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Abstract

 Amazonian Dark Earths (ADE) are patches of archaeological soils scattered 
throughout the Amazon Basin.  These soils are anthropogenic and most evidence 
suggests that they are the result of unintentional cultural deposits as well as 
intentional efforts of Amerindian populations to improve the quality of their 
farmlands. ADE are a mixture of charcoal, organic matter and the underlying Oxisol 
soil.  ADE are extremely  fertile soils in comparison to the surrounding Oxisols and 
they  are sought after by local residents for agricultural purposes. In the first chapter I 
discuss the value and physical properties of ADE in detail. Research is being 
conducted to learn how ADE were created and to explore the possibility  of replicating 
them to sequester carbon and to reclaim depleted soils in the Amazon Basin. This 
dissertation seeks to assist in that effort by attempting to map  currently unknown 
ADE sites hidden beneath the dense tropical forest canopy. 

 Brazilian archaeologists who accompanied surveyors plotting the route of a 
future natural gas pipeline discovered 28 previously unknown ADE sites. These sites 
have been untouched since their abandonment centuries ago. This data-set  allows me 
to examine the effects of ADE soil on the forest canopy using satellite imagery 
collected before gas pipeline construction began in 2006. I used annual time-series of 
Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation 
Index (EVI) satellite imagery from 2001 through 2005. EVI data estimate the amount 
of green, or photosynthetically  active, vegetation in each pixel of the satellite image. I 
used a combination of descriptive statistics, Harmonic Wave Analysis (Fourier 
Transform) variables, MANOVA tests and logistic regressions to attempt to locate 
ADE sites using the differences in EVI values as a surrogate for soil type. 

 In chapter 2 I discuss the application of harmonic wave analysis and presents 
the underlying theory  that justifies its use. In chapter 3 I deal with the application of 
the methodology  to the gas pipeline data. While some differences were apparent 
between the two soil types, the distribution of EVI values for both soil types were too 
broad for an accurate image classification. Although an accurate map was not 
possible, this research did demonstrate that  the methodology has real potential and 
may be successful when applied to a time-series with higher spatial resolution. This 
research also demonstrates that harmonic phase angles can be interpreted to represent 
phenologic variation in tropical forest vegetation. Phase angles are less intuitive than 
other methods for estimating phenology, but the method is much more robust in 
regions with slight seasonal variation, such as the tropics. In chapter 4 I discuss 
directions for future research and some of the tangential projects that have grown 
from this study.
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Chapter 1
An Introduction to Amazonian Dark Earths

1.1 Introduction

Soil is the largest pool of organic carbon in the global biosphere—most soils 

contain more carbon than is present in the vegetation growing in them (Jobbágy and 

Jackson 2000). This is not true of tropical forests which, although they occupy 16.7 

percent of the earth’s surface, contain only  6.5 percent of the world’s soil organic 

matter (SOM) and a whopping 42.2 and 55.6 percent of the planet’s total net primary 

production and total plant biomass (measured in metric tons of carbon), respectively 

(Schlesinger 1991). Because of topical climatic conditions in the Amazon Basin, nu-

trient cycles occur on a thin superficial horizon that rests on the soil, rather than 

within the soil itself, making typical Amazonian soils chemically poor and infertile 

(Sombroek 1966). 

Amazonian Dark Earths (ADE) are an exception. These soils are anthropro-

genic, the result of prehistoric human occupation (Neves et  al. 2003), and contain ele-

vated levels of nutrients that make them very fertile (Kern et al. 2003; Lehmann et al. 

2003a; Lehmann et al. 2003b). Major et al. (2005) report that maize yields in plots of 

ADE are as much as 63 times greater, weed ground cover is 45 times greater, species 

richness is up  to 11 times greater, and the total number and variety of seedlings are 
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greater than in adjacent soils. These soils contain up to 70 times more SOM  than typi-

cal Amazonian soils (Mann 2002).

ADE soils, which were typical low-fertility soils before prehistoric human in-

fluence, offer a unique opportunity to study the feasibility of using carefully managed 

habitation and agricultural sites within the Amazon Basin for carbon sequestration 

(Glaser et al. 2003b; Marris 2006; Sombroek et  al. 2002). This process, which would 

involve increasing the SOM and nutrient levels in soils, would restore depleted land 

(Sombroek 1966) and limit the need for clearing additional land (for a contrary view 

see Meggers 2001). Despite occurring frequently, individual ADE patches are too 

small (80% of known ADE sites are smaller than 2 hectares - Kern et al. 2003) to ap-

pear on most soil surveys (Glaser et al. 2001 316; McCann et al. 2001; Sombroek et 

al. 2002). While some rudimentary maps exist (Heckenberger et al. 1999), the geo-

graphic extent and location of ADE soils are largely unknown (Woods 1995) and 

comprehensive ground surveys under the extremely difficult field conditions are in-

feasible for even a small portion of the enormous region. 

Most known ADE sites have been found by  local small-holder and subsistence 

farmers who prefer ADE soils because of its heightened fertility (Sombroek et al. 

2002). Woods and McCann (1999) report that local residents recognize ADE soils 

based on their lower vegetation canopy and more closed understory, and unique spe-

cies compositions. 
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Traditional ground-based field methods are unsuited for locating ADE soils 

because of the logistical difficulties associated with fieldwork in the dense, inaccessi-

ble tropical forest. Also, the time and financial cost that would be required to search 

the enormous extent of the Amazon Basin in prohibitive. Methods for predicting the 

location of ADE are required. Such information would greatly enhance researcher’s 

ability  to find new sites, could contribute to preserving tropical forests in the region, 

and would assist scientists’ efforts to study and replicate ADE soils in support  of a 

carbon sequestration industry. 

1.2 History

In 1542 Francisco de Orellana (a cousin of Pizarro who had conquered Peru 

just nine years earlier) and his crew of 60 became the first Europeans to navigate the 

Amazon River (Fig. 1.1). They wrote to Spain of “very large settlements,” with each 

village no more than a “crossbow shot” from the next. They spoke of a single Amer-

indian community  that stretched along the riverbank for 15 miles and “very fine” 

highways that extended at least six miles into the interior and terminated in large cites 

that “glistened white” in the distance (Woods 2002, Mann 2002). Many times, the 

riverbanks bristled with armed warriors and the explorers were harassed by flotillas of 

huge war-canoes (Carvajal 1934, Smith 1994). 

Later explorers, however, found no evidence of large indigenous populations. 

In fact, many scientists have suggested that Amerindian settlements of the size de-
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scribed by  Orellana are impossible in the Amazon Basin due to the agriculture-

limiting nutrient-poor Oxisol soils that dominate the region. Betty Meggers (1992; 

199), the principal of these scientists, has stated that there is “no evidence that … 

communities were larger, more closely spaced or more sedentary in pre-Columbian 

times than indigenous communities today.”  She suggests that the pattern of small, 

dispersed, semi-nomadic communities that exist in this century has “existed for at 

least two millennia without significant alteration in village size or permanence” 

(Meggers et al. 1988; 291). This theory has permeated modern thinking so that  the 

Amazon Basin is largely envisioned as pristine untouched forest. 

The recent discovery of ADE, known locally as terra preta do Índio or “dark 

earth of the Indians,” may provide evidence that challenges the current paradigm and 
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Figure 1.1 Orellana’s voyage of discovery down the Amazon River. The expedition’s scribe, Friar 
Gaspar de Carvajal, recorded many large population centers along the river’s course; however,  the 
damage done to Orellana’s reputation by the subsequent treason trial, the claim of encountering 
tribes led by “Amazon” women, and a lack of further expeditions conspired to throw Carvajal’s 
account into disrepute. Source: Smith 1994.



corroborate Orellana’s historical account. These soils suggest that the Amazon Forest 

is, at least in part, a manipulated forest rather than an untouched forest (Mann 2005: 

300-311). In addition to having approximately twice the amount of soil organic matter 

(SOM) and higher mineral concentrations than is present in typical Amazonian soils 

(Woods and McCann, 1999; Sombroek et al. 2002), ADE also contain dense concen-

trations of pottery sherds and other ceramic artifacts (Fig. 1.2 and 1.3 - Neves et al. 

2003; Sombroek 1966). ADE soils derive their dark coloration from the addition of 

charcoal to the underlying soil (Glaser et al. 2003b; Lehmann 2007). Modern small-

holder farmers continue the practice of charing vegetation and mixing the charcoal 

and ash into the soil as a means of stabilizing soil nutrient levels (Fig. 1.4). 

 In addition to opening a window to the past, these soils may offer a key to the 

future. The most readily observed characteristic of ADE soils is their high concentra-

tion of charcoal. Glaser et al. (2003b) found 64 times more charcoal in ADE soils 

than in the surrounding soils, although four times more charcoal is more typical (Gla-

ser et al. 2001). To meet the challenges of possible global climate change caused by 

greenhouse gas emissions, atmospheric carbon concentrations must be reduced and 

the carbon sequestered in a stable pool. Charcoal, or biochar, is created when organic 

matter is heated without oxygen and it contains twice the carbon content  of ordinary 

biomass (Lehmann 2007). Charcoal is much more resistant to decay and can lock 

away carbon for millennial timescales (Lehmann et al. 2006). The addition of char-

coal to the soil was part of the creation of ADE (Neves et al. 2003). This has led some 
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Figure 1.2 Examples of three 
trenches excavated at Laguinho in 
2007. Notice the dense concentra-
tions of ceramic sherds in the soil.  It 
is possible to see the different colors 
of the orange Oxisols and the 
brown-to-black Amazonian Dark 
Earths (ADE).



to speculate on the viability of a biochar carbon sequestration industry  which would 

reduce atmospheric greenhouse gases and retard possible CO2 induced climate change 

(Lehmann 2007; Lehmann et al. 2006; Marris 2006; Sombroek et al. 2002). This in-

dustry would also improve soil fertility (Fig. 1.5, Lehmann et al. 2003a) and could 

reduce the need for deforestation for farmland.

ADE soils were first thought to be derived from the accretion of cultural waste 

around inhabited areas; however, only  a portion of known ADE sites show evidence 

of long-term human habitation (Woods et al. 2000). Other findings, including the as-

sociation of ADE soils with structural features like burial mounds, artifact distribu-

tions, and the lack of intervening non-cultural sediments, suggest that  these modified 

soils are the intentional result  of large, permanent prehistoric communities working to 
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Figure 1.3 Ceramic sherds collected at Laguinho 
during the archaeological expedition of 2007.



improve the quality of their farmlands (Heckenberger, 1999). Indeed, the current in-

habitants of the Amazon Basin prize ADE soils for their heightened fertility (Fig. 1.6, 

Woods 1995). These soils have been fertile for at least  2,000 years, making them ca-

pable of sustaining population centers (Mann 2005).

8

Figure 1.4 Modern primitive char-
coal production sites.  The first pho-
tograph is a log kiln where whole 
trees are buried and then burned 
with low levels of oxygen. The re-
sulting charcoal is then mixed with 
soils in home garden plots and sub-
sistence farms. We were able to find 
several of these trough-style kilns at 
the same farm. Apparently, the 
landowner builds a new one at the 
site of his most recently cleared 
field site.  The area in the back-
ground of this photograph served as 
the source of the trees for this kiln. 
Undoubtedly this newly cleared site 
will become his next field. The sec-
ond photograph is a clay charcoal 
kiln.  Wood is placed inside and ig-
nited and then the doorway is sealed 
to prevent the entry of oxygen. This 
charcoal is then sold to families who 
use it for cooking.
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Figure 1.5 EMBRAPA field station 
research efforts. The Brazilian Agricul-
tural Research Agency (EMBRAPA) is 
investing many resources into creating 
new Amazonian Dark Earths (ADE) and 
determining the effects of ADE soils on 
crop yields. The first photograph is of an 
açai field (a dark, fruity berry related to 
chocolate) where charcoal is routinely 
added to the soil. The second photo-
graph is of a similar experiment involv-
ing bananas. The açai and banana ex-
periments are being conducted by 
Wenceslau Teixeira (in the yellow shirt). 
The third photograph is an experiment 
involving rice and grains being con-
ducted by Newton Falcõa (in the red 
shirt).
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Figure 1.6 The archaeological site at 
Laguinho, near Iranduba, Brazil. The 
field study group from the University 
of São Paulo excavated this site dur-
ing the 2007 archaeological season. 
The site is located on an active pa-
paya plantation.



1.3 Origins

Large ADE sites on the plateau south of Santarem were reported in the 1870’s 

(see Woods and Denevan, 2009: 3-10 for a detailed discussion of early  reports). Later, 

Steere (1927) wrote of these ADE patches while visiting the plantations of expatriate 

Confederate land owners who had fled to Brazil after the U.S. Civil War. Once a con-

tentious issue (Woods 2003), it is now generally accepted that ADE soils are the result 

of past human activity, either intentional or incident to prolonged habitation.

There are two types of ADE: terra preta (black earth) which are defined by a 

darker brown or black color, the presence of pottery sherds (Fig. 1.2 and 1.3), and 

drastically increased concentrations of charcoal or pyrogenic carbon within the A ho-

rizon; and terra mulata (brown earth) characterized by the absence of pottery  sherds 

or other artifacts, and lower levels of soil organic matter (SOM) and charcoal (Neves 

et al. 2003, Woods and McCann 1999). The presence of pottery shards and higher 

concentrations of charcoal in the terra preta soils could be the result of cooking fires 

and trash discard areas (Heckenberger et al. 1999). The terra mulata sites, however, 

cannot be explained by this theory. These soils are generally  found near the periphery 

of terra preta sites and have almost no artifact inclusions. Terra mulata soils contain 

similar amounts of organic carbon to terra preta, but with lower available phosphorus 

and calcium contents (Woods and McCann 1999), which is contrary to what is ex-

pected if these sites were trash discard areas (McCann et al. 2001). This suggests that 

the formation of terra mulata sites was the result of intentional efforts of prehistoric 
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Amerindian populations to improve the quality of their farmland (Neves et al. 2003, 

Woods and McCann 1999). Neves (2003) has shown that nutrient transfers from out-

side of the cropped areas were necessary  to explain the nutrient levels observed today. 

