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Abstract 
 

Mammalian oocytes engage in a remarkable series of cytoskeletal and cell 

cycle modifications that prepare the oocyte for the initiation and continuance of 

development. Multiple signaling pathways appear to operate during the process of 

oocyte maturation to ensure that the quality of the cytoplasm and genome will meet 

the standards required to initiate and complete development. In this thesis we have 

taken a systematic approach to understand the role of Src-family kinases (SFKs) 

during oocyte maturation, fertilization and early cleavage in the mouse. We first 

demonstrate that the SFK that controls the progression of meiosis at the first 

metaphase anaphase transition is most likely FYN (Chapter 2). This proposal is then 

supported by the demonstration that tyrosine kinases act upon discrete subcellular 

compartments that include the oocyte cortex and spindle poles in a way that is 

spatially and temporally distinguishable from the targets of ser/thr kinases (Chapter 

3). Moreover, this work reinforces the specific role of FYN at these sites within 

mouse oocytes using mice null for this SFK.  Finally, in Chapter 4 we show that the 

functions of SFKs that drive completion of the meiotic cell cycle extend to and 

through the first embryonic cell cycle after fertilization. Thus, previously 

unanticipated functions for SFKs have been identified for the first time that mediate 

the spatial and temporal remodeling of cytoskeleton and cell cycle during oocyte 

maturation and early development. These findings will have an immediate impact on 

the field of human assisted reproductive technologies (ARTs) as this pathway has 

been completely overlooked up to now.   
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Chapter One 

 

Introduction 
Assisted reproductive technologies (ART) including in vitro fertilization 

(IVF) and intracytoplasmic sperm injection (ICSI) are commonly used to treat 

infertility.  By the year 2008 over 4 million children had been conceived by ARTs 

[2].  In vitro maturation (IVM) of immature oocytes is now being incorporated into 

clinical IVF as an additional option for treatment.  This procedure is indicated for 

women who present under the following conditions: (1) patients with polycystic 

ovarian syndrome who are highly susceptible to ovarian hyper stimulation syndrome; 

(2) women who have failed to ovulate or had poor quality oocytes from previous 

ART attempts; (3) young women undergoing treatment for cancer whose ovarian 

tissues would require cryopreservation to protect immature oocytes from chemical 

and radiation induced damage. 

 The first child born from IVF, Louis Brown is now 30 years old [3, 4].  The 

vast majority of children conceived by ARTs appear to be completely healthy.  

However, research conducted with animal models as well as numerous clinical 

studies of IVF and ICSI children have shown a significant rise in developmental 

abnormalities associated with ARTs (see editorial and discussion from Nature [2, 3]).   

Animal models of IVM have demonstrated changes in the expression patterns of 

mRNA & proteins in oocytes and embryos [5, 6].  In vitro matured oocytes exhibit 

decreased fertilization [7] and reduced embryonic developmental competency [8-11].   

In a recent study examining the health and longevity of adult mice produced by IVM, 

while the majority of parameters measured were normal, adult mice from IVM 

oocytes had significantly reduced pulse rate and cardiac output as compared to mice 

produce by IVF from in vivo matured oocytes [12].  These studies suggest a need for 

a better understanding of the intricacies of oocyte maturation and how  local 

environmental factors  affects the developmental competence of oocytes and the long-

term health of adults derived from this procedures. 
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Signaling at ovulation 
Mature mammalian females experience rhythmic changes in the secretion of 

endocrine and ovarian factors that lead to the cyclic production of large antral 

follicles within the ovary.  In each estrous cycle, one or a few follicles (depending on 

species) are selected by unknown mechanisms to undergo growth and differentiation 

into a mature Graafian follicle  [13, 14].  Follicle stimulating hormone (FSH) 

produced by the anterior pituitary induces ovarian granulosa cell proliferation and 

subsequent antral follicle development.  Each Graafian follicle consists of an outer 

layer of theca cells lying on a basement membrane that separates the theca from the 

granulosa cells.  As the follicle matures, granulosa cells separate into two distinct 

populations: 1) the mural granulosa that line the inner follicular wall and 2) the 

cumulus complex that consists of specialized granulosa cells enclosing a fully grown 

and developmentally competent oocyte (for early reviews of follicular structure see 

[15, 16]).  Ovulation and the induction of oocyte maturation have long been seen as 

downstream events following the surge of luteinizing hormone (LH). 

 Early studies on the effects of LH on the antral follicle leading to ovulation 

took little notice of the oocyte.  Review articles describing the mechanics of ovulation 

often ignored the presence of the oocyte as it was not considered an active participant 

within the ovulatory system (for example [17, 18]).  Although it was recognized that 

the oocyte may have some inductive influences on granulosa cells during follicular 

development [19, 20] and that oocyte growth occurs in concert with the proliferation 

of the surrounding granulosa cells [21, 22]. 

 Prior to the 1990s, the complexities of intracellular signaling pathways and 

gene expression patterns were not yet fully appreciated.  Autoradiographic studies 

demonstrated that LH and FSH each bound to specific subsets of cells within the 

Graafian follicle; LH bound to theca and interstitial cells and occasionally to 

granulosa, while FSH bound to granulosa cells exclusively (reviewed in [20]).  In 

large antral follicles, FSH could induce the expression of LH receptors on granulosa 

cells [23].  It was also recognized that FSH and LH activities were linked to the 
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production of estrogen within the ovary [24] and that the levels of nuclear estrogen 

receptor seemed to correlate with follicle size [25] but the specific links in these 

pathways were unknown.  By the 1980s, the regulation of follicle development took 

on a more complex character with the recognition that cAMP levels increased within 

follicular cells in response to FSH, LH and prostaglandins (reviewed in [17, 20, 26]).   

 Receptors of this family are transmembrane proteins known as G protein-

coupled receptors.  Ligand binding the receptor N-terminus on the outer cell surface 

activates the G-protein at the inner leaflet of the cell membrane.  This activation of 

the G protein in turn activates adenylate cyclase to produce cAMP [27]. Thus, 

binding of FSH or LH to their specific receptors induces an intracellular rise in 

cAMP.  It was long known that cAMP added to the in vitro culture media could 

prevent gonadotropin induced maturation of mouse oocytes [28, 29].  When Hubbard 

and Terranova (1982) cultured hamster COC in media with cAMP or cGMP then 

stimulated cumulus cells with LH, they demonstrated that cumulus cells may play a 

vital role in suppressing oocyte maturation [30].  Indeed this was confirmed the 

following year in simultaneous publications from the Eppig and Schultz laboratories 

with mouse COC [31-33] followed by other mammalian species [34].  The one-

directional model arose whereby FSH stimulation of cumulus cells lead to the rise of 

cAMP in the oocyte and subsequent maturation arrest [35].  However, the model 

would gain in complexity with the discovery of oocyte produced factors that 

regulated the companion cumulus cells. 

 In 1987, Findlay and Risbridger argued that two-way communication between 

germ cells and gonadal cells was necessary for proper germ cell function [36].  

Discovery of the oocyte specific proteins, bone morphogenic protein-15 (BMP15) 

and growth differentiation factor-9 (GDF9) has proven this to be the case.  GDF9 and 

BMP15 are members of the large TGFβ superfamily of proteins [37].  Oocyte 

expression and secretion of GDF9 [38-40] and BMP15 [41, 42] are key regulators of 

ovarian follicular development and subsequent oocyte survival (for review see [43, 

44]).   
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 Transmission of molecules between oocytes and their cumulus cells occurs by 

both secretory and gap junctional communication and is essential for oocyte survival 

[45].  Oocytes secrete growth factors such as GDF9, BMP15 and FGF8 into the 

extracellular milieu for paracrine regulation of cumulus cells [46] (for further 

discussion of interactions during follicle development see [47]).    These proteins bind 

cell surface receptors to initiate intracellular signaling cascades within the cumulus.  

However, small molecules can pass directly from cell-to-cell through gap junctions. 

 Cumulus cells develop long trans-zonal projections (TZPs) that reach-out 

through the zona pellucida to contact the microvilli on the surface of the oocyte.  Gap 

junctions form between the oocyte and these TZPs [48].  The gap junctional complex 

consists of two units, each comprised of six connexin proteins formed into a 

characteristic symmetrical unit (connexon) within the cell membrane.  Intracellular 

channels are formed when connexons from neighboring cells are joined.  The 

resulting pore metabolically couples neighboring cumulus cells with each other and 

the oocyte allowing transfer of low molecular weight (<1 kDa) molecules such as 

ions, nucleotides, amino acids and other metabolites (for reviews see [38, 39].  The 

connexin family includes at least 20 genes with three produced in cumulus cells: 

connexin 32, 43 and 45 [49, 50].  Connexin 43 (Cx43) is the predominant form found 

in cumulus cells while oocytes express almost exclusively Cx37 [51, 52].  Gap 

junctions between cumulus cells are mostly homologous connections of Cx43 while 

gap junctions between oocyte and cumulus are heterologous formed from Cx43 

(cumulus cell) and Cx37 (oocyte).  Deletion of either Cx43 or Cx37 severely disrupts 

communication between oocyte and cumulus cells and causes the failure of both 

oocyte and follicle development [51-54].  Interestingly, while the oocyte produces 

paracrine growth factors that stimulate cumulus cells,  several metabolites required by 

the oocyte are produced by the cumulus cells and fed into the oocyte through gap 

junctions [55] including histidine, alanine, pyruvate [56, 57] and possibly ATP [58].  

Even intracellular acidity of oocytes is controlled by their companion cumulus cells 
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via gap junctional passage of pHi [59] further demonstrating the importance of this 

cell-to-cell connection.  

 Communication via gap junctions also returns us to the subject of cAMP and 

the regulation of oocyte maturation.  As mentioned previously, early studies 

demonstrated that decreased intracellular cAMP content of oocytes lead to a 

resumption of meiosis both in vivo and in vitro.  FSH binding to its receptor produces 

increased cAMP in cumulus cells with transient meiotic arrest [33, 60]).  However, 

LH and prostaglandins (produced by granulosa cells in response to maturation [61, 

62]) also increase granulosa cell cAMP but subsequent decreases in cAMP in oocytes 

result in resumption of meiosis (for more details on cAMP signaling see sections 

Integrating Kinase Signaling and Signaling in Oocyte Maturation) [63].   These 

differential effects of gonadotropins on oocyte maturation demonstrate a complicated 

interplay of signaling cascades [48, 50, 52] as well as intact gap junctional 

communication between the oocyte and cumulus [64, 65].  Further research is needed 

to fully understand the mechanisms involved but this system is a good example of 

what was once considered a simple model but is now recognized as extremely 

complex.   

 Recent studies have turned toward molecular expression analysis of cell 

communication and gene regulation within oocytes and cumulus cells [66].  FSH 

receptor activation initiates multiple signaling cascades including PKA, PKC, MAPK, 

meiosis activating sterol (MAS) and epidermal growth factor (EGF) in addition to 

cAMP, cGMP, gonadal steroid hormones and prostaglandins all of which play roles 

in subsequent follicular development and oocyte maturation [67] (see sections on 

Integrating Kinase Signaling and Signaling in Oocyte Maturation). Activation of the 

LH receptors on mural granulosa cells also initiates the production and release of 

EGF with subsequent activation of EGF receptors on the cumulus cells leading to 

meiotic maturation [68].     
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Can the story be any more complicated?  The answer seems to be YES.  With 

the advent of microarray technology many studies are now reporting vast changes in 

gene expression as results of apparently simple receptor activation.  As mentioned 

previously, FSH and LH receptor activation leads to increases in cAMP.  We now 

know that cAMP mediates changes in gene expression by activating PKA which in 

turn phosphorylates and activates CREB (cAMP-regulatory element binding protein).  

Once activated, this transcription factor binds to the cAMP regulatory elements 

present within the promoter region of specific genes such as aromatase and inhibin-A 

to initiate gene transcription [69].  While cAMP itself can activate entire pathways 

and regulate gene expression, recent studies have shown that cAMP-independent 

activities are also initiated following FSH receptor activation including 

phosphorylation and activation of PKB/Akt and p42/44 MAPK [57, 58].     

 Wayne et al (2007) published an elegant set of experiments attempting to 

work-out some of the missing pieces in the FSH signaling pathway that leads to 

granulosa cell maturation and ultimately oocyte  maturation [69].  Using multiple 

molecular tools, they have pieced apart the signaling pathways of FSH versus EGF 

and discovered an unrecognized player in follicular regulation: the Src-family kinases 

(SFKs: For descriptions, see section on Src-Family Kinases in Oocyte Maturation).  

They concluded that “FSH orchestrates the coordinated activation of three diverse 

membrane-associated signaling cascades (adenylyl cyclase, RAS, and SFKs) that 

converge downstream to activate specific kinases (PKA, ERK1/2, and 

PKB/FOXO1a) that control granulosa cell function and differentiation” [69].  As the 

story of cumulus cell signaling continues to develop, so too does the web of signaling 

cascades in the oocyte. 

 

Signaling of oocyte maturation 
Oogonia commit to meiosis at the time of birth or shortly thereafter in mouse 

oocytes.  They enter meiosis but arrest at prophase of meiosis-I where they will 

remain in stasis until signaled to resume in adulthood (for a review of ovarian 
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development see [47, 70]).  During the initial phases of oogenesis in the mouse, 

meiosis is arrested under the negative control of cell cycle regulatory proteins at the 

translational and post-translational levels [71, 72].  In the adult ovary, when the 

follicle begins to grow and an antral cavity begins to form, oocytes acquire the ability 

to resume meiosis.  However within the follicle, resumption of meiosis is prevented 

by regulatory factors within the follicular environment until a cue is triggered by the 

LH surge which leads to the resumption of meiosis-I (see Signaling at Ovulation).    

 The specific activating signals for the resumption of meiosis-I are not known, 

but several interacting pathways that participate in this process have been identified 

(see also the sections on Signaling at Ovulation and Integrating Kinase Signaling for 

additional discussion of this activation process by LH, PKA and other pathways).  

Immature oocytes arrested at prophase of meiosis-I (GV stage) contain low levels of 

maturation promoting factor (MPF; Cdk1 and Cyclin B together form MPF; see 

section on Integrating Kinase Signaling for detailed description).  The LH surge 

initiates the resumption of meiosis and a rise in MPF activity leading to germinal 

vesicle breakdown (GVBD), condensation of chromatin, formation of the first meiotic 

spindle and entry into metaphase-I. Once activated, MPF promotes dramatic 

structural reorganization that drives formation of the metaphase spindle (see section 

on Integrating Kinase Signaling).  In addition to MPF, a rise in MAPK is also 

essential to the progression of normal maturation.  The rise in MAPK and continuous 

activation of MPF requires the translation of maternal mRNA for MOS (Moloney 

murine sarcoma oncogene) and Cyclin B.  This translation is triggered with the 

initiation of maturation, although the specifics of this activation are unknown.  MOS 

codes for a serine/threonine kinase that phosphorylates and activates another kinase, 

MEK (MAP-ERK kinase) which in turn activates MAPK.  MOS and cyclin B are 

maternally derived mRNAs that accumulate during meiosis and are stored at high 

concentrations in the cytoplasm of the prophase arrested oocyte [73-76].  Resumption 

of meiosis induces the rapid translation of numerous mature mRNAs including MOS 

and cyclin B which are essential in the processes of maturation (see also the 
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activation of CPEB by Aurora kinases in the section on Integrating Kinase Signaling 

and the discussion of cytoplasmic maturation below) [77].  Activated MAPK in early 

MI prevents the ubiquitination and degredation of cyclin B by the anaphase 

promoting complex (APC/C), thus contributing to both the entry into and 

maintenance of meiosis-I.   

 Pro-metaphase of meiosis-I is a prolonged cycle with high levels of MPF and 

MAPK.   However, after 7-9h the chromosomes align on the metaphase plate 

followed by a transient decline in cyclin B allowing for an increase in APC/C 

ubiquitin-ligase activity [78].  This slight decline in MPF activity promotes the 

anaphase-telophase transition and extrusion of the first polar body.  At this point, 

rather than enter interphase, cyclin B levels raise again thus activating MPF and 

deactivating APC/C and the oocyte enters metaphase-II.  As with so many other 

stages of oocyte maturation, this stage of the meiotic cell cycle is tightly controlled 

and relies on the interplay of multiple signaling systems [78].  With the maintenance 

of active MPF and MAPK, the oocyte remains arrested in metaphase-II until activated 

by a fertilizing sperm.  The coordination of MPF, MAPK and APC/C are regulated by 

multiple intersecting pathways and are the subjects of many recent studies (for more 

details see [78-86]).   

 

Completion of meiosis and entry into the first mitosis 
Metaphase-II arrest is released by fertilization which initiates a pulsating 

release of intracellular calcium. These cytoplasmic calcium waves trigger egg 

activation.  One of the first events following fertilization is the extrusion of cortical 

granules through the oocyte cortex and into the perivitellin space, thus setting-up the 

membrane block to polyspermy [87-89].  The full mechanisms involved in this 

blockade to supernumerary sperm entry require both calcium-dependant and 

independent mechanisms and it is essential for the prevention of polyploidy and 

subsequent embryonic death [87, 90, 91].  Calcium waves also induce the full 
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activation of the APC/C which degrades cyclin B thus inactivating MPF and initiates 

the exit from M-phase [92].   

 Proper oocyte maturation involves both nuclear and cytoplasmic maturation 

which prepare the oocyte to support fertilization and subsequent embryonic 

development.  A critical part of the cytoplasmic maturation is the acquisition of 

machinery capable of epigenetic remodeling of chromatin after fertilization.  Sperm 

DNA is wrapped tightly around protamines and packaged into teroid coils to form 

one of the densest tissues found in nature [93, 94] (for discussion of sperm DNA see 

also [95]).  Once inside of the oocyte, egg cytoplasmic machinery must unwind this 

DNA and remove the protamines in a process known as chromatin remodeling.  

Protamines are replaced by histones and DNA binding proteins as the nuclear 

envelope forms to produce the male pronucleus [96]. Coincident with the 

reprogramming of the male DNA, the female undergoes anaphase-telophase and polar 

body extrusion to yield a haploid egg.  Male and female pronuclear formation 

accompanies an increase in egg metabolism and chromatin duplication with 

progression through S-phase [97].     

 The fertilized egg next enters a lengthy prophase allowing for the synthesis of 

cyclin B which must rise above a threshold level before entry into the first mitosis can 

begin.  The timing of MPF activation is also determined by the phosphorylation state 

of the complex.  Dephosphorylation of Cdk1 is essential for MPF activity, but the 

kinase is kept inactive during interphase by dominant inhibitory phosphorylation at 

T14 & Y15.  The final activation step following fertilization is the removal of these 

inhibitory phosphates by the dual-specificity protein phosphatase Cdc25.  This 

phosphatase is activated downstream of the calcium waves by Ca2+/Calmodium-

dependent Kinase-II [98].  

 Once activated, MPF drives the zygote into the first mitotic cell cycle.   This 

first mitotic cell cycle is almost twice as long as that of subsequent embryonic mitosis 

due to a prolonged M-phase which is reminiscent of MII arrest.  This transient 

metaphase arrest is likely caused by the presence of maternal factors left-over from 
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the meiotic milieu, although the precise mechanisms involved are unknown [99].  

Regardless of this delay, most of the primary signaling pathways that drive the cell 

cycle in meiosis are also required for completion of the first and subsequent 

embryonic mitosis [100].  

 In addition to cell cycle initiation, fertilization involves changes in protein 

synthesis and the translational silencing and degradation of maternal mRNA [101, 

102].  In mammals, a low level of gene transcription begins in both the male and 

female pronuclei within hours after fertilization [103] however, the primary zygotic 

gene activation occurs after several rounds of DNA replication and cell cleavage (2-4 

cells in rodents; 8-16 cells in large domestic animals and primates) [104].  Once 

thought of as a global gene activation, microarray analysis have proven that zygotic 

gene activation is highly regulated with genes being turned-on or off in a 

developmentally coordinated pattern [105].  Throughout development from the 

immature oocyte until full zygotic gene activation, the egg depends on the maternally 

stored mRNA.  Some maternal mRNAs are required even as late as the blastocyst 

stage of development.  For example, maternally derived  JY-1 (an oocyte-expressed 

gene shown to regulate the function of both ovarian granulosa cells and bovine 

embryogenesis) [106] and β-catenin [107] both of which compose maternal stores of 

mRNA that are required for the development of blastocysts.  Other genes that are 

oocyte specific are lost after zygotic gene activation and not apparently turned-on 

again until formation of primordial germ cells in the next generation fetus (for 

example, GDF9, BMP15, MATER, ZAR1 [108] and  FILIA-MATER [109]).   Many 

recent reviews have been published regarding gene expression profiling in 

mammalian oocytes and is beyond the scope of this thesis (for example see [105]).  

As more maternal effect genes are discovered, it is becoming evident that proper 

development and maturation of the oocyte ultimately regulates the fate of the 

developing embryo and the health of the adult [110].     
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In the next section, we will examine some of the known mammalian oocyte 

signaling pathways and their involvement in oocyte maturation with emphasis on the 

organization of the cytoskeleton and chromosomes leading to proper chromosome 

segregation and embryo development.  Errors in spindle formation and microtubule 

dynamics cause deregulation of chromosome organization and aneuploidy.  These 

gross abnormalities are likely a consequence of aberrant molecular signaling 

pathways and a serious concern in the field of human development and clinical ARTs 

(advanced reproductive technologies).  (See also the section on Src-Family Kinase 

Signaling in Oocyte Maturation for a discussion on the importance of proper oocyte 

maturation and concerns of aneuploidy in clinical ART).  This coordination of 

intracellular signaling and cytoskeletal dynamics is essential for the production of a 

healthy oocyte and subsequent normal offspring. 

 

Integrating signaling with chromatin and cytoskeletal organization 
Oocyte signaling is an amazingly complex cellular system with intricate and 

intersecting molecular pathways.  One of the primary components of meiotic 

maturation is the reorganization of the microtubule cytoskeleton and the formation of 

the meiotic spindle.  Abnormal spindle and chromosome dynamics produce 

aneuploidy, the primary cause of developmental failure in clinical ART and the 

oocytes/embryos of older women [111-114].  Because of the critical importance of 

proper spindle formation and subsequent chromosome segregation, we have focused 

our studies on the molecular signaling cascades that influence these cytoskeletal and 

chromosome dynamics. 

 Prophase-I arrested (GV) oocytes contain long, stable microtubules that 

radiate throughout the cytoplasm and surround the oocyte cortex.  As oocyte 

maturation progresses through GVBD, cytoplasmic microtubules shorten and become 

less stable [115, 116] while microtubule organizing centers (MTOCs) coalesce to the 

region of condensing chromosomes and nucleate dynamic microtubules forming the 

MI spindle [117].  Chromatin-associated Ran-GTP coordinated microtubules also 
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play a role in production of the fully functional meiotic spindle [4-8].  

Phosphorylation of MTOC proteins increases their microtubule nucleating 

capabilities during mitosis [9-11].  In meiotic maturation of mouse oocytes, a subset 

of MTOCs are constitutively phosphorylated [118] although, increased 

phosphorylation of MTOCs is associated with meiotic competence [119].  Cell cycle 

dependant phosphorylation of microtubule associated proteins contributes to the 

regulation of dynamic microtubules [120].  

 

MAPK and spindle microtubules 

Mitogen activated protein kinases 42/44 (MAPK, also called ERK1/2) and 

protein phosphatase 2A (PP2A) are two partners involved in these phosphorylation 

events [7-11].  Active phospho-MAPK (pMAPK) and PP2A localize to the region of 

the meiotic spindle in mouse oocytes and both are required for spindle formation 

[121] although their direct functions on spindle microtubules and centrosomes are 

unknown. 

 The Mos protein activates the MAPK pathway [21-24] binds to tubulin in 

somatic cells [122] and localizes to microtubules of xenopus oocytes [123].  Knock-

out mice lacking the MOS gene produce MII oocytes with abnormally diffuse 

spindles and loose chromosomes [124].  Many of these oocytes fail to arrest at MII, 

undergoing parthenogenic activation and pronuclear formation. The MOS effector 

MEK also localizes to microtubules but primarily to the spindle poles [125].  Thus 

several key regulators of the MAPK pathway are closely association with 

microtubules and the meiotic spindle [25, 27].  Normal mouse oocytes matured in 

vitro will progress to metaphase-II and extrude the polar body within 14h of culture.  

When MEK/MAPK was inhibited with 20 µM U0126 beginning at the GV stage, 

oocytes underwent GVBD but failed to form normal MI spindles.  Various 

abnormalities were seen including oocytes that blocked at the pre-MI stage with 

central aster of microtubules, monopolar MI spindles and bi-polar spindles with 

misaligned chromosomes [126].  The majority of oocytes failed to mature beyond MI.  
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When oocytes were matured for 4 h (allowing for GVBD and entry into pro-MI) 

before inhibition of MEK/MAPK, oocytes matured to MII and extrude a polar body.  

However, MII spindle abnormalities were produced including failure to sort 

chromosomes and formation of irregular spindles.  Two proteins that normally 

associate with the spindle poles in MII oocytes were either absent (NuMA) or 

dislocated (γ-tubulin) [126].  These abnormities caused by inhibiting the MAPK 

pathway are reminiscent of our results with SFK inhibition; including a block at MI 

when Src was inhibited from the GV stage and formation of abnormal MII spindles 

[127].  This suggests the possibility of an interaction between the Src and MAPK 

signaling pathways in the progression of meiotic maturation, chromosome sorting and 

spindle dynamics. 

