studies across significant spatial extents are not feasible. A more 

desirable approach, if possible, would be to integrate local field studies with remote 

sensing approaches to scale local-scale results up to the needed landscape-scale 

perspective.  
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Here, we attempt to apply this remote sensing approach to understanding tree 

species distributions in a relatively little-studied but highly diverse area of the 

Amazon Basin of southeastern Peru thus adding more complexity to the task. 

However we think that this challenge makes our study more informative for real-life 

situations. Our goal is to identify canopy trees to species using satellite images 

collected by a hyperspectral instrument designed to acquire data in hundreds of 

narrow contiguous spectral bands, procedure termed imaging spectroscopy (Goetz et 

al. 1985). Hyperspectral data have been used to study different aspects of tropical 

forest ecosystems for over two decades. Treitz and Howarth (1999) reviewed 

advances mainly in the study of temperate forest ecosystems after development of 

airborne sensors such as AVIRIS (Porter and Enmark 1987) and CASI (Anger et al. 

1996). The focus then was on detecting or predicting changes of ecosystems through 

biophysical studies that used band ratio indices and measurements of foliar 

biochemical content at the leaf and canopy levels. Ecosystem function and structure 

research based on imaging spectroscopy remains active: recent advances made 

possible detection, at the forest stand level, of alterations in canopy chemistry owing 

to invasive species (Asner and Vitousek 2005), mapping species richness using foliar 

chemistry (Carlson et al. 2007), and classifying mangrove forests (Held et al. 2003). 

At the leaf level, spectroradiometer measurements quantifying variation in tree 

foliage in hundreds of bands in the VIS/NIR range (300-1110 nm) have been used to 

create spectral shapes and separate tropical tree species (Castro-Esau et al. 2006; 

Cochrane 2000); multiscale studies have combined leaf measurements with airborne 
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AVIRIS or HYDICE hyperspectral imagery to discriminate temperate (Roberts et al. 

2004) or tropical tree species (Clark et al. 2005; Kalacska et al. 2007a; Zhang et al. 

2006). Because HYDICE imagery is characterized by high spatial (1.6 m) and 

spectral resolution (210 bands for the 400-2500 nm region of the spectrum), it was 

adequate for investigating spectral separation of several tropical tree species at leaf to 

crown levels. What remains to be established is the extent to which factors like 

seasonality, flowering and fruiting phenology, canopy epiphyte growth, soil type, and 

species richness cause intraspecific spectral variation, consequently affecting the 

capacity of separating tree crowns to species based on spectral signals across 

landscapes.    

Previous research on discriminating tree species used high-resolution airborne 

imagery; however, obtaining such data for most tropical sites, owing to complicated 

logistics and high costs, can be impractical. Space platform sensors offer an attractive 

alternative in terms of costs, temporal resolution, and geographic coverage (Lo and 

Yeung 2007): at present only one imaging spectrometer, Hyperion, is flown on a 

space platform, Earth Observing-1 (Ungar et al. 2003). Hyperion gathers data in 224 

spectral bands in the 400-2500 nm spectral range, with a spatial resolution of 30 m 

(Pearlman et al. 2003). As such, this sensor extends the possibility of imaging 

spectroscopy to any location on Earth. Nevertheless, the sensor has significant 

shortcomings, such as inevitable cloud cover, relatively coarse spatial resolution, and 

low signal-to-noise ratios, especially in the shortwave infrared spectrum (Kruse et al. 

2002).   
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Hyperion imagery has been used to study aspects of ecosystem function, such 

as the importance of precipitation and substrate age (Asner et al. 2005), drought stress 

(Asner et al. 2004) and phenological variability in tropical forests (Huete et al. 2008), 

and nitrogen concentration in temperate forest canopies (McNeil et al. 2008; Smith et 

al. 2003; Townsend et al. 2003). It has also been used to elucidate ecosystem 

structure, such as estimating tropical forest floristic diversity (Kalacska et al. 2007b), 

detecting species invasions (Asner et al. 2006; Pengra et al. 2007; Ramsey et al. 

2005a; Ramsey et al. 2005b), and characterizing spatial distributions of sugarcane 

varieties (Galvão et al. 2006) and rainforest types (Thenkabail et al. 2004). To our 

knowledge, Hyperion has not as yet been used for mapping tree species. 

We apply these data resources to the challenge of identifying tropical 

emergent tree species. This yet to be tested potential use of such data can greatly 

improve our knowledge of tropical tree diversity and distribution. By using images 

from dry and wet seasons we take into account seasonal variation of spectra and its 

implications in discriminating species. Finally, we discuss the advantages and 

disadvantages of this space-based data source.  

 

1. Materials and Methods 

1.1. Study site 

The study was carried out in southeastern Peru, Departamento de Madre de 

Dios, in the watershed of the Río Madre de Dios, along the Río Los Amigos (Fig. 1). 

The site (70°3’39.96’’ W, 12°32’38.40’’ S) is part of a larger area under conservation 
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management by Asociación para la Conservación de la Cuenca Amazónica (ACCA). 

Three different broad subtypes of tropical lowland evergreen forests can be 

distinguished in the study area: “aguajal”, dominated by palm trees such as Mauritia 

flexuosa and almost always flooded; “baíjo”, seasonally flooded lowland forests; and 

“terraza alta”, which is never inundated (Vega et al. 2006). The climate is humid 

tropical and rainfall, average 2400 mm annually, is seasonal and lowest in June-

September (Osher and Buol 1998).  

 

1.2. Satellite imagery 

We used the only satellite-based source of hyperspectral imagery available, 

Hyperion, an instrument that is part of NASA EO-1 mission. Hyperion imagery has 

high spectral resolution (channel width of 10 nm, 224 channels) although spatial 

resolution is only 30 m, which means that trees with small-diameter crowns will be 

represented by pixels with mixed signals. Given this coarse resolution, locating trees 

accurately both on the ground and in the imagery is challenging, requiring additional, 

higher resolution imagery. For this purpose, we opted for panchromatic QuickBird 

satellite imagery, with spatial resolution of 61 cm, using an image of the study area 

acquired on 24 June 2006.  

