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ABSTRACT 

 

 A suite of regional climate model runs was conducted to examine the impacts 

of mean soil moisture and model resolution on precipitation events in the U.S. Central 

Plains, and to investigate the relative impacts of energy balance partitioning and net 

radiation in soil moisture-precipitation feedbacks.  Results indicate the presence of a 

positive feedback between soil moisture and precipitation in the U. S. Central Plains. 

Energy balance partitioning controls the occurrence of feedbacks, while net radiation 

was not impacted by mean soil moisture.  Spatial scaling properties of modeled fields 

were examined to determine whether these fields exhibit scale invariance.  There is 

large temporal variability in the scaling coefficients of soil moisture, Bowen ratio and 

soil temperature.  Results imply that scaling characteristics determined from a limited 

time series of remotely sensed images may not be sufficient for inferring spatial 

dynamics of soil moisture. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Introduction 

 The objective of this research was to examine the impacts of varying mean 

soil moisture and spatial resolution on soil moisture-precipitation feedbacks in the 

U.S. Central Plains using a regional climate model.  According to general circulation 

model (GCM) predictions, climate change in this region will lead to longer 

intervening dry periods resulting from precipitation events of greater magnitude and 

reduced frequency, which will generally lead to lower soil moisture (Knapp et al. 

2002).  The spatial and temporal variability of soil moisture are highly dependent on 

precipitation patterns.  Altering precipitation regimes will impact soil moisture 

variability, which may then alter precipitation patterns through land-atmosphere 

feedbacks.  This has potential ramifications for agricultural production in the Central 

Plains, which provides a large portion of the country’s food supply.  Understanding 

the physical processes that drive these feedbacks has important implications for 

improved forecasting of crop yields and water availability for both agricultural and 

urban uses.       

 Obtaining data at the appropriate spatial and temporal scales to observe land-

atmosphere interactions has posed a significant challenge.  The wide availability of 

remotely sensed data has the potential to alleviate this problem, however there are 

major limitations involving scale issues related to the resolution of satellite data 

(Brunsell and Gillies 2003a).  Remotely sensed fields are obtained on spatial and 
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temporal scales that cannot typically be compared with model output and surface 

measurements.  In order to potentially circumvent this issue, scaling coefficients can 

be calculated from spatial fields that exhibit statistical self-similarity.  Significant 

research has already been conducted in this area, specifically on soil moisture and 

precipitation fields (Brunsell and Gillies 2003b; Waymire 1985; Western et al. 2002).  

Here, the spatial scaling properties and temporal variability of scaling coefficients for 

soil moisture, precipitation, soil temperature, and Bowen ratio are examined.  If the 

fields exhibit statistical self-similarity and low temporal variability of scaling 

coefficients, this has important implications for potentially widespread application of 

remotely sensed data.      

 Chapter two of this thesis specifically investigates how varying the mean soil 

moisture and model resolution impacts the magnitude and frequency of precipitation 

events in the Central Plains through land-atmosphere feedbacks.  Secondly, it 

examines the scaling properties of soil moisture and precipitation fields to determine 

whether they exhibit scale invariance, i.e. whether or not they can be used to predict 

properties at other spatial scales.   

 Chapter three seeks to determine the relative importance of energy balance 

partitioning and net radiation in soil moisture-precipitation feedbacks and examines 

how the dominant physical process are impacted by changes in mean soil moisture 

and spatial resolution.  It also investigates the scaling properties of soil temperature 

and Bowen ratio, and assesses the impacts of varying mean soil moisture on the 
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scaling coefficients, as these variables are strongly influenced by soil moisture in a 

non-linear way.     

 The final chapter provides a summary of the conclusions drawn in the 

previous chapters and provides suggestions for future research.     
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CHAPTER 2 

A SCALING ANALYSIS OF SOIL MOISTURE-PRECIPITATION INTERACTIONS IN A 

REGIONAL CLIMATE MODEL 

 

2.1  Introduction 

 

 Global climate change has been a major theme in recent research, and many 

studies are beginning to examine the potential impacts it will have at smaller scales.  

Changes in regional climate may have profound impacts on the ability of agricultural 

regions to maintain sufficient crop yields, and as a result many studies have already 

begun to examine the ways in which these areas may be affected.   

 Climate change has a potential impact on the Central Plains of the United 

States, where a large portion of the country’s food production takes place.  Predicted 

climate changes in the Central Plains include altered precipitation regimes with 

increased occurrence of growing season droughts and higher frequencies of extreme 

rainfall events (Harper et al. 2005).  General circulation models (GCMs) predict 

precipitation events of a greater magnitude and reduced frequency, but with longer 

intervening dry periods which will generally lead to reduced soil moisture levels 

(Knapp et al. 2002).  Altering precipitation regimes will have a profound impact on 

the spatial and temporal variability of soil moisture, which may then alter 

precipitation occurrence through land-atmosphere feedbacks.   

 Estimates from satellite and census data indicate that about 12% of the earth’s 

surface, an area roughly the size of South America, has been converted into 

agricultural land (Raddatz 2007).  Much of the motivation for studying the effects of 

vegetative cover and soil moisture on local weather and climate comes from the 
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associated potential increase in predictability of long-term weather (Koster 2003).  

Changes in vegetative cover and soil moisture impact surface energy partitioning, 

water and carbon fluxes, and precipitation patterns.  Human actions that alter soil 

moisture and vegetation properties, through changes in land-surface cover and 

increased/decreased irrigation, can potentially have significant impacts on local 

climate and weather.  These changes affect the amount of moisture available for 

evaporation, transpiration, and rainfall.  Agricultural land tends to be characterized by 

cooler temperatures and a shallower boundary layer, and exhibits a tendency for 

increased cloudiness and precipitation (Gameda et al. 2007).  The Central Plains of 

the U.S. provides an excellent example of how humans have altered the landscape 

and conditions natural to the area by replacing native plant species with crops and 

setting up irrigation systems which alter the local moisture conditions.   

 Understanding how the spatial variability of soil moisture impacts feedbacks 

between the land surface and atmosphere will provide a clearer understanding of how 

climate change might alter the physical processes involved in this system, including 

the local hydrologic cycle, the surface energy budget, and biogeochemical cycling.  

Feedbacks between soil moisture and precipitation can potentially lead to the 

persistence of flood or drought conditions due to the altered availability of moisture 

for rainfall.  In 2003 an extreme heat wave over Europe was responsible for 35,000 

heat related deaths, in addition to forest fires and economic losses which resulted 

from shortages in crop production (Fischer et al. 2007).  Using the Climate High-

Resolution Model (CHRM) version 2.3, Fischer et al. (2007) showed that soil 
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moisture anomalies resulting from a pronounced deficit in spring precipitation had a 

large impact on the strength of the 2003 European heat wave through a reduction in 

latent cooling.  Based on the output from a heterogeneous ensemble of 11 high-

resolution climate models from the PRUDENCE project which focused on Europe, 

Vidale et al. (2007) conclude that warmer and drier conditions are more likely during 

the peak of the summer, which they find consistent with an enhanced soil moisture-

precipitation feedback.  Having a clear understanding of the processes governing 

land-atmosphere feedbacks, as well as the spatial and temporal variability of these 

processes, will improve the forecasting of droughts and floods (Koster 2003).  This 

has potential ramifications for forecasting of crop yields and water availability for 

both urban and agricultural uses and could potentially offset some of the associated 

societal and economic consequences of drought and flood events.   

   One of the major limitations related to studies involving soil moisture lies in 

the inability to obtain data which accurately represent the heterogeneity of soil 

moisture.  Soil moisture observations are lacking both spatially and temporally and 

this lack of observations must be addressed in any study involving soil moisture.  

This lack of data has important implications for our understanding of soil moisture-

precipitation interactions, which remain limited as surface soil moisture observations 

are not readily available over most scales relevant for the study of land-atmosphere 

interactions (Taylor and Ellis 2006).   

 As surface soil moisture measurements remain generally unavailable, many 

studies rely on remotely sensed soil moisture values.  It must be noted, however, that 
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some uncertainty exists as to the accuracy of remotely sensed soil moisture data due 

to the difficulty involved in comparing remotely sensed measurements with surface 

observations (Brunsell 2006).    

  Satellites using passive microwave sensing can be used to detect moisture 

variations in the top several centimeters of soil (Jackson et al. 1997).  Quantitative 

estimates of soil moisture can be made from measurements of horizontally and 

vertically polarized brightness temperatures.  This technique has been used in 

multiple studies using data from the Tropical Rainfall Measuring Mission (TRMM) 

Microwave Imager (Taylor and Ellis 2006).   In one such example, Taylor and Ellis 

(2006) found evidence for a negative feedback mechanism using hourly Meteosat 

thermal infrared (TIR) data to assess the evolution of deep convective clouds along 

TRMM scans containing wet strips over the West African Sahel.  A limitation of 

TRMM for global monitoring of soil moisture is that its geographic coverage is 

limited to 40
o
N - 40

o
S.   

 When using remotely sensed data it is important to remember that these are 

only estimates, as the brightness temperature may in fact be significantly different 

from the actual temperature.  The interpretation of spatial patterns of soil moisture 

from microwave remote sensing is further complicated by the fact that the depth of 

penetration is not clearly defined and may also vary spatially (Western and Bloschl 

1999) due to differences in soil and vegetation properties.    

 There are other issues associated with relying on remotely sensed data.  One 

of the major limitations involves scale issues related to the satellite’s resolution 
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(Brunsell and Gillies 2003a).  Satellites obtain data on different spatial and temporal 

scales than those that are typically required for comparison with model output and 

observations. When comparisons can be made between modeled and remotely sensed 

fields, the observed soil moisture typically shows more rapid dry downs and faster 

saturation than the modeled soil moisture (Drusch 2007).   

 The resolution of both models and observations are not increasing as quickly 

as the resolution of surface remote sensing (Kustas et al. 2003).  Even in the case of 

observations, point samples of soil moisture are not necessarily representative of a 

regional value of the variable (Entekhabi et al. 1996), though techniques such as 

temporal stability may be used to address this issue (Vachaud et al. 1985).  Temporal 

stability involves the identification of persistent soil moisture patterns and selection 

of representative sensor locations to use in estimating the large scale average (Cosh et 

al. 2006).   

 Determining and using the scaling properties of soil moisture fields to infer 

variability at scales other than the measurement scale is another way to overcome 

issues related to resolution.  Many studies have already investigated this, including 

Dubayah et al. (1997), Rodriguez-Iturbe et al. (1995), Manfreda et al. (2007), and 

Western and Bloschl (1999).  A scaling field exhibits self-similarity over many 

different scales or resolutions (Halley et al. 2004).  It is possible to use this self-

similarity to infer properties at other scales.  Self-similarity can be described by: 

)()( xx ⋅⋅= − λφλφ β ,                                                    (1)   
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whereφ  refers to the field or property of interest, x is the spatial scale, λ is the ratio of 

the large scale x⋅λ to the small scale x, and β is the scaling exponent, or slope 

(Bloschl 1996).   

 Some studies have chosen to focus on the scaling properties of variance as a 

function of resolution (Manfreda et al. 2007; Rodriguez-Iturbe et al. 1995), while 

others use higher-order statistical moments (Brunsell and Gillies 2003b; Dubayah et 

al. 1997; Peters-Lidard et al. 2001).  Peters-Lidard et al. (2001) define a fieldφ  to be 

spatially scaling with respect to moment q if the following relationship holds: 

],)[()[( 1

)( qqKq
EE φλφλ ∝                                                  (2) 

where K(q) is the scaling exponent associated with moment q (same as β in equation 

1 above).  A process is said to be simple scaling, often referred to as fractal, if the 

exponents K(q) are linear in q: 

,)( CqqK =                                                              (3) 

where C is a constant.  A process is said to be multiscaling, or multifractal, if the 

scaling exponents, or slopes, are a non-linear function of q (Peters-Lidard et al. 2001).   

 This idea of scaling and multiscaling has been applied extensively in many 

scientific fields, including hydrology and ecology.  Aside from soil moisture, it has 

also been used to examine the spatial and temporal scaling properties of precipitation 

(Deidda et al. 1999; Gupta and Waymire 1990; Kumar and Foufoula-Georgiou 1993; 

Menabde et al. 1997; Rodriguez-Iturbe et al. 1998).             

 Having soil moisture data at the appropriate spatial and temporal scale is 

important for the study of land-atmosphere interactions.  Interactions between soil 
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moisture and precipitation can lead to a feedback, and previous studies have relied 

upon surface soil moisture measurements (Findell and Eltahir 1997), remotely sensed 

soil moisture fields (Taylor and Ellis 2006), and modeled soil moisture (Kim and 

Wang 2007).  A number of studies have already investigated the existence of a 

feedback mechanism between soil moisture and precipitation (Brubaker and 

Entekhabi 1996a; Findell and Eltahir 1999; Koster et al. 2004; Pal and Eltahir 2001).   

