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Abstract

This dissertation demonstrates airborne synthetic aperture radar (SAR) sounder array mani-

fold calibration to improve outcomes in two-dimensional and three-dimensional image forma-

tion of ice sheet and glacier subsurfaces. The methodology relies on the creation of snapshot

databases that aid in both the identification of calibration pixels as well as the validation

of proposed calibration strategies. A parametric estimator of nonlinear SAR sounder mani-

fold parameters is derived given a superset of statistically independent and spatially diverse

subsets, assuming knowledge of the manifold model. Both measurements-based and compu-

tational electromagnetic modeling (CEM) approaches are pursued in obtaining a parametric

representation of the manifold that enables the application of this estimator. The former

relies on a principal components based characterization of SAR sounder manifolds. By incor-

porating a subspace clustering technique to identify pixels with a single dominant source, the

algorithm circumvents an assumption of single source observations that underlies the formu-

lation of nonparametric methods and traditionally limits the applicability of these techniques

to the SAR sounder problem. Three manifolds are estimated and tested against a nominal

manifold model in angle estimation and tomography. Measured manifolds on average reduce

angle estimation error by a factor of 4.8 and lower vertical elevation uncertainty of SAR

sounder derived digital elevation models by a factor of 3.7. Application of the measured

manifolds in angle estimation produces 3-D images with more focused scattering signatures

and higher intensity pixels that improve automated surface extraction outcomes. Measured

manifolds are studied against Method of Moments predictions of the array’s response to

plane wave excitation obtained with a detailed model of the sounder’s array that includes

the airborne platform and fairing housing. CEM manifolds reduce angle estimation uncer-

tainty off nadir on average by a factor of 3 when applied to measurements, providing initial
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confirmation of the utility of the CEM model in predicting angle estimation performance

of the sounder’s airborne arrays. The research findings of this dissertation indicate that

SAR sounder manifold calibration will significantly increase the scientific value of legacy ice

sheet and glacier sounding data sets and lead to optimized designs of future remote sensing

instrumentation for surveying the cryosphere.
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Chapter 1

Introduction

Airborne, ice-penetrating synthetic aperture radar (SAR) sounders profile ice thickness and

leverage cross-track phase center diversity to map basal morphology in three dimensions

(3-D) with tomography; the remote sensing measurements collected by these sensors are

important for understanding and predicting the response of the cryosphere to warming. In

their sixth assessment report on climate change, the Intergovernmental Panel on Climate

Change (IPCC) reports with high confidence that the Greenland and Antarctic Ice Sheets

are losing mass [10]. The likely range of sea level rise projected for the year 2,100 ranges

from 0.28-0.44 meters under a very low emissions scenario (SSP1-1.9). Under the very

high greenhouse gas emissions scenario (SSP5-8.5), sea level rise projections range from

0.63 to 1.01 meters. Projected increases in global mean sea level for 2,150 under very high

emissions scenarios are reported with medium to low confidence and changes exceeding 2

meters are not ruled out due to deep uncertainties in ice sheet processes [10]. SAR sounder

derived ice thickness estimates and bed elevations contribute to large continental scale digital

elevation models (DEMs) of the subsurfaces of Greenland and Antarctica, [11], [12], needed

to constrain the estimated contributions of freshwater ice sheets in predictive sea level rise

models [13]. The application of subglacial maps derived from multichannel SAR sounder

data in local process studies of glacier dynamics [14], [15] further highlights the continuing

scientific utility of these sensors in advancing climate science.
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1.1 Problem Statement

Cross-track phase center diversity allows for the application of advanced array processing in

SAR sounder image formation. Beamforming over a set of cross-track single look complex

SAR images suppresses clutter in the dimension that is perpendicular to (and hence un-

affected by) the SAR, enhancing profiling performance of areas with dominating collateral

surface clutter and improving sounding performance from high altitude platforms. Multiple

cross-track measurements also provide 3-D imaging capability of ice sheet and glacier beds

with tomographic image formation. The ice sheet tomography technique, first demonstrated

in [16], formulates the multichannel SAR observation model as a direction of arrival (DOA)

problem and carries out angle estimation on the SAR pixels using the MUltiple SIgnal Clas-

sification algorithm (MUSIC) to resolve scattering interfaces in elevation angle.

Both MUSIC and the Maximum Likelihood Estimator (MLE) [17] are applied in ice

sheet tomography. The resolution capability and accuracy of these techniques hinges on how

closely the model of the array’s response to directional sources approximates the true array

response (referred to herein as the array manifold) which functionally depends on frequency,

platform effects, mutual interaction between sensors, polarization, geometry, and channel-to-

channel gain variations. The sensitivities of MUSIC and MLE to manifold modeling errors

are well documented in literature [18], [19], [20], [21], [22], [23] and easily demonstrated in

simulations. Manifold modeling errors have been suspected as the root cause of large vertical

elevation errors observed off nadir and at the swath edges of SAR sounder derived digital

elevation models (DEMs) though no evidence was documented in open literature confirming

this link prior to the initiation of this dissertation research.

This dissertation formally addresses the manifold calibration problem for SAR ice sounders

that rely on angle estimation in tomographic image formation. The methodology, algorithm

development, and application are studied and demonstrated for a specific ice depth sounding

SAR called the Radar Depth Sounder (RDS), developed and maintained by researchers at

the University of Kansas’s Center for Remote Sensing of Ice Sheets (CReSIS). The RDS
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operates from many different platforms. The work presented here studies the system config-

ured for its operation from NASA’s P-3 aircraft; on this platform, the RDS operates with

a 15 element cross-track antenna array organized into two wing-integrated subarrays (each

comprised of four elements) and one inboard subarray of seven elements that attaches to the

bottom of the aircraft. Although the manifold calibration algorithm development is expected

to generalize to other versions of the system, some of the error mechanisms are likely specific

to this platform. Measured and predicted manifolds presented in this dissertation should be

regarded as specific to the P-3 configuration of the RDS while the problem interpretation

and methodology are expected to generalize.

1.2 Prior Work

Array manifold calibration is the signal processing step aimed at refining the manifold model

applied in array processing to improve beamforming and angle estimation outcomes. The

associated literature on array manifold calibration, which spans the fields of array signal

processing and antenna theory, shows a lack of consensus on the treatment of electromag-

netic phenomenology such as mutual coupling in the manifold calibration problem. Signal

processing literature hosts a proliferation of studies that simplify the model of the underly-

ing phenomenology to justify demonstration of specific estimation techniques with contrived

simulations. In contrast, the antennas literature tends to focus on well controlled charac-

terizations of the array with pristine measurements captured in electromagnetically isolated

environments.

A vast majority of the associated literature in manifold calibration tends to address

techniques that are tailored to specific applications and arrays. This happens to be the nature

of manifold calibration and our problem proves to be consistent with this trend in the sense

that the traditional techniques must be adapted to accommodate RDS manifold calibration.

The intention here is thus not to give an exhaustive regurgitation of pathological or obscure

signal processing techniques that may or may not apply to our problem. Specific techniques

3



are cited as appropriate in the body of the dissertation as the mathematical underpinnings

of the proposed methodology develop. Instead this dissertation adopts a perspective that

distills the body of manifold calibration research evidenced in literature to a generalized

parametric and nonparametric taxonomy shown in Figure 1.1. Note that this interpretation

shows calibration pursuits leading to maximum likelihood and least squares solutions. Other

suboptimal cost functions (like subspace-based objective forms) are possible, depending on

the problem, but these are omitted for the sake of simplicity.

Nonparametric manifold calibration refers to the lookup table approaches that aim to

measure the array’s response to single sources and take one of two forms. The first is

referred to as pilot calibration and applies when the calibration source waveform is known,

leading to a maximum likelihood estimator of the manifold response vectors. These forms are

inapplicable to the SAR sounder problem which interprets reflections from extended surface

targets as calibration sources. When the waveform is unknown, the principal component of

the array covariance matrix admits an estimate of the orientation of the steering vector in

complex P dimensional space. This approach does not provide information about the length

of the steering vector. Rather the principal component imparts a unit-norm vector whose

entries represent complex offsets from a reference channel and hence cannot provide absolute

gain patterns of the elements embedded in the array.

Nonparametric forms are problematic for SAR sounders which lack an adequate number

of single source observations over a sufficiently dense angle grid to reconstruct the manifold.

Traditionally single source measurements are collected during dedicated calibration flights

by measuring specular reflections from non-penetrative extended surface interfaces with a

maneuvering platform that rolls through the array’s field of view. The coincident roll of

the platform, measured from the inertial measurements unit (IMU), is interpreted as the

scattering angle of the reflected wave. An example of this technique is documented in [24].

The method is subject to roll restrictions of the aircraft and requires cross-over flights to

compensate for unknown terrain slope that can otherwise introduce bias in the lookup table.
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It is emphasized that not all seasons have associated calibration flights that are suitable for

manifold calibration and alternative techniques for extracting calibration measurements post

SAR processing is an important step in calibrating legacy RDS data sets.

The parametric forms rely on an analytic description of the manifold to cast calibration

in an estimation framework for determining unknown model parameters such as channel-to-

channel gain variation, phase center position uncertainty, and coupling effects. Array shape

calibration is easily handled in the parametric framework as the steering vector is imme-

diately written in terms of an unknown geometric offset appended to the sensor position

term. Early studies on array shape calibration emerge in literature to address compensating

unknown propagation phases in towed array applications, see [25], [26], and [27] for example.

Examples of maximum likelihood and eigenstructure solutions to the small scale perturba-

tion problem (where geometric uncertainty is on the order of a tenth of a wavelength) are

documented in [28] and [29] respectively. The array shape calibration problem provides a

platform for advancing parameter estimation theory and underpins the canonical papers by

Rockah and Schultheiss on the derivation of a hybrid Cramér-Rao lower bound for bounding

estimator uncertainty when the model is parameterized by both random and deterministic

unknowns [30], [31].

The parametric approaches are attractive because they handle calibration with multiple

sources simultaneously but they do not offer straightforward expressions that are suitable

for representing real arrays which are influenced by mutual coupling and complex platform

effects. The associated theory of handling electromagnetic phenomenology in the parametric

framework is comparatively less mature and reveals disconnects between signal processing

approaches and the perspectives informed by antenna theory. A comprehensive survey of

gaps in the representation of electromagnetic fields and effects within parametric calibration

literature is found in [32] and [33]. The former study presents a coupled and loaded manifold

model which is confirmed in [34]. The derivation is carried out in [35] and requires an

assumption of perfectly conducting dipole radiators. The form, which parameterizes the
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manifold in terms of the transimpedance parameters of the array and the multichannel

microwave load, requires prior knowledge of the complex-valued, open-circuit patterns and

may not offer utility beyond the cases of simple free space arrays that are not subject to

higher order platform effects. Hence the coupled manifold becomes a function of another

manifold which confounds development of signal processing solutions. Many studies obviate

the need for modeling the open-circuit manifold by invoking an angle agnostic coupling

assumption. This assumption is not expected to be valid in our application.

Parameterization of the SAR sounder manifold in terms of unknown error terms is not

straightforward due to the complex kinematic and electromagnetic effects influencing the

response of our arrays. We expect the SAR sounder manifold to be influenced by the effects

of the irregular ground plane presented by the aircraft’s body and, when applicable, the

fairing structure housing an ice-sounding array. In our problem, calibration takes place

at the output of the SAR processor suggesting that our observations are limited to the

systematic errors which are constant over the aperture. It remains unclear how to model

the manifold of wing-integrated subarrays that are subject to the array shape deformation

from wing flexure and vibration effects documented in [36] and [37]. One significant study is

worth mentioning that addresses parametric manifold calibration for wing-integrated arrays

through exploitation of non-cooperative targets at unknown angles [38]. In this work, the

authors derive a time-dependent model of a flexed and vibrating wing through a Taylor

series expansion of the directional response of a vibrating sensor. This work offers a time-

dependent model for representing the manifold but additional investigation is needed to

understand application of this form in the context of the SAR processor. Understanding

how to integrate the many error mechanisms into one model that is representative of SAR

sounder manifolds remains an open area of investigation.

Computational tractability commonly challenges the numerical estimation of complex

manifold parameters. A geometrically perturbed array of P sensors in two dimensions leads

to as many 2P unknowns in estimation. When accounting for the mutual coupling between
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sensors of a simple array, the P 2 transimpedance parameters of the array must be either

estimated or carefully measured experimentally and requires knowledge of the open-circuit

manifold in advance. Parameterization of a coupled manifold is likely to impart many un-

knowns needed to curve fit each individual antenna pattern. Simple examples carried out

with a deterministic manifold of a free space array are described in the discussion section

of Chapter 6 and indicate that 2P coefficients may be needed to curve fit the pattern of a

single channel with P potential basis functions. A coupled manifold model with geometric

error may lead to as many as 2P + 2P 2 unknowns, assuming perfect knowledge of the open

circuit manifold.

The complexity of the platform and its influence on the array’s response limits our knowl-

edge of embedded patterns of individual elements in SAR sounder airborne arrays. The

patterns may be predicted with a full wave solver but modeling the platform and structures

known to influence the array response is difficult. At present, the study in [24] appears to

be the only example in literature that compares measurements to predicted far field gain

patterns of the elements in an ice-sounding array. The predictions confirm rippling in the

field of regard of the embedded elements but do not specify the phase response of the chan-

nels. This array does not operate with a fairing enclosure and leads to a comparatively

simpler computational electromagnetic (CEM) modeling problem relative to the RDS P-3

array which is housed within a structure whose components are known to alter the resonance

of the antennas [3].