These nutrient sources may have been food wastes, fish bones and other unused fish 

matter or human excrement. The presence of algae in ADE in Colombia from c.a. 

1,150 BP and later suggests that silt  from riverbanks was incorporated into the agri-

cultural areas in at least one location (Mora et al. 1991).

The earliest evidence of human habitation in the Amazon basin has been 

found in caves near Santarém and dates to 11,000-10,000 BP (Roosevelt et al. 1996). 

The discovery of semi-polished stone axes in the Amazon basin indicates that some 

form of forest manipulation began as early as 8,000 BP (Neves et al. 2003; Oliver 

2001), although large-scale clearing was limited by the difficulty  of cutting trees with 

stone (Denevan 1992). It is likely that natural plant distributions were managed be-

ginning around this time. Human management of useful trees and plants created 

patches or “orchards” of semi-domesticated species such as the açai palm (Euterpe 

oleracae Mart.) and Brazil nut (Bertholletia excelsa Humb. and Bonpl.). These or-

chards are scattered throughout Amazonia (Neves et al. 2003). Heckenberger et al. 

(2003) report that prehistoric settlements had substantial influence on the landspace, 

including acute forest  alteration and secondary forest growth sites (containing tree 

species whose distributions are generally restricted to ADE soils) that were clearly 

visible in satellite imagery. It is still common practice among indigenous groups to 
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nurture and enlarge concentrations of useful tree species. These sites are often called 

drought gardens or emergency gardens and are passed through the family line 

(Lukesch 1976).

The oldest  ADE soils are 2,500 years old and they  can be as young as 500 

years old (Neves et al. 2003). Neves et al. (2003) suggested that the formation of 

ADE is more strongly correlated to population density than to duration of habitation 

and that formation of ADE was more rapid than previously thought. This implies that, 

by some mechanism, the human population in the Amazon basin experienced a surge 

at approximately 2,500 B.P. Additional anthropologic research is necessary  to validate 

this assumption.

1.4 Distribution

ADE soils are present in nearly all the eco-regions of the Amazon basin (Kern 

et al. 2003). They are found principally in the Brazilian Amazon, where it has been 

estimated that there is a Terra Preta patch for every 2 km2 along certain rivers, but 

they  extend into Colombia, Venezuela, Peru, Bolivia and the Guianas as well (Som-

broek et al. 2002). ADE soils are not limited to river corridors. Forty-five percent of 

archaeological sites are between 5 and 25 m above water sources, and more than half 

are located far from water sources (Kern et al. 2003). They are found on a variety of 

soil types, including Ferrasols, Podzols, Acrisols, Luvisols, Fluvisols, Nitrisols, Cam-

bisols, and Arenasols (Kern et al. 2003). Several maps of ADE distributions have 
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been published (Heckenberger et al. 1999; Kern et al. 2003), although these maps can 

be considered incomplete at best (Fig. 1.7). There are no ADE maps of the entire 

Amazon Basin, and all current maps indicate only those sites that have been reported 

by professional researchers. This dissertation attempts to more accurately map ADE 

distribution using satellite imagery.

14

Figure 1.7 Map of Amazonian Dark Earth sites near Santarém, Brazil. This map 
was prepared by Wim Sombroek and William Woods and is one of the most de-
tailed in existence.



1.5 Physical Characteristics

ADE soils are defined by the presence of a diagnostic plaggic, terric or hortic 

A horizon (Teixeira and Martins 2003). Plaggic strata contain large concentrations of 

organic carbon; terric horizons are anthropogenic and develop  through the addition of 

earthy manures, compost or mud; and hortic soils result from deep  cultivation, inten-

sive fertilization and/or long-continued application of human and animal wastes. The 

A horizon of ADE soils typically have a depth of 30 to 60 cm, characterized by brown 

to black color (5YR 2/1, 7.5YR 3/1, to 10YR 3/1 - Kern et al. 2003: 68), while sur-

rounding A horizons are only 10 to 15 cm thick (Fig. 1.8). The dark coloration is 

caused by melanization with organic material and black carbon (Glaser et  al. 2003a). 

Organic matter is concentrated in the upper 20 cm of the soil with a high amount of 

exchangeable aluminum (pH 4.5 or lower) (Kern et al. 2003). In general, ADE soils 

have higher pH, higher cation exchange capacity, higher base saturation, and higher 

nutrient levels than do the surrounding Oxisols (Tiessen et al. 1994). Terra preta soils 

have been classified as Cultic Archaeo-anthrosols and terra mulata soils as Agric 

Archaeo-anthrosols (Kämpf et al. 2003).

Bulk density varies from site to site, although it typically increases with depth 

and has a positive relationship to clay  content and a negative relationship with organic 

carbon (Teixeira and Martins 2003). ADE soils generally show a lighter texture in 

comparison to deeper horizons and surrounding soils, resulting in higher permeability 
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on ADE sites (Teixeira and Martins 2003). ADE are able to retain water and nutrients 

despite increased permeability (Lehmann et al. 2003b). 

The properties of horizons underlying the ADE soils resemble those of sur-

rounding soils (Glaser 1999; Silva et al. 1970; Sombroek 1966), which indicates that 

both soils were weathered from the same parent material (Sombroek 1966). Due to 

the nature of Oxisol soils, nutrient levels are more a factor of soil organic matter 

(SOM) and nutrient exchange from outside the system than weathering of parent ma-

terial (Lehmann et al. 2003b). Charcoal, added to ADE, influences nitrogen levels ei-
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ther by microbial immobilization due to high carbon to nitrogen ratios or by catalytic 

effects of the high surface area of the charcoal. Nitrogen availability  is better in ADE 

that in typical Amazonian Oxisols (Lehmann et al. 2003b). Lehmann et al. (2003b) 

also conclude that ADE contain more available calcium, but not necessarily potas-

sium; that enrichment is often greater at depth; that crop production on ADE for most 

crops (except those with high potassium requirements) is higher than on the surround-

ing Oxisols; and that conditions for maximum biological nitrogen fixation were pre-

sent in ADE. In summary, ADE are high in phosphorus, nitrogen and calcium while 

being limited in potassium availability (Lehmann et al. 2003b). As a result, ADE ex-

hibit greener vegetation during the dry season (Hartt 1885).

1.6 Soil Organic Matter Stability

The low soil organic matter (SOM) stability in typical Amazonian Oxisols in-

hibits the agricultural productivity of the region. Amelioration through the application 

of fertilizers remains ineffective due to the low cation exchange capacity (CEC is es-

sentially  the ability of the soils to retain nutrients - Tiessen et al. 1994). SOM, or fer-

tilizers, are quickly decomposed and leached from the soil or, in the case of phospho-

rus, are quickly  immobilized by the high aluminum and iron contest of these soils and 

rendered unavailable for plant use. ADE soils display  much higher levels of SOM 

stability, a property that seems to be connected to the high levels of charcoal in the 

soil (Glaser et al. 2003b). ADE soils contain up to 64 times more charcoal than do 
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typical Amazonian soils (Glaser 1999; Glaser et al. 2001). High levels of charcoal are 

found in the light fraction of ADE, so a significant portion of the carbon is in particu-

late form (Glaser et al. 2003b). 

Possible vectors through which charcoal supports SOM  stability are: 1) 

chemical resistance due to selective enrichment of stable compounds; 2) chemical 

binding of organic matter to oxides or clay minerals; and, 3) physical stabilization of 

easily erodible organic material by  entrapment in soil aggregates (Glaser et al. 

2003b). In laboratory  studies, cumulative leaching of mineral potassium, nitrogen, 

calcium, and manganese in ADE was only  24, 45, 79 and 7%, respectively  of that 

found in surrounding Oxisols (Lehmann et al. 2003b). Glaser et al. (2003b) found that 

ADE soils contain more potentially  mineralizable SOM, higher sugar levels, and 

higher amounts of residual SOM in absolute and relative terms than do typical Ama-

zonian Oxisols. Glaser et al. (2003b) conclude by stating that the chemical recalci-

trance of charcoal is the main factor responsible for the high SOM stability of ADE.

1.7 Remote Sensing

While many remote sensing studies have been conducted in the Amazon Ba-

sin, very  few have focused on locating ADE sites. I have found one doctoral disserta-

tion that used satellite imagery to map archaeological sites near the upper Xingu 

River in Brazil (Russell, 2005). Fortunately, most of Amazonian remote sensing stud-
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ies have focused on vegetation and many of their methods can be adapted to locating 

ADE soils by examining vegetation properties as a surrogate for soil type.

Remote sensing in the Amazon Basin has dealt primary with deforestation and 

land cover change detection, primarily  limited to forest / non-forest classification 

schemes (Cardille and Foley  2003; Nelson and Holben 1986; Nelson et al. 1987; 

Skole and Tucker 1993; Wessels et  al. 2004).  Others have created thematic maps of 

forest successional stages using extraction and classification of homogeneous objects 

(ECHO) (Brondizio et al. 1996) and decision-tree classifiers (Lu et al. 2004b).  Linear 

mixture models (LMM), which output a relative abundance of a specified land cover 

per pixel (see Lu et al. 2004a), have also been used to classify Amazonian forest  into 

seral stages (Asner et al. 2003; Cross et  al. 1991).  Of particular note, Lu et  al. (2003) 

used LMM to find the percentage cover of shade, bare soil, and green vegetation in 

Landsat Thematic Mapper images over Rondônia, Brazil.  They  were able to charac-

terize the forest into four seral stages (initial, intermediate, advanced, and mature for-

est) with 78.2% accuracy by  creating a threshold of the ratio of shade-to-green vege-

tation.  Another LMM approach (Lu et al. 2004a) had difficulty  distinguishing be-

tween seral stage 1, seral stage 2, pasture and agricultural lands; while seral stage 3 

and mature forest were accurately  mapped (overall accuracy = 81%).  Radar has been 

used successfully to characterize seral stages (Saatchi et  al. 2000), especially along 

floodplains and seasonally inundated forests (Costa 2004; Rosenquist et al. 2002; 

Santos et al. 2003). 

19



 Several researchers have used reflectance in the middle infrared (MIR) portion 

of the spectrum to successfully classify Amazonian forest cover into seral stages.  

Steininger (2000) found a strong relationship  between MIR and forest stand structure 

parameters in Manaus, Brazil.  The strongest  correlations were between MIR reflec-

tance and stand basal area (r2 = 0.72) and biomass (r2 = 0.70).  Salovaara et al. (2005) 

used indicator species (Salovaara et  al. 2004) and Landsat ETM+ imagery to accu-

rately characterize three classes of Peruvian Amazon forest near the Brazilian border.  

The discriminant analysis model made use of a near infra-red (NIR) / MIR ratio and 

achieved an accuracy of 85% (kappa = 0.62).   Vieira et al. (2003) were able to group 

forest located near Belém, in the Brazilian state of Pará, into four classes of regrowth 

cover using each pixels’ location in feature space when NDVI was plotted against 

MIR.  NDVI alone was not a good indicator of forest age.  Lu et al. (2004c) compared 

29 vegetation metrics calculated from a single date of Landsat imagery to field-

collected forest stand parameters near the Xingu River in Pará State, Brazil.  Parame-

ters included aboveground biomass, basal area, average stand diameter and average 

stand height.  The correlation coefficients between these variables and a NIR / MIR 

ratio were -0.624, -0.526, -0.817, and -0.881, respectively.  They conclude that  the 

MIR band and linear transformed indices such as PC1 (the first principal components 

vector) and KT1 (the brightness component of a tasseled cap  transform) and albedo 

are the most strongly correlated remote sensing variables to forest stand parameters.
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 Most current efforts to characterize Amazonian forest cover have relied on sin-

gle dates of imagery [for a review of the Large-scale Biosphere Atmosphere (LBA) in 

Amazonia project see Roberts et al. 2003].  A notable exception is Xiao et al. (2005).  

They  used multi-year imagery from the VEGETATION sensor onboard SPOT-4 and 

MODIS data to model gross primary production and determined that the seasonal dy-

namics evident in EVI and Land Surface Water Index (LSWI) data can be explained, 

in part, by leaf phenology, leaf age, and leaf water content. 

 I was able to find a doctoral dissertation that used Landsat imagery to map ar-

chaeological sites along the Upper Xingu River in south-central Brazil (Russell 

2005). Russell submitted the normalized difference vegetation index (NDVI), the Tas-

seled Cap Greenness index, the Transformed NDVI, and the simple subtraction vege-

tation index (SVI) to a principal components analysis (PCA) from which he retained 

the first two components. He then submitted the soil adjusted vegetation index 

(SAVI) and the modified SAVI to another PCA and he retained the first component. 

The bands of the original Landsat scene were submitted to a third PCA and the sec-

ond and third components were retained. The five retained components were com-

bined with decorrelation-stretched images for bands three and four of the original im-

agery  and then submitted to a supervised maximum likelihood classification. The re-

sult was a classified image with 12 classes, including Archaeological Sites Not Under 

Cultivation and Archaeological Sites Under Cultivation. Russell’s overall classifica-

tion accuracy was 95% with a Kappa of 0.903; however, the producer accuracies for 

21



the two archaeological classes were 78% and 41% and the user accuracies were 41% 

and 62%.

 While Russell’s (2005) overall classification was quite accurate, the methods 

ability  to classify archaeological sites was low. Also, Russell studied sites that were 

likely used on a rotational basis, interspersed with fallow periods. It is hoped that  us-

ing a time-series approach will increase classification accuracy and allow for classify-

ing ADE sites that have been abandoned for much longer periods of time.

1.8 Conclusion

 Amazonian Dark Earths (ADE) were created by the prehistoric inhabitants of 

the Amazon Basin as they worked to improve the quality of their farmlands. These 

soils are much more fertile than the surrounding Oxisol soils and they retain their 

heightened fertility for millennia. Currently, the Brazilian Agricultural Research 

Agency (EMBRAPA) is investing time and money into learning how ADE soils can 

be produced today, with the aim of increasing agricultural productivity and reducing 

dependence on chemical fertilizers (Plate 1.1). This research has the potential to re-

claim depleted land and reduce the need for future deforestation. Others are studying 

whether charcoal, one of the main ingredients in ADE soils, can serve as a long-term 

carbon storage pool that may slow the effects of possible greenhouse global climate 

change (Lehmann and Stephen 2009). Studying ADE soils also has the potential of 

changing the current paradigm regarding historic land use and population dynamics in 
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the region. This could greatly improve the culture and patrimony of Brazil and other 

countries that share the Amazon Basin, as well as the topics in general. 
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Chapter 2
Methods

This chapter has been published with the following reference:

Thayn, J.B., K.P. Price, and W.I. Woods. (2009). Locating Amazonian Dark 
Earths (ADE) using Satellite Remote Sensing – A Possible Approach. In W.I. 
Woods, W.G. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins, and L. 
Reballato (Eds). Amazonian Dark Earths: Wim Sombroek’s Vision. Berlin: 
Springer-Verlag. pp. 279-298.