 Feedbacks can either be positive or negative (Brunsell 2006).  In the case of a 

positive feedback the initial soil moisture state is reinforced.  For example, when a 

surplus of moisture exists in the soil, it results in increased precipitation over the area 

(Eltahir 1998).  Alternatively, if the amount of moisture in the soil drops below 

normal levels it may contribute to persistent dry spells.  A negative feedback would 

occur if anomalously wet soils suppressed precipitation over a region (Cook et al. 

2006).   

 The existence, magnitude, and sign of feedback between soil moisture and 

precipitation vary in both space and time.  Precipitation in the United States, as well 

as other regions, is sensitive to the amount of moisture in the soil during months with 

substantial convective activity, including summer months at mid-latitudes (Pal and 

Eltahir 2001).  By examining the linear correlation between an initial soil saturation 

and subsequent rainfall, Findell and Eltahir (1997) found the magnitude of the 

feedback to be dependent upon the time of year.  Kim and Wang (2007), using a 

modified version of the Community Atmosphere Model version 3 and the 

Community Land Model version 3 (CAM3–CLM3), determined that anomalies in 
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shallow soil can persist long enough to influence subsequent precipitation at the 

seasonal time scale and that the impacts of spring soil moisture anomalies are not felt 

until early summer, although they do impact the large-scale circulation which results 

in slight changes in spring precipitation.   

 Yet even with foreknowledge of soil moisture, the improvements in the ability 

to predict precipitation and temperature are not uniform in space and time (Yang et al. 

2004).  Other studies have provided evidence to support this.  For example, Conil 

(2007), using the Arpege-climat coupled land-atmosphere model, designed to assess 

the relative influence of sea-surface temperature (SST) and soil moisture on climate 

variability and predictability, found that soil moisture contributes to a significant 

enhancement of the predictability primarily during mid-latitude summer. While the 

SST forcing enhances the potential predictability in the tropical regions and during 

winter at mid-latitudes, the soil moisture forcing is the major contributor to the 

potential predictability in the mid-latitudes during the summer.  Koster et al. (2000) 

suggested that the enhancement in the ability to predict precipitation can only be seen 

in the transition zones between dry and humid climates, as latent heat is more 

sensitive to soil moisture and temporal variations in evaporation are large enough to 

impact the atmosphere in such locations.  Alternatively, the findings of Yang et al. 

(2004), which were based on monthly mean analysis over the continental United 

States in summer, did not support this existence of definitive geographical 

preferences in the potential improvements of predictability of precipitation from 

month to month.  In any event, the ability to improve prediction is limited due to the 
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chaotic nature of the atmosphere and the fact that increased accuracy in the 

specification of soil moisture can only impact prediction to a certain extent (Yang et 

al. 2004).   

            

2.2 Methods of Examination 

  In the event that actual surface observations of soil moisture of acceptable 

spatial and temporal frequency are available, data analysis can be used to examine the 

existence of feedback mechanisms.  One such example is the Illinois Climate 

Network data set, comprised of 14 years worth of soil moisture data recorded 

biweekly across the entire state.  Findell and Eltahir (1997) used this dataset to search 

for a correlation between soil saturation and precipitation in the state of Illinois.  

Using linear regression and the coefficient of determination as an indicator of the 

percentage of rainfall variability that could be attributed to the soil water initial 

condition, they found it difficult to identify the causal relationship between soil 

moisture and precipitation; however, they did find some evidence to indicate that a 

positive feedback was present.  The poor spatial and temporal characteristics of the 

data still restricted them from drawing any strong conclusions from their analysis.   

  Using the same dataset, Salvucci et al. (2002) arrived at a conflicting 

conclusion, demonstrating that the results of an individual study are highly dependent 

upon the method of analysis.  They performed a test for Granger causality, a method 

used to identify the presence of one and two-way coupling between terms in 

multivariate dynamical system where a substantial amount of noise is present.  They 
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were unable to find sufficient evidence to link soil moisture and precipitation in 

Illinois.  They attributed the results of Findell and Eltahir (1997) to their method of 

filtering the data, which was achieved through linearly interpolating between soil 

moisture measurements at each station.   

       Due to the general lack of field measurements of soil moisture, most studies 

conducted on soil moisture-precipitation feedbacks have used numerical models.  In 

place of observed soil moisture data, the estimates of soil moisture in these cases can 

be anything from remotely sensed data (Taylor and Ellis 2006), to values specified by 

the user (Pal and Eltahir 2001), to values generated from an antecedent precipitation 

index (Xue et al. 2003) depending on the intent of the study.  Numerical modeling 

provides a way to simulate atmospheric processes in order to gain a better 

understanding of how these processes interact to produce short term weather, as well 

as climate.   

 Kustas and Albertson (2003) noted that while there have been efforts to assess 

the impact of surface heterogeneity on land-atmosphere feedbacks, they have been 

based primarily on conceptual/theoretical approaches using simple convective 

boundary layer simulations and sparse boundary layer flux observations.  Such 

approaches are limited in that the fluxes traditionally have not been allowed to 

develop dynamically with surface and overlying air states.  More recent studies have 

begun to use more complex models that remove many of the limitations associated 

with using a simple conceptual model.  When choosing which type of model to use, 

the scale of the physical processes to be examined should be a determining factor.   
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 General Circulation models (GCMs) are ideal for simulation of larger scale 

atmospheric processes due to their relatively coarse resolution and inability to 

explicitly resolve smaller scale features and processes.  Their use, however, is not 

limited solely to the global scale, and studies have been done using GCMs to examine 

the impacts of varying levels of soil moisture heterogeneity (Koster et al. 2002).  In 

one such study, Betts (2007) found a coupling between warm season soil moisture, 

liquid condensation level (LCL) height, relative humidity (RH), and precipitation at 

the daily timescale in the European Centre for Medium-Range Weather Forecasts 

reanalysis (ERA40), though they could not determine the direction of causality.   

  Due to the possibility of increasing predictability of weather and climate 

through improved representation of soil moisture, it is important to understand how 

current models simulate these processes in order to identify their limitations and 

potentially improve their accuracy.  Due to the large domain involved these models 

have extremely coarse horizontal resolution, and as a consequence of using larger 

grid cells more averaging of variables occurs.  At such large resolutions the model 

becomes less able to accurately represent surface characteristics at sub-grid 

resolutions.  Important features, such as land cover variability, topographical features, 

and soil moisture anomalies, are filtered and possibly lost completely.  The 

algorithms used to generate gridded data may lead to “smoothing” which acts to 

reduce variability (Koster et al. 2000).  Topography, significant spatial heterogeneity 

in soil and vegetation properties, and the highly intermittent characteristic of 

precipitation fields result in large spatial variations in the soil moisture (Entekhabi et 
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al. 1996).  This high spatial variability of soil moisture will be lost when using a 

GCM.    

 Parameterization of physical processes can somewhat make up for the 

inability to capture them explicitly, but it is difficult to compensate for the loss of 

surface characteristics when the impact of small scale surface heterogeneity is of 

interest.  While parameterization can approximate subgrid-scale processes, such as 

cumulus convection, microphysics, long and short wave radiation, and boundary layer 

turbulence, they cannot represent them with complete accuracy due in part to our lack 

of understanding of these processes and their interactions.  Results are often highly 

dependent upon the parameterizations schemes that are chosen.  When the model 

resolution is too coarse to capture the surface heterogeneity it may also prevent 

mesoscale circulations from developing in the model environment that would 

normally form as a result of variability in land surface properties.  Using satellite 

derived soil moisture observations, Taylor et al. (2007) found that precipitation can 

produce enough spatial variability in soil moisture and heat flux to impact the low 

level wind field on scales of 10 km and higher.  Lynn et al. (1995) found that 

mesoscale circulations that developed as a result of discontinuities in land cover can 

locally affect subgrid-scale processes significantly in GCMs and emphasized the 

development of parameterizations that would include their impact.   

 In their discussion of the impact of land-surface moisture variability on local 

shallow convective cumulus and precipitation in large scale models, Chen and 

Avissar (1994) pointed out the deficiencies in the ability of the parameterization 
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schemes developed for use in large scale models to represent local shallow convective 

cumulus, which are affected by local land surface characteristics.  They found that 

discontinuities in land cover acted to enhance shallow convective precipitation, but 

explicitly simulating shallow cumulus convection with reasonable accuracy requires 

high horizontal resolution, ideally smaller than 1 km.  Additionally, failure to 

represent areas of saturated soil can interfere with the model’s ability to accurately 

simulate important hydrologic processes, such as infiltration, evaporation, and runoff 

(Gedney and Cox 2003).   

 In order to circumvent some of the aforementioned issues, mesoscale or 

regional models are often used, as they are typically run with higher horizontal 

resolutions which allow them to better resolve smaller scale properties and 

atmospheric processes than GCMs.  They are ideal for examining regional 

circulations, convection, and are often used to examine land-atmosphere interactions, 

though they still require some processes to be parameterized, including small scale 

turbulence, convective parameterization, and radiation physics.  Due to the finer 

resolution, these models are better able to resolve topography and variability in 

surface features.  Mesoscale and regional models still remain far from ideal in their 

representation of land cover, vegetation and soil moisture, but they are able to resolve 

more detail than GCMs.  One potential downside to using a regional model rather 

than one of global extent is the loss of the ability to assess the impacts of 

teleconnections.   



 

17 

 

 

 

 

 Many studies have used mesoscale models to examine the relationship 

between soil moisture and the atmosphere. Georgescu et al. (2003) used the Regional 

Atmospheric Modeling System (RAMS) to examine the impact of varying the initial 

spatial distribution of soil moisture on simulated precipitation and found evidence for 

the existence of a negative feedback in the Mississippi River Basin.  They also 

examined the effects of differing convective schemes on their model results, finding a 

high sensitivity of model-generated precipitation to the choice of convective scheme.  

In another study, Xu et al. (2004) used the Fifth-Generation NCAR/PSU Mesoscale 

Model (MM5) coupled with the Oregon State University (OSU) land surface model to 

investigate the response of precipitation to soil moisture anomalies in the North 

American Monsoon region as well as the south-central United States.  They detected 

a positive feedback between soil moisture and precipitation.  Alonge et al. (2007), in 

their investigation into the impacts of soil moisture on the potential for deep 

convection in a semiarid environment in West Africa, found using a coupled land-

atmosphere cloud resolving model and observation data from the Hydrological 

Atmosphere Pilot Experiment in the Sahel, that their wet regime created a boundary 

layer that was more favorable for deep convection.  While convection began earlier in 

the dry regime it produced approximately 55% less precipitation.   

 When processes taking place on scales less than 1 km are of interest large 

eddy simulations (LES) can be used in the place of a mesoscale model.  LES are used 

to study smaller scale processes (10 m to 1 km) by explicitly modeling the large scale 

turbulence within the atmospheric boundary layer (ABL).  They are often used to 
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study land-atmosphere interactions.  Relative differences between surface properties 

and the properties of the overlying air lead to the development of land surface fluxes 

of energy and mass over heterogeneous landscapes, and LES has proven to be 

instrumental in examining the impacts of land surface heterogeneity on the ABL 

(Albertson et al. 2001) when combined with remotely sensed land surface conditions.   

 As precipitation resulting from soil moisture feedbacks comes from 

convection, the most appropriate scale at which to examine it is the mesoscale.  

Mesoscale models are designed to handle atmospheric processes and phenomena 

ranging from regional scales down to the microscale, as these small scale processes 

have been known to have significant impacts on storm-scale phenomena (Xue et al. 

2003).  

 All of the aforementioned issues come together to raise several questions 

needing further investigation: 1) do modeled soil moisture and precipitation fields 

exhibit scale invariance, i.e. can they be used to predict properties at other spatial 

scales?  2) how does varying the mean soil moisture and model resolution impact the 

magnitude and frequency of precipitation events in a region through land-atmosphere 

feedbacks?  

 Soil moisture scaling has important implications for future work on land-

atmosphere interactions, as having knowledge of soil moisture properties at any 

desired resolution would prove extremely valuable.  The above questions seek to 

address the fact that characteristics of the land surface are lost at larger resolutions.  
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While the first question attempts to solve this problem, the second question tries to 

determine what impacts this actually has on model simulated precipitation.       

 

2.3 Study Area 

 Understanding the impacts of soil moisture-precipitation interactions on 

regional climate in the Central Plains has important implications for agricultural 

practices.  This study focused specifically on the Konza Prairie, located near 

Manhattan, KS (39
o
05’N, 96

o
35’W), within the Flint Hills region of northeastern 

Kansas.  This land is owned by the Nature Conservancy and currently managed by 

Kansas State University as a National Science Foundation (NSF) Long-Term 

Ecological Research Station (LTER).  Research conducted here primarily focuses on 

how climatic variability and local land use patterns (periodic fire and ungulate 

grazing) affects tallgrass prairie ecosystem structure and function (Fay et al. 2000). 