Hyperion images of the study area were acquired successfully on 20 July 2006 

and again on 29 December 2006 (seven other acquisition attempts in July, October, 

and December were unsuccessful owing to cloud cover). The images were delivered 

as Level 1Gst, meaning that they were radiometrically corrected and resampled for 
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geometric correction and registration to UTM map projection (Simon 2006), and 

corrections had been applied to remove abnormal pixels and inoperable detectors. 

However, intermittent pixels with lower values still persist in the images 

(Goodenough et al. 2003), creating striping in some spectral bands. Another 

abnormality reported for Hyperion images is the “smile” effect created by an across-

track wavelength shift from center wavelength (Goodenough et al. 2003). Although 

methods to correct for striping and smile effects are available, they are known to alter 

original spectra (Datt et al. 2003). In addition, because these corrections have to be 

applied to raw, unprojected images, such preprocessing of images was not practical in 

our case. 

Of the original Hyperion dataset (242 bands), 46 were not calibrated and were 

removed from the analyses. Examining individual band images and histograms, we 

further eliminated bands with poor signal-to-noise ratios. As a result, the July and 

December images were reduced to 130 and 121 spectral bands, respectively (Fig. 2).    

We used the FLAASH algorithm (Cooley et al. 2002) available in ENVI 4.2 

(RSI, Inc, Boulder, CO, USA) to correct the images atmospherically to transform 

radiance values to apparent surface reflectance values; this algorithm has been shown 

to provide results comparable to those of other atmospheric correction packages (Datt 

et al. 2003). We had to improve the initial registration of the Hyperion images via 

reference to the QuickBird image. Since no clear landmarks (e.g., road intersections) 

are available in our study area, we used the outlines of oxbow lakes in an “inverse 

rubber sheeting” procedure (Dyk et al. 2002): lakes edges visible on the QuickBird 
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image are moved to fit the pixels representing lakes on the coarser Hyperion imagery. 

We developed a vector layer of lake boundaries based on the QuickBird image, and 

used this layer to reduce Hyperion georeferencing error from ≤250 m to ≤5 m error. 

This procedure was carried out in Geomatica 10.0 (PCI Geomatics Enterprises, Inc, 

Richmond Hill, ON, Canada), in the OrthoEngine module.  

 

1.3. Tree samples 

Initially, 102 individual trees of 25 genera were selected for study, based on 

the importance of those tree taxa as food resources for macaws and peccaries (an 

additional research focus in our group). However, low sample sizes per species 

reduced the initial list to five taxa of interest, of which only three could easily be 

identified fully to species: as identifications of the remaining taxa to species was not 

always possible, they were identified to genus only (Table 1). The GPS position of 

each tree crown was checked in the field with respect to the QuickBird image. 

Crowns not identifiable with high confidence on the QuickBird image were removed 

from the dataset. As such, in the end, we assembled a dataset of five tree genera, each 

represented by 4-9 individual trees (42 individuals total, see Table 1 and Fig. 1). The 

small sample sizes are without doubt a constraint on the statistical power of our 

analyses; however, this situation reflects the challenge of applying experimental tools 

to real-world circumstances (i.e., little-studied but hyperdiverse forests), where 

information available can be scarce, as opposed to intensively inventoried sites where 

individual trees have been tagged and mapped through years of effort. 
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Another concern related to tree locations was the coincidence of their crowns 

with the hyperspectral imagery. We checked the (30 m) pixel coverage of each crown 

(Fig. 3) to assure that crowns were centered in single Hyperion pixels, and identified 

a subset of crowns that covered >50% of  single Hyperion pixels. We refer to this 

subset (31 trees) as the “cleaned dataset”, as opposed to the larger “raw dataset” (42 

trees; Table 1). Spectra were extracted from Hyperion data (Fig. 4) based on this 

sampling and were analyzed separately. This approach allowed us to investigate the 

effects of mixed-signal pixels (i.e., pixels including fragments of different tree 

crowns) in species identification analyses.  

1.4. Statistical analyses 

The high dimensionality of hyperspectral imagery and the high likelihood of 

substantial intercorrelations between channels called for initial reduction of the 

dimensionality of the imaging spectroscopy datasets (Thenkabail et al. 2004). We 

employed stepwise discriminant function analysis as a variable selection procedure in 

SAS 9.1 (SAS Institute Inc., Cary, NC, USA). SAS STEPDISC allows reduction of 

dimensionality of complex datasets by identifying subsets of variables that contribute 

most to the discriminatory power of the model, as measured by Wilk’s lambda 

(Huberty 1994). A particular variable can be removed in one step of the analysis and 

re-entered in another, since Wilk’s lambda tests for the equality of class means (tree 

species, in our case) on the selected variable sets iteratively. We used a significance 

threshold of α = 0.15 for variables to enter and be retained in the discriminant 

function. 
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The reduced set of spectral channels was then used in a linear discriminant 

analysis (also performed in SAS 9.1, using the DISCRIM procedure) to test the utility 

of this information in classifying trees into the correct species and genera. This 

approach is used commonly in classification studies (Clark et al. 2005; Gong et al. 

1997; Rivard et al. 2008; Thenkabail et al. 2004). Clark et al. (2005) showed that 

linear discriminant analysis reached highest classification accuracy at crown-level 

resolution when compared with two other classifiers, spectral angle mapper (Kruse et 

al. 1993) and maximum likelihood (Richards 1999). Discriminant analysis seeks sets 

of coefficients providing optimal weighted linear composites of scores (discriminant 

functions, “DFs”) on the predictor variables. The optimal DFs show the highest ratio 

of  between-groups sum of squares to within-groups sum of squares (Warner 2007). 

In our study, the predictor variables were the narrow bands and the groups (or 

classes) were the five tree taxa of interest. We ran linear discriminant analyses on 

both raw and cleaned datasets for both the July and December images. The DISCRIM 

procedure in SAS provides four multivariate statistic tests of the degree to which the 

model predicts group memberships better than random: Wilk’s lambda, Pillai’s trace, 

Hotelling-Lawley trace, and Roy’s greatest root. Classification results were tested 

using cross-validation, in which each tree crown was omitted sequentially while 

performing the linear discriminant analyses, and the ability of the model to predict the 

crown left out is taken as a measure of the predictive power of the model. We also 

used the CANDISC procedure to derive canonical variables representing linear 

combinations of the original variables (spectral bands) that best summarize 
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differences among species. The first two canonical variables were used to graph 

positions of individual trees and class means to understand discrepancies between 

posterior probability values and cross-validation tests. 