 Src kinases are known inducers of MAPK activation through the 

Src/Raf/MAPK pathway. [For further discussion of this pathway, see the section on 

Src-Family Kinases in Oocyte Maturation] 

 

Src-family tyrosine kinases and microtubule dynamics 

Tyrosine kinases also associate with centrosomes and microtubules.  Src 

family members including Src, Fyn and Lyn and the closely related PTKnamed Fes 

can bind to microtubules and phosphorylate alpha and beta tubulin in somatic cells 

[17-19] while Fyn also phosphorylates tubulin in mammalian oocytes [128, 129]. (For 

a detailed description of SFKs, see the section on Src-Family Kinases in Oocyte 

Maturation).  The centrosomes are another site of tyrosine kinase activity during the 

somatic cell cycle.  γ-Tubulin and ring complex proteins, members of the centrosomal 

protein milieu are tyrosine phosphorylated by the kinases Fyn and Syk (spleen 

tyrosine kinase) in budding yeast [130] as well as activated mast cells [131] and 

differentiating P19 embryonal carcinoma cells [132].  In addition, Fyn PTK and PI3-

kinase together interact with γ-tubulin in acentrosomal MTOCs, whereby it appears 

they regulate microtubule nucleation by membrane bound γ-tubulin in differentiated 

P19 cells [133].  Interestingly, we have found phosphotyrosyl proteins localized 
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specifically to the spindle poles in the region of the centrosomes in MII mouse 

oocytes [134].  Phosphorylated γ-tubulin is likely present at this stage of mouse 

oocyte also (Barrett and Albertini unpublished observations).  This suggests the 

possibility that the phosphotyrosyl proteins at the spindle poles maybe γ-tubulin and 

ring complex proteins which comprise the centrosome of the mammalian oocyte [26-

29].   

 Src-family kinase activity is greatly increased during mitosis (reviewed in 

[135, 136]).  This activity is due to the dephosphorylation of the inhibitory Y527 

carboxy-terminal regulatory tyrosine by phosphatases (PTP) and an activating 

phosphorylation by Cdk1.  Two of the phosphatases responsible for the 

dephosphorylation of Y527 include PTP alpha (PTPα) [137] and epsilon (PTPε) 

[138].  PTP activity is also increased during mitosis [137, 139].  Interestingly, EGF 

receptor activation causes translocation of PTPε to microtubules [138].  Although this 

binding causes a decreased PTPε activity, the binding is transient and would provide 

a mechanism for co-localization of SFKs and their activating PTPs at the site of 

polymerized microtubules.  Interestingly, Wu and Kinsey [140] found Fyn kinase 

bound directly to PTPα via the SH2 domain in Zebrafish eggs while McGinnis et al 

[134, 141] and others [142] have found both activated and inactive SFKs associated 

with microtubules in both oocytes and cumulus cells.  Co-localization of Fyn and 

activating PTPα and/or PTPε at the spindle microtubules may also be involved in 

meiosis and/or regulation of cellular dynamics. Depolymerization of microtubules 

with nocodazole causes increased PTPε activity [138].  Therefore, active PTPε maybe 

in constant flux near the microtubule cytoskeleton where it could activate the Fyn 

PTK which binds to and phosphorylates tubulin [30, 33, 35, 36, 50].  The functional 

significance of tubulin tyrosine phosphorylation is unknown.  

 

Tyrosine modifications to microtubules 

Microtubules are composed of alternating alpha and beta tubulin 

heterodimeric subunits that polymerized to form microtubules.  Lafanechere and Job 
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(2000) described that “tubulin is subject to several post-translational modifications, 

include acetylation at a specific lysine close to the N-terminus of the α-subunit [143], 

poly-glutamylation near the C-terminus of both the α and β subunits [52, 53] and a 

cycle of tyrosine removal and addition at the C-terminus of the α-subunit [54-58]” 

[144].  The reactive tyrosine can be removed by a tubulin carboxypeptidase (TCP) 

[40, 41] that acts specifically on polymerized microtubules [42-44].  Tubulin 

tyrosine-ligase (TTL) catalyses the incorporation of tyrosine back into detyrosinated 

tubulin and acts primarily on free alpha tubulin subunits [62-65].  The interplay of 

TTL and TCP results in a cycling of tyrosination and detyrosination of α-tubulin. 

 The significance of tyrosination cycling on α-tubulin is unknown.  There 

appears to be no difference in the assembly or dynamics between microtubules of 

tyrosinated or detyrosinated tubulin [145].  Although interphase cells contain 

primarily detyrosinated tubulin [46, 47], detyrosination of tubulin does not directly 

alter the stability of polymerized microtubules [146, 147].  Inhibition of TTL in 

cultured cells prevents tyrosination but does not affect the cytoskeletal structure or 

cell function, at least not in short-term studies [71, 72]. 

 In a study of Xenopus tadpole heart, tyrosinated (Tyr) microtubules were 

found in the spindle at all stages of the mitotic cycle.  The localization of non-

tyrosinated (Glu) microtubules changed according to the stage of the cell cycle.  The 

Glu tubules were “mainly restricted to the peripheral regions of the half spindles 

where the MTs have to sustain a bending stress”.  Glu tubulin was enriched in the 

centrosome in prophase and “from metaphase on, exclusively also in the centrioles”.  

During anaphase-telophase transition and remaining during telophase, detyrosinated 

microtubules were enriched at the interzonal spindle region.  Treatment of cells with 

millimolar vanadate caused additional assembly of tyr-MTs and a “drastic 

disarrangement of the Tyr-staining spindle fiber component became evident”.  “At the 

onset of anaphase, an extreme spindle lengthening presumably due to the separation 

of the Tyr- and Glu-MTs occurred. Obviously, the Glu-spindle fibers were less 

affected and remained largely in their original spindle position. Redistribution of anti-
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dynein staining following vanadate incubation suggests a causal relationship between 

inhibition of dynein motor proteins and disarrangement of different microtubular 

spindle components. These results suggest that the changes in the spindle framework 

are at least partly due to misregulation of centrosomal phosphorylation events, 

respectively to inactivation of special cross-bridging proteins interacting between 

distinct MT-subsets by a phosphate mimicking effect of vanadate and finally, by a 

vanadate-induced displacement of polar asters.” [148]   

 

Other kinases associated with spindle and chromosome dynamics 
 

Cyclin-dependant kinases 

One of the primary control mechanisms of the cell cycle, both mitosis and 

meiosis is a family of serine/threonine kinases termed “cyclin-dependant kinases” 

(Cdk).  The Cdks are tightly regulated by their close association with protein sub-

units; the cyclins. Together, the choreographed increases and decreases of Cdks and 

their regulatory cyclins drive the cell cycle [149].  In mitosis, cellular levels of Cdks 

tends to remain stable throughout the cell cycle, however their activity changes with 

the availability of the regulatory cyclins which increase or decrease according to the 

stage of cell cycle [149].  This regulation is slightly different during meiotic 

maturation in the mouse where levels of Cdk1 as well as cyclin B proteins increase 

during maturation [39, 40].  While the levels of cyclins oscillate largely by changes in 

transcription or degradation, cyclin availability is also regulated by changes in 

subcellular localization. Maturation promoting factor (MPF) was first discovered by 

Masui and Makert for its ability to initiate and maintain metaphase in xenopus 

oocytes and early embryos [150] and has since been identified as active Cdk1/cyclin 

B [151].  MPF activity is regionalized within the oocyte [152, 153]. Individual Cdks 

bind to and are activated by specific cyclins.  For instance,  Cdk1 and its regulatory 

subunit cyclin B1 make-up the maturation promoting factor [150] and are key 

regulators of meiotic maturation in many species (see section on meiosis).  Cdk1 can 
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also bind cyclins A and B2 while, Cdk2 is commonly regulated by either cyclin E or 

A, each producing a cyclin-specific function for paired Cdks.  In addition to 

regulation by cyclins, inhibitory phosphorylation also influences Cdk activity.  Cdk1 

in particular is inhibited during prophase arrest by dual phosphorylation at T14 and 

Y15.  Each site is phosphorylated by a specific kinase; Myt1:T14 and Wee1:Y15.  

Dephosphorylation by the dual phosphates Cdc25 (A, B and C) leads to activation of 

the Cdk1/cyclinB enzyme and meiotic resumption begins. Interestingly, Cdk1 and 

cyclin B localize to the centrosomes during late prophase, spindle poles during 

metaphase and the mid-body at anaphase [154, 155] in a cyclic pattern similar to Aur-

A (see below).  Cdk1/cyclinB are involved in microtubule dynamics stabilizing long 

microtubules during interphase and controlling formation of bipolar spindle in 

metaphase [46, 47].  During meiosis, the Cdk1 inhibitor Wee1 has also been 

identified on the meiotic spindle and disruption of Wee1 causes maturation failure 

and abnormal spindles [156-158].  Knockdown of Cdc25 also causes an MI block and 

abnormal congression of chromosomes  [159].  Thus, various members of the Cdk1 

regulatory system localize to the spindle and centrosomes and participate in 

metaphase spindle and chromosome dynamics.   

 Cdk2 and its partner cyclins A and E drive the G1/S phases of the cell cycle 

[152].  It is also responsible for the function of the centrosome cycle where in mitotic 

centrosomes are duplicated during the G1/S phase and reach final maturity at G2/M 

[160].  Relatively less research has been done on Cdk2 as compared to Cdk1 with 

respect to oocyte maturation, possibly because the majority of mammalian oocytes 

progress through the G1/S phase early in ovarian development.  The final stages of 

meiotic maturation skip the G1/S portion of the cell cycle progressing directly from 

G2/MI to arrest again at MII.   

 Given the importance of Cdk2 in both the centrosome and cytoplasmic cell 

cycles, the results of CDK2 gene deletion in mice was a surprise.  CDK2 (-/-) mice 

survive through adulthood, but are infertile [161].  Ovaries of Cdk2 (-/-) females 

contain apparently normal oocytes at E17.5 however, oocytes fail to complete 
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prophase, undergo apoptosis around P1 and are absent from the ovary by P21 [161].  

This emphasizes an unexpected importance for Cdk2 in germ cell development [160] 

and vital roles for Cdk2 have been discovered in later stages of meiosis as well.  For 

instance, work with xenopus egg extracts suggests that Cdk2/cyclinE is 

complementary to MAPK for the maintenance of metaphase-II arrest by inhibiting the 

anaphase-promoting factor [162].  Interestingly, Cdk2 phosphorylation of Cdc25 is 

requisite for full activation of Cdc25 and its subsequent activation of Cdk1 and entry 

into metaphase using xenopus cell extracts [54, 55].  Many of the proteins essential 

for this pathway have also been identified in meiotic maturation of xenopus and 

mouse oocytes [93-95] suggesting a key role for Cdk2 in the resumption of 

maturation and metaphase-II arrest.  Further studies will be needed to determine if 

Cdk2 truly plays a vital role in the regulation of mammalian oocyte maturation. 

 It is important to note, the extensive use of the inhibitor drug roscovitine for 

studies of Cdk1 function in mammalian oocytes.  Numerous studies, too many to list 

here, have relied strongly on roscovitine with the claim that this drug is Cdk1-

specific.  However, roscovitine is an equally potent inhibitor of Cdk2 (IC50 for 

Cdk1/cyclinB, Cdk2/cyclinA and Cdk2/cyclinE = 0.7 µM each) and is considered by 

cell cycle biochemists to be a “pan-cdk inhibitor” [96, 97].  This must be considered 

when examining past studies which relied on the Cdk1 inhibitory effects of 

roscovitine and may suggest the results in these results were combined effects of 

inhibiting both Cdk1 and Cdk2. 

 

Aurora Kinases regulate meiotic centrosomes and spindle microtubules 

Aurora proteins constitute another family of kinases closely associated with 

centrosome and spindle function.  Aurora (Aur) was first identified as a kinase in 

drosophila [163].  In embryos from Aur mutant mothers, centrosomes duplicate but 

fail to separate.  This produces monopolar spindles with large circular microtubule 

arrays emanating from a central pole with chromosomes dispersed around the 

microtubule array resulting in asynchronous divisions and polyploidy.  The Auroras 
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are an evolutionarily conserved family of serine/threonine kinases found in diverse 

species, including Ipl1 (increase in ploidy-1) of budding yeast, Eg2 (protein identified 

from xenopus egg extracts), IAK proteins (Ilp1 and aurora-related kinases from 

human cells), AIE1 (Aur-C) and others [164-166].  Across species, the general 

function and localization of these proteins is consistent although slight variations 

exist.  Three forms of aurora kinases have been identified in mammals such as 

humans and mice (A, B and C).  Aurora A localizes with centrosomes while Aurora B 

and C associate with the centromeres and kinetochores of chromosomes.  All three 

are found at the spindle mid-body during cytokinesis and are involved in centrosome 

and chromosome separation during mitosis and meiosis (for a review of Aurora 

kinases see [167]).  Aurora C is expressed in the testis and ovary and associates with 

germ cells [75-77].  In sperm, Aur-C co-localizes with Aur-B on chromosomes and 

spindle mid-bodies [168].  Over-expression of kinase defective Aur-C in HeLa cells 

demonstrated its involvement in the localization of Aur-B and other passenger 

complex proteins such as INCENP and Bub1 onto the centromeres and mid-bodies 

[101], but little is known about specific activities in oocytes. 

 While Aur-B and C interact with CENP and other chromosome passenger 

complex proteins and participate more specifically in the organization and separation 

of chromosomes, Aur-A participates in the regulation of centrosome and spindle 

dynamics.  The primary aurora found in mammalian oocytes is Aur-A [81, 83].  

Inhibition of Aurora kinases with chemical inhibitors prevents oocyte maturation.  

During in vitro maturation, bovine oocytes exposed to the Aurora inhibitor VX680 

had significantly reduce maturation to metaphase-II with many oocytes failing to 

extrude a polar body or to arrest at metaphase-II, resulting in the formation of multi-

nucleate eggs [169].  Likewise, the drug ZM447439 (Aur inhibitor) disrupted 

maturation of mouse oocytes resulting in abnormal spindle formation and failed 

chromosome condensation [170].  These results might not be surprising considering 

the reduced levels of c-mos and low MAPK activity following inhibition of Aur-A in 

these bovine oocytes and the fact that knock-out of MOS in mice results in a very 
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similar egg phenotype [171].  Interestingly, Uzbekova et al (2008) did not find any 

specific localization of Aur-A to the spindle poles of bovine oocytes or embryos until 

after activation of the maternal genome at the 8-cell stage.  After this, Aur-A was 

found at spindle poles and mid-bodies of mitotic embryonic cells [169] similar to 

what has been reported in somatic cells [167].  Interestingly, a recent study has 

reported that Aur-A kinase is activated prior to GVBD in mouse oocytes and is 

independent of both PI3K-PKB and CDK1 activities.  Over-expression of Aur-A 

caused the formation of abnormal MI spindles while siRNA knock-down disrupted 

resumption of meiosis and spindle assembly [172].  Taken together, these studies 

implicate Aur-A in many essential roles during meiotic maturation. 

 In addition to its role in cytoskeletal dynamics, Aur-A (Eg2) has been 

implicated in the activation of c-mos transcription in xenopus eggs by 

phosphorylation and activation of CPEB leading to increased poly-A adenylation of 

stored messages, a necessary step leading to the translation of the dormant maternal 

mRNAs [173].  Subsequent studies have supported this role for Aur-A (IAK1/Eg2) in 

the phosphorylation of CPEB in mouse oocytes and its requirement for up regulation 

of maternal mRNA [174].  Similarly in bovine oocytes under going in vitro 

maturation, Aur-A was found at high levels in oocytes and possibly involved in the 

regulation of CPEB and c-mos [169].  However, these findings have recently been 

contradicted by another xenopus study which found that perturbation of Aur-A or 

Aur-B had no effect on CPEB phosphorylation nor subsequent poly-adenylation of 

maternal mRNAs [175].  Therefore this role for Aur-A in oocytes awaits further 

investigation. 

 Numerous other centrosome and cytoskeletal proteins are also targets of 

Aurora kinases in mitosis including the kinesin motor protein Eg5, mitotic kinesin-

like protein 1 (MKLP1) and survivin (for review of mitotic kinases, see [176]).  (For 

a discussion of SFK interactions with Aurora kinases, see the section on Src-family 

Kinases in Oocyte Maturation) 
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Polo-like Kinase 

The polo-like kinases (Plk) are another family of the so called “mitotic 

kinases” [176] that share important roles during meiotic maturation in diverse species.  

Polo was first discovered in a screen of “maternal effect mutations” in drosophila 

embryos [177].  Embryos derived from polo mutant mothers exhibited abnormal 

spindles and aberrant mitosis as well as multi-polar and tetrapoid male meiotic germ 

cells.    The Polo gene sequence shares high homology to Cdc5p in Saccharomyces 

cerevisiae, Plx1 in xenopus and Plk1 in mammals [177].  In mouse oocytes, Plk1 

protein levels do not change during maturation, however an activating 

phosphorylation on Plk1 occurs 30 min before GVBD and remains high throughout 

maturation.  Activity declines following egg activation and progression from 

metaphase-II to pronuclei [177].  This phosphorylation was inhibited by treatment 

with Cdk inhibitors roscovitine and butyrolactone.  Since Plk1 is a known activation 

target for Cdk1 and activation of Plk1 was prevented by Cdk inhibitors, it was 

suggested that Plk1 participates in the Cdk1 self-activating cycle during meiosis as it 

does in mitosis [177].  This pathway maybe related to one which occurs in xenopus 

egg extracts and starfish oocytes where in Plk1 activates the dual phosphatase Cdc25 

which in turn increases the activity of Cdk1 [92, 93].  Plk1 localizes to MTOCs and 

spindle poles during meiotic maturation in mouse oocytes, then shifts to the spindle 

mid-body during telophase in a pattern similar to the Aurora kinases (see above) 

[177].  Interestingly, Plk1 and Cdk1 also function sequentially in the  phosphorylation 

and subsequent degradation of CPEB which is required for full maturation to MII in 

xenopus oocytes [178].  It will be interesting to see if this is also true in mammalian 

oocyte maturation.  It is also interesting to note that although a recent study suggests 

an interaction of Plk1 and MAPK during mouse oocyte maturation, no correlation 

between SFK signaling and the Plk kinases have been reported.   
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Protein Kinase C 

Protein kinase C (PKC) encompasses yet another family of serine/threonine 

kinases important in many aspects of cell cycle dynamics.  Similar to other regulatory 

kinases, PKCs are co-factor dependant with isotype specific activities.  The family is 

divided into three categories which include: “1) conventional isotypes which are 

activated by calcium, diacylglycerol (DAG) and phospholipids, 2) novel isotypes 

which are activated by DAG and phospholipids and, 3) atypical isotypes which are 

activated by phospholipids” [179].  Four types of PKC have been identified in mouse 

oocytes: PKCα, γ, δ and ζ [96-98].   

 Studies in somatic cells have proven an interesting pathway relating to 

metaphase spindle localization and cell polarity involving PKC and recent studies 

indicate a role for this pathway in mouse oocyte maturation.  An intracellular 

complex composed of PAR3/PAR6/Cdc42 and PKCζ causes phosphorylation of 

Glycogen Synthase Kinase 3β (GSK3β) which in turn leads to stabilization of the 

metaphase spindle and polarization of the cell [99-103].  Phosphorylated (active) 

forms of PKCζ, PKCδ and GSK3β localize to the spindle poles and centromeres in 

metaphase mouse oocytes [95, 104].  Interestingly disruption of Cdc42 causes a loss 

of PKCζ at the spindle poles and prevents the cortical localization of the MII spindle 

[180].  For the oocyte to undergo proper asymmetric division and polar body 

extrusion, the meiotic spindle must move to the cortex [181].  Disruption of PKCζ 

causes elongated astral centrally located meiotic spindles [179].  Without this polarity 

induced by a cortically localized spindle, the oocyte is not able to undergo 

asymmetric meiotic division and meiosis arrests prior to polar body extrusion [180].   

 Knock-down of PKCδ in mouse oocytes induces a different phenotype 

signified by abnormally shaped spindles and misaligned chromosomes [182], not 

unlike those seen in our studies with Src kinase inhibitors (for discussion of PKC and 

SFK interactions, see section on Src-Family Kinases in Oocyte Maturation).  Downs 

et al. (2001) examined PKC activities in both cumulus-enclosed and denuded oocytes 

[183].  When oocytes and COC were held arrested in hypoxanthine-containing media, 
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it was “concluded that direct activation of PKC in (denuded) oocytes suppresses 

maturation, while stimulation within cumulus cells generates a positive trigger that 

leads to meiotic resumption” and cumulus expansion [183].  On the other hand, 

Viveiros and colleges [83, 184] found PKCδ essential for the initiation of anaphase-I 

and regulation of the MI-MII transition.  More recent studies of cumulus-enclosed 

oocytes demonstrate a requirement for PKC activation in cumulus cells combined 

with gap junctional communication to stimulate resumption of meiosis in the 

companion oocytes [60].  This suggests a message produced by cumulus cells 

involving a PKC pathway and subsequent transport of this message through gap 

junctions to trigger meiotic maturation in the oocyte.  These studies demonstrate that 

PKC isoforms are involved in oocyte maturation and cumulus-oocyte communication, 

however identifying the specifics of these pathways will require further investigation. 

 

Protein Kinase A 

One of the points that we hope stand-out from this review of cell cycle and 

meiotic kinases is that no one kinase pathway stands alone.  The intracellular milieu 

is exceedingly complex; all signaling pathways seem to include multiple crossovers 

into other pathways.  The cAMP-dependant protein kinase A (PKA) is a prime 

example of this interrelationship.  Long known as an integral player in the 

maintenance of meiotic arrest, new roles and intersecting pathways are still 

appearing.     

 The PKA holoenzyme consists of two catalytic (C) and two regulatory (R) 

subunits and is activated by increased levels of intracellular cAMP.  When combined 

into a tetramer, the kinase is inactive.  However, binding of cAMP to the R subunits 

causes the C subunits to be release thus activating PKA.  Small changes in the levels 

of cAMP can result in strong changes in PKA activity [27].  In addition to regulation 

of its catalytic activity, PKA signaling is tightly controlled by PKA-anchoring 

proteins (AKAPs).  The AKAPs are a diverse family of proteins, specific to cell-type 

and intracellular locations which, as the name suggests, anchor PKA to specific 
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subcellular regions.  This provides a mechanism to maintain PKA in close proximity 

to other regulatory molecules for quickly and efficiently activating and deactivating 

of the kinase thus limiting its activity within both space and time.    (For more on 

PKA and cAMP see the chapters on Signaling at Ovulation and Oocyte Maturation).   

 Studies on the localization of PKA have shown movements of the various 

PKA subunits to discrete subcellular locations at different stages of oocyte maturation 

and the presence of multiple PKA binding partners including the anchoring protein, 

AKAP1 (AKAP140) [185-187].  Disruption of PKA/AKAP1 association can induce 

meiotic maturation, even in the presence of high levels of cAMP.  Translocation of 

PKA-RII to the mitochondrial membrane where is it anchored by AKAP1 is essential 

for the continuation of maturation [188].  Therefore, the specific subcellular 

localization of PKA is essential for proper regulation of oocyte maturation.    

 In addition to the AKAPs which regulate the localized activation of PKA 

signaling, PKA exists in two distinctly different forms (RI and RII) based on the type 

of R subunits.  Studies that examined the roles of the two different types of PKA 

found them to have opposite effects on oocyte maturation.  Varying formulations of 

cAMP can be incorporated into in vitro culture experiments to provide specific 

stimulation of one or both of the R subunits.  Using this technique, it was found that 

stimulation of PKA-RI in cumulus enclosed and denuded oocytes prevented GVBD 

as expected.  However similar activation of PKA-RII allowed GVBD in oocytes and 

stimulated cumulus expansion.  Previous studies have indicated that cAMP levels in 

cumulus cells rise following FSH and LH receptor activation.  Interestingly, when 

intact COC were cultured in 300 µM dbcAMP to maintain high intracellular levels in 

the cumulus cells and their companion oocytes, an additional pulse of PKA-RII 

induced meiotic maturation.  Similar experiments with denuded oocytes failed to 

initiate GVBD.  These studies demonstrate a mechanism where by activation of PKA 

in cumulus cells can have an opposite effect to that in the companion oocyte [145].  

(For interactions of Src kinases with PKA, see section on Src-Family Kinases in 

Oocyte Maturation.) 
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Other Kinases 

Other signaling pathways that participate in the resumption and progression of 

oocyte maturation include AMP-activated protein kinase [189], myosin light-chain 

kinase [190], Src-family kinases [134, 141, 191], protein kinase B/AKT [172, 192], 

phospholipase C [193], phosphoinositide 3-kinase (PI3K) [172, 194], myristoylated 

alanine-rich C kinase (MARCKS) [195], β-catenin and the Wnt pathway [196] and of 

course, the antagonists of the kinase pathways: the phosphatases [151, 197-204].  As 

research continues and our understanding of the complexity of cellular 

communications expands, additional pathways and intersecting ties are likely to be 

found.  

 

Src-family kinases in the regulation of mammalian oocyte maturation 

Recent evidence has implicated SFKs in the maturation of mouse oocytes 

[134, 141, 191] and development of the early preimplantation embryo [134, 142].  

These studies suggest a role for SFKs in at least two stages: 1) maintenance of 

meiotic arrest and progression to metaphase-I; 2) chromosome spindle dynamics 

through meiotic metaphase-I and II and the first mitosis.  Although the details of the 

Src signaling partners in the mammalian oocyte are not yet known, in our next 

section, we will examine the molecular interactions of SFKs with other cell cycle 

regulated signaling pathways and explore the few details of known SFK activities 

during meiotic maturation. 

 

Src-Family Kinases in Oocyte Maturation 
The Src-family of protein tyrosine kinases (SFKs) includes 9 members: Src, 

Fyn, Yes, Lyn, Lck, Blk, Fgr, Hck and Yrk.  Three of these, Src, Fyn and Yes are 

ubiquitously expressed although their kinase activities are selectively regulated by 

phosphorylation, conformation changes and interactions with other proteins [205].  

Because of similarities in SFK structure, there is some level of redundancy and over-

lap in the activities of various family members thus allowing loss of one SFK to be 
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compensated for by the presence of another. The SFKs are generally regulated 

through phosphorylation on two tyrosine residues [206].  Autophosphorylation in the 

activation loop (Y416 in Src) increases kinase activity, while phosphorylation of 

Y527 in the C-terminus induces a conformational change inactivating the kinase.  

Phosphorylation of Y527 is catalyzed by the C-terminal Src kinase (Csk).  Therefore, 

the most prominent sites of SFK activation are the dephosphorylation of Y527 and 

autophosphorylation of Y416.   