 Being located within the Flint Hills region the soils include deep silt loam and 

silty clay loam soils which are characteristically rich and thin.  The subsurface is 

composed of alternating layers of limestone and shale, which give the landscape a 

terraced appearance (Davis et al. 1992).  Vegetation over the Konza Prairie is 

predominantly native tallgrass prairie, consisting primarily of C4 and C3 grasses, 

including Indian grass (Sorghastrum nutans (L.) Nash), switchgrass (Panicum 

virgatum L.), little bluestem (Schizachyrium scoparium Michx.) and big bluestem 

(Andropogon gerardii Vitman) (Davis et al. 1992;Fay et al. 2000;Kaste et al. 2006).  
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Approximately 75% of the root biomass is located within the top 30 cm of the soil 

profile (Fay et al. 2003; Jackson et al. 1996).   

 The annual mean precipitation of 835 mm per year occurs primarily during the 

growing season, between May and September, with a mean growing season total of 

635 mm.  Being located on the Central Plains, the region experiences a temperate 

mid-continental climate with annual temperatures ranging from a low of -2.7 
o
C in 

January to a high of 26.6 
o
C in July (Fay et al. 2003).  

 

2.4 Model Description 

 In order to investigate the scaling properties of soil moisture and precipitation 

and determine the impacts of varying mean soil moisture and resolution on 

convective precipitation, a suite of runs was conducted using the University of 

Oklahoma’s Advanced Regional Prediction System (ARPS), which was developed at 

the Center for Analysis and Prediction of Storms (CAPS) in Norman, OK.  ARPS is a 

three-dimensional, nonhydrostatic compressible model intended for use as a real-time 

forecasting model, as well as a tool for research.  It includes data ingest, quality 

control, and objective analysis packages, single-Doppler radar parameter retrieval and 

data assimilation procedures, the prediction model, as well post-processing packages 

and validation tools (Xue et al. 2000, 2001).      

 Fifteen model runs were completed using varying spatial resolutions and 

levels of mean soil saturation (Figure 1) in order to examine the scaling properties of 

soil moisture and precipitation and to study how soil moisture-precipitation 
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interactions vary as a function of mean soil saturation and resolution.  The three 

initial soil moisture values used include field capacity (0.35 m
3
/m

3
), 50% of field 

capacity (0.13 m
3
/m

3
), and wilting point (0.09 m

3
/m

3
).  Mean soil moisture values 

will hereafter be referred to as FC for field capacity, 50FC for 50% of field capacity, 

and WP for wilting point.   

 

Figure 1.  Initial Soil Moisture vs. Resolution.  At each of the five given resolutions, the model was 

run using three levels of initial soil moisture: field capacity (FC), 50% of field capacity (50FC), and 

wilting point (WP) 

 

 All model runs were initialized using a standard mid-latitude summer 

sounding which was modified so that the wind direction at all levels was westerly.  

Soil and vegetation properties are homogeneous, with soil type being sandy loam and 

vegetation type grassland with a leaf area index (LAI) of 0.31.  This allowed the 

vegetation’s impact to be ignored as it remained constant through all runs. 

 As precipitation resulting from soil moisture feedback is associated with 

convection, and the maximum rainfall on the Konza Prairie occurs between May and 

September, summer was the ideal season to examine.  ARPS was initially run over a 



 

22 

 

 

 

 

period of 20 days, beginning on August 18
th

, using a resolution of 16 km.  The first 

four days were regarded as spin-up and discarded, leaving 16 days which were then 

used to force a higher resolution nested grid.  This time period was considered 

sufficient for observing land-atmosphere interaction and soil moisture evolution, as 

Brubaker and Entekhabi (1996b) state that a general time scale on the order of 10 

days corresponds to local physical processes and land-atmosphere interaction at the 

regional scale.  They found that 10 days was sufficient for recovery from a moist soil 

anomaly to normal conditions and that recovery typically occurred on the order of 14 

days for dry soil anomalies, but could take as long as several tens of days.   

 Although ARPS has the ability to allow two-way interactive grid nesting, one-

way interactive nesting was used for several reasons; the first being that this study is 

not trying to recreate an event that previously occurred where feedback from smaller 

scales to the synoptic scale would be important for accuracy.  Second, as the interest 

was mesoscale convection and not in the affects of synoptic scale weather systems on 

the domain there was no real need to use two-way interactive grid nesting.  Coarse 

resolution runs (16 km) were completed first and then used to force the inner, higher 

resolution grid at resolutions of 1, 2, 4, 8, and 16 km.  The coarse grids were 

initialized with the same properties as the inner grids to maintain comparability 

between runs.   

 When using a model to examine soil moisture-precipitation feedbacks the 

location of the domain boundary has been found to alter the strength of the feedback 

mechanism (Seth and Giorgi 1998).  Seth and Giorgi (1998) found that a smaller 
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domain was better able to capture precipitation, but the sensitivity of precipitation to 

initial soil moisture was more realistic in a larger domain.  In order to avoid errors 

associated with the location of the model boundaries the best course of action is 

typically to place the boundaries a significant distance away from the area of interest.  

The Konza Prarie occupies an area of approximately 12,000 km
2
,
 
while the outer 

domain covers an area of 4,194,304 km
2
 and the inner domain an area of 16,384 km

2
 

(Figure 2).   

 

Figure 2.  The large boxed area shows the geographical extent and topography of the outer domain (16 

km resolution).  The smaller box indicates the extent of the inner domain, overlaid with topography at 

1 km resolution 

 

 The vertical grid was composed of 83 layers, with higher resolution at the 

surface (approximately 100 m), decreasing exponentially with distance from the 
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surface, with a resolution of approximately 500 m at the top of the model domain.  

The stretching of the vertical grid allowed the model to better resolve land-

atmosphere interactions, which was of greatest interest to this study, while not 

compromising computational efficiency by having unnecessarily high resolution at 

upper levels.  Vertical resolutions were held constant throughout all model runs in the 

series to ensure comparability.   

 As precipitation processes cannot be explicitly resolved at coarser resolutions 

the Kain-Fritch WRF parameterization scheme was used in the 4, 8, and 16 km runs.    

This scheme was chosen because it is more suitable for higher resolution grids and 

has the ability to generate sources of rainwater and snow which are fed back to grid 

scale variables which then interact with ice microphysics processes (Xue et al. 2001).   

 

2.5 Methodology 

2.5.1 Scaling Analysis  

 As was previously mentioned, remotely sensed and modeled soil moisture 

typically are not directly comparable due to differences in resolution.  Soil moisture 

variability is high over a range of scales and often shows as much variability over a 

distance of meters as it does over hundreds of kilometers, which is typical of scaling 

fields (Dubayah et al. 1997).  A process is said to be scaling, or self-similar, if the 

statistical properties of the field do not vary as a function of scale, i.e. the process 

behaves similarly at both small and large scales (Bloschl 2001).  Self-similarity of a 
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field can be used to infer characteristics at smaller or larger scales (Halley et al. 

2004). 

 By estimating the statistical moments, Dubayah et al. (1997) demonstrate how 

a coarse, remotely sensed soil moisture field can be used to predict model variability 

at resolutions other than the measurement scale.  Numerous methodologies have been 

used to examine the scaling properties of a variable, with many focusing on how the 

variance changes as a function of resolution (Manfreda et al. 2007; Rodriguez-Iturbe 

et al. 1995), others the scaling of the coefficient of variation (Baldocchi et al. 2005), 

or how the statistical moments scale (Brunsell and Gillies 2003b; Dubayah et al. 

1997; Peters-Lidard et al. 2001).  The benefit to performing a scaling analysis on the 

statistical moments is that they provide information about the spatial structure of the 

field, whereas other methods only indicate the amount of variability in the field.  If a 

scaling relationship does exist, each of the moments can be calculated for any other 

resolution.   

 For purpose of this study a scaling analysis was performed on 10 am to 2 pm 

temporally averaged soil moisture and cumulative precipitation for the 12 days using 

the first six statistical moments.  Equation 4 gives the first moment (mean), equation 

5 the second moment (variance), and Equation 6 is used to obtain all subsequent 

moments.   
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 where xi is the pixel value, n is the order of moment, N is the number of points, x the 

spatial mean, and σ
 
the standard deviation.  The six moments are then plotted versus 

resolution, and the slope (β) calculated using linear regression (Brunsell and Gillies 

2003b).  

 To determine whether or not a given field may be approximated by a linear 

scaling relationship, or fractal, a log-log plot of β versus order of moment must be 

constructed: 

 log (φ) = log(α) + β * log(x),                                           (7) 

where x is resolution, β is the scaling exponent, and α the intercept.  How well the 

best fit line approximates the data is used as a criterion to make the determination.  If 

multiple β values exist the field is said to be multiscaling and would be indicated by a 

convex or concave shape and non-linear change in β with order of moment (Dubayah 

et al. 1997).   

 The goal here was to investigate the possibility of scaling in soil moisture and 

precipitation fields and to examine how a coarse field can be used to predict model 

variability at other resolutions.  This technique would help compensate for the 

model’s inability to resolve key features of surface fields as resolution becomes 

coarser.   

 Cumulative precipitation for the 12 days was chosen over daily precipitation 

because in order to calculate each of the six statistical moments, for any given initial 
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soil moisture, there must be precipitation occurring on each day at each model 

resolution.  Without precipitation, moment calculations would result in zero making 

the analysis invalid for that day.  For days when precipitation did occur at all 

resolutions the analysis was performed to allow for a comparison with the cumulative 

precipitation plot.       

 

2.5.2 Comparison as a Function of Spatial Resolution  

 It was assumed that a higher resolution would correspond with higher 

accuracy in the representation of soil moisture variability and precipitation events due 

to the fact that surface characteristics and physical processes, such as convection, are 

better resolved.  With this presiding assumption the Root-Mean Square Error (RMSE) 

was calculated between the 1 km runs and every other run: 

n

xx
RMSE

i

n

i i

2

,21 ,1 )(∑ =
−

= .                                           (8)                                  

where n is the number of points, and x1 and x2 are the variables between which the 

error is calculated.  This is not to calculate a true error but to allow for a direct 

comparison between runs as a function of spatial resolution, showing whether or not 

other resolutions exhibit a consistent bias with respect to the 1 km run.  The RMSE 

was calculated for both soil moisture and precipitation. 

 For each model run the temporal variance of precipitation and soil moisture 

were calculated at each pixel and then spatially averaged ( 2

Tσ ) to determine whether 

trends exist as a function of model resolution or initial soil moisture.  As spatial 
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resolution decreases the inability to explicitly capture physical processes may impact 

the model’s ability to accurately resolve the temporal dynamics of the physical 

processes.  This may potentially impact the frequency of precipitation events or 

temporal changes in the soil moisture field through wetting and/or drying processes.      

 A method for comparing spatial variability of soil moisture at differing 

resolutions is to look at the amount of statistical variability or dispersion present.  The 

probability density function (pdf) of soil moisture was plotted for each run.  As the 

soil moisture pdf is bounded by porosity and wilting point it theoretically cannot be 

normal, but in practice normality may be an acceptable assumption (Western et al. 

2002).  When the mean soil moisture approaches low or high values the normality 

assumption may become invalid; the pdf typically becomes skewed and has less 

variance.  A positive skew (negative skew), or long upper tail (lower tail), generally 

occurs when the mean approaches the lower (upper) boundary (Western et al. 2002).   

 Plots of the soil moisture pdf allow for a visible examination of the amount of 

variance present, but for a quantitative comparison the variance to mean ratio (VMR) 

was also calculated: 

x
VMR

2σ
= ,                                                            (9) 

where 2σ  is the spatial variance and x the spatial mean. The VMR provides a 

measure of the dispersion, or variability, of a probability distribution.  When the 

VMR is equal to 1 the spatial field is random, while a VMR < 1 indicates a regular 

distribution, and a VMR > 1 indicates that it is clumped (Baldocchi et al. 2005).  In 
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general the study is more interested in observing how the VMR of soil moisture 

changes over time as a function of initial soil moisture and resolution.     

  

2.5.3 Soil Moisture-Precipitation Interactions 

 Areas characterized by high soil moisture will be associated with increased 

latent heat flux.  This moisture will then be advected some distance downwind before 

falling again as precipitation, inducing a time lag between increased latent heat flux 

and subsequent precipitation and leading to a regional effect of the feedback 

mechanism.  In order to investigate the temporal interactions between soil moisture 

and precipitation, lagged correlations were calculated to determine when the 

strongest relationship exists between them.  Temporally lagged correlations are given 

by: 

                       ∑
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where x and y are stationary random variables, N is the number of points and m is the 

lag.  Positive lags indicate that precipitation is leading soil moisture, while negative 

lags indicate that soil moisture is leading precipitation.   