Finally, to test whether landscape-level predictions derived from the two 

seasonal datasets are consistent between seasons, we applied the DFs to a broader 

swath of the Hyperion dataset for each season, and analyzed correspondence between 

seasons in terms of pixels classified as each taxon via a binomial test. DFs were 

developed using the cleaned datasets with five classes (the five taxa), plus a non-

target class that included individuals of four other genera of emergent trees and 

patches of bamboo and palms that we had mapped. This analysis was carried out on 

an area centered on our study site, covering ~12 km of the total available image 

length of 105 km (Fig. 4). We calculated (a) the number of pixels classified as the 

same taxon in the two datasets, July and December (ni, where i = five taxa), and (b) 

the number of pixels for which one or more of the eight adjacent pixels was classified 

as the same taxon (n8i). (We included the latter index focused on neighboring pixels 

in the analysis to account for possible errors in registration between the two seasons.)  

Numbers of pixels selected under the two criteria were used to calculate a 

binomial probability p of the observed degree of coincidence being achieved at 

random. Specifically, we calculated the probability of encountering at least one 

correct match (out of 9 possibilities) between the two seasonal datasets for each 

species at random given simple frequencies of occurrence of pixels classified as a 

taxon as 
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piJ9 = 1 - [1 - (niJ * niD) / N2]9, 

 

where piJ9 is the probability of a July pixel (classified as one of the five taxa) being 

correctly classified in the December dataset when neighborhood pixels are taken into 

consideration, niJ is the number of pixels classified as one of the five taxa in the July 

dataset, niD is the number of pixels classified as the same taxon in December dataset, 

and N is the total number of pixels in the analysis. A simpler way to write the formula 

above is  

 

piJ9 = 1 - [1 - (piJ * piD)] 9, 

 

where piJ  is the probability of a pixel being correctly classified as one taxon in July 

dataset and piD is the probability of a pixel being correctly classified as the same 

taxon in December dataset. The binomial test of significance was performed using a 

binomial distribution with total number of trials niJ, number of successes ni + n8i, and 

underlying probability of a success of piJ9. 

 

2. Results 

The stepwise discriminant selection procedure retained 30 narrow bands from 

the initial set of 130 and 121 for July and December, respectively. The subsets 

selected from the two images differed in terms of spectral coverage (Fig. 2): most 
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July channels belonged to the near- and middle-infrared portion of the spectrum, 

while only half of the December channels belonged to this portion. This result 

suggests the possibility of phenological differences between the seasons (dry – July, 

wet – December) expressed in the information content of the images.  

Because of the combination of low tree sample sizes and numerous predictor 

variables, however, we could not incorporate all 30 channels in our analyses. Rather, 

we used subsets of 25, 15, and 5 channels, in the order that they were selected 

through the stepwise procedure. Because within-class covariance matrices were 

singular (i.e., they had a determinant of 0), further discriminant analyses were 

developed based on pooled covariance matrices.  

The linear discriminant analyses yielded markedly different results for raw 

and cleaned datasets (Table 1). The four multivariate statistics (Wilk’s lambda, 

Pillai’s trace, Hotelling-Lawley trace, and Roy’s greatest root) testing group 

membership predictions were all highly significant (P < 0.0001) for July and 

December cleaned datasets represented by 5, 15, and 25 narrow bands, but decreased 

in significance (in some cases to P ≈ 0.1) when raw datasets were used. Classification 

accuracy based on cross-validation tests was very low (<15 % for 25 channels) for 

raw datasets; however, for cleaned datasets, accuracy was 100% for the five taxa in 

both seasons when 25 channels were used. Accuracy decreased when fewer channels 

were used (Table 1).  

Nevertheless, inspection of posterior probabilities in the raw dataset showed 

that only two of the 42 trees had relatively low values (≤90%), suggesting that most 
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of the trees would have been classified correctly. We suspect that some pixels in the 

raw dataset had mixed spectra corresponding to crowns of individuals of multiple tree 

species, such that some of these pixels could be closer spectrally to other class 

centroids than to their “own” class centroids. This scenario would explain the low 

classification success obtained with cross-validation but high posterior probabilities 

in the raw dataset analysis. 

To explore this assumption further, we plotted the raw and cleaned datasets 

using the first and second canonical axes derived from the 25 narrow bands used in 

the linear discriminant analysis (Fig. 5). For the cleaned dataset, the separation of taxa 

is remarkable—indeed, it appears absolute. In the raw dataset, however, some 

individual trees fall closer to individuals of other genera than to their own class 

centroids. For July dataset, these individuals belong to the taxa for which the 

classification in the raw dataset had the lowest values: Parkia sp., Apuleia leiocarpa, 

and Hymenaea sp. The information extracted and analyzed from the December 

dataset produced mostly cohesive groups in the canonical variable space (Hymenaea 

sp. and Cedrelinga cateniformis) when the raw dataset was used. Nonetheless, all 

taxa grouped into nonoverlapping or minimally overlapping clusters corresponding to 

the correct sets of individuals, even in the raw dataset analyses. 

When applying DFs to the broader landscape captured in the Hyperion 

datasets, over half of the pixels were classified as “other” (i.e., left unclassified), 

whereas the target taxa were represented by small percentages of the overall area. For 

the July dataset, ~76% of pixels were unclassified, 2% were identified as the non-
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target class, 7% as Apuleia leiocarpa, 4% as Bertholletia excelsa, 5% as Cedrelinga 

cateniformis, 2% as Hymenaea sp., and 4% as Parkia sp.; comparably, for the 

December dataset, ~61% were unclassified, 19% as non-target class, 7% as Apuleia 

leiocarpa, 2% as Bertholletia excelsa, 2% as Cedrelinga cateniformis, 6% as 

Hymenaea sp., and  3% as Parkia sp. Numbers of pixels classified into one or another 

class varied with the posterior probability threshold applied—in the end, we chose a 

threshold of 99% based on the initial posterior probabilities of the training data (31 

trees). The binomial probabilities associated with observed levels of correspondence 

between the two datasets in terms of pixels classified as particular species were quite 

low (P < 10-12) for all five species, indicating that the observed degree of matching 

was highly nonrandom. As such, our landscape-level predictions of taxon 

distributions that were developed independently from the two seasonal images show 

consistency in expected distribution patterns.   