While parametric methods are desirable in the RDS manifold calibration problem space,

multiple obstacles must be overcome to apply these approaches. Above all, the array response

to directional sources must be known in order to describe the manifold parametrically. When

the array response is not known, it must be characterized by first carrying out nonparamet-

ric manifold calibration or predicted with a full wave solver. The nonparametric techniques

are not immediately applicable in the absence of many single source observations over dense

angle grids, spanning the field of view. Pattern prediction with full wave code requires
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computational solutions which accurately represent the electromagnetic phenomenology in-

troduced by the irregular ground plane and structural complexity of the fairing housing in

the near field of the radiators.

1.3 Dissertation Organization and Scope

This dissertation seeks a more unified interpretation of the array manifold calibration that an-

chors signal processing methods with applications to both real data and electromagnetic man-

ifolds predicted from a full wave solver. A nonparametric/parametric taxonomy is adopted

in approaching the SAR sounder manifold calibration problem. The work reported here

elucidates the challenges encountered in applying either form of manifold calibration to our

problem and seeks to advance both. Chapter 2 offers the theoretical underpinning needed

to contextualize array signal processing in the context of ice sheet imaging. The chapter

offers a problem formulation of the multichannel SAR imagery and describes specific array

processing techniques applied to these data sets. Parameter estimation theory is discussed

that informs the calibration strategies developed in the dissertation. The array manifold is

formally defined and a detailed discussion is offered that interprets manifold calibration in

the context of SAR sounders.

Chapter 3 describes the data processing methodology that serves as a foundational step

in measuring and validating RDS manifolds. The approach capitalizes on the application of

the RDS as a SAR to produce large snapshot databases by coregistering RDS imagery to

two auxiliary data sets. The databases aid in identification of calibration pixels in the SAR

imagery with known arrival angles and helps to avoid subsurface scatterers in calibration.

This chapter presents some initial validation of the methodology by comparing sidelobe

clutter rejection before and after manifold calibration. The results demonstrate improved

suppression of sidelobe sources with a measured manifold and serve to justify the refined

manifold calibration work reported in this dissertation.

Chapter 4 presents the derivation of a parametric framework that handles multitarget
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calibration (shown to be desirable in the SAR sounder manifold calibration problem) and

leverages the snapshot database in order to increase the total Fisher information of the

observations, leading to more accurate estimates of manifold model parameters. The para-

metric framework hinges on the derivation of a maximum likelihood estimator of nonlinear

manifold parameters from statistically independent observation sets and aggregates observa-

tions from many spatially diverse sources to estimate model parameters. The approach casts

the estimation problem in a separable Gaussian form composed of many smaller separable

Gaussian estimation problems. The resultant estimation framework only requires orientation

of the manifold vectors in complex P dimensional space, justifying a unit-norm constraint

assumed in the derivation of the principal components based manifold characterization of-

fered in Chapter 5. Performance is verified numerically by exercising the estimator with a

geometrically perturbed manifold.

Chapter 5 documents the adaptation of nonparametric methods to measure SAR sounder

manifolds. The chapter describes the development of a principal components based nonpara-

metric manifold characterization enabled by a subspace clustering technique that applies par-

tial knowledge of the array response to identify multichannel SAR pixels dominated by single

spatial sources. The approach side steps the challenge of acquiring single source snapshots

over sufficiently dense elevation angle grids encountered in measuring SAR sounder mani-

folds. Three RDS P-3 manifolds are measured as offsets from a nominal manifold model.

Angle estimation with measured manifolds is demonstrated with observations drawn from

the snapshot database. Measured manifolds are shown to reduce angle estimation error on

average by a factor of 4.8 in MUSIC.

Chapter 6 studies the potential utility of CEM modeling in the prediction of SAR sounder

manifolds. A legacy CEM model of the RDS P-3 inboard subarray is refactored and adapted

to investigate the manifold calibration problem. The CEM methodology is described for

predicting receive RDS P-3 manifolds. In producing predicted patterns, several CEM solver

settings are identified that have the potential to introduce modeling artifacts in computation.
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Predictions of the RDS P-3 manifolds are produced with a full Method of Moments (MoM)

solver for the full model of the inboard subarray, housed in the fairing and integrated onto

the platform. The MoM predictions are compared to the measured manifolds documented in

Chapter 5 in angle estimation. When compared against the nominal model, the EM manifold

leads to improved angle estimator outcomes over certain angular windows off nadir and on

average reduces angle estimation error by a factor of 3 in MUSIC.

Chapter 7 demonstrates the application of nonparametric manifold calibration in to-

mography. Both quantitative and qualitative evidence is summarized that substantiates

the methodology described in Chapter 5 for measuring the RDS manifold. Performance is

judged from vertical elevation errors of RDS-derived DEMs of rocky terrain and sea ice in

the Canadian Arctic, produced under varying array response models applied in angle estima-

tion. Tomography products generated over 16 frames consistently show error reductions with

the application of a measured manifold in 3-D image formation. The dissertation research

is summarized in Chapter 8. The major findings and technical outcomes are highlighted.

Recommendations and future work are offered as next steps in the SAR sounder manifold

calibration problem.

1.4 Summary of Original Research Contributions

The significant outcomes of the dissertation research are summarized upfront and include

three major technical achievements, listed here.

1. The development of a principal components based nonparametric manifold character-

ization algorithm for multichannel SAR ice sounders, enabled by the application of a

subspace alignment measure to identify pixels dominated by one spatial source. Impor-

tant outcomes of this research include:

- Measuring RDS manifolds from three independent data sets,

- Designing a procedure to validate manifold performance in angle estimation and

11



tomography,

- Applying measured manifolds in angle estimation, demonstrating that the mea-

sured manifolds reduce angle estimation error by a factor of 4.8 on average,

- Applying measured manifolds in 3-D image formation, leading to reductions in

vertical elevation uncertainty of RDS-derived DEMs of surface topog-

raphy by as much as a factor of 3.9 over the 3 dB swath width.

2. The generation of SAR sounder receive manifold predictions with a full Method of

Moments solver and complete model of the inboard integrated subarray within its fairing

enclosure, attached to the P-3 aircraft. Original research contributions include:

- Refactoring of a legacy CEM model to enable prediction of the RDS P-3 receive

manifold,

- Improving model fidelity by more accurately representing structural components

in the near field of the radiators,

- Applying the predicted manifold in angle estimation with real RDS snapshots,

demonstrating an average reduction of angle estimation error by a fac-

tor of 3 and providing initial confirmation of the utility of CEM modeling in

predicting receive manifolds.

3. The derivation of a parametric manifold calibration framework based on maximum

likelihood estimation of nonlinear manifold parameters common across statistically in-

dependent observation subsets. The approach handles multiple targets simultaneously

and leverages a snapshot database to form a superset of observations. The significant

technical milestones include:

- Numerically validating performance by exercising the proposed estimator with

controlled simulations of geometrically perturbed manifolds under an assumption

of isotropic radiation,
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- Providing analytical evidence of the influence of source spatial bandwidth and

snapshot support on estimator accuracy of angle dependent nonlinear manifold

parameters,

- Identifying challenges observed when applying the technique to a deterministic

EM manifold for a simple linear array,

- Establishing methodology needed to validate the parametric framework with de-

terministic EM manifolds from a full wave solver.

1.4.1 Publication Record

The maturation of this research is captured in a publication record spanning the dissertation

horizon. Aspects of the work were disseminated at two technical symposia in 2020 and 2021

which culminated in a larger manuscript submission to a peer reviewed journal in the fall of

2021. The publication record is summarized here:

1. T. Moore and J. Paden, "Array Manifold Calibration for Multichannel Radar Ice

Sounders," 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS

2020), pp. 92-95, doi: 10.1109/IGARSS39084.2020.9323719.

2. T. Moore and J. Paden, "Nonparametric Array Manifold Calibration for Ice Sheet

SAR Tomography," 2021 IEEE International Geoscience and Remote Sensing Sympo-

sium (IGARSS 2021), pp. 2919-2922, doi: 10.1109/IGARSS47720.2021.9554640.

3. T. Moore, J. Paden, C. Leuschen, and F. Rodríguez-Morales, "Nonparametric Array

Manifold Calibration for Ice Sheet Tomography," IEEE Transactions on Geoscience

and Remote Sensing. [Accepted for publication]. Submitted: August 9, 2021. Revised:

October 17, 2021. doi: 10.1109/TGRS.2021.3137145.

An additional manuscript submission is planned for the summer of 2022. This paper will

address parameterization of the RDS manifold using predicted antenna patterns of the inte-

grated subarrays evaluated with a computational electromagnetics software package.
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1.5 Broader Impact

The most substantial impact of this dissertation is that it represents the first formal assess-

ment of manifold calibration for ice penetrating SARs. The technical treatment of manifold

calibration in this application reveals complex and challenging engineering problems which

warrant well developed signal processing and CEM modeling solutions extending beyond the

scope of this dissertation. The research summarized here stands to lead to more involved and

robust solutions that can help to bridge gaps in the array manifold calibration literature and

lead to important scientific outcomes. Chapter 7 provides both quantitative and qualitative

evidence that confirms the manifold calibration methodology and algorithm development

presented in this work, indicating that the proposed techniques lead to more accurate esti-

mates of vertical elevation in tomographic DEMs. It is found that the use of the nominal

array response model in tomographic image formation leads to biased angle estimates that

propagate directly into the RDS-derived DEMs. The application of measured manifolds in

angle estimation significantly reduces the mean elevation errors of RDS DEMs and leads to

better layer tracking performance. It is shown that manifold calibration increases the total

width of the swath imaged in tomography by enabling the layer tracker to track the surface

for a longer duration in time (corresponding to a broader angular extent across the track)

compared to the nominal manifold results. The observed outcomes point to further improve-

ments in basal detection performance when the measured manifold is applied in geometric

nulling or generalized sidelobe cancellation in profiling. The measured manifolds presented

in this dissertation are immediately available for producing bed maps of the Canadian Arc-

tic with tomography. These maps would support a large effort currently underway (the

AtaaMap project) focused on constraining estimates of ice volume in the Canadian Arctic

Archipelago to improve predictive sea level rise models.
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Chapter 2

Background

2.1 Introduction

The role of researchers at the University of Kansas (KU) in developing ice-penetrating radar

traces back to an airborne, Very High Frequency (VHF) system developed by engineers from

the Radar Systems and Remote Sensing Laboratory (RSL) in the late 1980s [39], [40], [41].

This early system, called the Coherent Antarctic Radar Depth Sounder (CARDS), used

unfocused synthetic aperture radar techniques to detect shallow layering and bottom echoes

in Antarctic ice up to 1.2 km thick from a Twin Otter aircraft. This radar was the progenitor

of the modern ice-penetrating SARs developed and deployed by CReSIS today. CReSIS’s

RDS now leverages advanced signal processing techniques to measure ice sheet interiors with

very fine detail. This state of the art remote sensing technology results from an inheritance of

four decades of hardware optimization and technological refinements to the original ACARDS

system and its successors, made possible through significant NASA and National Science

Foundation (NSF) investments [42], [43], [44], [45], [46], [8].

Changes made over the last two decades to the depth sounder’s transmit and receive

arrays have been instrumental in addressing specific engineering challenges in the ice sheet

remote sensing problem. Element-level digitization of the cross-track sensors enables the

application of tomographic imaging techniques for mapping the ice sheet subsurface in three

dimensions. The ice sheet tomography technique, which was first demonstrated for ice

bottom imaging on a ground-based system [47], [16] and demonstrated with an airborne

system soon after [17], relies on parametric and subspace-based angle estimation techniques
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to resolve scattering interfaces beyond the Rayleigh resolution limit in elevation angle θ.

These estimators suffer performance degradation when the assumed model of a received

array snapshot does not match reality.

The deleterious impacts of poorly constrained array modeling on angle estimation are

well documented in literature [48], [23], [49], [20], [18], [19]. The mismatch introduces errors

in our elevation angle measurement which is used to map the ice sheet subsurface. Further-

more, array gain uncertainties have been identified as the largest source of error in obtaining

a radiometric measurement of the backscattering coefficient from SAR imagery [50]. This

suggests that in the absence of an array calibration step in imaging, measuring the basal

reflectivity (from which we may infer material properties of the bed) is unlikely. The impor-

tance of providing high quality measurements of ice bottom topography and reflectivity to

the scientific community justifies the development of a robust manifold calibration method.

This chapter seeks to anchor array manifold calibration in the context of multichannel

SAR sounders. The array processing problem formulation of multichannel SAR imagery is

defined, relating the snapshot of traditional array signal processing nomenclature to the dom-

inant scattering interfaces in the sounder’s SAR pixels. Array signal processing techniques

applied in ice sheet imaging are discussed, noting particular nuances inherited by the SAR

sounder sensing geometry. A formal definition of the array manifold is presented as it relates

to classical array theory. The chapter also provides a high level overview of signal process-

ing strategies for array manifold calibration. This description avoids an application-specific

dissection of the literature and adopts a more generalized taxonomy of manifold calibration

techniques that naturally structures approaches into nonparametric and parametric forms.

The array manifold calibration problem is interpreted through this lens, noting specific chal-

lenges in pursuing nonparametric and parametric calibration of SAR sounder manifolds.
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2.2 Array Processing Formulation of Multichannel SAR Imagery

We formulate the multichannel SAR imaging problem by first adopting the geometry of Fig-

ure 2.1 which illustrates an airborne SAR system used to geocode focused scatterers over an

illuminated swath. A local flight coordinate system translates the positions of SAR-focused

scattering elements, natively described in a cylindrical geometry, to geodetic coordinates.