 There will be a high correlation at the zero lag due to the influence of 

precipitation in determining soil moisture, but if feedback occurs there should be 

relatively strong correlations at other time lags.  There are severe limitations to the 

use of linear correlations in the examination of a feedback, as causality cannot be 
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inferred based on correlation.  The point here is simply to identify whether or not a 

relationship exists.   

 The day on which the maximum lagged correlation occurs may vary as a 

function of initial soil moisture and resolution.  For each model run the day of 

maximum lagged correlation, neglecting the zero lag, was found for each pixel and 

then spatially averaged.    This analysis can potentially provide information regarding 

the temporal scales over which feedback may occur, which may differ for wet and 

dry soils as a result of the different processes responsible for feedback depending on 

the level of soil moisture.   

 

2.6 Results 

2.6.1 Precipitation 

 Scaling plots of β versus order of moment for cumulative precipitation look 

very similar for all levels of initial soil moisture (Figure 3).  These plots demonstrate 

that the scaling properties are highly dependent on the methodology, as calculating 

only the variance or the coefficient of variation would result in significantly different 

scaling exponents.  These plots do not show signs of multiscaling, although there is a 

strong linear relationship between the third through sixth moments.  The mean and 

variance decrease considerably as a function of resolution, while the third and fourth 

moments do not.  The fifth and sixth moments also show a significant decrease and it 

is important to consider when these moments begin to impact the spatial structure of 

the field and by what amount.   
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Figure 3.  Scaling plots of cummulative precipitation for a) FC b) 50FC c) WP 

 

 In comparing the daily scaling plots (not shown) with cumulative precipitation 

plots, in general they exhibit the same characteristics, with the exception of day 1 in 

each of the three soil moisture levels.  Day 1 plots show much stronger linear 

relationships, with R
2
 values of 0.9879 (FC), 0.9789 (50FC), and 0.9917 (WP).   
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   To determine the impacts of initial soil moisture and spatial resolution on total 

precipitation, precipitation for the entire domain was summed over the 12 day period 

for each model run (Figure 4).  A comparison across initial soil moisture values 

shows that FC runs consistently have higher total precipitation amounts, regardless of 

resolution, which provides evidence for the existence of a positive soil moisture-

precipitation feedback over the Konza Prairie.  WP runs generally have precipitation 

totals greater or equal to 50FC.  The fact that they exhibit equal totals at 16 km 

indicates that the 16 km resolution is not sensitive to the difference in initial soil 

moisture values between 50FC and WP.  Comparing across resolutions, total 

precipitation decreases exponentially with resolution, with the exception of an 

increase between the 2 and 4 km runs.      

 

Figure 4.  Precipitation summed over the domain for the 12 day period for each model run 

 

 When daily precipitation is summed over the domain, FC runs not only have 

the largest amount of total precipitation but they also generally have a higher number 



 

33 

 

 

 

 

of precipitation events over the 12 day period.  These events are almost always larger 

in magnitude than the 50FC and WP.  Figure 5 shows the ratio of total number of 

days with precipitation events to the magnitude (cm) of the largest event at each 

resolution and initial soil moisture.  The 50FC and WP 16 km runs have the lowest 

frequency of precipitation events, followed by the 8 km, and then 2 km 50FC and WP 

runs.            

 

Figure 5.  Ratio of the total number of days with precipitation events to the magnitude (cm) of the 

largest event at each resolution and initial soil moisture 

 

 In order to examine the temporal dynamics of precipitation as a function of 

mean soil moisture and resolution, the temporal variance of precipitation was 

calculated at each grid cell and then spatially averaged to allow for easy comparison 

between all 15 runs (Figure 6a).  The FC runs consistently exhibit higher values than 

50FC and WP regardless of resolution.  There is a general decreasing trend from 4 km 

to coarser resolutions, with a significant reduction in each of the 16 km runs.  It is 
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worth noting that the values for the 1 km and 16 km 50FC and WP runs are exactly 

the same.     

 

Figure 6.  For each resolution the temporal variance was calculated for each grid cell in the domain 

and then spatially averaged a) precipitation b) soil moisture 

 

 To determine how each of the model resolutions compares with the 1 km runs, 

the RMSE was calculated for each initial soil moisture value (Figure 7a).  Due to the 

ability to resolve smaller scale physical processes and heterogeneity in surface and 

atmospheric properties, 1 km was assumed to be the most accurate in its predictions.  

There is a much larger variation in RMSE as a function of resolution in the FC runs, 

while in both the 50FC and WP runs the RMSE remains relatively constant.  The 

pattern of increase and decrease with resolution does not change as a function of 

initial soil moisture, with the 4 km runs having the highest RMSE.   
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Figure 7.  The RMSE calculated at each initial soil moisture and resolution, with 1 km runs 

representing truth a) precipitation b) soil moisture 

 

2.6.2 Soil Moisture     

 To investigate the scaling properties of soil moisture and how they vary 

temporally, a scaling analysis was performed on 10 am to 2 pm temporally averaged 

soil moisture for each of the 12 days of model runs.  Figure 8 shows an example of a 

log-log plot of β versus order of moment.  In looking at the 12 plots for each soil 

moisture level none of them exhibit signs of simple scaling, as the amount of 

variability changes as a function of resolution.   

 

Figure 8.  Slope versus order of moment for soil moisture from FC day 7. R
2
 = 0.993 
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 Timeseries of β and associated R
2
 values are given in Figure 9.  In general, fits 

are relatively good for β versus order of moment plots when the soil moisture is 

initialized at FC, indicated by high R
2
 values (the lowest being 0.93).  Fits are 

generally much poorer for 50FC and WP, with the exception of days 11 (R
2
 of 0.96 

for 50FC, 0.95 for WP) and 12 (R
2
 of 0.99 for 50FC, 0.97 for WP), with day 12 

possibly exhibiting signs of multiscaling for 50FC and WP.  For all other days the 

fields appear to be scale dependent, and therefore cannot be used to predict statistical 

properties at other resolutions.  The time evolution of β values for 50FC and WP 

behave extremely similar and are both distinctly different from FC.  FC shows an 

increase in β through time in days 2 through 12. 

 

Figure 9.  a) Timeseries of slope from soil moisture scaling plots for each initial soil moisture and b) 

associated R
2
 values 
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 Due to the fact that precipitation heavily influences the spatial and temporal 

heterogeneity of soil moisture, it was expected that the trends seen in 2

Tσ of 

precipitation as a function of initial soil moisture and resolution would also be seen in 

the plot of 2

Tσ  of soil moisture (Figure 6b).  Although this expectation holds for FC 

runs, 50FC and WP runs do not exhibit the same trend.   

 To provide a visual examination of spatial variance, soil moisture pdfs were 

plotted for each model run (Figure 10).  The general shape of the density function 

remains the same regardless of initial soil moisture; however, density functions do 

show a decreasing trend in variance for all resolutions as the initial soil moisture 

decreases.    

 

Figure 10.  Probability density function of soil moisture for each model run a) FC b) 50FC c) WP 

 

Timeseries of VMR (Figure 11) also show a general decrease with decreasing soil 

moisture.   Values of VMR exhibit an overall increase with time for all resolutions at 

all initial soil moisture levels.  The relationship between the different resolutions 

remains roughly the same as the initial soil moisture varies.   
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Figure 11.  Timeseries of the ratio of spatial variance to spatial mean (VMR) for each resolution at 

each initial soil moisture a) FC b) 50FC c) WP 

 

 

 In order to provide a general comparison of the representation of soil moisture 

between runs, the RMSE was plotted (Figure 8b).  FC runs consistently having the 

highest RMSE values, as was also true for precipitation.  The main difference 

between RMSE for soil moisture and precipitation is that the 4 km runs have the 

lowest RMSE for all three soil moisture values.  The general trend remains the same 

between the two variables, with FC having the highest error and 50FC the lowest.   

 

2.6.3 Soil Moisture-Precipitation Interactions 

 To examine the temporal scales over which soil moisture-precipitation 

interactions occur, plots of temporally lagged correlation between 10 am to 2 pm 

temporally averaged soil moisture and total precipitation for each resolution at each 

initial soil moisture value were constructed (Figure 12).  All of the correlations are 

positive, indicating that any feedback between soil moisture and precipitation must be 

positive.  The highest correlations at each resolution generally occur at FC.  The 1 km 

FC run has the overall highest correlation values, with moderate values extending out 

to around -7 days.  These relatively high values, in at least the 1 and 2 km run FC 



 

39 

 

 

 

 

runs, suggests a positive relationship between soil moisture and precipitation on the 

order of 5 to 10 days.  Also worth noting, in the 1 km WP run the correlation remains 

almost constant from the zero lag out through -7 or -8 days. The low correlation 

values in the 50FC runs do not indicate a strong a relationship between soil moisture 

and precipitation, at least on this temporal scale.   

 

Figure 12.  Temporally lagged correlation between total precipitation and 10 am to 2 pm temporally 

averaged soil moisture 

 

 The spatially averaged day of maximum temporally lagged correlation 

between total precipitation and 10 am to 2 pm temporally averaged soil moisture is 

shown in Figure 13.  Error bars represent one standard deviation.  The trends appear 

very similar in the 50FC and WP runs, the main difference being larger standard 

deviations in the 8 and 16 km WP runs.  The main thing to note in these plots is that 

day of maximum correlation does not change much, if at all, in the 16 km runs as a 

function of initial soil moisture.  There is a slight change in the 8 km runs, but in the 

1, 2, and 4 km runs the change in day is much larger.  The values are generally 

increasing in the negative direction beginning around 0 days for FC and shifting to 

around -5 days as soil moisture decreases.  



 

40 

 

 

 

 

 

Figure 13.  Day of maximum temporally lagged correlation between total precipitation and 10 am to 2 

pm temporally averaged soil moisture was found at each pixel and then spatially averaged.  Error bars 

show one standard deviation.  a) FC b) 50FC c) WP  

 

2.7 Discussion  

2.7.1 Soil Moisture Scaling 

 Spatial patterns of soil moisture are influenced by soil properties, 

precipitation, evapotranspiration, and terrain through lateral flow.  Each of these 

processes will be captured differently based on model resolution.  The point here was 

to examine how soil moisture scales as a function of model resolution.  Some care 

must be taken in drawing comparisons between other soil moisture scaling studies 

due to significant methodological differences.  Other studies generally begin with 

one soil moisture field and aggregate this field to other resolutions to examine the 

scaling properties.  The soil moisture data typically are remotely sensed or are 

obtained during large field campaigns where ideal days were chosen, with 

precipitation days often being avoided.  Results from one given day may not apply to 

the next day and will be highly dependent on the method of averaging chosen.  The 

goal was to examine how the scaling properties of soil moisture changed through 

time, as a function of individually modeled fields at differing resolutions.  It is still 
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possible to draw some comparisons between this and other studies but it will still be 

important to consider methodological differences which may impact the results.   

 Manfreda et al. (2007) used modeled soil moisture from the North American 

Land Data Assimilation System (NLDAS) at 0.125
o
 resolution, and after 

successively aggregating it to a resolution of 1.0
o
, performed a scaling analysis on 

the variance.  They found β values ranging from -0.32 to -0.12 in their top soil layer 

(10 cm).  In a similar study, Rodriguez-Iturbe et al. (1995), using soil moisture data 

from the Washita ’92 Experiment, which they aggregated from pixels of 200 x 200 

m
2
 up to 1000 x 1000 m

2
, found β values between -0.21 and -0.28 for scaling plots of 

variance.  In looking only at the slopes for the second moment (variance) from the 12 

days of this analysis, only four days fall within the range of -0.14 to -0.39 from FC, 

five days fall within the range of -0.12 to -0.33 from 50FC, and only two days fall 

within the range of -0.12 and -0.33 from WP.  It is important to note than many of 

these days are not consecutive and that the β values are, at times, highly variable 

from day to day.   

 Differences in the timing and magnitude of precipitation events between 

model resolutions will undoubtedly have significant impacts on the slopes.  It has 

been shown during field campaigns, such as Washita ’92, SGP ’97, SMEX ’02 and 

’04, that the level of soil moisture strongly influences the spatial variance of soil 

moisture patterns (Manfreda et al. 2007), which will be heavily influenced by 

precipitation.  Examining soil moisture pdfs from 15 catchments around the world, 

Western et al. (2002) found that variance increases from near zero at WP, peaks at 
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moderate values of soil moisture, and then decreases to near zero as the mean soil 

moisture approaches saturation.  Although this dependence of variance on the 

amount of soil moisture will not impact scaling of variance in studies that rely on one 

field that has been aggregated to different resolutions, it will have an impact on this 

particular study where the amount of variance at a given resolution is completely 

independent of every other resolution.   

