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Abstract 

Due to the severity and continuing escalation in occurrences of degenerative joint 

diseases, it is vital to establish a means of detection and prevention that could lead to an 

improvement in quality of life. One such means is MRI-based modeling for joint contact 

analysis of in vivo functional loading. The purpose of this study was to validate models 

generated from a clinical MR scanner for future in vivo joint contact analyses. Models 

were tested using 3 cadaver forearm specimens and compared with experimental data. It 

was found that models were validated based on contact area. Direct contact area 

measurements were observed to be very close to experimental data. Model force 

measurements were reasonable, but did not agree with experimental data as well as 

contact area. Peak pressure data from the models were less consistent in correspondence 

with experimental data. Also, radiocarpal mechanics were investigated to determine the 

effect of inserting a sensor into the joint space. Magnitudes of bone motions were found 

to be greater with film inserted than without film. Model results showed contact areas to 

be higher with film than without film. 
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Motivation and Research Objectives 

Degeneration of articular surfaces leading to joint dysfunction is known as arthritis 

and it is currently the most prevalent of the joint diseases. Osteoarthritis (OA) is the most 

common form of arthritis and affects people all over the world and more often than not, 

leads to long term disability. OA is also known as degenerative joint disease, which is a 

progressive loss of articular cartilage, accompanied by attempted repair, remodeling and 

sclerosis of subchondral bone and osteophyte formation. Early signs include chronic joint 

pain eventually resulting in loss of motion. This leads to the inability to perform day-to-

day activities and loss in quality of life and has a major impact on the economy. OA of 

the hand and wrist is second only to the knee in terms of incidence and therefore poses an 

important clinical problem. Finding a means of prevention before occurrence, would go a 

long way in improving quality of life for many. 

The pathomechanics of OA is relatively unknown. One of the factors resulting in joint 

degeneration leading to primary OA is believed to be excessive articular surface contact 

stresses. On the other hand, secondary OA occurs mainly as a result of progressive joint 

degeneration caused by injuries (such as scapholunate dissociation). MRI-based modeling 

can help to predict OA risk. This method has been identified as a valuable tool for in vivo 

joint contact analyses. It is a non-invasive means of evaluating contact characteristics 

from imaging data during functional loading. Contact mechanics such as forces, areas and 

pressure distributions can be determined using this technique. 

The availability of in vivo contact mechanics data (especially contact pressures) may 

help determine the relationship between joint loading and OA. Contact patterns and 
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intensities of healthy subjects can be monitored using models over a period of time to 

observe for changes in kinematics or contact mechanics that might lead to joint 

degeneration. If abnormality is observed, appropriate corrections can be implemented to 

restore normal contact behavior and prevent occurrence of degenerative joint diseases 

(DJD). 

In vivo contact mechanics data can provide a means to determine efficacy of surgical 

procedures (such as proximal row carpectomy and scapholunate ligament repair) used to 

treat joint injuries which might progressively lead to OA. Contact patterns can be 

compared before and after surgical reconstruction procedures to treat joint injuries. 

Longitudinal studies of injured human subjects, observed for a period of time to monitor 

for progressive joint degeneration, may identify key factors leading to DJD/ OA. 

Primary Objective 

 The purpose of this study was to validate models generated from a clinical MR 

scanner for future in vivo joint contact analysis. Validation of models would allow 

progression to the next phase, which is in vivo testing. 

Secondary Objective 

This study also aimed to determine the effects of inserting a pressure sensor into the 

joint space on radiocarpal kinematics and subsequent contact characteristics. The 

hypothesis was that contact areas and peak contact pressures obtained from models would 

be higher with the presence of sensor. 
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1. Introduction 

The human hand has been a topic of universal interest for quite a period of time and 

amongst the most widely studied, except perhaps the brain. The hand has been 

characterized as a symbol of power [1], as an extension of intellect [2], and as the seat of 

the will [3]. While the brain is responsible for the design of civilization, the hand is 

responsible for its formation. The entire upper limb is subservient to the hand and the 

intricate mechanisms and functions thereof, have led to the detailed study of the finely 

balanced complexities of the upper extremity. 

1.1. Anatomy 

The hand is connected to the forearm by a collection of bones and soft tissue 

structures known as the wrist or carpus. The wrist joint complex with its arc of motion 

appears to be the key to hand function. It plays a vital role in positioning the hand in 

space while wrist stability and position affects finger flexion-extension and grasp. 

Kinematically, the wrist caters for relative motion between the hand and forearm while 

kinetically, transmits loads from the hand to the forearm and vice versa. 

1.1.1. Bones of the Forearm 

 

Figure 1.1 Forearm in pronation (A) and supination (B). 

Ulna

Ulna

Radius 
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The section of the upper extremity from the distal elbow to the proximal wrist is 

known as the forearm (Fig. 1.1). The radius and ulna comprise the bones of the 

forearm, which are in contact with each other at the both the proximal and distal ends. 

Proximal articular complex is known as the proximal radioulnar joint and similarly 

the distal articulation, ligaments and cartilage complex make up the distal radioulnar 

joint [4]. The annular ligament, interosseous membrane, and the distal radioulnar 

ligaments stabilize these joints and allow radius rotation about the ulna [5].  

The motions of the forearm are pronation and supination and these play a vital 

role in hand and wrist function. At 90° elbow flexion, superior orientation of the 

dorsum of the hand is referred to as pronation while superior orientation of the palm 

is referred to as supination. Average range of pronation-supination motion is 150° 

(60-80° of pronation and 60-85° of supination). The radius rotates across the ulna in 

pronation, and bears approximately 80% of the axial load at the wrist [6]. Some 

studies indicate that the ulna’s load bearing increases proximally and may bear the 

majority of the load [7,8]. At the proximal end, the forearm bones are in articulation 

with the distal humerus of the upper arm, while at the distal end, they are in 

articulation with the proximal carpal bones of the wrist. 
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1.1.2. Bones of the Wrist 

 

Figure 1.2 Wrist anatomy – dorsal view (public domain). 

Even though we speak of the wrist as a joint, it is in fact a composite articulation 

of multiple bones (Fig. 1.2). Overall motion is a result of interaction amongst the 

carpal bones themselves and proximally and distally with the distal forearm bone 

articulation (triangular fibrocartilage complex) and metacarpals respectively [9].  

There exist eight carpal bones that are anatomically divided into the proximal and 

distal carpal rows. From radial to ulnar, the scaphoid, lunate, triquetrum and pisiform 

constitute the proximal carpal row while the trapezium, trapezoid, capitate and 

hamate constitute the distal row. Even though the pisiform is considered as a 

proximal carpal row bone, it is a sesamoid within the flexor carpi ulnaris tendon. The 

scaphoid spans the midcarpal joint and acts as a mechanical link between the 

proximal and distal carpal rows [10]. 
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1.1.3. The Wrist Complex 

The radiocarpal and midcarpal joints together make up the wrist complex. The 

function of the wrist complex pertains more towards balance and control in 

positioning the hand in space which cannot be compensated either by shoulder, elbow 

or forearm [11]. Hence, from an anatomic and physiologic perspective, the wrist has 

been labeled as the most intricate joint of the body [12]. The structure and 

biomechanics of the wrist differ amongst individuals but as a whole, it is considered 

to be biaxial with flexion/extension about the medial-lateral axis and 

abduction/adduction about the anteroposterior axis. 

This study focuses on the radiocarpal joint. The radius and radioulnar disk (part of 

the triangular fibrocartilage complex TFCC) make up the proximal section while the 

triquetrum, lunate and scaphoid make up the distal section. The proximal section has 

a biconcave surface and is divided into three facets. The scaphoid and radius 

articulate in the lateral facet, the lunate and radius in the medial facet and the TFCC 

articulates mainly with the triquetrum though it has partial contact with the lunate in 

neutral position. The TFCC functions as an extension of the distal radius and is 

partially attached to the ulna, which otherwise does not contribute to the radiocarpal 

joint. 

1.1.4. Ligaments and Musculature 

Ligaments of the wrist can be divided into two main categories; intrinsic and 

extrinsic. Intrinsic ligaments interconnect the carpal bones while the extrinsic 

ligaments connect the carpal bones to radius and ulna proximally or to metacarpals 
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distally. The main ligaments of the radiocarpal joint are the volar radiocarpal 

ligament, the radial and ulnar collateral ligaments and the scapholunate interosseous 

ligament. These function to provide joint stability while allowing necessary freedom 

of motion. 

Wrist flexion/extension and radioulnar deviation are complex motions and require 

appropriate muscle-tendon groups to transmit forces to the bones. These function to 

provide a stable base while allowing positional adjustments. The primary wrist 

flexors are the palmaris longus, flexor carpi radialis and flexor carpi ulnaris while the 

primary extensors are the extensor carpi radialis longus and brevis and extensor carpi 

ulnaris. There exist other secondary wrist flexors and extensors that aid in function. 

1.2. Pathologies of the Wrist Joint 

Based on anatomy, it is observed that the wrist is a complex joint comprising of 

multiple bones and articulations, and as such it is prone to various injuries and 

pathologies. These injuries and pathologies can be a result of abnormal loading, joint 

instability and wear and tear. Some of the consequences of fracture, disease and 

arthritis are discussed below. 

1.2.1. Fracture 

Of all fractures and dislocations in the body, 6% occur at the wrist, the bones of 

the proximal row being the most common site of debilitating injury [13]. Colles 

fracture, which is the most common type of wrist fracture, occurs at the distal radius 

[14] while the scaphoid is the most frequently fractured of the carpal bones. 
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Colles fracture occurs frequently in adults, particularly middle-aged and elderly 

women, who exhibit osteoporosis and has a high rate of malunion. Improper healing 

can result in shortening or misalignment of the distal radius, with damage to the 

median nerve that may ultimately lead to carpal tunnel syndrome. 

About 70% of carpal bone fractures occur at the scaphoid, and this fracture is 

most prominent in men between 15 and 30 years [15]. Maximum strain of the 

scaphoid was found at neutral radial/ulnar deviation and wrist extension [16], which 

is the position of the outstretched hand breaking a fall. This is a common case in 

sporting injuries and riding accidents such as bicycles and motorcycles. Depending on 

the angle of impact, it is either the distal radius or the scaphoid that is likely to 

fracture. A scaphoid fracture can occur with little or no deformity, limited soft tissue 

inflammation, and more often than not, without clear indication of a break. Non-

union or necrosis can occur due to disruption in blood supply to the distal scaphoid as 

a result of fractures mostly happening in mid-proximal region. The scaphoid is also 

involved in the most common carpal instability syndrome known as scapholunate 

instability or radial perilunate instability. 

1.2.2. Kienbock’s Disease 

Overloading of the lunate can lead to a disruption in blood supply resulting in a 

disorder known as Kienbock’s disease [17]. This is characterized by a progressive 

loss in bone density, with no changes in geometry during the initial stages leading to 

lunate necrosis and eventually arthritis of the adjacent bones. MRI is the most 

common form of diagnosis used to identify symptoms especially at an early stage. 
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Depending on the severity of lunate/wrist damage, Iwasaki classifies Kienbock’s 

disease into four categories/stages [18]. Stage I is the acute stage, during which the 

disease is hard to differentiate from a wrist sprain, and symptoms may subside after 

several weeks. Stage II includes changes in lunate bone density. During this stage 

lunate geometry remains intact, accompanied by joint pain and inflammation. 

Decreased mobility in the wrist joint is typical of Stage III, with the lunate beginning 

to collapse and migration of other carpal bones (the capitate in particular). Finally 

during Stage IV, the lunate disintegrates leading to wrist arthritis. 

1.2.3. Preiser’s Disease 

This disease is characterized by spontaneous necrosis of the scaphoid and is not a 

common pathology of the wrist joint. Cystic and sclerotic changes precede total 

collapse of the bone. Preiser’s disease may occur due to trauma, repetitive stress, or 

fatigue of the scaphoid. Radiographic features of the scaphoid are similar to that of 

the lunate affected by Kienbock’s disease. 

As with Kienbock’s disease, Preiser’s disease progresses in four stages. Stage I 

includes early changes in the scaphoid, and MRI of the wrist is abnormal. During 

Stage II, geometry of the bone is preserved, but contrasts are evident between the 

distal and proximal poles. Stage III is characterized by deformation of the scaphoid 

geometry, often with fragmentation. Stage IV heralds the collapse of the scaphoid, 

and arthritis of the radioscaphoid joint. 
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1.2.4. Osteoarthritis 

Degeneration of articular surfaces leading to joint dysfunction is known as 

arthritis and it is currently the most prevalent of the joint diseases. About 21% of the 

adult population in the United States is affected by arthritis [National Center for 

Health Statistics, 2002] and 25% of the population over the age of 55 report incidence 

in some form [19]. 

Osteoarthritis (OA) is the most common form of arthritis and affects people all 

over the world, irrespective of nation, tribe, or tongue. In most populations over the 

age of 65, it is the most common cause of long-term disability especially in women. 

More than 20 million Americans are estimated to suffer from OA. World Health 

Organization estimates 10% of the world’s population over 60 to suffer from OA of 

which 80% endure limited range of motion and 25%, the inability to perform day-to-

day activities [20]. OA is impartial and can affect any synovial joint, the common 

ones being the knee, hip and wrist. 

OA is synonymous with joint degeneration, which is a progressive loss of 

articular cartilage, accompanied by attempted repair, remodeling and sclerosis of 

subchondral bone and osteophyte formation. In fact, OA is often called degenerative 

joint disease (DJD). Early signs include chronic joint pain (deep aching poorly 

localized discomfort) leading to restriction in joint motion. Further degeneration 

results in loss of motion, crepitus, grating/grinding sensation and joint enlargement 

due to osteophyte formation. Joint subluxation, deformity, malalignment and muscle 

atrophy develop with advanced disease [20]. 
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OA is classified into primary and secondary OA, primary being the more common 

of the two. The cause of joint degeneration leading to primary OA is relatively 

unknown and is believed to be a combination of age, excessive articular surface 

contact stresses and deterioration of chondrocyte function. Primary OA rarely occurs 

in people under the age of 40. On the other hand, secondary OA occurs as a result of 

joint degeneration caused by injuries or a variety of hereditary, inflammatory or 

developmental, metabolic and neurologic disorders and may affect younger adults 

[20]. 