 Src-family kinase activity is greatly increased during mitosis (reviewed in 

[135, 136]).  This activity is due to the dephosphorylation of the inhibitory Y527 by 

phosphatases (PTP) and an indirect activating phosphorylation of Y416 induced by an 

activated cdk1.  The phosphatases responsible for the activating dephosphorylation of 

Y527 include PTP alpha (PTPα) [137] and epsilon (PTPε) [138].  PTP activity is 

increased during mitosis [137, 139].  Interestingly, EGF receptor activation causes 

translocation of PTPε to bind to microtubules [138].  Although this binding causes a 

decreased PTPε activity, the binding is transient and would provide a mechanism for 

co-localization of SFKs and their activating PTPs at the site of polymerized 

microtubules.  Depolymerization of microtubules with nocodazole causes increased 

PTPε activity [138].  Therefore, active PTPε maybe in constant flux close to the 

microtubule cytoskeleton where it could activate the Fyn PTK which binds to and 

phosphorylates tubulin [10-14].   

 

Src and Cdk1 

As mentioned previously, Cdk1 is required for both the G1-S and the G2-M 

cell cycle transitions in mitotic cells.  Eukaryotic Cdk1 is required for entry into 

mitosis and its kinase activity is essential for cell cycle function [207].  At least three 

substrates are known to be phosphorylated by Cdk1 during mitosis: Histone H1, Src 

and Abl, another nonreceptor tyrosine kinase that is closely related to Src.  Mitotic 

phosphorylation of histone H1 is thought to cause chromatin condensation.  Increased 

tyrosine kinase activity of Src has been observed during mitosis which is partially 
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regulated by Cdk1 phosphorylation of Src kinase [16, 17].  The specific mechanism 

of action is unknown, but this ser/thr dual phosphorylation of Src by Cdk1 during 

mitosis results in either an increase in Y527 phosphatase activity or the decrease in a 

Y527 kinase thus increasing Src kinase activity [208].  Src also phosphorylates lamin-

B and may be involved in nuclear envelope breakdown [207].   

 In somatic cells, SFK activity is required for the G2/M transition, cleavage 

furrow progression and for full abscission during cytokinesis [10-13].  Treatment of 

MDA-MB-468 breast cancer cells with the Src/Abl inhibitor PD173955 or the 

specific disruption of Fyn, Yes or Src in fibroblast cells caused a block of mitosis at 

the G2/M phase [209].  Similarly, prolonged treatment of HELA cells with the SFK 

inhibitor PP2 prevents transition from G2/M phase in most cells.  HELA cells that 

escaped inhibition with PP2, were found to arrest during cytokinesis with an 

elongated cytoplasmic bridge containing the mid-body [210].  This data demonstrates 

that SFK activity is required for entry into mitosis.  During M-phase, Src activity is 

necessary for later cytokinesis events.  Our recent results with the SFK inhibitor 

SKI606 or specific knock-down of Fyn kinase in GV or MII stage oocytes suggest 

that SFKs may not be required for the initiation of the meiotic cell cycle at GVBD or 

following fertilization although, a total knock-down of all three oocyte SFKs (Src, 

Yes and Fyn) would be necessary to truly prove this point.  Our research does 

however, indicate that SFKs and specifically Fyn kinase play a critical role in 

chromosome and spindle dynamics through metaphase of meiosis I and II and the 

first mitotic cell cycle [134, 141].    

 

Src and MAPK  

MAPK is another critical player in meiotic and mitotic cell cycles (see section 

on Integrating Kinase Signaling).  In oocytes, MAPK is primarily activated 

downstream of Mos in the MOS/MEK/MAPK pathway and has been studied mostly 

for its role in cell cycle regulation of maturation.  Interestingly, there are alternative 

pathways that activate MAPK in somatic cells and which may play a role in the 
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oocyte; pathways that integrate SFKs and MAPK signaling downstream of growth 

factor and steroid hormone receptors.   

 Numerous receptors are known to activate SFKs.  Examples found in 

mammalian oocytes include EGF and a-typical progesterone receptors.  Activation of 

receptor-associated SFKs in somatic cells induces the activation of Ras GTPase 

which in turn activates Raf-1.  Similar to Mos, Raf-1 is a serine/threonine dual 

specific MAP kinase kinase kinase that activates MEK which in turn activates p42/44 

MAPK [211, 212].  Thus Raf-1 links Src and MAPK signaling pathways in somatic 

cells.   

 Raf-1 kinase is also present in mouse oocytes [171, 213].  Study of Raf-1 

protein during spontaneous in vitro maturation of mouse oocytes in a basal M2 media 

found Raf-1 present throughout maturation.  However, Raf-1 

phosphorylation/activation was not detectable by western blot analysis until the MII 

stage [171].  The authors of this study felt this supported their theory that Raf-1 

kinase had no activity in maturation of the mouse oocyte.  However, Raf-1 kinase is 

activated downstream of cues such as growth factors, integrins and steroid receptors 

and the simple in vitro culture system used in this study contained no factors that 

would activate Raf-1.  Since they did not examine in vivo matured oocytes nor 

attempt to directly stimulate the Raf-1 signaling pathway, the question of Raf-1 

activity during maturation is still unanswered.  Since all of the players are present in 

the mammalian oocyte, the possibility still exists for activation of the Src/Raf-

1/MAPK pathway during mammalian oocyte maturation.  What would be its specific 

role and what might trigger activation of the SFKs in meiotic maturation are also not 

known. 

 In xenopus, progesterone receptor activation through non-genomic pathways 

is considered the initiator of maturation [214-216].  Interestingly, membrane 

associated SFKs are activated within 3 minutes following progesterone exposure; one 

of the earliest measurable changes in xenopus oocytes and in direct line with the 

increase in MAPK activity [217].  The involvement of steroid hormones in 
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mammalian oocyte maturation is controversial.  Granulosa cells of the antral follicle 

produce estrogens in response to FSH and increasing amounts of progesterone 

following the LH surge.  Since steroid hormones pass freely through the lipid by-

layers of cell membranes, it is likely the maturing oocyte is exposed to these 

hormones.  Unfortunately, in vitro maturation studies have shown both activation 

[218] and failure of activation [219, 220] following exposure of mammalian oocytes 

to steroid hormones.  While this suggests that steroid hormones are not “obligatory 

activators” of mammalian oocyte maturation in vitro [220], the question on whether 

they  participate in the proper maturation and subsequent development in vivo 

remains unanswered. 

 In addition to the traditional steroid hormones, other triggers of steroid 

receptors exist within the antral follicle.  Studies on the meiosis activating effects of 

follicular fluid lead to the isolation of FF-MAS (follicular fluid - meiosis activating 

sterol) [221].  Interestingly, FF-MAS was able to activate resumption of meiosis in 

denuded oocytes even in the presence of phosphodiesterase inhibitors which maintain 

a high level of cAMP and meiotic arrest.  However, inhibitors of Src, Ras or MAPK 

block the effects of FF-MAS suggesting that this naturally occurring sterol uses the 

Src/Ras/Raf/MAPK pathway in oocytes [221].  It must be noted, however, that like 

other steroids and growth factors, the activities of FF-MAS directly on oocytes 

remain controversial [71]. 

 Similar to the conflicting evidence for steroid receptor activation, in vitro 

studies have been unable to find direct roles for EGF receptors in mammalian oocyte 

maturation although the receptors are present and EGF-like ligands are produced by 

maturing cumulus cells [8, 222, 223].  Discrepancies amongst in vitro culture 

experiments maybe due at least in part to the large variations in the in vitro culture 

conditions used for oocyte maturation studies.  However, the presence of growth 

factor and steroid receptors and downstream mechanisms within the oocyte suggest 

the possibility for their activation of the Src/Raf-1/MAPK pathway in the mammalian 

oocyte.   



 30

Src and Aurora B 

Interestingly, recent studies have also implicated the Src/Ras/Raf/MAPK 

signaling pathway as the link between estrogen steroid receptor activation and the 

regulation of Aur-B and the spindle assembly check-point during mitosis [224, 225].  

Since Aur-B is also present in mammalian oocytes, this leads to another possible 

pathway linking SFK signaling and regulation of chromatin and spindle assembly 

(see section on Integrating Kinase Signaling). 

 

Src and PKC 

As mentioned in our section on Integrating Kinase Signaling, PKC seems to 

play an integral part in oocyte maturation.  Knock-down of PKCδ in mouse oocytes 

induces a aberrant phenotype signified by abnormally shaped spindles and misaligned 

chromosomes [182], not unlike those seen in our studies with SFK inhibitors.  

Interestingly, PKCδ can activate SFKs, but does this indirectly.  In smooth muscle 

cells, PKCδ activates PTPα which in turn dephosphorylates and activates SFKs (see 

previous discussion of SFKs and PTPα [226]).  PKCδ can also be phosphorylated by 

Src increasing PKCδ activity [227] and suggesting the possibility of an amplification 

loop between SFKs and PKCδ.  In xenopus oocytes, injection of active PKCδ leads to 

Src activation and initiates GVBD at levels comparable to progesterone stimulation 

[228].  Since mammalian oocytes also express PKCδ [183] and the apparent 

importance of PKC in oocyte maturation (see section on Integrated Signaling) one 

wonders if PKCδ activity may play a role in SFK signaling during oocyte maturation.  

 

Src and PKA  

Src-family kinases can also be activated by PKA.  cAMP stimulation can 

result in PKA phosphorylation of Src on S17 (pS17) [229].  Depending on cell type, 

pS17 may or may not increase the activity of SFKs [229, 230].  In cultured CHO 

(Chinese Hamster Ovarian) cells and hyper-activated sperm cells, PKA/cAMP 

stimulation leads to the pS17 and increased SFK activities [231-233].  A second 
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pathway by which PKA increases Src activity has also been identified.  PKA serine 

phosphorylates Csk protein causing a decrease in kinase activity of Csk in somatic 

cells [234] and sperm [233].  This kinase is responsible for the regulatory 

phosphorylation of Y527 within the C-terminal tail region of SFKs.  pY527 renders 

the SFK inactive, therefore, PKA can both stimulate Src activation by direct 

phosphorylation of pS17 and indirectly by phosphorylating and inhibiting Csk for a 

double amplification of Src activity.  Since PKA is an important regulator of oocyte 

maturation (see sections on Integrated Signaling and Meiotic Maturation), it seems 

likely that PKA plays a role in the control of SFKs in the oocyte. 

 

SFKs and meiotic maturation 

Recent studies have demonstrated an essential role for SFKs in granulosa cell 

maturation and ovulation [69, 235].  As we have seen above, several pathways also 

exist for the activation of SFKs within the mammalian oocyte.  Our studies detailed in 

the following chapters demonstrate the importance of SFKs within the oocyte during 

maturation and their effects in the dynamics of chromosomes and meiotic spindles.  

Due to the complexity of these signaling pathways and the many interacting players 

involved, we have not yet identified the specific triggers or downstream mechanisms 

of SFK signaling in the oocyte.  Further extensive research will be required to 

determine the activators and specific interacting pathways involved.   

 

Summary 
With this background the stage has been set for the experiments that comprise 

this thesis. Given the overall complexity of interactive signaling pathways during 

oocyte maturation and fertilization, it was the singular purpose of this work to begin 

to unravel the role of SFKs and their relationship to the regulation of the cell cycle 

and cytoskeleton in the mouse oocyte. 
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Chapter Two 
 

 
Functions of Fyn kinase in the completion  

of meiosis in mouse oocytes 
 
 
ABSTRACT 

Oocyte maturation invokes complex signaling pathways to achieve 

cytoplasmic and nuclear competencies for fertilization and development.  The Src-

family kinases FYN, YES and SRC are expressed in mammalian oocytes but their 

function during oocyte maturation remains an open question.  Using chemical 

inhibitor, siRNA knockdown, and gene deletion strategies the function of SFK was 

evaluated in mouse oocytes during maturation under in vivo and in vitro conditions.   

Suppression of SFKs as a group with SKI606 greatly reduced meiotic cell cycle 

progression to metaphase-II.  Knockdown of FYN kinase expression after injection of 

FYN siRNA resulted in an approximately 50% reduction in progression to 

metaphase-II similar to what was observed in oocytes isolated from FYN (-/-) mice 

matured in vitro. Meiotic cell cycle impairment due to a  Fyn kinase deficiency was 

also evident during oocyte maturation in vivo since ovulated cumulus oocyte 

complexes collected from FYN (-/-) mice included immature metaphase-I oocytes 

(18%). Commonalities in meiotic spindle and chromosome alignment defects under 

these experimental conditions demonstrate a significant role for Fyn kinase activity in 

meiotic maturation.  [McGinnis LK, Kinsey WH and Albertini DF.  Functions of Fyn kinase 

in the completion of meiosis in mouse oocytes.  Dev Biol (2009) 327:280-287} 
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INTRODUCTION 

Mammalian oocytes acquire essential properties for fertilization and early 

development as they mature coincident with the process of ovulation.  Meiotic 

maturation is elicited in vivo by the periovulatory LH surge and encompasses a series 

of events that occur over a time span of  hours in rodents to days in the case of 

humans and other mammalian species [236]. While it has long been recognized that 

mammalian oocytes  proceed from prophase-I arrest (GV) through to metaphase-II 

(MII) when removed from the inhibitory environment of the ovarian follicle [29], 

there is an emerging notion that a complex signaling dialogue between companion 

granulosa cells and oocytes modulates the reinitiation, progression, and arrest of 

meiosis at metaphase-II. Thus, original studies invoking cAMP and protein kinase A 

(PKA) signaling and communication between the oocyte and cumulus granulosa cells 

[29, 31, 32, 48, 237] appear as oversimplifications  since recent studies have 

identified a complex multifactorial sequence of signaling effectors to be operative 

[67]. Specifically, reception of LH in mural granulosa cells, at least in rodents, is 

followed by de novo production of EGF family ligands that drive the reinitiation of 

meiosis. At the level of the oocyte, mechanisms involving selective inactivation of 

oocyte phosphodiesterases leading to decreased cAMP and PKA activities within the 

oocyte appear linked to a rise in Cdk1/cyclinB and p44/42 MAPK supporting meiotic 

maturation from the GV to metaphase-II stages [31, 238-240]. 

 Of the pathways recently implicated in oocyte maturation and egg activation 

in mammals are those involving SFKs [134, 142, 191, 241, 242].  Src-family protein 

tyrosine kinases are a family of nine closely related protein tyrosine kinases of which 

three (FYN, YES and sometimes SRC) have been identified in mammalian oocytes 

[142, 241-243].   The  involvement of SFK signaling pathways in mammalian oocyte 

maturation was shown by in vitro maturation studies in mouse oocytes where the SFK 

inhibitor PP2 blocked germinal vesicle breakdown (GVBD) [191].   Src-family 

kinases localize to region of the meiotic metaphase-II spindle and Fyn kinase co-

precipitates with tubulin from egg cytoplasm [129, 134, 142, 243] further implicating 
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participation of SFKs in meiotic spindle function.  An idea supported by the fact that 

aged rat oocytes undergo meiotic spindle disruption in the presence of SFK inhibitors 

(PP2 or SU6656) [129]. Moreover, while chemical inhibition of SFKs during 

fertilization of mouse oocytes permitted resumption of meiosis, the  completion of 

meiosis-II and the first mitotic cell cycle were inhibited in association with severe  

abnormalities in spindle microtubule organization and chromosome alignment [134].  

Since injection of a constitutively active form of Fyn into MII rat oocytes caused egg 

activation, metaphase-anaphase transition and extrusion of the second polar body  

[129] these studies collectively implicate SFKs s in microtubule dynamics and cell 

cycle progression in the mature mammalian oocyte and fertilized egg.  The rather 

limited evidence implicating SFKs in earlier stages of meiotic maturation of 

mammalian oocytes prompted the present investigation into the role of SFKs in 

meiotic cell cycle progression in mouse oocytes with reference to meiotic spindle 

morphogenesis and functionality.  

 

MATERIALS AND METHODS 

Oocyte collection 

Cumulus-Oocyte-Complexes (COC) were collected from 6-7 week old female 

mice.  Most experiments used CF1 female mice (Harlan Sprague-Dawley, 

Indianapolis IN or Charles River Laboratories, Wilmington MA).  FYN knock-out 

mice (B6/129S7-Fyntm1Sor/J; FYN (-/-) [244]) and the recommended control 

(B6/129SF2/J) mice were purchased from Jackson Laboratories (Bar Harbor, ME) 

and a homozygous knock-out colony was maintained at the University of Kansas 

Medical Center.  Mice were housed in a temperature and light-controlled room on a 

14L:10D light cycle and experiments were conducted in accordance with the Guide 

for the Care and Use of Laboratory Animals (National Academy of Sciences 1996).  

Mice were euthanized by isofluorothane inhalation anesthesia followed by cervical 

dislocation.  Females were stimulated with 5 IU equine chorionic gonadotropin (eCG; 

Calbiochem, San Diego CA).  Ovaries were collected at 42-46 hours (h) post-eCG.  
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COC were released from large antral follicles into HEPES-buffered KSOM (FHM, 

Chemicon-Millipore, Billerica MA) with 4 mg/ml BSA (mFHM).  For experiments in 

which ovulated oocytes were used, female mice were stimulated with 5 IU eCG 

followed 48h later with 5 IU human chorionic gondadotropin (hCG) and ovulated 

oocytes were collected from the oviducts 15-16 h post-hCG.   For experiments 

examining the effects of chemical inhibitors of SFKs, COC were released from the 

ovary directly into mFHM containing the final concentration of the inhibitor 

treatment, then transferred directly into maturation medium supplemented with the 

same concentration of the chemical inhibitors.  Prior to release of COCs, each ovary 

was cut into 2 pieces and the 4 ovarian pieces from each donor female were allocated 

to different treatments.  In other experiments, COC were released into media without 

SFK inhibitor, with or without 300 µM cAMP according to the individual 

experimental protocol (see below).  While most experiments were conducted with 

KSOM_MAT (see below) as a semi-defined culture medium, in vitro maturation 

media for the FYN -/- and their control COC were supplemented with 5% fetal 

bovine serum to provide optimum conditions for cumulus expansion.  In experiments 

that used oocytes without cumulus cells, COC were collected as stated then cumulus 

cells manually removed by repeated pipetting with a pulled glass pipette. 

 

Pharmacological treatment of oocytes 

To test the effects of SFK chemical inhibitor on meiosis, oocytes with or 

without their companion cumulus cells were cultured for 16-17 h in KSOM-MAT 

(KSOMAA (Chemicon-Millipore, Billerica MA [245]) supplemented with 5 mM 

glucose [246], 1 mM glycyl-glutamine, 0.23 mM pyruvate, 4 mg/ml BSA, 0.6 mM L-

cysteine, 0.5 mg/ml D-glucosamine, 0.02 µM ascorbate, 1% insulin-transferrin-

selenium (ITS), 0.2 IU/ml recombinant human FSH (Serono Reproductive Biological 

Institute) and 10 ng/ml EGF Calbiochem, San Diego CA).  SKI606 (Calbiochem, San 

Diego CA) was prepared as 10 mM stock solution in DMSO and stored -20˚C. Media 

were prepared fresh on the day of oocyte collection and pre-equilibrated in a 
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humidified (6%CO2, 5%O2 and 89%N2) incubator (Sanyo) for at least 2 h before 

oocyte culture.  Denuded oocytes were matured in groups of <10 per well in 60-well 

NUNC Terasaki plates with 10.5 µl medium over layered with 3 µl oil (0.22 µm 

sterile filtered Sigma Embryo Tested Mineral Oil stored in the dark; cat. M8410).  

Intact COC were cultured in 30-50 µl drops covered with oil in NUNC 4-well plates. 

After 16-17 h in vitro maturation, oocytes were fixed for labeling and confocal image 

analysis.    

 

Fixation and immunohistochemical staining 

Methods for fixation and immunohistochemistry were similar to those 

previously reported (McGinnis et al 2007).  Briefly, oocytes and COC were fixed for 

10 min at room temperature in FHM medium with 3% paraformaldehyde followed by 

30 min at 35˚C in 2% formaldehyde microtubule stabilization buffer (MTSB-XF 

[247]).  After fixation, COC were transferred into wash solution (McGinnis et al 

2007) and held overnight at 4˚C.  All fixatives and wash solutions were supplemented 

with 40 µM phenylarsine oxide, 100 µM sodium orthovanadate and 10 µM okadaic 

acid to inhibit phosphatase activity.  Antibodies used included Clone 28 antibody 

(Biosource International, Camarillo CA USA) to localize activated forms of SFKs, 

anti-phosphotyrosine antibody (clone 4G10, Upstate, Lake Placid NY, USA), α and β 

tubulin (Sigma).  All of these were mouse monoclonal antibodies.  YOL 1/34 rat 

monoclonal α tubulin (Abcam, Cambridge MA).  Secondary antibodies were Alexa 

488 or Alexa 568 (goat anti-mouse or goat anti-rat depending on the source of the 

primary antibody; Molecular Probes, Eugene OR).  Oocytes were labeled with 

primary antibodies at 35ºC for 1h or overnight at 4˚C followed by secondary antibody 

for 1h.  After secondary labeling, oocytes were transferred to a wash solution 

containing 1 µg/ml Hoechst 33258 with or without 1:100 Alexa 568-phalloidin and 

stored in the dark overnight at 4˚C.  Oocytes and COC were mounted the following 

morning and imaged (mounting medium consisted of 1:1 glycerol: PBS supplemented 

with 5 mg/ml sodium azide and 1 µg/ml Hoechst 33258).  All chemicals, hormones 
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and reagents were purchased from Sigma Chemical Company, St. Louis, MO unless 

otherwise stated. 

 

siRNA Knock-down of FYN PTK 

COC were collected in mFHM supplemented with 300 µM cAMP to prevent 

GVBD.  Most of the cumulus cells were removed by brief exposure to 0.3 mg/ml 

hyaluronidase and gentle pipetting with a fine glass pipet.  FYN siRNA (Santa Cruz 

#sc-35425) and a 20-25 nt non-targeting scrambled control siRNA (Santa Cruz #sc-

37007 & sc-36869) were prepared with supplied diluent at a concentration of 100 

µM.   Immediately before injections, siRNA was thawed and centrifuged at 16,000g 

for 10 min at 4˚C then back loaded into 0.3 µm Egg-Jek needles (MicroJek , Kansas 

City, KS).  Injections were performed on an inverted Nikon Eclipse TE2000-S with 

an Eppendorf FemtoJet injection system.  Preliminary studies were conducted to 

determine the optimum siRNA concentration.  Three concentrations were tested 

including, 0.7, 1.40 and 2.8 µM.   At 2.8 µM, control siRNA caused a reduction in the 

percentage of oocytes maturing to MII therefore this concentration was considered 

too high.  The lower two concentrations of the control siRNA produced no 

measurable inhibition of maturation therefore 1.4 µM was selected for use in these 

studies.  Following completion of siRNA microinjections, oocytes were transferred to 

Terasaki plates and culture for 4-5 h in KSOM-MAT supplemented with 300 µM 

cAMP to maintain GV arrest and to allow for siRNA inhibition of endogenous 

mRNA.  Oocytes were examined at the beginning and end of this culture and graded 

for presence of a visible GV.   Following this culture, oocytes were washed without 

cAMP and matured 17h in KSOM-MAT.  The selective knock-down of Fyn was 

examined by semi-quantitative RT-PCR for both Fyn and Yes kinases. 

 

Semi-quantitative RT-PCR 

Groups of 10 oocytes (Fyn siRNA, control siRNA and non-injected) were 

dissolved into 500 µl of TRIzol-Reagent (Invitrogen) and stored at -80C.  A known 
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concentration of Rabbit αGlobin mRNA was added to each tube of oocytes (1.0 

pg/oocyte) in TriReagent.  The methods for cDNA preparation and RT-PCR were as 

previously published [248].  Primers for Fyn and Yes kinases were generated using 

Primer Express 2.0 from Applied Biosystems (Fyn5’AGT GCC ATA CCC AGG 

CAT GA; Fyn3’GTG GGC AGG GCA TCC TAT AG; Yes5’GCT TCC ACA GCT 

GGT TGA TAT G; Yes3’AGA TCT CGG TGA ATA TAG TTC ATT CTT TC; 

Integrated DNA Technologies, Coralville IA).  Relative levels of mRNA as 

determined by RT-PCR were statistically compared by t-test.  P-value of less than 

0.05 was considered significant. 

 

Imaging and data analysis 

Oocytes were imaged by serial z-sections (1-2 µm depth) on a Zeiss LSM510 

confocal microscope. Serial z-sections were used to establish 3-dimensional 

relationships between the oolema, chromatin, meiotic spindle, first polar body and 

companion cumulus cells.  Statistical analysis of meiotic maturation was performed 

using SPSS software (SPSS Inc, Chicago IL).  Data were analyzed by ANOVA 

followed by Bonferonni post-hoc comparisons for experiments with 3 or more 

treatments.  P-value of less than 0.05 was considered significant. 

 

RESULTS 

Activated Src-family kinases localize to microtubules in mouse oocytes 

throughout meiotic maturation. 

Previous work had demonstrated that activated SFKs were concentrated in 

close association with microtubules of meiotic spindles in MII oocytes [134].  While 

Fyn kinase has been shown to localize in the region of premetaphase spindle [129], 

the specific association of activated SFKs to microtubules at the germinal vesicle 

stage oocyte has not been demonstrated [191].  Therefore, as an initial step we sought 

to determine the localization of activated SFKs during the early stages of meiotic 

maturation.   To accomplish this, we used a phosphorylation site-specific antibody 
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(clone 28) that recognizes the activated (dephosphorylated) Y527 in the carboxyl tail 

region of SFK proteins [249]. Epitope distribution was determined by confocal 

fluorescence microscopy in oocytes fixed following 0, 8 and 16 hours of in vitro 

maturation as seen in fig. 1.  In germinal vesicle stage immature oocytes, clone 28 

staining was observed in a pattern that has been associated with cytoplasmic 

microtubules that surround the GV [247] as well as those emanating from cortical 

microtubule organizing centers (* MTOCs; fig. 1 GV). Clone 28 also labeled cumulus 

cells associated with the zona pellucida with staining being disposed along the 

cumulus cell surface and throughout the cytoplasm. Mitotic figures are commonly 

seen in the cumulus and in dividing cells, a prominent spindle labeling was readily 

apparent (fig.1, insert). In oocytes at metaphase of meiosis-I or II (fig. 1 MI and MII),   

activated SFKs were distributed throughout the meiotic spindles in a pattern not 

unlike that seen in our previous study of MII oocytes [134].  These findings clearly 

indicate that the clone 28 epitope is specifically expressed in a microtubule-associated 

pattern throughout all stages of oocyte maturation in mouse oocytes. 