 

3. Discussion 

Although spectral discrimination of tropical tree species remains an emerging 

field, advances over the last two decades in understanding leaf optical proprieties and 

developing better instruments for imaging spectroscopy have been applied most 

frequently in mapping trees in areas less diverse and challenging than tropical rain 

forests (Dennison and Roberts 2003; Gong et al. 1997; Roberts et al. 2004; Townsend 

and Foster 2002; Underwood et al. 2007). In tropical ecosystems, studies have 

mapped trees in Costa Rica (Clark et al. 2005; Zhang et al. 2006), mangrove tree 
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species in Australia (Held et al. 2003), and native and invasive tree species in Hawaii 

(Asner et al. 2008; Asner et al. 2006).  

Mapping trees in tropical systems can be particularly challenging because of 

high species diversity and lack of imaging spectroscopy. That two pioneering studies 

focusing on discriminating tropical tree species (Clark et al. 2005; Zhang et al. 2006) 

used the same imaging spectroscopy datasets underlines the complications of 

obtaining airborne imaging spectroscopy across much of the Tropics (Castro-Esau 

and Kalacska 2008). To our knowledge, this study represents the first attempt to use 

space-borne imaging spectroscopy to discriminate tree species in a diverse tropical 

rainforest, although Hyperion data have been used in the less diverse forests of 

Hawaii to differentiate between native and invasive canopy trees based on their 

biophysical characteristics (Asner et al. 2006).  

Compared to the work of Clark et al. (2005) and Zhang et al. (2006), this 

study is novel in that it shows the potential for analyses of satellite imaging 

spectroscopy to detect tree species in highly diverse forests. It suggests that 

opportunities to apply these techniques to lesser studied, more diverse regions of the 

Tropics exist. However, the only source available for such data, Hyperion, has several 

significant limitations. As has been noted in several publications (Datt et al. 2003; 

Goodenough et al. 2003; Kruse et al. 2002), issues such as the relatively coarse 

resolution, low signal-to-noise ratio, striping, and smile effects, present particular 

challenges. We also experienced delays in acquisition scheduling and problems with 

cloud cover. In the course of one year, we scheduled 6 data acquisitions, each 

 45



including three attempts to obtain data with <20% cloud cover, but only two of the 

datasets acquired were usable and scheduling was not always precise. Nevertheless, 

given the high costs of airborne imaging spectroscopy, satellite imagery probably 

remains the most accessible solution for collecting hyperspectral data in much of the 

Tropics. 

We focused on solutions to the problem of relatively coarse spatial resolution. 

Previous studies (Ramsey et al. 2005a; Ramsey et al. 2005b) used subpixel extraction 

methods to map an invasive tree species that has crowns too small to be represented 

well by single pixels. Those studies were successful because the species in question 

generally occupies monospecific patches, but also thanks to the quite-different 

chemistry and phenology of its foliage compared to native species.  

Still, we consider it remarkable that Ramsey et al. (2005b) found only minor 

differences between field spectra and Hyperion spectra, an avenue that we wish to 

pursue in future studies. Foliar reflectance is determined by factors such as leaf 

thickness, pigmentation, and internal structure; at the crown level, lianas and other 

associated plants can influence light reflected off canopies (Castro-Esau et al. 2004; 

Castro-Esau et al. 2006; Sánchez-Azofeifa and Castro-Esau 2006). Although we have 

no field spectra with which to compare our image-derived spectra, our results 

illustrate that the coarse resolution of Hyperion is sufficient to separate crowns of five 

genera of emergent trees spectrally. Our results indicate that even mixed-pixel spectra 

have some ability to separate species, but that mixing does reduce the signal, although 

we cannot quantify how much of this reduction is an artifact of small and unbalanced 
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tree samples. Plotting spectra using canonical axes suggests that the classifications 

based on cross-validation may be weak compared to simple posterior-probability 

classification, owing to a few mixed pixels in the raw dataset that can bias the cross-

validation analysis.  

We attempted landscape-level classification of Hyperion datasets using the 

DFs developed based on the cleaned dataset and 25 narrow bands to obtain maps of 

the species studied. The results are difficult to evaluate given our small samples and 

the hyperdiverse tree community at the site. The significant overlap in position of 

pixels classified as particular taxa between the two seasons provides more support for 

the utility of Hyperion data for mapping tree species. We also observed in the results 

of these whole dataset classification experiments some regions that presented ordered, 

linear patterns, most likely artifacts related to striping in some spectral channels (Datt 

et al. 2003). As such, this application requires further fine tuning and testing, which 

we hope to achieve via on-ground field surveys of predicted sites for species.  

Finally, our study identified different suites of narrow bands as most 

informative for separation of species and genera between the two seasons. This 

finding resonates with other recent studies (Asner et al. 2006; Castro-Esau et al. 2006; 

Dennison and Roberts 2003; Huete et al. 2008) that have emphasized the importance 

of taking into account seasonality and spectral variability in such analyses. We hope 

to be able to take advantage of such variability in future work regarding the 

phenology of these and other target tree taxa.  
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In sum, we demonstrate that satellite-derived hyperspectral imagery can be 

used successfully to classify emergent tree species. Three limitations were 

particularly predominant: (1) acquisition of cloud-free hyperspectral imagery, (2) 

spatial resolution of the hyperspectral imagery, and (3) sample sizes of identified and 

georeferenced individual trees—the first two limitations are a function of the sensor 

and its ability to capture imagery, whereas the third limitation reflects the difficulties 

of on-ground field work in such remote areas. Our results focus on five genera from 

among the much greater tree diversity present on the study area. More intensive 

botanical sampling across the study area could boost sample sizes and make future 

analyses more robust. Next steps will focus on phenological differences between 

images captured in different seasons, particularly in light of additional Hyperion data 

as they become available, and relating results to movements of animal species that 

use these trees as food resources.  
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Table 1: Taxa used in this study, with number of individuals and classification success values 
(percentage) for both raw and cleaned datasets (see Methods), broken down by the three sets 
of analyses based on different numbers of narrow bands. 