1.2.5. Treatment 

Of all the existing medical, nutritional and physical techniques, none actually cure 

OA. Treatment depends on stage/severity and mainly attempts to minimize the 

adverse effects on the quality of life and loss in economic productivity. The most 

basic method of symptom modification is non-steroidal anti-inflammatory drugs 

(NSAIDS). In recent years there has also been investigation of nutritional 

supplements with chondroitin, glucosamine, and/or hyaluronin to treat symptoms and 

assist in healing. 

One commonly used surgical technique to simulate articular surface formation is 

penetration of subchondral bone. Penetration of subchondral bone in areas of 

advanced degeneration or complete loss of articular cartilage leads to a disruption of 

blood vessels in that area. This disruption causes a fibrin clot to form over the bone 

surface where mesenchymal stem migrate then proliferate and differentiate into cells 



 19

morphologically similar to chondrocytes. This leads to formation of a 

fibrocartilagenous surface with varied degrees of success [21]. 

Another surgical technique is to decrease articular surface contact stresses and 

improve joint movement to simulate articular surface restoration. This is achieved by 

resection of degenerated articular surfaces including some underlying bone to 

decrease loading and facilitate formation of fibrocartilagenous tissue.  

Osteotomies are performed to decrease joint loads on severely damaged regions 

of articular surface in order to relieve pain and improve joint function. This is 

achieved by realigning and bringing into contact surfaces having some remaining 

cartilage. Osteotomies also help correct joint malalignment that may contribute to 

symptoms and joint dysfunction. This procedure is commonly used in treatment of 

hip and knee OA [20]. 

The most promising technique to date is soft tissue graft which is the introduction 

of a new cell population using an organic matrix. This involves bridging resected 

articular surfaces with perichondrial or periosteal (or other fascia) grafts. These grafts 

are meant to hold the cells in place in order to stimulate and facilitate generation of a 

new articular surface. Studies conducted thus far have shown encouraging results 

[20]. 

Proximal row carpectomy is a motion-sparing surgical procedure used to treat 

arthritis in the wrist [22]. This procedure is recommended for radioscaphoid arthritis, 

scaphoid non-union, avascular necrosis of the lunate (Kienbock’s disease) and 

necrosis of the scaphoid (Preiser’s disease). It involves removal of the proximal row 
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carpal bones scaphoid, lunate and triquetrum to create a new radiocarpal articulation 

between the radius and capitate. While some wrist motion is maintained, the main 

setback of this procedure is the loss of strength in the hand and wrist. 

1.3. Modeling 

Modeling is a technique that incorporates physical (scaled models) or mathematical 

(computational models) systems to study and investigate a research question. The 

advent of computers and evolution of processing power has vastly improved the study 

of human motion in part due to the relative ease of model construction and reduction in 

processing time to generate a solution. The limitations and constraints of experimental 

methods have elevated the use of computational methods in biomechanical studies. 

Computational methods are not restricted by subject variability (however, it may not be 

possible to generalize subject-specific models), physical limitations and risks, 

repeatability, environmental conditions and the like. 

The entire procedure can be summarized into a few basic steps intrinsic to all 

modeling techniques that include creation of mechanical models, deriving the equations 

of motion for the models, programming a numerical solution, determining the boundary 

conditions and finally, interpretation and comparison with experimental data, which can 

be aided by precise modeling [23]. 

Finite element and rigid body spring modeling are the main modeling techniques 

currently used in biomechanical studies, the finite element method being the first of the 

two used in the study of the human body and the most prominent. The rigid body spring 

model has become somewhat popular due to its simplicity and efficiency in contact 
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analysis. More recently, a third technique has been developed that uses a surface-based 

contact approach. While maintaining computational efficiency, this provides for a more 

accurate interface and more flexible contact rules. 

Despite the sophistication and appeal of modeling over experimental methods, there 

exist some key limitations that arise from factors such as numerical imperfections in the 

solution process, difficulty of acquiring accurate physiological material properties, 

approximation of complex human anatomy and in vivo boundary conditions. 

1.3.1. Model Development 

One of the key features of computational modeling is the non-invasive simulation 

of various loading conditions, which allows for anatomical and physiological insight, 

from a clinical perspective, into mechanisms of trauma and pathologies arising from 

acute injuries, repetitive and excessive stresses or degenerative joint diseases. Also, 

accurate models can provide surgeons and bioengineers with investigative tools that 

have the capability to increase basic knowledge while providing a new and improved 

approach to existing treatment procedures for better detection, prevention and cure. 

Therefore, accurate representation of the anatomy and material properties is vital in 

understanding the underlying processes leading to joint disorders. 

Development of computational models for joint analysis is a complex process that 

begins with acquiring images of the anatomy in concern. Based on requirements, the 

images can contain information pertaining to bone, soft tissue or a combination of 

both, which are then used to generate two or three dimensional geometric models. 

Commonly, highly accurate X-Ray images are used for 2D models while more 
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advanced techniques such as Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) are used to generate 3D models. CT scans are used to generate highly 

accurate models of bone while MRI, which has lower contrast and signal-to-noise 

ratio (SNR), is used to model both bone and soft tissue such as cartilage. Quality of 

images depends largely on the application for which they are intended. 

The process of generating mechanical models involves key basic steps which are 

segmentation, compilation and surface mapping. Segmentation involves capturing the 

geometry of the anatomy of interest from individual images in the image set. Once 

segmentation is complete the individual contours are compiled to form a 3D point 

cloud. Finally, surface mapping is used to develop a surface description based on the 

3D point cloud to obtain the geometric model, which along with kinematic 

parameters and boundary constraints is used in biomechanical analysis. 

1.3.2. Rigid Body Spring Modeling (RBSM) 

Bodies that are presumed non-deformable are known as rigid bodies and the rigid 

body theory is a fundamental and well-established theory of physics. This type of 

modeling is based on the assumption that bodies undergo negligible, if any, 

deformation when subjected to an external force. Hence, when compared to cartilage 

deformation at the articular surface RBSM neglects the deformation of bones (rigid 

bodies) constituting the joint under investigation. In biomechanical contact analysis 

studies, the articular surface is modeled as a series of springs in compression on the 

surface of bones while ligaments are modeled as springs in tension that maintain 
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contact. Overall, this technique is efficient to compute joint forces and tension in 

ligaments without the need for complex finite element analysis. 

Garcia-Elias et al. conducted a study to analyze stabilizing structures of the 

transverse carpal arch based on RBSM theory [24]. Two dimensional models 

generated from MRI scans were used to determine relative motion between carpal 

bones, intercarpal joint compressive forces distribution and ligament tension under 

simulated dorsopalmar compression. Compressive springs were used to model 

cartilage while tensile elastic springs were used to model ligaments of the carpal arch. 

Results indicated the palmer hamate-capitate ligament to play a significant role in 

carpal arch stability. 

Horii et al. used RBSM to observe the effect of various surgical procedures used 

to treat Kienbock’s disease, on the force distribution across the carpus [25]. A 2D 

model of the carpus was created from CT scans and a system of compression springs 

used to model joint reaction forces. Spring stiffness parameters were obtained from 

cartilage and ligament material properties based on literature. Forces up to 143 N 

were applied and intercarpal displacements and loads calculated for different 

simulated surgical procedures. Results indicated radial shortening or ulnar 

lengthening to significantly unload the lunate thereby making them appropriate 

treatment procedures. 

Schuind et al. conducted a study similar to Horii et al to investigate force 

transmission through the wrist using RBSM [10]. Model geometry was acquired from 

posteroanterior X-rays of adults with cartilage and subchondral bone represented by a 
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system of linear compressive springs and ligaments represented by tensile linear 

springs. Spring stiffness parameters were obtained from cartilage and ligament 

material properties based on literature and loads applied to simulate grasp strength of 

10 N with active stabilization of the wrist in neutral position. Results indicated the 

radioscaphoid joint to transmit majority of the force (55%) with the radiolunate joint 

transmitting 35%. The remaining 10% was transmitted through the triangular 

fibrocartilage. It was found that the scaphoid bore a large percentage of the wrist load 

with highest peak pressure observed at its proximal pole. It was also observed that 

wrist morphology and age had little or no effect on magnitude and pattern of force 

distribution. 

Iwasaki et al. used a 2D computer simulation RBSM to quantify force and 

pressure distributions across the wrist during different stages of Kienbock’s disease 

[18]. Posteroanterior and lateral radiographs from 24 patients with Kienbock’s were 

used to generate models with linear compressive springs representing articular 

cartilage and tensile springs representing ligaments and flexor retinaculum. Stiffness 

and thickness of cartilage was assumed to be constant throughout the entire articular 

surface. Metacarpals were loaded under a total force of 142 N and joint forces, peak 

pressures, ligament tensions calculated. Results indicated scaphoid rotation to play a 

significant role in influencing wrist joint contact pressure distribution and therefore 

might aid in the progression of Kienbock’s disease. 

Manal et al. used a novel sliding RBSM approach to study joint reaction forces in 

wrists affected by juvenile idiopathic arthritis (JIA) [26]. JIA leads to misalignment 
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of carpal bones resulting in off-center loading of the bones. Large displacements 

result in failure of standard RBSM due to springs representing cartilage experiencing 

tension instead of normal compression. This novel approach allows for sliding of 

springs at their distal ends along the surface of opposing bones until equilibrium is 

attained. Models were constructed from posteroanterior radiographs of wrists of 4 

subjects with cartilage represented as linear elastic compressive springs and 

metacarpals loaded axially to simulate grasp required to hold a 1 kg load. Applied 

loads followed similar protocols as described by Schuind et al with the radius and 

ulna fixed, and carpal and metacarpal bones free to displace. Results indicated ratio of 

transmitted forces through the radiocarpal joints for healthy wrist to be similar to 

those reported by Horii and Schuind and wrists affected by JIA to be reasonable. The 

study demonstrated sliding RBSM to be an appropriate technique for estimating joint 

mechanics of the wrist. 

Force transmission through the wrist was analyzed in the maximum extended 

position to clarify pathomechanics of wrist injury [27]. Three dimensional RBSM was 

constructed from CT scans of the wrist in neutral position and maximum extension. 

Ligaments were modeled as line segments with parameters acquired from literature 

and a total load of 140 N applied to the metacarpals in neutral and extended positions. 

Ligament tensions and joint forces were assumed proportional to the corresponding 

tensile/ compressive spring deformations. Results showed force transmission ratio to 

increase from neutral to extension on the scaphoid fossa and decrease on the lunate 
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fossa. Results showed how shifting of force transmission might play a role in wrist 

injuries such as scaphoid fracture. 

1.3.3. Finite Element Modeling (FEM) 

Current technological advancements demand the need for accurate analyses of 

very large and complex structural systems. Geometric irregularities, varying material 

properties and multiple loading conditions make accurate and efficient solutions 

difficult to achieve. With the magnitude of computational power available today, the 

process of solving a complex system can often be achieved using the finite element 

method. 

Any complex system can be reduced to a set of small, but finite elements, which 

can be analyzed in combination to obtain a solution for the system as a whole. The 

process of reduction is known as discretization. The finite element method involves 

analysis of a structural system which is an assembly of a finite number of discrete 

elements interconnected at nodes. Once a system is described by a mesh of finite 

elements, it becomes easier to approximate the response of the entire system based on 

the behavior of the individual elements. 

The FEM process can be broken down into five major steps. The process is 

initiated with idealization of the structural system. This involves selection of type and 

size of finite elements to generate a mesh of the system. Depending on computational 

time and accuracy of solution required one can select 1, 2, or 3D elements defined by 

nth order polynomials. Next step is to define the geometric and elastic properties of 

the individual elements. This is followed by description of boundary conditions, 
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including definition of the loading conditions. Finally operations are performed to 

generate matrix equations by use of the principle of minimum energy. These matrix 

equations are solved to obtain displacements, strains and stresses throughout the 

model. 

FEM generates highly accurate results and is able to provide not just surface 

solutions but also throughout the entire volume of analysis. It is able to simulate not 

only static but also dynamic loading conditions. However, depending on the 

complexity of system intense computation maybe involved, based on the number of 

elements and the order of differential equations that must be solved. This is further 

complicated when analyses are shifted from linear elastic to non-linear which is often 

the case when dealing with biological systems. Lastly, regardless of number of 

elements, FEM provides an approximate solution only. The higher the number of 

elements and polynomial order, the higher the accuracy. Hence it comes down to 

personal choice to balance between computational time and accuracy of solution. 

Anderson et al. used a plane-strain finite element contact model to gain insight 

into distal radius intra-articular fracture management [28]. Contact coupled 2D FE 

model of the radiocarpal joint was generated from scaled anatomic drawings of the 

distal radius, lunate and scaphoid bones. 1291 quadrilateral elements were used to 

create the FE mesh with material properties based on known values from literature. 

Ligamentous attachments were modeled using nonlinear spring elements with 

stiffness properties based on Horii et al. No assumptions were made regarding load 

transfer across contact surfaces as these can be determined iteratively using the 
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contact coupled FE method. Contact was modeled using slideline elements, which 

allow finite sliding and deformations between bodies, and coulomb friction as the 

contact criteria. Coefficient of friction of 0.01 was chosen for all articular surfaces. 

Results indicated load distribution between radius and ulna to compare well with 

previous data. The plot of axial strain verified the role of articular cartilage in load 

distribution and strains were on the order of 20 to 25%. Stress distributions were also 

consistent with previous studies and it was concluded that the model shows promise 

in fulfilling the intended hypothesis. 