The Cartesian SAR flight coordinate system (FCS) orients its x axis to point along a mean

flight path of a synthesized aperture, z aligns with up in an East-North-Up geometry and

y completes the right-handed coordinate system. This figure demonstrates pixel areas on a

flat interface as they map into a SAR focused image.

The RDS resolves targets in three sequential processing steps. Pulse compression provides

resolution in slant range or fast time. Uniformly sampled fast-time gates or slant range

gates, when projected onto a flat surface, map to nonuniformly spaced ground range areas

as illustrated in 2.1. Here a color gradient is meant to emphasize the fast-time dependence of

an echoing patch’s area and demonstrate the fast time coincidence of patches to the left and

right sides of the track. The extent of a pixel in the cross-track depends on both incidence

angle θ and slant-range resolution σR as shown. Slow time denotes time evolution along

the track as the platform traverses the scene. The RDS in general does not squint its beam

and the SAR processor focuses scattering interfaces into zero-Doppler planes of thickness σx

using an f -k migration algorithm described in [51].

Figures 2.2(a) and (b) offer additional intuition to pixel scattering areas in the RDS SAR-

focused imagery using a top-down view of fast-time and slow-time pixel scattering areas.

Figure 2.2 demonstrates the propagation time gates post pulse compression resulting from a

nadir-directed transmit beam as projected onto a flat surface. The RDS is designed to probe

the subsurface of freshwater ice and each of its fast-time gates following that which contains

the surface reflection corresponds to a range shell that intersects the air-to-ice interface and

penetrates into the ice sheet. Prior to SAR image formation, the RDS range bins map to an

echoing annulus on the ice surface and a spherical shell at ice depth.
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Figure 2.1: Pixel areas projected onto a flat surface after SAR image formation.

Figure 2.2: Supporting illustrations for formulating the SAR ice sounder problem: (a) a top
down view of fast time gates after pulse compression when projected onto a flat interface
and (b) a top down view of fast-time gates after pulse compression and SAR focusing to a
zero-Doppler plane of thickness σx.

Figure 2.3 offers a cross-track and propagation-delay perspective of a zero-Doppler plane.

This view demonstrates the common scattering contributions of a pixel containing the echo
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Figure 2.3: Scattering contributions to a pixel in the SAR focused imagery (cross-track plane
perspective).

from the ice-to-bedrock interface and serves as the starting point for casting the multichannel

SAR imagery as an array processing problem. We adopt the snapshot model from array

signal processing literature [52] to describe pixel neighborhoods in a set of P cross-track

diverse, SAR-focused images following the nomenclature in [53]. A set of pixels measured

at a discrete time index m across P co-registered cross-track phase centers is modeled using

the following system of linear equations:

xm = A(Θ)sm + nm, (2.1)

Where

- xm ∈ CP×1 is the complex-valued vector containing samples of the received signal

measured over P single look complex (SLC) SAR images,

- m is an index referring to a specific pixel in the SAR image,

- Q is the number of scattering interfaces contributing to pixel m,
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- Θ ∈ RQ×1 is a vector containing the arrival angles of the Q scattering interfaces that

are coincident in propagation time with the qth entry denoted as [Θ]q = θq,

- A(Θ) ∈ CP×Q performs a linear mapping of the signal subspace to our P dimensional

observation space. We define this operator as the matrix of array manifold vectors (or

steering vectors) which mathematically model the response of the P cross-track phase

centers to the Q scattering interfaces. The notation [A(Θ)]p,q = ap(θq) denotes the

(p, q) entry of A(Θ) and refers to the response of phase center p to source q,

- sm ∈ CQ×1 is proportional to the complex reflectivities of the Q scattering interfaces

scaled by propagation losses and transmit gain in each direction,

- nm ∈ CP×1 is a random vector containing samples of a zero-mean, multichannel noise

process with covariance Rn for SAR pixel m.

Expansion of the singleton dimensions of xm, sm, and nm provides a model for a neighborhood

M pixels over which the vector Θ is assumed stationary. The set ofM measurements is given

by the following form

X = A(Θ)S + N. (2.2)

Note that the interpretation of operator A(Θ) in (2.2) does not change relative to the single

snapshot form. The matrices X ∈ CP×M , N ∈ CP×M , and S ∈ CQ×M contain M stationary

observations of the corresponding vector quantities as defined in (2.1).

2.2.1 Stated Assumptions

The following minimum assumptions underlie the manifold calibration work presented through-

out the dissertation unless otherwise stated:

A1: The linear model A(Θ)sm is taken to be overdetermined so that the number of spatial

sources, Q, is always less than the number of cross-track phase centers P . This ensures
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an injective mapping between the signal subspace and its image in our observation

space.

A2: The columns of A(Θ) form a linearly independent set from which we can assert that

A(Θ) has full column rank and hence always admits a left pseudoinverse based on the

invertibility of the full-rank Q×Q matrix AH(Θ)A(Θ).

A3: N represents a multichannel noise process containing zero-mean random vectors whose

complex-valued random entries are independent and uncorrelated both spatially and

temporally.

A4: All sources originate from the far field such that the plane wave approximation holds

in describing incident signals at the array.

A5: The complex envelope of any signal incident on the array varies slowly with respect

to the carrier such that the narrowband criterion holds [52] which enables propagation

delays to be modeled as phase shifts evaluated at the carrier fc.

A6: The array is composed of uniformly polarized elements such that the array response

vector is sufficiently modeled by its response in a single polarization state.

AssumptionsA5 andA6 do not restrict the generality of manifold calibration approaches

described in this work but a point is emphasized here to the reader: while the manifold

vector a(θ) is described at a single frequency and polarization it should be understood that

the manifold in general varies with both. The exercise of manifold calibration is one of

improving model fidelity and hence the most accurate model of the manifold is one that

extends to account for the range of frequencies and polarization states sensed by the array

in operation.
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2.3 Array Signal Processing in Ice Sheet Imaging

2.3.1 2-D Image Formation

Given a set of P SAR images obtained from multiple cross-track measurements, we use array

processing techniques to form both two-dimensional and three-dimensional imagery of the

subsurface. Prior to array processing, we will assume that we have performed a channel

equalization step to obtain a set of coefficients which, when applied, ensure that the cross-

track measurements are corrected in delay up to the feed point of the antenna and relative

gain and phase variations are removed at nadir.

We use digital beamforming to generate two-dimensional echograms of a vertical ice

profile below the aircraft that are used to estimate overall ice thickness and image internal

layering within the ice sheet. During this combining, images are multilooked to reduce

speckle. An example of a 2-D echogram is shown in Figure 2.4. This image is a representative

result of combining SAR imagery over a set of cross-track measurements. The overall intent

of digital beamforming is to improve detection performance and enable estimation of the

basal reflectivity σ0
basal.

We use both adaptive and nonadaptive techniques to estimate the signal portion of a

pixel as the following average over coherently summed snapshots in a pixel neighborhood

ŝ(nt, nx) =
1

M

M∑
m=1

wHxm, (2.3)

Where the vector xm denotes the mth column vector of our pixel neighborhood defined in

2.2. The weight vector w ∈ CP×1 represents a general beamformer. The specific weights are

chosen to satisfy some optimality criterion at the output of the beamformer. Here we describe

the two common nonadaptive and adaptive beamformers used in our array processor. We

also present a geometric nulling beamformer that aids in identifying mismatch in the depth

sounder’s array manifold and motivates a refined array calibration methodology in our array
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Figure 2.4: Radar Depth Sounder 2-D profiling product (standard method)
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processor [54].

2.3.1.1 Standard Combining Method: The Spatial Matched Filter

The standard combining method for forming a two-dimensional vertical profile of the sub-

surface is the spatial matched filter. The spatial matched filter, sometimes referred to in

literature as the the Maximum SNR beamformer [55], [56], is an optimal set of weights

which maximize SNR of the estimated source waveform when observed in the presence of

spatially uncorrelated noise. The derivation of the weights is carried out in Appendix A and

the solution is restated here for a source DOA, θt,

wMF =
a(θt)

‖a(θt)‖
. (2.4)

From this result we note that the spatial matched filter corresponds to the normalized steering

vector for the desired source and does not depend on the data itself.

The matched filter is problematic for the sounder problem if we want to invert the data

to obtain an estimate of the backscattering coefficient σ0 because co-range clutter biases our

estimate of power from the ice bottom. We can establish this fact with an informal proof

by contradiction. Suppose x is a snapshot across the multichannel images containing the

ice-bottom echo. Assume a typical sounding setup such that Q = 3 sources impinge on

the array (one from nadir and two from the ice surface). Let θt correspond to the nadir

DOA (which may be nonzero in an aircraft roll) and let θl, θr correspond to the bearing

angles of the backscatter from the left and right sides of the track at the air-to-ice interface.

Assume, for the sake of illustration, that we have perflectly removed the system effects of

each channel up to the point of beamforming and let ϕ represent the complex reflectivity

variable (which when squared corresponds to the backscatter from a patch). Let at, al, ar

represent the steering vectors for the three DOAs (θt, θl, θr) so that we can suppress the angle
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argument. The signal model for this setup (assuming observation in zero-mean noise) is

x = ϕtat + ϕlal + ϕrar + n. (2.5)

The estimate of our desired waveform is the matched filter output given by

ϕ̂t = wH
MF (ϕtat + ϕlal + ϕrar + n) ,

=
aHt√
aHt at

(ϕtat + ϕlal + ϕrar + n) ,

= ϕt
aHt√
aHt at

at + ϕl
aHt√
aHt at

al + ϕr
aHt√
aHt at

ar +
aHt√
aHt at

n.

(2.6)

We assume the steering vectors to be normalized such that 0 ≤ aHi aj ≤ 1 where the inner

product evaluates to one when i = j and an inner product of zero corresponds to orthog-

onality. We do this to suppress the normalization factor in the denominator with no loss

of generality. Suppose ϕ̂t = wH
MFx is an unbiased estimator of the reflectivity of the basal

patch. Then by definition the estimator bias is

εϕt = E {ϕ̂t} − ϕt = 0. (2.7)

The expected value of the estimator is

E {ϕ̂t} = E
{
ϕta

H
t at + ϕla

H
t al + ϕra

H
t ar + aHt n

}
,

= E {ϕt} aHt at + E {ϕl} aHt al + E {ϕr} aHt ar + aHt E {n} ,

= E {ϕt} aHt at + E {ϕl} aHt al + E {ϕr} aHt ar.

(2.8)

Lacking a priori knowledge of the parameters of the scattering distributions, we treat the

reflectivities as deterministic but unknown waveforms. Then the expectation in Equation

2.8 becomes

E {ϕ̂t} = ϕt + ϕla
H
t al + ϕra

H
t ar. (2.9)
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The inner product of two non-identical steering vectors aHi aj is a measure of spatial correla-

tion between the directional sources and although we can assume it to be small when then

surface DOAs are large, it is not perfectly zero. From this we state the following

E {ϕ̂t} = ϕt + ϕla
H
t al + ϕra

H
t ar 6⇒ ϕt, (2.10)

which contradicts the criterion of the estimator being unbiased in Equation 2.7 and we

conclude that as posed the converse must be true. Given the pervasive contamination of our

measurement with co-range returns from the ice surface, it is desirable to find an unbiased

estimator that at least tends towards the desired term asymptotically.

2.3.1.2 Adaptive Combining: Minimum Variance and Distortionless

In contrast to the fixed beamformer described above, adaptive techniques offer an advantage

of flexibility in that they change in response to the data and adapt to suppress interference.

We use an adaptive beamformer belonging to a family of filters derived under stochastic

criteria to obtain a distortionless estimate of the waveform in the direction of interest with

minimum variance. Following the convention presented by Van Trees in [55], we categorize

the specific implementation of our adaptive beamformer as a Minimum Power Distortion-

less Response (MPDR) filter in contrast to the Minimum Variance Distortionless Response

(MVDR) beamformer first derived by Capon [57]. The distinction lies in how we train

to obtain the weights. The MPDR beamformer is the solution to following optimization

problem

minimize: wHRxw

subject to: wHa(θt) = 1.

(2.11)
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The resultant weights are derived in Appendix A and stated here:

wMPDR =
aH(θt)R

−1
x

aH(θt)R−1
x a(θt)

, (2.12)

Where the matrix R−1
x denotes a matrix inverse of the observation covariance matrix given

by

Rx = E
{
xxH

}
, (2.13)

Which in general we estimate over a neighborhood of M pixels as

R̂x =
1

M
XXH . (2.14)

The distinction between the MVDR and MPDR filters lies in the covariance matrix used to

evaluate the weight vectors. In contrast to Equation 2.12, which we evaluate in terms of the

observation covariance matrix Rx, the MVDR weights rely on knowledge of the interference

plus noise covariance, Rn. Hence MVDR assumes a training period in which the desired

signal is absent or when the signal is buried in the interference and noise. This type of signal

environment is more indicative of a barrage jamming type of problem where a directional

interferer broadcasts stationary broadband noise to cover a signal. In most cases, our problem

does not really fit this description. The exception may be the case of sounding at the outlet

glaciers where the heavily crevassed surface presents significant clutter and masks the basal

echo. Though we explicitly use our observation covariance matrix in computing the weights,

the specific beamformer regime is more of an academic construct that enables us to predict

performance in different scenarios and which regime we fall into ultimately depends on the

signal to interference plus noise (SINR) of the element-level IQ measurements.