  

2.7.2 Spatial Scaling of Total Precipitation 

 The idea of scaling in spatial precipitation fields has already been widely 

examined.  Many studies have found that precipitation fields exhibit multiscaling 

characteristics, with non-linear change in β with order of moment (Gupta and 

Waymire 1990).  Deidda (1999) specifically investigated the multiscaling properties 

of 6 hour precipitation fields obtained from a limited area model (LAM) with a 

horizontal resolution of 10 km and compared them to fields based on radar 

observations from the GATE campaign.  His study found very good agreement 

between the modeled and radar fields and demonstrated that precipitation fields do 

exhibit multiscaling, but that it was more pronounced for shorter accumulation 

periods.  This analysis, which was performed on total precipitation accumulated over 

the 12 day period for each of the three levels of initial soil moisture, did not find 

evidence of multiscaling.  There may be many underlying reasons for this, including 

the accumulation timescale used and the fact that the representation of precipitation 

processes in numerical models is known to be problematic.  At resolutions much 
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larger than 1 km precipitation must be parameterized and current schemes do not 

accurately represent the physical processes involved in the occurrence of 

precipitation.  Additionally, as was true for the soil moisture analysis, this study 

relies on precipitation fields at different resolutions obtained through independent 

model runs rather than obtaining fields through aggregation of one initial field.  The 

plots do show a strong linear relationship between the third through the sixth order of 

moment.  Relying only on how the variance scales with resolution, as many scaling 

studies have done in general, would result in distinctly different scaling properties.  

Also worth noting, in general daily precipitation fields exhibit extremely similar 

patterns in plots of β versus order of moment as cumulative plots, with the exception 

of day 1 for each of the three levels of initial soil moisture.               

 

2.7.3 Soil Moisture-Precipitation Feedback 

 Determining the dominant resolutions at which interactions between soil 

moisture and precipitation can be captured has important implications for the 

improvement of weather and climate forecasting.  As the scale of surface 

heterogeneity changes the dominant physical processes will also change.  

Presumably there will be some threshold of heterogeneity needed for the occurrence 

of a feedback between soil moisture and precipitation.  The higher the resolution the 

more heterogeneity can be resolved by the model. 

 When examining the interactions between soil moisture and precipitation as a 

function of spatial scale, 1 km runs consistently have the largest amount of total 
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precipitation and the highest frequency of precipitation events, though all of the FC 

runs have an equal number of events.  Additionally, the magnitude of precipitation 

events is larger in 1 km runs regardless of the level of initial soil moisture.  The 

relationship between soil moisture and precipitation also appears strongest in 1 km 

runs, which generally have the highest correlations (for negative lags), with the 

exception of several days in the 50FC run.  Looking at cumulative precipitation 

amounts for each run, the 16 km 50FC and WP runs are exactly equal, which 

suggests that the 16 km resolution is not sensitive to differences between initial soil 

moisture in the 50FC and WP runs.       

  Feedbacks between soil moisture and precipitation can occur over moist and 

dry soils.  Examining the series of 15 model runs shows that FC runs consistently 

have higher total precipitation amounts than the 50FC and WP runs, with the 

exception of the 8 km FC run, which provides some indication that a positive soil 

moisture-precipitation feedback may be occurring in these runs.  This supports the 

results of Alonge et al. (2007), who found that dry soil regimes produced 

approximately 55% less precipitation than wet regimes.  The relatively high, positive 

correlation values in the 1 and 2 km FC runs also suggests there may be a positive 

feedback occurring, but as previously emphasized causality cannot be inferred from 

linear correlations.  It is also important to emphasize that for all runs correlation 

values are positive, indicating that any feedback occurring must be positive.   

 Summing precipitation over the domain at the daily timescale shows that FC 

runs also generally have a higher number of precipitation events over the 12 day 
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period and that FC events are almost always larger in magnitude than 50FC and WP 

events.  The temporal variance of soil moisture and precipitation were also 

consistently higher in FC runs by an exponential amount at all resolutions.  Due to 

the fact that precipitation heavily influences the spatial and temporal heterogeneity of 

soil moisture, it was expected that the trends seen in 2

Tσ  of precipitation as a 

function of initial soil moisture and resolution would also be seen in the plot of 2

Tσ of 

soil moisture.  Although this holds for the FC runs it does not for the 50FC and WP 

runs.  Examining pdfs of soil moisture and timeseries of VMR both show a general 

decrease in variance or dispersion with decreasing soil moisture at all resolutions.   

 

2.7.4 Limitations 

 As with any study there are associated limitations and it is necessary to 

consider the results within the context of these limitations.  Models are developed 

with a focus on a specific scale of interest.  Processes occurring at this general scale 

are represented explicitly while those outside this scale of interest must be 

parameterized or greatly simplified.  As a result, an issue of scale dependency in 

parameterization and model formulation limits the interpretation of scaling behavior 

of natural systems (Western et al. 2002).  If the representation of physical processes 

within the model is not realistic an examination of scaling properties will only 

characterize the scaling behavior of the model rather than that of the process or 

variables of interest.     



 

46 

 

 

 

 

 Precipitation frequency and amount are highly dependent on the choice of 

convective parameterization scheme.  Additionally, precipitation amounts for the 1 

and 2 km runs come solely from grid resolved precipitation while totals from 4, 8, 

and 16 km runs combine grid resolved with convectively parameterized precipitation.  

For these reasons the focus should not be on strict precipitation amounts but on how 

the amounts from different runs compare to one another. 

 The depth and number of soil layers can potentially have a large impact on 

soil moisture dynamics.  For the sake of simplicity this study used only two soil 

layers, a top layer (20 cm) and a thicker layer below.  The number of layers will 

impact wetting and drying processes including: evaporation, transpiration, infiltration, 

and runoff.  In order to improve the study, ARPS would ideally be coupled to another 

model with the capability to improve the representation of the above hydrologic 

processes but also allow for groundwater dynamics and topographic redistribution of 

soil moisture.   

 Additionally the number of initial soil moisture values and model resolutions 

should be increased.  This would help in the detection of thresholds in initial soil 

moisture or resolution that impact the relationship between soil moisture and 

precipitation.   

 

2.8 Conclusions 

 Through the use of a mesoscale model it was found that the scaling properties 

of soil moisture are highly variable in time.  This has important implications for the 
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applicability of scaling properties in future studies, as what may be characteristic of 

one day cannot necessarily be applied to subsequent days.  Scaling properties cannot 

be generalized, and as a result the analysis would have to be performed regularly to 

determine the scaling coefficients. 

 It was also found that cumulative precipitation fields did not exhibit signs of 

multiscaling, despite the general acceptance that precipitation can be described as 

such.  Based on the study by Deidda (1999) this may be related to the long time scale 

of precipitation accumulation.           

 In terms of soil moisture-precipitation interactions, it has been demonstrated 

that soil moisture does impact the magnitude and frequency of precipitation events in 

the U.S. Central Plains.  High soil moisture resulted in greater precipitation amounts 

and a higher frequency of events, suggesting the occurrence of a positive soil 

moisture-precipitation feedback.  This has important implications for this region 

where agricultural production plays a large role in the economy, in addition to 

potential improvements in forecasting of regional weather and climate.   
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CHAPTER 3 

 

ENERGY BALANCE PARTITIONING AND NET RADIATION CONTROLS ON SOIL 

MOISTURE-PRECIPITATION FEEDBACKS 

 

 

3.1 Introduction 

 

 Land-atmosphere interactions play an important role in determining regional 

weather and climate.  Although this idea has been widely accepted, an understanding 

of the physical processes and the scales over which these interactions occur remains 

somewhat limited.  Improving the current understanding of these relationships has 

important implications for increasing predictability of local weather and climate.  

According to Barros and Hwu (2002), the basis of studies on land-atmosphere 

interactions is the idea that moisture and energy gradients across a landscape are 

associated with regional weather patterns over a wide range of spatial and temporal 

scales.  Although soil moisture and vegetation impact the atmosphere through 

feedbacks with the land surface, the dominant processes driving these feedbacks have 

not been precisely determined and some disagreement still exists.   

 Previous research has shown evidence for the existence of a soil moisture-

precipitation feedback (Eltahir 1998; Findell and Eltahir 1997; Pal and Eltahir 2001), 

which can be either positive or negative (Brunsell 2006).  A positive feedback would 

be characterized by an increase in precipitation resulting from high soil moisture, or a 

continued suppression of precipitation resulting from anomalously dry soils.  In the 

case of a negative feedback, increased precipitation would be associated with dry 

soils, while moist soils would act to suppress precipitation.  In other words, a positive 
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feedback acts to reinforce the initial change in the system while a negative feedback 

causes the system to diverge from the initial change.             

 By performing data analysis on observations of rainfall, temperature, and wet-

bulb temperature from the Amazon Region Micrometeorological Experiment, Pal and 

Eltahir (1996) found that both the frequency and magnitude of localized convective 

storms increased with the surface wet-bulb temperature.  As the amount of moisture 

in the soil increases, the wet-bulb depression decreases.  Lower liquid condensation 

level (LCL) heights should correspond to smaller magnitude wet-bulb depressions, 

which according to Eltahir (1998), should enhance the likelihood for triggering moist 

convection and the occurrence of rainfall if all other factors remain the same. 

 Pal and Eltahir (2001) found evidence for the existence of a positive soil 

moisture-precipitation feedback in the U.S. Midwest.  They showed that anomalously 

high soil moisture leads to an increase in the flux of high moist static energy air into 

the boundary layer from the surface through an increase in net surface radiation.  An 

increase in the concentration of moist static energy occurs through a reduction in the 

height of the boundary layer, which occurs as a result of the anomalously moist soil.  

They attributed the increase in the frequency and magnitude of convective rainfall 

events to the increase in the amount of moist static energy per unit mass of air in the 

boundary layer.   

 Dong (2007) found a strong positive correlation between soil moisture and 

precipitation over grasslands at interannual time scales, while at the seasonal time 

scale they found a positive correlation between accumulations of cold season 
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precipitation and springtime soil moisture, which became negatively correlated during 

summer.  Although this may provide evidence for the existence of a feedback it is 

important to note that while correlations imply a relationship they cannot be used to 

infer causality. 

 Although all of the previously mentioned studies involve positive feedbacks, 

evidence also supports the existence of negative soil moisture-precipitation 

feedbacks.  Negative feedbacks are associated with an increase in sensible heat flux 

over dry soils which can lead to an increase in turbulent mixing, boundary layer 

height, and convection (Findell and Eltahir 2003b). Findell and Eltahir (2003a), using 

a one-dimensional boundary layer model, found evidence for the existence of a 

negative soil moisture-precipitation feedback in the southwestern United States where 

the climate is dominated by a monsoon regime.   

 In another study, using data collected at the Blackwood Division of the Duke 

Forest near Durham, North Carolina and a simple slab model, Juang et al. (2007) 

found that conditions characterized by dry soil moisture and a dry atmosphere can 

induce convective precipitation.  They suggested that a negative feedback may exist 

in the southeast region of the United States.   

 Cook et al. (2006), using the Community Climate System Model version 3 

(CCSM3), found evidence for a negative feedback in southern Africa.  They ran two 

simulations, a control case (CTRL) where soil moisture was allowed to interact 

dynamically with the atmosphere and a MOIST case where it was defined such that 
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ET would not be water limited.  They saw a decreases in precipitation associated with 

their MOIST case when compared to their CTRL case.   

 The sign and magnitude of feedback varies spatially and temporally.  A study 

involving twelve atmospheric general circulation model (AGCM) groups was 

coordinated by the Global Land-Atmosphere Coupling Experiment (GLACE) to 

detect regions of strong coupling between soil moisture and precipitation (Koster et 

al. 2004).  They determined that the strongest coupling occurred in transition zones 

between wet and dry climates.  They attribute this to the ability of boundary layer 

moisture to trigger convection in these areas, and the fact that evaporation is 

substantial enough yet still sensitive to the soil moisture state.      

 Knowing which physical processes are involved and identifying key features 

responsible for soil moisture-precipitation feedback is crucial for improving 

predictability of precipitation and other related variables and events.  Pal and Eltahir 

(2001) emphasized the importance of the impacts of soil moisture on the energy and 

water budgets in determining the strength of soil moisture-precipitation feedback.  

Eltahir (1998) hypothesized the change in albedo and Bowen ratio (sensible 

heat/latent heat) as being the fundamental basis of the feedback. The foundation of 

this argument is that as soil moisture increases, the albedo decreases due to a 

darkening of the soil, which leads to an increase in net solar radiation.  The Bowen 

ratio decreases as latent heat becomes larger than sensible, resulting in a decrease in 

surface temperature and an increase in the water vapor content of the boundary layer.  
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Therefore, when soil moisture is high, the decrease in albedo and Bowen ratio results 

in an increase in the net radiation at the surface (Eltahir 1998).   