Ulrich et al. conducted a study that used computational models and high 

resolution images to quantify load transfer through distal radius trabecular network in 

vivo and to explain the effects of tissue loads leading to fracture in those regions [29]. 

High resolution images (165 µm) of the left distal radius and adjacent carpal bones 

were taken using a low-dose peripheral quantitative 3D CT scanner from which FE 

models were created using the voxel conversion technique. The entire FE mesh 

consisted of 1,679,025 elements and all material properties including cartilage 

thickness of 3 mm, were acquired from literature. Different load ratios were used to 

load the carpal bones to signify two hand positions during impact, namely neutral and 

ulnar/radial deviation. Tissue strain energy density distribution was used to illustrate 

load transfer through the trabecular network. This method showed that 

characterization of tissue load distribution in vivo is feasible. Results indicated radius 

to have high strain energy values for all loading cases and this suggests that common 
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regions of fracture are dependant on high tissue strain energy density values in the 

trabecular network. 

Ledoux et al. investigated mechanisms of modifications to the mechanical 

behavior of the carpus after a scaphoid fracture that might result in the onset of 

arthritis of the wrist [30]. Two dimensional FE model of the wrist was generated from 

an anteroposterior X-ray image of the wrist in pronated position. The trapezium and 

the trapezoid were modeled as a single bone while the pisiform was not modeled at 

all. FE mesh generated was defined by 1053 nodes with non-linear properties 

assigned to ligament and cartilage elements. All fracture simulations were loaded at 

100 N at the level of both radius and ulna. The study showed existence of pressure 

peaks at the nonunion and midcarpal (scaphoid-capitate and lunate-capitate) interface 

which explains the progression of nonunion of the scaphoid leading to arthritis of the 

wrist. The study also showed a shift in pressure distribution on articular surfaces after 

the occurrence of a fracture. 

Carrigan et al. performed a study to analyze load transmission in the carpus 

during static compressive loading using a 3D FEM in static neutral position [31]. 

Geometry was obtained from in vivo CT scans of the carpal and metacarpal bones 

along with the radius and ulna. Meshes were generated for individual bones and 

compiled in ANSYS to assemble carpal geometry. Triangular prism elements were 

used for cartilage layers while non-linear spring elements were used to model 

ligaments and material properties (linear elastic) were defined based on prior FE 

studies. A 15 N compressive load was applied to the capitate for all cases and a series 
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of parametric sensitivity cases analyzed to determine impact of various factors on 

contact pressures and cartilage stresses. Cartilage material modulus and unconstrained 

carpal rotation were found to have the greatest impact on contact area and pressure 

distribution (contact pressure and principle compressive stress). 

A simplified adaptive meshing technique was developed to facilitate FE analysis 

of a dual-curvature total wrist implant [32]. While current FE programs provide 

adequate flexibility in mesh generation, element sizes and spacing have to be defined 

in advance. This is an iterative procedure that may or may not generate acceptable 

solutions. Adaptive meshing improves accuracy by allowing for dynamic and 

continuous refinement (increase/ decrease in size or order of elements) depending on 

analysis. While several custom adaptive meshing FE codes have been created, this 

study developed a formulation compatible with pre-existing commercial programs. 

Preliminary solution was initially determined on base mesh for a series of time steps. 

Using an error indicator, regions requiring greater mesh resolution were located and 

based on a centralized element, finer grids adaptively created. The technique was 

validated by testing two dislocations (volar and rotational) of the total wrist implant. 

Refinements showed a substantial decrease in error thereby demonstrating the 

effectiveness of this method. 

Nonlinear FEM was used to analyze biomechanical interactions of various 

fixation techniques for distal radius fracture under different loading conditions [33]. 

CT scans were used to generate a 3D distal radius fracture FE model. Meshes were 

generated comprising 72,545 to 95,988 elements for the different fixation simulations 
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and cortical and cancellous bones modeled as linear elastic and isotropic. Material 

properties were based on, and model validated by comparison with experimental data 

obtained from prior FE studies. Double-plating, modified double-plating and single 

plating fixation methods were analyzed under axial, bending and torsion loads. 

Results showed modified double-plating as the better choice in distal radius fracture 

fixation because of high rigidity and least displacement in bending. Also, lower 

stresses indicated better structural strength against bending with minimum possibility 

of fragmentation and screw loosening. 

A study was conducted to understand the impact of bone mineral density (BMD) 

and direction of loading on distal radius fracture strength and initiation location [34]. 

Three dimensional FE model of the radius, scaphoid and lunate was constructed from 

CT scans of the right wrist of a 53 year old female positioned at 57° flexion and 7° 

ulnar deviation to simulate extreme impact. The model comprised of hexahedral and 

tetrahedral elements and material properties, acquired from literature, assumed as 

linear isotropic while ligaments were modeled as nonlinear springs. The model was 

validated by comparing contact area and peak contact stress with experimental data 

from previous studies. Results showed changes in BMD to cause similar changes in 

fracture strength while modifying loading direction caused a marginal decrease in 

fracture strength. It was suggested that increasing the extent to which radius is axially 

loaded could benefit Colles’ fracture intervention methods. 

A finite element model was used to study the effect of wire positioning on initial 

stability of scaphoid fractures [35]. An FE model of the scaphoid and corresponding 
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joints was generated. Five different two-wire configurations using Kirschner wires 

were used to simulate scaphoid waist fracture fixation. Models were analyzed for 

three different coefficient of friction values and a 200 N load applied. Results showed 

that fixation stability is increased by crossing of wires not only in the frontal plane, 

but also in the plane perpendicular to the hand. 

1.3.4. Multi Body Contact Modeling 

Contact modeling is a powerful procedure used for complex structural analysis of 

rigid or deformable interacting bodies, based on a contact rule. Various programs 

exist that can model a broad range of systems. The most attractive feature of contact 

modeling is the ability to generate solutions more quickly than FE methods, using 

highly efficient algorithms. Also, contact modeling does not make a priori 

assumptions about details of load transfer across joint surface. The nature and 

distribution of these loads are determined from the computations involved in the 

contact model [28]. Hence, this technique has been shifted to encompass 

biomechanical systems as well, including diarthrodial joint modeling. The main 

drawback is the restriction of analyses to contact parameters, as opposed to stresses 

and strains throughout the solid that may be obtained using FEM. 

Kwak et al. developed an algorithm for 3D quasi-static analysis of multi body 

systems, especially tailored for diarthrodial joints [36]. The program is able to 

accommodate articular contact, muscle, tendon and ligament forces and soft tissue 

wrapping around bone and cartilage surfaces. Material bodies, bones for example, 

were modeled having six degrees of freedom (three rotation, three translation) while 
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particles imbedded in soft tissue, representing tendons and ligaments, were assigned 

three translational degrees of freedom. The imbedded particles are responsible for 

redirecting ligament or tendon forces while transmitting resultant contact force to the 

body around which they are wrapped. Ligaments were modeled as links connecting 

insertion points on distinct bodies along a series of line segments, with forces acting 

along the direction of the line. Muscles were modeled as special cases of ligament 

links and forces were simulated by a constant force applied on a line segment inserted 

into separate bodies. Surface contact link was used to simulate articular surface 

contact with contact region defined by a proximity function, that is, an overlap of 

rigid surfaces. The models were implemented using input files containing geometric 

entities and link parameters, with several options including force-displacement 

ligament models and linear/ non-linear cartilage deformation models. Cartilage and 

bone surfaces were represented as triangular facets along with the use of analytical 

Jacobians for computational efficiency. Contact pressures were determined by surface 

interpenetration of points between adjacent bodies. Results were within prescribed 

convergence criteria and were further validated using patellofemoral joint models 

constructed from six cadaver knees. 

Pillai et al. conducted a study to evaluate in vivo wrist joint contact mechanics 

using MRI based contact modeling [37]. Model geometry was acquired from MRI 

scans of the non-dominant wrist of four human subjects using a 1.5 Tesla clinical 

MRI scanner with a flex coil. Scans were performed during light active grasp of a 30 

mm cylinder and during relaxed state with the forearm in neutral position. Wrist 
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position during grasp was not strictly controlled. Manual segmentation of the radius 

and carpal bones (lunate and scaphoid) including articular surfaces was performed on 

the relaxed image sets to obtain contour data which were then used to generate 3D 

surface models. The three bones, excluding articular surfaces, were isolated from the 

grasp and relaxed image sets in order to determine transformations from the unloaded 

to loaded configuration. Using the radius as a fixed reference, surface registration was 

performed to obtain kinematics (rotation and translation vectors) for both lunate and 

scaphoid. The kinematic parameters along with geometric entities were implemented 

into a multi body contact program based on Kwak et al for contact analysis. Contact 

rule was defined for cartilage thickness of 1 mm and material properties acquired 

from literature. In vivo contact pressures, areas and forces were analyzed for each 

articulation and found to be reasonable when compared with previous studies. This 

study showed MRI based contact modeling to be a useful tool in evaluating in vivo 

joint contact mechanics. 

Thoomukuntla performed a study to validate the MRI based modeling approach 

developed by Pillai et al. [38]. Model geometry was acquired from MR scans of the 

wrist of three cadaver forearm specimens. Volar dissection of the wrist was 

performed to insert pressure (static film and electronic) sensors for direct 

measurements while three flexor tendons (FDS, FDP and FPL) were isolated to 

simulate light grasp when loaded. The forearms were attached to a base plate to 

maintain neutral rotation. Direct measurements were taken by inserting pressure 

sensors into dissected joint space and loading the tendons in light grasp. Similarly, 
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MR scans of the wrist were taken in relaxed and loaded configuration, which were 

used to generate 3D models. Using the radius as a fixed reference, kinematic 

transformations of the carpal bones from the unloaded to the loaded states were 

obtained. These along with the models, were loaded into a contact modeling software 

(Kwak et al) for contact analysis. Results compared between pressure sensors and 

MRI based models were reasonable. Also, contact areas were directly measured from 

MR scans and these were found to match closely with model results. 

Waller further validated the technique proposed by Pillai et al. and Thoomukuntla 

et al. [39]. Five cadaver forearm specimens were used and similar procedure followed 

based on Thoomukuntla. In this instance five tendons (two extensors and three 

flexors) were isolated for joint loading. After kinematic and contact analyses, results 

obtained from models were significantly similar to direct contact area measurements 

from MR scans, contact forces similar to Tekscan measurements and peak pressures 

similar to Pressurex measurements. These results further validated the MRI based 

modeling technique to be feasible for joint contact analysis and this approach will 

therefore form the basis of this study. 

1.4. Validation Methods 

Several experimental methods have been proposed and used in literature for 

measuring radiocarpal contact mechanics. While each method is subject to restrictions 

and limitations, they prove useful in providing data for comparison with computational 

modeling methods and thereby assist in their validation. 
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1.4.1. Published Pressure Sensor Data 

Tencer et al. conducted a study to determine pressure distribution across the 

radiocarpal joint [9]. Five cadaver forearm specimens were used and incisions made 

to the dorsal wrist joint space in order to insert a Fuji pressure sensitive film that was 

made to conform to the articulating surface. A special setup was used for joint axial 

loading and 36 positions tested, which combined flexion/ extension with radioulnar 

deviation and pronation/ supination. A compressive load of 103 N was applied using 

dead weights across the second and third metacarpals. For this load, peak pressure 

averaged 3.17 MPa and scaphoid contact area found to be 1.47 times that of lunate, 

which varied with position. 

Kazuki et al. studied variations in radiocarpal joint pressure distribution between 

normal wrists and simulated malunited Colles’ fractures [14]. Four cadaver forearm 

specimens were used and dorsal radiocarpal joint capsule partially dissected to insert 

a Fuji super low-pressure film. A total load of 100 N was applied to the wrist across 

the third metacarpal and tested for 27 forearm positions. Results showed average peak 

radioscaphoid and radiolunate pressures to be 2.8 and 2.7 MPa respectively. For 

simulated Colles fracture results showed decreased contact areas and volar to dorsal 

shifts in location with increased deformation. 

Wilson et al. conducted a study to determine the accuracy and repeatability of an 

I-scan system (Tekscan Model #5051) for measuring forces and pressures [40]. The 

system operates by relating changes in electrical resistance to an applied force. The 

system was calibrated and accuracy assessed by applying known forces and force 
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distributions across the sensor using a setup in a materials testing machine. For five 

trials at seven load levels, the sensor was accurate to within 6.5%. Repeatability was 

assessed based on measurements obtained from patellofemoral contact analysis using 

four cadaver specimens loaded in continuous and static flexion. Results for forces and 

force distributions showed 2.2 to 9.1% variability in measurement. Thus, it was 

concluded that the Tekscan system was comparable to the Fuji film in terms of 

accuracy and repeatability and was superior in terms of geometry, accuracy of contact 

area measurement and dynamic force, pressure and area measurement. 

Wilson et al. performed a similar study to the one mentioned above in the lumbar 

spine facets of four cadaver specimens [41]. Repeatability was assessed by loading in 

axial rotation and flexion-extension (five trials) and accuracy assessed by applying 

known compressive loads and comparison with measured loads. Results showed 

repeatability for all measurements to be within 4-6% for axial rotation and 7-10% for 

extension while accuracy was highly dependent on calibration protocol and sensor 

measurement range. 

Harris et al. [42] and Bachus et al. [43] both conducted studies to compare 

measurements recorded from pressure sensitive films and piezoelectric pressure 

sensors. Harris et al looked at contact areas in total knee arthroplasty (TKA) devices 

using a custom TKA setup that allowed freedom of motion in any loading 

configuration. Tekscan and Fuji film were used to measure contact areas at 0-110° 

flexion with loads multiple times body weight. Fuji films were found to measure 11-

36% lower contact areas than Tekscan. Similarly, Bachus et al compared area, force 
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and pressure measurements. These were measured between a cylindrical peg and a 

base plate compressed with known loads. Results indicated all measurements for both 

sensors to fall outside the hypothesized accuracy value (+/-5% of known load values) 

although Tekscan was found to be more accurate when estimating area and pressure. 