Raw dataset Clean dataset Number 

of bands  Tree species N July December N July  December  

Apuleia leiocarpa 8 50 12.5 4 75 75 

Bertholletia excelsa 11 27.27 63.64 9 33.33 66.66 

Cedrelinga 

cateniformis 

10 60 50 8 50 50 

Hymenaea sp. 6 0 0 5 40 60 

5 bands 

Parkia sp. 7 28.57 14.29 5 40 20 

Apuleia leiocarpa 8 12.5 62.5 4 100 100 

Bertholletia excelsa 11 45.45 45.45 9 100 88 

Cedrelinga 

cateniformis 

10 30 50 8 100 100 

Hymenaea sp. 6 16.67 50 5 100 100 

15 bands 

Parkia sp. 7 0 28.57 5 100 60 

Apuleia leiocarpa 8 25 22.5 4 100 100 

Bertholletia excelsa 11 45.45 18.18 9 100 100 

Cedrelinga 

cateniformis 

10 50 50 8 100 100 

Hymenaea sp. 6 33.33 16.67 5 100 100 

25 bands 

Parkia sp. 7 14.29 14.29 5 100 100 
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Figure 1: Location of study area in Peru, with inset showing trail system and trees used in the 
study, superimposed on QuickBird satellite image.
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Figure 3: Example tree crowns used in the raw (black dots over white circles) and clean 
dataset (white circles). Hyperion spatial resolution (30 m) shown as white grid cells.
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Figure 4: Hyperion 710 nm channel from July, geographic extent reduced to study area; 
graphs represent species mean spectra ± 1 standard deviation extracted from July dataset 
containing 130 channels; gaps represent uncalibrated or noisy channels not included in the 
analysis.
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CHAPTER III 

 

Seasonal Variation in Species-Specific Spectral Signatures of Rainforest Trees in 

Southeastern Peru 

 

 

Understanding the function and spatial distribution of ecosystems across broad 

extents is necessary for addressing complex urgent issues like climate change, carbon 

budgets, and biodiversity conservation. Detailed field-based measurements are time-

consuming, limited in spatial and temporal coverage, localized spatially, and 

logistically and financially difficult to replicate at large scales. Such challenges are 

particularly notable in the tropical ecosystems, which are frequently hyperdiverse.  

These challenges are being addressed via remote sensing (from air or space) 

of natural surfaces based on the spectral characteristics of their absorption, 

reflectance, and scatter of solar energy (Ustin et al. 2004). Vegetation studies in the 

400-2500 nm region of the electromagnetic spectrum of reflected light have shown 

that the visible range (400-700 nm) is characterized by strong pigment absorption 

(chlorophyll, carotene, and anthocyanin); the near-infrared range (700-1300 nm) is 

dominated by scattering, the major biochemical contributor being water, and to a 

smaller degree lignin and cellulose; and the shortwave infrared range (1300-2500 nm) 

is characterized by low reflectance and high absorption of light by water and 
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vegetation components such as starch, cellulose, lignin, and nitrogen (Asner 1998; 

Blackburn 2002; Curran 1989).  

This fundamental knowledge of vegetation spectral manifestation forms the 

basis of imaging spectroscopy (or hyperspectral imagery), which harvests reflected 

light in hundreds of narrow spectral bands (Goetz et al. 1985). These information-rich 

datasets have been used to study tropical ecosystem function (Asner and Vitousek 

2005; forest canopy chemistry, Martin and Aber 1997) and structure (tree species 

richness and identification, Asner et al. 2008; Carlson et al. 2007; Clark et al. 2005; 

Held et al. 2003; Kalacska et al. 2007; Zhang et al. 2006). Important findings 

emerging from this body of research include the ideas that (1) hyperspectral imagery 

can be informative regarding biochemical processes and for species composition; (2) 

measurements of spectra at the scale of individual leaves cannot be translated directly 

to canopy-scale extents owing due to atmospheric effects and tree crown structural 

elements (e.g., bark, variable crown cover, epiphytes, etc.) influencing signals; and 

(3) within-species variation exists. Thanks to the latter point, although species’ 

spectra are not unique, this variation is of lower magnitude than between-species 

variation. Although canopy-level spectral variation may be informative, temporal 

variation at this scale may influence studies of ecosystem processes and mapping tree 

species.  

Given the difficulties of obtaining hyperspectral imagery that has adequate 

temporal and spatial resolution, spectral variation of species has been studied mainly 

at the leaf level, with on-site reflectance measurements (Castro-Esau et al. 2006; 
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Cochrane 2000). At the canopy level, narrow-band vegetation indices calculated from 

time series imaging spectroscopy have been used to compare biochemical and 

physiological changes of invasive and native tree species in Hawaii (Asner et al. 

2006). More study has focused on time-series analysis of broad-band vegetation 

indices (e.g., Normalized Difference Vegetation Index, NDVI; Huete et al. 1994) 

derived from easily accessible multispectral, satellite imagery like the Moderate 

Resolution Imaging Spectroradiometer (MODIS, Justice et al. 1998).  Given the 

coarse spectral resolution of these data (19 channels for 400 – 2500 nm range), 

however, only few vegetation indices can be derived, which are mostly limited to 

describing broad changes in forest canopy coverage, canopy water content, and 

photosynthetic activity (Houborg et al. 2007; Huete et al. 2008; Xiao et al. 2006; 

Zhang et al. 2003). These studies are important in that they describe regional seasonal 

phenological patterns, albeit irrespective of tree species.  

In this study, we use Hyperion hyperspectral satellite imagery (Ungar et al. 