 Teuling and Seneviratne (2008), using albedo estimates from the Moderate 

Resolution Imaging Spectrometer (MODIS) for the 2003 heat wave and drought over 

Europe, found that albedo responded oppositely to soil moisture anomalies in the 

visible and near-infrared portions of the spectrum.  They determined that the impacts 

of dry soil alone would lead to higher albedos, however the response of vegetation to 

water stress resulted in opposite changes in spectral reflectance.  For this specific 

case, their results did not support the existence of an albedo feedback induced by 

drought.  Using eight years of Advanced Very High Resolution Radiometer 

(AVHRR) data, Brunsell (2006) found evidence to suggest that vegetation plays a 

dominant role in determining local feedbacks.     

 Spatial resolution plays an important role in almost any study as obtaining 

data at the appropriate resolution can sometimes pose a significant challenge.  There 

are some ways to potentially overcome this issue, including the use of scaling 

coefficients calculated from spatial fields that exhibit statistical self-similarity.  The 

idea of statistical self-similarity has been widely studied across a range of fields, 

including physics, ecology, hydrology, and atmospheric science.  It has gained 

additional attention with the extensive use of remotely sensed data due to the 

potential for widespread application.  By performing a scaling analysis it may be 

possible to infer variability at any other resolution if the field exhibits self-similarity, 

i.e. scale invariance.  A process is said to be scaling, or self-similar, if the process 
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behaves similarly at both small and large scales, i.e. the statistical properties of the 

field do not vary as a function of scale (Bloschl 2001).          

 The idea of spatial scaling is certainly not new and much work has already 

been done specifically on soil moisture and precipitation (Deidda 1999; Rodriguez-

Iturbe et al. 1995; Waymire 1985; Western and Bloschl 1999). Research has already 

begun to take advantage of remotely sensed fields due to the availability of data 

where surface measurements either do not exist or are unavailable at consistent spatial 

and temporal scales.  Field measurements of surface soil moisture, for example, 

cannot be taken over large areas or with the temporal frequency required for effective 

use.  Although remote sensing has improved the spatial and temporal resolution of 

data for variables such as soil moisture, complications still arise as a result of 

resolution.  Differences in resolution make it difficult to validate remotely sensed data 

with surface measurements or larger scale models (Brunsell and Gillies 2003a).    

 Statistical self-similarity can potentially be used to circumvent resolution 

issues associated with remotely sensed data.  A process is defined as self-similar if: 

)()( xx ⋅⋅= − λφλφ β ,                                                 (1) 

whereφ  represents the field, x is the spatial scale, λ is the ratio of the large 

scale x⋅λ to the small scale x, and β is the scaling exponent (slope) (Bloschl 1996).  If 

a field exhibits statistical self-similarity it can be used to infer model variability at any 

other resolution (Halley et al. 2004).   

 In determining the scaling properties of a field, some studies have focused on 

the variance (Baldocchi et al. 2005) and others on high-order statistical moments 
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(Brunsell and Gillies 2003b; Dubayah et al. 1997).  Using higher-order moments 

provides more information on the statistical properties and structure of the field as 

opposed to the variance.  A field φ  is said to be spatially scaling with respect to 

moment q if the following relationship holds: 

  ],)[()[( 1

)( qqKq
EE φλφλ ∝                                                  (2) 

where K(q) is the scaling exponent associated with moment q (equal to β in equation 

1 above) (Peters-Lidard et al. 2001).  For a process or field to exhibit simple scaling a 

plot of β versus order of moment must be linear (Gupta and Waymire 1990).   If the 

process is truly scale invariant then the amount of variability in the field does not 

change as a function of scale.  For a multiscaling process the amount of variability 

changes as a function of scale which can be seen as a non-linear change in β with 

order of moment.  A field or process may exhibit either scaling or multiscaling 

characteristics, or it may be scale dependent meaning that knowledge at one scale 

cannot be used to predict variability at other scales.   

 Chapter two already investigated the scaling properties of precipitation and 

soil moisture; however, it is well-known that soil moisture strongly influences other 

surface variables, including soil temperature and Bowen ratio, in a non-linear way.  

The second objective of this study was to examine the impacts of varying mean soil 

moisture on the scaling properties of 10 am to 2 pm temporally averaged soil 

temperature and Bowen ratio, with a specific emphasis on how these scaling 

relationships vary temporally, as this has important implications for the use of 

remotely sensed fields in future research.     
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 The goal is to investigate the relative importance of energy balance 

partitioning and net radiation in soil moisture-precipitation feedbacks and to examine 

how the dominant physical process are impacted by changes in mean soil moisture 

and spatial resolution.   

 

3.2 Model Description 

 In order to examine the physical processes involved in soil moisture-

precipitation interactions and to investigate the impacts of mean soil moisture on the 

scaling properties of soil temperature and Bowen ratio, a series of model runs were 

conducted using the University of Oklahoma’s Advanced Regional Prediction System 

(ARPS).  ARPS is a three-dimensional, nonhydrostatic, compressible model which 

was developed at the Center for Analysis and Prediction of Storms (CAPS) to be used 

for real-time forecasting and to serve as a tool for research (Xue et al. 2000, 2001).   

 To examine the impacts of mean soil moisture and resolution on soil moisture-

precipitation interactions, a suite of 15 model runs was conducted (Figure 14).  The 

horizontal resolutions used in this study include 1, 2, 4, 8, and 16 km.  At each of 

these resolutions initial soil moisture was varied from field capacity (0.35), to 50% of 

field capacity (0.13), to wilting point (0.09).  This made it possible to examine how 

the dominant physical processes vary both as a function of mean soil moisture and 

resolution.   
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Figure 14.  Suite of 15 model runs conducted with varying resolutions and initial soil moisture values 

using the Advanced Regional Prediction System (ARPS) 

 

 A standard midlatitude summer sounding, modified to ensure westerly winds 

at all levels, was used to initialize all runs.  Soil and vegetation properties are 

homogeneous across the domain, with soil type sandy loam and vegetation being 

grassland with an LAI of 0.31.        

 Convective processes cannot be explicitly resolved at resolutions much 

coarser than 1 km (Chen and Avissar 1994).  As a result the Kain-Fritch Weather 

Research Forecasting (WRF) parameterization scheme was used in the 4, 8, and 16 

km runs.  This scheme was chosen because it is more suitable for higher resolution 

grids and has the ability to generate sources of rainwater and snow which are fed back 

to grid scale variables which then interact with ice microphysics processes (Xue et al. 

2001).   

      As precipitation resulting from soil moisture feedbacks is convective in nature 

and synoptic impacts are not of interest in this particular study, one-way interactive 

grid nesting was chosen.  Two-way nesting would be necessary to capture mesoscale 
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impacts on the synoptic environment which would then feedback to modify the 

mesoscale environment.  For the purposes of this study these mesoscale interactions 

are unnecessary due to the fact that the study is attempting to ascertain physical 

processes associated with soil moisture-precipitation feedbacks and not the accurate 

simulation of a particular synoptic case study.   

 Coarse runs for the one-way nesting were conducted over the outer domain 

(Figure 15), which covers an area of 4,194,304 km
2
, using a horizontal resolution of 

16 km over a period of 20 days beginning on August 18th.  These runs were 

initialized using the same characteristics as the inner grid, which covers an area of 

16,384 km
2
, to maintain comparability between all runs.  The first four days of each 

coarse resolution run were regarded as spin-up and discarded, leaving 16 days to 

force the inner grid at the 1, 2, 4, 8, and 16 km resolutions.  The vertical grid was 

composed of 83 layers, with higher resolution at the surface (approximately 100 m), 

decreasing exponentially with distance from the surface, with a resolution of 

approximately 500 m at the top of the model domain.   

 

Figure 15.  Model domain centered on the Konza Prairie in northeastern Kansas 
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3.3 Site Description 

 The model domain focuses on the U.S. Central Plains, which was selected due 

to its importance as an agricultural region.  The center of the domain was specifically 

placed on the Konza Prairie, which covers an area of approximately 34.87 km
2
 (Lett 

and Knapp 2005) in the Flint Hills of northeastern Kansas near Manhattan, KS 

(39
o
05’N, 96

o
35’W).  The land is owned by the Nature Conservancy and managed by 

Kansas State University as a National Science Foundation (NSF) Long-Term 

Ecological Research Station (LTER).  Much of the research conducted at Konza 

focuses on climate and the current management program includes periodic burning 

and the reintroduction of native grazers (i.e. buffalo) (Kaste et al. 2006).    

 The climate can be characterized as temperate mid-continental with cold, dry 

winters and warm, wet summers (Nippert et al. 2006) with annual temperatures 

ranging from a low of -2.7 
o
C in January to a high of 26.6 

o
C in July (Fay et al. 2003).  

Approximately 75% of the mean annual precipitation (835mm) falls during the 

growing season between April and September (Lett and Knapp 2005).     

 Being located within the Flint Hills region, the soils are rich and thin, overlaid 

on alternating layers of limestone and shale.  The soil types vary in the area from 

Ustolls to Udolls including deep silt loam and silty clay loams soils.  Steep-sided 

lowlands and flat upland ridges characterize the terrain at Konza (Lett and Knapp 

2005).  Native tallgrass prairie comprises the majority of the vegetation; with 

perennial warmseason grasses such as little blue stem (Schizachyrium scoparium 
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Michx), big bluestem (Andropogon gerardii Vitman), Indian grass (Sorghastrum 

nutans (L.) Nash), and switch grass (Panicum virgatum L.) dominating (Kaste et al. 

2006).   

   

3.4 Methodology 

3.4.1 Net Radiation vs. Energy Balance Partitioning  

 In order to evaluate how net radiation (Rn) and energy balance partitioning 

change as a function of model resolution and mean soil moisture, the Root-Mean 

Square Error (RMSE) was calculated between the 1 km runs and every other 

resolution  

n

xx
RMSE

i

n

i i

2

,21 ,1 )(∑ =
−

= ,                                                  (3) 

where n is the number of points, and x1 and x2 are the variables between which the 

error is calculated.  The 1 km runs were used as “truth” as they are able to resolve 

more of the small scale physical processes and capture more of the variability in 

surface properties which can potentially impact net radiation and partitioning into 

sensible and latent heat fluxes.  Although the RMSE is typically used as an error 

estimate here it will be used as a metric to evaluate differences as a function of model 

resolution.   

 Previous studies have argued that soil moisture-precipitation feedbacks are 

driven by an increase in net radiation associated with a lowering of the albedo over 

moist soils (Eltahir 1998).  In order to investigate the validity of this argument scatter 
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plots of soil moisture versus net radiation were constructed.  Additionally, scatter 

plots of soil moisture versus Bowen ratio were constructed to look for soil moisture 

impacts on surface energy balance partitioning, which is hypothesized to be the 

dominant process impacting the feedback mechanism (Brunsell 2006).   

 

3.4.2 Lagged Correlations 

 It is hypothesized that changes in energy balance partitioning will impact 

precipitation more prominently than variation in net radiation through a soil moisture 

feedback.  Chapter two found evidence for a positive soil moisture feedback in the 

Central Great Plains.  Runs initialized at field capacity consistently exhibited higher 

total precipitation amounts and had a higher frequency of events.  Lagged correlations 

were used to show the temporal scales over which the feedback mechanism occurs. 

 Here lagged correlations will be used to examine the temporal scales over 

which latent and sensible heat fluxes, Bowen ratio, and net radiation impact 

precipitation.  Temporally lagged correlations are given by: 

                       ∑
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Where xyR̂ is the correlation, x and y are stationary random variables, N is the number 

of points and m is the lag.  Positive lags indicate that precipitation is leading the other 

variable, while negative lags indicate that precipitation is being lead by the other 

variable.   
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 The day at which the maximum lag correlation occurs is examined as a 

function of model resolution and mean soil moisture to determine the time scale 

associated with land-atmosphere feedbacks.  Feedbacks involving dry versus wet soil 

may occur on different temporal scales.  This is highly likely as the physical 

processes involved in the feedback differ as a function of soil moisture level as 

discussed in section 3.1 of this chapter.  In order to determine whether there are 

consistent trends as a function of model resolution and mean soil moisture the day of 

maximum lagged correlation was found for each pixel, neglecting the zero lag, and 

then spatially averaged for each model run.            