1.4.2. Model Validation 

Song et al. calculated anterior cruciate ligament (ACL) forces using an 

experimentally validated 3D FE model [44]. Experimental kinematics and in situ 

forces were determined in a cadaver knee for a full extension to 90° flexion using a 

robotic/ UFS testing system. Tibial loads ranging from 0 to 134 N were applied to the 

knee at full extension and resulting kinematics recorded. 3D FE model of the ACL, 

femur and tibia was generated from MR scans of the knee with ACL bundle insertion 

sites obtained using Microscribe. Ligaments were assigned homogeneous and 

isotropic hyperelastic material properties as anisotropic material properties were 

unavailable. Boundary conditions were based on experimentally obtained kinematics. 

Results indicated difference between in situ experimental and calculated force data to 

be less than 11%. The validated FEM was then used to determine force and stress 

distribution within the ACL. 

Anderson et al. validated patient-specific contact FE models using a high 

resolution pressure sensor [45]. Model geometry was acquired from CT scans of two 

cadaver ankle specimens loaded in neutral flexion/ extension. The ankle joints were 

loaded in a materials testing machine with a compressive load of 600 N. An FE mesh 

of 2997 to 293402 elements was created to generate models. Linear isotropic material 
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properties were assigned along with boundary conditions to replicate experimental 

loading. Contact stress distributions were compared between experimental and 

computational results. Validation was based on direct comparison with physical 

measurements from corresponding cadaver loading tests. The contact stress and 

contact area comparisons were reasonable while pixel-by-pixel comparisons of stress 

distribution across articular surface showed considerable agreement. Direct 

comparisons between physical measurements and model during ankle loading were 

said to have validated the model. 

Papaioannou et al. used biplane dynamic Roentgen stereogrammetric analysis 

(DRSA) coupled with Tekscan sensor to validate specimen-specific knee joint FE 

models [46]. Models were constructed from CT scans of three cadaver knees with 

eight-node trilinear hexahedral elements having linearly elastic and transversely 

isotropic material properties. The experimental setup consisted of the knees mounted 

in a custom system designed to operate as a special application materials testing 

machine. This system allowed axial tension/ compression and synchronous planar 

translation in the transverse plane. Experimental results were obtained from a 

Tekscan sensor attached to tibia plateaus using an arthroscopic procedure along with 

high-speed kinematics measured with DRSA. Convergence of FE solution indicated 

accuracy while confidence in model validity itself was achieved by comparison of 

contact variables with direct experimental measures. Models were found to predict 

most of the contact variables measured experimentally (average RMS error of 0.91). 
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Anderson et al. conducted a study to validate a finite element model to predict 

cartilage contact pressure in the human hip joint [47]. Subject-specific geometry 

acquired from CT image data was used to construct the FE model. In vivo loading 

data was used to simulate walking, descending stairs and stair climbing. Experimental 

data was acquired using low range pressure sensitive film. Misalignment errors 

between FE and experimental results and differences in magnitude of contact between 

model and experimental results were investigated. Results showed misalignment 

errors (difference in RMS error before and after alignment of FE results) to be less 

than 10% while magnitude errors (residual errors following alignment) were 

approximately 30%. The model was considered validated as the FE predictions 

compared favorably with experimental measurements and published experimental 

data. 

Clearly, the best validation approach is specimen-specific data comparison, as 

opposed to a comparison to similar data found in the literature. Curiously, many 

models are proposed and used in studies without any real validation criterion [45]. 

For our proposed imaging-modeling approach we chose specimen-specific validation! 

Because of the variability in experimental measures, the validation criterion was 

data falling within 2 times the average accuracy of the measurement system. 
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2. Effect of Film 

2.1. Background 

In orthopaedic Biomechanics, experimental in vitro studies are performed to 

investigate various kinds of joint and tissue mechanics and to validate computational 

models. Several techniques exist to determine in situ joint contact measurements, the 

broad categories being pressure sensitive films and electronic pressure sensors. These 

sensors are inserted directly into joint space under investigation, while the joint is under 

load, to measure contact pressure distributions, forces and areas. 

Pressure sensitive films along with piezoelectric (both conductive and resistive) 

sensors have been used widely in literature for contact analysis of various joints such as 

ankle, knee, spine and wrist [1-7]. Tekscan sensors are the common electronic sensor of 

choice due to their dynamic real-time measurements and are available in a wide variety 

of models for various applications. For pressure films, Pressurex Fuji-scale film sensors 

are a common choice due to their high spatial resolution and are also available in a 

number of pressure ranges for different applications. 

While pressure sensors used in biomechanical studies are designed to be as 

minimally intrusive as possible, geometric and material properties can result in 

undesired effects. Super-Low-Fuji-scale Pressurex film, has a total effective thickness 

of 0.3 mm and an average effective elastic modulus of approximately 100 MPa in 

compression [8]. This thickness is comparable to cartilage found in joints of small 

animals and 30% of articular cartilage thickness in some human joints. Also, the elastic 

modulus is an order of magnitude greater than human articular cartilage elastic 
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modulus. Wu et al used finite element models to study the influence of inserting Fuji 

film into articular joints on the contact mechanics [8]. Sensor and cartilage were 

modeled as linear elastic and biphasic, respectively. Depending on loading conditions, 

joint geometry and cartilage mechanical properties, presence of film increased peak 

contact pressures by 10 – 26 percent. Taking this into consideration, along with film 

accuracy (10% approximately), it was concluded that errors in joint contact pressure 

measurements could be as high as 14 – 28 percent. A similar study was conducted by 

Liau et al to determine effect of Fuji film on contact characteristics in an artificial 

tibiofemoral joint [9-10]. Two and three dimensional finite element models were used 

to simulate contact with and without film and contact characteristics were determined. 

Presence of film in joint space was found to alter original contact behavior. Contact 

area measurements were overestimated by 14 – 77% while contact pressure 

measurements were underestimated by 8 – 14%. 

While the effect of a thin film sensor in the joint has been characterized, as above, 

the effects may vary considerably with application. Thus, experimental MRI data was 

acquired with and without Pressurex Super Low film in the radiocarpal joint during 

loading. The purpose of this study was to determine the effect of inserting a pressure 

sensor (specifically, the Pressurex film) into joint space on radiocarpal contact area, 

contact force, pressure distribution and peak pressures. The effect was measured by 

comparing results of MRI-based models of the normal joint (without film) and joint 

with film inserted. 
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2.2. Methodology 

2.2.1. Specimen and Experimental Setup 

 

Figure 2.1 Showing mounted specimen and test rig for joint loading. 

A single cadaver forearm specimen was used for this study and dissection 

involved isolation of bones and tendons of concern along with volar dissection of the 

radiocarpal joint capsule for sensor insertion. Initially, the three wrist flexors (FDS, 

FDP and FPL) and two extensors (ECU and ECR) were isolated [11]. Once isolation 

was completed, tendons were wrapped in saline soaked gauze to prevent drying and 

loss of function. Suture loops were attached to all isolated tendons to allow tensile 

loading. Soft tissue was removed along a 10 cm length of the forearm, 2 cm proximal 
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to the joint and extending proximally to expose the radius and ulna. Two 6.35 mm 

holes were drilled through the radius and one through the ulna to attach the specimen 

to a base plate using plastic threaded bolts. It was ensured that the holes were aligned 

in a manner so as to maintain forearm neutral rotation for the duration of testing and 

imaging. 

For MRI compatibility, only non-ferrous materials were used in the experimental 

setup. The test rig along with side components were fabricated entirely from plastic. 

The pulley system was attached to the stand which provided a stable platform for 

joint loading. Connecting plates of variable lengths were used to interconnect the base 

plate and loading stand depending on the desired placement within the MRI scanner. 

Static load was applied using water jugs, pre-filled and weighed for a known load, 

and connected with the help of a pulley system to the tendons via 40 lb (178 N) fish 

lines (Fig. 2.1). Loading both the flexors and extensors provided a more realistic 

simulation of light grasp. A total of 110 N was applied to the joint to simulate light 

grasp [11]. This was distributed as 30 N applied to both ECU and ECR, 20 N applied 

to both FDP and FDS while the FPL was loaded with 10 N. Before load application, a 

cylindrical PVC pipe (1.5 inch outer diameter) was placed in the hand as an object for 

simulated grasp. Fingers were taped around the pipe to maintain position without 

tendon loads. To maintain wrist stability extensors were loaded first, followed by the 

flexors. 

MRI data of the wrist was acquired under three different conditions: 1) without 

load on the wrist, 2) during simulated grasp (with 110 N of extrinsic tendon force 
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across the wrist), and 3) during simulated grasp with Pressurex Super-Low-Fuji-scale 

film in the radiocarpal joint. 

2.2.2. MR Data Acquisition 

Anatomical geometry and boundary conditions for the models were obtained from 

MRI scans of the wrist. These scans were performed using a 9.4 Tesla MRI scanner 

(Unity INOVA Animal Systems, Varian Inc., Palo Alto, CA). The wrist scans were 

first acquired with no load on tendons or wrist joint (unloaded/relaxed). Subsequently 

images were acquired during simulated light grasp as described above (loaded). 

Finally, images were acquired during simulated grasp with Fuji-scale-Super-Low film 

inserted in the joint space (loaded with film). All scans were performed for a TR of 

800 ms, TE of 7.81 ms, flip angle of 45° and 4 averages. The image sizes were 1024 

× 512 pixels with a 140 × 70 mm FOV. The in-plane resolution was 0.14 mm. 

Unloaded scans had 56, 1 mm thick slices and slice increment of 0.5 mm (0.5 mm 

overlap). Both loaded scans had 28, 1 mm thick slices and 1 mm offset (no overlap). 

2.2.3. Model Construction 

In order to measure effect of film on radiocarpal contact mechanics, two sets of 

models were constructed. One was the original model of the normal joint and the 

second model was constructed in a manner to simulate presence of film in the joint 

space (expanded size model). 

Unloaded scans were manually segmented using MPXImage (Ted Manson, 1998, 

University of Pittsburgh) to obtain radius and carpal bone geometry including 

cartilage. Contours of the bones in all relevant scans were defined using Bezier 
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splines, and the corresponding points were written to a file. These 2D points were 

compiled into 3D point cloud and converted into surface models using Geomagic 

Studio 9 (Raindrop Geomagic. Research Triangle Park, NC). Original models were 

representative of respective bone and cartilage. These models were implemented with 

kinematics from the loaded scans without film. For scans with film, bone models had 

to be modified to account for presence of film within joint space. This was achieved 

by scaling the models to add half the film thickness on all bone surfaces such that 

contact would occur when the models were separated by the film thickness. The 

Super Low Pressurex film used for the study was 0.007 in (0.1778 mm) thick. 

Individual models were scaled uniformly about their centroids in Geomagic by 

specifying a scale factor. Using an iterative procedure incorporated in a MATLAB 

(Mathworks Inc., Natick, MA) code, distances between similar points comparing 

original and scaled models were checked (for entire geometry) until they were all 

within 0.6 – 0.8% of half film thickness. The scaled models (Fig. 2.2) were then used 

for contact analysis. 
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Figure 2.2 3D scaled surface model of the radiocarpal joint. 

2.2.4. Registration and Kinematic Analysis 

For kinematic analysis, it was assumed that bone deformation was negligible 

compared to cartilage deformation. Hence bone geometry alone was used for image 

registration to obtain the kinematic boundary conditions. Images showing respective 

bones were isolated in Adobe Photoshop 6.0 (Adobe Systems Inc, San Jose, CA). 

This was achieved by removing all surrounding detail around the bone in question 

and replacing with a black background. The isolated unloaded and loaded (with and 

without film) image sets were imported into Analyze 5.0 (AnalyzeDirect, Overland 

Park, KS) for registration. The image sets were compiled into individual volumes and 

3D-voxel based registration was performed (similar to the procedure of Waller, 

2007). 
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The radius was selected as the fixed reference and registration of loaded radius to 

unloaded radius provided the transformation between the volume loaded without film 

to the volume unloaded without film. This was repeated for loaded with film to 

unloaded without film. Thus both loaded image sets were registered to the unloaded 

image set. For the registration, 25 trials were performed to select best transformation 

based on either convergence or the average of registration behavior as judged by 

translation vector magnitude. The selected transformations were then used to 

transform the loaded carpal bone image volumes (whether with or without film) into 

the unloaded image coordinate system. The final step was to register unloaded carpal 

bones to transformed loaded carpal bones to obtain kinematics from the unloaded to 

the loaded configuration. Thus, for example, the unloaded scaphoid was registered to 

the transformed loaded scaphoid from images without film for the standard 

kinematics and registered to the transformed loaded scaphoid from images with film 

for effect of film kinematics. The same criteria (as for the radius) were used to select 

the best and final transformation for each bone. Final carpal bone kinematics were 

then implemented in the contact analysis software. Prior to implementation into the 

contact program, carpal kinematics were corrected from the Analyze left-hand 

coordinate system and expressed as attitude and translation vectors determined from 

transformation matrix [12]. 

2.2.5. Contact Analysis 

The Joint_Model program (Kwak et al., Columbia University, 2000) was used for 

contact analysis. This is computationally efficient software that allows for modeling 
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of multiple rigid bodies with 3D articular contact. Local interpenetration 

approximated articular deformation and contact area was the area of surface 

penetration. Contact pressure was proportional to local surface penetration and 

cartilage material properties, and it was displayed as color intensity. Cartilage was 

assigned uniform thickness of 1 mm and elastic modulus of 4 MPa [13]. Contact 

forces were determined by integrating contact pressure with respect to contact area. 