 

Chemical inhibition of Src-family kinases during meiotic maturation causes a 

dose dependant failure of progression through metaphase of MI. 

To determine whether meiotic progression requires SFK activity, cumulus 

enclosed or denuded oocytes were matured in the presence of the inhibitor, SKI606. 

COC collected from ovaries of eCG primed mature CF1 female mice were released 

directly into media containing 1, 5 or 10 µM SKI606 or the solvent DMSO as a 

control.  SKI606 is a new and highly selective inhibitor of SFKs and the closely 

related Abl kinases [250, 251] and has been used previously in studies of SFK 

activities in mouse zygotes [134].  The three concentrations of SKI606 were selected 

on the basis of preliminary dose response experiments (not shown) and our previously 

published studies with pronuclear stage zygotes [134].  SKI606 had no effect on the 

ability of oocytes to resume meiosis (GVBD 75-100% in all groups), however, 

maturation through metaphase-I was significantly reduced as seen in fig. 2A.  
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Exposure of either denuded oocytes (Egg) or cumulus enclosed oocytes (COC) to 

concentrations of SKI606 at 5µM or greater caused approximately 50% maturation 

failure.  Oocytes that were enclosed by cumulus exhibited a similar response to 

SKI606.    Oocytes matured in the continuous presence of the SFK inhibitor and 

progressed to metaphase-II exhibited marked defects in spindle and chromatin 

organization (fig. 2B). Notably at 5 and 10 µM concentrations, all of the oocytes that 

matured to MII in the presence of SKI606 were distinctly abnormal as detailed below.  

The effect of SKI606 was reversible (table 1).Oocytes exposed to the inhibitor for 5 h 

followed by wash-out and 17h of culture progressed to MII at a frequency that was 

87% of that observed in controls and was not statistically significant (P>0.05). 

 

 
 

Inhibition of Src-family kinases during meiosis results in spindle and 

chromosomal abnormalities.     

 To ascertain how SFK inhibition was influencing meiotic progression, 

confocal microscopy was performed on control and treated oocytes matured under the 

conditions described above. While phalloidin (f-actin) staining failed to reveal major 

changes in actin organization within oocytes, tubulin and DNA labeling revealed a 

range of defects in chromatin and microtubule disposition (fig. 3).   Control oocytes 

matured to metaphase-II exhibited extruded polar bodies and chromosomes aligned 

on a bipolar meiotic spindle (fig. 3A).   SKI606 induced abnormalities that appeared 

to reflect disruption of the interactions between chromosomes and spindle 

microtubules.  For example, displaced chromosomes were found on MI (fig. 3B, 3G) 

or MII spindles (fig. 3H**) and in many cases bivalent segregation failed to occur at 

Table 1. The short-term exposure inhibitory effects of SKI606 are reversible 
 
Exposure  Time   N  %GVBD  %MII 
    5h   DMSO  12  100a   100c 
    5h   SKI   35  80a   87c 
 
Treated oocytes matured through GVBD to metaphase-II at rates similar to controls 
(P>0.05). 
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anaphase or telophase of MI (fig. 3B, 3E-F).  Thus, MI stage oocytes entered 

anaphase without disengaging homologues as evidenced by the presence of elongated 

anaphase spindles contained unresolved bivalents along nearly the entire length of the 

spindle (fig. 3E, 3F). Telophase oocytes also exhibited lagging chromosomes trapped 

within the contractile ring of forming polar bodies (fig. 3D, 3H*).  In addition to the 

positioning of chromosomes, SKI606 induced a variety of severe spindle aberrations 

during meiosis.  Many spindles were loosely organized and irregular in shaped, 

extending microtubule bundles towards displaced chromosomes (fig. 3G).  Some 

oocytes exhibited segregated chromosomes in anaphase, but failed to extrude a polar 

body (fig. 3C).  In such cases, oocytes with two spindles were formed, one of which 

was monopolar and the other being bipolar.  In the example shown here (fig. 3C), the 

monopolar spindle was attached to a single pole of the bipolar spindle.  However, this 

characteristic was not consistent for all oocytes that failed to complete cytokinesis. In 

most cases, bipolar and monopolar spindles were completely separate entities.  

Monopolar spindles displayed microtubule bundles that extended up to and along the 

oolema (not shown).  Cortical actin localization appeared normal:  As has commonly 

been seen, chromatin subjacent to the oolema was associated with cortical f- actin 

caps (fig. 3E-H) and f-actin density was increased in cortical regions involved in 

cytokinesis and the polar body extrusion (fig. 3D).  The abnormalities observed after 

continuous exposure to SKI606 indicate that while spindle morphogenesis following  

 

Src-family kinases are required for maintenance of meiotic arrest. 

In the above inhibitor study, it was noted that oocytes exposed to SKI606 

tended to undergo GVBD earlier than controls suggesting that meiotic resumption 

might be accelerated by this treatment. To further test this with better meiotic 

synchrony, we cultured immature oocytes with 300 µM dbcAMP which has been 

shown to prevent GVBD for up to 6 hours even in the presence of the maturation 

stimulators FSH and EGF [60].  Thus, to establish whether SFKs participate in 

maintenance of meiotic arrest, we cultured oocytes in KSOM-MAT (FSH and EGF 
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supplemented media) with 300 µM dbcAMP with or without 10 µM SKI606 for 5 

hrs,  washed samples in drug free medium, and allowed maturation to proceed for17h 

(in absence of dbcAMP).  Following wash-out and IVM, both control and SKI606-

treated oocytes matured to normal metaphase-II (93% with SKI606 vs 100% controls, 

table 2) confirming the reversibility of SKI606.  However, inhibition of SFKs in the 

presence of dbcAMP either permitted or induced the resumption of meiotic 

maturation within 5 hr of treatment (60% GVBD with SKI606 vs 0% controls) 

suggesting that SKI606 sensitive kinases may participate in GV arrest.  GVBD 

appeared to occur on schedule relative to controls, treated oocytes are impaired in 

their ability to support chromosome segregation during the metaphase-anaphase 

transition of meiosis-I.  

 

Src-family kinases are required for maintenance of meiotic arrest. 

In the above inhibitor study, it was noted that oocytes exposed to SKI606 

tended to undergo GVBD earlier than controls suggesting that meiotic resumption 

might be accelerated by this treatment. To further test this with better meiotic 

synchrony, we cultured immature oocytes with 300 µM dbcAMP which has been 

shown to prevent GVBD for up to 6 hours even in the presence of the maturation 

stimulators FSH and EGF [60].  Thus, to establish whether SFKs participate in 

maintenance of meiotic arrest, we cultured oocytes in KSOM-MAT (FSH and EGF 

supplemented media) with 300 µM dbcAMP with or without 10 µM SKI606 for 5 

hrs,  washed samples in drug free medium, and allowed maturation to proceed for17h 

(in absence of dbcAMP).  Following wash-out and IVM, both control and SKI606-

treated oocytes matured to normal metaphase-II (93% with SKI606 vs 100% controls, 

table 2) confirming the reversibility of SKI606.  However, inhibition of SFKs in the 

presence of dbcAMP either permitted or induced the resumption of meiotic 

maturation within 5 hr of treatment (60% GVBD with SKI606 vs 0% controls) 

suggesting that SKI606 sensitive kinases may participate in GV arrest.   
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Injection of FYN siRNA into GV stage oocytes demonstrates a specific 

requirement for Fyn kinase during meiotic maturation.  

One drawback of the pharmacological approach described above is that 

SKI606 inhibits the activity of all members of the Src-family and Abl-family kinases.  

Since FYN kinase is the most highly expressed of the Src-family members in mouse 

oocytes (Novartis Mouse Gene Atlas; https://biogps.gnf.org), we sought to more 

specifically test the role of Fyn kinase in oocyte maturation.  Mouse oocytes arrested 

at the GV stage using dbcAMP were injected with either FYN siRNA or a 20-25 nt 

non-targeting control siRNA.   

 Following injections, oocytes were cultured for 4-5h in complete maturation 

medium supplemented with 300 µM dbcAMP to prevent resumption of meiosis and 

to allow time for depletion of FYN mRNA. GV stage oocytes were then washed free 

of dbcAMP and matured in vitro for 17h.  After 17h of culture, oocytes were fixed 

and labeled for tubulin, actin and DNA for confocal microscopy as above.  To 

confirm the knock-down and specificity of the Fyn siRNA, sets of 10 oocytes were 

pooled after 17h of culture and tested for mRNA levels of Fyn and Yes kinases.  Yes 

kinase is a Src-family member closely related to Fyn and is the second highest 

expressed of the SFKs in mouse oocytes (Novartis Mouse Gene Atlas; 

https://biogps.gnf.org).  Kinase mRNA levels were normalized against a known 

concentration of rabbit alpha-globin mRNA.  The Fyn siRNA caused a significant 

(~80%, P<0.05) decrease in Fyn mRNA as compared to scrambled control siRNA 

Table 2. Precocious meiotic resumption of oocytes cultured with Src inhibitor 
 
Exposure  Time   N  %GVBD  %MII 
5h   cAMP   10  0a   100c 
5h   SKI+cAMP  43  60b   93c 
 
Oocytes cultured with the Src inhibitor and dbcAMP resumed meiosis and initiated 
GVBD while control oocytes remained arrested at GV (a,b) P>0.05. Following wash-out 
from the dbcAMP both control and SKI606 treated oocytes matured to MII(c) P>0.05. 
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injected or non-injected oocytes (n=4, 2 and 4 replicates, respectively; fig. 4A).  

There was no difference in the level of Fyn mRNA between control siRNA injected 

versus non-injected oocytes and no effect of Fyn siRNA on the levels of Yes kinase 

demonstrating the specificity of the Fyn knock-down (fig. 4B). 

 Oocytes injected with FYN siRNA undergo GVBD but exhibited a reduced 

capacity to progress to metaphase-I (83% vs 100% of controls; P<0.05, fig. 5).  Few 

oocytes were able to mature to metaphase-II (39% vs 86%; P<0.05).  Injection of 

FYN siRNA did not induce premature resumption of meiosis in the presence of 

dbcAMP nor were overt chromatin or spindle organizational defects observed (not 

shown). The selectivity of FYN siRNA relative to controls implies a direct role for 

FYN in meiotic progression of mouse oocytes. To further test this, we next examined 

the phenotypes of oocytes collected from FYN knockout animals. 

 

FYN (-/-) mice ovulate oocytes exhibiting defects in meiotic progression and 

spindle organization.   

To further examine the role of Fyn kinase during oocyte meiotic progression, 

we compared oocyte maturation of normal and FYN (-/-) mice both in vivo and in 

vitro.  Mature females were superovulated and oocytes were collected from oviducts 

16 h post-hCG.   The total number of oocytes ovulated by FYN (-/-) females were not 

different from control females (17 and 22, respectively; table 3).  While all ovulated 

oocytes isolated from both FYN (-/-) and control animals had undergone GVBD (68 

and 111 oocytes, respectively), only 85% (58/68) of oocytes from FYN (-/-) animals 

had matured to metaphase-II compared to 99% (110/111) of controls (P<0.05%). 

Moreover, ovulated FYN (-/-) oocytes exhibited a slightly higher percentage of 

spindle and chromosome alignment abnormalities relative to controls (19% (11/58) 

versus 4% (4/110), respectively) although this difference was not statistically 

significant.  The types of abnormalities detected in oocytes from Fyn (-/-) animals 

were associated with chromosome alignment and meiotic spindles (fig. 6).  Since 

ovulated FYN (-/-) oocytes exhibited reduced maturation, we next tested maturation 
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using our in vitro culture system.  This provided a more consistent controlled 

environment under which the maturation competence of FYN (-/-) oocytes could be 

ascertained without in vivo variability due to endocrine and/or ovarian factors. 

 

 
 

FYN knock-out mice exhibit a meiosis I defect. 

FYN (-/-) oocytes exhibited a slightly higher percentage of spindle and 

chromosome alignment abnormalities relative to controls (19% (11/58) versus 4% 

(4/110), respectively) although this difference was not statistically significant.  The 

types of abnormalities detected in oocytes from Fyn (-/-) animals were associated 

with chromosome alignment and meiotic spindles (fig. 6).  Since ovulated FYN (-/-) 

oocytes exhibited reduced maturation, we next tested maturation using our in vitro 

culture system.  This provided a more consistent controlled environment under which 

the maturation competence of FYN (-/-) oocytes could be ascertained without in vivo 

variability due to endocrine and/or ovarian factors. 

 Fully grown oocytes (with or without cumulus cells) were collected from the 

ovaries of mature females at 44 h post-eCG similar to previous experiments.  More 

oocytes from antral follicles were obtained from FYN (-/-) mice (n=3) as compared to 

normal control females (n=4; 53 oocytes versus 26 oocytes per donor, respectively).   

COC from FYN (-/-) mice matured in vitro for 16 h exhibited cumulus expansion 

similar to wildtype controls indicating that cumulus cell expansion is not influenced 

by the loss of Fyn. 

Table 3. FYN (-/-) mice ovulate oocytes with meiotic progression defects 
 
Strain   # Donors  # Oocytes  %GVBD  %MII  % abnormal MII 
B6/129  5   111   100   99a   4c 
Fyn KO  4   68   100   85b   19c 
 
All ovulated oocytes initiated GVBD. A significant percentage of ovulated FYN (-/-) 
oocytes failed to reach metaphase-II and were blocked at metaphase-I (a,b) P<0.05. 
There was a tendency for FYN (-/-) oocytes to exhibit abnormal spindle and chromatin. 
alignment however this difference was not statistically significant (c) P>0.05. 
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 The ability of FYN (-/-) oocytes to mature in vitro was significantly reduced 

compared to controls. FYN (-/-) oocytes progressed through GVBD but arrested at 

various stages between GVBD and metaphase-I.  Only 20% (32/158) of FYN (-/-) 

oocytes matured to metaphase-II as compared to 49% (51/105) of controls (fig. 7).  

Of those oocytes from FYN (-/-) females that matured to metaphase-II, 22% of these 

(7/32) exhibited abnormal spindle formation and/or chromosome misalignment 

compared to only 4% (2/51) of controls although this difference was not statistically 

significant.  FYN (-/-) oocytes that blocked at metaphase-I also demonstrated spindle 

and chromosome alignment errors but at a low incidence (5/78, 6%).  No cytoskeletal 

defects were observed in metaphase-I arrested oocytes from control animals (0/31).  

The errors observed in FYN (-/-) oocytes resembled those identified in our earlier 

chemical  inhibitor studies with misaligned chromosomes and malformed spindles.  

Thus, three distinct experimental strategies including biochemical inhibition of Src-

related kinases , as well as siRNA knock-down, and gene knockout of Fyn kinase 

have yielded results consistent with a role for SFKs in meiotic progression, 

chromosome segregation and spindle function in mouse oocytes.   

 

DISCUSSION 

Oocytes prepare for fertilization and later development by undergoing a 

programmed series of maturational events in response to an ovulation-inducing surge 

of LH. At the level of the ovarian follicle, prominent changes in several signaling 

pathways occur during ovulation that ensure the coordinate induction of ovum 

release, cumulus expansion and oocyte maturation. Amongst these signaling 

pathways, SRC, RAS, and EGF have all been implicated in the terminal 

differentiation of granulosa cells [69, 252, 253] and preliminary reports have invoked 

a role for Src within the oocyte itself with reference to meiotic maturation and egg 

activation [134, 142, 191, 241, 242]. 

 The present studies aimed to better define the activities of SFKs during 

meiotic maturation in mouse oocytes by taking advantage of the experimental 
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tractability of this model system. A series of in vitro maturation experiments showed 

that SFKs function in meiotic progression through the metaphase-anaphase transition 

of meiosis-I with the most prominent defects being a failure to segregate homologous 

chromosomes.  From pharmacological inhibition, FYN siRNA knockdown, and the 

use of FYN knockout mice, resolution of bivalents and progress to metaphase-II 

appears to require the activity of SFKs, and in particular FYN kinase.  The fact that 

genetic depletion of FYN kinase activity caused a similar series of meiosis defects 

both in vivo and in vitro, involving failure of chromosome disjunction during 

anaphase and abnormal organization of spindle microtubules, suggests that FYN 

assists in the coordination of karyokinesis and cytokinesis during meiotic maturation 

and that additional effectors such as other SFKs are likely to integrate meiotic cell 

cycle progression in this system.  Fyn (-/-) mice are viable but females produce only 

2-3 litters after which reproduction fails (Kinsey lab unpublished data).  Interestingly, 

histological examination of ovaries following superovulation found antral follicles in 

Fyn (-/-) females that failed to ovulate (not shown).  This may explain the disparity in 

the number of oocytes obtained between our in vitro maturation studies where 

oocytes are manually extracted from all antral follicles as compared to ovulated 

oocytes retrieved from the oviducts.   Fyn (-/-) ovaries yielded far more oocytes than 

wildtype ovaries and a major proportion of the Fyn (-/-) oocytes were incapable of 

normal oocyte maturation, while the superovulated oocytes retrieved from the 

oviducts  were more similar between the Fyn (-/-) and control animals.  Studies are 

currently ongoing in our laboratory to better define these issues in the knock-out 

mouse. 

 The mechanism of Fyn action in chromosome segregation and spindle 

function may involve its close association with spindle microtubules.  Previous 

studies on rat oocytes demonstrated localization of Fyn kinase to microtubule-

containing structures [129, 243].  The fact that FYN is the most highly expressed SFK  

in mouse oocytes (Genomics Institute of the Novartis Research Foundation ("GNF"), 

https://biogps.gnf.org [254]), together with our earlier finding that activated SFKs 
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were associated with spindle structures after fertilization [134] led us to further define 

the functional significance of this association during oocyte maturation.  The results 

presented here indicated that this spindle-associated Fyn is highly active since it was 

detected with the Clone 28 antibody.  This association with microtubules continued 

during spindle morphogenesis following GVBD and persisted within spindles 

throughout meiotic maturation.  Activated SFK localization was also maintained with 

MTOCs at all stages consistent with previous studies using pericentrin and MPM2 

which demonstrated Ser/Thr phospho-proteins associated with MTOCs throughout 

meiotic maturation [247].  Talmor, Kinsey and Shalgi (1998) first demonstrated the 

co-localization of Fyn kinase to the meiotic spindle in mammalian oocytes and later 

proved the association of Fyn with tubulin in co- immunoprecipitation assays [129].  

We have now demonstrated activated SFKs associate with meiotic spindles and 

cytoplasmic microtubules at all stages of meiosis. 

 SFKs in general and Fyn in particular are known to be involved in somatic 

cell mitotic cell cycle progression [255, 256]. Direct interactions of Fyn with dynein 

[257] and γ-tubulin [131, 132] have been proposed as responsible for mitotic arrest 

and microtubule stability in a variety of mammalian cell types [209]. In the 

mammalian oocytes, γTubulin is involved in spindle positioning and size [248].  

Together with our current results this suggests a possible relationship between Fyn 

kinase signaling and γ-tubulin in the regulation of the meiotic spindle.  Moreover, the 

presence of monopolar spindles and displaced chromosomes further implies that as 

yet unresolved forces exerted during bivalent attachment to the spindle may be under 

the local control Src-related kinases integrated into the meiotic spindle.  

 We have also shown that inhibition of Src-related kinases with the chemical 

inhibitor SKI606 and siRNA of Fyn kinase prevented the progression of meiosis from 

MI to metaphase-II.  This finding contrasts those reported by [191] in which mouse 

oocytes matured in the presence of the SFK inhibitor (PP2) were unable to undergo 

GVBD.  Our studies using the inhibitor SKI606 did not reveal a significant inhibitory 

effect on GVBD. In fact, we found that under meiosis arresting conditions, this drug 
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induced the resumption of meiosis (Table 2).  The variance in the results of Zheng et 

al. (2007) and this work may be due in part to differences in the specificity or action 

of the inhibitors. For example,  SKI606 represents a new generation of 

quinolinecarbonitrile derivatives with high specificity for SFKs [250].  This 

compound inhibits Src in vitro with an IC50 of 1.2 nM, while having low affinity for 

other kinases such as receptor protein tyrosine kinase  ErbB-2 (IC50 of 2.6 µM) and 

Ser/Thr kinase Cdk4 (IC50 of 19 µM) [251]. The affinity of SKI606 is similar 

between Src and other family members such as Fyn [251].  The SFK inhibitor PP2 

has an in vitro IC50 of 5 nM for Fyn kinase [258].  Like PP2 [259], SKI606 also 

inhibits the Src-related Abl kinase with an in vitro IC50 of 1.0 nM.  While the general 

activities of SKI606 and PP2 are similar, slight differences in affinity and selectivity 

may account for the varied effects reported here and elsewhere.  More likely, 

variations in chemical inhibitor results may take their origins in IVM culture 

protocols and/or differences in mouse strains used since mouse strain variations have 

been reported for both in vivo and in vitro matured oocytes [260, 261]. Additionally, 

Zheng and colleagues (2007) cultured naked oocytes in basal M2 medium without 

supplementation.  While basal salt media allow for spontaneous meiotic resumption 

of cultured oocytes from many mammalian species [236], these conditions are 

inadequate for production of oocytes of high developmental potential [45].  In our 

studies we used a modified KSOMAA medium supplemented with factors designed to 

induce meiotic maturation and cumulus expansion (FSH, EGF, cysteine, glucosamine 

and ascorbic acid; see methods section).  FSH and EGF are known activators of SFKs 

in somatic and granulosa cells [69, 262], therefore media containing these hormones 

may activate signaling pathways during meiotic maturation that are not operative in a 

basal salt medium.   

 In summary, the suppression of Fyn activity caused defects in spindle 

organization and chromosome segregation that in some cases brought meiotic 

maturation to a halt whereas in other cases permitted advancement of the cell cycle to 

metaphase-II albeit with significant distortions in the spindle. The lack of complete 
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penetrance as seen in oocytes from FYN (-/-) animals, implies some level of 

redundancy in function for ovarian SFKs.  Taken together, these results suggests that 

the primary active SFKs associated with the spindle of the mammalian oocyte is Fyn 

and that disruption of Fyn kinase leads to failure of meiotic maturation by disrupting 

the cell cycle dynamics of spindle and chromosome organization. 
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Fig. 1. Activated SFKs distribute in microtubule-like patterns at the GV, MI and 
MII stages of meiosis.  Germinal vesicle stage oocytes were collected from PMSG 
primed mouse ovaries and matured in vitro for 0, 8 or 16 hours followed by fixation.  
Oocytes were labeled with a monoclonal antibody against activated Src-family PTKs 
(clone 28) and detected with Alexa-488-goat anti-mouse IgG (white) and co-labeled 
with the DNA dye Hoechst 33258 (red).  Active SFKs are distributed in microtubule-
like patterns consistent within oocytes and companion cumulus cells; see mitotic 
spindle microtubule labeling in cumulus cell (GV inset). Within GV stage oocytes, 
SFKs localized to cytoplasmic microtubule arrays surrounding the nuclear envelope 
as well as cortical microtubule organizing centers (*).  At MI and MII, SFKs localize 
primarily to microtubules of the metaphase spindle. 
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Fig. 2. Chemical inhibition of SFKs during maturation reduces meiotic potential 
and induces metaphase chromosome alignment and spindle errors.    COC were 
released from the ovaries of PMSG primed female CF1 mice at 40h post-hCG then 
cultured in KSOM-MAT medium supplemented with SFK inhibitor SKI606 for 17h.  
The concentration range of 0-10 µM  chosen was based on  previous studies [134].  
(A) Inhibition of SFKs blocked meiosis at metaphase I in a dose dependant manner in 
both cumulus intact (COC) and denuded oocytes (Egg).  No significant effect on the 
number of oocytes that underwent GVBD (black bars) was observed.  However, 
maturation to metaphase-II (white bars) was inhibited.  Cumulus-enclosed oocytes 
were more sensitive to inhibitor, with none maturing to MII in the 10µM dose and 
maturation in 5 µM being significantly lower than 1 µM or 0 µM (P<0.05).  The 
ability for denuded oocytes to mature was also dose dependant with significantly 
fewer oocytes maturing to meiosis II in medium with 10 µM as compared to 0 or 1 
µM.  (B) SKI606 treated oocytes that progressed to metaphase II exhibited 
chromosome and spindle abnormalities.  Of those oocytes that progressed to 
metaphase II in 5 or 10 µM (*) SKI606, 100% were abnormal as compared to the 1 
and 0 µM concentrations. 
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Figure 3 
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Fig. 3.  Inhibition of Src-related kinases with SKI606 induced abnormal spindles 
and misalignment of chromosomes during meiosis.  Denuded oocytes (eggs) and 
intact COC matured 17h in 0, 1, 5 or 10 µM SKI606 (fig. 2) were fixed and co-
labeled with monoclonal mouse anti-αβ tubulin (microtubules; green) and goat anti-
mouse Alexa-488, phalloidin-Alexa-568 (f-actin; red) and Hoechst 33258 (DNA; 
white) and oocytes were confocal imaged and examined as described previously.  
Three-dimensional reconstructions were used to examine oocyte meiotic status and 
the associations of tubulin, actin and DNA.  The majority of control oocytes (A = 0 
µM SKI606) matured and arrested at metaphase of meiosis II with normal spindle 
morphology, chromatin aligned on the metaphase plate and an extruded polar body.  
Oocytes exposed to SKI606 arrested at various stages of meiosis, many with 
displaced chromosomes and spindle microtubules that branch abnormally in seeming 
attempts to enclose these aberrant chromosomes (B-H). Fewer abnormal oocytes 
occurred in the lower doses of SKI606 as compared to the higher doses, however the 
general types of abnormalities were the same across all concentrations of the inhibitor 
(malformed spindles and wayward chromosomes: B, C, G = 10 µM; D, E, F = 5 µM; 
H = 1 µM SKI606, respectively).  Panels E (tubulin label turned-off) and F (with 
tubulin (green)) are the same oocyte.  Both images are shown to demonstrate the 
stretched chromosomes that failed to separate (E) even though the spindle 
microtubules have attempted to elongate and undergo anaphase (F).  Panel H 
demonstrates two oocytes cultured in low (1 µM) SKI606 which extruded polar 
bodies but have displaced chromosomes.  One oocyte has a chromosome that failed to 
segregate and was trapped in the constriction site between the polar body and the 
oocyte (*) while the second oocyte has multiple chromosomes displaced along the 
spindle (**).  [scale bar = 10 µm] 
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Figure 4 
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Fig. 4.  Microinjection of Fyn siRNA significantly reduced levels of Fyn mRNA. 
Oocytes injected with Fyn siRNA were matured 17h then pooled in sets of 10 and 
tested by semi-quanititative RT-PCR for levels of Fyn mRNA and the closely related 
Yes mRNA.  Injection of Fyn siRNA resulted in a significant (~80%; *P<0.05) 
knock-down of Fyn mRNA as compared to scrambled control siRNA injected and 
non-injected oocytes (A).  Fyn siRNA had no effect on the levels of Yes kinase 
mRNA (B).  (n = 4, 2, 4 replicates, respectively) 
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Figure 5
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Fig. 5.  Fyn PTK activity is required for meiotic maturation of mouse oocytes.  
Oocytes injected with FYN siRNA were held arrested at the GV stage in 300 µM 
cAMP  for 4-5 h, washed in cAMP-free media, and cultured in maturation media for 
16-17 h. Controls included injection with an equal concentration of scrambled control 
siRNA or processing in the above solutions without injection. Seven replicates with 
siRNA were conducted using both types of controls.  Oocytes were labeled for 
microtubules and DNA as described above (fig. 3) and scored to determine meiotic 
stage.  Injection of FYN siRNA into GV stage oocytes significantly decreased 
meiotic maturation since fewer FYN siRNA oocytes reached metaphase of MI 
compared to control siRNA injected or non-injected oocytes (83% versus 100% and 
100%, respectively; *P<0.05).  Maturation to MII was also impaired with only 39% 
of FYN siRNA injected oocytes reaching  metaphase-II as compared to control 
siRNA and non-injected oocytes (86% and 93%, respectively; **P<0.05). 
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Figure 6
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Fig. 6.  Superovulated FYN (-/-) oocytes exhibit misaligned chromosomes. 
Oocytes were collected from superovulated FYN (-/-) and wildtype control mice 16h 
post-hCG.  Control mice ovulated metaphase-II stage oocytes, 110/111, 99%, 
whereas only 85% (58/68) of FYN (-/-) had reached metaphase-II.    Analysis of 
cytoskeleton and chromatin organization showed normal chromosome alignment in 
99% of control MII oocytes (B6/129), however 19% of the MII and 6% of MI stage 
FYN (-/-) oocytes exhibited misaligned chromosomes. Differential interference 
contrast (DIC) images of ovulated oocytes B6/129 (MII) and FYN KO (MI) labeled 
with DNA dye Hoechst 33258 (white). 
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Figure 7 
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Fig. 7.  Oocytes from FYN (-/-) mice exhibit reduced meiotic potential.  
 Oocytes and COC from FYN (-/-) and wildtype controls collected at the GV stage 
were matured in vitro for 16hrs and subjected to fluorescence analysis as before.  
FYN (-/-) oocytes exhibited reduced meiotic potential as indicated by the fact that 
while FYN (-/-) oocytes underwent GVBD to comparable levels as wildtype controls 
(70 % versus 76%, respectively), significantly fewer FYN (-/-) oocytes achieved MII 
(20% versus 49%; **P<0.05).  
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Chapter Three 
  