The MPDR filter has been used to demonstrate high altitude operation of the depth

sounder from a NASA DC-8 aircraft [58] and while it has shown promise for handling the

sidelobe clutter problem in ice sheet sounding, it also demonstrates aberrant behavior that

27



compromises its performance in certain cases. Specifically we have observed self-nulling

phenomenology in imagery combined with the MPDR beamformer. Self-nulling refers to

the cases when an adaptive beamformer interprets the signal of interest as interference and

suppresses it in the combined output of the beamformer. The self-nulling effects increase with

increasing source SNR [55]. The problem is a complex one that is actively under investigation

for ice sheet sounding (see [59] and references therein). Although a full description of the

problem is beyond the scope of this dissertation, some of the pertinent aspects of self-nulling

are addressed here as a prelude to the array manifold calibration research outlined for the

RDS.

The self-nulling behavior is symptomatic of a mismatch between the terms in Equation

2.12 and may be attributed to two causes [55]:

1. Steering vector mismatch: Steering vector mismatch occurs when our model of a(θt)

does not match reality. This can result from pointing error in frequency-wavenumber

space (where our assumption of either θt or the wavenumber k does not match truth).

Mismatch also occurs when the modeled steering vector deviates from truth due to

errors in sensor phase, gain, or locations (manifold calibration errors).

2. Covariance matrix mismatch: Covariance matrix mismatch refers to the case when

our estimate of the data covariance matrix (in the MPDR case) R̂x is a poor estimate

of the true quantity Rx. Poor estimates may be due to non stationarity of the signal

and interference environment or snapshot starvation.

Several sources of potential mismatch characterize the ice sheet remote sensing prob-

lem. Poor estimates of the covariance matrix likely play a significant role in the self-nulling

observed in depth sounder combined images just by virtue of our sensing geometry. Non-

stationarity in fast time of scattering near nadir limits the number of adjacent pixels that

can be used for estimating the covariance matrix. The range gates containing basal echoes

correspond to a large footprint at the bottom of the ice sheet and the echoing area may be
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several hundreds of meters across in 2 km thick ice for example. This large footprint contains

many scatterers which appear correlated to the radar. At depth the angular extent of the

footprint may be on the order of the half-power beamwidth (HPBW) of the array. Adjacent

pixels in fast time may perceive scatterers with significantly different DOAs. The scattering

changes rapidly in fast time near vertical incidence and this limits the number of adjacent

range gates that we may use for averaging a covariance matrix.

We also know that uncertainties associated with our desired source DOA assumption,

θt, are inevitable due to natural variation of subglacial topography. We define the DOA of

our target as the angle between nadir (aligned with the z axis of the SAR flight coordinate

system) and the z axis of the aircraft’s body coordinate system. The body coordinate system

is the right-handed geometry fixed to the platform through arbitrary Euler rotations while

the SAR coordinate system is treated as the non-rotated, inertial frame. The angle θt which

we use to beamform in the direction of interest is taken to be the roll angle between the level

flight coordinate system and the rotated frame of the aircraft body coordinate system in the

zero-Doppler plane.

In the ideal geometry shown in Figure 2.5, the propagation vector of the basal scattering

aligns with nadir so that the DOA, θt is exactly equal to the platform roll angle ψ. This

assumes vertical incidence at depth which implies a flat bed with zero cross-track slope.

Because vertical incidence at the ice-bottom is an assumption, cross-track slopes present an

error to our angle hypothesis. An illustration of the error introduced due to sloped basal

topography across the track is shown in Figure 2.6. The angle of the propagation vector is

εθ. The true direction of the signal of interest is θt = ψ + εθ while our hypothesis of the

target DOA, θ̂t, is ψ. Geometric perturbations of the array positions present mismatch in a

similar way to the DOA uncertainty problem.
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Figure 2.5: Basal echo DOA in zero roll condition (left) and nonzero roll condition (right).

2.3.1.3 Geometric Null Placement

Finally we address the geometric null placement approach for estimating the signal from the

direction of interest. In the formulation of the geometric nulling beamformer, we assume

prior knowledge of all of the source DOAs, Θ =
[
θt, θ

i
1, . . . , θ

i
Q−1

]
, where θiq is used to denote

the qth interferer. The matrix of steering vectors is given by

A(Θ) =

[
a(θt), a(θi1), . . . , a(θiQ−1)

]
. (2.15)

Provided that A(Θ) has full column rank and presents an over-determined system, then it

admits a left-inverse such that the least-squares estimate of the vector of spatial sources s is

ŝ(x) =

(
AH(Θ)A(Θ)

)−1

AH(Θ)x. (2.16)

The entries in ŝ are given by

ŝ =

[
ŝt, ŝ

i
1, . . . , ŝ

i
Q−1

]T
. (2.17)

30



na
di

r
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ẑBCS

k̂

k̂ θt

εθ

ψ

SLOPED BED, NON-ZERO ROLL

Figure 2.6: Basal echo DOA in nonzero roll condition with cross-track slope.

The least-squares estimate of the target is obtained by using a constraint vector g whose

only nonzero element is the first entry following a convention that the first column of A(Θ)

always corresponds to the target steering vector. The geometric nulling weights are then

given by

wGEO = A(Θ)

(
AH(Θ)A(Θ)

)−1

g. (2.18)

When certain conditions are met, the pseudoinverse solution corresponds to a maximum

likelihood estimator of s which is unbiased assuming the linear model of the array data in

Equation 2.1 and Appendix B.2.3. The fact that the output of the beamformer in Equation

2.18 leads to an unbiased estimate of the basal echoes makes it better suited for estimating

radiometric quantities from our extended targets. The form above produces nulls in the

directions of interferers based on the constraint vector. Null pointing exhibits sensitivity to
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manifold mismatch which manifests as a degradation of interference suppression due to the

null not pointing exactly where intended in frequency-wavenumber space.

2.3.2 3-D Image Formation

Three-dimensional image formation requires resolution of the unknown elevation angle of

the Q scattering interfaces in the (ρ, θ) plane. The Rayleigh resolution of the array in the

cross-track dimension, which is extremely coarse compared to the slant-range and along-track

dimensions, is given by

σy = κy
λ

Ly
, (2.19)

Where Ly is the of the cross-track aperture and κy is a tapering factor. Array processing

techniques which compare the phase across multiple cross-track measurements provide es-

timates of θ that exceed the Rayleigh resolution limit of the physical array under certain

conditions. These techniques provide estimates of the elevation angle for basal scattering

pixels which can then be converted back into cartesian coordinates.

The exploitation of cross-track measurement diversity to obtain a measurement of θ is

well-established in Interferometric SAR (InSAR) literature (see [60] for a more recent survey

of the techniques and additional references, see [61] for some of the early InSAR results). The

InSAR technique is a special case of array processing that provides the DOA estimate of a

single source using P = 2 cross-track measurements, obtained by receivers that are spatially

offset by a large baseline. The spatially diverse images may be obtained over multiple passes

(typical in satellite imaging geometries) or in a single pass (more common with airborne

SARs with two receivers).

Tomographic SAR emerges more recently in the record of literature with a realization that

cross-track measurements relate to a projection of a surface’s two-dimensional reflectivity at a

particular DOA [62]. This relationship pointed to the possibility of 3-D image reconstruction

based on an important principle in imaging science referred to as the Fourier Slice Theorem.
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A majority of the examples of Tomographic SAR use multipass measurements in sidelooking

geometries to three-dimensionally reconstruct extended targets [63], [60], [64].

The first examples of SAR Tomography applied to ice-bottom mapping are carried out

on a ground based system and rely on the MUltiple SIgnal Classification (MUSIC) algorithm

to separate sources in elevation angle θ [16]. The ice sheet tomography technique is demon-

strated with an airborne sounder using maximum likelihood estimation of the DOA in [17].

Both cases demonstrate a single pass approach where a cross-track phased array provides

the spatially diverse SAR image set for estimating arrival angle. Here we briefly describe

the two most commonly used angle estimators for ice sheet tomography before the formal

treatment of the array calibration problem.

2.3.2.1 MUltiple SIgnal Classification

The MUSIC algorithm belongs to a class of subspace techniques that exploit a vector space

model of the array observations to assert an angle estimator. The early work is generally

attributed to [65] but a more comprehensive list of the contributions to the literature of

subspace methods can be found in [66] and [67]. The MUSIC estimates of the DOA are

obtained by finding the values of θ corresponding to the Q peaks of the following one-

dimensional MUSIC pseudospectrum written as

Smusic(θ) =
1

aH(θ)ÛnÛna(θ)
, (2.20)

Where Ûn ∈ CP×(P−Q) is an estimate of the set of eigenvectors of Rx which span the left

null space of the true A(Θ) and a(θ) represents our model of the steering vector evaluated at

a specific angle. The MUSIC cost function is derived in detail from the linear model under

a set of stated assumptions in Appendix B. The formulation leads to an expansion of the
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covariance matrix as a superposition of orthogonal subspaces

Rx = A(Θ)RsA
H(Θ) + σ2

nIp = UsΛsU
H
s

signal subspace

+ UnΛnU
H
n

noise subspace

. (2.21)

The MUSIC algorithm assumes that the principal components of Rx span the signal subspace

and that all of the columns of A(Θ) are orthogonal to the noise eigenvectors

aH(θi)u
n
i = 0, i = 1, . . . , Q (2.22)

Because the denominator of Equation 2.20 is a measurement of orthogonality between an

estimate of the noise eigenbasis and our assumed model, the MUSIC spectrum produces

sharp peaks when a steering vector under test is orthogonal to the noise. The MUSIC

estimates of the DOAs are interpreted as the Q largest peaks of the cost function in 2.20

Θ̂music = max
Θ

{
1

aH(θ)ÛnÛna(θ)

}
. (2.23)

We see that the MUSIC estimates require the following aspects of a priori knowledge:

1. A priori knowledge of the number of sources Q,

2. Knowledge of the manifold vector set {a(θ)} for all possible angles in our field of view,

3. Estimate of the covariance matrix.

The MUSIC estimates are those that maximize the orthogonality between our measured

noise basis and the model. Because it is not a measurement of power, the MUSIC cost

function is referred to as a pseudospectrum. We note here that the beamforming techniques

required knowledge of a single steering vector while the DOA estimators requires knowledge

of the entire manifold.
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2.3.2.2 Maximum Likelihood Estimation

In contrast to the subspace techniques which require our observations to adhere to a vector

space description, statistical estimation paradigms formulate the problem based on a model of

the probability distribution function of our observation parameterized by a set of unknowns.

The Maximum Likelihood (ML) methods are referred to as the classical techniques and regard

the unknown parameters as deterministic which is mathematically equivalent to treating an

unknown as random with infinite variance.

The MLE for Θ is derived in Appendix B.2.3 under a set of stated assumptions following

the procedure outline in [1]. It is interesting to note that the assumptions required to

formulate the MUSIC estimator are a subset of those required to obtain the MLE. To derive

the MLE we treat the Q directional sources as deterministic and unknown variables which

we observe in the presence of circularly symmetric independent and identically distributed

(IID) noise. This allows us to cast the problem into a general Gaussian estimation model

where the array samples represent complex Gaussian random vectors distributed as x ∼

C(A(Θ)s, σ2
nIP ).

The MLE of the vector of unknown arrival angles is shown in Appendix B.2.3 to be the

solution of the following maximization

Θ̂mle = max
Θ

{
tr

(
PA(Θ)R

)}
. (2.24)

We arrive at this form by evaluating the likelihood function in terms of the ML estimates of

the noise variance and the sources. The argument of the maximization is called a compressed

likelihood [68] which arises for the special class of separable Gaussian estimation problems.

Our estimate of the DOAs corresponds to the solution which maximizes a nonlinear multidi-

mensional cost function in Θ. In contrast to the one-dimensional MUSIC pseudospectrum,

the form in 2.24 ensures a global maximum at the solution but poses computational chal-

lenges as it requires an exhaustive search of Q dimensions.
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We can recast the ML estimator in 2.24 in a different form to gain additional insight

into the ML solution. Here we will manipulate the argument of the maximization using the

following properties of the trace (written in terms of arbitrary matrix quantities)

tr(C + D) = tr(C) + tr(D), (2.25a)

tr(αC) = αtr(C), (2.25b)

tr
(
cdH

)
= cHd. (2.25c)

We can write the covariance matrix Rx in terms of its eigenexpansion as

Rx = UΛUH =
P∑
i=1

λiuiu
H
i . (2.26)

We rewrite the likelihood function in Equation 2.24 in terms of the eigendecomposition of

Rx

L(Θ) = tr

(
PA(Θ)R

)
= tr

(
PA(Θ)

P∑
i=1

λiuiu
H
i

)
. (2.27)

Pulling the projection operator inside of the summation and using the trace property in

2.25a, we rewrite this form as

L(Θ) =
P∑
i=1

tr
(
λiPA(Θ)uiu

H
i

)
. (2.28)

Applying the property in 2.25b we pull the eigenvalue out of the trace operator to obtain

L(Θ) =
P∑
i=1

λitr
(

PA(Θ)uiu
H
i

)
. (2.29)

We use the last trace property in 2.25c to rewrite the the likelihood function as

L(Θ) =
P∑
i=1

λiu
H
i PH

A(Θ)ui. (2.30)
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The Hermetian symmetry and idempotence of PA(Θ) allow this form to be rewritten as

L(Θ) =
P∑
i=1

λiu
H
i PH

A(Θ)ui,

=
P∑
i=1

λiu
H
i PH

A(Θ)PA(Θ)ui,

=
P∑
i=1

λiu
H
i PH

A(Θ)PA(Θ)ui,

=
P∑
i=1

λi‖PA(Θ)ui‖2
2.