 

3.4.3 Information Content 

 As another method for assessing variability between individual model runs, 

entropy was calculated entropy: 
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where H is the entropy, x is the variable of interest,  and pi(x) is the probability mass 

function, or the probability that x is exactly equal to some value (Shannon 1948).  H 

is an information metric, i.e. a measure of the average information content (in bytes), 

which provides an indication of how much uncertainty is associated with a random 

variable (Brunsell and Young 2008; Brunsell et al. 2008).  A higher H corresponds to 

less useable information.  This presumably will vary as a function of model 

resolution, and also may vary as a function of initial soil moisture.  It is expected that 



 

62 

 

 

 

 

higher resolutions will correspond with lower values of H as they are able to capture 

more heterogeneity in surface characteristics and are better able to resolve smaller 

scale physical processes than coarser resolutions, resulting in a higher information 

content.         

 It is also possible to compute the amount of entropy contained within a system 

of two independent variables.  The joint entropy of two variables is given by 

∑−=
ji

jipjipyxJE
,

2 ),(log),(),( ,                                    (7) 

where JE is the joint entropy and p(x, y) is the joint probability of i for the first 

variable and j for the second.  The joint entropy must always be greater than or equal 

to the amount of entropy associated with the individual variables, as adding another 

variable cannot decrease the amount of information within the system.  Joint entropy 

is calculated as an intermediate step to obtaining the mutual information content of 

the two variables.        

 The entropy and joint entropy can be used to calculate the mutual information 

content, or mutual dependence, of two variables: 

),()()(),( yxJEyHxHyxI −+= ,                                     (8) 

where I is the mutual information content, H(x) the entropy of x, H(y) the entropy of 

y, and JE(x, y) the joint entropy of x and y.  This provides a measure of the amount of 

information known about one variable given the other (i.e. redundancy), or the 

decrease in uncertainty in one variable given the other. 

 The spatial entropy was calculated at an hourly timescale for soil moisture, 

precipitation, Bowen ratio, net radiation, and sensible and latent heat flux and then 
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averaged to the daily timescale.  The mutual information content was then calculated 

hourly and averaged to daily values for soil moisture and precipitation, soil moisture 

and Bowen ratio, and soil moisture and net radiation.  Timeseries plots will provide 

an indication as to the strength of the relationship between these variables and how it 

varies temporally as a function of mean soil moisture and spatial resolution.          

 

 

3.4.4 Turbulent Mixing and Boundary Layer Height 

 At coarser resolutions the model may be unable to capture mesoscale 

circulations resulting from heterogeneity in surface characteristics, which may play 

an important role in the dynamics of soil moisture-precipitation feedback 

mechanisms.  As the main objective of this study was to examine the physical 

processes involved in the feedback and determine which have a dominant role, the 

relative impact of horizontal versus vertical motions is investigated.  This presumably 

will vary as a function of model resolution, as mentioned above, but also as a function 

of mean soil moisture.  Due to lower sensible heat fluxes FC runs are expected to 

have less turbulent mixing and as a result a lower boundary layer height.  To verify 

this hypothesis the spatially averaged vertical profile of the ratio of 10am to 2pm 

temporally averaged vertical to horizontal turbulent mixing coefficients for 

momentum (kmv/kmh) was calculated and then the profiles for each of the 12 days 

were temporally averaged for each model run.   
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3.4.5 Spatial Scaling 

 In order to determine the variation in spatial scaling as a function of mean soil 

moisture and resolution, a scaling analysis is performed on model generated fields of 

10 am to 2 pm temporally averaged soil temperature and Bowen ratio.  Although 

different methodologies exist for determining the scaling properties, the statistical 

moments are calculated as they provide information on the spatial structure of the 

field.  Other studies have chosen only to examine how the variance scales but 

calculating the moments will allow us to more fully characterize the statistical scaling 

relationships.  If a scaling relationship does exist then it can then be used to calculate 

any of the statistical moments at any other resolution.   

 The analysis was performed on 10am to 2pm temporally averaged soil 

temperature and Bowen ratio by calculating the first six statistical moments.  The first 

moment is given by Equation 9:   

∑= ix
N

X
11                                                          (9) 

the second moment by Equation 10: 

∑ −= 22 )(
1

xx
N

X i                                                    (10) 

and Equation 11 is used to obtain the third through sixth moments: 

n

n

i
n

xx
NX

σ

∑ −
=

)(
1

  ,                                                 (11) 

where n is the order of moment, N is the number of points, x the mean, and σ
 
the 

standard deviation.  The six moments are plotted versus resolution on a log-log scale: 
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log (φ) = log(α) + β * log(λ),                                             (12) 

 where λ is spatial resolution, β is the scaling exponent (slope), and α the intercept, 

determined by linear regression (Brunsell and Gillies 2003b).  β values are then 

plotted versus order of moment on a log-log scale.   

              In order to ascertain the model’s capability to capture the dominant 

processes controlling soil moisture-precipitation feedbacks, soil temperature and 

Bowen ratio fields that have been obtained through individual model runs at varying 

resolutions are used, rather than beginning with one field and aggregating it to other 

resolutions.  The majority of scaling analyses, regardless of the variable of interest, 

have been based on fields aggregated, or filtered, from an initial resolution.  This will 

undoubtedly have a large impact on the scaling properties of the field.   

 In addition to quantifying the scaling coefficients at one point in time, the 

temporal variability in the spatial scaling relationship is examined. The interest lies in 

observing the scaling characteristics based on fields that are completely independent 

of one another and examining how these characteristics vary temporally.  The 

ultimate goal is to determine whether there are scaling properties intrinsic to the field 

that will allow for the estimation of statistical properties at resolutions other than the 

modeled resolutions at different times.  This has important implications for the use of 

remotely sensed data as input to numerical models and for the comparison of model 

output with remotely sensed fields.            
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3.5 Results 

3.5.1 Net Radiation vs. Energy Balance Partitioning 

 Plots of RMSE for net radiation, latent, and sensible heat flux are shown in 

Figure 3.  For net radiation (Figure 16a) there is an increasing trend in RMSE as a 

function of resolution.  Mean soil moisture does not appear to have an impact on the 

RMSE.  This does not hold for latent (Figure 16b) and sensible heat (Figure 16c), 

where clear trends are associated with mean soil moisture.  FC runs have consistently 

higher RMSE values for latent heat and lower values for sensible heat.  They also 

maintain an increasing trend with resolution.  The 50FC and WP are distinctly 

different from the FC runs, but behave similarly to one another for net radiation, 

latent, and sensible heat.  They are both associated with an increasing trend for 

sensible heat, but there is a step between 2 and 4 km for latent heat flux.             

 

Figure 16.  The Root-Mean Squared Error (RMSE) was calculated between 1 km runs and every other 

resolution for a) net radiation b) latent heat flux and c) sensible heat flux 

 

 Scatter plots of Bowen ratio versus soil moisture (Figure 17a) show a clear 

relationship, with Bowen ratio values decreasing as soil moisture increases.  This is 

expected, with higher latent heat fluxes associated with higher soil moisture levels.  

This demonstrates that soil moisture does have a significant impact on energy balance 
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partitioning.  However, scatter plots of net radiation versus soil moisture (Figure 17b) 

do not show a clear relationship.  Here an increase in net radiation does not appear to 

be associated with higher soil moisture values, which would be expected from a 

lowering of the albedo over moist soils.   

 

Figure 17.  Scatter plots of soil moisture versus Bowen ratio (top) a) FC b) 50FC c) WP and soil 

moisture versus net radiation (bottom) d) FC e) 50FC f) WP for the 4 km runs  

 

3.5.2 Information Theory Metrics 

 Timeseries plots of entropy at each initial soil moisture value and spatial 

resolution for latent heat and net radiation are shown in Figure 18.  For latent heat, 

entropy values for FC runs are all clustered between 0.8 and 0.9, while the 50FC and 

WP runs show a larger range of values and more temporal variability.  In the case of 

net radiation, 4, 8, and 16 km runs shows similar changes in entropy values over time 

regardless of initial soil moisture.  The 1 km runs generally have the lowest values.     

 For sensible heat (not shown), FC exhibits a clear increase in entropy values with 

resolutions, but for 50FC and WP the 4 km runs behave similarly to the 1 km run 

while the 2 km runs show similar characteristics to the 8 and 16 km runs.  Plots of 
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entropy for Bowen ratio (not shown) indicate a clear trend in H as a function of 

resolution for FC, with the 1 km run having the lowest values and 16 km the highest.  

This trend generally holds for 50FC and WP, with the 4 km run occasionally having 

lower values than the 2 km runs.  Values of H are relatively similar for all resolutions 

at 50FC and WP, while FC runs show a greater range of values.  The 4, 8, and 16 km 

50FC and WP runs remain very similar to FC, with the main difference being the 

increase in entropy values in the 1 and 2 km runs.      

 

Figure 18.  Timeseries of daily averaged entropy for latent heat flux (top) a) FC b) 50FC c) WP and 

net radiation (bottom) d) FC e) 50FC f) WP 

 

 

   Joint entropy was then calculated between soil moisture and Bowen ratio and 

soil moisture and net radiation.  This allowed for the examination of the mutual 

information content (I).  Figure 19a, b, and c show a timeseries of I for soil moisture 

and Bowen ratio.  For FC the 1 and 2 km runs exhibit the lowest values of I with 

similar temporal trends.  50FC and WP plots look extremely similar, with no obvious 
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trend as a function of resolution.  The value of I for 1 km 50FC and WP runs 

generally decreases over time. Timeseries of I for soil moisture and net radiation 

(Figure 19d, e, and f) closely resemble those for soil moisture and Bowen ratio, with 

the main difference being lower values of I for all model runs.   

 

Figure 19.  Timeseries plots of daily averaged mutual information content between soil moisture and 

Bowen ratio (top) a) FC b) 50FC c) WP (top) and between soil moisture and net radiation (bottom) d) 

FC e) 50FC f) WP  

 

 

3.5.3 Lagged Correlations      

 Figure 20a, b, and c show the spatial average of day of maximum lagged 

correlation for Bowen ratio and precipitation as a function of spatial resolution.  The 

50FC and WP plots exhibit a distinct trend, with the day of maximum lagged 

correlation shifting from negative values in the 1 km runs to increasingly positive 
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values as resolution become coarser.  The spatial standard deviation also generally 

decreases as a function of resolution.  The lag for the 1 km FC run is larger than that 

of the 50FC and WP runs and the decrease in standard deviation occurs much more 

rapidly with resolution, approaching zero.   

 The day of maximum lagged correlation between latent heat and precipitation 

(Figure 20d, e, f) changes sign for 50FC and WP runs as resolution increases, shifting 

from approximately -4 to +5.  Spatial standard deviations are once again smaller for 

FC runs and there is also a shift in sign for day of maximum lagged correlation in FC 

runs.  The trend is not as large or consistent as in 50FC and WP, with a positive trend 

from 1 to 8 km and then a slight decrease occurs at 16 km.  Day of maximum 

correlation plots for sensible heat flux (Figure 20g, h i) are nearly identical to those of 

latent heat flux, however the shift between the 1 and 2 km runs for 50FC and WP is 

more dramatic for sensible heat flux.   

 Plots of day of maximum lagged correlation between net radiation and 

precipitation (Figure 20j, k, and l) show a large change in day as a function of 

resolution, with the largest changes occurring in the 50FC and WP runs.  The 1 km 

runs also show a trend in day as a function of initial soil moisture.  In looking only at 

the 1 km runs there is a shift from around -3 to -5 days in the FC run to around -6 or -

7 days in the WP runs. 
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Figure 20.  Spatially averaged day of maximum lagged correlation between daily total precipitation 

and 10 am to 2 pm temporally averaged Bowen ratio a) FC b) 50FC c) WP (top); latent heat flux d) FC 

e) 50FC f) WP (row 2); sensible heat flux g) FC h) 50FC i) WP (row 3); net radiation j) FC k) 50FC l) 

WP (bottom) 

 

 Lagged correlations between Bowen Ratio and precipitation (not shown) 

exhibit the highest correlations associated with FC.  Values either remain similar or 

decrease as soil moisture decreases.  For the 1 and 2 km FC runs correlation values 

oscillate but consistently remain between 0.3 and 0.5 to approximately -10 days.  

Correlation values for 4 km FC are above 0.5 for the first couple positive lags and 

then remain at or above 0.4 out to approximately +5 days.   
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  For the lagged correlations between latent heat and precipitation (not shown), 

there were much higher values for FC than 50FC and WP.  The 1 km FC once again 

has the highest correlation values, remaining at or above 0.4 out to approximately -7 

to -8 days.  As was also true for Bowen ratio, 50FC and WP plots are strikingly 

similar. 

 Lagged correlations between sensible heat flux and precipitation were also 

calculated (not shown).  FC runs have higher correlation values, as was the case for 

latent heat flux, but values are generally lower than for latent heat flux.  All 

correlation values for 50FC and WP are below 0.4.   

 Plots of lagged correlation between net radiation and precipitation (not shown) 

resemble those of latent heat flux, with relatively high correlation values for FC.  