 

Dynamics of protein phosphorylation and nuclear actin  
during meiotic maturation 

 
ABSTRACT 

Kinases and their targets require specific regional distributions to effect 

changes in cell function.  Here, the protein phosphorylation patterns were mapped 

topographically over the course of meiotic cell cycle progression in in vitro matured 

mouse oocytes. Oocytes collected at the GV stage were matured in vitro in either a 

basal embryo medium (IVMb) or a medium designed to improve oocyte 

developmental quality (IVMh). After meiotic reinitiation, oocytes matured for 0, 2, 4, 

8 and 16h were fixed and probed for phosphotyrosine (pTyr) or mitosis associated 

phosphoserine/threonine (MPM2) epitopes.  Quantitative and qualitative analyses 

were performed on oocytes at progressive stages of maturation using confocal 

microscopy and image analysis.  pTyr epitope was evident  throughout the cytoplasm 

at all stages with intense staining at the cortex.  Cytoplasmic and cortical labeling 

increased significantly between MI and MII.  Supplemented media significantly 

increased cortical levels of pTyr proteins at MII when compared to oocytes matured 

under IVMb conditions.   In contrast, MPM2 epitope was distributed in patterns 

distinctly different from those bearing pTyr.  Cytoplasmic MPM2 epitope localized to 

the meiotic spindle, spindle poles and cytoplasmic MTOCs but was not detectable in 

the cortex.  Cytoplasmic MPM2 localized in a subcortical region.  In meiotic spindles, 

pTyr epitope was concentrated at spindle poles whereas MPM2 was distributed 

throughout the spindle in a pattern distinct from pTyr. Both cortical and spindle pole 

pTyr epitopes were absent in oocytes obtained from Fyn (-/-) oocytes suggesting a 

role for the Fyn tyrosine kinase in meiotic spindle integrity and cortical remodeling. 

These findings demonstrate that tyrosine kinases impose spatially discrete patterns of 

protein phosphorylation that may underlie the distinction between nuclear and 

cytoplasmic maturation in mammalian oocytes. 
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 INTRODUCTION 

Interacting cascades of signaling pathways dependent upon protein 

phosphorylation drive many aspects of cellular metabolism. These pathways are 

essential in the life cycle of an oocyte and may be used discriminately during the 

growth and maturation stages of oogenesis [263].  In the case of oocyte maturation, 

regional modifications in protein phosphorylation contemporaneously support the 

maturation of both the nucleus and cytoplasm during meiotic cell cycle progression 

and are required for developmental competence following fertilization [196, 264-

268].  

  Alterations in the timing or topographical distribution of protein 

phosphorylation during meiotic maturation can impose detrimental effects on 

embryonic, fetal or offspring health.  For instance, in vitro culture of oocytes and 

embryos contributes to fetal wastage due to aneuploidy or abnormalities in imprinting 

and gene expression [269].  Disruption of kinase signaling pathways in oocytes 

results in defects in chromosome condensation and segregation that have been linked 

to embryonic aneuploidy [263].  Moreover,  failure to correctly localize and activate 

kinases cause disruptions in fertilization and embryo development [266]. While 

ser/thr kinases are well known to drive the meiotic cell cycle, only recently has it 

become apparent that tyrosine kinases are also operative during the process of oocyte 

maturation and early development in mammals. For example, SFKs appear to mediate 

meiotic spindle and chromatin modifications in rodent oocytes [129, 134, 142, 191].  

Until the interplay between discrete protein kinase signaling pathways can be 

resolved in mammalian oocytes, the role of these factors in determining the quality of 

oocyte nuclear and cytoplasmic maturation will remain unclear. Knowledge of the 

regional patterns of phosphorylated proteins during maturation may help in the 

diagnosis of egg quality.  Indicators of oocyte quality would be useful in the 

development of in vitro systems for ART and may provide insight into the regulatory 

mechanisms that are required to obtain and express developmental competence. 
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 In somatic cells it is well accepted that global changes in protein 

phosphorylation are triggered in response to extracellular cues that activate growth 

factor and integrin receptors and stimulate entry into the cell cycle. Ligand receptor 

interactions and the ensuing signaling events are often regionalized to achieve tighter 

temporal control. Oocytes present a unique set of problems with respect to signaling 

and cell cycle regulation. For example, a strict localization of protein kinase-A (PKA) 

to the cytoplasm is essential for the maintenance of G2/M meiotic arrest. To reinitiate 

the meiotic cell cycle PKA migrates from the cytoplasm to the mitochondrial 

membrane where it  is sequestered by one of the many forms of A-Kinase anchoring 

proteins (AKAP1) [188]. And as mentioned above, tyrosine kinases have recently 

been shown to increase significantly following fertilization [270] but the origins of 

these changes during meiotic maturation have not been rigorously studied. Thus, the 

importance of kinase  regionalization and the lack of information on the relative 

contributions of tyr or ser/thr kinases has prompted this investigation [188].    

 

MATERIALS AND METHODS 

Oocyte collection 

Cumulus-Oocyte-Complexes (COC) were collected from 6-7 week old female 

mice.  Most experiments used CF1 female mice (Harlan Sprague-Dawley, 

Indianapolis IN USA or Charles River Laboratories, Wilmington MA).  Fyn knock-

out mice (B6/129S7-Fyntm1Sor/J) and the recommended control (B6/129SF2/J) mice 

were purchased from Jackson Laboratories (Bar Harbor, ME USA) and a 

homozygous knock-out colony was maintained at KUMC.  Mice were housed in a 

temperature and light-controlled room on a 14L:10D light cycle and experiments 

were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals (National Academy of Sciences 1996).  Mice were euthanized by 

isofluorothane inhalation anesthesia followed by cervical dislocation.  Females were 

stimulated with 5 IU equine chorionic gonadotropin (eCG; Calbiochem, San Diego 

CA USA).  Ovaries were collected at 42-46 hours (h) post-eCG.  COC were released 
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from large antral follicles into HEPES-buffered KSOM (FHM, Chemicon) and 4 

mg/ml BSA (mFHM) with 300 µM dbcAMP to prevent meiosis resumption during 

the collections.  COC were cultured in either KSOMAA (basal IVM media; IVMb; 

(Chemicon-Millipore, Billerica MA) or KSOMAA medium supplemented with 

components previously shown to improve cumulus expansion and oocyte maturation 

(1 mM glycyl-glutamine, 0.23 mM pyruvate, 4 mg/ml BSA, 0.6 mM L-cysteine, 0.5 

mg/ml D-glucosamine, 0.02 µM ascorbate, 1% insulin-transferrin-selenium (ITS; 

Sigma Corp, St Louis MO), 0.2 IU/ml recombinant human FSH (Serono 

Reproductive Biological Institute, Rockland, MA) and 10 ng/ml EGF (Calbiochem, 

San Diego CA); IVMh). 

 

 Fixation and immunohistochemical labeling 

Methods for fixation and immunohistochemistry were similar to those 

previously reported [134].  Briefly, oocytes and COC were fixed for 10-20 min at 

room temperature in FHM medium with 3% paraformaldehyde followed by 30 min at 

35˚C in microtubule stabilization buffer with 2% formalin and 0.5% triton-X100 

(MTSB-XF [118]).  After fixation, eggs and embryos were transferred into wash 

solution (McGinnis et al 2007) and held overnight at 4˚C.  All fixatives and wash 

solutions were supplemented with 40 µM phenylarsine oxide, 100 µM sodium 

orthovanadate and 10 µM calyculin-A to inhibit phosphatase activity.  Antibodies 

used included mouse monoclonal anti-phosphotyrosine antibody (clone 4G10, 

Upstate, Temecula CA) and MPM2 (Upstate, Temecula CA).  Secondary antibodies 

were Alexa 488 goat anti-mouse (Molecular Probes, Eugene OR).  Oocytes were 

labeled with primary antibodies overnight at 4C followed by secondary antibody for 

2h at 35C.  After secondary labeling, oocytes were transferred to a wash solution 

containing 10 ug/ml Hoechst 33258 with 1:100 phalloidin-Alexa 568 and stored in 

the dark overnight at 4˚C.  Oocytes that were not part of the fluorescence intensity 

pools were co-labeled with rat monoclonal tubulin antibody (YOL1/34; Abcam, 

Cambridge MA) followed by secondary antibody goat anti-rat or goat anti-rabbit 
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Alexa-568; primary antibodies labeled for 1h at 35C followed by secondary for 1h at 

35C).  Oocytes and COC were mounted the following morning and imaged 

(mounting medium consisted of 1:1 glycerol: PBS supplemented with 5 mg/ml 

sodium azide and 10 µg/ml Hoechst 33258).  All chemicals, hormones and reagents 

were purchased from Sigma Chemical Company, St. Louis, MO unless otherwise 

stated. 

 

Oocyte processing 

Oocytes were matured in vitro for 0, 2, 4, 8 or 16h in IVMb or IVMh media.  

At  specific times, a random pool of COC were removed from culture, cumulus cells 

were stripped manually by pipetting with a fine tipped glass pipet followed by brief 

washing in hyaluronidase (0.3 mg/ml) and fixation.  Following fixation, oocytes were 

sorted into groups containing 2 oocytes from each time point selected at random from 

the pools of fixed oocytes.  This permitted the labeling and imaging of oocytes from 

all time points together in one cohort and eliminated any signal variability due to 

labeling or imaging conditions; in this way, we were able to determine variations in 

staining intensity attributable to phosphoepitope abundance between oocytes within 

each set.   

 

Imaging and data analysis 

  Serial z-sections (1 µm depth) were obtained for each oocyte using a  40x 

water immersion lens on a Zeiss LSM510 confocal microscope.  These data sets were 

used to measure 3-dimensional relationships between the oolema, chromatin, meiotic 

spindle and first polar body.  Fluorescence intensity levels at the central plain of each 

oocyte (6 oocytes/ time/ treatment) were considered to represent the overall amount 

of phospho-protein at each stage of maturation.  A single TIFF image from the central 

plain of each oocyte set was exported for Metamorph image processing.  This method 

allowed us to compare the localized patterns of phospho-proteins at each time point 

and between the types of maturation conditions. Line-scans were produced for each 
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oocyte to allow for comparisons of localized fluorescence intensity.  Measurements 

taken for each oocyte included: (1) a line-scan (7 um thick) covering the maximum 

diameter of the oocyte; (2) linescan around the circumference (7 µm thick) that 

included the oolema and cortex; and (3) the central cytoplasm that excluded the 

oolema/cortical regions of the original linescan.  Average fluorescence intensity was 

statistically compared between stages of maturation and culture media treatment 

using SPSS software (SPSS Inc, Chicago IL).  Data were analyzed by ANOVA 

followed by Sidak post-hoc comparisons.  P-value of less than 0.05 was considered 

significant. 

 

RESULTS 

Tyrosine phosphorylation increases during oocyte maturation.  

Oocytes were matured in vitro for 0, 2, 4, 8 or 16-17h.  Two oocytes from 

each time point were pooled, labeled and imaged together to enable a direct 

comparison of fluorescence intensity between oocytes during maturation.  Images 

taken from the central plain of each oocyte were compared visually (confocal images, 

fig 1-2), and used for linescan comparisons of fluorescence intensity across the 

median and around the cortex of each oocyte (fig 3-4).   Intense cortical labeling 

associated with the oolema and large cytoplasmic patches were seen at all stages (fig 

1-2).  Figure 1 demonstrates pTyr levels in oocytes at the plane containing the 

chromatin and shows the diversity of cytoplasmic pTyr labeling. Most cytoplasmic 

patches were subcortical however, in GV stage oocytes one or two large cytoplasmic 

patches were localized adjacent to the GV (fig 1A-B).  By 2h of maturation (GVBD) 

pTyr labeling was more diffuse throughout the cytoplasm, but still exhibited 

cytoplasmic patches (fig 1C).  Oocytes at metaphase-II were easily distinguished 

from immature oocytes by increased pTyr proteins throughout the cytoplasm (fig 1F).  

Intense label was evident at the spindle poles of metaphase-II (fig 1F arrow) of IVMh 

and IVMb oocytes (5/5 and 3/6, respectively), which is similar to our previous studies 

with  oocytes  matured in vivo[134].  Tyrosine phosphorylated proteins were also 
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evident at the spindle poles of most metaphase-I (fig 1E arrow) oocytes (4/5 IVMh 

and 4/6 IVMb).  Figure 2 demonstrates oocytes from three stages of maturation that 

were labeled and imaged together in a single set of oocytes. These images were all 

taken from the same central plain of the oocytes and no changes have been made to 

the intensity levels in order to demonstrate the original images from which intensity 

comparisons were made.  Cytoplasmic pTyr epitope staining was similar between 

oocytes at the GV (fig 2A) and metaphase-I (fig 2B) stages. Notably, total 

cytoplasmic pTyr epitope levels increased between MI-MII (fig 2B, 2C).   

 

Stage specific Tyrosine phosphorylation at the oocyte cortex. 
To quantify protein tyrosine phosphorylation, images from oocytes in the 

previous experiment were analyzed by linescan comparisons and statistical analysis 

of fluorescence intensity levels. Linescan tracings graphically demonstrate alterations 

evident in fluorescence images.  As seen in photographs (fig 1-2), pTyr epitope is 

highly localized in the oocyte cortex at all stages of maturation.  During maturation, 

the transition from metaphase-I to metaphase-II was associated with an increase in 

both cytoplasmic and cortical pTyr epitope (fig 3-4).  In addition to showing high 

levels of pTyr localized at the cortex (Fig 3*), levels were increased as oocytes 

transitioned from MI to MII.  Although present at much lower levels (fig 3*****), 

cytoplasmic pTyr epitope also increased during the MI to MII transition (fig 3).  

Statistical analysis of cortical and cytoplasmic pTyr levels confirmed significance at 

the MII stage (fig 4).  Moreover, cortical pTyr levels (fig 4A) were also statistically 

higher in oocytes matured in IVMh medium (12.3 ±1.49) as compared to IVMb (17.4 

±1.53; P<0.05) suggesting that culture conditions influence the magnitude of cortical 

protein tyrosine phosphorylation. However, no such difference was observed between 

levels of cytoplasmic pTyr (fig 4B) in either culture treatments (7.12 ±0.87 and 5.47 

±0.87, respectively). Thus stage and culture conditions are associated with differential 

quantity of pTyr epitopes during meiotic maturation in the mouse. We next examined 

epitopes detected by the monoclonal antibody MPM2 that is known to mark many 

relevant substrates for M-phase specific kinases.  
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Patterns of MPM2  

Sets of oocytes from the same cohorts that were labeled for pTyr proteins 

were labeled for mitosis-associated ser/thr phospho-proteins (MPM2).  This antibody 

has been used by our laboratory in previous studies to identify meiosis-specific 

phosphorylation patterns associated with the meiotic spindles and MTOCs, but 

overall cytoplasmic patterns of localization have not been reported.  Figure 7 

compares oocytes from three stages of maturation.  These images were taken at the 

central focal plane under the same conditions as described above.  Little MPM2 

epitope is detectable in the cytoplasm of GV stage oocytes (fig 5A) but levels 

progressively increased from GV to MI (fig 5B) to metaphase-II (fig 5C).  A gradient 

of epitope distribution is apparent in an eccentric pattern characterized by higher 

levels near the cortex as relative to the center of the oocyte.  Unlike pTyr epitope, 

which aligned with the cortex and/or oolema, MPM2 epitope is concentrated in a 

subcortical zone (fig 5).  Fluorescence intensity measurements were performed as 

described for pTyr proteins.  Because of the intense labeling of MPM2 at the meiotic 

spindles (see below), the spindle region was excluded from measurement of the 

cytoplasmic fluorescence intensity.  Linescans confirmed a continuous increase in 

MPM2 epitope both in the sub-cortical region (fig 6*) and cytoplasmic region (fig 

6*****) as maturation progressed from GV to MII (fig 6).  Increased MPM2 levels 

were statistically significant in both cytoplasmic (fig 7A) and subcortical zones (fig 

7B) at MI and MII when compared to earlier stages (fig 7; a, b and c are statistically 

different, P<0.05).  There was an additional significant increase between MI and MII.  

Interestingly, and unlike the pTyr results presented earlier, culture conditions had no 

effect on the levels of MPM2 epitope present at all cell cycle stages that were assayed 

(P>0.05).   
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Fyn knock-out oocytes fail to undergo cortical pTyr epitope expression 

Our studies of SFKs during meiotic maturation and fertilization have 

demonstrated an essential function for SFKs for proper organization of chromosomes 

and spindles [127, 134, 142].  Of the nine SFKs produced in mammalian cells, FYN 

kinase is expressed at very high levels in oocytes.  YES and SRC kinases are also 

expressed, but at lower levels (BioGPS.gnf.org, mouse, GeneAtlas GNF1M, gcrma). 

To determine if Fyn kinase maybe responsible for the patterns of tyrosine 

phosphorylation demonstrated above, Fyn (-/-) oocytes and B6/129 wildtype control 

oocytes were in vitro cultured for 17h (IVMh), fixed, labeled and imaged as in our 

earlier pTyr and MPM2 experiments.  MPM2 proteins localized to the spindles and 

spindle poles as seen in previous experiments and no difference could be detected 

between Fyn (-/-) and wildtype (fig 8A and 8B, respectively).  However, a difference 

was seen in pTyr epitope localization.  Most (11/12; 92%) wildtype oocytes exhibited 

the expected cortical localization of pTyr proteins (fig 8C), however only 4/28 (14%) 

of the Fyn (-/-) oocytes exhibited cortical expression as seen in wildtype oocytes.  

The remaining 21/28 (75%) Fyn (-/-) oocytes displayed barely detectable and patchy 

cortical pTyr while 3/28 (11%) had no detectable pTyr at the cortex (8D).  It was also 

apparent that Fyn (-/-) oocytes had no detectable spindle associated pTyr epitope at 

either MI or MII spindle poles (0/25) whereas all  wildtype control oocytes exhibited 

prominent spindle pole staining (10/10; not shown).  Thus, genetic ablation of Fyn 

kinase causes reduced cortical and spindle associated tyrosine phosphorylation. Given 

the discrete spindle patterns shown by pTyr (spindle poles) or MPM2 (entire spindle 

and poles), we explored the origins of these differences by examining earlier stages of 

meiotic cell cycle progression.   
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MPM2 proteins localize near to chromatin and meiotic spindles 

At the GV stage, intense labeling of MPM2 was detectable on MTOCs near 

the cell cortex and adjacent to the GV as previously reported (not shown [247]).  In 

addition, novel localization patterns were detected that we believe are due to the 

inclusion of phosphatase inhibitors in our fixation cocktail. Thus MPM2 epitope 

formed dense clusters near chromatin within the GV (fig 9 GV) and occasionally was 

localized at the surface of nucleoli but was never detected within nucleoli based upon 

z-section analysis.  Aggregates of MPM2 epitope associated with condensing 

chromosomes and developing spindles (fig 9 GVBD & pre-MI).  And, as noted 

earlier, MPM2 decorates MI and MII spindles as well as spindle pole MTOCs (fig 9 

MI & MII). Labeling at MTOCs was clearly spatially separated from the minus ends 

of spindle microtubules (note gap in fig 8A & 8B) with either a single large focus or 

characteristic “C” and “O” ring configurations as we have previously reported for 

pericentrin [271].   

 

Patterns of nuclear f-actin 

To further examine the relationship between cortical phosphorylation and 

actin remodeling, a common target for SFKs, oocytes were co-labeled for f-actin 

using Alexa 568-conjugated phalloidin.  Changes in cortical actin reorganization in 

maturing mouse oocytes have been extensively studied. But to our surprise, we noted 

several striking alterations in f-actin patterning that have not been detected in earlier 

studies. We suspect two factors have resulted in these novel findings. First, we have 

formulated a fixation method that incorporates multiple phosphatase inhibitors. 

Second, imaging of all oocytes and COC within 2 days of fixation with an emphasis 

on imaging within 24h after being mounted onto glass slides.  These adaptations in 

specimen preparation result in preservation of actin cytoskeletal organization that 

have not been previously reported.     

 In particular, GV stage oocytes in early diakinesis contained a thick coil of f-

actin within the GV.  To further analyze the timing of formation for this structure, 
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oocytes were collected into media containing dbcAMP to arrest GVBD.  They were 

then washed and matured (IVMh) for 0, 30, 60, 90 and 120 minutes followed by 

fixation and labeling for tubulin (green), DNA (red) and f-actin (white).  At all time 

points, oocytes were surrounded with a thick actin cortex, hundreds of actin TZPs 

stretching from the neighboring cumulus and a dense actin cytoskeleton enclosing the 

nuclear envelope (fig. 10).  No intranuclear f- actin was seen within arrested (0 min) 

GV stage oocytes displaying either non-surrounded (fig. 10A, NSN) or surrounded 

nucleoli (fig. 10B, SN). Remarkably, a thick f-actin coiled filament formed within the 

GV after the initiation of maturation.  This structure was apparent during GVBD 

through diakinesis (fig. 10C-F) a time frame coinciding with the initial 30 and 60 

minutes of maturation.  These transient filaments appeared to branch between bundles 

of condensing chromatin (fig 10D) and were no longer detectable by 90-120 minutes 

of maturation by which time chromosome condensation had occurred. 

 

DISCUSSION 

The present studies address the question of how the topography of kinases and 

their targets is regulated during the meiotic cell cycle progression as exhibited by the 

mouse oocyte. Three main points emerge. The first is methodological. Given that 

protein phosphatases are instrumental in maintaining phosphorylation states of many 

kinases and their substrates, we adopted a fixation protocol that includes several 

phosphatase inhibitors to minimize the loss of phospho epitope integrity that occurs 

upon fixation. In this way, quantitative measures of both M-phase related (MPM2) 

and tyrosine kinase targets are stabilized at least at the level of the phospho epitopes 

being recognized by these immunological probes. Not only has this revealed discrete 

temporal and spatial patterns of phosphorylation during the rather synchronous cell 

cycle progression exhibited by in vitro matured mouse oocytes, but novel structural 

features in nuclear and cytoplasmic cytoskeletal elements were uncovered. Most 

dramatic perhaps is the demonstration of a transient assembly of actin filaments 

within the GV that appears to tether chromosomes during the active and early process 



 76

of chromosome condensation. This finding sheds new light on both older and recent 

inquiries [272-275] into the role of the actin cytoskeleton in chromosome function.  