(2.31)

Because multiplication of the cost function by a scalar will not change the solution, we can

equivalently write the likelihood function in the following form which offers an interesting

interpretation

L(Θ) =
1

P

P∑
i=1

λi‖PA(Θ)ui‖2
2. (2.32)

We see that the MLE of Θ is the solution that maximizes the weighted average of the squared

Euclidean length of the eigenvectors projected onto the signal subspace. The weighting by

the eigenvalues ensures that the principal components of Rx have more influence over the

estimator than the noise. This result is distinct from the MUSIC cost function which is

divorced from specific eigenvalues and maximizes orthogonality between our estimated noise

eigenbasis vectors and the model of the steering vectors.

2.3.2.3 MUSIC and MLE Comparison

Ziskind and Wax offer an alternating projection algorithm to efficiently obtain ML estimates

of a set of arrival angles in [1]. The authors numerically verify the asymptotic efficiency of

the alternating projection algorithm and demonstrate its performance relative to MUSIC in

simulation for a sensor array of three elements with half-wavelength spacing assuming two

equal power sources from 0◦ and 20◦. Their study reports performance for the following two

experiments over a set of Monte Carlo Trials:
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1. Experiment 1: Two uncorrelated equal power sources with a fixed number of snap-

shots (M = 10) and per sensor SNR sweeping over the interval 10 dB < SNR < 25 dB.

2. Experiment 2: Two uncorrelated equal power sources with a fixed combined SNR of

20 dB and snapshots varying over the interval 10 < M < 1000.

For each experiment, Ziskind and Wax present root mean squared (RMS) errors of the angle

estimates of the source at 0◦. These results have been recreated in simulation for both

sources. Numerical results for the first experiment are presented in Figures 2.7a and 2.7b

respectively while the second experiment is summarized in Figures 2.7c and 2.7d. The first

experiment corresponds to the limited snapshot case and establishes estimator error as SNR

increases. At low SNRs, MLE provides more accurate estimates than MUSIC until SNR

reaches 20 dB at which point their performance converges. The second experiment validates

the efficiency of MLE and shows that both estimators achieve the Cramér Rao Lower Bound

(CRLB) by about 100 snapshots. The CRLB used to generate these plots is developed

in Appendix C. The Ziskind and Wax results are reproduced here with a modeled array

response that perfectly matches the snapshot model to offer a qualitative verification of the

implementation of both angle estimators used in this dissertation.

Both MUSIC and MLE exhibit extreme sensitivity to small deviations between the true

and assumed models of the array response to directional sources. This sensitivity has been

studied in array processing literature for multiple decades. Friedlander presents sensitivity

parameters for studying superresolution degradation of MUSIC in the presence of model

mismatch in [21]. In a companion paper published the same year, Friedlander proposes

a detailed sensitivity analysis of MLE in [22]. Swindlehurst and Kailath published two

companion papers that numerically evaluates the degradation of both MUSIC [23] and MLE

[49] estimators due to model mismatch.
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Figure 2.7: Reproduced estimator performance for ideal manifold used to benchmark MUSIC
and MLE algorithms. [1].
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2.4 The Array Manifold

At this point, the explicit definition of the array manifold is offered. In array signal process-

ing, the array manifold refers to the response of a sensor array to spatial sources. The array’s

transfer function admits dependence on many parameters including frequency, polarization,

propagation medium, mutual coupling, multipath, radiator type, sensor positions within the

array, and angle of arrival on receive or observation angle on transmit. The manifold vector

or steering vector a(ψ) ∈ CP×1 which mathematically describes the response of an array of

P sensors as a function of a real-valued parameter vector ψ ∈ RNψ×1 may be written in the

following general form:

a(ψ) =

[
a1(ψ)ejφ1(ψ) . . . aP (ψ)ejφP (ψ)

]T
. (2.33)

The array manifold is then defined over a parameter space Ψ to be the locus of all manifold

vectors for all possible values in the space as

A = {a(ψ) ∀ ψ ∈ Ψ} . (2.34)

The earliest literature on direction of arrival estimation acknowledges this interpretation of

the manifold as a parametric function in multidimensional complex space. For the special

case where the manifold is a function of one parameter, for example elevation angle, the

manifold is interpreted as a curve that snakes through CP space. In his doctoral dissertation,

Schmidt illustrates this interpretation for an array of three sensors with a notional manifold

described by a warped circle in C3 [2]. This illustration is recreated from [2] and presented

in Figure 2.8. Note that in the case where the array response functionally depends on

two parameters, say azimuth and elevation angle for instance, the manifold becomes a two-

dimensional surface in CP .
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Figure 2.8: Parametric manifold interpretation for a three sensor array, reproduced from [2].

2.4.1 Idealized Array Manifolds and Classical Array Theory

The isotropic manifold is a common surrogate for the true array response vector that emerges

in array processing theory [52], [69], [70]. For an array with sensor position vectors defined

in a typical spherical geometry where the elevation angle θ is measured off the z axis and an

azimuth angle φ is measured off the x axis, the isotropic manifold model on receive is given

by

aisotropic(φ, θ) =


e−jk(x1 sin θ cosφ+y1 cos θ cosφ+z1 cos θ)

...

e−jk(xP sin θ cosφ+yP cos θ cosφ+zP cos θ)

 . (2.35)

Here k is the wavenumber evaluated as k = n
2π

λ
where λ is the wavelength in the propagation

medium and n = 2 when the sensor positions refer to monostatic equivalent phase centers,

otherwise n = 1. We define a unit vector k̂ that points along the direction of propagation

and is oriented to be perpendicular to the plane of constant phase of an incident wavefront
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as

k̂(φ, θ) =


sin θ cosφ

cos θ cosφ

cos θ

 (2.36)

The position vector pointing from the origin to sensor p is denoted as rp ∈ R3 and expressed

in the general form rp = [xp, yp, zp]
T . Then 2.35 is alternatively expressed more compactly

as

aisotropic(φ, θ) =


e−jk

T (φ,θ)r1

...

e−jk
T (φ,θ)rP

 . (2.37)

The negative sign points the propagation vector towards the origin of the geometry (assumed

to be at the center of the array). This convention is consistent with a receiving array. The

array response under the isotropic form assumes the directivity of each sensor to be unity

over all directions and simply accounts for the inter-element phase variation due to plane

wave propagation over the array face.

To interpret the form of the array response vector in Equation 2.35, we turn to classical

antenna theory. The radiation pattern is arguably one of the most important properties of

an antenna; it describes the angular variation of radiation in the far field over a sphere of

constant radius and graphically illustrates an antennas spatial filtering properties. There are

two important results from antenna theory related to the radiation pattern that offer insight

into our understanding of the isotropic manifold: the radiation integral and the principal of

pattern multiplication.

The radiation integral establishes a Fourier transform type of relationship between the

current distribution of an antenna and its far field pattern [71]. This quantity determines

the pattern factor f(θ, φ) which we use to compute the total pattern of a radiator by the

principle of pattern multiplication. The pattern multiplication principle states that the total

normalized field pattern, F (θ, φ), is a product of an element pattern due to an infinitesi-
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mally small current element (which comes from the radiation integral) and a pattern factor

determined by the spatial distribution of current on the antenna

F (θ, φ) = ge(θ, φ)f(θ, φ). (2.38)

For a z-directed line source of length Lz, the elemental pattern of an infinitesimal current

element in the distribution can be shown to be ge(θ, φ) = sin θ [71]. Assuming a uniform

current distribution over the line source, the field pattern evaluates to

F (θ, φ) =
sin
(
k · L

2
cos(θ)

)(
k · L

2
cos(θ)

)
f(θ,φ)

ge(θ,φ)

sin θ . (2.39)

From this form we recognize the pattern factor as a Fourier transform along z of a boxcar

weighted current distribution. We also note that the interpretation of the field pattern as

a product of Fourier quantities points to a frequency-domain representation of convolution.

Given knowledge of the element factor, we can compute the total field pattern for arbitrary

tapers by computing the Fourier transform of the excitation function.

The pattern multiplication principle is extended to derive the expression for the field

patterns of phased arrays [72]. Assuming that the sensors in the array are similar (which

as we will see is not sufficient in array calibration due to mutual coupling effects), the

normalized field pattern is a product of the normalized pattern of a single element in the

array and the normalized array factor. The array factor takes the place of the radiation

integral in the phased array formulation and the spatial integration of currents becomes a

discrete summation. The array factor evaluated at a particular angular coordinate in the

spherical geometry is evaluated as the following coherent sum of excitations on an array of

isotropic radiators

AF (θ, φ) =
P∑
n=1

Ine
−jkT (θ,φ)rn . (2.40)

43



The array factor is completely determined by the complex excitation current on each element

with a phase shift that captures the propagation offset a sensor relative to the origin of the

array face geometry. The excitation In represents a current that is appropriately weighted

to steer a tapered beam with a maximum value of one to an angular coordinate (θ0, φ0).

We define h(θ0, φ0) ∈ CP×1 as the vector containing excitations needed to steer the

pattern to a coordinate (θ0, φ0) with a particular taper w ∈ CP×1 as the following Hadamard

product between the taper and the steering vector evaluated at the pointing direction

h(θ0, φ0) = w � a(θ0, φ0). (2.41)

Then the nth element of h corresponds to In

[h]n := I∗n = wn · [a(θ0, φ0)]n . (2.42)

Recognizing the term e−jk
T (θ,φ)rn as the nth entry of the isotropic steering vector in Equation

2.35, we can evaluate the array factor at any angular coordinate as the following projection

of the tapered beamformer onto the isotropic steering vector

AF (θ, φ) = hH(θ0, φ0)aisotropic(θ, φ). (2.43)

We can see that the isotropic steering vector simply accounts for the relative phase offset (due

to propagation) between elements but lacks information about the variation in amplitude

gain. Using the principle of pattern multiplication, the total field pattern for an array of

similar elements is given by

F (θ, φ) = ge(θ, φ)AF (θ, φ) = ge(θ, φ)hH(θ0, φ0)a(θ, φ). (2.44)

To prepare for modified forms of the manifold vectors to follow, we rewrite this expression
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as a quadratic form

F (θ, φ) = hH(θ, φ)G(θ, φ)a(θ, φ), (2.45)

Where G(θ, φ) is a P ×P diagonal matrix that contains the directional voltage gain of each

sensor down the main diagonal.

For the array of similar and interacting elements Gisolated(θ, φ) = diag {ge(θ, φ)} where

the element pattern, ge(θ, φ), represents the field pattern of a single element measured in

isolation. The diagonal form presumes that the elements are isolated and mutual coupling

does not exist. The complete array response vector for the isolated manifold is

aisolated(θ, φ) = Gisolated(θ, φ)aisotropic(θ, φ). (2.46)

When the isotropic steering vector is used to represent the manifold in array processing,

it implies an array of non-interacting sensors with isotropic gain (unity in all directions).

Because we know that isotropic radiators are a theoretical construct used in classical array

theory (and not physically realizable), this form is mismatched from reality by definition.

The isolated steering vector in Equation 2.46 incorporates the element gain but assumes the

sensors to have identical element patterns and ignores coupling. Both forms are problematic

because they neglect the electromagnetic interactions between antennas in the array.

2.4.2 The Coupled and Loaded Manifold

The isotropic and isolated manifold vectors are not matched to the true array response be-

cause both forms assume the radiators to be non-interacting and similar. The coupling ma-

trix is generally introduced in mutual coupling calibration in order to obtain a more realistic

model of the multichannel voltages captured by the ADCs and treats sensors as interacting

elements in the context of microwave networks (see [73] for an early example). Figure 2.9 il-

lustrates the corresponding model used to develop the interpretation and definitions relating

to the coupled manifold.
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Figure 2.9: Microwave interpretations assumed in the derivation of the coupled and loaded
manifold: (a) microwave network model of an array attached to a multiport receive network
and (b) the Thévenin representation of the array.

Mutual coupling refers to the electromagnetic interaction between an antenna element

and objects in its environment. In phased arrays, the mutual coupling effect changes the

distribution of currents on the individual elements in the array (along with the magnitude

and phase of the currents) from the individual isolated currents in free space. An isolated

antenna element is characterized by an input impedance. Introduction of a neighboring

antenna in close proximity changes the impedance properties of both elements which alters

the currents flowing on each device. The mutual coupling effect erodes the validity of the

pattern multiplication theorem which, as we saw, establishes a model for the array radiation

pattern in terms of the isolated pattern of a single element and the isotropic manifold.

In general, analytic forms of the coupled steering vector do not account for reflections from

adjacent structures and focus mainly on developing a mathematical definition of coupling

from the array mutual impedance matrix, ZA ∈ CP×P . The mutual impedance matrix is

derived by treating the array as a multi-port device to obtain expressions for the transfer
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impedance terms and is written in a general form as follows

ZA =



Z11 Z12 . . . Z1P

Z21 Z22 . . . Z2P

...
... . . . ...

ZP1 Z2P . . . ZPP


. (2.47)

The diagonal entry, Zpp, is the self-impedance of the pth embedded element and is not to

be confused with the input impedance of the element in isolation. The (m,n) entry of the

mutual impedance matrix is defined as the ratio of the open-circuit voltage developed at the

terminals of antenna m due to a current impressed on the terminals of antenna n

Zmn =
Vm
In

∣∣∣∣
Ij=0,j 6=n

. (2.48)

The voltage developed on the mth port due to the aggregated effect of coupled currents is

Vm = Z1mI1 + Z2mI2 + . . .+ ZPmIP . (2.49)

The input impedance at the terminals of the mth embedded element is

Zm
in =

Vm
Im

= Z1m
I1

Im
+ Z2m

I2

Im
+ . . .+ ZPm

IP
Im

(2.50)

Under plane-wave excitation, we treat the array as a Thévenin equivalent source with

multiport open circuit voltages given by Voc ∈ CP×1 and a mutual impedance matrix ZA [73].