2003) to examine spectra of five tropical tree taxa, and to analyze their variation at 

four points in time over 2006-2008. The location of the study site in hyperdiverse 

southeastern Peru (Foster 1993) makes the study still more challenging, both in terms 

of sample sizes of trees and availability of cloud-free imagery. However, as our aim is 

to improve understanding of tree spectral seasonality at the crown level, this analysis 

represents at least a first step towards achieving this aim. We use only image-derived 

tree canopy spectra to study temporal spectral variation, avoiding the issues of scaling 

up leaf spectra to canopy level; however, instead, we must take into account issues 
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regarding quality of hyperspectral satellite imagery, such as signal-to-noise ratio, 

striping, and atmospheric water absorption that can mask vegetation absorption 

features. 

 

1. Methods 

1.1. Study site and tree samples 

Trees belonging to five taxa identified as food resources for macaws and peccaries (as 

part of a related study of animal foraging ecology) were mapped in tropical lowland 

evergreen forests along the Río Los Amigos, a tributary of the Río Madre de Díos, in 

southeastern Peru. The area is part of a conservation concession managed by 

Asociación para la Conservación de la Cuenca Amazónica (ACCA). Rainfall at this 

site is seasonal, being lowest in June-September (Osher and Buol 1998). Because of 

lack of precision in species-level identifications, two tree taxa were examined at the 

level of genus (Table 1). Locations of trees were recorded with GPS units, and 

checked on a panchromatic QuickBird satellite image with a spatial resolution of 61 

cm, acquired on 24 June 2006. Because not all crowns were >30 m in diameter, we 

subsampled the initial, “raw” set of 42 trees to a “clean” subset of 28 trees (Table 1), 

all with crowns covering >40% of the 30 x 30 m pixel in the Hyperion imagery (see 

below). In this analysis, the raw dataset was used only in preliminary analyses of 

species’ spectral separation to check for effects of mixed pixel signals.  

  

1.2. Hyperspectral satellite imagery 
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Currently only a single satellite-based source of hyperspectral imagery is available, 

Hyperion, which provides data at 30 m spatial resolution. Out of a total of 30 

attempts, we obtained four images of the study area, acquired on 20 July 2006 (dry 

season), 29 December 2006 (wet season), 19 November 2007 (beginning of wet 

season), and 21 May 2008 (end of wet season). We will refer to these four different 

“snapshots” in time as t1, t2, t3, and t4.  

Un-georeferenced original radiance datasets were atmospherically corrected to 

apparent surface reflectance using the ACORN-6 atmospheric correction model 

(ImSpec, Palmdale, CA). To reduce atmospheric correction modeling errors around 

water absorption channels (940 and 1140 nm), a cubic spline curve was fit to these 2 

narrow band regions in each pixel. Intermittent pixels with lower values create 

striping in some Hyperion narrow bands (Goodenough et al. 2003). This effect was 

corrected using a destriping algorithm that applied minor corrections (coefficients 

close to 1.0) on a band-by-band basis (Asner and Heidebrecht 2003). The sensor 

collects data across the electromagnetic spectrum in the 400-2500 nm range, in 242 

separate bands. However, because 42 channels were uncalibrated and others had low 

signal-to-noise ratios, we retained for analysis only 126 narrow bands from each of 

the four temporal datasets (Fig.1).  

Finally, we georeferenced Hyperion images to the QuickBird image in 

Geomatica 10.0 (PCI Geomatics Enterprises, Inc, Richmond Hill, ON, Canada), in 

the OrthoEngine module, using an “inverse rubber sheeting” procedure (Dyk et al. 

2002): Hyperion images were fit to a vector file containing contours of oxbow lakes 
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derived from the high spatial resolution image (QuickBird). The final root mean 

square error (RMS) was <0.5 pixel for all four images. The crown spectral 

measurements for all 42 trees were extracted from these datasets in ENVI 4.5 (ITT 

Visual Solutions, Boulder, CO). 

 

1.3. Statistical analyses 

A. Tree crown spectral separation 

The four datasets corresponding to different times of the year and different years were 

each analyzed separately. In each case, we ran stepwise discriminant function 

analysis using PROC STEPWISE in SAS (SAS Institute Inc., Cary, NC, USA) to 

identify the subset of the 126 bands that produced the best discriminatory model, as 

measured by Wilk’s lambda (Huberty 1994). This approach has been used previously 

in remote sensing to classify tree species (Clark et al. 2005; Rivard et al. 2008), 

offering a convenient means by which to reduce the high dimensionality of 

hyperspectral imagery and correlations between channels.  

The subset of bands was then used in a linear discriminant analysis that seeks 

the highest ratio of between-groups sums of squares to within-group sums of squares 

(Warner 2007) to allow classification of individual trees as to species and genera. To 

assess the degree to which the model predicts group memberships better than random, 

the Wilk’s lambda, Pillai’s trace, and Roy’s greatest root test multivariate statistics 

were used in PROC DISCRIM in SAS (SAS Institute Inc., Cary, NC, USA). Raw and 

clean tree datasets were analyzed separately, with spectra extracted from each of the 
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four images. We also pooled spectra of the clean datasets across the four data sets to 

test whether discriminatory power is time-independent. We tested classification 

results via cross-validations, omitting each tree crown sequentially, and testing the 

predictive power of the linear discriminant analysis on the missing crown. Canonical 

transformation of the original variables (narrow spectral bands) allowed for 

visualization and comparison of spectral separation of species through time (see 

below). 

 

B. Temporal variation of species’ spectra 

Before investigating significance of tree spectral variability between time periods, we 

took a random sample of forest pixels across the entire image to assess general 

seasonal variation in spectra, We tested the ability of linear discriminant analysis to 

classify pixels as to the correct time of image collection. This preliminary analysis 

was intended to provide information regarding general, non-species specific, 

vegetation spectral variation across t1 - t4.  

Temporal variation of spectral characteristics of the five taxa studied was 

assessed using two different approaches: one based on each taxon’s location in 

canonical spectral-dimensional space, and one based on agregating spectral subsets 

obtained via stepwise discriminant function analysis and testing for reflectance 

differences by species and time. Variation in location of taxa in canonical space was 

assessed through analysis of changes in measured distances among taxa means, and 

an analysis of geometric differences in positions of the means.  
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 For the first analysis, we calculated Euclidean distances among mean spectral 

signatures for all taxa  in a two-dimensional canonical space (first and second derived 

canonical variables) as derived in the independent analyses described above. 