 

Intracellular localization and dynamics of protein phosphorylation 

The current studies have demonstrated regional changes of protein 

phosphorylation during oocyte maturation.  Clone 4G10 antibody is a well 

characterized antibody that specifically recognizes a diverse array of tyrosine 

phosphorylated proteins.  We used this reagent to identify changes in pTyr proteins 

during in vitro maturation. Tyrosine phosphorylated proteins increased in both the 

cell cortex and the cytoplasm as the oocyte matured (fig 1-4).  This disagrees with 

previous studies showing no change in overall levels of pTyr proteins between GV 

and MII [270].  Interestingly, a recent study examining changes in protein 

phosphorylation and the kinome of porcine oocytes during maturation found that the 

number of tyrosine phosphorylated proteins increased was equal to the number that 

decreased during transitions from GV-MI and MI-MII [276].  This may explain why 

traditional global protein measurement methods are unable to detect small changes in 

protein phosphorylation.  

  Immunohistochemical labeling and confocal microscopy combined with 

image and statistical analysis has enabled us to further define localized changes at an 

intracellular level and with high spatial resolution.   That pTyr epitopes concentrate in 

cytoplasmic patches, MI and MII spindle poles and the oocyte cortex are novel 

observations that will inform future studies into the identity and function of 

subcellular domains (fig. 1).  While pTyr levels rose in all regions of the oocyte 

during the MI-MII transition, the change in cortical intensity was the most dramatic.  

Interestingly, culture media had a significant effect on the concentration of pTyr 

proteins in the cortex.  Supplemented IVMh media resulted in higher levels of cortical 

tyrosine phosphorylation that basal IVMb (fig. 4A).  Due to difficulties in timing of 

IVO versus IVM it is not currently known whether this higher level signifies 

improved oocyte quality.  Since cortical pTyr levels further increase at fertilization, 
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the levels of pTyr proteins present during MII arrest maybe important to proper sperm 

incorporation, fertilization success and zygotic development [277].  Previous studies 

have demonstrated an increase in embryo survival from oocytes matured in 

supplemented media [45]. Further studies will be necessary to determine whether 

fertilization and embryo developmental rates between oocytes matured under the 

current culture conditions are due to effects on the efficiency of tyrosine kinases or 

phosphatases. As shown here, Fyn kinase is a very likely candidate for such 

regulation and may be modified under less than optimal culture conditions.   

 MPM2 antibody was deployed here to track serine and threonine 

phosphorylated protein epitopes known to be phosphorylated by M-phase kinases 

during mitosis [278, 279].  This antibody has been used in our laboratory for the 

identification of M-phase protein phosphorylation in oocytes during in vitro 

maturation [247, 280].  These studies extend that work identifying unreported 

dynamics of the MPM2 labeled phosphoproteins.  The incorporation of phosphatase 

inhibitors in the fixation solutions and minimization of storage time is likely to be 

partly responsible for improved phosphoprotein preservation given the notorious 

stability of phosphatases.  As reported previously, MPM2 labeled MTOCs in the 

cytoplasm and near the GV at all stages of maturation.  MPM2 proteins also formed 

aggregates surrounding the condensing chromosomes as well as the meiotic spindle 

microtubules and spindle poles (fig. 9).  Of particular interest were aggregates of 

MPM2 proteins found within the GV that were closely associated with chromatin (fig 

9A-B).   The diversity detected between oocytes in the abundance, location and size 

of MPM2 aggregates within GV suggests the presence of protein assemblies, such as 

centrosomes are transient and subject to changes during meiotic arrest of GV intact 

oocytes.  Interestingly, our methodology also demonstrates the cytoplasmic 

localization of MPM2 proteins.  Unlike pTyr proteins which were localized directly at 

the cell cortex (fig 1-3), MPM2 proteins were concentrated sub-cortically and in a 

pattern that decreased in intensity towards the center of the oocyte (fig 5).  The 

concentration of MPM2 proteins increased steadily from GV to MII both in the 
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cortical region and the central cytoplasm (fig 6).  This was strikingly different from 

the changes in pTyr which remained relatively constant from GV to MI then 

significantly increased by metaphase-II.  This suggests a steady increase in MPM2 

phosphoproteins as maturation progresses.  However, a significant increase in 

tyrosine phosphorylation is associated specifically with metaphase-II arrest and 

preparation for fertilization. A division of labor between targets of tyr versus ser/thr 

kinases would be consistent with these observations although the identity of these 

components remained ill-defined with one exception as shown here. 

 Our recent studies have focused on the role of SFKs during oocyte maturation 

and fertilization [127, 134, 142].  The present data reinforce a role for Fyn kinase in 

what we suggest is an example of cortical maturation. Fyn kinase is associated with 

changes in cortical actin dynamics of cultured cells [281-283] and sertoli cells [284].  

Since pTyr proteins localize specifically at the oocyte cortex, we examined the 

localization of pTyr in oocytes from Fyn (-/-) mice to determine whether Fyn kinase 

participated in this phosphorylation event.  Interestingly, oocytes from wildtype 

control mice exhibited intense cortical pTyr localization as seen in the earlier studies.  

However, pTyr localization in Fyn (-/-) oocytes was heterogeneous wherein some 

oocytes showed no cortical staining while others displayed extremely low level and 

patchy staining at the cortex.  Expression of mitotic/meiotic cell cycle specific MPM2 

epitopes was not visibly affected by the lack of Fyn kinase (fig. 8A-B).  However, 

Fyn (-/-) oocytes lacked pTyr spindle pole labeling at MI or MII.  This distinct spatial 

change in spindle pole foci helps explain our previous data showing spindle and 

chromosome dysfunction during meiosis of Fyn (-/-) oocytes [127, 134]. Collectively, 

these findings implicate a role for Fyn kinase in establishing spindle pole integrity 

and chromosome segregation at meiosis I and II. Furthermore, the loss of cortical 

epitope in Fyn null oocytes suggests a role for Fyn kinase in oocyte cortical dynamics 

and preparation for fertilization.  Studies are ongoing in our laboratories to further 

define the functions of Fyn kinase in mouse oocytes. 
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Nuclear actin dynamics 

During these studies, a remarkable modification in nuclear actin was observed 

that we believe may be linked to separate roles for actin during the nuclear and 

cytoplasmic maturation of mouse oocytes. Phosphatase inhibitors were included in 

the fixation and processing steps as mentioned earlier and may account for these 

observations.  Since phosphatase activities are associated with changes in actin 

dynamics, inhibiting them may provide for better actin stabilization [226, 252, 285-

287].  Oocytes were cultured for short times (0, 30, 60, 90 or 120 minutes) to allow 

for the initiation of maturation, diakinesis and GVBD.  Interestingly, diakinesis was 

associated with the formation of a thick f-actin filament within the GV (fig 10 C-F).  

This actin structure was not seen in fully arrested oocytes (time 0 and held in cAMP 

supplemented media; fig. 10A-B).  It was also absent from nuclei with condensed 

chromatin.  While direct contact with chromatin was difficult to establish, we note 

that many earlier studies proposed a role for actin-based contraction during GVBD 

[271, 274].  Moreover, nuclear lamina contraction has been reported and together 

with the appearance of a contractile force during diakinesis [275, 288], these results 

uncover a very early and potentially relevant role for the cytoskeleton. Further studies 

are ongoing to evaluate actin involvement in spindle assembly and chromosome 

alignment. 

 In conclusion, our evidence suggests a separation of function in kinases that 

operate through distinct signaling pathways. That there is clear topographical 

segregation in epitope disposition suggests further that these pathways serve to 

integrate the progression of nuclear and cytoplasmic maturation in the mouse oocyte.  
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Figure 1.  Phospho-tyrosine proteins increase at MII and localize primarily to 
the oocyte cortex and within large cytoplasmic patches.  Oocytes were matured in 
vitro and fixed at specific times of maturation.  Two oocytes from each time were 
pooled together, labeled and imaged as a set to enable direct comparisons of 
fluorescence intensity between oocytes at different stages of maturation.  Complete 
serial z-sections of oocytes labeled with pTyr and imaged in sets were examined to 
identify patterns of pTyr proteins associated with cellular structures at each time point 
of maturation (H0=GV, H2=GVBD, H4=pre-MI, H8=MI, H16=MII).  pTyr labeled 
oocytes are shown here in the plane where chromatin was found.  Two to three 
sections have been compressed together to enable visualization of entire structures 
such as both poles of the spindles.  Image intensity has been increased in this figure to 
improve visualization of labeled structures.  Dense patches of pTyr proteins were 
seen in the cytoplasm of all oocytes and near to the nucleus in GV stage oocytes with 
both non-surrounded (NSN) and surrounded (SN) nucleoli.  pTyr proteins were 
associated with the cortex at all time points and with spindle poles (arrows) at both 
MI (H8; 4/5 IVMh and 4/6 IVMb) and MII (H16; 5/5 IVMh and 3/6 IVMb).  
(white=pTyr, red=red). 
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Figure 2
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Figure 2.  Patterns of tyrosine phospho-proteins change during meiotic 
maturation.  The oocytes in this figure were selected from a single set of oocytes 
imaged together as a set to demonstrate the actual differences of fluorescence 
intensity between GV, MI and MII.  Each image shown here is a single section (1µm 
thick) at the central plane.  The intensity of these images has not been modified as to 
enable a demonstration of fluorescence intensity differences between oocytes at 
different stages of maturation.  This is the same plane used for later measurements for 
linescans and fluorescence intensity comparisons.   As seen in fig. 1, pTyr proteins 
were found throughout the cytoplasm but congregated in cytoplasmic patches and at 
the cell cortex at all stages.  Overall intensity remained the same as oocytes matured 
from GV through GVBD to M-I.  However, pTyr levels in the cytoplasm and at the 
cortex were greatly increased at MII.  (white=pTyr, red=DNA). 
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Figure 3
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Figure 3.  Linescans demonstrate regional localization of tyrosine phospho-
proteins.  Metamorph imaging software was used to produce linescans of 
fluorescently labeled oocytes.  Linescans were drawn on the image from the central 
plane (from serial z-stacks) of each oocyte from the pTyr labeled sets (fig.1).  Two 
linescans (7 µm thick) were taken from each oocyte including (1) a straight line 
across the entire diameter of each oocyte at the median and (2) circumferential scan 
around the entire surface of each oocyte to include the oolema and cortical region.  
Linescans across the median (A, C, E and F) show low levels of pTyr proteins across 
the cytoplasm with increased intensity at the cortex.  The intensity of spikes at the 
cortex (*) and cytoplasm (*****) increase at MII.  The cortical (B, D, F and H) scans 
further show with an increase at MII.  (* oolema/cortex; ***** central cytoplasm; A-
B=GV, C-D=pre-MI, E-F=MI, G-H=MII) 
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Figure 4
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Figure 4.  Levels of pTyr proteins is increased significantly at metaphase-II. 
The same oocytes used for the linescan analysis were used for statistical comparisons 
of average fluorescent intensity.  This included the cortical (A) measurements from 
linescans seen in fig. 3 plus the central cytoplasm (B), ie that region of the cytoplasm 
not included in the cortical scans.  pTyr protein concentration in both the cortex and 
the cytoplasm were significantly increased at MII.  Cortical pTyr levels were higher 
in oocytes culture in IVMh as compared to IVMb (a, b, c are significantly different, 
P<0.05). 
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Figure 5 
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Figure 5.  Cytoplasmic MPM2 proteins increased steadily during maturation.  
Oocytes from the same cohorts as were used for the pTyr experiments were also 
sorted into sets, labeled and imaged for MPM2 epitope proteins.  Oocytes in this 
figure represent single sections at the central plane of oocytes from a single set all 
imaged together in order to show the changes in fluorescence intensity at different 
stages of maturation.  Almost no MPM2 was detectable in the cytoplasm of GV stage 
oocytes.  The level of intensity increased steadily from GV to MI to MII.  MPM2 
proteins did not associate specifically with the oocyte cortex. 
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Figure 6
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Figure 6.  MPM2 proteins increase during maturation and concentrate in the 
cytoplasm beneath the oolema.  Oocytes labeled for MPM2 proteins were compared 
by linescans similar to pTyr images (see Fig. 3).  Linescans across the median (A, C, 
E and F) demonstrate the steady increase of MPM2 proteins in both the central 
cytoplasm (*****) and the cortex (*) as oocytes mature from GV to MII.  
Fluorescence intensity was too low to measure at GV stage (A-B).  The cortical (B, 
D, F and H) scans further demonstrate the increase in MPM2 proteins especially at 
MI (F) and  MII (H).  (* oolema/cortex; ***** central cytoplasm; A-B=GV, C-
D=pre-MI, E-F=MI, G-H=MII) 
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Figure 7
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Figure 7.  The rise in MPM2 proteins is significant at MI and MII stages of 
maturation.  The average fluorescence intensity of MPM2 labeled oocytes were 
analyzed similar to pTyr protein analysis in fig. 4.  MPM2 protein concentration 
increased significantly in both the cytoplasm (A) and cortical (B) region.  Levels at 
MI and MII were significantly higher than earlier times.  MII levels were significantly 
higher than MI.  No differences were seen between culture treatments (IVMh, IVMb).  
(a, b, c are significantly different, P<0.05). 
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Figure 8
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Figure 8.  Fyn (-/-) oocytes exhibit reduced levels of pTyr proteins in the cortex 
while MPM2 proteins appear to localize normally to the spindle and spindle 
poles.  Fyn (-/-) and wildtype oocytes were collected at the GV stage and matured in 
vitro for 17 h.  Oocytes were then fixed, labeled with MPM2 or pTyr and imaged 
similar to those in the earlier studies.  The images of MPM2 labeled spindles (A-B) 
are compressions of 2-3 sections however, pTyr images (C-D) are single sections 
from the central plane of each oocyte.  There was no difference in MPM2 labeling on 
MII spindles or spindle poles of wildtype (A) or Fyn (-/-) (B) oocytes. Most (11/12; 
92%) wildtype control oocytes (C) exhibited intense cortical pTyr as seen in previous 
experiments (fig. 1-2).  However, only 4/13 (31%) Fyn (-/-) oocytes (A) had dense 
cortical pTyr similar to controls; 9/13 (69%) had greatly reduced levels of pTyr 
proteins in the cortex (D).  Oocyte (B) has severely disorganized chromosomes which 
are frequently seen in Fyn (-/-) oocytes [McGinnis et al 2009 in press].   (A-B; 
white=MPM2, red=DNA: C-D; white=pTyr, red=tubulin, white on red=DNA) 
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Figure 9
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Figure 9.  MPM2 proteins aggregate near to chromatin within the GV and 
associate with spindle microtubules and spindle poles.  Oocytes from the MPM2 
fluorescence intensity comparisons were examined for localization of MPM2 proteins 
to intracellular structures.  These images were extracted from these data sets 
including compressions of 2-3 sections to enable visualization of the entire structure.  
Dense patches of MPM2 proteins were seen to associate with chromatin within the 
GV stage oocytes.  The specific pattern of this labeling was diverse.  As 
chromosomes condensed at GVBD and began to organize at pre-MI, MPM2 patches 
were seen to remain near to the chromosomes.  At MI and MII, MPM2 localized to 
the spindle microtubules and the spindle poles.  (green=MPM2, red=DNA) 
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Figure 10
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Figure 10.  A single branched f-actin filament forms within the nucleus at 
diakinesis.  Oocytes cultured for 0, 30, 60, 90 or 120 minutes in IVMh medium were 
fixed, labeled and imaged by confocal serial z-scans.  For this figure, 3 sections (1 
µm each) were selected through the center of the GV then compressed into a single 
image.  A thickness of 3 sections (total 3 µm) was used so that each image could 
include the entire length of the nuclear actin filaments.  Fully arrested oocytes fixed at 
time 0 in cAMP media contained no actin filament: (A) GV stage oocyte with non-
surrounded nucleolus (NSN) collected directly from the ovary and fixed at time 0 
minutes; (B) GV  oocyte with surrounded nucleolus (SN) at time 0 min.  Oocytes 
fixed after 30 (C-D) or 60 (E-F) minutes of maturation had entered diakinesis and 
contained a single branching f-actin filament within the nucleus.  At 90 and 120 
minutes of culture, chromosomes had condensed and no actin filament was visible 
(not shown).  D and F are enlargements of the nuclear regions of C and E 
respectively.  (green=tubulin, white=f-actin, red=DNA) 
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Chapter Four 
 
 

Localized Activation of Src-Family Protein Kinases 
 in the Mouse Egg 

 
 
ABSTRACT 

Recent studies in species that fertilize externally have demonstrated that 

fertilization triggers localized activation of SFKs in the egg cortex. However, the 

requirement for SFKs in activation of the mammalian egg is different from lower 

species and the objective of this study was to characterize changes in the distribution 

and activity of SFKs during zygotic development in the mouse. Immunofluorescence 

analysis of mouse oocytes and zygotes with an anti-phosphotyrosine antibody 

revealed that fertilization stimulated accumulation of pTyr-containing proteins in the 

egg cortex and that their abundance was elevated in the region overlying the MII 

spindle. In addition, the poles of the MII spindle exhibited elevated pTyr levels. As 

polar body extrusion progressed, pTyr containing proteins were especially 

concentrated in the region of cortex adjacent to the maternal chromatin and the 

forming polar body. In contrast, pTyr labeling of the spindle poles eventually 

disappeared as meiosis II progressed to anaphase II. In approximately 24% of cases, 

the fertilizing sperm nucleus was associated with increased pTyr labeling in the 

overlying cortex and oolemma.  To determine whether SFKs could be responsible for 

the observed changes in the distribution of pTyr containing proteins, an antibody to 

the activated form of SFKs was used to localize activated Src, Fyn or Yes. Activated 

SFKs were found to be strongly associated with the meiotic spindle at all stages of 

meiosis II; however, no concentration of labeling was evident at the egg cortex. The 

absence of cortical SFK activity continued until the blastocyst stage when strong 

cortical activity became evident. At the pronuclear stage, activated SFKs became 

concentrated around the pronuclei in close association with the nuclear envelope. This 

pattern was unique to the earliest stages of development and disappeared by the eight 
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cell stage. Functional studies using chemical inhibitors and a dominant-negative Fyn 

construct demonstrated that SFKs play an essential role in completion of meiosis II 

following fertilization and progression from the pronuclear stage into mitosis.  These 

data suggest that while SFKs are not required for fertilization-induced calcium 

oscillations, they do play a critical role in development of the zygote. Furthermore, 

activation of these kinases in the mouse egg is limited to distinct regions and occurs 

at specific times after fertilization.  [McGinnis, LK, Albertini DF and Kinsey WH.  

Localized activation of Src-family protein kinases in the mouse egg. Dev Biol (2007) 

306:241-254] 

 

INTRODUCTION 

Src-family protein tyrosine kinases (SFKs) are cytoplasmic enzymes that can 

be targeted to plasma membrane microdomains where they typically act to transduce 

signals from external stimuli [289]. Signal transduction cascades involving SFKs 

such as Fyn, Src and Yes have been shown to play a major role during egg activation 

and early development in species that fertilize externally such as marine invertebrates, 

amphibians and fish [290-292]. In these species, SFKs are activated rapidly after 

fertilization and function in triggering the sperm-induced calcium transient that 

initiates the egg activation process [290, 293-297]. In the zebrafish oocyte, kinase 

activation was shown to be initiated at the point of sperm–egg fusion and to progress 

through the egg cortex [298]. Later stages of egg activation such as pronuclear fusion 

and mitosis also require PTK activity although the specific kinases involved in these 

steps have not been identified [299, 300].  Once development has begun, Fyn and Yes 

are required for cell movements involved in epiboly [1, 301] while Src and Yes 

function during cell intercalation and blastopore closure [302]. The role of SFKs in 

mammalian fertilization is clearly different from that in externally fertilizing species. 

For example, while mammalian eggs express Fyn, Yes and in some cases, Src [242, 

243] these kinases are not required for the unique sperm-induced calcium oscillations 

[241, 303, 304] which trigger egg activation in mammals [305].  Instead, these 
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calcium oscillations are initiated directly by a sperm-borne phospholipase that does 

not require PTK regulation [306]. The function of SFKs in later stages of mammalian 

fertilization has been addressed primarily through the use of parthenogenetic 

activation. Studies in mouse and rat demonstrate that agents which suppress SFK 

activation also inhibit the MII/anaphase transition induced by parthenogenetic 

activation in vitro. In addition, microinjection of active Fyn kinase has been shown to 

stimulate meiosis resumption in mouse and rat [242, 307]. A second requirement for 

SFK activity at S or S/G2 phase of the first mitotic division has been demonstrated 

through the use of chemical inhibitors such as genistein [264, 308].  Further analysis 

using GST fusion proteins encoding the SH2 domain of Fyn have confirmed the 

importance of SFK activity for development past the pronuclear stage [142]. 

Together, these observations indicate that SFK such as Fyn may play an important 

role in development of the mammalian zygote, but it is unclear which specific 

pathways are regulated during zygotic development.  

 The objective of the present study was to determine whether fertilization of 

the mouse oocyte triggers the global activation of SFKs in the egg cortex as occurs in 

lower species [298]. The approach was to first use antibodies to phosphotyrosine to 

establish which parts of the egg contain elevated levels of phosphotyrosine, and 

secondarily to use an antibody to activated SFKs to establish the distribution and 

activation pattern of this family of kinases. The results indicate that fertilization does 

stimulate PTK signaling in localized regions of the mouse egg. The activated SFKs 

are associated with meiotic and mitotic spindle microtubules and the pronuclear 

envelope. The activation pattern of these kinases is different from that in lower 

species such as zebrafish since even though pTyr labeling indicated that some 

tyrosine kinase was active in the egg cortex, the activated SFKs were restricted 

primarily to the spindle and the pronuclear envelope. One potential application of 

these studies could be to evaluate the quality of egg activation and zygote 

development under different conditions used in assisted reproductive technologies. 

Therefore, we have focused our morphological studies primarily on zygotes produced 
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by in vivo fertilization and not exposed to in vitro culture during recovery and 

fixation. 

 

MATERIAL AND METHODS 

Embryo and oocyte collection 

Oocyte cumulus complexes (OCC) and zygotes were collected from 6- to 7-

week-old CF1 female mice (Harlan Sprague–Dawley, Indianapolis, IN, USA).  

Females were stimulated with 5 IU eCG (Calbiochem, San Diego, CA, USA) 

followed by 5 IU hCG 48 h later. To produce in vivo fertilized embryos, female mice 

were mated with mature B6D2F1 (C57BL/6× DBA/2) male mice.  Embryos were 

collected every 15–30 min between 13.0 and 16.0 h post-hCG to provide a range of 

developmental stages from non-fertilized OCC to early pronuclei. Embryos were also 

collected at later stages of development (times post-hCG: 24 h=2 pronuclei, 48 h=late 

2 cell, 72 h=compacting 8 cells, 120 h blastocyst). Embryos and OCC were released 

from the oviducts directly into fixative with phosphatase inhibitors to avoid the 

possibility that the ex vivo environment or culture conditions might influence the 

activity of protein kinases or phosphatases in the egg.  

 

Western blot analysis 

MII oocytes collected as above were incubated in FHM (HEPES-buffered 

KSOM, Specialty Media Phillipsburgh, NJ, USA) containing 0.3 mg/ml 

hyaluronidase and 40 µM phenylarsine oxide and 100 µM sodium orthovanadate to 

remove attached cumulus cells. The oocytes were then washed three times in FHM 

medium, then excess medium was removed with a pulled glass pipet. The oocytes 

were immediately solubilized in a final volume of 10 µl of SDS–gel sample buffer 

containing 40 µM phenylarsine oxide and 100 µM sodium orthovanadate and stored 

at −70 °C. Samples were resolved on a 10% SDS–PAGE with a 4% stacking gel. The 

wells in the stacking gel were formed with a comb containing teeth 1 mm in width, 
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which facilitated analysis of very small sample volumes (typically 1 µl). 

Immunoblotting and detection was performed as previously described [298]. 

 

Fixation and immunohistochemical staining 

All eggs and embryos were fixed for 5 min at room temperature in FHM 

medium with 2% paraformaldehyde followed by 30 min at 35 °C in microtubule 

stabilization buffer (0.1 M PIPES, pH 6.9, 5 mM MgCl2·6H2O, 2.5 mM EGTA) 

containing 2% formaldehyde, 0.1% Triton X-100, 1 µM Taxol, 10 U/ml aprotinin and 

50% deuterium oxide [247]. After fixation, eggs and embryos were transferred into 

wash solution (PBS containing 2% BSA, 2% powdered milk, 2% normal goat serum, 

0.1 M glycine and 0.01% Triton X-100) and held overnight at 4 °C. All fixatives and 

wash solutions were supplemented with 40 µM phenylarsine oxide and 100 µM 

sodium orthovanadate to inhibit phosphatase activity. Cumulus cells were removed 

after fixation and immediately before staining by adding 0.3 mg/ml hyaluronidase to 

the wash solution for less than 1 min. Embryos were washed twice without 

hyaluronidase before labeling. 

To limit the potential effects of storage time on phosphorylated epitopes, all 

embryos were labeled within 24 h of fixation and imaged within 2 days after labeling. 

The clone 28 mouse monoclonal antibody (Biosource International, Camarillo, CA, 

USA) was used to localize activated forms of Src, Fyn and Yes, while a monoclonal 

antibody to the autophosphorylation site at Tyr416 (Nonphospho-Src(Tyr416),Cell 

Signaling Technology Inc., Danvers, MA) was used to detect inactive Src-family 

PTKs. An anti-phosphotyrosine antibody (clone 4G10, Upstate, Lake Placid, NY, 

USA) was used to localize tyrosine phosphorylated proteins. Embryos were co-

labeled with either rat monoclonal anti-tubulin (YOL 1/34, Abcam Inc., Cambridge 

MA, USA) or phalloidin conjugated with Alexa 568 (to label f-actin) to display 

cytoskeletal structures.  Secondary antibodies were goat anti-mouse Alexa 488 or 

goat anti-rat Alexa 568 (Molecular Probes, Eugene OR USA). Negative controls were 

prepared identically to the labeled samples however primary antibodies were pre-
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mixed with either phospho-L-tyrosine (clone 4G10) or clone 28 blocking peptide 

(EPQYQPGENL-COOH) synthesized by (Synpep Corp. Dublin, CA) at 1.0 µM. In 

experiments where both clones 28 and 4G10 were used, the embryos from each 

treatment were divided randomly after fixation and all embryos from each replicate 

were labeled and imaged at the same time. Embryos were labeled with primary 

antibodies at 35 °C for 1 h, washed 3× then labeled with secondary antibody for 1 h. 