2.1 Introduction

 Amazonian Dark Earths (ADE) are the result of prehistoric humans’ 

occupation of the Amazon Basin and their need to create fertile soils for growing 

crops (Neves et al. 2003). ADE soils contain highly elevated levels of organic matter, 

mostly  in the form of very slowly decomposing charcoal, which retains water and 

nutrients, and makes ADE some of the most fertile soils in the world (Kern et al. 

2003; Lehmann et al. 2003). When productivity of plants grown on ADE soil was 

contrasted with typical Amazonian soils, Major et al., (2005) found that maize yields 

were as much as 63 times greater, weed cover was 45 times greater, and plant species 

diversity was up to 11 times greater than for adjacent typical Amazonian soils. ADE 

soils contain up  to 70 times more SOM  than typical Amazonian soils (Mann 2002). 

Neves et al., (2003) have shown that nutrient transfers from outside of ADE sites are 

necessary  to explain current nutrient levels in ADE soils, suggesting that the 

formation of these soils was the result  of an intentional effort on the part of 
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prehistoric Amerindian populations to improve the quality of their farmland. These 

nutrient sources may have been food wastes, fish bones and other unused fish matter 

or human excrement. The presence of algae in ADE from ca. 1,150 BP and later 

suggests that silt from riverbanks was incorporated into the ADE soils in at least one 

location (Mora et al. 1991). 

 In addition to opening a window to the past, ADE soils may  hold a key to the 

future. The most readily observed characteristic of ADE soils is their high 

concentration of charcoal, which gives them their distinctive dark brown-to-black 

coloration. Glaser et al., (2001) found 64 times more charcoal in ADE soils than in 

the surrounding soils. To meet the challenges of possible global climate change 

caused by greenhouse gases, atmospheric carbon concentrations must  be reduced. 

Vegetation actively withdraws carbon from the atmosphere and stores it  as organic 

matter. Biochar is created when organic matter is heated without oxygen and it 

contains twice the carbon content of ordinary biomass (Lehmann 2007). Biochar is 

much more resistant to decay and can store carbon for centennial timescales 

(Lehmann et al. 2006). The addition of biochar to the soil was part of the creation of 

ADE (Neves et al. 2003). This has lead some to speculate on the viability of a biochar 

carbon sequestration industry which would reduce atmospheric green house gases 

(Marris 2006; Sombroek et al. 2002) and improve soil fertility (Lehmann et al. 2003).

ADE range from 2,500 to 500 years old (Neves et al. 2003), so ADE soils 

offer a unique opportunity  to study the long-term carbon storage capacity of biochar 
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in soils. One factor that restricts this research is a lack of maps detailing the location 

of ADE sites. While some rudimentary maps exist (Heckenberger et al. 1999), the 

geographic extent and location of ADE are unknown (Woods 1995). However, 

Sombroek (2002) estimates that there is a patch of ADE soil for every 2 km2 along 

certain Brazilian river corridors, and they extend into Colombia, Venezuela, Peru, 

Bolivia and the Guianas. Mann (2002) estimates that ADE soils occupy up to 10% of 

the Amazon Basin – an area equal to the size of France. 

Currently known ADE sites were found primarily by local caboclo residents 

who prefer ADE soils for agricultural settlement and subsistence farming (Sombroek 

et al. 2002). Woods and McCann (1999) report that local residents recognize ADE 

soils based on their lower vegetation canopy  and more closed understory, and unique 

species compositions including brazil nut  (Bertholletia excelsa), papaya (Carica 

papaya), cacao (Theobroma cacoa), cupuacu (Theobroma grandiflorum), and the 

giant Ceiba pentandra. Unfortunately, traditional field methods are unsuited for 

locating ADE soils for two primary reasons: (1) the extreme difficulties associated 

with fieldwork in the dense tropical forest; and, (2) the time that would be required to 

cover the enormous extent of the Amazon Basin. Therefore, most ADE soil sites have 

not been located. For these reasons, methods for predicting the geographic location 

and extent of these soils are required. Such information would greatly enhance 

researchers’ ability to find new sites, could contribute to preserving tropical forests in 

this region, and would assist scientists’ efforts to study  and replicate ADE soils. 
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Satellite remote sensing has tremendous potential for locating ADE soils using 

vegetation seasonal patterns and vigor as a surrogate for soil type.

2.2 Remote Sensing Overview

 Before one can appreciate the advantages of using remotely sensed imagery 

for locating ADE sites, one needs at least a basic understanding of remote sensing 

system resolutions. The following overview will use the most commonly used remote 

sensing systems in existence at this time as examples. These systems include the U.S. 

Landsat Thematic Mapper (TM), the French SPOT, the private sector IKONIS, 

OrbView-3, and Quickbird, the Terra and Aqua systems that both carry the Moderate 

Resolution Imaging Spectrometer (MODIS), and the Polar Orbiting Meteorological 

Satellite that carries the Advanced Very  High Resolution Radiometer (AVHRR). 

Some additional information about these systems will be presented throughout this 

chapter, but refer to Jensen (2005) for a more complete overview.

2.2.1 Remote Sensing Resolutions

  There are four types of resolution that need to be considered when comparing 

remote sensing systems. These resolutions are: spatial, spectral, radiometric, and 

temporal. The following definitions are adapted from Jensen (2005).

Spatial resolution is a measure of the smallest angular or linear separation 

between two objects that can be resolved by the remote sensing system. The picture 

element (pixel) width is often used to describe the spatial resolution. Spatial 

27



resolution of space-borne satellites varies from less than 1 m to 50 km, with most 

sensors in the 10 to 1100 m range. For example, the Landsat sensor has a nominal 

spatial resolution of 30 m, meaning that each pixel covers an area of the earth’s 

surface that is 30 m wide and 30 m tall, with an area of 900 m2.  The SPOT sensor has 

a nominal spatial resolution of 20 m. 

Spectral resolution is the number and dimension (size) of specific wavelength 

intervals (referred to as bands or channels) in the electromagnetic spectrum to which 

a remote sensing instrument is sensitive. Higher spectral resolution instruments have 

either more bands, or narrower bands, or both. Normal spectral resolution of space 

borne satellites is 3 to 36 bands. Hyperspectral sensors collect 126 to 256 bands. 

Radiometric resolution is defined as the sensitivity  of a remote sensing sensor 

to differences in signal strength as it records the radiant flux reflected, emitted, or 

back-scattered from the terrain. It  defines the number of just discriminable signal 

levels. The human eye can discriminate between 8 and 15 radiant intensity  levels, or 

shades of gray ranging from white to black. The radiometric resolution of space-borne 

satellites varies from 256 to 1024 intensity levels.

 Temporal resolution refers to the frequency with which imagery is collected 

for the same location. For example, the temporal resolution of the Landsat sensor is 

16 days. SPOT has a repeat time of 26 days, but greater temporal resolution can be 

obtained if off-nadir views of the terrain can be obtained and used. The temporal 

resolution of the near 1 m resolution systems is 1-5 days, but this is only if one can 
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use surfaces viewed from an oblique or off-nadir angle. Off-nadir views are obtained 

on an infrequent basis. The temporal resolution of the National Oceanic and 

Atmospheric Administration (NOAA) Polar Orbiting Meteorological Satellite that 

carries the AVHRR sensor (with a spatial resolution of 1 km) is daily worldwide 

(except for 9 degrees from the north and south poles). 

Swath width, which is how wide an area is imaged each time the satellite 

orbits the planet, is also a critical factor and obviously  influences how often the 

sensor captures data over an area on the earth. The smaller the pixel or the greater the 

spatial resolution, the narrower the swath width. For example, the swath width of the 

meter to sub-meter measuring instruments is 8 to 11 km, compared to the 2,600 km 

width of the coarse resolution 1 km AVHRR data. Therefore, spatial resolution and 

temporal resolution share an inverse relationship. Anyone beginning a remote sensing 

based research project must determine which resolution, temporal or spatial, is most 

important for their application. Recent vegetation monitoring projects have shown 

that high temporal resolution is often more useful for discriminating vegetation than 

high spatial resolution because a series of frequent images captures seasonal or 

phenologic trends (Bradley et al. 2007; Hill and Donald 2003; Jakubauskas et al. 

2002; Wardlow et al. 2006; White et al. 2005).

2.2.2 Vegetation Indices

Converting satellite data into meaningful vegetation information involves 

calculating a vegetation index. Photosynthetically active vegetation, although it 
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appears green to us, actually reflects more near-infrared light than any other 

wavelength. Healthy vegetation absorbs red light, which is used to power 

photosynthesis. There is an inverse relationship between red reflectance and 

chlorophyll content, and a direct relationship between leaf structure and near-infrared 

reflectance. Therefore, as vegetation density increases, more near-infrared light and 

less red-light are reflected. This inverse relationship is the foundation for most 

vegetation indices, which estimate the amount of photosynthetically  active vegetation 

present in each pixel of satellite imagery. The most common of these indices is the 

normalized difference vegetation index (NDVI)(Rouse et al. 1973):

(1)

 Where NIR is near-infrared reflectance and R is red light reflectance. NDVI 

has been used successfully  around the world (Dennison et al. 2005; Hill and Donald 

2003; Oindo 2002; Shilong et al. 2004; Wang et  al. 2004). The strong correlation 

between the NDVI and green photosynthetically active vegetation has caused some to 

refer to the NDVI as a plant “greenness” index. However, NDVI tends to saturate in 

locations with very  dense vegetation, such as in the Amazon Basin. A modification of 

the NDVI, the enhanced vegetation index (EVI) has been developed specifically for 

the MODIS sensor:

(2)
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 Where G is green reflectance and B is blue reflectance. L is a soil adjustment 

factor and C1 and C2 are coefficients, which describe the use of the blue band in 

correcting red reflectance for atmospheric scattering. The coefficients L, C1 and C2 

have been determined empirically to be 6.0, 7.5 and 1.0, respectively. EVI exhibits 

less saturation in tropical regions than many vegetation indices (Didian 2002), is 

related to forest stand biomass (carbon storage, Roberts et al. 2003), to tropical forest 

leaf litterfall (Saleska et al. 2003; Xiao et al. 2005), to leaf canopy processes (Xiao et 

al. 2005), and is more sensitive to seasonal dynamics than other vegetation indices 

(Ferreira et al. 2003). For research in the Amazon Basin, the EVI is suggested.

2.2.3 Maximum Value Composite Images

While satellite sensors frequently capture images of the earth’s surface, cloud 

cover or other aerosol contaminants will obstruct many of these images. One major 

advantage of using satellite systems with high temporal resolution is the ability  to 

construct maximum value composite (MVC) vegetation index images. Pixels with 

cloud contamination have depressed NDVI or EVI values and are not an accurate 

estimate of vegetation biomass. The MVC procedure groups a series of sequential 

satellite images and selects the maximum value of each pixel from the series (Holben 

1986). The underlying theory  is that, since cloud contamination lowers the NDVI or 

EVI value, a maximum value composite represents the most cloud-free pixel from the 

compositing period. The Advanced Very High Resolution Radiometer (AVHRR), the 

Moderate Resolution Imaging Spectroradiometer (MODIS), the Vegetation sensor, 
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and the ENVISAT sensor have sufficient temporal resolution to routinely  compute 

MVC images. The imagery collected by  the AVHRR is composited from 14-day 

periods and MODIS imagery is composited from 16-day periods. The ability  to create 

MVC images is essential to any satellite-based remote sensing project undertaken in 

the Amazon Basin, where cloud cover frequently obscures surface vegetation.

While maximum value compositing reduces the effects of cloud cover, it also 

introduces temporal error. The MVC process selects the maximum value of the 

composite period and creates a single image, which is typically  assigned the first date 

of the composite period. When using satellite vegetation indices to model vegetation 

seasonal patterns, knowing the Julian date of each index value is critical. Researchers 

attempting to calculate seasonal or phenologic variables from a time-series of 

sequential images have been forced to make assumptions regarding the date of each 

value. Many researchers, possibly for the sake of simplicity, have used the assigned 

first date of the period. This is the same as assuming that the maximum amount of 

photosynthetic activity during each composite period happens at the beginning of the 

period. This assumption is logical during the fall or senescence periods where 

vegetation vigor is steadily declining. However, during the spring or greening-up 

period, the more logical assumption is that the maximum value of the period occurs at 

the end of the period since photosynthetic activity  is steadily increasing (see Wardlow 

et al. 2006 for a further discussion). However, recent work at  the Kansas Applied 

Remote Sensing (KARS) Program at the University  of Kansas has been unable to find 
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a strong relationship between the actual Julian Date and its location within the 

composite period, indicating that  methods based on these assumptions contain 

inherent error (Thayn and Price, 2008).

In order to determine the extent of the error introduced by  using the end-of-

the-period assumption, over 2000 random points were selected within Douglas 

County, Kansas. The onset of green-up  metric (Reed et al. 1994) was calculated using 

the Zhang method (Wardlow et al. 2006; Zhang et al. 2003) and MODIS NDVI 

imagery from 2001. The onset of green-up is the date at  which vegetation begins to 

bloom at the beginning of spring. The Zhang method fits a monotonic function to an 

annual time-series of vegetation index values. The Julian date corresponding to the 

maximal point of the rate of curvature of 

the monotonic function is selected as the 

date of vegetation green-up (see below 

for more further explanation of the Zhang 

method). The onset metric was calculated 

twice, once using the last date of the 

composite period and once using the 

actual Julian date of each pixel. While the correlation between the two sets of onset 

dates was high (r2 = 0.80), the root mean square error between the two was large, 

essentially  equal to the interval of the composite period (rmse = 15.91) (Fig. 1). A 
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Figure 2.1: Temporal error introduced by the 
Maximum Value Composite (MVC) process.
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potential error of half a month is a critical flaw in any project attempting to quantify 

seasonal patterns. 