The terminal voltages presented to a load are

VL = ZL (ZL + ZA)−1 Voc, (2.51)
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Where we have used the following relationships

VA = ZAIA + Voc, (2.52a)

VA = −ZLIA. (2.52b)

The forms in 2.52, originally attributed to [74], summarize a circuit equivalent model of the

multichannel voltages captured by an embedded array. These expressions were rederived

in [35] using a method of moments formulation and assuming perfectly conducting elements.

The open-circuit voltages relate proportionally to the open-circuit field patterns and

model parasitic coupling between sensors. We measure the open-circuit voltage pattern of

the nth element in the array, denoted goc
n (θ, φ), by impressing a current on antenna n with

all other antennas open-circuited [75]. We expect the patterns for sensors at the edge of

the array to show distinctions relative to the center antennas based on differences in their

coupling environments. For a very large array, a majority of the sensors experience similar

coupling environments and goc
n (θ, φ) is approximated as being similar over the elements. In

contrast, the open-circuit patterns may exhibit significant differences in a small array and

such an approximation may not be valid.

The open-circuit manifold vector is given by

aoc(θ, φ) = Goc(θ, φ)aisotropic(θ, φ). (2.53)

Which we use to evaluate the manifold of the embedded and loaded array

a(θ, φ) = ZL (ZL + ZA)−1 aoc(θ, φ),

= ZL (ZL + ZA)−1 Goc(θ, φ)

C(θ,φ)

aisotropic.
(2.54)

This form is cited in recent work by Friedlander in [32] as the proper linear transformation of

the isotropic steering vectors that accounts for mutual coupling. This model uses a direction-

48



dependent coupling matrix which handles the angle-dependent variation of the embedded

element patterns. The coupling matrix as defined here is a rank P complex-valued square

matrix that provides an isomorphic mapping from an isotropic basis to a coupled basis.

Using ac(θ, φ) to denote the coupled manifold, the model is summarized here in terms of the

isotropic steering vector in Equation 2.35 and the mutual impedance matrix in 2.47:

ac(θ, φ) = C(θ, φ)aisotropic(θ, φ), (2.55a)

C(θ, φ) = ZL (ZL + ZA)−1 Goc(θ, φ), (2.55b)

Goc(θ, φ) = diag {goc
1 (θ, φ), . . . , goc

P (θ, φ)} , (2.55c)

ZL = diag {ZL1, . . . , ZLP} . (2.55d)

The model above books all of the direction dependence of the coupled manifold into the open

circuit gain patterns. The extent to which the coupled form summarized in 2.55 admits

parameterization depends on the form of the open-circuit patterns gocp (θ, φ), 1 ≤ p ≤ P

which account for the radiation properties of an isolated antenna in the array and the mutual

interactions between sensors.

A simple example is presented here to demonstrate the distortion of the isolated antenna

patterns due to mutual interaction between sensors. The open circuit patterns of a linear

array of wideband dipole elements are simulated in Feko [4]. Details on the use of a compu-

tational electromagnetics package to study array manifold calibration is deferred to Chapter

6. Predicted patterns from a full-wave solution are shown here to offer the reader intuition

to the mutual coupling effect on elements in the array. Figure 2.10 shows cuts through ele-

vation angle of the open circuit gain patterns (on a linear scale) measured for each antenna

in the array by driving each element individually with an ideal excitation and with all other

elements unloaded. In isolation the radiation pattern follows a cosine function in elevation

angle, illustrated by the red dotted curve. Mutual coupling degrades the peak gain relative

to the isolated pattern and distorts the patterns in angle. The patterns exhibit symmetry
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in elevation angle based on their symmetry in the array.

2.5 Array Manifold Calibration

Array manifold calibration refers to a signal processing step in the array processor designed

to improve the representation of the transfer function assumed in angle estimation and beam-

forming. Approaches described in literature are well-described under a parametric/nonpara-

metric taxonomy. Parametric forms assume prior knowledge of a closed form expression

for the manifold model and seek to estimate unknown model parameters. Provided that

the manifold admits an analytic form, parametric manifold calibration supports calibration

with multiple sources simultaneously. Nonparametric techniques in contrast do not presume

knowledge of the array transfer function and instead focus on estimating the array response

to single sources over the field of view from measurements. This section offers a high-level

survey of array manifold calibration from the parametric/nonparametric perspective and

does not address the many application-specific approaches evidenced in literature that bear

no value to the problem of calibrating the multichannel SAR sounder. In the discussion that

follows, the azimuth angle dependence is dropped from the notation to present mathematic

notation that is consistent with the array processing formulation presented at the start of

the chapter.

2.5.1 Parametric Calibration

Parametric manifold calibration methods seek estimates of the model parameters of the non-

ideal array response in order to characterize deviations of the steering vectors from either

idealized or nominal forms. The deviations are attributed to geometric uncertainties, phase

and gain imbalances and mutual coupling. In general, the majority of research papers ad-

dress one subset of the aforementioned mismatch models. Source arrival angles range from

completely unknown (blind calibration), to constrained (almost-blind, auto-calibration, or
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self-calibration) to well-known. When the source DOA is unknown, the calibration problem

is formulated as a joint estimation of arrival angle and array parameters.

In parametric calibration, the snapshot model is written in terms of a manifold which is

functionally dependent on the usual vector of arrival angles and a set of additional parameters

stored in η

X = A(Θ,η)S + N, (2.56)

Where we have suppressed the φ dependence. Parametric approaches state an analytical

form of A(Θ,η) which is used to develop a real-valued cost function in the variable η and

Θ. When convenient, we may interpret A(Θ,η) to be a linear transformation of a nominal

manifold (which may be the isotropic manifold for example or a nominal form from some

baseline calibration step). In this case we will use A0(Θ) to denote the nominal model. We

use the notations η̂ and Θ̂ to refer to estimates of the true values.

2.5.1.1 Separable Gaussian Problems in Parameter Estimation

When the columns of N correspond to vectors of independent Gaussian random variables

and the parameters of A(Θ,η) as well as the sources are taken to be deterministic, then the

model in Equation 2.56 is treated as separable Gaussian [76]. In the separable Gaussian es-

timation problem, the probability density function (pdf) of our observation is parameterized

by both linear and nonlinear parameters. Separable problems admit analytic forms for the

ML estimates of the linear parameters which can be used to form a compressed likelihood

function to solve for the nonlinear parameters [68]. The MLE of the DOAs derived in Ap-

pendix B.2.3 is a special case of a separable Gaussian problem that provides exact solutions

for the estimators of the linear parameters which we used to obtain a compressed likelihood

in terms of the nonlinear parameters (arrival angle).

For the given form in Equation 2.56, we handle the observation vectors (correspond-

ing to the columns of X) as complex Gaussian random vectors, each distributed as x ∼
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C (µx(ηµ),Rx(ηc)) where the mean is given by

µx(ηµ) = A(ηnl)
s

ηl . (2.57)

The total parameter vector for the mean is the composition of nonlinear parameters (which

includes Θ in the joint estimation approaches) and linear parameters

ηµ =

ηnl

ηl

 . (2.58)

Using ηc to refer to parameters of the covariance (which would just be the noise variance, σ2
n,

for the IID case), the total parameter vector is the concatenation of the mean and covariance

parameters:

η =

ηµ
ηc

 . (2.59)

The compressed likelihood function for the separable Gaussian problem (assuming IID com-

plex Gaussian noise) takes the following form (written in terms of the unknown, nonlinear

mean parameters)

L(X;ηnl) =

∥∥∥∥∥X−A(ηnl)

(
AH(ηnl)A(ηnl)

)−1

AH(ηnl)X

∥∥∥∥∥
2

. (2.60)

When the likelihood takes this form, the MLE of the nonlinear parameter vector ηnl is the

solution to the following maximization

η̂nl = max
ηnl

{
tr

(
PA(ηnl)Rx

)}
. (2.61)

The separable Gaussian form reduces to a nonlinear least squares problem which we solve

through a multidimensional search. Blind and autocalibration techniques regard Θ as an

unknown nonlinear parameter contained in ηnl while the informed techniques may treat the
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DOAs as either known or approximately known. Note that the classical Maximum Likelihood

Estimator of the DOA presented in Appendix B.2.3 follows the work of Ziskind and Wax [1]

who propose an Alternating Projection optimization based on the compressed log-likelihood

form in Equation 2.61.

2.5.1.2 Array Shape Calibration

Interest in parametric array shape calibration appears to emerge in literature to address the

problem of angle estimation with towed and flexible arrays. The foundational work on array

shape calibration in the blind calibration framework is attributed to a set of papers published

by Rockah and Schultheiss in 1987 [30], [31]. In [30], the authors derive a hybrid Cramér-Rao

Lower Bound (CRLB) for the blind calibration problem, under an assumption of small scale

perturbations generally understood to be less than 0.1λ. The CRLB is used to benchmark

estimator performance and provides a theoretical lower bound on the variance of unbiased

estimators. The classical form, attributed to Fisher [68], bounds the variance on estimates

of deterministic parameters. When the number of unknown parameters is greater than one,

the CRLB is obtained from an appropriate entry of the inverse of the Fisher Information

Matrix (FIM). The detailed steps for finding the FIM in the seperable Gaussian problem are

presented in Appendix C and are discussed in later portions of this work.

The hybrid CRLB of Rockah and Schultheiss bounds estimator accuracy for parameter

vectors composed of both random and nonrandom unknowns. Defining JD(ηD) to be the

FIM dependent on a deterministic parameter vector ηD and let JR(ηR) be an information

matrix describing the random parameters. The hybrid CRLB is then obtained by inverting

the hybrid information matrix given by

JH(ηD,ηR) = JD(ηD) + JR(ηR). (2.62)

In the derivation, Rockah and Schultheiss treat source DOAs as deterministic and assume
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geometric perturbations to be random with known Gaussian distributions to describe the

uncertainties in each dimension. We see that the random portion of the information plays a

similar role to the a priori distribution in the Bayesian information matrix.

The work by Rockah and Schultheiss provides important contributions to array calibra-

tion theory and more broadly to the general area of parameter estimation. In [77], Van

Trees acknowledges their work as being representative of a class of problems emerging in the

field of parameter estimation focused on bounding performance under misspecified models

(for a recent tutorial, see [78]). Their work has been significant to the development of small

perturbation theory in parametric array calibration because of the important findings in [30]

regarding the identifiability problem in blind array shape calibration. Their study estab-

lishes specific limitations on the joint estimation of sensor position uncertainties and source

bearings. The authors conclude that the DOAs and perturbations can be unambiguously

estimated provided the following conditions hold:

1. Snapshots are obtained from at least three spatially disjoint angles,

2. The location of one sensor is known,

3. The direction to an adjacent sensor is known,

4. The nominal geometry is not linear.

Weiss and Friedlander present a Maximum Likelihood framework for the array shape

calibration problem under small perturbations and with unknown DOAs in [28]. They for-

mulate the problem under an assumption of IID complex Gaussian observation noise and

treat source parameters (waveform and arrival angle), noise parameters, and perturbations

as deterministic but unknown variables. Although the problem as defined fits the separable

Gaussian framework described earlier, Weiss and Friedlander propose an iterative solver to

the following cost function Jcost based on updating the unknown waveform sequentially with

the left pseudoinverse:
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Jcost =
1

MP

M∑
i=1

‖xi −A(ηnl)si‖2 . (2.63)

Here M is number of snapshots, P is number of sensors, i is a discrete time index, and

ηnl = [Θ, x1, y1, . . . , xP , yP ] is the vector of real nonlinear parameters.

Weiss and Friedlander minimize the cost function in 2.63 with an iterative sequential

technique. On a given iteration, an estimate of the DOAs is obtained using alternating

projection style minimization (see [1]). This estimate is held fixed to update the estimated

geometric perturbations. Under a small perturbation assumption the authors propose a

MacLaurin series approximation which enables a closed form solution to the minimization

of the perturbations on an arbitrary sensor (written in terms of the ML estimate of the

waveform). The closed form solution obviates the requirement of a multidimensional search

and allows for an efficient update to the estimates of geometric uncertainties for a given

estimate of Θ (then used to update the DOA estimates and so on). The sequential estimation

framework is carried out until satisfaction of some convergence criterion.

A Maximum A Posteriori (MAP) framework for small perturbations is presented by

Viberg and Swindlehurst in [79]. In this work, the geometric uncertainties are treated as

random variables with known a priori distributions and the vector of source DOAs are taken

to be deterministic and unknown. The authors develop a simpler noise subspace fitting

technique to ease computation over the optimal MAP estimator, referred to as MAP-NSF.

The asymptotic performance of MAP-NSF is established in [79]. Weiss and Friedlander

also develop a subspace technique for the small perturbation problem based on a MUSIC

like cost function and address the solution identifiability problem that arises in array shape

calibration with unknown DOAs in [28].