After secondary labeling, embryos were transferred to a wash solution containing 1 

µg/ml Hoechst 33258 with or without Alexa 568-phalloidin and stored in the dark 

overnight at 4 °C. Embryos were mounted the following morning and imaged 

(mounting medium consisted of 1:1 glycerol: PBS supplemented with 5 mg/ml 

sodium azide and 1 µg/ml Hoechst 33258). All chemicals, hormones and reagents 

were purchased from Sigma Chemical Company, St. Louis, MO, unless otherwise 

stated. 

 

Imaging and data analysis  

Samples were imaged by serial z-sections (8 µm depth) on an inverted Zeiss 

LSM500 confocal microscope. The serial z-sections were used to detect 3-

dimensional relationships between the egg cortex, meiotic spindle and fertilizing 

sperm. Fluorescence intensity was quantitated by linescan and by area measurement 

analysis using Metamorph 6.2 (Universal Imaging Corp., Downington, PA). 

 

Pharmacological treatment of eggs fertilized in vitro 

In order to test the effects of Src-family PTK inhibitors on fertilization and 

initiation of embryonic development, a synchronized pool of zygotes was produced 

by in vitro fertilization, using methods previously published [309]. Briefly, oocyte 

cumulus complexes (OCC) were collected 14 h post-hCG from superovulated CF1 

female mice. Sperm were collected from the cauda epididymis of mature B6D2F1 

male mice and capacitated for 90 min in modified Tyrode's medium. OCC were 

released directly into fertilization drops of mKSOMaa medium (KSOMaa, Chemicon, 
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Temecula, CA) supplemented with 4 mg/ml BSA, 5.56 mM glucose and 1 mM 

glycyl–glutamine [310]. Capacitated sperm were added to OCC (1×106 /ml) and 

allowed 5 h for fertilization and early pronuclear formation.  Several PTK inhibitors 

were tested including: PP2 (10 and 100 µM; Calbiochem, San Diego, CA), SKI-606 

(1 and 10 µM; Calbiochem), PD168393 (0.5 and 5 µM; Calbiochem) and GTP-14564 

(2 and 20 µM; Calbiochem). Inhibitors were prepared as stock solutions in DMSO 

and stored at −20 °C. Culture medium was equilibrated in the CO2 incubator in 15 ml 

tubes for at least 2 h before culture. Immediately before adding embryos, each 

inhibitor was thawed and mixed with pre-equilibrated mKSOMaa medium and 50 µl 

drops were placed into NUNC 4-well plates. Each treatment drop was overlain with 

mineral oil (sterile filtered Sigma Embryo Tested Mineral Oil, cat.  M8410) 

containing the same concentration of the inhibitor. After 24 h culture, all embryos 

were fixed for immunofluorescence analysis as described above.  Statistical analysis 

of developmental success was performed using SigmaStat software (Jandel Scientific, 

San Rafael, CA). 

 

RESULTS 

Evidence for PTK activity in the mouse oocyte 

It is well established that the mammalian oocyte expresses active protein 

tyrosine kinases with the result that pTyr containing proteins accumulate in the egg 

[264, 304]. In order to gain an insight into the regions of the egg that are actively 

involved in PTK signaling during fertilization, we used a well- established 

monoclonal antibody to phosphotyrosine (4G10) to localize pTyr in mouse oocytes 

and zygotes. Our procedure entailed the aggressive use of phosphotyrosyl 

phosphatase inhibitors at all stages of sample preparation to prevent 

dephosphorylation of tyrosine residues by phosphatases present in the egg a and in 

the reagents used for immunofluorescence. Initial observations recorded at lower 

magnification Fig. 1, revealed that pTyr residues were distributed uniformly in the 

cytoplasm of the MII oocyte with some concentration in the cortex adjacent to the 
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MII spindle (Fig. 1A, white arrows). Fertilization triggered accumulation of pTyr in 

the egg cortex which was evident by early anaphase (Fig. 1B), remained elevated 

through telophase (Fig. 1C) and became less intense by the pronuclear stage (Fig. 

1D).  Visual analysis of over 60 oocytes and zygotes indicated that fertilization 

triggered increased accumulation of pTyr-containing proteins in the egg cortex. These 

changes in fluorescence intensity were quantitated in 22 oocytes or zygotes that were 

oriented such that the meiotic spindle or polar bodies could be clearly identified. The 

ratio of anti-pTyr fluorescence intensity in the egg cortex relative to that in the central 

cytoplasm was determined by quantitation of average pixel intensity (integrated pixel 

intensity/ pixel number). These measurements were made in the cortex (egg surface 

and cytoplasm 5 µm deep) and the central cytoplasm (region deep to the cortex) using 

Metamorph 6.2. As seen in Table 1, fertilization resulted in a 1.5-fold increase in the 

concentration of pTyr-containing proteins detected in the cortex over that in the 

central cytoplasm. The magnitude of the changes in pTyr content of the egg cortex 

relative to the central cytoplasm was also evident when fluorescence intensity was 

quantitated by linescan analysis through the equator of the egg. As seen in Fig. 2, 

fluorescence intensity was not concentrated in the egg cortex prior to fertilization. 

However, zygotes collected at anaphase II and telophase II exhibited a marked 

concentration of pTyr proteins in the egg cortex represented in Fig. 2 as the left and 

right extremes of the x axis. 

 In most cases, the cortical fluorescence intensity was not uniform over the 

entire egg, but appeared more intense over the half of the zygote containing the 

meiotic spindle (Fig. 1). In order to demonstrate the asymmetric nature of the cortical 

pTyr-specific fluorescence, the fluorescence intensity of the entire egg cortex was 

quantitated by circumferential linescan analysis and presented as a two dimensional 

graph in Fig. 3.   

Linescans were initiated in the cortex of the egg 180° opposite the meiotic 

spindle and progressed clockwise around the egg.  The pixel intensity was averaged 

over a region of cortex approximately 5 µm deep beginning at the egg surface. In this 
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analysis, the cortex adjacent to meiotic spindle appears near the middle of each graph 

and is indicated by arrows. These measurements were not intended to compare 

fluorescence intensity from egg to egg but rather to show the changes in relative 

fluorescence intensity from region to region in a single egg cortex. As predicted from 

the images presented in Fig. 1, the pTyr- specific fluorescence in the cortex appeared 

as a collection of microspikes of varying intensity across the circumference of the 

egg. In unfertilized oocytes, the amplitude of the microspikes near the meiotic spindle 

was, for the most part, similar in intensity to those elsewhere in the cortex.  However, 

during anaphase/telophase, cortical fluorescence intensity was 2- to2.5-fold higher in 

the hemisphere containing the maternal chromatin and spindle (arrows). Highly 

localized concentrations of pTyr containing proteins were consistently observed at the 

margins of the site of polar body extrusion possibly reflecting the remnants of the 

contractile ring.  

 

 
 

 

Table 1 
Comparison of immunofluorescence intensity in the cortical and central ooplasm 
 
Sample  n  Cortical/central SEM 
Unfertilized  7          1.144  0.0284 
Fertilized  12          1.671   0.0721 
 
In order to compare the level of bound anti-P-Tyr antibody in MII oocytes with that of zygotes 
fixed prior to the pronuclear stage, the fluorescence intensity per unit area of the egg cortex 
was calculated and expressed as a ratio to the intensity of the central cytoplasm of each egg or 
zygote. Fluorescence intensity was quantitated as pixel intensity in the green fluorescence 
channel using the region measurement tool in Metamorph 6.2. The region of each egg cortex 
was traced by hand and included the plasma membrane and the underlying cytoplasm 
approximately 5 µm deep. The region of the central cytoplasm was the remainder of the egg. 
The integrated pixel intensity of each region was divided by the number of pixels in each 
region. The ratio of cortical fluorescence intensity to central cytoplasmic fluorescence 
intensity was then calculated and the values represent the mean obtained from (n) oocytes or 
zygotes and is expressed ±SEM. Analysis by t-test revealed that there is a statistically 
significant difference between the input groups (P=<0.001). 
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At the pronuclear stage, fluorescence intensity in the cortex showed little 

evidence of polarity and was highly variable with scattered regions of more intense 

fluorescence distributed around the entire egg. Further observations made at higher 

magnification showed more clearly that, in the unfertilized egg, pTyr was 

concentrated in the cortex overlying the MII spindle (Fig. 4A).  In addition, pTyr was 

concentrated in regions of cytoplasm adjacent to the poles of the MII spindle (Figs. 

4B–D). pTyr was found concentrated at the spindle poles in the majority (19 of 24, 

79%) of unfertilized eggs and completely disappeared after fertilization by anaphase 

(0 of 18).  Another feature that became obvious at higher magnification was the 

observation of intense pTyr fluorescence in the plasma membrane or cortex 

immediately overlying some sperm that had recently fused with the egg (Fig. 5). 

Sperm in which the head appeared to be external to the egg plasma membrane (Fig. 

5A) were not associated with increased cortical fluorescence (0 of 7). However, 

approximately 24% (5 of 21) of the cases in which the sperm head was positioned just 

beneath the egg plasma membrane exhibited elevated pTyr labeling in the overlying 

egg cortex and plasma membrane (Figs. 5B–E). The fact that this feature was 

detected in only a subset of eggs that had incorporated sperm indicated that the pTyr 

accumulation may be a transient event. Examination of the sperm themselves 

indicated that while little or nor pTyr was detected in the head region, the entire 

sperm flagellum labeled with the pTyr antibody which was especially pronounced in 

the region of the mid-piece (Fig. 5A). 

In summary, these results clearly indicate that the MII oocyte responds to 

fertilization with intense PTK signaling that is localized to the cortex overlying the 

spindle as well as specific sites associated with the spindle poles, the site of sperm 

incorporation and the site of polar body extrusion. These signaling events are 

transient and are no longer detected at the mid–late pronuclear stage.   



 110

Evidence for activation of Src-family PTKs in the egg  

In order to determine whether the above increase in pTyr containing proteins 

could result from localized activation of SFKs, we used a phosphorylation site- 

specific antibody to detect activated Src-family members in the egg by 

immunofluorescence. The clone 28 antibody recognizes the dephosphorylated, C-

terminal tyrosine (QYQPG) and flanking sequence common to several SFKs [249]. 

This antibody can detect activated Src, Fyn and Yes, and possibly other Src-family 

members [291], and we have used it recently to detect activated SFKs in the zebrafish 

egg [298]. The specificity of this antibody in the mouse egg system was demonstrated 

by Western blot analysis of MII oocytes (Fig. 6) which showed that the clone 28 

antibody bound a single band of 59–60 kDa and that binding was blocked by excess 

peptide epitope (EPQYQPEGNL). 

 Immunofluorescence analysis of mouse oocytes before and at different times 

after fertilization demonstrated that activated SFKs were distributed uniformly 

throughout the cytoplasm of MII oocytes (Fig. 7A) and early zygotes (Figs. 7D–G).  

In distinct contrast to the pTyr labeling pattern, clone 28 binding exhibited no 

significant concentration in the egg cortex. However, the meiotic spindle was heavily 

labeled by the clone 28 antibody in all eggs examined (n=59) as seen at higher 

magnification in Fig. 7B. The localization of SFKs to the spindle resembled the 

results of a recent report [191] in which a monoclonal antibody (Nonphospho-Src 

(Tyr416)) against the autophosphorylation site of SFKs labeled the spindle in mouse 

oocytes. We have repeated their results (Fig. 7C) and it is clear that the clone 28 

antibody and the Nonphospho-Src(Tyr416)antibody label the spindle with similar 

morphology. Since the Nonphospho-Src(Tyr416) antibody binds to inactive SFKs, 

the result presented in Figs. 7B and C demonstrate that the spindle is associated with 

a population of SFKs that includes both inactive and active kinases. As development 

of the zygote progressed, the distribution of clone 28 labeling did not change during 

anaphase II (Fig. 7D), telophase (Fig. 7E) and the early pronuclear stage (Fig. 7F). 

The specificity of clone 28 binding to the spindle was demonstrated by incubating the 
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antibody with a blocking peptide (Fig. 7G) duplicating the epitope against which the 

antibody was designed. 

 Once meiosis was complete and zygotes reached the late pronuclear stage, the 

clone 28 antibody was found to label the pronuclear envelope (Figs. 8A and D). In 

cleavage stage mouse embryos, activated SFKs continued to be associated with the 

nuclear envelope of the 2-cell embryo (Figs. 8B and E) although the labeling was less 

intense than at the pronuclear stage. Embryos that were fixed during the process of 

mitotic division displayed activated SFKs associated with the mitotic spindle and 

midbody (Figs. 8C and G). 

 At compaction, activated SFKs were no longer associated with the nuclear 

envelope (Figs. 9A and D) and the cortex remained devoid of SFK activity. 

Blastocyst stage embryos also exhibited activated SFKs associated with mitotic 

spindles and midbodies (Figs. 9B and E, arrows). In addition, the blastocyst was the 

first developmental stage in which active SFKs were concentrated in the cortical 

cytoplasm of individual cells. This was most prominent in the inner cell mass cells 

but also visible in the trophoblast cells (Figs. 9E and F). Mitotic cells exhibited 

increased SFK activity in all regions of the cytoplasm (Figs. 9E and F, arrows). 

 In summary, even though the zygote cortex displayed fertilization-dependent 

accumulation of pTyr-containing proteins, activated SFKs were not detected in the 

zygote cortex. Instead, activated SFKs were localized to the meiotic and mitotic 

spindles as well as the nuclear envelope at the late pronuclear stage and early 2-cell 

stages. Once the embryo reached the blastocyst stage, cortical localization of 

activated SFKs was obvious in all cells of the blastocyst. Blastocysts also exhibited 

intense activation of SFKs in cells undergoing mitosis. 

 

Functional requirement for Src-family PTKs in zygote development 

In order to determine whether the catalytic activity of SFKs plays an 

important role in development of the mammalian zygote, we tested the effect of 

several PTK inhibitors as well as a dominant-negative mutant Fyn construct on 
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zygote development. These experiments were performed on eggs fertilized in vitro to 

ensure a synchronized population. MII oocytes were fertilized by incubation with 

capacitated sperm for a period of 5 h, then transferred to culture drops containing 

different concentrations of PTK inhibitor and overlain with oil equilibrated with the 

same concentration of inhibitor. Zygotes were cultured for an additional 24 h then 

scored for developmental progress. As seen in Table 2, 80% of the control zygotes 

treated with DMSO as a solvent control had reached the two cell stage. Zygotes 

treated with GTP14564 [311], an inhibitor of class III receptor tyrosine kinases (IC50 

0.3 µM), or PD168393, an inhibitor of the EGFr kinase (IC50 0.7 nM) [312], 

successfully developed to the two cell stage within 24 h. The SFK inhibitor PP2 had a 

small, but significant effect on zygote development at concentrations between 10 and 

100 µM, a range at which it could have non-specific effects on other protein kinases 

[313, 314]. However, the recently developed SFK inhibitor SKI-606 was much more 

effective at concentrations known to exhibit specificity in cell culture systems. 

Zygotes treated with SKI-606 exhibited a reduced rate of cleavage at 1 µM and were 

almost completely inhibited at 10 µM. Cell division was reduced to 44% at 2.5 µM, a 

concentration similar to the IC50 reported to inhibit proliferation of cultured somatic 

cells [250, 315]. Examination of the zygotes that failed to cleave as a result of 

treatment with SKI-606 revealed that most were arrested prior to completion of 

second polar body emission.  Typically, the MII spindle had rotated until it was 

perpendicular to the egg surface and all zygotes exhibited misplaced chromosomes 

and aberrant spindle microtubules. In addition, the treatment seemed to cause 

disruption of the microtubule dynamics in the egg resulting in some monopolar 

structures and astral arrays of microtubules under the egg cortex (Fig. 10).  Zygotes 

remained arrested in this configuration for as long as 24 h. When SKI-606 was added 

after meiosis was complete and two pronuclei had formed, development was still 

arrested prior to the first mitotic division (Table 2) demonstrating that zygotes require 

SFK activity at a second point during the first cell cycle.  
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 In an effort to confirm the role of SFKs in zygotic development without the 

use of chemical inhibitors, we tested the effect of a dominant-negative form of the 

Fyn kinase produced by mutation of Lysine 399 which is critical to catalytic activity 

[1]. As seen in Table 2, injection of pronuclear stage zygotes with mRNA encoding 

the dominant negative Fyn blocked development to the two cell stage with the 

majority of zygotes arrested with intact pronuclei (not shown).  Those zygotes 

injected with mRNA encoding native Fyn as a control reached the two cell stage 

normally. Together, these results indicate that the observed association of activated 

SFKs with the MII spindle and pronuclear envelope are likely to represent functional 

signaling events important for zygote development. 
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Table 2.  Effect of different PTK inhibitors on zygote development 
Treatment    Stage treated    n  % 2-cell  SEM 
DMSO    MII/anaphase   80  82.1   0.045 
PD168393 (5 µM)     ″  49  80.1   0.071 
GTP14564 (20 µM)     ″  50  78.9   0.071 
PP2 (10 µM)     ″  34  72.5   0.185 
(100 µM)     ″  37  33.7*   0.086 
SKI-606 (1 µM)     ″  72  72.3   0.154 
(2.5 µM)     ″  21  43.5*   0.165 
(10 µM)     ″  89  14.9*   0.086 
(10 µM)    Pronuclear  106  13.3*   0.033 
c-Fyn RNA (1.5 µg/µl)  ″  77  83.2   0.650 
dn-Fyn RNA (1.5 µg/ml)  ″  69  37.9*   4.550 

Mature, MII oocytes were collected from superovulated females and fertilized by incubation 
with capacitated sperm for 4.5 h as described in Materials and methods. The eggs were then 
transferred to small droplets of mKSOMAA containing the indicated inhibitor and overlain 
with oil equilibrated with the same inhibitor. This transfer was done either immediately after 
fertilization (MII/anaphase) or at the early pronuclear stage (pronuclear). For RNA injection, 
mRNA was transcribed in vitro and prepared as previously described [1], then pronuclear 
stage zygotes were injected with approximately 1–2 pg of RNA encoding native Fyn kinase 
(c-Fyn) or a catalytically inactive mutant kinase FynK299M [1] and cultured in normal 
mKSOMAA. The status of the zygotes was assessed at 24 h post-fertilization by examination 
by Hoffmann modulation or confocal fluorescence microscopy to establish whether sperm 
incorporation did occur and whether cell division had occurred. Values represent the mean 
from at least two experiments. *Indicates that the value is significantly different from the 
DMSO control group as determined by t-test (P<0.05). 
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DISCUSSION 

Numerous studies involving chemical inhibitors, dominant negative fusion 

proteins and exogenous, recombinant kinases have demonstrated that PTKs including 

SFKs, play an important role in activation of eggs from non-mammalian species. 

These species typically exhibit a rapid activation of SFKs which may play a role in 

sperm–egg fusion [316] and are required for the rapid, high amplitude calcium 

transient that triggers egg activation [292]. In addition, PTK activation has been 

observed later in zygotic development and is required for steps involved in pronuclear 

migration and fusion [299, 300] as well as developmental competence [1, 317].  The 

extent to which these pathways are required in mammalian fertilization is now the 

subject of much investigation. Recent studies have clearly shown that SFK activity is 

not required for the repetitive calcium oscillations that trigger activation of the mouse 

oocyte [241, 304] highlighting differences between fertilization in mammals and 

lower species that fertilized externally. However, the experiments to date do indicate 

that PTKs are important for later aspects of zygotic development.   Analysis of 

mammalian egg activation through the use of chemical inhibitors and SH2 domain-

containing fusion proteins has demonstrated that MII resumption induced 

parthenogenetically required SFK activity [242, 307]. However, MII resumption 

induced by sperm injection has proven more difficult to inhibit with these reagents 

[142]. Evidence for PTK functions later in zygote development was first obtained 

with the chemical inhibitor genistein [264, 308], which blocked development prior to 

the exit from S-phase of the first zygotic cell cycle. Similarly, microinjection of a 

fusion protein encoding the SH2 domain of Fyn kinase caused developmental arrest at 

the late pronuclear stage [142]. Together these studies suggest that, while SFKs may 

not be critical for calcium signaling at fertilization in mammals, they do play 

significant roles in later events critical to development of the mammalian zygote.   

The signaling mechanisms present in the mammalian oocyte prior to 

fertilization include receptor protein tyrosine kinases such as EGF receptor [318] and 

c-Kit [319], as well as the SFKs Yes, Fyn and, in some cases, Src [241, 242]. While 
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direct measurement of PTK activity in mammalian eggs has proven difficult [243], 

the presence of active PTK signaling (phosphorylation greater than 

dephosphorylation) can also be inferred by the accumulation of the pTyr reaction 

product which can be detected either by chemical means [264] or with anti-pTyr 

antibodies [304]. These studies have indicated that since the amount of pTyr in the 

egg increased after fertilization, the balance between PTK and PTPase shifts after 

fertilization such that pTyr is allowed to accumulate. In the present study, we have 

used immunofluorescence localization of pTyr-containing proteins as a method to 

detect increased PTK signaling within different subcellular compartments of the 

zygote. This study was made possible by careful attention to controlling post-fixation 

dephosphorylation of egg proteins through the use of the covalent PTPase inhibitor 

phenylarsine oxide at all stages of fixation and processing. The results demonstrated 

that increased PTK signaling occurs in several different subcellular compartments 

following fertilization of the mouse egg. 

 Immunofluorescence analysis of pTyr accumulation during fertilization and 

zygote development revealed that fertilization is followed by highly localized changes 

(both increases and decreases) in PTK signaling in the egg. The unfertilized MII 

oocyte was relatively quiescent with a low level of pTyr distributed fairly evenly 

throughout the oocyte with only a slight concentration of pTyr in the cortex adjacent 

to the MII spindle and at the spindle poles. Fertilization resulted in a significant 

accumulation of pTyr in the zygote cortex indicating that increased PTK signaling 

was occurring in this compartment. The distribution of cortical pTyr exhibited a 

distinct polarity in most zygotes with the highest concentration of pTyr in the 

hemisphere associated with the meiotic spindle.  During anaphase, the region directly 

overlying the spindle (corresponding generally with the cortical granule free domain 

[320] was usually most intensely labeled by the anti-pTyr antibody. This suggests that 

PTK signaling may play an important role in either actin-mediated events that modify 

this region of cortex, or in other signaling pathways such as MAPK [321] or PAR-3 

[322], which characterize this important region. Within the zygote cortex, further 
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concentrations of pTyr were detected at the shoulders of the emerging polar body 

associated with the region occupied by the contractile ring. The contractile ring in sea 

urchin embryos has been associated with ganglioside-1 and cholesterol-rich 

microdomains that are characterized by intense PTK signaling [323], and it is likely 

that a similar mechanism is employed during polar body extrusion. 

 While fertilization caused an increase in PTK signaling in the egg cortex, the 

highly localized accumulation of pTyr at the spindle poles decreased as anaphase 

progressed and disappeared at telophase. The fact that PTK signaling at the spindle 

poles declined as meiosis progressed indicates that this pathway is likely linked to the 

cell cycle events that control spindle function. Enzymes such as MAPK [324] and 

polo like kinase [325-327]  which are substrates for PTKs and have been localized to 

spindle poles are likely targets for PTK signaling in this region. 

 Another highly localized PTK signaling event was detected in the cortex 

overlying the site of sperm incorporation. Since pTyr concentration was found in only 

24% of the sperm incorporation sites observed, we infer that it could represent a 

transient signaling event. This event was not detected in the early stages of sperm 

incorporation such as sperm–egg attachment or formation of the fertilization cone. 

Instead it was apparent only after the sperm head was fully incorporated and 

generally when nuclear decondensation had begun. It is not clear whether the pTyr 

containing proteins observed overlying the sperm head were egg proteins or were 

contributed by the sperm. It is also unclear whether they were phosphorylated by a 

PTK derived from the egg or the sperm. The timing of this localized signaling event 

indicates that it does not represent the phosphorylation of uroplakin III, which occurs 

rapidly in the Xenopus oocyte and is thought to function in sperm–egg fusion [316]. 

In any case, this interesting finding demonstrates that the site of sperm 

incorporation/decondensation is associated with highly localized PTK signaling. 

 The above results raise the question of which PTKs in the egg are responsible 

for the localized changes in protein tyrosine phosphorylation. The recent development 

of phosphorylation site-specific antibodies that recognize the activated form of 
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different PTKs has provided a method to identify which PTKs are activated in 

different subcellular compartments. As an initial step, we have used the clone 28 

antibody [249] which is specific for the activated form of SFKs and has been used to 

demonstrate highly localized changes in SFKs activity in tissues ranging from kidney, 

peripheral nerve, endometrium and various cancers [328-330].  One limitation is that 

since the sequence of amino acids flanking the C-terminal tyrosine is highly 

conserved among Src-family members, this antibody cannot differentiate among the 

different family members. However, only a limited number of SFKs have been 

detected in eggs of different species [242, 331, 332].  Therefore, the kinases detected 

by the clone 28 antibody in the egg probably include Fyn, Yes and possibly Src, 

although other SFKs may contribute to our results. The antibody would not be able to 

detect the closely related Abl, the receptor type PTKs such as Kit or EGF receptor or 

other PTKs such as FAK or JAK.   