Beginning with version 5 of the MODIS data, the Julian date of each pixel 

selected in the MVC procedure is reported, eliminating the temporal error created by 

maximum value compositing. MODIS imagery is the only satellite data currently 

available with the Julian date information.  At the time of this writing, the EROS Data 

Center offers 2007 satellite imagery as version 5 data and has started re-processing 

previous years. The anticipated completion date of this back-processing is mid-2008.

2.2.4 Remote Sensing System Requirements

As stated in the previous sections, the major purpose for using remotely 

sensed imagery is to locate Amazonian Dark Earth (ADE) sites that are currently 

hidden beneath the tropical forest canopy of the Amazon Basin. For this project, we 

determined that there are a least six requirements for a satellite system that must be 

met. These requirements are:

1. Conterminous spatial coverage of the Amazon Basin

2. High temporal resolution in order to create maximum value composite images to 

minimize interference from cloud cover and to capture seasonal variation in 

vegetation

3. Adequate spatial resolution to resolve patches of ADE soil

4. Sufficient radiometric and spectral resolution to calculate NDVI or, preferably, 

EVI values
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5. The Julian date of each pixel selected during the maximum value composite 

process needs to be reported

6. Low cost of image acquisition

 The only  remote sensing system to meet all of these criteria is the MODIS 

sensor flown on NASA’s Terra and Aqua satellite platforms. MODIS data are 

preprocessed as normalized difference vegetation index (NDVI) values and enhanced 

vegetation index (EVI) values. For reasons stated above, we suggest  using the EVI. 

While most remote sensing systems collect imagery at a nadir viewing angle over an 

area once every 16 to 26 days, the MODIS sensor collects images over an area at least 

once daily, and because there is normally  a morning and afternoon overpass by the 

Terra and Aqua orbiting platforms, MODIS imagery are often captured over an area 

twice daily. EROS Data Center computes maximum value composite (MVC) 

Enhanced Vegetation Index (EVI) images from 16-day periods resulting in an annual 

time-series of 23 images. The maximum EVI composites are created using the 

MODIS 250, 500, and 1 km resolution images. The images from each satellite are 

processed separately, creating two annual time-series of EVI data. In previous 

Amazonian work, we have merged the composites from the Terra and Aqua systems 

to create dual-system very near cloud-free EVI composites (Brown et al. 2007). These 

dual-system composites are more cloud-free than the original, single-system 

composites. These datasets have been produced for 2000 to the present. It  is 
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anticipated that these datasets will continue to be produced until the MODIS system 

becomes inoperable. 

The spatial resolution of the imagery is 250-meters (~15 acres per pixel) 

which is adequate for detecting ADE patches which range in size from 5 to 30 

hectares (Sombroek et al. 2002). MODIS scenes measure 1,200 km2 and are 

distributed free of charge and are preprocessed to correct  for atmospheric effects and 

to screen for clouds. Morton et al. (2006) further eliminated cloud contamination 

using a weighted cubic spline process. An example of a dual system maximum value 

composite, before and after cubic spline smoothing, is presented in Fig. 2. Another 

option is the 4253H-twice filter (Velleman 1980), which was found to be the most 

accurate of six smoothing filters tested by Klassen and McDermid (2007).

2.3 Past Remote Sensing Research in Amazonia

 The use of satellite remotely sensed data for mapping tropical forests of the 

Amazon began in earnest with efforts to detect and monitor deforestation in the 1980s 

(Malingreau and Tucker 1988; Nelson et al. 1987; Skole and Tucker 1993). These 

projects focus primarily  on differentiating between forest and cleared pasturelands 

rather than characterizing forest cover. More recently, the Large-Scale Biosphere-

Atmosphere Experiment in Amazonia (LBA) has examined the forest with greater 

detail by categorizing it into successional stages (Roberts et al. 2003). Most of these 

projects use a single date, or a few dates, of high spatial resolution imagery, such as 
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Landsat TM, SPOT-4 and Ikonos imagery, and analysis methods such as linear 

spectral mixture modeling to estimate biomass. See Brown et al. (2007) for an 

excellent review of past remote sensing based studies of the Amazon Forest.

 While most remote sensing projects in the Amazon Basin do not  attempt to 

classify  or characterize forest cover, there are a few exceptions. Lu et  al. (2003) used 

Landsat Thematic Mapper (TM) imagery and linear mixture modeling to  classify 

Amazonian forest from the Brazilian state 

of Rondônia. A linear mixture model 

calculates the percent cover, per pixel, of 

a pre-determined land cover type. Due to 

the mathematics involved, the number of 

pre-determined land cover types is 

limited. In this study, three pre-

determined land cover types were used: 

shade, soil, and green vegetation. Lu and 

his colleagues were able distinguish 

Initial, Intermediate, and Advanced 

successional stages of forest  growth with 78.2% accuracy. They conclude that the 

shade and green vegetation fractions are sensitive to change in vegetation stand 

structure and are therefore able to capture biophysical structure information. Although 

there is colloquial evidence that stand structure and forest biophysical parameters are 
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possible ADE soil identifiers (Woods and McCann 1999), this method is limited in 

that it  characterizes forest cover based on a single satellite image, or a single moment 

in the seasonal pattern of the vegetation. We hypothesize that locating ADE soils will 

require the analysis of a complete seasonal pattern.

 Steininger (2000) used Landsat TM imagery to estimate above-ground 

biomass in the Amazon Basin. He discovered a strong correlation between mid-

infrared reflectance and stand age, height, volume and biomass (r > 0.80, p < 0.01), 

although this relationship saturated at around 15 kg m2 of biomass or at about 15 

years of stand regrowth following deforestation. Vieira et  al. (2003) was able to 

discern 4 successional stages in the forests of Pará, Brazil. They determined that the 

normalized difference vegetation index (NDVI) was insufficient for classifying forest 

cover. They, like Steininger (2000), found a strong relationship between mid-infrared 

reflectance and stand biophysical variables. The mid-infrared portion of the 

electromagnetic spectrum has been associated with water content in vegetation. 

Salovaara et al. (2005) used a ratio of the near-infrared band and the mid-infrared 

band from Landsat imagery to map inundated Amazonian forest with 85% accuracy.

2.4 Vegetation Vigor

 The ability to distinguish forest cover growing on ADE soils from forest 

growing on typical Amazonian soils is more complicated than characterizing forest 

cover into successional or seral stages. The differences between forest parameters that 

38



are indicative of soil type are much more subtle, and therefore much more difficult to 

detect. We hypothesize that the most reliable differences in vegetation growing on 

ADE soils and that growing on typical Amazonian soils will be plant vigor. As early 

as 1885 (Hartt) it was reported that vegetation growing on ADE soils is more 

photosynthetically  active during the dry season than vegetation growing on the 

surrounding Oxisols. Hartt  attributed this difference to increased soil moisture 

associated with the ADE soils. Glazer et al., (2003) found ADE soils to contain 2.75 

times more silt and 0.25 times more coarse sand than was found in the surrounding 

soils, making them more permeable and able to retain more soil moisture at greater 

depths (Lehmann et  al. 2003). Tropical forest trees survive the six-month dry season 

by tapping into moisture reservoirs in the soil and as the dry season progresses soil 

moisture reserves at  increased depths become more important to survival, especially 

in severely dry  years (Jipp et al. 1998; Nepstad et al. 1994). This means trees on ADE 

soils have a greater chance of survival during severe drought conditions and, to the 

extent that available soil moisture influences plant phenological processes (greening 

patterns), trees on ADE soils will exhibit different growth rates and timing of 

photosynthesis activities throughout the year. In a year with typical precipitation, 

Amazonian forests are not greatly  affected by  the dry  season. In fact, photosynthesis 

and leaf production are limited during the wet season because of cloud cover and 

peak during the dry season when leaves have access to more light  (Huete et al. 2006; 

Saleska et al. 2003). A partial rain throughfall exclusion experiment indicates that 
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water stress to vegetation is minimal during a drought year. Stress occurs the year 

following drought, when soil moisture has been expended but not replenished 

(Nepstad et al. 2002). Record drought occurred in Brazil in 2005, so satellite imagery 

collected in 2006 offers a promising opportunity to locate ADE sites. 

 Current annual time-series research in the Amazon Basin indicates that remote 

sensing techniques would be sensitive to the differences between vegetation grown on 

ADE soils and that grown on typical Amazonian soils (Heckenberger et al. 2003; 

Huete et al. 2006; Nepstad et  al. 1994; Nepstad et al. 2002; Saleska et al. 2003). In 

particular, Morton et al., (2006) used minimum, maximum, mean, median and 

harmonic variables (amplitude and phase of a sin/cosine curve fitted to the annual 

EVI pattern) calculated from annual EVI and NDVI time-series’ to classify landcover 

in Mato Grosso, Brazil as either cropland, cattle pastureland or regrowth forest. They 

were able to determine the conversion rates of forest to cropland from 2001 to 2004. 

This methodology is similar to that which we propose in this chapter. Harmonic 

analysis was used by  Brown et al. (2007) to characterize the intensification of 

agricultural lands in Vilhena, Brazil. First- and second-order harmonic components 

were calculated from the annual time-series. A first-order harmonic is sin/cosine 

curve with a frequency of one that has been fitted to the series. The second-order 

harmonic is the best-fit sin/cosine curve that has a frequency of two (Fig. 3). If the 

amplitude of the second harmonic was greater than or equal to the amplitude of the 
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first harmonic, then the pixel was assigned to the double crop intensification class. 

The accuracy of this classification was approximately 80%.

 One (or even several) satellite image is unlikely to capture the subtle 

distinction in vegetation vigor that occurs between ADE and non-ADE forests during 

water stress conditions. An annual time-series of satellite images is required to 

visualize and quantify  the differences in plant vigor that are symptomatic of ADE 

soils. Our preliminary work over known ADE sites has shown that  the differences in 

phenological patterns are detectable using time-series analysis approaches. Therefore, 

the solution to identifying ADE sites appears to lie in the use of coarser spatial 
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resolution imagery (250-meter pixel width), which increases the frequency at which 

images over an area can be acquired. Increased temporal coverage by finer spatial 

resolution satellite imaging systems, like Landsat, would be possible if multiple 

systems were placed in a proper earth-orbiting configuration, but such configurations 

do not exist at this time. Increased temporal resolution image datasets not only help 

resolve the differences in plant seasonal patterns, but it also greatly diminishes the 

problems of cloud cover contamination in the imagery; a problem that has plagued 

past studies conducted in the Amazon Basin. 

2.5 Proposed Methods

 A method for quantifying or characterizing the seasonal pattern captured in a 

time-series of remotely sensed images is required. Two likely  candidate methods, 

Harmonic Wave Analysis and the Zhang method of determining phenologic variables, 

are discussed below.

2.5.1 Harmonic Wave (Fourier) Analysis

Harmonic wave analysis (HWA) permits a complex curve, such as an annual 

time-series vegetation index signal, to be expressed as the sum of a series of cosine 

waves. Each of these waves is defined by a unique phase and amplitude (Fig. 3a). The 

term of each wave designates the number of wavelengths completed over the 

chronological range of the data. Successive harmonic terms are added to produce a 

more complex curve, approximating the original signal (Fig. 3d). The lower order 
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waves (1, 2, etc.) demonstrate trends in the data, while the higher order waves (n, n-1, 

etc.) contain mostly  noise (Jakubauskas et al. 2001). The sum of all of the component 

curves reproduces the original signal (Jakubauskas et al. 2001; Olsson and Eklundh 

1994). A literature review discovers few Amazonian applications of harmonic 

analysis and, of those, most are precipitation pattern studies (de Angelis et al. 2004a, 

b).

The equations for calculating the amplitude and phase of a vegetation index 

signal are:

(3)

(4)

If Cf(x) is less then zero than π is added to the phase. The equations for Cf(x) and Sf(x) 

are:

(5)

(6)

where n  is the number of points in the series, x is the temporal unit of each point, j is 

the VI value for each x, and f is the term of the harmonic being calculated.

 When calculated from an annual time-series EVI signal, harmonic analysis 

summarizes patterns in vegetation dynamics in two terms, the amplitude and the 
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phase. The amplitude of the first harmonic indicates the variability  of productivity 

over the year as expressed in a single annual pulse of net primary  production. The 

phase of the first harmonic summarizes the timing of vegetation green-up and 

senescence (i.e., the start and ending of the productive growing season) relative to 

seasonal climatic events. The second harmonic indicates the strength (amplitude) and 

timing (phase) of any biannual signal, such as secondary vegetation types like 

subcanopy grasses or secondary tree species. The 0th-order harmonic, or the mean 

value of the series, indicates overall productivity. The amplitude and phase of the 

lower-order harmonics have been used successfully in land cover/land use 

classification and works especially well in differentiating vegetation functional 

groups (Brown et al. 2007; Jakubauskas et al. 2001; Moody  and Johnson 2001). 

When calculated for multiyear data sets, harmonic signals can be used to detect 

interannual patterns such as El Niño/Southern Oscillation events (Olsson and Eklundh 

1994). 

Harmonic analysis is particularly suited for application in neotropical forests 

like those of Amazonia. Harmonic waves extract  primary vegetation phenology  trends 

and reduce the effects of noise in the data (Jakubauskas et al. 2001). This is especially 

useful in tropical forest zones that experience frequent cloud cover and aerosol 

contamination from deforestation fires. Harmonic analysis has been used to 

reconstruct nearly noise-free data sets by computing the component waves and 

summing only the lower-order waves (Jakubauskas et al. 2002). This method has 
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been used to reconstruct cloud-free time-series vegetation index data sets (Jun and 

Zhongbo 2004; Jun et al. 2004).