Flannagan extends the body of array shape calibration to handle large perturbations

(where the perturbation scale exceeds 0.1λ) [80], [81] and proposes a more robust autocali-

bration procedure that evades approximations made under the small perturbation approaches

(see [29], [28] for example). Flanagan’s procedure, which he refers to as QWF (with Q be-
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ing related to a function in the algorithm and WF denoting a weighted fitting) integrates

aspects of nonparametric calibration procedures [82], [83] to handle large perturbations with

features of the parametric estimation techniques for small perturbations [79], [29] to refine

estimates of the parameters all within in an iterative framework. Flannagan treats geometric

uncertainties as random variables and numerically verifies the identifiability conditions first

presented by Rockah and Schultheiss [30]. His results establish performance of the QWF

estimator relative to the small perturbation techniques of Weiss and Friedlander [29] and the

MAP-NSF technique of Viberg and Swindlehurst [79].

The large body of work in the area of array shape calibration is largely attributed to

the direct extension of the isotropic manifold model to account for geometric uncertainties.

The geometrically perturbed manifold vector is modeled with an introduction of error terms

in the phase center location of each sensor. The pth entry of a perturbed manifold vector

generalizes to the following form:

[a(θ, φ)]p = e−jk[(xp+∆xp) sin θ cosφ+(yp+∆yp) cos θ cosφ+(zp+∆zp) cos θ]. (2.64)

The perturbations {∆xi,∆yi,∆zi ∈ R | 1 ≤ i ≤ P} may be treated as deterministic or ran-

dom. When treated as random, the uncertainties are commonly assumed to be zero-mean

Gaussian random variables with respective variances σ2
xi, σ

2
yi, σ

2
zi [80], [81]. Let ηr be the

real valued parameter vector containing the unknown position offsets for all of the sensors,

written in the following general form for the azimuth and elevation dependent manifold

ηr =

[
∆x1,∆y1,∆z1, . . . ,∆xP ,∆yP ,∆zP

]T
. (2.65)

In this form, the position errors present 3P unknowns in the manifold model. When the

unknown DOA is constrained to the elevation dimension or when the z components are

zero, we restrict our attention to perturbations in x and y and the length of the unknown

parameter vector reduces to 2P . The general array response vector parameterized by the
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DOAs and position uncertainties is denoted as a(θ, φ;ηr).

The perturbations on the array geometry impart a propagation phase offset on the spatial

measurements relative to the ideal geometry. We can model the perturbed vector in terms

of a linear transformation on the ideal form by defining the matrix Dr(θ, φ;ηr) to be the

diagonal matrix which models the phase shifts of each element based on the additional path

lengths in ηr. We can then state the following model of the perturbed steering vector as

a(θ, φ;ηr) = D(θ, φ;ηr)aisotropic(θ, φ), (2.66a)

Dr(θ, φ;ηr) = diag

{
e−jk

T (θ,φ)∆r1 . . . e−jk
T (θ,φ)∆rP

}
, (2.66b)

∆rp =

[
∆xp, ∆yp, ∆zp

]T
, (2.66c)

ηr =

[
∆rT1 , . . . , ∆rTP

]T
. (2.66d)

Recall the common (and essential) assumption of linear independence between the manifold

vectors in MUSIC and MLE. We can note that the diagonal matrix Dr(θ, φ;ηr) ∈ CP×P is

a linear transformation that preserves the number of principal components in the covariance

matrix. Hence the perturbed manifold preserves the mathematical properties asserted in the

derivations of the MUSIC and MLE cost functions. Furthermore because the model param-

eters group into the set of unknown nonlinear parameters of the manifold, the geometrically

perturbed manifold lends itself to a separable Gaussian formulation by which we can obtain

a minimum variance and unbiased estimator of a(θ, φ;ηr). The practical applicability of

this model depends entirely on the sources of manifold uncertainty in a given application

and the extent to which one may reasonably attribute a majority of error to phase center

uncertainty.
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2.5.2 Nonparametric Calibration

Nonparametric manifold calibration approaches do not assume a model description of mani-

fold uncertainty and instead aim to measure the array response to single sources in controlled

collections. These techniques are the lookup table approaches that require steering vectors

to be measured and stored at many calibration points from sources with known arrival an-

gles. When a calibration signal, sc(t), is known and the observation noise is zero-mean and

IID, the ML estimator of the true manifold vector is estimated from the vectors of discrete

samples by regarding the manifold response vector as deterministic and unknown [84]. The

MLE is given by:

âMLE(θ) =
1

M

M∑
i=1

xis
c
i
∗

|sci |2
. (2.67)

Ideally x would represent the multichannel voltages across the terminal loads of the direction

finding receiver (coupled through the electronics that would be used in practice) and the

steering vectors would be estimated at many angles. The estimator in 2.67 is unbiased and

can be used to parameterize the manifold, thereby enabling multitarget calibration under

the parametric umbrella.

In the case where the waveform is unknown, the principal eigenvector of the measured

array covariance matrix can provide an estimate of the orientation of the vector a(θ) in

CP×1 space but requires a constant-norm constraint in the derivation. This result does not

account for roll-off of the element pattern and merely estimates a systematic phase offset of

each channel relative to a nominal manifold. The principal eigenvector proof is documented

in a submitted manuscript (accepted for publication) which documents the nonparametric

manifold calibration methodology carried out for this dissertation [53] and discussed further

in Chapter 5.
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2.6 Assessment of Manifold Calibration for SAR Sounders

The discussion that follows offers a synthesis of the assessed array manifold literature in the

context of SAR ice sounders. In all cases, we assume that manifold calibration starts at the

output of the SAR processor. This starting point is consistent with the formulation of the

linear model in 2.1 and simplifies the manifold calibration problem to one of characterizing

the response of the cross-track phase centers through elevation angle. The most accurate

manifold is one that characterizes the transfer function of the integrated array. Hence a

data-dependent characterization should rely on measurements collected by the array after

installation and a modeling approach should have sufficient fidelity to capture the dominant

error mechanisms influencing channel to channel deviations from the nominal manifold.

In approaching the manifold calibration problem for ice-penetrating SARs, challenges

emerge immediately at the crossroads of the parametric and nonparametric routes as ob-

stacles present themselves along either pathway. The nonparametric classes of manifold

calibration refer to the measure and store approaches that do not require prior knowledge of

the manifold response model a(θ) but do however mandate observations of spatial sources

at known arrival angles. The most accurate manifold model may be obtained when single

spatial sources with known bearing angles present known waveforms to the installed array.

This case, known as pilot calibration, admits an MLE of a(θ) that is unbiased and this esti-

mate can be used to develop a parametric manifold model. Pilot calibration sources are not

available in airborne ice sounding missions hence this approach is inapplicable to the SAR

ice sounder manifold measurement problem.

Lacking access to known pilot sources, SAR sounder manifold characterization instead

relies on scattered signal from a diffuse surface to characterize aspects of the array transfer

function. When a waveform is unknown, the principal eigenvector of the array covariance

estimated from many snapshots of single directional sources provides a measure of a manifold

vector’s orientation in CP×1 space. When data sets from dedicated calibration flights over

specular surfaces are not available, single source observations must be extracted by other
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means. This poses practical challenges as the sounder, which is well described as an altimeter,

rarely captures single sources. Thus the principal eigenvector technique does not appear

universally applicable to all data sets either. We pause here to emphasize that the principal

eigenvector approach provides an estimate of the orientation of a manifold vector in complex

P dimensional space. This measure does not account for rolloff of an element pattern as it

is derived assuming a constant magnitude over all θ. The implications of this constraint on

angle estimator accuracy remain unclear and justify further investigation to determine the

importance of measuring the length of the vector a(θ) over the field of view.

Returning to the initial crossroads of the taxonomy in Figure 1.1, we consider the para-

metric approach. Pursuit of the parametric path is predicated on knowledge of the manifold

model. To date, there have been no attempts to develop a parametric description of a

SAR ice sounder’s array manifold. Development of such a model should be informed by the

dominant error mechanisms influencing the array’s directional response. We expect mutual

coupling and platform effects to significantly alter embedded element patterns from the iso-

lated radiation pattern of one antenna element. Antenna patterns may be predicted with

a full-wave solver but obtaining these predictions requires detailed and intensive computa-

tional electromagnetic solvers that may not lead to forms which are easily parameterized,

as will be shown in Chapter 6. The appeal of a parametric calibration approach is that it

handles multitarget calibration which is better suited for the SAR ice sounder problem but

the extremely large number of parameters needed to describe the manifold quickly leads to

intractable multidimensional optimization problems that are difficult to initialize and risk

converging to local extrema when improperly initialized.

2.7 Conclusion

This chapter presents the array processing formulation of multichannel SAR sounder im-

agery. The primary array signal processing techniques used in 2-D and 3-D image formation

are described. Specific considerations in ice sheet imaging are emphasized in the context
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of array processing. The array manifold is formally described and related to classical array

theory. A generalized overview of signal processing techniques for array manifold calibration

is presented that adopts a nonparametric/parametric categorization of approaches. Cali-

bration of SAR sounder manifolds is interpreted through this perspective, noting specific

challenges facing either form.
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Chapter 3

Instrumentation and Data Processing Methodology

Abstract

Nonparametric manifold calibration requires observations of spatial sources from known

arrival angles to characterize the response of array elements in magnitude and phase.

In the SAR sounder manifold characterization problem, subsurface scatterers are re-

garded as undesirable calibration sources because they require an assumption of plane

wave velocity in a medium that may lead to error in the interpreted DOA. A data

processing architecture is developed to produce snapshot databases of SAR focused

multichannel observations tagged with surface incidence angle and target classification

by coregistering the complex imagery to two auxiliary data sets. This chapter intro-

duces the instrumentation studied in this dissertation and describes the development

of the snapshot database, which enables the application and validation of the nonpara-

metric manifold calibration technique presented in Chapters 5 and 7. This chapter

also documents the initial application of the database in measuring the RDS receive

manifold. The measured manifold is applied in geometric nulling of sidelobe clutter

and demonstrates larger clutter suppression relative to null steering with the nominal

manifold model, helping to confirm the methodology outlined in this chapter.

3.1 SAR System and Instrumentation Overview

The research documented in this dissertation relies on multichannel SAR measurements from

CReSIS’s RDS to demonstrate manifold calibration techniques. The modern RDS, which
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advanced over multiple decades of technological developments by KU researchers affiliated

with both CReSIS and KU’s Radar and Remote Sensing Laboratory [39], [40], [85], [43], [8],

operates in the Very High and Ultra High Frequency (VHF and UHF) ranges and surveys

freshwater ice of Greenland and Antarctica from multiple platforms including Twin Otter,

Basler, P-3, DC-8, C-130H, and Gulfstream aircraft [8], [86]. Table 3.1 summarizes typical

RDS parameters [8] for the system flown on NASA’s Operation IceBridge campaigns.

Table 3.1: Typical depth sounder operating parameters during Operation IceBridge [8].

Variable Value Units Parameter

fc 195 MHz Center frequency

B 30 MHz Chirp bandwidth

Tpd ≤ 30 µs Pulse duration

PRF ≤ 12 kHz Pulse repetition frequency

θ0 0 ◦ Elevation pointing angle

φ0 0 ◦ Azimuth pointing angle (squint)

PTX ≤ 1200 Watts Peak transmit power

h 500 meters Platform height above surface

3.1.1 RDS P-3 Antenna Array

The RDS transmit and receive cross-track array varies by platform. The RDS P-3 array,

described in [3], is comprised of 15 wideband dipoles, organized into three subarrays: one

fuselage mounted transmit/receive subarray of seven elements and two receive-only wing

mounted subarrays, each with four elements. The subarrays are embedded in aerodynamic

fairing structures which attach to the P-3 hard points, originally intended as weapon stations

for Navy tactical missions. The integrated subarrays are shown on their inaugural flight at

the NASA Flight Facility in Wallops Island, Virginia in Figure 3.1. The structural and

material details of the RDS P-3 fairings are provided in [87] and [6].

64



Figure 3.1: Installed RDS subarrays on the P-3 aircraft. Image courtesy of Rick Hale, 2011.

We identify each physical antenna with a numerical identifier following the convention

illustrated in Figure 3.2. This diagram also specifies the approximate dimensions of each

cross-track subaperture, measured sensor to sensor. The nominal sensor positions assumed

in this work are reported in Table 3.2 assuming a body coordinate system defined in Figure

3.2. Each sensor’s coordinates are expressed as an offset of its feed point relative to that

of Antenna 4 in meters in Table 3.2. In this work, Antenna 4 is regarded as the geomet-

ric reference of the array coordinate system and the phase reference in the nonparametric

calibration described in Chapter 5.

Elevation cuts of the RDS array factors at 195 MHz are plotted in Figure 3.3 for each

subarray using the following expression:

AFs(θ, θ0) =
1

Ps

Ps∑
i=1

ejr
T
i [k(θ)−k(θ0)]. (3.1)

The argument θ0 refers to the pointing angle in elevation. Here s ∈ {left, center, right},

hence Pj denotes the number of elements in a subarray of interest. The vector k(θ) ∈ R2×1

is the propagation vector and ri ∈ R2×1 is the position vector of the ith sensor. The array

factors assume the nominal geometry summarized in Table 3.2. The null-to-null width of the

center array factor is 35◦ while the smaller outboard subarrays show a null-to-null beamwidth

of 62.5◦.
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Figure 3.2: RDS P-3 antenna array with numbering convention and approximate subaperture
dimensions. The electrical and geometric reference element, Antenna 4, is shown in red. Left,
right, and center conventions are defined with respect to the pilot’s perspective.

3.1.2 RDS Multibeam Acquisition and Data Sets

The array manifold calibration work carried out for this dissertation leverages data sets

collected in a multibeam acquisition mode over minimally penetrative surface targets in the

Canadian Arctic Archipelago during NASA’s Spring 2014 Operation IceBridge Campaign.