 The most surprising observation was that activated SFKs were not highly 

localized to the zygote cortex which exhibited such a dramatic increase in pTyr after 

fertilization. We have previously shown that Fyn kinase is concentrated at the cortex 

of the mouse egg [142] but the present results indicate that in the mouse egg, Fyn 

must remain inactive in this compartment until later in development.  This 

observation contrasts with our results in the zebrafish egg which exhibited cortical 

activation of SFKs at fertilization [298]. Instead, the results in mouse demonstrated a 

very striking association of activated SFKs with active spindle structures (both 

meiotic and mitotic) as well as midbodies. This finding confirms earlier results 

obtained with this same antibody in somatic cells [333-335].  Localization of active 

SFKs to the spindle also correlated well with the demonstration that Fyn kinase was 

tightly bound to the meiotic spindle in rat oocytes [129]. A similar approach was used 

by Zheng et al., 2007 [191] to detect SFKs in the mouse oocytes.  Their results 

demonstrated that an antibody to non-activated SFKs (Nonphospho-Src (Tyr416)) 

also bound to the MII spindle with a morphology similar to that reported here for the 

clone 28 antibody. The fact that both active and inactive SFKs were associated with 
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the spindle at all stages of spindle function suggests that this signaling mechanism 

may play a role in maintenance of the spindle structure or function. For example, 

tyrosine phosphorylation of CDC2 has been linked to its ability to drive assembly of 

the mitotic spindle in yeast [336]. 

 In addition to the spindle, the second most obvious site of SFK activation was 

at the pronuclear envelope of late pronuclear stage zygotes.  We have previously 

demonstrated that Fyn kinase associated with the pronuclear envelope [142], so it is 

likely that Fyn represents some of the activated SFKs detected by the clone 28 

antibody near the pronuclear membranes. The association of active PTKs with the 

nuclear envelope remained high at the 2-cell stage but was much reduced by the four-

cell stage and was not evident in the nuclei of blastocysts or in somatic cells such as 

cumulus cells. The demonstration of activated SFK located at the surface of the 

nuclear envelope during pronuclear through the two cell stage correlates well with 

functional data demonstrating that PTK activity and SFK activity specifically is 

required at this stage. For example, chemical PTK inhibitors have been shown to 

cause zygotic arrest at this stage [264, 308] and GST fusion proteins encoding the 

SH2 domain of Fyn caused mouse zygotes to arrest at the late pronuclear or two cell 

stage. While SFK activation has been shown to play a role in cell cycle events in 

somatic cells [337], the fact that intense, nuclear envelope-associated PTK activation 

was primarily observed at the 1–2 cell stage indicates that this must represent a 

zygote-specific function, possibly involving alterations in nuclear structure associated 

with zygotic gene activation. 

 The use of pharmacological inhibitors specific for SFKs has included studies 

of the PP2 which blocks MII resumption in response to parthenogenetic stimuli but 

only at high concentrations [242, 307]. SU6656, which appears to become 

sequestered in vacuoles in the egg, has little effect on fertilization [241]. In the 

present study, we have tested the recently developed quinolinecarbonitrile derivative 

SKI-606 which combines high specificity for SFKs with superior aqueous solubility 

and stability [250].  The compound inhibits Src in vitro with an IC 50 of 1.2 nM, 
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while it exhibited an in vitro IC50 of 2.6 µM for the receptor PTK ErbB-2, and 19 µM 

for the Ser/Thr kinase Cdk4 [251]. Like PP2 (Clark and Peterson, 2003), SKI-606 

also inhibits the closely related Abl kinase with an IC50 of 1.0 nM. The compound 

readily penetrates the plasma membrane, blocking Src kinase activity in cultured cells 

with an IC50 of 250 nM and Src-dependent cell proliferation with an IC50 of 1.5–2.5 

µM. The stability of this compound in aqueous media leads to its ability to inhibit 

tumor growth in vivo with an IC50 of 250 nM [315] and the compound is now 

undergoing clinical trials for treatment of human cancer (ClinicalTrials.gov). We 

found this compound to block meiosis II completion and cause abnormal spindle 

structures and a high frequency of misplaced chromosomes. When added after 

meiosis was complete, it blocked development to the two cell stage. In order to 

confirm this result by another means and begin the process of determining which 

SFKs are involved in different stages of zygotic development, we used a dominant-

negative form of Fyn kinase introduced by RNA injection. The results of this 

experiment indicated that Fyn is likely to be a key component of those SFKs required 

for zygotic development. The use of kinase-inactivating mutations to produce 

dominant-negative forms of SFKs has been successfully employed in developmental 

studies before [302]. The kinase inactivating point mutation used in FynK299M has 

the advantage that the U, SH3 and SH2 protein interaction domains remain intact and 

can compete with the native Fyn for protein interactions occurring both upstream and 

downstream. To the extent that the specificity of these interactions is common to 

other Src-family members, the dominant-negative construct can be expected to 

compete with other Src-family members and thereby block compensation by these 

kinases. This provides an advantage over single gene knockout or RNAi knockdown 

studies but makes it more difficult to identify the role of each specific kinase. While 

SFKs are well known to share overlapping specificity, it is unlikely that non-Src-

family PTKs would be affected by this dominant-negative construct since they would 

not share the combination of SH2, SH3 and U domain specificities. 
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 In summary, the present study has demonstrated that fertilization in mammals 

results in highly localized PTK signaling events associated with specific regions of 

the egg cortex, meiotic spindle and pronuclear envelope. Their localized nature and 

differential timing indicates that they are likely under different control mechanisms in 

the zygote. The SFKs, which are highly concentrated in the egg cortex, were not 

activated significantly in this compartment and it is likely that other PTKs are 

responsible for the intense tyrosine phosphorylation of proteins in the cortex of the 

mouse egg. Instead, the SFKs appeared to play roles in spindle structure or function 

as well as nuclear events unique to the zygote and early cleavage stages. 
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Fig. 1. Effect of fertilization on the distribution of  pTyr-containing egg proteins.  
MII oocytes were recovered from the oviducts of superovulated mice at 14 h post-
hCG and fertilizing eggs and zygotes were collected from superovulated mated 
females at 13.0–16.0 h post-hCG. The oocytes or zygotes were dissected free of the 
oviduct in the presence of fixative and processed for immunofluorescence as 
described in Materials and methods. The samples were stained with the mouse anti-
pTyr monoclonal 4G10 followed by Alexa-488-goat anti-mouse IgG (green) as well 
as Hoechst 33258 (white) to detect DNA. In some cases, the spindle was stained with 
rat monoclonal YOL 1/34 anti-tubulin, which was detected by Alexa-568-goat anti-
rat (red). Samples were examined on a Zeiss LSM500 confocal microscope as 
described in Materials and methods. (A) MII oocyte; (B) fertilized, early anaphase; 
(C) fertilized telophase; (D) fertilized, early pronuclear stage (16 h post-hCG).  
Specificity was demonstrated by incubating eggs in the presence of the 4G10 
antibody+1 mM pTyr (E). Magnification is indicated by the bars tt represent 10 µm.  
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Figure 2
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Fig. 2. Changes in the relative distribution of pTyr in response to fertilization.  In 
order to demonstrate the effect of fertilization on the distribution of pTyr residues, 
transverse linescan analysis was performed on images from eggs and zygotes labeled 
with the anti-pTyr antibody as in Fig. 1. Measurement lines were drawn originating 
from a point adjacent to the meiotic spindle and passing through the center of the egg 
to the opposite side. Pixel intensity along the course of the lines is presented in the 
vertical axis. Measurements made from representative unfertilized eggs are presented 
on the left and those made from different stages of zygote development up to the 
pronuclear stage. 
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Figure 3 
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Fig. 3. Distribution of pTyr-containing proteins in the egg cortex.  In order to 
demonstrate the asymmetric distribution of P-Tyr in the egg cortex, the fluorescence 
intensity of eggs and zygotes labeled with the anti-P-Tyr antibody as in Fig. 1 was 
quantitated by circumferential linescan analysis using Metamorph 6.2 and is indicated 
on the vertical axis.  A measurement line was traced on images beginning from a 
position at the egg surface opposite the meiotic spindle and progressed clockwise 
around the egg cortex to include the entire cortex (horizontal axis). The position of 
the spindle is therefore near the center of each scan and is indicated by the arrows. 
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Figure 4
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Fig. 4. Localization of pTyr proteins in the region of the meiotic spindle.  Oocytes 
were collected from the same replicates as shown in Fig. 1. Panel A is a compression 
of  3 serial confocal images showing the overlying cortex and the full length spindle 
with a small spot of pTyr label visible at the bottom spindle pole (A). Panels B and C 
are two individual scans of a single MII spindle showing pTyr-specific labeling at 
both spindle poles, top (B) and bottom (C). Panel D is an MII spindle from a second 
egg in which the layers have been compressed to allow visualization of both spindle 
poles on a single image. Panels A–C were co-labeled with YOL 1/34 antitubulin and 
Alexa-568 (red) to show spindle microtubules, while Panel D co-labeled with Alexa 
568-phalloidin to identify f-actin. Magnification is indicated by the bar 



 130

 

 
 

Figure 5 



 131

 

Fig. 5.  pTyr-containing proteins in the egg cortex overlying the decondensing 
sperm head. Samples prepared as in Fig. 1 were stained with anti-pTyr followed by 
Alexa-488-goat anti-mouse IgG (green) and Hoechst 33258 (white) to label DNA. 
Fertilizing (capacitated) sperm bound to the oolemma exhibited pTyr proteins in the 
sperm midpiece; however, specific pTyr label was not detected in the head region 
(A). As fertilization progressed, decondensing sperm heads located deep to the 
oolemma were associated with an increase in pTyr-containing proteins within the egg 
cortex immediately overlying the sperm nucleus (B–D). Occasionally, the male 
pronucleus formed and remained adjacent to the egg cortex for some time and the 
pTyr label continued to be detected in the cortex near the paternal chromatin (E). As 
the sperm DNA migrated away from the cortex, the pTyr label disappeared (not 
shown). Magnification is indicated by the bar that represents 10 µm. 
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Fig. 6. Detection of Src-family PTKs by Western blot of mouse oocytes.  Samples 
of unfertilized, cumulus-free oocytes were loaded on multiple lanes of a 10% SDS–
PAGE gel (7.5 eggs/lane) and  electrophoresed, then blotted to a nylon membrane and 
blocked with TTBS+5% dried milk containing phosphatase inhibitors as described in 
Materials and methods. Lanes were incubated with a control mouse monoclonal IgG 
(lane A), clone 28 IgG+1 mM blocking peptide (lane B) or clone 28 IgG (lane C), at a 
concentration of 1 µg/ml overnight. The blots were then w shed, incubated with goat 
anti-mouse IgG peroxidase, and bound antibody was localized by 
chemiluminescence. The position of molecular weight standards is indicated (in kDa) 
at left, and the position of the Src-family PTK(s) detected with the clone 28 antibody 
is indicated by the arrow at right. 
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Fig. 7. Active Src-family PTKs associate with spindle microtubules. Oocytes and 
zygotes fixed at different stages of zygote development were labeled with a 
monoclonal antibody against activated Src-family PTKs (clone 28) or with the 
Nonphospho-Src (Tyr416) antibody specific for inactive Src-family PTKs (Panel C 
only). Bound antibody was detected with Alexa-488-goat anti-mouse IgG (green) and 
Hoechst 33258 (white) was used to demonstrate chromatin. Active SFKs were 
detected as a low level of uniform fluorescence in the cytoplasm of oocytes as well as 
zygotes up to the early pronuclear stage. In contrast, high levels of both activated 
SFKs (A, B) and inactive SFKs (C) were associated with the spindle microtubules of 
the unfertilized MII oocytes indicating that the spindle is associated with a population 
of SFKs, some of which are active. Active Src-family PTKs detected with the clone 
28 antibody remained associated with the spindle from early anaphase (D) and 
telophase (E). When the male and female pronuclei formed, the active SFKs became 
uniformly distributed in the cytoplasm again (F). Specificity was demonstrated by 
incubating the sample with the clone 28 antibody in the presence of the synthetic 
peptide (EPQYQPGENL) at 1 mM (G).   Magnification is indicated by the bar that 
represents 10 µm. 
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Figure 8 
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Fig. 8. Activated SFKs associate with the nuclear envelope at the late pronuclear 
stage.  Later pronuclear stage zygotes (24 h post-hCG), 2-cell (48 h) and 3-to 4-cell 
(60 h) embryos were fixed and labeled with the clone 28 antibody as described for 
Fig. 5. Activated SFKs were localized at or near the pronuclear envelope (A, D). This 
peri-nuclear localization was still detectable at the 2-cell stage (B, E). During mitosis 
(C, F), activated SFKs were associated with the spindle (open arrow) and midbody 
microtubules (closed arrow). Magnification is indicated by the bar that represents 10 
µm. 
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Figure 9
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Fig. 9. Distribution of activated SFKs in the morula and blastocyst.  Embryos 
were fixed at the compaction (48 h post-hCG) and the expanded blastocyst (120 h 
post-hCG) stages, then labeled with the clone 28 antibody (green) as well as Alexa 
568-phalloidin (red) to visualize f-actin. At the 8-cell compacted stage, activated 
SFKs were no longer associated with the nuclear envelope and were evenly 
distributed throughout the cytoplasm. In blastocyst stage embryos (B, C, E, F), 
activated Src-family PTKs were concentrated at the cortex of most inner cell mass 
and trophoblast cells as well as at mitotic spindles and midbodies (arrowheads). At 
higher magnification (C, F) activated Src-family PTKs were concentrated in cells 
actively undergoing mitosis (arrows). Magnification is indicated by the white bar that 
represents 10µm. 
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Fig. 10. Inhibition of Src-family PTK activity disrupted normal microtubule 
dynamics during meiosis II. Mature, MII oocytes were fertilized in vitro for 5 h, 
then transferred to medium containing SKI-606 (10 µm) (A) or DMSO (B).  Zygotes 
were examined at 24 h post-IVF when most controls were at the two cell stage. All 
embryos that failed to cleave to the two cell stage were fixed and stained with anti-
tubulin (green) and Hoechst 33258 (white). Panel A demonstrates typical SKI-606-
treated zygotes, and Panel B demonstrates the morphology of DMSO-treated controls 
that failed to cleave within 24 h.  Magnification is indicated by the bar which 
represents 10 µm. 
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Chapter Five 
 

Conclusions 
 

Mammalian oocytes engage in a remarkable series of cytoskeletal and cell 

cycle based modifications that prepare the oocyte for the initiation and continuance of 

development. Multiple signaling pathways appear to operate during the process of 

oocyte maturation to ensure that the quality of the cytoplasm and genome will meet 

the standards required to initiate and complete development. 

 Oocyte maturation invokes complex signaling pathways to achieve 

cytoplasmic and nuclear competencies for fertilization and development.  The Src-

family kinases FYN, YES and SRC are expressed in mammalian oocytes but their 

function during oocyte maturation remains an open question.  Using chemical 

inhibitor, siRNA knockdown, and gene deletion strategies the function of Src-family 

kinases was evaluated in mouse oocytes during maturation under in vivo and in vitro 

conditions.   Suppression of SFKs as a group with SKI606 greatly reduced meiotic 

cell cycle progression to metaphase-II.  Knockdown of FYN kinase expression after 

injection of FYN siRNA resulted in approximately 50% reduction in progression to 

metaphase-II similar to what was observed in oocytes isolated from FYN (-/-) mice 

matured in vitro. Meiotic cell cycle impairment due to a  Fyn kinase deficiency was 

also evident during oocyte maturation in vivo since ovulated cumulus oocyte 

complexes collected from FYN (-/-) mice included immature metaphase-I oocytes 

(18%). Commonalities in meiotic spindle and chromosome alignment defects under 

these experimental conditions demonstrate a significant role for Fyn kinase activity in 

meiotic maturation. 

 Kinases and their targets require specific regional distributions to effect 

changes in cell function.  To examine this process during meiotic maturation, the 

protein phosphorylation patterns were mapped topographically over the course of 

meiotic cell cycle progression in in vitro matured mouse oocytes. Oocytes collected at 

the GV stage were matured in vitro in either a basal embryo medium (IVMb) or a 

medium designed to improve oocyte developmental quality (IVMh). After meiotic 
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reinitiation, oocytes matured for 0, 2, 4, 8 and 16h were fixed and probed for 

phosphotyrosine (pTyr) or mitosis associated phosphoserine/threonine (MPM2) 

epitopes.  Quantitative and qualitative analyses were performed on oocytes at 

progressive stages of maturation using confocal microscopy and image analysis.  

pTyr epitope was evident  throughout the cytoplasm at all stages with intense staining 

at the cortex.  Cytoplasmic and cortical labeling increased significantly between MI 

and MII.  Supplemented media significantly increased cortical levels of pTyr proteins 

at MII when compared to oocytes matured under IVMb conditions.   In contrast, 

MPM2 epitope was distributed in patterns distinctly different from those bearing 

pTyr.  Cytoplasmic MPM2 epitope localized to the meiotic spindle, spindle poles and 

cytoplasmic MTOCs but was not detectable in the cortex.  Cytoplasmic MPM2 

localized in a subcortical region.  In meiotic spindles, pTyr epitope was concentrated 

at spindle poles whereas MPM2 was distributed throughout the spindle in a pattern 

distinct from pTyr. Both cortical and spindle pole pTyr epitopes were absent in 

oocytes obtained from Fyn (-/-) oocytes suggesting a role for the Fyn tyrosine kinase 

in meiotic spindle integrity and cortical remodeling. These findings demonstrate that 

tyrosine kinases impose spatially discrete patterns of protein phosphorylation that 

may underlie the distinction between nuclear and cytoplasmic maturation in 

mammalian oocytes. 

 Recent studies in species that fertilize externally have demonstrated that 

fertilization triggers localized activation of Src-family protein kinases in the egg 

cortex. However, the requirement for Src-family kinases in activation of the 

mammalian egg is different from lower species. Therefore, we examined changes in 

the distribution and activity of SFKs during zygotic development in the mouse. 

Immunofluorescence analysis of mouse oocytes and zygotes with an anti-

phosphotyrosine antibody revealed that fertilization stimulated accumulation of pTyr-

containing proteins in the egg cortex and that their abundance was elevated in the 

region overlying the MII spindle. In addition, the poles of the MII spindle exhibited 

elevated pTyr levels as seen in our earlier studies. As polar body extrusion 
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progressed, pTyr containing proteins were especially concentrated in the region of 

cortex adjacent to the maternal chromatin and the forming polar body. In contrast, 

pTyr labeling of the spindle poles disappeared as meiosis II progressed to anaphase II. 

In approximately 24% of cases, the fertilizing sperm nucleus was associated with 

increased pTyr labeling in the overlying cortex and oolema.  To determine whether 

SFKs could be responsible for the observed changes in the distribution of pTyr 

containing proteins, an antibody to the activated form of SFKs was used to localize 

activated Src, Fyn or Yes. Activated SFKs were found to be strongly associated with 

the meiotic spindle at all stages of meiosis II; however, no concentration of labeling 

was evident at the egg cortex. The absence of cortical SFK activity continued until 

the blastocyst stage when strong cortical activity became evident. At the pronuclear 

stage, activated SFKs concentrated around the pronuclei in close association with the 

nuclear envelope. This pattern was unique to the earliest stages of development and 

disappeared by the eight cell stage. Functional studies using chemical inhibitors and a 

dominant-negative Fyn construct demonstrated that SFKs play an essential role in 

completion of meiosis-II following fertilization and progression from the pronuclear 

stage into mitosis.  These data suggest that while SFKs are not required for 

fertilization-induced calcium oscillations, they do play a critical role in development 

of the zygote. Furthermore, activation of these kinases in the mouse egg is limited to 

distinct regions and occurs at specific times after fertilization.   

 Thus, previously unanticipated functions for SFKs have been identified for the 

first time that mediates the spatial and temporal remodeling of cytoskeleton and cell 

cycle during oocyte maturation and early development. These findings will have an 

immediate impact on the field of human ARTs as this pathway has been completely 

overlooked up to now.   
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Chapter Six 
 

Future Directions 
 

 
 The GV stage oocyte contains large amounts of stored maternally derived 

mRNA.  These maternal mRNAs are selectively translated at specific times during 

oocyte maturation and embryonic development.  Many mRNAs are degraded during 

maturation from GV to MII stages while others are recruited so that their protein 

products enable essential processes during fertilization and later embryonic 

development.  In vitro maturation of oocytes has been shown to cause misregulation 

of these processes leading to aberrant levels of mRNA at MII and early embryonic 

stages [338, 339].  The most stable transcripts are molecules involved in kinase 

signaling pathways [339].  Therefore preservation of kinase signaling pathways is 

required for the maintenance of proper oocyte maturation leading to healthy 

offspring.  The following kinase pathways have all been implicated in oocyte 

maturation:  Cdk1/Cyclin B, MAPK, PI3K, hormone receptors (androgen, estrogen 

and progesterone), integrin receptors, growth factor receptors (EGF, PDGF, Kit, 

IGF1) and PKA.  Interestingly, all of these pathways intersect with the SFK signaling 

pathway.   

Our studies have identified SFKs, especially Fyn kinase as an essential 

signaling pathway during oocyte maturation and embryonic development. Evidence 

suggests a role for SFKs in chromatin and spindle configurations during meiosis and 

the first mitotic cell cycle and events occurring at the cortex of the oocyte during 

maturation and fertilization.  

 I see two primary directions for future studies based on this evidence.  First, 

since IVM has significant effects on overall levels of mRNA in oocytes and since 

proper regulation of mRNA levels in oocytes is essential for healthy embryonic 

development, it would be of particular interest to know if there is a specific effect of 

IVM on levels of SFK mRNA and proteins.  Concentration and activity levels of SFK 

proteins would also be of interest.  Unfortunately, these types of studies are difficult 



 146

because very large numbers of oocytes are required to detect small changes in mRNA 

and protein concentration.  However, it could feasibly be done.  Our studies have 

already demonstrated a requirement for SFKs in both oocyte maturation and 

embryonic development therefore changes in the levels of mRNA caused by IVM 

could have significant effects on the resulting offspring.  Knowledge of these in vitro 

effects would be beneficial to clinical ARTs and would lead to the production of 

better in vitro conditions for IVM. 

  The second future direction would determine the protein targets of Fyn 

kinase thus enabling the identification of specific events regulated by SFKs during 

maturation, fertilization and early embryonic development.  The use of phospho-

specific antibodies and immunohistochemical labeling with confocal microscopy has 

identified the metaphase spindle poles and the egg cortex as sites of intense tyrosine 

phosphorylation events. Active SFKs have been found in association with 

microtubules in the spindle and cortex at all stages of oocyte maturation, embryonic 

development and even in the companion cumulus cells.  Therefore there seems to be 

two distinct locations of SFK activities:  the spindle and the cortex. 

The targets for SFKs at spindle poles are unknown.  Spindle poles of 

mammalian oocytes are different than those of mitotic cells in that they are formed of 

acentriolar centrosomes.  However, even in the absence of true centrioles, many of 

the somatic cell centrosomal milieus are present at the poles of oocytes.  These 

include pericentrin, γ-tubulin and other γ-tubulin-ring-complex proteins [119, 340, 

341].  Interestingly, γ-tubulin is a known target of Fyn kinase although the purpose of 

this modification is not known [131, 133].  Changes in γ-tubulin concentrations in 

mouse oocytes during maturation induces changes in spindle size, demonstrating a 

role for γ-tubulin during spindle formation [248].  Precise timing and coordination of 

nuclear and cytoplasmic maturation is required for proper spindle and chromatin 

organization [342].  Interestingly, chromosome modifying proteins also associate 

with centrosomes in mouse oocytes [343].  This suggests a correlation between the 

pTyr activities at the spindle poles with our data that shows errors in chromosome 
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organization and chromatid separation following loss of Fyn kinase [344].  

Identification of Fyn kinase targets in centrosome, chromatin and spindle associated 

proteins will help to determine the specific rolls for Fyn kinase in the progression of 

meiotic maturation as well as the early divisions of the embryo. 

Our studies have also identified tyrosine phosphorylation in the egg cortex in 

association with chromosome and spindle proximity.  pTyr proteins localize 

specifically over both male and female chromatin following fertilization [134] and 

activated SFKs were found associated with cortical microtubules [134, 344].  When 

chromatin moves close to the egg cortex, an actin cap and cortical granule-free 

domain is formed in the region above the meiotic chromatin [320, 345].  Ongoing 

studies in the Kinsey lab, of oocytes following fertilization have found changes in the 

structure of this cortical actin matrix in Fyn (-/-) oocytes.  Oocytes from Fyn (-/-) 

mice or wildtype eggs treated with SKI606 form abnormally small actin caps and fail 

to relocate cortical granules (Luo, McGinnis and Kinsey, submitted).  Interestingly, 

this region is the same area where we have identified the appearance of tyrosine 

phosphorylation overlying the chromatin and suggests at least one roll for Fyn kinase 

in the egg cortex: cortical actin organization.   

 Several proteins associated with the actin cytoskeleton and cortical dynamics 

are known targets of SFKs.  For instance, cortactin, tensin, focal adhesion kinase 

(FAK) and paxillin are all phosphorylated by SFKs in somatic cells [282] and 

phosphorylated FAK localizes to the actin cap in oocytes (Kinsey, unpublished data).  

Cortical actin caps with associated pTyr proteins also form on the dorsal surface of 

cultured HELA cells.  Inactivation of SFKs in these cells prevents the formation of 

the actin cap while dissociation of the actin cap causes the loss of the associated 

phosphotyrosine labeling [346].  Although the mechanisms have not been identified, 

it is tempting to suggest that the mechanisms are similar between the actin cap of 

somatic cell and mammalian oocytes.  Other important members of the cortex are also 

known Fyn targets including β-catenin, α-catenin and p120catenin [281].  

Phosphorylation of β-catenin causes it’s dissociation from the cell cortex.  
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Interestingly, β-catenin associates to the cortex surrounding the MII oocyte but is 

distinctly absent from the region of the actin cap (McGinnis, unpublished data).   

SFKs also bind the microtubule associated protein Tau.  This binding causes an 

increase in SFK regulation of cortical actin dynamics [347].  This correlation of SFKs 

with proteins associated with both microtubules and actin are tantalizing.  It would be 

interesting to know if these same associations control the apparent effects between the 

meiotic spindle, metaphase chromatin and cortical actin dynamics in the mammalian 

oocyte.  Determining what oocyte proteins bind directly with SFKs and which 

proteins are phosphorylated in response to SFK activation would form a foundation 

towards solving the riddle of SFK control of oocyte maturation and embryonic 

development.     
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