Canonical axes were scaled to the same values between the four independent image 

datasets. We thus generated four distance matrices, one for each of the t1, t2, t3, and t4 

datasets. To test for rearrangements in the spatial arrangement of species’ centroids 

across the four datasets, we used a Mantel test (Mantel 1967), a randomization 

technique that compares sets of distance matrices for similar structure. The null 

hypothesis tested in this pairwise approach is that of no relationship between the 

matrices. In the original implementation of this test (Mantel 1967), products of 

corresponding elements of the matrices were summed and the observed Z statistic is 

compared to values obtained when the rows of one matrix are shuffled at random. A 

more widely used implementation computes Pearson’s correlation coefficients 

between corresponding elements of the matrices (Legendre 2000). We calculated 

pairwise comparisons of matrices corresponding to t1- t2, t2 - t3, and t3 - t4, and used 

1000 random permutations in each test. These tests were carried out in R (R 

Development Core Team 2008), using a package of R functions for vegetation 

ecologists (Oksanen et al. 2008) 

 Second, we tested the significance of relative positional change of taxon 

means in two-dimensional canonical space between the four datasets via a method 

adapted from the field of geometric morphometrics (Adams et al. 2004). Taxonomists 

have developed techniques for studying individual shape variation and delineation of 
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morphological characters, by digitizing such characters and their specific landmarks. 

These methods seek statistically significant morphological differences between 

individuals, and groups them based on these differences. We used the positions of the 

means of the taxa in the four datasets in canonical space as analogs of the landmarks. 

We calculated relative warps to summarize variation among data sets, with respect to 

an average shape obtained after fitting least squares of one configuration to another 

on complex regression functions (Rohlf 1993). This analysis is in fact a principal 

component analysis of the covariance matrix of the partial warp scores, which are 

computed when the shape of one individual’s landmarks are projected on the average 

shape. We used freeware available from Stony Brook Morphometrics group 

(http://life.bio.sunysb.edu/morph/index.html): tpsTDig to digitize “landmarks” (taxon 

means in two-dimensional canonical space), and tpsRelW to calculate relative warps 

of datasets. In other words, we tested whether relative locations of taxon means 

change significantly between datasets: significant change would imply that variation 

exists in the geometric arrangement of species spectra in canonical space across time.  

Finally, a multivariate analysis of variance in spectral space was carried out 

across the four datasets. The challenge in this case was to reconcile the four band 

subsets that had been selected independently for each seasonal analysis (see above) to 

optimize species classification. We averaged selected narrow bands into 9 broad 

bands that are effectively multispectral in nature (Fig.1): three in the visible range, 

one in the near-infrared, and five in the shortwave infrared region of the spectrum. 

This multispectral dataset lost the specificity and information richness of the original 
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narrow-band datasets, but allowed for temporal analysis of spectral variation within 

taxa. As such, the dataset generated for this analysis contained the average reflectance 

in the nine multispectral bands for the 28 trees, grouped by time period. We used a 

repeated measures Multivariate Analysis of Variance (MANOVA; Cole and Grizzle 

1966) to test the null hypotheses (1) that variation in spectral reflectance is not taxon-

specific, and (2) that time period does not affect changes in the reflectance. 

Significance was tested using PROC GLM in SAS (SAS Institute Inc., Cary, NC, 

USA) which calculates four multivariate tests: Wilks’ lambda, Pillai’s trace, 

Hotelling-Lawley trace, and Roy’s greatest root   

 

2. Results 

2.1. Tree crown spectral separation 

When the clean dataset was used, the stepwise linear discriminant analysis selected 

25-27 narrow bands with most discriminatory power (Fig. 1) for each temporal 

dataset; the raw dataset produced very different results: for t1 and t2, 10-11 bands 

were selected, while for t3 and t4 0-2 bands were selected. By doubling the default 

significance level (α = 0.15) for a variable to enter the raw-data model, we obtained 

40-41 narrow bands selections for t3 and t4, but these datasets did not perform well in 

discriminant analyses, with multivariate statistical tests marginally significant and 

large errors in cross-validation tests (Table 1). In contrast, discriminant analyses 

based on the clean dataset yielded statistically significant models (all P < 0.0001 for 

Wilk’s lambda, P < 0.02 for Pillai’s trace, and P < 0.0001 for Roy’s greatest root) and 
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the cross-validation tests returned zero or low classification errors (Table 1). The least 

successful classification observed was for Hymenaea sp., the taxon for which sample 

sizes were lowest (only 4 individuals in the clean dataset). Similarly, in canonical 

space, individual trees did not group well by taxon when the raw dataset was used, 

except for spectra extracted from the t3 dataset; in contrast, for the clean dataset, taxon 

classes were well-defined in canonical space (Fig.2). 

The clean dataset spectra extracted from the four temporal images were also 

analyzed in a combined dataset. The stepwise procedure identified 30 spectral bands 

(Fig. 1), but these data produced large classification errors in terms of taxa in the 

linear discriminant analysis (Table 1); rather, these analysis identified group 

membership by time period (Fig.3). It appears that temporal variation is much greater 

than taxonomic variation. Within time periods, however, spectral separation of the 

tree taxa was clear and highly significant, as in our previous analyses (Papeş et al. in 

review).   

 

2.2. Temporal variation of tree crown spectra 

Linear discriminant analysis of the random sample of forest pixels was highly 

successful in classifying pixels as to temporal dataset. The largest error based on 

cross-validation tests was observed for t2 (0.0022); the multivariate tests of the linear 

discriminant model (Wilk’s lambda, Pillai’s trace, and Roy’s greatest root) were 

statistically significant (all P < 0.0001). This result can be interpreted as evidence for 
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significant overall temporal signal in the Hyperion measurements of vegetation 

spectral properties.  

We next tested for similarity in the geometric positions of species’ means in 

canonical space among seasons. Estimates based on Euclidean distances among 

means with Mantel test comparisons yielded no significant relationship between any 

pair of distance matrices (t1-t2, t2-t3, t3-t4; all P > 0.2), which indicates that no 

significant (nonrandom) similarity could be detected in positions of taxon means 

among time periods. Simple Mantel tests have been shown to be robust even with 

small or skewed samples, and to avoid type I error (rejecting the null hypothesis when 

it is actually true) consistently through permutation tests (Legendre 2000). The 

likelihood of committing type I errors of course increases when >2 pairwise 

comparisons are made trough partial Mantel tests (Legendre 2000; Raufaste and 

Rousset 2002).  