Body geometries, contact parameters and boundary conditions were specified in 

an input file for Joint_Model. The CTPSTRL contact rule was chosen which modeled 

contact pressure as proportional to strain (ratio of local penetration to the sum of 

cartilage thicknesses). The radius was kept fixed and kinematics were applied to the 

carpal bones. Joint_Model calculated solutions iteratively for a maximum penetration 

depth of 2 mm (1 mm on either articular surface). Contact analysis was used to 

determine peak contact stresses, contact forces, contact areas and contact pressure 

distributions on the articulating pair surfaces. 

2.3. Results 

2.3.1. Kinematic Analysis 

Table 2.1 and Fig. 2.3 show kinematics obtained from registration with and 

without the presence of film in the radiocarpal joint. Results showed higher lunate 

translations and rotations (magnitudes) when compared with scaphoid. Looking at 

translation magnitudes, both lunate and scaphoid showed higher values with film than 

without film (20.7 and 15.7% respectively). On the other hand, only lunate had higher 

value (16.9%) for rotation magnitudes with the presence of film. Scaphoid rotation 
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was observed to be higher without film when compared to with film, but all these 

rotations were very small. 

Table 2.1 Kinematic results with and without film in the joint space 

With Film Without Film Bone Transformation 
X (M-L) Y (D-P) Z (A-P) X (M-L) Y (D-P) Z (A-P) 

Translation 1.29 0.88 -2.12 0.15 1.27 -1.77 Lunate 
Rotation -0.11 -0.13 -0.08 0.09 0.12 0.05 

Translation 0.56 1.36 -1.26 -0.06 1.22 -1.15 
Scaphoid 

Rotation -0.05 -0.08 -0.02 0.02 0.10 0.04 
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Figure 2.3 Magnitudes of carpal bone translations and rotations for models with and 

without film. 
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2.3.2. Contact Analysis 

Table 2.2 Model results with and without film in the joint space 

Measurement Contact With Film Without Film 
RL 99.71 23.80 Force (N) 
RS 57.52 71.97 
RL 64.41 32.63 Area (mm2) 
RS 60.09 57.08 
RL 1.98 2.42 Peak Pressure (MPa) 
RS 2.69 1.49 

Looking at model results obtained from contact analysis (Table 2.2), contact area 

measurements were consistently higher with the presence of film than without film. 

The average percent difference in radiolunate and radioscaphoid contact areas was 

found to be 51.3%. Radiolunate peak contact pressure with film was lower compared 

to without film while radioscaphoid peak pressure was higher with film compared to 

without film. The average percent difference in radiolunate and radioscaphoid peak 

contact pressures was found to be 31.2%. Radiolunate contact force was higher (by 

approximately 76 N) while radioscaphoid contact force was lower (by approximately 

14 N) with the presence of film. 

2.4. Discussion and Conclusion 

Due to the widespread use of experimental methods such as pressure sensors to 

validate computational methods, it is important to understand the effects of film 

insertion into joint under investigation and take into account subsequent errors in 

contact mechanics that might arise as a result. As mentioned earlier, relative geometry 

and stiffness of sensor material when compared with articular cartilage can alter contact 

results significantly. 
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The primary cause of error produced by inserting a sensor into joint space is due to 

stiffness and thickness of film [8]. Films with lower stiffness values (relative to 

cartilage) are easier to deform and would therefore increase conformity between 

contact surfaces resulting in increased contact areas. The opposite is true as well. Stiffer 

films would decrease conformity due to reduced deformation thereby affecting articular 

surface contact, which might result in underestimation of contact areas. This could be a 

possible explanation for the 51.3% average error in radiolunate and radioscaphoid 

contact areas obtained from this study. This is a reasonable estimate as Liau et al have 

shown overestimation in contact area as high as 77% [9]. 

Models predicted average peak contact pressures to be 31.2% higher with film. Wu 

et al measured errors in joint contact pressures increased by 28% with film [8]. These 

findings are close to those obtained from this study, the problem being consistency of 

the current data. Peak contact pressure is highly dependant on geometry and kinematics 

and is the most difficult data to determine precisely. Joint_Model uses cartilage 

thickness as one factor to determine contact pressure distribution. Presence of film in 

joint space alters cartilage geometry from a modeling perspective. Also, results have 

shown presence of film to alter contact kinematics. Both geometry and kinematics 

could possibly explain the error in contact pressure measurements.  

Errors in maximum shear stress due to presence of film while relatively low (less 

than 10%), have been shown to occur [8]. Relative sliding and friction between film 

and cartilage surface can also be contributing factors leading to errors when using Fuji-
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scale film. Presence of film could possibly explain the higher kinematics (especially 

lunate and scaphoid translations) obtained with the presence of film for this study. 

Based on the results obtained with the presence of film in the radiocarpal joint 

space, the stated hypothesis was partially fulfilled. Radiolunate and radioscaphoid 

contact areas were higher with the presence of film while only radioscaphoid peak 

contact pressure was higher. On the other hand, average radiocarpal peak contact 

pressure was higher with film than without.  

This study showed that presence of film in joint space does indeed cause an 

alteration in radiocarpal kinematics and contact characteristics. This has to be taken 

into consideration for future in vitro studies requiring experimental measurements using 

pressure sensors. The main limitation to this study was the analysis of a single 

specimen only. In future, testing of multiple specimens is required to establish 

significant differences in kinematics and contact characteristics resulting from insertion 

of film in radiocarpal joint space. 
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3. Validation Study 

3.1. Background 

Degenerative joint disease is a major ailment affecting substantial portion of the 

population over 50 years of age [1]. This stresses the importance of developing cost 

effective tools for detection and prevention of arthritis. The underlying cause of 

Osteoarthritis (OA), which is the most predominant form of arthritis, is relatively 

unknown, as is the cause of the variation in rate of progression between subjects. The 

implementation of patient specific tools is currently under investigation, with an 

emphasis on computational models. Computational modeling is a cutting edge 

investigative technique that simulates in vivo mechanics and is useful for joint contact 

analysis. Further development in this area will provide insight into novel ways of 

diagnosis and preventive measures against osteoarthritis. 

Several techniques exist for joint contact analysis using computational models. One 

method is rigid body spring modeling (RBSM). These models provide an accurate 

description of bone geometry. RBSM uses a set of finite compression springs to 

represent articular surface [2-8] and ligaments and tendons are modeled as tension 

springs. Cartilage material properties of interest are used to define spring properties and 

depending on analysis, can be simulated on one or both contact surfaces. This technique 

is relatively easy to implement and computationally efficient when compared to finite 

element (FE) models. 

Another technique is finite element modeling (FEM). With evolution of 

computational power, development and analysis of complex 3D solid models is now 
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possible [9-17], thereby increasing the popularity of this technique. Using CT or MR 

scans to obtain geometric information, highly accurate models can be constructed. In 

most instances when using CT scans, cartilage geometry is uniformly projected from 

bone surface [18-24]. On the other hand, MR scans can be used to construct complete 

models, with regions of bone and cartilage directly defined from the images. Models 

are generated by meshing finite elements and accuracy depends on geometric data, 

material properties, mesh definition and boundary conditions [25-28]. The higher the 

model complexity, the more time-consuming the FE process and in many cases, there is 

a compromise between computational time and accuracy of solution. 

A third technique is multi body contact modeling. In this technique, 3D surface 

models are generated from MR images. The surfaces include the outer boundary of the 

bones, whether actually cartilage or bone. Images for model construction are generally 

obtained in a relaxed configuration in order to avoid initial deformation. The position of 

interest is obtained by kinematics application (from a loaded MRI, for instance) or from 

application of loading conditions. Solutions are determined from interpenetration of 

contact surfaces [29,30] and solved to satisfy the boundary conditions. Several multi-

body contact programs exist, namely DADS, ADAMS, DYNAMAN, Working Model, 

Articulated Total Body Model etc. Contact modeling is computationally efficient 

compared to FEM and has more flexible contact rules and hence forms the basis of this 

study. Following studies have shown the effectiveness of this method and justified its 

use for contact analysis. 
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Radiocarpal contact mechanics were investigated using contact modeling [30]. MR 

scans of the wrist of four human subjects were acquired in both unloaded (relaxed) and 

loaded (light grasp) configurations using a 1.5 Tesla whole body MRI scanner. Three 

dimensional surface models of the radius, lunate and scaphoid were constructed from 

relaxed images. Kinematic transformations were obtained by surface registration from 

unloaded to loaded configuration and these were applied to the models. Radioscaphoid, 

radiolunate and scapholunate articulations were analyzed using Joint_Model program. 

While results were promising, study was subject to limitations such as low image 

resolution and signal-to-noise (SNR) ratio, low geometric accuracy due to thick slices 

low precision in registration, and lack of model validation. 

In a related study to validate the technique [31], a 9.4 Tesla MRI scanner was used 

to obtain high resolution and SNR images (both relaxed and simulated light grasp) of 

three cadaver forearm specimens. Slice thickness was reduced from 2 mm [30] to 1 

mm. Models of the radius and carpal bones under investigation were constructed from 

relaxed image sets. A more precise registration method based on 3D voxel normalized 

mutual information was used to obtain kinematic transformations from the unloaded to 

loaded state. These kinematics parameters were implemented in the Joint_Model 

program for contact analysis. Experimental data was collected for comparison with 

model results. Peak pressures were within expected values and contact intensity and 

location matched experimental and model results. Also, direct contact area 

measurements from MR scans matched closely with model results. 



 65

This technique was further refined by prior validation work in our lab [32]. Five 

cadaver forearm specimens were analyzed for radiocarpal contact mechanics which 

were compared with experimental data. Five wrist tendons (3 flexors and 2 extensors) 

were isolated for joint loading that simulated light grasp (as opposed to three [31] to 

improve joint stability). Both relaxed and grasp images were acquired using a 9.4 Tesla 

MRI scanner. Three dimensional surface models were constructed from relaxed MR 

images. A 3D voxel registration technique was used to determine motion from the 

unloaded to loaded configuration. Contact area results obtained from models were very 

similar to direct contact area measurements from MR images. Contact forces were 

similar to Tekscan sensor measurements. Peak pressures were similar to Pressurex Fuji-

scale film measurements. That study further demonstrated the feasibility of using MRI-

based contact modeling for joint contact analysis. However, the scanner used to obtain 

images was not feasible for human subjects. 

In order to apply computational models for evaluation of in vivo joint contact 

mechanics, it is necessary to demonstrate that the chosen modeling strategy is able to 

make necessary predictions to a certain degree of accuracy, hence the need for 

validation. In the past, different techniques have been used for validation including 

comparison with published work or with corroborative results from other analytical 

methods [33]. While these methods serve to establish some general level of confidence, 

a more definitive validation can be provided by comparison with direct experimental 

measures [33]. Several studies have used in situ experimental data to validate 

computational models [34-36]. Often, validation is based on how closely the 
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experimental and model data agree. Anderson et al. validated patient-specific contact 

FE models using a high resolution pressure sensor [33]. Contact stress distributions 

were compared between experimental and computational results. Validation was based 

on direct comparison with physical measurements from corresponding cadaver loading 

tests. The contact stress and contact area comparisons were reasonable while pixel-by-

pixel comparisons of stress distribution across articular surface showed considerable 

agreement. Papaioannou et al. used biplane dynamic Roentgen stereogrammetric 

analysis (DRSA) coupled with Tekscan sensor to validate specimen-specific knee joint 

FE models [37]. Convergence of FE solution indicated accuracy while confidence in 

model validity itself was achieved by comparison of contact variables with direct 

experimental measures. Models were found to predict most of the contact variables 

measured experimentally. Anderson et al. conducted a study to validate a finite element 

model to predict cartilage contact pressure in the human hip joint [38]. The model was 

considered validated as the FE predictions compared favorably with experimental 

measurements and published experimental data. Validation criteria vary, and many 

studies fail to state a quantitative criterion. One criterion for validation is an average 

model error of less than two times the accuracy/repeatability of the experimental 

measure for comparison. Based on this approach and results of experimental accuracy 

studies conducted in our lab [32], 20% error was selected for contact force validation 

and 25% error was selected for peak contact pressure validation. Contact area 

measurement is less-well quantified but is consistently better than force so 15% error 
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was selected for contact area validation and this was chosen as the primary validation 

criterion. 

The purpose of this study was to validate MRI-based modeling of functional 

loading in a 3 Tesla clinical MRI scanner. Protocols matched those planned for future 

evaluation of in vivo joint mechanics. The final objective of all the in vitro studies 

conducted thus far is to have a means of evaluating in vivo joint mechanics to determine 

the effects of injury and the efficacy of surgical repair/reconstruction, and to provide 

insight into pathomechancis leading to joint degeneration. This validation study is 

necessary before moving to in vivo clinical testing. 

3.2. Methodology 

3.2.1. Specimen Preparation 

Three cadaver forearms specimens were used for this study. Dissection involved two 

key stages, firstly isolation of bones and tendons of concern and secondly, volar 

dissection of the radiocarpal joint capsule. 

Previous studies [31] performed isolation of the flexor digitorum superficialis 

(FDS), the flexor digitorum profundus (FDP) and the flexor pollicis longus (FPL) 

tendons only and this lead to the need to secure the hand to prevent wrist flexion. 

Subsequently a different approach was used [32] by also isolating two extensors; 

extensor carpi ulnaris (ECU) and extensor carpi radialis (ECR). This provided more 

natural joint stability and prevention of wrist flexion during the simulation of light 

grasp. This augmented approach was used for this study (Fig. 3.1). 
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Figure 3.1 Isolation of wrist extensors (A) and flexors (B) for joint loading. 

Due to similar function, the extensor carpi radialis longus and extensor carpi 

radialis brevis were sutured together to form a single ECR tendon unit. Once isolation 

was completed, tendons were wrapped in saline soaked gauze to prevent drying and 

loss of function. Saline was periodically sprayed on the tendons to prevent them from 

drying. Suture loops were attached to all isolated tendons to allow tensile loading. 