Once again the 1 km FC run has the highest correlation, with values between 0.4 and 

0.5 extending out to -5 lags.  50FC and WP runs are very similar; except for a peak in 

the correlation in the 1 km WP run at around -6 or -7 lags.    

 

3.5.4 Turbulent Mixing and Boundary Layer Depth 

 Figure 21a provides an example of the spatially and temporally averaged 

vertical profiles of kmv/kmh.   FC profiles are consistently characterized by a smaller 

ratio, as was hypothesized.  Higher sensible heat flux in 50FC and WP runs leads to 

increased turbulent mixing with larger vertical motions.  These profiles indicate a 

much larger boundary layer depth associated with 50FC and WP runs. 
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Figure 21.  Spatially and temporally averaged vertical profiles of a) kmv/kmh for each mean soil 

moisture at 1km spatial resolution b) WP kmv/kmh at each spatial resolution   

 

 Resolution also has a significant impact on the ratio of kmv/kmh,.  Figure 21b 

shows vertical profiles for each spatial resolution at WP.  The ratio consistently 

decreases as the spatial resolution becomes coarser, which presumably will have a 

large impact on the dynamics of the soil moisture-precipitation feedback mechanism 

as the turbulent motions are not being captured as well at coarser resolutions.  This 

will have an impact on the transport of moisture and boundary layer dynamics, which 

both play a role in the feedback. Although only WP runs are shown, the same trend 

exists in FC and 50FC runs as well. 

 

3.5.5 Spatial Scaling 

 The scaling analysis was performed on 10am to 2pm temporally averaged 

Bowen Ratio using the first six statistical moments for each of the 12 days of model 

output.  For FC there is a relatively strong relationship between the first moment and 

the third through sixth, while the second moment (variance) negatively affects the 
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quality of the linear regression.  In looking only at log-log plots of the variance versus 

resolution, in general strong linear relationships can be seen, suggesting that the 

second moment scales with resolution and could be used to predict the spatial 

variance at any other resolution.   

 Ignoring the second moment for 50FC and WP would not bring as significant 

of an improvement in linear regressions, as fits in general would not be as good as for 

FC.  Additionally, on many days the log-log plots of variance versus resolution do not 

show fits as good as those seen in FC plots.  Figure 22 shows timeseries of R
2
 values 

and slopes from β versus order of moment plots.  With the exception of the first two 

days, slopes are similar for all three levels of soil moisture.  FC generally has the 

lowest R
2
 values, though these reflect the poorness of fit associated with the outlying 

second moments.      

 

Figure 22.  a) Timeseries of slope from β versus order of moment plots for Bowen ratio b) associated 

R
2
 values 
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      The plots of β versus order of moment for soil temperature do not exhibit 

signs of scaling or multiscaling, meaning that they cannot be used to infer variability 

at other resolutions.  This is true for all levels of mean soil moisture.  With the 

exception of several days for each mean soil moisture level, log-log plots of variance 

versus resolution show very good fits (Figure 23).  This indicates that these plots can 

be used to predict the variance of soil temperature fields at any other resolution.   

 

 

Figure 23.  Scaling of the second moment (variance) for soil temperature from FC day 4 

 

Looking at the R
2
 values for FC (Figure 24) is extremely deceiving, as a significant 

amount of scatter can be found in these plots.             
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Figure 24.  a) Timeseries of slope from β versus order of moment plots for soil temperature b) 

associated of R
2
 values 

 

 

3.6 Discussion  

 The objective of this study was to determine which physical processes play a 

role in soil moisture-precipitation feedbacks and to examine how they vary as a 

function of mean soil moisture and resolution.  While some have argued the 

importance of an increase in net radiation resulting from a lowering of the albedo 

over moist soils, no evidence in the model has been found to support this.  In fact, 

based on this series of model runs it has been shown that soil moisture did not have 

an impact on net radiation.  Instead it is proposed that the difference in energy 

balance partitioning associated with soil moisture plays a dominant role in 

determining whether a feedback occurs.   
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 FC runs were characterized by lower Bowen ratios resulting from increased 

latent heat flux.  Lagged correlations between precipitation and latent heat flux 

exhibited the highest values when compared with sensible heat flux, Bowen ratio, and 

net radiation.  FC runs were shown in Chapter two to have higher precipitation 

amounts in addition to a higher frequency of precipitation events when compared 

with 50FC and WP runs.  In a comparison of mutual information content plots 

between soil moisture and Bowen ratio and soil moisture and net radiation higher 

levels of dependence between soil moisture and Bowen ratio are seen than with net 

radiation.   An examination of turbulent mixing and boundary layer height showed 

smaller kmv/kmh ratios and lower boundary layer height for FC runs than 50FC and 

WP.  Lower sensible heat fluxes associated with FC runs resulted in less turbulent 

mixing and as a result, shallower boundary layers.    

 In terms of resolution, using plots of entropy for Bowen ratio, latent and 

sensible heat flux, and net radiation it has been shown that 1 km runs consistently 

have a lower level of uncertainty associated with them.  In general it has been found 

that using a finer resolution provides a greater information content, or less 

uncertainty.  In plots of lagged correlation between precipitation and Bowen ratio, 

latent and sensible heat flux, and net radiation 1 km runs consistently had the highest 

correlation values regardless of mean soil moisture.  Resolution also had a large affect 

on turbulent motions, which presumably will have a large impact on the dynamics of 

the soil moisture-precipitation feedback mechanism, as the turbulent motions are not 

being captured as well at coarser resolutions.  This will undoubtedly affect the 
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transport of moisture as well as boundary layer dynamics, which both play a role in 

the feedback.   

 Based on these findings, it appears that using a coarse resolution has 

important implications for the model’s ability to resolve processes involved in soil 

moisture-precipitation feedbacks.  This may result in inaccurate feedback magnitudes 

and may alter the spatial and temporal scales over which the feedback operates.         

 The scaling analysis performed on 10 am to 2 pm temporally averaged Bowen 

ratio showed that soil moisture appears to have a large impact on the scaling 

properties of the Bowen ratio.  Ignoring the second moment in FC plots generally 

provided good fits between the remaining moments.  Focusing only on the second 

moment shows that it does, however, scale with resolution.  Although there were 

some days where these findings held true for 50FC and WP in general they cannot be 

applied.  This has negative implications for the potentially widespread applicability of 

this methodology to remotely sensed fields.  Scaling properties show a relatively 

large amount of temporal variability; therefore, generalizations about scaling 

coefficients cannot be made.  This will undoubtedly place limitations on the usage, as 

the analysis would have to be performed with a relatively high temporal frequency.      

 Soil moisture did not seem to have a significant affect on the scaling 

properties of 10 am to 2 pm temporally average soil temperature.  A scaling analysis 

of the first six moments showed that the fields do not exhibit self-similarity and 

therefore cannot be used to predict moments at other resolutions.  With the exception 

of several days for each mean soil moisture value, the variance does scale with 
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resolution and therefore could be used to predict variance at any other resolution.  

Further analysis is required to determine how temporally variable the scaling 

coefficients for variance are.  This will potentially impact the applicability for future 

studies.     

 As with any study there are associated limitations which may impact the 

context in which the conclusions may be viewed.   Numerical models are a simplified 

representation of reality limited by our understanding of physical processes, a lack of 

input data at ideal spatial and temporal resolutions, and technological resources.  The 

results of this study are at least to some extent dependent on the choice of model and 

parameterization schemes.  For example, it is widely recognized that precipitation is 

highly dependent on the choice of convective scheme.   For this reason it is important 

to emphasize that the focus should not be placed on strict values of a variable but 

rather on how the values compare as a function of model resolution and mean soil 

moisture.  A sensitivity analysis to parameterizations schemes would provide some 

indication as to the generality of these model results.  Recommendations for future 

work include an increased number of mean soil moisture values and spatial 

resolutions.   

 

3.7 Conclusions 

 Based on a series of regional model runs focusing on the Central Plains, it was 

found that energy balance partitioning played a significant role in the occurrence of 

soil moisture-precipitation feedback, while net radiation was not impacted by mean 
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soil moisture.  Turbulent motions and boundary layer depth were much larger over 

drier soils due to the larger sensible heat flux.  Spatial resolution was found to have a 

large impact on the turbulence in the boundary layer, with coarser resolutions being 

unable to capture turbulent motions.  This undoubtedly has an impact on the 

dynamics of soil moisture-precipitation feedback as the transport of moisture will 

affect the spatial and temporal scales over which feedback occurs.  It was also found 

that higher resolution runs are generally associated with a higher information content.  

This is related to their ability to resolve finer scale processes and variability in surface 

and atmospheric fields than coarser resolutions.       

 The scaling analysis performed on soil temperature and Bowen ratio 

determined that mean soil moisture has a large impact on the scaling properties of 

Bowen ratio, while it did not appear to affect the scaling characteristics of soil 

temperature.  There is the potential for large temporal variability in the scaling 

coefficients of both soil temperature and Bowen ratio, which may limit the large scale 

applicability of this methodology to remotely sensed fields.    
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CHAPTER 4 

GENERAL SUMMARY AND CONCLUSIONS 

4.1 CONCLUSIONS 

  The research presented in this thesis has focused on the impacts of varying 

mean soil moisture and model resolution on the occurrence of precipitation in the 

U.S. Central Plains.  More specifically it has used a regional climate model to 

examine how the magnitude and frequency of precipitation events are impacted 

through land-atmosphere feedbacks, to determine the dominant physical processes 

driving the feedbacks and how they are impacted by changes in mean soil moisture 

and model resolution, and to examine the spatial scaling properties of modeled soil 

moisture, precipitation, Bowen ratio, and soil temperature fields.     

 Chapter one provided a brief overview of the issues being examined and some 

potential implications which serve as the motivation behind the study.  Chapter two 

focused specifically on the interactions between soil moisture and precipitation and 

examined in detail the scaling characteristics of these variables, while chapter three 

investigated the physical processes involved in the feedback and how these are 

impacted by variations in mean soil moisture and model resolution.   

 In chapter two, evidence was presented to support the occurrence of a positive 

soil moisture-precipitation feedback in the U.S. Central Plains.  High initial soil 

moisture was associated with greater precipitation amounts and a higher frequency of 

events.  This implies that climate change in this region may have significant impacts 

on agricultural practices as decreased soil moisture may result in lower precipitation 
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totals over longer temporal scales.  This has potential ramifications for the ability of 

the region to maintain current crop yields, in addition to the potential for 

improvements in forecasting of regional weather and climate which can lead to 

improvements in agricultural forecasting.  An examination of the scaling properties of 

soil moisture revealed high temporal variability.  This has important implications for 

the use of remotely sensed data, as scaling properties from one day cannot necessarily 

be applied to subsequent days.  Despite the general acceptance that precipitation can 

be described as multiscaling, this research found that cumulative precipitation fields 

did not exhibit signs of multiscaling, and therefore cannot be used to predict statistical 

properties at other resolutions.   

 Chapter three presented evidence to demonstrate that energy balance 

partitioning played a significant role in the occurrence of soil moisture-precipitation 

feedback, while soil moisture did not appear to have an impact on net radiation.  

Additionally it was found that drier soils were characterized by larger turbulent 

motions and boundary layer depth associated with a higher sensible heat flux.  

Turbulence in the boundary layer was significantly impacted by spatial resolution.  

Coarser resolutions were unable to capture turbulent motions, which will impact the 

dynamics of soil moisture-precipitation feedbacks as the spatial and temporal scales 

over which the feedback occurs will be affected by the transport of moisture.  The 

scaling analysis performed on Bowen ratio and soil temperature determined that soil 

moisture had a significant impact on the scaling properties of Bowen ratio, while it 

did not appear to affect the scaling characteristics of soil temperature.  Application of 
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this methodology to remotely sensed fields may be limited, as with soil moisture, 

there is the potential for large temporal variability in the scaling coefficients of both 

soil temperature and Bowen ratio.       

 

4.2 RECOMMENDATIONS FOR FUTURE RESEARCH  

 The choice of convective parameterization scheme has a large impact on both 

the magnitude and frequency of precipitation events in a model.  Performing a 

sensitivity analysis to parameterization schemes would allow for a wider acceptance 

of the particular results of this study.  Additionally, increasing the number of mean 

soil moisture values and spatial resolutions would allow for the detection of threshold 

values which may determine when the model captures feedbacks between soil 

moisture and precipitation.   

 This research was conducted using only two soil layers, which will impact 

hydrologic processes such as evaporation, transpiration, infiltration, and runoff.  The 

depth and number of soil layers can have a potentially significant impact on soil 

moisture dynamics.  A coupled model should be used to improve the representation of 

the above hydrological processes and to incorporate the effects of groundwater 

dynamics and topographic redistribution of soil moisture.  The incorporation of 

dynamic vegetation would also be beneficial as vegetation also plays a large role in 

precipitation feedbacks.       
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