 When calculated from an annual time-series vegetation signal, harmonic 

analysis summarizes patterns in vegetation dynamics in two terms, the amplitude and 

the phase. The amplitude of the first harmonic indicates the variability of productivity 

over the year as expressed in a single pulse of net primary production. The phase of 

the first harmonic summarizes the timing of vegetation green-up and senescence (i.e., 

the start  and end of the growing season). The second harmonic indicates the strength 

(amplitude) and timing (phase) of any biannual signal. The additive term of the 

harmonic series, or the mean value of the data signal, indicates overall productivity. 

The amplitude and phase of the lower-order harmonics have been used successfully  in 

land cover/land use classification and works especially well in differentiating 

vegetation functional groups (Jakubauskas et al. 2001; Moody and Johnson 2001). 

Examples of three vegetation signals from the study site, superimposed by their first 

harmonic wave, are displayed in Fig. 4. 

 We hypothesize that Harmonic Wave Analysis will capture the seasonal 

differences of vegetation growing on ADE soils verses non-ADE soils. The increased 

vegetation greenness associated with ADE soils will be indicated by  lower amplitude 

values (caused by decreased seasonal variation as vegetation retains greenness during 

the dry season) and by larger phase angles (caused by a longer growing season). 

Vegetation growing on ADE soils will also display  a larger additive term associated 
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with increased overall annual net  primary production. An example of a first harmonic 

wave, calculated for ADE and non-ADE soils, is presented in Fig. 5. Notice that 

although the means of the two signals are very similar, the amplitude and phase 

values are significantly different. A partial rain throughfall exclusion experiment 

conducted in the Tapajós National Forest in Brazil indicated that severe water stress 

occurs the year following drought when 

soil moisture has been expended, but not 

replenished (Nepstad et al. 2002). 

Increased water stress will exaggerate the 

seasonal variation on non-ADE soils 

(causing amplitude values to increase and 

phase angles to be lower), making it 

easier to recognize ADE soils during 

these end-of-drought periods. 

2.5.2 Vegetation Phenology Metrics

Phenology refers to the timing of 

changes in vegetation as a response to seasonal changes such as temperature and 

precipitation. The three key  phenologic variables estimated using satellite remote 

sensing are onset of greenness (OG, the start of the growing season), the end of 

greenness (EG, the end of the growing season), and the length of the growing season 

(LG). When using satellite imagery to derive phenology characteristics, the object is 
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Figure 2.4: Three examples of annual EVI 
signatures from Manaus, Brazil superimposed by 
their first harmonic curve. The r2 is that of the 
curve to the original signal.
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not species or population phenology, but that of the general, pixel-wide plant 

community (Reed et al. 2003). 

 There are several methods for deriving phenology estimates using satellite 

imagery (Reed et al. 2003), but most are 

able to select phenologic variables from 

only the dates represented by the time 

series of imagery. Zhang et al., (2003) 

provide a method that can estimate 

phenologic variables for dates that fall 

between image dates. The methodology 

uses a piecewise logistic function that fits 

an s-curve to the temporal curve of the 

satellite imagery. The rate of change of the curvature of the logistic s-curve is 

calculated and the first peak or maximal value corresponds to the onset of greenness 

(Fig. 6). This is the point on the s-curve where the line first begins to climb – this 

estimates the date where vegetation first  begins to photosynthesize beyond the 

background value.

The s-curve is derived using the equation:

(7)
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site compared to a non-ADE site near Santarém, 
Brazil; a) shows the smoothed EVI signals and b) 
shows the first harmonic curve.

47



where t is time in days, y(t) is the VI value at  time t, a and b are fitting parameters, c

+d is the maximum VI values, and d is the initial background VI value. Zhang et al. 

(2003) optimized a and b and treated c and d and constants. However, Wardlow et al. 

(2006) were able to generate a better fit, and a more intuitive result, by optimizing c 

and d as well. The optimization was 

seeded using the definitions above.

 Once a, b, c, and d have been 

found, the s-curve can be reconstructed to 

g i v e d a i l y  v a l u e s , e f f e c t i v e l y 

extrapolating between image capture 

dates. This would create a daily  NDVI or 

EVI value as modeled by the logistic 

function. The mathematics of this process 

are robust enough to allow for irregularly 

spaced input values, so the actual Julian 

date of each pixel from within the 

composite periods could be used. As discussed earlier, this greatly  increases the 

accuracy of the results.

 The rate of change in the curvature of the fitted logistic s-curve is used to 

estimate phenological transition dates. The equation for the curvature of the s-curve 

follows:

 The S-curve fitted to the data.

 The curvature of the fitted S-curve.  This  

 measure is directional, the value increases  

 as the line curves concavely and decreases  

 as the line curves convexly.

 The rate of change of the curvature of the  

 S-curve.  The onset of green-up is defined  

 as the first maximal point on th signal.

Based on Zhang et al., 2003.
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Figure 2.6: Schematic of the Zhang method of 
onset of greenness identification.
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(8)

where z = ea+bt  , ∝ is the angle (in radians) of the unit tangent vector at time t along a 

differentiable curve, and s is the unit length of the curve. The rate of change of the 

curvature is:

(9)

 The end of greenness is found by repeating the process at the senescence 

portion of the EVI time series. The length of the growing season is found by 

subtracting the onset of greenness from the end of greenness. During water stress 

years in the Amazon Basin, vegetation growing on ADE soils will have a longer 

growing season than vegetation growing on the surrounding oxisols due to their 

greater permeability and soil moisture capacity. 

 Another potential means of applying this method to locating ADE sites is to 

calculate the onset of senescence. This is the date at which vegetation begins to loose 

vigor and “greenness” due to annual water stress near the end of the dry season. As 

mentioned earlier, the onset of senescence will be more apparent during drought years 

or the year following a drought year. Under these conditions, the onset of senescence 
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will be significantly delayed for vegetation growing on ADE soils compared to 

vegetation growing on non-ADE soils. 

2.6 Conclusion

 Amazonian Dark Earths (ADE) are the incredibly fertile soils created by  

prehistoric inhabitants of the Amazon Basin to increase food production for growing 

populations (Neves et al. 2003; Woods 2003). Finding and studying these soils will 

help  understand the size and cultural complexity  of pre-Columbian inhabitants and 

will enrich the cultural heritage of those nations that contain part of the Amazon 

Basin.  In addition to offering a window to the past, ADE soils have the potential of 

effecting our future. Reproducing ADE soils would sequester atmospheric carbon in a 

stable, long-term form that would reduce the effects of possible climate change 

(Lehmann 2007; Marris 2006), while also increasing agricultural production 

(Sombroek 1966; Sombroek et al. 2002). One of the greatest impediments to studying 

ADE soils is that  many  ADE sites remain hidden beneath the tropical forest. The 

extreme difficulties of performing ground surveys in so dense and so large a region 

make traditional methods ineffective at locating ADE sites. Satellite remote sensing is  

potentially the most effective and economical way of locating ADE sites in the 

Amazon Basin.

 While the methods proposed in this chapter have yet to be fully tested, early 

trials suggest that they will be effective at locating Amazonian Dark Earths by 
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examining vegetation vigor as a surrogate for soil type. Based on literature review 

and preliminary  studies conducted thus far, several conclusions can be drawn 

regarding locating currently unknown ADE sites:

1. Satellite remotely  sensed imagery is the most efficient tool for locating 

Amazonian Dark Earths (ADE) in the Amazon Basin.

2. The most reliable distinction between vegetation growing on ADE soils and 

vegetation growing on non-ADE soils will be the higher vigor and robustness of 

vegetation growing on ADE soils during times of water stress.

3. An annual time-series of imagery is needed to detect  the subtle increase in 

vegetation vigor of vegetation growing on ADE soils. Locating ADE soils in the 

Amazon Basin using satellite imagery will be accomplished by examining 

vegetation seasonal pattern as a surrogate for soil type.

4. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

aboard NASA’s Terra and Aqua satellites is the most  appropriate satellite sensor 

for locating ADE soils. MODIS data are collected twice daily for every part of the 

earth’s surface, allowing for the creation of nearly cloud-free maximum value 

composite (MVC) images. An annual time-series of MODIS MVC images 

consists of 23 images spaced throughout the year.

5. Candidate methods for analyzing time-series of satellite images include: harmonic 

wave analysis and the Zhang method (Zhang et al. 2003) for determining the 

onset of green-up.
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 Future research will examine these conclusions in greater detail and will apply 

these methods to locating Amazonian Dark Earths.
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Chapter 3
Application of Methodology

3.1 Introduction

 Scattered throughout the typically nutrient-poor Oxisol soils of the Amazon 

Basin are relatively small patches of dark, very  fertile soils called Amazonian Dark 

Earths (ADE - Woods and McCann 1999). ADE contain highly elevated levels of 

organic matter, mostly  very slowly decomposing charcoal, which causes the soil’s 

dark coloration (Kern et al. 2003). The charcoal content of ADE soils is typically four 

times higher than that of neighboring soils but can be as high as 70 times higher 

(Glaser et al. 2001). The inert charcoal makes nutrients in the soil more recalcitrant 

(Glaser et al. 2003; Lehmann et al. 2003b; Steiner et al. 2007) and accordingly, ADE 

soils are some of the most fertile in the world (Kern et al. 2003; Lehmann et al. 

2003a; Tiessen et al. 1994). When productivity of plants grown on ADE soil was 

contrasted with that  of typical Amazonian soils, Major et al. (2005) found that maize 

yields were as much as 63 times greater, weed cover was 45 times greater, and plant 

species diversity  was up to 11 times greater than for adjacent typical Amazonian soils. 

In a controlled experiment, Steiner et al. (2007) found that crop production on sites 

where fertilizer and charcoal had been applied was double that of sites where 

fertilizer alone had been used. 

 While charcoal helps retain nutrients that would otherwise be weathered from 

the soil, nutrient transfers from outside of ADE sites are necessary to explain current 
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nutrient levels in ADE (Neves et al. 2003; Woods and McCann 1999). This suggests 

that the formation of ADE soils ultimately became an intentional effort of prehistoric 

Amerindian populations to improve the quality of their farmland (Neves et al. 2003; 

Woods and McCann 1999). These nutrient sources may have been plant and animal 

food wastes, fish bones, other unused fish matter, human urine excrement, and plant 

materials used for fuel and construction. The presence of algae in ADE from ca. 1,150 

BP and later suggests that silt from riverbanks was incorporated into an ADE in 

Colombia in at least one location (Mora et al. 1991).

 Locating and studying ADE sites is important not only  from an archaeological 

and a cultural heritage perspective, but also for its potential as a means for long-term 

carbon sequestration. To meet the challenges of possible global climate change 

caused by greenhouse gases, atmospheric carbon concentrations must  be reduced. 

Vegetation actively withdraws carbon from the atmosphere and stores it  as organic 

matter. Charcoal, or biochar, is created when organic matter is heated without oxygen 

and it contains twice the carbon content of ordinary biomass (Lehmann 2007). The 

addition of biochar to the soil was part of the creation of ADE (Neves et  al. 2003). 

Studies of known ADE sites, which range in age from 500 to 2,500 years old (Neves 

et al. 2003), reveal that biochar is resistant to decay and can store carbon for 

centennial timescales (Lehmann et al. 2006). This has lead some to speculate on the 

viability of a biochar carbon sequestration industry which would reduce atmospheric 
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carbon (Lehmann et al. 2006; Marris 2006; Sombroek et al. 2002) and improve soil 

fertility (Glaser and Woods 2004; Lehmann et al. 2003a; Woods et al. 2009).

 While some maps of ADE exist for relatively small subregions (Heckenberger 

et al. 1999; Kern et al. 2003), the geographic extent and location of ADE are 

unknown in the major portion of the Amazon Basin (Woods 1995). Nonetheless, 

Sombroek et al. (2002) estimate that there is a patch of ADE for every 2 km2 along 

certain Brazilian river corridors, and that they extend into Colombia, Venezuela, Peru, 

Bolivia and the Guianas. ADE patches range in size from 0.5 to 300 hectares 

(Sombroek et al. 2002; Woods and McCann 1999), although 80% of known ADE 

sites are less than 2 hectares (Kern et al. 2003).

 Most known ADE sites were found by local caboclo residents who prefer 

ADE soils for agricultural settlement (Sombroek et al. 2002). ADE are recognized 

based on their lower vegetation canopy, more closed understory, and unique species 

compositions, including Brazil Nut (Bertholletia excelsa), cacao (Theobroma cacoa), 

cupuaçu (Theobroma grandiflorum), and the giant  Ceiba pentandra (Woods and 

McCann 1999). ADE soils also contain copious amounts of pottery shards (Neves et 

al. 2003; Sombroek 1966). Unfortunately, traditional field methods are unsuited for 

locating ADE for two primary  reasons: (1) the extreme difficulties associated with 

fieldwork in the dense, inaccessible tropical forest; and, (2) the time and expense that 

would be required to cover the enormous extent of the Amazon Basin. For these 

reasons, remote sensing-based models that predict the location of ADE sites are 
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required. Such models would greatly  enhance researchers’ ability to find new sites, 

could contribute to preserving tropical forests, and would assist  scientists’ efforts to 

study and replicate ADE for carbon sequestration. 

 The main difficulty with developing such a model is that  most known ADE 

sites have been converted to agriculture with different crop  types. Identifying ADE in 

those conditions is confounded by the varying spectral properties of different  crops. 

Those few known sites that have not been converted to agriculture are located under 

dense tropical forest canopies which completely  occlude the underlying soil so that 

direct imaging of bare soil is impossible. The goal of the present study  is to develop a 

remote sensing method for locating ADE sites using remotely sensed measures of 

forest vegetation as a surrogate for soil type.

 Very  little research has been done exploring the possibility of using remotely 

sensed data to locate ADE. Most comparable research has focused on studying forest 

succession and mapping seral stages (Kimes et al. 1998; Lu et al. 2003; Roberts et al. 

2003; Salovaara et al. 2005; Steininger 2000; Vieira et al. 2003). Thayn et  al. (2008) 

and Meddens (2006) both discuss possible methods for identifying ADE using 

remotely sensed data and present small, inconclusive pilot studies. 