Soft tissue was removed along a 10 cm length of the forearm, 2 cm proximal to 

the joint and moving proximal to expose the radius and ulna. Care was taken to leave 

the interosseous membrane intact as studies have shown it to play a role in wrist joint 

A 

B 



 69

stability [39]. Two 6.35 mm holes were drilled through the radius and one through the 

ulna to attach the specimen to a base plate using plastic bolts (Fig. 3.2). It was 

ensured that the holes were aligned to maintain forearm neutral rotation for the 

duration of testing and imaging. 

 

Figure 3.2 Attachment of specimen to base plate. Sutured loops and nylon line 

connections also shown. 

3.2.2. Experimental Setup 

In order to be compatible with the MRI scanner, only non-ferrous materials were 

used in the experimental setup. The test rig along with side components were 

fabricated entirely from plastic. The pulley system was attached to the stand which 

provided a stable platform for joint loading. Connecting plates (3 × 0.5 inches) of 

variable lengths were used to interconnect the base plate and loading stand depending 

on the desired placement within the MRI scanner (Fig. 3.3). This setup allowed for 

consistent joint loading and precise center positioning in the imaging space. Static 



 70

load was applied using water jugs, pre-filled and weighed for a known load, and 

connected with the help of a pulley system to the tendons via 40 lb (178 N) nylon 

lines. 

 

Figure 3.3 Experimental setup showing stand, pulley system and connecting plates. 

A total of 110 N was applied to the joint to simulate light grasp [32]. Weight 

distribution across tendons was based on resisting wrist flexion and on loads 

proportional to respective muscle cross-sectional area. During experimental and 

imaging data acquisition, 30 N was applied to both ECU and ECR, 20 N to both FDP 

and FDS while the FPL was loaded with 10 N (Fig. 3.4). Before load application, a 

cylindrical PVC pipe (1.5 inch outer diameter) was placed in the hand as an object for 

simulated grasp. Fingers were taped around the pipe to maintain position without 
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tendon loads. To maintain wrist stability extensors were loaded first, followed by the 

flexors. 

 

Figure 3.4 Experimental setup showing mechanism for joint loading. 

3.2.3. Experimental Pressure Measurements 

Several techniques have been proposed to measure in situ joint contact forces and 

pressures. This study made use of pressure sensitive film and an electronic pressure 

sensor for experimental measurements. 

3.2.3.1. Pressure Sensitive Film 

This study used Pressurex® Fuji-scale film (Sensor Products Inc., East Hanover, 

NJ). Pressurex is a high resolution film that comprises a transfer and a developer 

sheet which releases color dye proportional to the applied pressure. This study used 

Super Low type Pressurex film with a maximum thickness of 0.008 in (0.2 mm 
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approximately) which was reasonably able to conform to curved surfaces, making it 

appropriate for biomechanical applications. Pressure variation across film was 

interpreted using a custom calibration routine. 

The system was calibrated under controlled conditions immediately prior to 

specimen testing in order to minimize environmental effects on film performance. 

Calibration was performed using a custom fixture in an Instron Materials Testing 

Machine (Model #8511, Instron Corp., Canton, MA). The fixture comprised a flat 

ended cylindrical indenter 0.625 in (15.875 mm) diameter and a flat base both lined 

with a layer of shore 80A rubber 1.6 mm thick. The rubber was chosen based on 

modulus similar to human articular cartilage. Film was placed between the indenter 

and base and loads applied from 100 to 1000 N in 100 N increments and held for 30 

seconds each. The intensity profiles were scanned at 72 dpi resolution and saved as 

image files for calibration analysis (Fig. 3.5). 

 

Figure 3.5 Sample calibration data (Specimen 3) from Pressurex sensor. 

For this study, a code written in MATLAB (Mathworks Inc., Natick, MA) based 

on pixel-by-pixel analysis was used to analyze image color intensity. 3D arrays of 

red, green and blue values for individual pixels were obtained for each calibration 

image. Normalized red values for each pixel were determined from ratio of red value 

to total intensity (sum of red, green and blue values). Similarly, normalized blue 
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values were also determined. The calibration curve was a function of difference 

between normalized red and normalized blue values and the applied pressure 

(determined from known applied force and area) [32]. A cubic equation was fit to the 

data obtained and was used to calculate contact pressures from specimen testing (Fig. 

3.6). 
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Figure 3.6 Sample calibration curve (Specimen 3) showing cubic regression equation 

and correlation coefficient. 

 

Figure 3.7 Sample template (Specimen 3) showing radioscaphoid (left) and 

radiolunate (right) contact intensity profiles. 
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For testing, specific film templates were created to match the two fossa on the 

radius, along with a volar tab to facilitate insertion and extraction without interfering 

with results (Fig. 3.7). Use of templates reduced crimping of film during insertion, 

loading or extraction. Care was taken to cover the templates in a thin layer of plastic 

wrap to protect from damage and reduced performance due to the presence of 

synovial fluid and saline solution. The template was inserted into the radiocarpal joint 

and the joint subsequently loaded in simulated grasp as described earlier. Loads were 

applied for approximately 30 seconds to obtain a satisfactory profile and five trials 

conducted for each specimen. Similar analysis as calibration was performed and 

pixel-by-pixel contact pressure distributions obtained from the intensity profiles using 

the cubic calibration relation. Contact areas and forces were also determined. 

3.2.3.2. Electronic Pressure Sensor 

 

Figure 3.8 Wrist Sensor Model #4201 used to acquire experimental data. 

This study also used the K-ScanTM System (Tekscan Inc., South Boston, MA), 

Wrist Sensor #4201 (Fig. 3.8). This system is even more thin, flexible than Fuji-scale 

film and accurate in generating contact force, area and pressure measurements. 

Piezoresistive sensels convert changes in resistance due to applied loads into pressure 

measurement for each sensel. The sensor, electronic interface (handle) and software 
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(I-Scan) allow for real-time feedback and dynamic measurements. While the 

resolution of the Tekscan system is not as high as Pressurex film, dynamic response 

eliminates insertion/ extraction artifacts thereby improving the accuracy of results. 

In order to fit within the radiocarpal joint space, the Wrist sensor was trimmed 

approximately 2 mm on both sides. Care was taken not to interrupt the central sensel 

grid and the sensor was resealed to maintain integrity. The Tekscan sensor was also 

calibrated under a series of known loads, and the output (Fig. 3.9) was saved for 

analysis. 

 

Figure 3.9 Sample calibration data (Specimen 3 – 1000N) from Tekscan sensor. 

Applied pressures were related to average raw values determined from the 

sensels. Calibration data was fit to a quadratic curve for each sensor and used to 

calculate contact pressures from testing (Fig. 3.10). The experimental setup and 

procedures for acquiring Tekscan calibration and experimental data were similar to 

those previously described for Pressurex film. Three experimental measurement trials 

were conducted per specimen and the profiles were analyzed to obtain the results. 
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Figure 3.10 Sample calibration curve (Specimen 3) showing quadratic regression 

equation and correlation coefficient. 

3.2.4. MR Data Acquisition 

Anatomical geometry and kinematic boundary conditions for the models were 

obtained from MRI scans of the hand and wrist. These scans were performed using a 

3 Tesla clinical MRI scanner (Siemens Allegra Systems, Siemens, USA). Frontal 

plane images were acquired during relaxed (unloaded) position and during simulated 

light active grasp (loaded configuration) using a constructive interference steady state 

(CISS) sequence and double loop custom surface coil.  

For the unloaded configuration, scans were performed for a TR of 14.76 ms, TE 

of 7.38 ms, flip angle of 60°, averages (NEX) = 1, and partial phase and slice Fourier 

ratios of 6/8. The image sizes were 640 × 416 pixels with a 95 × 61.8 mm field of 
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view (FOV). The in-plane resolution was 0.15 mm with a slice thickness of 0.5 mm 

and 104 slices constituted the volume. For the loaded configuration, scans were 

performed for a TR of 11.98 ms, TE of 5.99 ms, flip angle of 60°, averages (NEX) = 

1, and partial phase and slice Fourier ratios of 6/8. The image sizes were 320 × 208 

pixels with a 95 × 61.8 mm FOV. The in-plane resolution was 0.3 mm (half that of 

unloaded) with a slice thickness of 1 mm and 52 slices constituted the volume. The 

lower resolution images reduced scan time (to 196 seconds) consistent with planned 

in vivo studies with active grasp scans. Relaxed images maximized resolution for 

accurate undeformed model geometry (Fig. 3.11). 

 

Figure 3.11 Sample MR image (Specimen 3) showing radiocarpal (RC) joint in 

unloaded configuration. 

RC Joint 

Scaphoid 
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3.2.5. Segmentation and Model Construction 

Manual segmentation of radius and carpal bones (and their respective cartilage 

surfaces) for surface models was performed using custom in-house software 

MPXImage (Ted Manson, University of Pittsburgh, 1998). 

 

Figure 3.12 Anchor (yellow) and control (green) points forming Bezier curve. 

Bezier splines were superposed on images and adjusted through multiple anchor 

and control points to fit the outer contour of the bone with cartilage (Fig. 3.12). Points 

on the contours were not restricted to pixel centers, resulting in smooth primary 

contours. In order to determine quality and accuracy of segmentation, contours were 

imported into PED software (Damion Shelton, University of Pittsburgh 2000) (Fig. 

3.13). PED assembles multiple contours in 3D and allows for evaluating contours for 

anomalies, and identify segmentations that may need to be double-checked. 
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Figure 3.13 3D point cloud (Specimen 3 Radius) of segmented contours in PED. 

Geomagic Studio 9 (Raindrop Geomagic, Research Triangle Park, NC) was used 

to construct 3D surface models of the unloaded bones (Fig. 3.14). Text files 

containing coordinates of bone contours were imported into Geomagic. The total 

number of points constituting 3D carpal bone geometry was reduced, in order to make 

file size compatible with contact analysis software, and surface wrap of points 

generated. Since the unloaded images were scanned with 0.5 mm slice thickness, Z 

values were scaled to obtain anatomically precise models. The surface geometry 

models of carpal bones from Geomagic were then converted to a format compatible 

with the Joint_Model program. 
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Figure 3.14 3D surface model (Specimen 3 Radius) constructed from contour data. 

3.2.6. Registration and Kinematic Analysis 

In order to perform registration for kinematics boundary conditions, unloaded and 

loaded radius and carpal bones (without cartilage surfaces) were isolated from MRI 

scans (Fig. 3.15). Isolation was performed using Adobe Photoshop 6.0 (Adobe 

Systems Inc, San Jose, CA) software and the procedure involved deleting every 

detail, except the desired bone from each scan. Isolated cropped images (416 × 416 

unloaded and 208 × 208 loaded) were saved for kinematic analysis. 

 

Figure 3.15 Isolation of cropped image (Specimen 3 Radius) for registration. 



 81

The basis of kinematic analysis was the assumption that bone tissue deforms 

negligibly during light grasp, while cartilage deforms even under the low loading. 

Analyze 5.0 (Analyze Direct, Lenexa, KS) was used to perform surface and/or 

volume registration. For this study, the radius was selected as reference (fixed) bone. 

Either surface or voxel registration methods were selected depending which was more 

accurate. Because volume registration does not always converge on the first trial, the 

procedure was repeated 25 times and all corresponding transformation matrices were 

saved for convergence analysis. This was achieved by comparing variation in 

magnitudes of translation vectors for each of the 25 transformations. If convergence 

was obtained, that transformation was used. If convergence was not obtained, either 

the last registration or the registration closest to the average translation vector was 

judiciously selected. The following 3D registration steps were performed for 

kinematic analysis. 

The first step was to transform the loaded radius (reference bone) to the unloaded 

radius (that is the unloaded image coordinate system) and the resulting transformation 

matrices were saved. The most ideal transformation (determined from convergence 

analysis) was then used to transform the loaded carpal bones to the unloaded image 

coordinate system, and the resulting transformed image volumes were saved. Lastly, 

the unloaded carpal bones were transformed to match the loaded and transformed 

carpal bones (previously saved volume) to obtain the final kinematic transformation 

matrix. This kinematic transformation was converted to a translational vector and 

attitude (rotation) vector [8] as required by the Joint_Model program. The Analyze 
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left-handed coordinate system was accounted for by reversing signs of all translations 

and rotations. 

Due to limitations in registration software, isolation of bone contours was 

performed on cropped images while models were inadvertently constructed from 

original uncropped images. This resulted in a change in location of the origin of the 

registration coordinate system with respect to the modeling coordinate system. The 

attitude vector starts at the origin and defines a single axis of rotation where 

magnitude of the vector is the rotation about the axis. Cropping of images caused a 

change in location of the origin of the images used for kinematics compared to the 

original images used to generate the bone models. Thus, translations associated with 

rotations would be slightly different in the two systems. These errors can be corrected 

based on known offsets from image cropping. For Specimen 1, cropping was done 

130 pixels from the top and 94 pixels from the bottom of the image sets. For 

Specimen 2, cropping was done 100 pixels from the top and 124 pixels from the 

bottom and for Specimen 3, cropping was done 50 pixels from the top and 174 pixels 

from the bottom of the image sets. Based on the scale of rotations and centers of 

gravity of the carpal bones the errors were conservatively estimated to be less than 

350 µm. For the analysis and data presented here, the kinematics were not 

recalculated. Using a consistent image set should be a priority when conducting 

future studies. 
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3.2.7. Contact Analysis 

Contact analysis was performed using non-commercial Joint_Model program 

developed at University of Columbia (Kwak et al., Columbia University, 2000). The 

Joint_Model program considers 3D models as un-deformable and determines contact 

pressures from interpenetration of body surfaces with defined contact. Several key 

features make this program an effective modeling tool. 