The relative warps analysis adapted from geometric morphometrics provided 

further support for the hypothesis of temporal reassortment of variation of spectral 

characteristics of tree species. Positions of taxon means in two-dimensional canonical 

space were significantly different between the temporal datasets. Indeed, we found no 

overlap between the shapes in principal components plots (Fig. 4).  

Finally, the MANOVA of the multispectral dataset confirmed the significance 

of interactions between time and variation in crown spectra (P < 0.0001), but did not 

find a significant effect of taxon on observed spectral variation (P > 0.1). This result 

is not surprising, given that crown spectra were averaged over numerous (73) narrow 
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bands (Fig. 1), with little overlap with the narrow bands identified as informative for 

taxon classification when data were analyzed separately; the reduced overlap being 

the effect of applying a lax selection criterion of any band present in one of the four 

linear discriminant analysis datasets. Our expectation for the potential of repeated 

measures MANOVA to find significant interaction between taxa and spectral 

variation was low due to lack of specificity of the broad band dataset. Nevertheless, 

even this rather coarse spectral dataset again emphasized temporal variation in tree 

crown spectra. 

 

3. Discussion 

Variation through time in tree species’ spectral characteristics is an important 

issue because it is conceivable that present and near-future technological advances in 

imaging spectroscopy can provide information on which to based a regional view of 

species’ distributions and ecosystem structure and function (Chambers et al. 2007). It 

is thus important to understand the details of these measurements that may influence 

ways  and the scopes  for which these technologies are employed. One of these details 

is the focus of the present study.  

We investigated spectral variability of tree crowns using hyperspectral data 

acquired at four different times over a two-year period. Classification of individual 

trees to taxon showed low or no error within each of the temporal datasets, indicating 

that spectral separation is possible, as had been the conclusion of our previous, 

simpler analyses (Papeş et al. in review). However, pooling data across time in a 
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single time-and taxon analysis masked the taxon signal, probably owing to more 

dramatic seasonal effects and possible season by taxon interactions (Fig.3).  

In fact, simple visualizations of tree spectra (Fig.5) calls attention to within-

species variation between the four temporal datasets. Some of the drops in reflectance 

that are observed are related to water absorption, particularly around 970, 1140, and 

1900 nm. As such, it can be difficult to separate the relative contributions of 

atmospheric water vapor versus vegetation characteristics in producing these features. 

These features are most distinct in the wet (December) and dry (July) seasons. 

Nevertheless, since the narrow bands used in the statistical tests did not overlap with 

these particular regions of the spectrum, we are confident that the statistical 

significantly variation observed among measurements of individual tree crown 

spectra result from physiological and/or structural changes that occur at different 

times of the year. In addition, phenology monitoring in the field of most of the trees 

analyzed here indicates differences in the crown stages (flowering, fruiting, new 

leaves) between dry and wet seasons. 

Our crown-level level, satellite hyperspectral approach to study spectral 

variation differs from previous studies addressing--to a certain degree--similar 

questions.  In general, previous focus has been on quantifying intraspecific variation 

in leaf spectra, usually involving measurements of leaf spectra with hand-held or 

laboratory spectrometers (Castro-Esau and Kalacska 2008; Castro-Esau et al. 2006; 

Cochrane 2000; Rivard et al. 2008). These studies provide information necessary to 

evaluate the possible utility of spectra in species identification and mapping. Another 

 77



field of study that has seen considerable attention is that of temporal variation in 

vegetation indices. Hyperspectral datasets can be used to calculate narrow-band 

vegetation indices that are sufficiently specific to identify changes in pigment 

concentration, photosynthetic activity, leaf area, or crown cover (Asner et al. 2006; 

Kalacska et al. 2005). 

The main scope of this study was to investigate spectral variation in a few 

target trees identified as important food sources for macaws and peccaries. Such 

information is necessary for building a future, regional-scale understanding of 

influences of habitat requirements and phenology in shaping animal species 

distribution that will aid conservation planning in the Peruvian Amazon.   
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Table 1: List of taxa with number of individuals and classification errors based on four 
hyperspectral datasets and two tree datasets, based on crown sizes (see Methods)  
Dataset Tree species N t1 t2 t3 t4

Apuleia leiocarpa 6 0 0 0 0 

Bertholletia excelsa 7 0 0 0 0.1429 

Cedrelinga 

cateniformis 

5 0 0 0 0 

Hymenaea sp. 4 0 0.25 0.25 0 

Clean 

Parkia sp. 6 0 0 0 0 

Apuleia leiocarpa 8 1 0.5 0.25 0.75 

Bertholletia excelsa 11 0.3636 0.7273 0 0.7273 

Cedrelinga 

cateniformis 

10 0.4 0.6 0.2 0.8 

Hymenaea sp. 6 0.5 0.8333 0 0.8333 

Raw 

Parkia sp. 7 0.5714 0.1429 0 0.7143 

Apuleia leiocarpa 8 0.5 0.1667 0.5 0.3333 

Bertholletia excelsa 11 0.2857 0.7143 0.5714 0.5714 

Cedrelinga 

cateniformis 

10 1 0.6 0.6 1 

Hymenaea sp. 6 0.75 0.5 1 1 

Clean;  

t1- t4 

combined  

Parkia sp. 7 0.8333 0.6667 0.8333 0.5 
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Figure 2: Representation of individual trees (lighter symbols) and taxon means (darker 
symbols) in canonical variable spaces generated independently for the t1 - t4 datasets.
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Figure 3: Temporal spectral variation observed in canonical variable space: 
(A) representation of  t1 - t4 datasets and all (28) individual trees, showing separation 
through time (t1 – black, t2 – blue, t3 – red, and t4 – purple), not by taxon; (B) a random 
sample of pixels falling in forested areas, also grouped by time.
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90

Figure 4: Differences in canonical variable space of taxa through time (t1 asterisk, 
t2 dash, t3 cross, t4 star), obtained with relative warps analysis.
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