 Russell (2005) predicted the location of archaeological sites on the upper 

Xingu River in southern Brazil using Landsat TM data with an overall accuracy  of 

95% and a Kappa of 0.90. Russell (2005) submitted the normalized difference 

vegetation index (NDVI), the Tasseled Cap Greenness index, the Transformed NDVI, 
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and the simple subtraction vegetation index (SVI) to a principal components analysis 

(PCA) from which he retained the first two components. He then submitted the soil 

adjusted vegetation index (SAVI) and the modified SAVI to another PCA and he 

retained the first component. The bands of the original Landsat scene were submitted 

to a third PCA and the second and third components were retained. The five retained 

components were combined with decorrelation-stretched images for bands three and 

four of the original imagery and then submitted to a supervised maximum likelihood 

classification. The model was based on approximately  300 training sites and the 

accuracy  assessment was performed using approximately  100 validation points 

collected by other researchers and local inhabitants using Global Positioning System 

(GPS) units (Russell 2009).  All surveyed ground sites fell within an approximately 

80 km2 region. The classification scheme was composed of 12 classes including 

water, village sites and common vegetation types. Two of the classes were 

Archaeological Sites Not Under Cultivation and Archaeological Sites Under 

Cultivation. The high accuracy associated with classifying water bodies, savannah, 

forest and cultural sites elevated the accuracy of the classification as a whole. For 

Archaeological Sites Not Under Cultivation and Archaeological Sites Under 

Cultivation, however, producer accuracies were 78 and 41 percent, respectively. User 

accuracy for the same classes were 41 and 62 percent.

 While Russell’s (2005) overall classification was quite accurate, the methods’ 

ability  to classify archaeological sites was low. Also, Russell studied sites that were 
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likely used on a rotational basis, interspersed with fallow periods. It is hoped that 

using a time-series approach will increase classification accuracy and allow for 

classifying ADE sites that have been abandoned for much longer periods of time.

 The effects of ADE on agricultural vegetation are well understood (Glaser et 

al. 2001; Major et al. 2005; Schlesinger 1991); however, its effects on forest 

vegetation are less studied, primarily because there are few known forest ADE sites. 

Several studies have reported colloquial evidence that ADE can be identified by 

indicator tree species, which tend to be more exotic and more useful that the species 

growing on non-ADE (Moran 1981; Sombroek et al. 2002; Woods and McCann 

1999) and at least one study has been able to support that evidence empirically 

(Junqueira 2008). Junqueira established 52 10x25 meter (250 m2) plots along the 

middle Madeira River in Amazonas State, Brazil.  Twenty-six of these were on ADE 

soils and 26 were on non-ADE soils.  In addition to interviewing local caboclo 

farmers to learn how ADE-based and non-ADE-based forests were used, Junqueira 

conducted a census of all trees with diameter at breast height (DBH) greater than or 

equal to 5 cm and all palms taller than 1 meter. An analysis of this data revealed 

several important findings (Junqueira 2008):

1. ADE sites showed higher density (169 individuals, p  = 0.025) and higher richness 

(25 species, p = 0.06) of tree species than non-ADE sites (113 individuals, 14 

species).
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2. Six ADE indicator species (mostly palms) and 3 non-ADE indicator species were 

identified, which supports the evidence collected during earlier ethnobotanic 

studies (Moran 1981; Sombroek et al. 2002; Woods and McCann 1999).

3. Despite the different palm species present on ADE, there was no difference in the 

number of palms growing on ADE verses non-ADE nor was there a difference in 

palm species richness between the two soil types.

4. The principle difference between vegetation growing on the two soil types is 

species composition, in both woody plants and palms.

5. A second major difference relates to vegetation structure. In typical tropical 

forests there is a reduction in woody plant understory density as succession 

advances and the canopy  closes, reducing the amount of light that reaches the sub-

canopy.  On ADE sites, woody  plant density  remained high during succession, 

possibly because the higher soil fertility  encourages a greater number of pioneer 

species with a shorter life cycle. As these individuals die and fall, openings occur 

in the canopy and more light reaches the sub-canopy allowing for a denser 

understory (Junqueira 2008). This finding is consistent with those of Laurance et 

al. (1999) who attribute the decline in biomass on Amazonian secondary forests to 

poor soil quality (see also de Castilho et al. 2006).

 The main driver of vegetation phenology  in ever-moist tropical forests is 

incoming photosynthetically active radiation (PAR, Huete et al. 2002; Myneni et al. 

2007; Van Schaik et al. 1993; Wright and Van Schaik 1994; Zimmerman et al. 2007) 
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rather than soil moisture or precipitation. Henderson et al. (2000) studied the 

flowering phenologies of palm trees at the Smithsonian Institution/INPA’s (Brazil’s 

National Institute of Amazonian Research) Biological Dynamics of Forest  Fragments 

Project (BDFF) located about 41 km north of the present study  site. They  determined 

that palms show no preference for wet or dry season flowering as a community, but 

that individual taxa and species tend to flower in either the wet or dry  seasons. 

Specifically, they report that taxa of the genus Bactris – Junqueira (2008) identifies at 

least one Bactris species as an ADE indicator – tend to flower during the rainy 

season. Oenocarpus minor Mart. is an ADE indicator species and it also flowers 

during the rainy  season. Taxa of Astrocaryum flower during the dry season and 

Junqueira identify three members of this genera as non-ADE soil indicator species. 

One species of Attalea and one of Geonoma, however, were identified by Junqueira 

as ADE indicators and these genera tend to flower during the dry  season (Henderson 

et al. 2000). It seems that with a few exceptions, the ADE indicator palm species tend 

to flower in the rainy season and the non-ADE indicator palm species tend to flower 

in the dry season.

 Hypothesis 1: ADE soils tend to exhibit greater density of woody species than 

do non-ADE soils. This increased density remains as forest succession progresses, 

unlike the reduction in density that is typical of Amazonian forests. Enhanced 

Vegetation Index values (EVI, Huete et  al. 2002) and the near-infrared (NIR) bands of 

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor have been 
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shown to be sensitive to vegetation structure (Gao et al. 2000). If the MODIS sensor 

is sensitive to the different densities of vegetation growing on ADE and on non-ADE 

then a reliable model for predicting the location of currently unknown ADE sites 

could be developed.  

 Hypothesis 2: ADE sites tend to contain different tree species than do non-

ADE sites, particularly palm species. If these different species possess different 

spectral reflectance properties, either consistently throughout the year or during 

specific times of the year due to different flowering phenologies, then a remote 

sensing model for predicting the location of unknown ADE sites could be developed. 

The difficulty with testing this hypothesis is that most  of these palm species are a part 

of the sub-canopy and are therefore occluded by taller woody species. A study 

conducted 430 km east of the present study  site found a slight increase in EVI values 

during the late dry  season, that the authors linked to the phenology of the herbaceous 

understory (Huete et al. 2002). A similar increase was also identified by  Myneni et al. 

(2007) and Xiao et al. (2006). If this increase is detected in our study site it may 

contribute to a successful ADE classification method.

3.2 Methodology

3.2.1. Study Site

 The study site is a transect that begins in Manaus, Amazonas State, Brazil and 

runs west-southwest for nearly 400 km (Fig. 1). Petrobras, the Brazilian national 
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petroleum company, is constructing a gas-line that will connect the city of Coari with 

the city  of Manaus. Once the new line is finished and connected to the existing 285 

km line that connects Urucu with Coari, it will transport 4.7-million-m2 of natural gas 

to Manaus every day for electric power generation. An additional 125 km of gas-line 

will be constructed to connect the main line with the municipalities of Coari, Codajás, 

Anamã, Caapiranga, Manacapuru and Iranduba. 

 The surveyors for the new gas-line were accompanied by archaeologists from 

the University  of São Paulo, who mapped and assessed the archaeological sites found 

along the route (Neves et al. 2007). Forty-one new ADE sites were discovered; of 

these, 28 where found along the new gas-line that was cleared in 2006. Prior to 2006, 

these ADE sites were covered by forest. The majority of known ADE sites have long 

ago been cleared of natural vegetation to take advantage of the soil’s high fertility  for 

agricultural purposes. These sites have typically  been used for generations and under 
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Figure 3.1: Map of the Coari-to-Manaus gas-line. The numbered points are the ADE locations. 
Source: Neves 2007.



different land management practices and the dates of clearing and fallow periods are 

often difficult, if not impossible, to determine. The gas-line dataset uniquely provides 

the location of ADE sites and the date of clearing so that pre-clearing imagery can be 

used to assess the effects of ADE on forest vegetation. 

 Non-ADE sites were selected at random intervals along the transect, at least 2 

km from known ADE sites. This ensured that there was no accidental overlap of an 

ADE site.

3.2.2. Data

Complete annual time-series of Moderate Resolution Imaging Spectroradiometer 

(MODIS) MOD13Q1 version 005 Enhanced Vegetation Index (EVI)(Huete et al. 

2002) imagery for 2001 through 2005 were downloaded from NASA’s WIST data 

gateway website (NASA 2009). MODIS surface reflectance data are processed as 16-

day maximum value composite (MVC) EVI data with 250-m spatial resolution. Pre-

processing involves correcting for cloud and aerosol contamination as well as 

angular, Sun-target-sensor variations with an option to use bidirectional reflectance 

distribution function (BRDF) models. EVI exhibits less saturation in tropical regions 

than many vegetation indices (Didian 2002), is related to forest stand biomass 

(Roberts et  al. 2003), to tropical forest leaf litterfall (Saleska et al. 2003; Xiao et al. 

2005), to leaf canopy  processes (Xiao et al. 2005), and is more sensitive to seasonal 

dynamics than other vegetation indices (Ferreira et al. 2003). 
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 The traditional maximum value compositing (MVC) process selects the 

highest pixel value as representative of the entire composite period, effectively 

reducing the effects of cloud interference and aerosol contamination in data that have 

not been atmospherically  corrected (Holben 1986). For data that have been 

atmospherically  corrected prior to being composited (like MODIS) the MVC process 

tends to select pixels with large view and solar zenith angles, which may not be the 

most cloud-free pixels (Cihlar et al. 1997; Goward et  al. 1991). To correct for this 

problem, a constrained view angle maximum value composite (CV-MVC) process is 

used for MODIS VI data where the two highest VI values are compared and the 

observation with the view angle closest to nadir is selected to represent the composite 

period (Huete et al. 2002). While this effectively limits cloud contamination in most 

areas, Huete et al. (2002) found persistent cloud cover and cloud shadows near the 

Tapajós region of Brazil, which sits at approximately the same longitude as the 

present study site. 

 To reduce the effects of any lingering cloud contamination, the time-series 

data were smoothed prior to analysis using a modification of the mean value iteration 

(MVI) method introduced by Ma and Veroustraete (2006). MVI first identifies points 

along the time-series that might be erroneous by comparing their values to the mean 

of their two neighbors such that if |(DNi-1 + DNi+1)/2 - DNi| > threshold, then the value 

at DNi is replaced with (DNi-1 + DNi+1)/2, where DNi is the digital number in the ith 

position within the time-series. This process is repeated until the absolute difference 
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between every point and the mean of its two neighbors is less than the threshold. This 

method elevates downward troughs and compresses upward spikes to create a 

smoothed time-series. Since we were looking at  tropical forest  presumed to have a 

slight unimodal annual phenologic cycle (Huete et al. 2002; Van Schaik et al. 1993; 

Wright and Van Schaik 1994; Zimmerman et al. 2007), downward spikes were 

assumed to be the result of cloud contamination. The values that sat on the upper 

envelope were assumed to be accurate EVI values. It is desirable to replace any 

downward spikes, but retain the upper envelope (Hird and McDermid 2009). To 

maintain the upper envelope we applied two thresholds, one for identifying 

downward spikes and one for identifying upward spikes that exceed the envelope. 

Our thresholds were 100 for locating downward spikes and 2500 for locating upward 

spikes. This dual-threshold modification of the MVI allowed us to repair spurious 

negatively biased spikes caused by cloud and aerosol contamination while retaining 

Figure 3.2: Example of an annual EVI time-series before and after smoothing by the modified Mean-
Value Iteration method.
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the upper envelope of the time-series. Fig. 3.2 shows an example of an EVI time-

series before and after modified MVI smoothing.

 Of the 41 ADE sites discovered along the gas-line, the first 13 were excluded 

from the analysis because they  were located along the preexisting gas-line, which 

prevented pure forest pixels from being collected. Also, sites 26, 28 and 39 were 

excluded because these sites are located along the banks of either the Manacapuru or 

Negro rivers and at the 250-m resolution of MODIS these pixels contained water 

reflectance and were not pure vegetation pixels.

3.2.3. Overview of Harmonic Analysis

 Harmonic analysis, or Discrete Fourier Analysis, permits a complex curve, 

such as an annual EVI time-series, to be expressed as the sum of a series of cosine 

waves (Bloomfield 1976; Broughton and Bryan 2009). Each of the cosine waves is 

defined by a unique wavelength, phase and amplitude. The wavelength, or harmonic 

term, designates the number of cycles completed by the time-series over its 

chronological range. The term of each wave is supplied by the user and the amplitude 

and phase values are calculated to return the cosine wave that best fits the original 

time-series. The cosine curves are calculated in order of their respective terms, not in 

decreasing order of fit to the time-series. The first term cosine function is the best fit 

curve constrained to a frequency of one, the second term cosine function is the best fit 

curve constrained to a frequency of two, and so on. Successive harmonic curves are 

added to produce a more complex curve, approximating the original time-series. The 
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sum of all possible harmonic curves reproduces the original time-series. The lower 

order waves demonstrate trends in the data, while the higher order waves contain 

mostly noise (Jakubauskas et al. 2001). 

 Harmonic analysis summarizes vegetation dynamics in two values, the 

amplitude and the phase (Fig. 2.3). The amplitude of the first harmonic indicates the 

variability of seasonal productivity over the year as expressed in a single pulse of net 

primary production (NPP). The phase of the first harmonic summarizes the timing of 

vegetation green-up and senescence (i.e., the start  and end of the growing season). 

Subsequent harmonic values indicate the strength (amplitude) and timing (phase) of 

higher frequency patterns, such as secondary vegetation types. The additive term of 

the harmonic series, or the mean value of the time-series, indicates overall 

productivity. The amplitude and phase of the lower-order harmonics have been used 

successfully  in land cover/land use classification and they work especially well in 

differentiating vegetation functional groups (Jakubauskas et al. 2001; Jakubauskas et 

al. 2002; Moody and Johnson 2001). 