This software allows individual modification of bones, cartilage, ligaments and 

tendons and allows soft-tissue structure wrapping around bones along with 3D 

articular contact between bodies. Maximum overlap (penetration), contact pressures 

and pressure distribution (as a saturation map) along with peak contact pressure, 

contact forces and contact areas can all be displayed using this program and an output 

file allows examination of overlap or pressure at any model node. Finally, the 

program is computationally efficient when compared to other methods such as FEM. 

Contact Pressure 

The CTPSTRL Joint-Model program contact rule was used in this study. The 

fundamental principle of the CTPSTRL contact rule is that contact pressure is 

proportional to penetration at any point, as indicated by the equation dP E
t

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 

where P is the peak pressure, d is the local penetration (overlap), t is the total 

cartilage thickness for both bones and the ratio d
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the approximate 

cartilage strain. Contact pressures are integrated over contact area to obtain contact 

force. 
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Contact Area 

Calculation of contact area in Joint_Model program is based on area of complete 

and partial triangular surface facets involved in interpenetration. Area contribution for 

partially penetrating facets is based on the number of nodes penetrating and their 

penetration depth. The sum of areas from all facets with penetrating nodes gives the 

contact area. 

The input for Joint_Model program was a data file containing two main 

definitions, BODY and CONTACT. The geometry and kinematics transformations 

(translations and rotations) for each carpal bone were defined under respective BODY 

definition. CONTACT defined the type and nature of contact between bodies. For this 

study CTPSTRL contact rule required material properties (modulus) of contact 

surfaces and total thickness of cartilage on both bones to be specified. Cartilage 

effective (relaxation) modulus of 4MPa and thickness of 2 mm (1mm each bone) 

were used for all bones as boundary conditions [29]. Kinematics (translation and 

attitude vectors from registration) were applied to the carpal bones by direct 

specification into input file. The analysis was displacement controlled. The program 

determined the solution for the specified boundary conditions and provided the output 

data for each defined bone contact pair. 

3.2.8. Direct Contact Area Measurement 

Contact areas were determined directly from MR images as an additional form of 

validation for measurements obtained from models. This is a straightforward 

procedure that can be used as in vivo verification of modeling accuracy. 
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Figure 3.16 Loaded MR image showing (A) radioscaphoid contact and (B) segmented 

radioscaphoid contact (Specimen 3 – Slice 31). 

Radiocarpal contact is visible in loaded MR configuration and was therefore 

segmented using MPXImage (similar procedure as model construction). Contour plot 

(arc) of contact region was defined for each contact pair and each image (Fig. 3.16) in 

the entire set. Contact arc lengths for each image were multiplied by slice thickness 

(to get effective area) and the areas from all images were added to determine total 

contact area for the pair. 

 

A B
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3.3. Results 

3.3.1. Kinematic Analysis 

Table 3.1 Radiocarpal kinematics. Translation and rotation in mm and degrees 

respectively 

Specimen Bone Transformation X (M-L) Y (D-P) Z (A-P) 
Translation -1.727 0.344 0.371 Lunate 

Rotation -0.500 -0.094 -0.056 
Translation -1.320 -1.284 0.069 

1 
Scaphoid 

Rotation -0.098 -0.152 0.014 
Translation -1.361 0.560 0.233 Lunate 

Rotation -0.479 -0.174 -0.031 
Translation -1.332 -0.100 0.023 

2 
Scaphoid 

Rotation -0.305 -0.244 -0.046 
Translation -0.110 0.587 0.480 Lunate 

Rotation -0.456 0.088 0.021 
Translation -0.102 0.455 0.381 

3 
Scaphoid 

Rotation -0.413 0.150 0.011 
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Figure 3.17 Showing magnitudes of translation and rotation for all specimens (S). 
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Figure 3.18 Specimen 3 radiocarpal contact model (A) lateral, (B) oblique and (C) 

medial views in Joint_Model. 

Table 3.1 and Fig. 3.17 show kinematics obtained from registration for all 

specimens. Due to uniqueness in geometry and the positions during unloaded 

imaging, kinematics vary between specimens. Specimen 1 had the highest lunate and 

scaphoid translation magnitudes, that is, 1.799 mm and 1.843 mm respectively. 

Specimens 1 and 2 showed the highest lunate rotation (0.511 degrees) while 

Specimen 3 showed the highest scaphoid rotation (0.493 degrees). Except for 

Specimen 1 translation, the general trend was for higher lunate translations and 

rotations (magnitudes) when compared with scaphoid. The highest translations were 

in the medial-lateral direction except for Specimen 3 (highest in the proximal-distal 

direction). The highest rotations were about the medial axis. Overall, the 

transformations were characterized by very small (no greater than half degrees) 

rotations. Fig. 3.18 shows the radius and carpal bones in loaded configuration. 

A 
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3.3.2. Contact Analysis 

Table 3.2 shows experimental data for each trial collected using Tekscan sensor. 

Three trials were conducted and measurements were consistent amongst the trials. 

Averages of contact force, area and peak pressure for the three trials were taken for 

comparison with data acquired from models. 

Table 3.2 Experimental data acquired using Tekscan sensor 

Specimen Contact Measurement Trial 1 Trial 2 Trial 3 
Force (N) 36.947 33.629 35.307 
Area (mm2) 36.290 39.919 43.548 RL 
Peak Pressure (MPa) 4.586 4.586 4.586 
Force (N) 37.476 45.665 34.288 
Area (mm2) 108.871 105.242 101.613 

1 

RS 
Peak Pressure (MPa) 2.686 4.012 2.744 

Force (N) 18.364 14.121 13.141 

Area (mm2) 116.129 105.242 105.242 RL 

Peak Pressure (MPa) 1.034 1.034 0.977 

Force (N) 29.497 21.918 20.711 

Area (mm2) 61.693 50.806 43.548 

2 

RS 

Peak Pressure (MPa) 2.829 1.408 1.581 

Force (N) 76.786 78.290 82.394 

Area (mm2) 130.645 130.645 130.645 RL 

Peak Pressure (MPa) 2.953 2.953 3.031 
Force (N) 52.164 46.030 40.338 
Area (mm2) 65.322 54.435 61.693 

3 

RS 
Peak Pressure (MPa) 5.615 4.699 4.996 

 

Table 3.3 shows the experimental data collected using Pressurex super low film. 

Contact forces, areas and peak pressures were interpreted from intensity profiles 

generated on templates (Fig. 3.7) during radiocarpal joint loading using calibration 

curves. Only peak pressure measurements were relatively close to the Tekscan and 
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model data. Contact force and area measurements were substantially underestimated 

(except for Specimen 2 forces). Due to these erratic results, Pressurex data was not 

used for validation. 

 

 

Figure 3.19 Specimen 3 intensity profiles (A) Pressurex, (B) Tekscan and (C) model 

for lunate (R) and scaphoid (L) contact. 

Qualitatively, intensities were consistent between experimental and model 

measures (Fig. 3.19). Relative size and location of scaphoid and lunate contact on the 

radius correspond well. Results of this study are consistent with prior in vivo and 

experimental studies that indicate most of the contact to be in the dorsal region. This 

is evident from the contact intensities on the radius articular surface. Also, the general 

trend was for greater lunate contact intensities than scaphoid. 
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Table 3.3 Experimental, model and direct measurements 

Specimen Contact Measurement Pressurex Tekscan Model Direct 
Force (N) 10.124 35.294 20.736   
Area (mm2) 7.331 39.919 49.182 43.369 RL 
Peak Pressure (MPa) 3.044 4.586 0.975   
Force (N) 22.925 39.143 187.130   
Area (mm2) 15.532 105.242 103.900 89.947 

1 

RS 
Peak Pressure (MPa) 2.362 3.147 2.976   
Force (N) 29.643 15.209 13.298   
Area (mm2) 11.059 108.871 58.295 100.162 RL 

Peak Pressure (MPa) 3.001 1.015 0.881   
Force (N) 43.877 24.042 58.588   
Area (mm2) 12.923 52.016 69.258 55.863 

2 

RS 

Peak Pressure (MPa) 4.633 1.939 1.739   
Force (N) 30.387 79.156 94.067   
Area (mm2) 18.141 130.645 110.771 124.845 RL 

Peak Pressure (MPa) 2.253 2.979 1.432   
Force (N) 20.282 46.177 32.091   
Area (mm2) 13.420 60.484 65.768 63.410 

3 

RS 
Peak Pressure (MPa) 1.996 5.103 0.998   

Table 3.3 shows a summary of all experimental, model and directly image 

measured data. Looking at contact forces for all specimens (Fig. 3.20), Tekscan and 

model results matched reasonably well. The general trend was for both Tekscan and 

model to predict lower radiolunate contact forces compared to radioscaphoid contact 

forces. Comparing Tekscan and model data, for Specimens 1 and 2, Tekscan 

predicted higher radiolunate contact forces (35.294 and 15.209 N respectively) than 

the MRI-based model (data). On the other hand, model predicted higher 

radioscaphoid contact forces compared to Tekscan data. Model results were high for 

Specimen 1 and Specimen 2 radioscaphoid contact forces. The 187.13 N 
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radioscaphoid contact force for Specimen 1 is unreasonable and must be the result of 

compounded errors. For Specimen 3, the model predicted higher radiolunate contact 

force compared to Tekscan data and Tekscan predicted higher radioscaphoid contact 

force compared to model data. 

Comparing contact area results between Tekscan, model and direct measurements 

(Fig. 3.21) it was observed that the three matched closely for Specimens 1 and 3. In 

case of Specimen 2, model underestimated radiolunate contact area and somewhat 

overestimated radioscaphoid contact area compared to Tekscan and direct 

measurements. Tekscan and direct measurements matched closely for all specimens. 

Considering radiolunate contact areas, the model registered highest value for 

Specimen 1 (49.182 mm2), while Tekscan data was the highest for Specimens 2 and 3 

(108.871 and 130.645 mm2 respectively). Looking at radioscaphoid contact areas, 

Tekscan registered highest value for Specimen 1 (105.242 mm2), while model data 

was highest for Specimens 2 and 3 (69.258 and 65.768 mm2 respectively). 

Comparing peak pressures between Tekscan and model data (Fig, 3.22), results 

obtained were inconsistent. Looking at Specimen 1, Tekscan and model 

radioscaphoid peak contact pressures closely matched. For Specimen 2, both 

radiolunate and radioscaphoid peak contact pressures closely matched between 

Tekscan and model results. On the other hand, Tekscan measured high radiolunate 

peak contact pressure for Specimen 1. Tekscan results were also high for Specimen 3 

radiolunate and radioscaphoid peak contact pressures. The general trend was for 
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Tekscan to measure higher peak contact pressure values than were found using the 

model. 
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Figure 3.20 Radiolunate (RL) and radioscaphoid (RS) contact force for all specimens 

(Specimen 1: S1; Specimen 2: S2; Specimen 3: S3). 
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Figure 3.21 Radiolunate (RL) and radioscaphoid (RS) contact area for all specimens. 
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Figure 3.22 Radiolunate and radioscaphoid peak contact pressure for all specimens. 
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Table 3.4 Comparison of experimental and model force measurements 

Force (N) 
Specimen Contact Tekscan Model % Difference Avg % Difference 

RL 35.294 20.736 41.2 1 
RS 39.143 187.130 378.1 

209.7 

RL 15.209 13.298 12.6 2 
RS 24.042 58.588 143.7 

78.1 

RL 79.156 94.067 18.8 3 
RS 46.177 32.091 30.5 

24.7 

 
Table 3.5 Comparison of experimental and direct MR area measurements 

Area (mm2) 
Specimen Contact Tekscan Direct % Difference Avg % Difference 

RL 39.919 43.369 8.6 1 
RS 105.242 89.947 14.5 

11.6 

RL 108.871 100.162 8.0 2 
RS 52.016 55.863 7.4 

7.7 

RL 130.645 124.845 4.4 3 
RS 60.484 63.410 4.8 

4.6 

 
Table 3.6 Comparison of experimental and model area measurements 

Area (mm2) 
Specimen Contact Tekscan Model % Difference Avg % Difference 

RL 39.919 49.182 23.2 1 
RS 105.242 103.900 1.3 

12.2 

RL 108.871 58.295 46.5 2 
RS 52.016 69.258 33.1 

39.8 

RL 130.645 110.771 15.2 3 
RS 60.484 65.768 8.7 

12.0 

 
Table 3.7 Comparison of direct MR and model area measurements 

Area (mm2) 
Specimen Contact Direct Model % Difference Avg % Difference 

RL 43.369 49.182 13.4 1 
RS 89.947 103.900 15.5 

14.5 

RL 100.162 58.295 41.8 2 
RS 55.863 69.258 24.0 

32.9 

RL 124.845 110.771 11.3 3 
RS 63.410 65.768 3.7 

7.5 
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Table 3.4 shows the percent difference between experimental and model force 

measurements. For Specimens 2 and 3 percent differences in radiolunate contact force 

were relatively small (12.6 and 18.8% respectively). Percent differences in Specimen 

1 radiolunate contact force and Specimen 3 radioscaphoid contact force were outside 

the validation criteria, but were plausible results. Percent differences in Specimens 1 

and 2 radioscaphoid contact forces were unexpectedly high due to high and 

unreasonable model results. This led to high average percent differences for 

Specimens 1 and 2, and the percent difference for Specimen 3 fell just outside the 

validation criteria. 

The fact that experimental results (Tekscan) closely matched direct contact area 

measurements was evident from average percent differences shown in Table 3.5. 

Aside from Specimen 1 radioscaphoid contact, all results were within 10%. The 

overall average percent difference was less than 10% for Specimens 2 and 3 (7.7 and 

4.6% respectively) and just over 10% for Specimen 1 (11.6%). 