 The equations for amplitude and phase follow (Broughton and Bryan 2009; 

Jakubauskas et al. 2001):

(1)

(2)

If Cf(x) is less than zero then π is added to the phase. The equations for Cf(x) and Sf(x) 

are:
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(3)

(4)

Where n is the length of the time-series, i is the data value from the time-series, x is 

the temporal unit  of each i, and f is the term (or frequency) of the harmonic being 

calculated. 

 The phase values returned by equation 2 range from zero to 2π and, since they 

are circular values, a phase of zero is equivalent to a phase of 2π. The phase of the 

first harmonic indicates the position of the crest of the wave. A phase angle of π 

indicates that the curve peaks at the center of the time-series, while a phase angle of 

2π indicates that the peak occurs at the extremes of the period and the trough of the 

curve is located at the middle of the time-series.

3.2.4. Use of Harmonic Analysis in Vegetation Studies

 One of the most common applications of Harmonic Analysis (HA)  is 

smoothing noisy data (Bradley et al. 2007) and replacing clouded pixels in vegetation 

index time-series (Jun et al. 2004). Roerink et al. (2003) applied HA to annual time-

series of vegetation index values calculated from imagery collected by the Advanced 

Very  High Resolution Radiometer (AVHRR) satellite sensor over Europe and 

Sahelian Africa. The amplitude value was used as an estimate of annual ecosystem 

variability. When the amplitude was compared to a climate indicator the driest, 

warmest areas were found to be the most sensitive to climate variation. Jakubauskas 
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et al. (2002) used phase angles to estimate variation in inter-annual phenology. Inter-

annual landscape variability was estimated by calculating a weighted circular 

variance of each pixels’ multi-year phase angles. 

 Ollson and Eklundh (1994) used a least-squares fitting procedure to compare a 

vegetation index time-series to its first and second harmonic curves to determine 

whether vegetation in Africa exhibited a mono-modal or bi-modal pattern. In this 

method the harmonic term with the best fit  to the original time-series is selected and 

used to determine the n-modal nature of the time-series. Brown et al. (2007) used a 

similar method to map  agricultural intensification in Vilhena, Brazil. Brown et al. 

(2007) calculated the amplitudes of the first three harmonic terms and used these data 

to determine whether pixels represented single-, double-, or triple-cropped 

agricultural sites. This simple classification scheme mapped agricultural 

intensification with 80% accuracy.

 Morton et al. (2006) calculated several descriptive statistics, including the 

amplitude and phase values, of MODIS vegetation index time-series collected over 

Mato Grosso, Brazil. These variables were entered into a decision tree classifier 

which successfully classified land cover as either cropland, pastureland or re-growth 

forest.

 Lacruz and Sousa (2007) mapped the flood plain of the Taquari River in 

Brazil using HA and 2005 MODIS vegetation index time-series. They calculated the 

curve of the first harmonic term and then compared it to the original time-series using 
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the coefficient of determination. Their study  site was a grassland, that has a strong 

mono-modal seasonal pattern, therefore the coefficient of determination was typically 

high. In the floodplain, where rising waters disrupt the grasslands’ mono-modal 

pattern, the coefficient of determination was low. They  found that the floodplains 

were clearly identified when the coefficient of determination was equal to or less than 

0.20. They were also able to differentiate between farmland and pastureland using 

amplitude and phase values.

 While other methods exist for quantifying vegetation phenology using 

remotely  sensed time-series (Ahl et al. 2006; Duchemin et al. 1999; Zhang et al. 

2003), HA is advantageous because it does not rely on thresholds or other moving 

window methods. This is much more robust in the tropics where differences in 

seasonal vegetation are very slight.

3.3 Analysis

 To test Hypothesis 1, which is that EVI values collected over ADE will not 

equal those collected over non-ADE due to increased vegetation density and 

differences in species reflectance values, a Multiple Analysis of Variance (MANOVA) 

was performed on the annual means of the data for each year. This resulted in 25 

observations (site locations) and five variables (annual means) for each soil type. A 

logistic regression was performed on this data to predict whether each sample site is 

an ADE location. A jackknife procedure was used as a rough accuracy assessment. 
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Accuracy scores are reported as the percentage of sites classified correctly as either 

ADE or non-ADE.

 To test Hypothesis 2, which is that  EVI values for ADE and non-ADE will 

vary throughout the year due to the different phenology patterns of their associated 

species, t-tests were used to compare the two sets of EVI values from each period in 

the 5-year time-series. More conservative two-tailed t-tests were applied, although 

there seems to be a tendency for ADE-based vegetation to have lower EVI values. 

The p-values from the t-tests were graphed to determine at which period of the year 

the two soil types could be most easily distinguished. Those periods whose t-test  p-

values were less than α = 0.01 were used in a logistic regression to predict whether 

each sample site is an ADE location. A jackknife procedure was used as a rough 

accuracy assessment.

 In addition to the t-tests, harmonic variables were calculated for each year 

using equations 1-4. These were entered into a MANOVA with 25 observations and 

10 variables (the additive term, and amplitude for each of the five years). The phase 

angles were not included because they are nonlinear. A logistic regression was used to 

predict the percentage likelihood of ADE. A jackknife procedure was used as a rough 

accuracy  assessment. Phase angles are circular variables, i.e. 0° equals 360°; 

therefore, the circular mean and circular variance were calculated for these variables. 

Circular variance ranges from zero to one; a value of one indicates that the angles are 

dispersed uniformly around the circle and a value of zero suggests that the angles are 
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clustered together (Jakubauskas et al. 2002). A circular ANOVA was performed for 

each year to determine if there was a significant  difference between the phase angles 

associated with ADE and those associated with non-ADE (Mardia and Jupp 1999). 

All analysis were performed using the R Statistical Environment (R Development 

Core Team 2008).

3.4 Results

 The annual means of EVI values of vegetation growing on ADE and 

vegetation growing on non-ADE were sufficiently different to reject Null Hypothesis 

1 (MANOVA Pillai = 0.262, p  = 0.017). Accordingly, we conclude that  the canopy 

density  associated with ADE vegetation is significantly different from the vegetation 

density  associated with non-ADE, as measured by MODIS EVI. The means of each 

years’ EVI values for ADE and non-ADE are shown in Fig. 3.3a and their densities 

are shown in the first row of Fig. 3.4. Only the means of 2003 were significant 

contributors to the logistic regression (p-value = 0.034). The means of 2005 were 

nearly significant (p-value = 0.053), but all other years’ means were larger than 0.3. 

This indicates that 2003 may be a uniquely  optimal year for mapping ADE using 

vegetation EVI as a surrogate for soil type. A jackknife procedure on the logistic 

regression performed on the annual mean EVI data correctly classified ADE and non-

ADE sites 66% of the time. 
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 Fig. 3.3a shows that  vegetation growing on ADE typically has a lower EVI 

value than vegetation growing on non-ADE. This relationship is consistent 

throughout the year, although the dispersion of values around their means is so large 

that significant overlap  occurs between the two datasets. The series of 115 T-tests, one 

for each of the 23 composite periods in each of the five years, demonstrates that the 

difference between vegetation growing on ADE and vegetation growing on non-ADE 

is most significant during the dry season (Fig. 3.3). In this area the dry season occurs 

from October to June. The results displayed in Fig. 3.3b show that ADE and non-

ADE based vegetation is discernible (T-test p-values < 0.05) at roughly the same 

time-period. The periods of significant p-values seems to precede the dry season and 

encroach into the wet season slightly. This is likely  because atmospheric correction 

preprocessing is more successful at eliminating the effects of cloud interference when 

there are fewer clouds in the image. When the wet season is well underway  and cloud 

interference is at its maximum, the preprocessing algorithms are likely  unable to 

correct for all of the contamination, which obscures the difference between vegetation 

growing on ADE and vegetation growing on non-ADE. 

 Despite the difference between ADE and non-ADE based vegetation during 

the dry season, a MANOVA conducted on those composite periods with T-test  p-

values less than 0.01 did not return a significant result (Pallai = 0.708, p = 0.080). A 

jackknife procedure on the logistic regression of the composite periods with T-test p-

values less than 0.01 returned an accuracy of 56%.
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 The densities of the harmonic variables are presented in Fig. 3.4 and their 

means and standard deviations are listed in Table 3.1. The additive term (time-series 

mean) and the amplitude of the first harmonic were calculated for 2001-2005 and 

entered into a MANOVA. The results of the MANOVA test were insignificant (Pallai 

= 0.340, p = 0.059). The jackknifed logistic model of the harmonic variables was able 

to classify ADE and non-ADE sites correctly 68% of the time.
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 The harmonic phase angles did not contribute to a successful classification. 

The circular variance values are located in Table 3.2. While the ADE sites have more 

concentrated, less dispersed, phase angles than do the non-ADE sites, this difference 

was not enough to discern between the two soil types. The circular ANOVA p-values 

for each year were 2001 = 0.424, 2002 = 0.414, 2003 = 0.524, 2004 = 0.618, and 

2005 = 0.350.  

 Since the dry season, which occurs between October and June, typically has 

higher EVI values than the wet season (Huete et al. 2002; Myneni et al. 2007; Van 

Schaik et al. 1993; Wright and Van Schaik 1994; Zimmerman et al. 2007), we expect 

the phase angles to cluster near 2π. Phase angles are circular, i.e. 2π equals zero, so 

the phase angles will either be a little less than 2π or a little larger than zero. Circular 

2001 2002 2003 2004 2005

ADE

Non-ADE

Additive Term 5719.0 ± 800.4 5676.5 ± 846.3 5659.9 ± 861.6 5738.1 ± 739.0 5771.5 ± 796.8

Amplitude 628.6 ± 335.4 591.3 ± 225.5 665.9 ± 250.0 478.4 ± 282.9 710.3 ± 333.0

Phase Angles 0.566 ± 0.702 0.426 ± 0.854 0.232 ± 0.936 0.253 ± 1.040 0.235 ± 0.925

Additive Term 6083 ± 312.6 6161.2 ± 314.3 6259.2 ± 457.8 6184.4 ± 393.3 6092.4 ± 360.7

Amplitude 603.4 ± 286.1 488.4 ± 220.3 507.5 ± 255.4 437.8 ± 199.2 540.6 ± 226.8

Phase Angles 0.744 ± 0.824 0.218 ± 0.884 0.479 ± 1.496 0.086 ± 1.509 6.196 ± 1.321

2001 2002 2003 2004 2005

ADE 0.218 0.306 0.355 0.418 0.348

Non-ADE 0.288 0.323 0.673 0.68 0.582

ANOVA p-value 0.424 0.414 0.524 0.681 0.35

Table 3.1: The descriptive statistics of the Harmonic variables. The mean and standard deviation 
values for the phase angles are circular means and circular standard deviations.

2001 2002 2003 2004 2005

ADE

Non-ADE

Additive Term 5719.0 ± 800.4 5676.5 ± 846.3 5659.9 ± 861.6 5738.1 ± 739.0 5771.5 ± 796.8

Amplitude 628.6 ± 335.4 591.3 ± 225.5 665.9 ± 250.0 478.4 ± 282.9 710.3 ± 333.0

Phase Angles 0.566 ± 0.702 0.426 ± 0.854 0.232 ± 0.936 0.253 ± 1.040 0.235 ± 0.925

Additive Term 6083 ± 312.6 6161.2 ± 314.3 6259.2 ± 457.8 6184.4 ± 393.3 6092.4 ± 360.7

Amplitude 603.4 ± 286.1 488.4 ± 220.3 507.5 ± 255.4 437.8 ± 199.2 540.6 ± 226.8

Phase Angles 0.744 ± 0.824 0.218 ± 0.884 0.479 ± 1.496 0.086 ± 1.509 6.196 ± 1.321

2001 2002 2003 2004 2005

ADE 0.218 0.306 0.355 0.418 0.348

Non-ADE 0.288 0.323 0.673 0.68 0.582

ANOVA p-value 0.424 0.414 0.524 0.681 0.35

Table 3.2: The circular variances and p-values from circular ANOVA tests 
conducted on the harmonic phase angles.

75



76

2
0
0
1

yti sneD

0
2
0
0
0

6
0
0
0

0000. 05100. 0

2
0
0
2

0
2
0
0
0

6
0
0
0

2
0
0
3

0
2
0
0
0

6
0
0
0

2
0
0
4

0
2
0
0
0

6
0
0
0

2
0
0
5

0
2
0
0
0

6
0
0
0

yti sneD

!
5
0
0

5
0
0

1
5
0
0

2
5
0
0

0000. 00300. 0

!
5
0
0

5
0
0

1
5
0
0

2
5
0
0

!
5
0
0

5
0
0

1
5
0
0

2
5
0
0

!
5
0
0

5
0
0

1
5
0
0

2
5
0
0

!
5
0
0

5
0
0

1
5
0
0

2
5
0
0

2

0

2 3+

2

0

2 3+

2

0

2 3+

2

0

2 3+

2

0

2 3+

A
D
E

N
o
n
!
A
D
E

Fi
gu

re
 3

.4
: D

en
si

tie
s o

f t
he

 H
ar

m
on

ic
 W

av
e 

va
ria

bl
es

 fo
r E

V
I c

ol
le

ct
ed

 fr
om

 A
D

E 
an

d 
fr

om
 n

on
-A

D
E;

 a
) i

s t
he

 a
dd

iti
ve

 te
rm

 o
r a

nn
ua

l m
ea

n,
 b

) i
s t

he
 

fir
st

 h
ar

m
on

ic
 a

m
pl

itu
de

, a
nd

 c
) i

s t
he

 c
irc

ul
ar

 d
en

si
ty

 o
f t

he
 fi

rs
t h

ar
m

on
ic

 p
ha

se
 a

ng
le

s. 
Th

e 
th

ic
k 

lin
es

 c
or

re
sp

on
d 

to
 A

D
E 

an
d 

th
e 

th
in

k 
lin

es
 

co
rr

es
po

nd
 to

 n
on

-A
D

E 
si

te
s.



variance is a measure of how tightly clustered angles are around their circular mean. 

A circular variance near zero indicates that angles are very tightly clustered, a circular 

variance of one indicates that the angles are dispersed uniformly in circular space. 

The annual mean phase angles for ADE are clustered around their mean of 0.35 

(circular variance = 0.34). The annual mean phase angles for non-ADE are centered 

on 0.34, but they are not  as tightly clustered (circular variance = 0.53), as expected. 

This indicates that harmonic phase angles have the potential to provide useful 

information regarding tropical forest vegetation. Unfortunately, at the spatial and 

spectral resolution of the MODIS sensor, harmonic phase angles did not provide 

sufficient information for an accurate classification of ADE and non-ADE soils. This, 

with the tests discussed above, leads us to fail to reject Null Hypothesis 2.

3.5 Discussion

 This study has shown that  forest vegetation growing on ADE soils and forest 

vegetation growing on the surrounding typical Amazonian soils exhibit different 

spectral characteristics during the dry-season months (Fig. 3.3). While EVI values for 

the two soil types are statistically indistinguishable during the wet-season, EVI values 

for the ADE sites in this study  drop significantly lower than those of the non-ADE 

sites. The distribution of EVI values, and their harmonic variables, is so broad that 

accurate classification of sites into either ADE or non-ADE soil types was not 

possible using a logistic regression model. Nonetheless, we provide evidence that 
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2003 may be a uniquely good year for differentiating between ADE and non-ADE 

based vegetation. 

 We failed to reject both of our hypotheses. Hypothesis 1 stated that the 

difference between EVI values collected from vegetation growing on ADE soils and 

EVI values collected from vegetation growing on non-ADE soils was a result of the 

higher vegetation density  typical of ADE sites. Hypothesis 2 stated that the difference 

between ADE and non-ADE EVI values could be explained by phenological 

differences in the different vegetation indicator communities common to ADE and 

non-ADE sites. 

 The results from the series of T-tests performed on the composite periods of 

the 5-year time-series seem promising. Also, the results of the MANOVA test 

performed on the annual means of the data was significant at the 0.1 alpha level. 

While this was not sufficient to confidently reject the null hypothesis, it may  indicate 

that imagery with higher spatial resolution may be successful. Perhaps a time-series 

of satellite imagery  with finer spatial resolution will have the detail necessary  to make 

an accurate classification. 

 Finer spatial resolution would also help eliminate mixed pixels, which were 

common in this study. The geographic coordinates of the ADE sites used in this study 

were collected by archaeologists from the University of São Paulo who were 

concerned only with being able to find the sites again. No effort  was made to ensure 

that GPS points were collected in the center of the ADE patches. We suspect  that  such 
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an effort, which would reduce mixed pixels, would result in increased classification 

accuracy. Also, 80% of known ADE patches are smaller than two hectares (Kern et al. 

2003). At the spatial resolution of MODIS (6.5 hectares per pixel) these smaller sites 

are also mixed pixels. The use of imagery with finer spatial resolution would reduce 

mixed pixels and could result in better classification accuracy. Russell’s (2005) 

moderate success with Landsat imagery for identifying archaeological sites suggests 

that this may be the case.

 Another source of classification confusion may be the soil moisture capacity  

of clayey soils in the region. Earlier studies have indicated that ADE soils are better 

able to retain moisture than non-ADE soils (Lehmann et al. 2003b). However, 

Teixeira (2008) has found that, even though ADE have slightly higher moisture 

retention than non-ADE soils with similar microstructure, the increased soil moisture 

capacity of ADE is primarily  a function of its clay content, so that clayey  Oxisols and 

ADE share similar soil moisture capacities. It is likely then, that at least some clayey 

non-ADE sites may be misclassified as ADE soils.

 Based on evidence provided by Junqueira (2008) and Henderson et al. (2000), 

we had hypothesized that ADE indicator species flower during the rainy season 

and ,therefore, have different EVI values than the palm species that typically grow on 

non-ADE soils. It is likely that the understory indicator species were too occluded by 

the forest canopy and did not have sufficient effect on the spectral reflectances that 

are used to calculate EVI values. Future attempts to use remotely sensed data to 
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predict ADE location should focus on the spectral properties of the upper canopy 

rather than the understory. Unfortunately, the effects of ADE on upper canopy species 

is less understood that its effects on the understory. 

 While MODIS based harmonic variables are able to differentiate between 

cropland, pastureland and forest sites with acceptable accuracy (Brown et al. 2007; 

Morton et al. 2006), they are inadequate for a highly accurate classification between 

annual patterns as closely related as vegetation growing on different soil types in the 

Amazon Basin. Nonetheless, this method allows researchers to find ADE locations 

nearly seven out of ten tries, which is a tremendous improvement over the success 

rate of trekking through the forest in the hope of stumbling upon an ADE site. Future 

research is planned that may improve this accuracy even more.

 A model with the ability to accurately predict the location of currently  

unknown ADE sites would greatly  benefit  the Amazonian archaeological and 

biogeographical communities. While this research provided a step  in that  direction, 

additional work is necessary to construct a suitable predictive model.
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Chapter 4
Review and Final Thoughts

4.1 Review and Conclusions

 Amazonian Dark Earths (ADE) are important subjects of study, not only for 

their obvious value as archaeologic and cultural phenomena, but also for their 

potential to sequester carbon for millennial time-scales. Before anthropogenic 

manipulation, these soils were often Amazonian Oxisols, weathered and depleted. The 

formation of ADE involved the addition of organic matter and charcoal. The charcoal 

stabilizes the minerals and nutrients in the soil. The charcoal contains more carbon 

than most soil organic matter and it is very recalcitrant. Charcoal added to the soil 

over 2,000 years ago is still safely locked away. ADE soils provide a unique 

opportunity to study the effects and permanency of sequestering carbon in soils.

 Research into the properties and value of ADE is limited by the fact  that most 

ADE sites are still hidden beneath the forest canopy. This dissertation attempted to 

overcome that limitation by developing a satellite image based model for predicting 

the location of currently unknown ADE sites. Chapter 1 discussed the value and 

physical characteristics of ADE. Chapter 2 outlined in detail the theory and 

application of a methodology for locating ADE sites. Chapter 3 discussed the 

application of that methodology to a study site in Brazil’s Amazonas State. Chapter 3 

also introduced a data-set of known ADE sites that until 2006 were located under 

dense forest. There is no record of when these sites were abandoned, but it is safe to 
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assume that it happened centuries, if not millennia, ago. This is a very  unique data-set 

that deserves additional study. 

 The most difficult  element of this project has been dealing with the extreme 

density  of vegetation in the humid tropics and its lack of a clear growing season. 

Looking for specific vegetation patterns in the abundance of Amazonian vegetation is 

more difficult than finding the notorious needle in the haystack – the needle is at least 

a different color. All the methods and techniques I employed in this project have been 

successfully  used in more temperate locations where vegetation displays more 

obvious growth patterns. The lushness and fecundity  of the vegetation of the Amazon 

Basin that makes studying it interesting to study also makes it difficult to study.

 Although I was unable to produce an effective, accurate model for locating 

ADE, I did accomplish several goals:

1. I have demonstrated that MODIS data does not have the spatial resolution to 

locate ADE sites. I had hoped that the superior atmospheric correction of 

MODIS imagery would compensate for its large pixel size, but this was not 

the case.

2. I have demonstrated that  Harmonic Wave Analysis is nearly  able to 

differentiate between MODIS EVI time-series collected over vegetation 

growing on ADE and vegetation growing on non-ADE. At the spatial 

resolution of MODIS, the method was not accurate enough to map ADE; 
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however, the results indicate that the method is sound and may be successful 

with higher resolution imagery.

3. I have demonstrated that the phase angles of Harmonic Wave Analysis are 

easily interpreted as estimates of biophysical phenologic timing. This method 

is less intuitive than methods used commonly in more temporate locations; 

however, it is more robust and more easily applied in regions with little 

seasonal variation such as moist tropical forests.

4.2 Tangential Research

 In addition to advancing the efforts to produce accurate large-area maps of 

ADE, my dissertation work has resulted in other research. These projects grew out of 

and are tangential to my dissertation research.

4.2.1 Temporal Error Introduced by the Composite Process

 In Chapter 2, I briefly discussed the temporal error introduced by the 

Maximum Value Compositing process (MVC - Holben 1986; Huete et al. 2002). This 

process selects the highest vegetation index value per pixel from a short time-series of 

images and assigns that value to a composite image that represents the entire time-

series. Since cloud and aerosol contamination tend to lower vegetation index values, 

the result of the MVC process is a nearly  cloud and aerosol free image. Unfortunately, 

the temporal data has been degraded since the user no longer knows the exact date of 

the image, only that it  fell somewhere within the short time-series. Researchers have 
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had to rely on untested assumptions regarding image dates to perform phenology 

studies of satellite time-series.

 I studied the effects of MVC introduced temporal error and the effects of these 

common assumptions on satellite image-based time-series phenology studies. My 

analysis has been published in the International Journal of Remote Sensing (Thayn 

and Price 2008). In that study, I calculated vegetation phenology metrics for over 

2,000 natural vegetation sites in Douglas County, Kansas using the common 

assumptions regarding dates in satellite composite images and using the actual Julian 

dates (days since December 31 of the previous year). A comparison of the two sets of 

metrics revealed that the common assumptions can result in errors of up to 10 days in 

satellite based phenology date estimates. This is very significant when studying 

phenologic processes that  change at a rate of 2.3 to 5.1 days per decade (Parmesan 

and Yohe 2003; Root et al. 2003) or 0.3-0.4 days per year (Ahas et al. 2002).

4.2.2 Mapping Floodplains and Seasonal Lakes

 After presenting preliminary  results of my dissertation work at a workshop in 

Manaus, Brazil I was approached by Dr. Wenceslau Teixeira, of the Brazilian 

National Agricultural Research Agency  (EMBRAPA), who accurately predicted that 

the dense vegetation canopy of my  study site would keep my research from being 

successful. He then drew my attention back to my preliminary maps and pointed out 

that while I had failed to map ADE sites, I had done a very good job of mapping 

floodplains and seasonal lakes. 
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 I have presented my work to map the floodplains and seasonal lakes of the 

Solimões/Amazon River at the 2008 annual meeting of the American Society  for 

Photogrammetry  and Remote Sensing (ASPRS) and the 2008 annual meeting of the 

Kansas Academy of Science. The Kansas Academy of Science awarded my 

presentation the Eugene Dehner Award for first place in the doctoral student category. 

This work is a collaboration with Dr. Teixeira and is nearly  ready for submission to 

peer-review. I am confident that this work will be submitted to Remote Sensing of 

Environment by the end of the summer of 2009.

4.2.3 Pasture Quality Monitoring

 While in Brazil, I met with Dr. Rogerío Perrin of EMBRAPA and we 

discussed the use of satellite remote sensing to monitor pasture quality  and 

management regimes in the State of Amazonas. He is particularly interested in 

pastures located north of Manaus and on several of the larger islands in the Solimões/

Amazon River. We were able to visit six pasture sites where we talked with 

landowners and land managers and collected GPS data. I plan to resume this research 

when my dissertation work is finished. 

4.3 Future Research

 The primary factor that limited the success of the present research is scale. 

The typical ADE patch is small, over 80% of them are less than two hectares (Kern et 

al. 2003) while MODIS pixels encompass 6.25 hectares. Despite this obvious 
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limitation of MODIS imagery, it  was selected for this project because of its superior 

atmospheric corrections and its ability  to generate a nearly  cloud free time-series of 

data. Cloud contamination has historically been a limiting factor in satellite-based 

remote sensing projects in the Amazon Basin. Satellite sensors with finer spatial 

resolution do not pass overhead as frequently and are therefore unable to produce as 

dense a time-series of nearly cloud free images. I had hoped that the increased 

temporal coverage of MODIS would allow me to locate at  least the larger ADE sites, 

which can be as large as 300 hectares or more.

 The archaeology students who collected the GPS points used in this project 

were concerned only with being able to find the ADE site again. No effort was made 

to place the coordinates in the center of the patch. This, combined with the large pixel 

footprint of the MODIS data, practically ensures that each pixel in my training data is 

a mixed pixel containing some ADE soil and some non-ADE soil. Using imagery 

with a finer spatial resolution would help alleviate this problem.

 Using satellite imagery with a finer spatial resolution would allow me to use 

Junqueira’s dataset (2008). Junqueria conducted extensive tree censuses on ADE and 

on non-ADE soils located along the middle section of the Madeira River in Brazil. 

His thesis, which I discuss in detail in Chapter 3, is the first to document the 

differences in ADE-based vegetation empirically. As part of this census, Junqueira 

collected GPS data in the center of each of his 52 study  sites, which, together with the 

finer spatial resolution of LandSat should eliminate most mixed pixels. Junqueira 
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collected copious vegetation biophysical variables as part of his census, which will 

facilitate model development. The only disadvantage of this data-set is that the ADE 

sites are used on a rotational basis by local indigenous residents, rather than being 

completely abandoned.

 This dissertation indicates that parts of the methodology employed are sound. 

The next step in this research is to repeat the analysis using LandSat imagery (0.09 

hectares per pixel). I will use both the gas-line dataset (which is the only known 

dataset of completely abandoned ADE sites) and Junqueira’s dataset (which has a 

wonderful collection of plant biophysical variables collected on semi-managed ADE 

sites). The difficulty in this next step will be dealing with imagery that contains 

significant amounts of cloud and aerosol contamination. A careful application of a 

time-series smoothing algorithm, designed to retain useful vegetation index values by 

retaining the upper envelope of the time-series, should help with this problem (Hird 

and McDermid 2009).

4.4 Final Thoughts

 I am pleased with the results of this study. I have been able to improve 

researchers’ ability to locate ADE sites hidden under tropical forest  to seven out of 10 

attempts. This is much higher accuracy then would be experienced by searching the 

forest on foot in the hope of stumbling onto an unknown site. This is the first attempt 

to map ADE sites using satellite remote sensing; however, it  builds on previous work 
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and successfully moves science one step closer to eventually being able to produce an 

highly  accurate map of ADE sites. Most significant science is the result  of many 

researchers working independently toward the same goal, each advancing the work of 

the others. I have contributed to the effort to map ADE soils and I will continue to 

contribute to that effort.
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