Comparing Tekscan and model contact area measurements (Table 3.6), average 

percent differences closely matched for Specimens 1 and 3 (12.2 and 12% 

respectively). Comparing direct MR and model contact area measurements (Table 

3.7), average percent differences also closely matched for Specimens 1 and 3 (14.5 

and 7.5% respectively). For model results, due to underestimation of radiolunate 

contact area and a somewhat overestimation of radioscaphoid contact area, average 

percent differences in contact area measurements for Specimen 2 were nearly twice 

the level of the validation criteria. 
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Percent differences in peak contact pressure measurements between Tekscan and 

model varied from as low as 5.5% (Specimen 1 radioscaphoid contact) to as high as 

80.4% (Specimen 3 radioscaphoid contact). Average percent differences closely 

matched for Specimen 2 (11.7%), but were high for Specimen 1 (42.1%) and 

Specimen 3 (66.2%). 

3.4. Discussion and Conclusion 

Overall behavior of the specimens was consistent and MRI-based models yielded 

results that were plausible in most cases. Prior studies have shown Tekscan sensor 

(11% accuracy) to be more reliable than Pressurex film (18% accuracy) [32]. This is 

evident from the Pressurex data acquired during this study. Due to this unreliability, 

Pressurex measurements were excluded from the validation criteria. Our data indicates 

contact area is the most consistent and reliable model measure, compared to Tekscan 

and direct MR measurements. This is a key parameter that would also be measurable 

from images in future in vivo studies. Contact force and especially peak contact 

pressure are highly dependant on geometric details and thus show higher variability. 

Considering the validation criterion of contact area, the models for Specimens 1 and 

3 were validated based on both Tekscan and direct MR measurements. The average 

percent difference for Specimen 2 did not fall within the 15% criteria, and this model 

was thus not validated for contact area. Accuracy in contact area did not necessarily 

insure accuracy in contact force or peak pressure, nor did contact area errors necessarily 

result in high force or peak pressure errors. This is evident from the average percent 

differences in peak contact area measurements. Specimen 2 did not meet the validation 

R 



 97

criterion for area but had the best pressure match. The average percent difference fell 

well within the 25% criteria. This perhaps indicates the arbitrariness of the validation 

criteria levels. With occurrence of injury, changes in contact pressure distribution on 

the articular surface are to be expected. These changes can perhaps easily vary from 

50% to as high as 100%. Based on this, it is difficult to set a definitive level of accuracy 

to make this a useful tool. The specified 25% error is probably not as good as the ideal 

that we would want to achieve (which is less than 10%). Considering the validation 

criterion of force, average percent difference in contact force for Specimen 3 was just 

outside the validation criterion. Specimen 3 radiolunate contact force fell within the 

20% criteria while the radioscaphoid force error was over the criterion, but the value 

was plausible. The unexpectedly high model radioscaphoid contact force results for 

Specimens 1 and 2 resulted in high average percent differences. It should be taken into 

consideration that relative error may appear high, while absolute value for Specimen 2 

is not implausible. However, the radioscaphoid force for Specimen 1 is nearly double 

the applied experimental force. Model contact area and peak pressure for this 

articulation are both accurate. Thus, it appears that geometric and/or kinematic errors 

led to overall higher pressures throughout the contact region, resulting in the error in 

force. 

Considering experimental data, however, Pressurex results were unreliable, which 

could be attributed to nature of static and permanent pressure measurement. Due to 

inhomogeneity of joint fossa, artifacts could have influenced intensity profiles 

especially during insertion and removal of template. This Fuji-scale film error becomes 
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more prominent at low loads. Also, at high loads, intensity profiles near saturation, 

which lowers sensitivity and increases errors. Finally, the Fuji-scale film has a 

threshold for dye release. Any loads/pressures under the threshold will not be recorded. 

Tekscan sensor appeared to provide very consistent results. In order to better match 

articular contact fossa, sensor was trimmed and resealed to prevent fluid seepage from 

disrupting sensor readings. Due to presence of sensor in joint space articulations may 

have been somewhat altered due to sensor thickness and added stiffness [40]. Thickness 

and stiffness of film affects conformity between articulating surfaces and this could 

have impacted pressure measurements. This might have factored in the relatively high 

pressure readings obtained for Specimen 1 radiolunate contact and Specimen 3 

radiolunate and radioscaphoid contacts. Very low percent error (less than 10%) 

between Tekscan and direct MR contact area measurements indicate this method to be a 

reliable standard for comparison when shifting to future in vivo analysis. 

Results obtained from MRI-based models are comparable to results from similar 

radiocarpal contact analysis studies conducted in the past [31,32]. While refinements in 

image resolution and radiocarpal joint loading (loading five tendons as opposed to three 

to improve joint stability) have helped improved accuracy, the significant difference 

between this study and prior studies is the disparity in image resolution between 

unloaded and loaded MR images. Lower resolution loaded images may have reduced 

the accuracy of kinematic registrations. Due to the low resolution loaded images, bone 

geometry might not have been accurately isolated. Loaded image volume sets were also 

resized to properly perform registration. Prior validation studies have acquired both 
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unloaded and loaded images in similar high resolution [32]. The downside to higher 

resolution is longer scan time, which would not be feasible for active grasp. This would 

increase possibility of fatigue and motion artifacts in the images. On the other hand, 

there is not much impact of long scan times when acquiring images in the relaxed 

configuration. Keeping this in mind, loaded images were acquired at half the resolution 

of unloaded images for this study. This could provide a possible explanation for some 

of the inconsistent model results. Contact analysis was performed for a uniform 

cartilage thickness of 1 mm on each bone. Physiologically, cartilage thickness is non-

uniform and varies with articulation across the surface of bones. Also, non-linear 

stiffness behavior of articular cartilage was not taken into consideration. Articular 

cartilage serves to distribute loads across joint surface thereby minimizing stress 

concentration and facilitating joint motion with minimal friction and wear. The elastic 

modulus of articular cartilage varies with rate of loading and can approach relatively 

high values with physiologic rates of dynamic loading. At slow loading rates, the 

effective elastic modulus is relatively low, but at high dynamic loading rates (running, 

for example) stiffness may approach 500 MPa [41]. Depending on application, these 

variations may produce different effects. At lower static loads, these effects may be 

secondary and not critical enough. Due to the low static loads (to simulate light grasp) 

implemented in this study, a low value of (linear) effective compressive modulus was 

assumed. In the published literature, articular cartilage is commonly assumed to be 

linear elastic for quasi-static loading or to consider only instantaneous response of the 
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tissue to loading [25-38]. This could further explain some of the inconsistent model 

results. 

Several refinements in the modeling technique contributed to improvement of 

model accuracy for this study. Use of a custom coil and CISS sequence (compared to 

gradient recall echo sequence used in prior studies) improved quality of MR images. 

Bone contours and articular boundaries were better defined leading to improved 

isolated and segmented images. The greater number of slices constituting the image 

sets, resulted in more information from which to generate geometrically accurate 

models. For this study, unloaded images comprising individual volumes were scanned 

with 0.5 mm slice thickness. In prior studies, multiple image (1 mm thickness) sets 

were scanned at an offset and compiled to simulate 0.5 mm slice thickness. The prior 

procedure was found to be less accurate and sometimes resulted in different image 

contrasts that prevented consistent segmentation [32]. Another refinement for this study 

was quality control. For consistency, isolations and segmentations were reviewed by at 

least two individuals to minimize geometric errors from segmentation and errors in 

bone isolation for image registration. The second level review led to improved accuracy 

and consistency in contact analyses. Improvements were also made to the registration 

procedure used for kinematic analysis. Instead of relying on voxel registration as the 

standard [32], a combination of surface and voxel registration was used to obtain better 

kinematics. In addition, registration transformation selection was also secondarily 

reviewed. 
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One way to improve future accuracy would be to use patient specific cartilage 

measurements. This study used a uniform thickness of 1 mm based on literature. 

Instead, cartilage thickness could be measured from individual high resolution MR 

images and averaged to obtain a value. Another way would be to take into account 

variable cartilage thickness. Instead of specifying uniform articular surface thickness as 

a contact criterion, variable cartilage thickness models can be created for analysis. 

Further, the same input data could be implemented in a deformable contact FE model 

incorporated together with non-linear stiffness characteristics of articular cartilage. 

While the method is clearly not perfect, it demonstrates excellent potential. Results 

show MRI-based models generated from 3 Tesla clinical MR scanner to be partially 

validated. Therefore, further development work is warranted, as well as preliminary 

work for the next phase with in vivo measurements in injured and normal joints. 
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4. Summary and Future Direction 

Results obtained from both the effect of film and validation studies illustrated the 

strengths and weaknesses of the MRI-based modeling approach. The model results for 

contact area were validated for 2 of 3 specimens and peak pressure was validated for one 

specimen. These partial validation results further demonstrate the need for development 

and additional application of MRI-based models for study of radiocarpal contact 

mechanics. Each study is summarized in more detail below, along with recommendations 

for future endeavors in this area. 

The effect of inserting a sensor into radiocarpal joint space on kinematics and contact 

characteristics was investigated. The presence of film clearly alters the result, but the 

effects do not appear completely predictable. A single cadaver forearm specimen was 

used and analyzed for simulated light grasp (110 N loading of tendons). Models were 

constructed from MR scans obtained using a 9.4 Tesla scanner for unloaded and loaded 

configurations with and without Pressurex film inserted in joint space. Kinematics 

defining transformations from unloaded to loaded (with and without film) state were 

obtained and models adjusted to reflect presence of film in joint space. These were input 

in a contact modeling program for analysis. Contact characteristics (contact forces, areas 

and peak pressures) were then compared with and without the presence of film in the 

joint space. Kinematics were observed to be higher with film for translations and lunate 

rotation. The average percent difference in radiolunate and radioscaphoid contact areas 

was found to be higher with presence of film and comparable to other effect of film 

studies. Contact area was increased for both articulations, though the level of increase 
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varied. Also, the average percent difference in radiolunate and radioscaphoid peak 

contact pressures was found to be higher with the presence of film and close to the range 

reported by other studies. With the presence of film, radiolunate and radioscaphoid 

contact forces were overestimated and underestimated respectively. The presence of film 

clearly alters the contact. Thus, this may account for additional differences (beyond 

measure accuracy) between experimental and modeling measures. 

When using sensors for in vitro experimental measurements, impact on kinematics 

and contact characteristics must be taken into consideration. To minimize errors, sensors 

with least geometric and stiffness parameters must be selected. Future testing of multiple 

specimens should be conducted to establish significant differences in kinematics and 

contact characteristics resulting from insertion of film in radiocarpal joint space. 

Three cadaver forearm specimens were tested to validate MRI-based modeling with a 

clinical MR scanner for future in vivo studies. Dissections were performed to expose the 

radiocarpal joint for sensor insertion and to isolate the necessary tendons for joint 

loading. The two extrinsic wrist extensors and three extrinsic digital flexors were loaded 

with a total load of 110 N to simulate light grasp. Along with experimental joint contact 

measurements using Fuji-scale film and an electronic sensor, MR scans were taken in a 3 

Tesla clinical scanner for both loaded and unloaded configurations. Models were created 

for the radius and two carpal bones (lunate and scaphoid) and kinematics defining 

transformations from the unloaded to loaded state were obtained. These were input in a 

contact modeling program for contact analysis. Contact characteristics (contact forces, 

areas and peak pressures) were then compared with experimental and direct measures. 
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Results obtained from this study were comparable to radiocarpal contact validation 

studies conducted in the past. Results showed models to be partially validated based on 

contact areas and peak pressures, but contact force data did not meet validation criteria. 

Peak contact pressure and force measurements were more variable than contact area data. 

Also direct measurement of contact area from MR images were found to be very close to 

experimental measurements showing this to be an appropriate validation method for 

future in vivo studies. 

The main concern with models constructed from MR scans is the quality of the 

images. In order create accurate geometric models, images should have high resolution 

and signal to noise ratio. Image resolution also effects registration and kinematic analysis. 

The validation study protocols were based on protocols for future in vivo studies. Hence 

loaded images were acquired at half the resolution of unloaded images to minimize grasp 

scan time. Thus, resolution of loaded images could have led to errors in kinematics 

explaining some of the discrepancies between contact model and experimental 

measurements. 

The approach can be augmented in several ways. Patient specific average cartilage 

thickness or variable cartilage thickness models can be used to improve contact accuracy. 

Instead of contact models, FE models can be used to obtain more accurate and in depth 

results characterizing stresses and strains during functional joint loading. 

While the method is clearly not perfect, it demonstrates excellent potential. Results 

show MRI-based models generated from 3 Tesla clinical MR scanner to be partially 
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validated and therefore further development and initiation of the next phase with in vivo 

measurements is warranted. 

In vivo contact mechanics data can provide a means to determine the effects of injury 

and the efficacy of surgical procedures used to treat joint injuries. MRI-based contact 

modeling can be used to investigate injuries such as unilateral scapholunate dissociation 

and unilateral distal radius fracture and corresponding surgical interventions (such as 

proximal row carpectomy, scapholunate ligament repair and fusions). Without the 

presence of implants, changes in joint mechanics can be identified between 1) normal and 

injured wrist, 2) injury and surgical reconstruction or 3) normal wrist and surgical 

reconstruction. 

Changes in joint mechanics following injury and reconstruction can be monitored, 

and these changes can be related to the risk of OA over time. Long-term data acquired 

from injured human subjects, observed for a period of time to monitor for progressive 

joint degeneration, may identify key factors leading to DJD/OA. It may be possible to 

identify which of these injuries indicate OA risk due to altered joint mechanics and 

predict who is at high risk to develop OA. 

The focus of our research to this point has been the radiocarpal joint. OA is not restricted 

to the wrist, but also affects other joints as well with varying degrees of severity. In terms 

of incidence, the knee is the most common joint affected by OA. The scope of MRI-

based modeling can be expanded to include in vivo joint contact mechanics of the knee 

(patellofemoral joint mechanics, for example), along with other complex joints such as 

the ankle, to predict OA risk. 