In multibeam mode, illustrated in Figure 3.4, the RDS multiplexes elevation-steered transmit

beams in slow time from pulse-to-pulse. Figure 3.4 shows illuminated footprints projected

onto a flat interface for three beams, generically denoted in the illustration as left, right, and

center where the convention of each is defined relative to the pilot’s perspective. The pulse

repetition intervals are chosen to satisfy quarter wavelength sampling of each subswath in

the along-track dimension. The multibeam collects from this field season are obtained at a

higher altitude and use slightly different settings than conventional sounding. The settings

specific to this mode are summarized in Table 3.3, along with relevant resolution quantities.

CReSIS organizes radar data by days, segments, and frames. In most cases, segments
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Table 3.2: Lever arms assumed in the nominal model, defined with respect to the coordinate
system of Figure 3.2.

Position

Subarray Antenna x (meters) y (meters) z (meters)

center 1 0 2.2504 0.1194

center 2 0 1.4910 0.0737

center 3 0 0.7722 0.0279

center 4 0 0 0

center 5 0 -0.7722 0.0279

center 6 0 -1.4910 0.0737

center 7 0 -2.2504 0.1194

left 8 -0.0356 13.9497 1.5392

left 9 -0.0356 13.2232 1.4503

left 10 -0.0356 12.4765 1.3589

left 11 -0.0356 11.7399 1.2700

right 12 -0.0356 -11.7399 1.2700

right 13 -0.0356 -12.4765 1.3589

right 14 -0.0356 -13.2232 1.4503

right 15 -0.0356 -13.9497 1.5392

correspond to specific science missions and represent uninterrupted collection over which

the radar operates with consistent settings. Segments are broken up into approximately 50

km processing frames, favoring frame boundaries on turns so that aircraft banking artifacts

appear at the edges of an image. Frames are then identified with a YYYYMMDD_SS_FFF

frame identifier where YYYYMMDD is populated based on the year-month-day, while SS

and FFF indicate zero-padded segment and frame numbers respectively.

Figure 3.5 illustrates the Canadian Arctic flight lines associated with the multibeam

data sets considered in the dissertation which include 20140325_07, 20140401_03, and
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Figure 3.3: Elevation cuts of the RDS P-3 array factors at 195 MHz for the center, left, and
right subarrays.

20140506_01 [88]. Manifold corrections are measured from each of these data sets and

presented later in Chapter 5. Magnitude and phase corrections are plotted with the same

color mapping as that shown in Figure 3.5 for the sake of relating measurements back to

these data sets. Note that the three data sets represent data collections from three different

days spaced out over the field season and correspond to almost completely non overlapping

areas in the Canadian Arctic. The 20140325_07 data set (indicated with the green flight

line) is the smallest, containing only four useful frames while the 20140401_03 data set

(orange) contributes the largest number of useful frames to calibration but contain radio

frequency interference from an onboard navigation system whose emissions coupled into the

RDS receivers intermittently during the flight.

On transmit, a Hanning taper is applied across the elements to suppress sidelobes and

improve two-way isolation performance. The RDS array factors for the steered transmit

beams radiated by the center subarray are evaluated at 195 MHz assuming the nominal

sensor positions reported in Table 3.2 and using the following form of the array factor:
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Figure 3.4: Multibeam acquisition showing three consecutive transmit events and corre-
sponding illumination footprints projected onto a flat interface.

Table 3.3: Summary of configuration parameters for the multibeam data sets and resolution
quantities.

Variable Value Units Parameter

Tpd 3 µs Pulse duration (swath imaging mode)

PRF 12 kHz Pulse repetition frequency

θ0 [−30, 0, 30]T ◦ TX elevation scan angles

σr ∼ 6 meters Slant range resolution, B = 30 MHz

σx ∼ 2.5 meters Along-track resolution

h 915 meters Platform height above surface
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Figure 3.5: 2014 NASA Operation IceBridge flights in the Canadian Arctic Archipelago with
RDS multibeam data.

Table 3.4: Frames processed for array calibration.

Day Segment Frames Mission

20140325_07 [2-5] Axel Heiberg - Eureka

20140401_03 [4-5, 13, 15-16, 34-36, 40-43, 45-46] North Canada Glaciers

20140506_01 [14-16, 34-36, 40-43, 45, 46] South Canada Glaciers

AF (θ, θ0) =

Pj∑
i=1

hie
jrTi [k(θ)−k(θ0)]. (3.2)

Here hi is the ith entry of a real valued taper vector h normalized such that the array factor

evaluates to unity at the steering angle θ0. Array factors assuming uniform and Hanning

cross-track illumination tapers are illustrated in Figure 3.6a and Figure 3.6b respectively,

showing the broadening of the mainlobe due to the Hanning window.
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Figure 3.6: Elevation cuts of the RDS P-3 array factors at 195 MHz for the steered transmit
beams radiated from the center subarray with (a) uniform taper and (b) Hanning taper.

3.2 Snapshot Database Creation

The summarized dissertation research relies on the creation of snapshot databases containing

geocoded observations, tagged with information about the scattering contributions of the

measurement. Snapshot database creation is realized through alignment of RDS swaths

to two auxiliary data sets in order to identify potential calibration sources in the single

look complex SAR imagery. An independent DEM of the surface, when aligned to the

SAR coordinate system, provides angles of incidence at the air-to-surface interface for the

RDS fast time bins of each synthesized aperture while aligned land classification maps aid

in identifying geophysical target types for each directional source. The section that follows

describes the auxiliary data sets and processing steps used to assign source DOAs and terrain

types in the RDS imagery.
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3.2.1 Auxiliary Data Sets

The ArcticDEM project [89], initiated in 2016, is a joint effort between the National Science

Foundation and the National Geospatial-Intelligence Agency (NGA) that addresses a broad

need for comprehensive, fine-resolution surface elevation models of the Arctic. The Arctic-

DEM data are derived with stereoscopic processing from optical satellite imagery acquired

by the NGA-licensed Digital Globe Satellite Constellation [89] using a surface extraction

approach with irregular network-based triangulation described in [90]. Data are available

in strip and mosaic tile formats. ArcticDEM strip files contain the overlapping stereopair

swaths as collected by the DigitalGlobe constellation along with metadata files describing

offsets to filtered ICESat ground control points. Although the strip maps reference ground

control points, the strip files are not corrected.

ArcticDEM mosaic files are processed from high quality strip DEMS into blended and

feathered 50 km x 50 km tiles, available as 2 m, 10 m, 100 m, 500 m, and 1 km rasters

and corrected with filtered ICESat altimetry to improve absolute vertical accuracy. The

number of strip files making up a mosaic tile generally ranges from 40 to 60. The meta-

data accompanying the mosaic tiles specifies a list of input strip map files along with the

corresponding vertical and horizontal RMS errors of each strip after ground control. Strip

widths and lengths range from 16 to 18 km and 110 to 120 km. The alignment statistics

of a single strip which may cover on the order of a 2000 km2 area of terrain are conveyed

with single x, y, z RMS errors. The spatially sparse reporting of mosaic DEM error limits a

detailed error propagation analysis of the RDS-derived DEMs produced for this dissertation

after calibrating with the ArcticDEM.

The RDS array calibration approach is designed to reject SAR focused pixels containing

subsurface scatterers since their locations are unknown. This is achieved with the application

of a binary ice mask, aligned to both the ArcticDEM and the RDS trajectory, that indicates

the presence or absence of glacial ice. The ice mask is derived from glacier outlines published

in a supplementary to the Global Land Ice Measurements from Space (GLIMS) database [91]
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Figure 3.7: Auxiliary data sets used to build a database of calibration pixels, shown aligned
to a 2014 IceBridge flight line (red): (a) the ArcticDEM terrain from 10 meter mosaic tiles
and (b) binary ice mask.

called the Randolph Glacier Inventory [92]. In the calibration pixel extraction described later,

the binary ice mask preserves scatterers from all other extended surface targets including

sea ice and rocks.

3.2.2 Signal and Data Processing Tools

Single look complex SAR images are generated with the f-k migration algorithm implemented

in the CReSIS toolbox for the frames summarized in Table 3.4. Because both freshwater

ice surface and subsurface returns are excluded as potential calibration sources, the CReSIS

SAR processor is run under a free-space propagation assumption which assigns a relative

permittivity field of one in f-k migration. All other processing steps preceding the SAR, in-

cluding coherent noise removal and channel equalization, are unmodified relative to standard

processing.

Figure 3.8 outlines some of the custom modifications made to the CReSIS toolbox to

enable an array manifold calibration architecture. The modifications hinge on creation of

surface data objects that allow pixels to be tagged with the angle of arrival of coincident
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Figure 3.8: New array manifold calibration functionality (green) including surface object
and snapshot database creation in the context of the CReSIS signal processing architecture
(gray).

scattering interfaces mapped to a propagation delay and along track bin. This step requires

the geocoded SAR coordinate system, an independent surface DEM such as the ArcticDEM

and a binary ice mask. For each synthesized aperture along the flight path, the two-way

propagation delay over a uniform angle grid to the first intersection of a given ray is deter-

mined and the ice mask is queried at the intersection point. Surface objects are stored as

time delays to the intersection points along rays that are uniformly gridded in along track

and angle.

The surface data objects, multichannel SAR imagery, and geocoded SAR coordinate
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system are passed to the array processor which is modified to support creation of large

snapshot databases. The snapshot database creation aligns the surface data objects to the

RDS time gates. This stage outputs geocoded snapshots that are tagged with incidence angle

at the surface and the ice mask value of each intersection. Note that an ice mask indication

and angle are determined for each coincident scattering interface of a pixel meaning that the

snapshot database also assigns number of sources or Q for each pixel in the imagery.

3.3 Preliminary Validation of Methodology with Beamforming Test

The approach outlined in this chapter proposes characterizing the directional response of the

RDS by coregistering multichannel single look complex SAR imagery with an independent,

fine resolution DEM and extracting calibration measurements from spatial sources with

known directions of arrival. The study in [54] documents the earliest validation of the

approach, carried out by creating a coarse database of directional sources with a pilot version

of the framework in Figure 3.8. The study relies on geometrically steering nulls with the

uncalibrated array in an effort to estimate power in a direction of interest. The ratio of

directional source powers are used to tag each pixel with an approximate measurement of

isolation. Pixels containing sources that exhibit at least 15 dB isolation are regarded as

suitable approximations of single-source measurements that may be used to form a steering

vector lookup table.

One of the drawbacks of this method for pulling out single source pixels is that it relies

on steering a null prior to manifold calibration in order to compute a culling metric. Null

steering accuracy depends on our steering vector knowledge and implies some knowledge of

the array response vectors prior to calibration. We expect that a culling criterion derived

from this SINR measure to correctly identify approximately single source observations in a

direction of interest when the array response in the interference direction is known extremely

well. But if this were the case over all θ, then the manifold would already be calibrated.

It stands to reason that this approach will not work well over all possible angles. The
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limitations of the methodology outlined in [54] motivate a more robust metric for culling

single source observations in a particular angle bin. A refined approach is developed for this

dissertation, outlined in Chapter 5, and is the subject of the study documented in [53].

Despite being processed with a lookup table derived from this initial culling technique, the

results that helped to confirm a need for array calibration are presented here to document this

milestone along the dissertation trajectory. A study of sea ice sidelobe clutter suppression

in nonadaptive beamforming provides initial verification of mismatch between the isotropic

model described in Equation 2.35 and truth. Echograms are produced using the nonadaptive

geometric nulling beamformer (sometimes referred to as geonull beamformer) described in

Chapter 2 (Equation 2.18) with isotropic and measured manifolds; weights are chosen to steer

the main beam to nadir and nulls in the direction of scattering from the surface, determined

by the surface data objects derived from the ArcticDEM. These images are compared to

both geonull images created assuming the isotropic steering vector model as well as images

formed with the standard combining method. The ideal or nominal manifold vector takes

the isotropic form of Equation 2.35. All results assume free-space propagation (εr = 1)

when evaluating the wavenumber in the array processor and clutter-rejection performance

assessment is restricted to portions of the image that do not contain scattering from a

subsurface.

Table 3.5: Measured relative sidelobe clutter at specified cumulative probabilities by beam-
forming method.

x (dB)

F (x) Geonull Measured Geonull Nominal Standard

0.25 -161 -156 -153

0.50 -156 -150 -147

0.75 -148 -142 -139

0.95 -131 -127 -124
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Figure 3.9: Frame for validating manifold mismatch: (a) map and (b) echogram θTX = 0◦.
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Figure 3.10: Nonadaptive clutter suppression with sidelooking illumination and geometric
nulling applied to data from the θTX = 30◦ beam: (a) standard beamforming, (b) geometric
nulling with isotropic manifold and (c) geometric nulling with measured manifold.

The following examples demonstrate improved sidelobe clutter suppression of the geonull

beamformer with a measured manifold model using data collected over a 25 km extent
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Figure 3.11: Sidelobe clutter suppression study to justify refined manifold calibration: His-
togram (a) and Cumulative Distribution Function (b) views of output powers of standard
beamformer, geometric null-steering beamformer with isotropic manifold and geometric null-
steering beamformer with measured manifold.
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Figure 3.12: CDF of sidelobe clutterpower in geonull with isotropic manifold relative to
sidelobe clutter power in geonull with measured manifold.

(approximately) of sea ice from May 6, 2014 in the Canadian Archipelago in swath-imaging

mode. Figure 3.9a shows the flight line with the green point indicating the start of the

frame. Over the frame, the aircraft banks into a turn before leveling off as it flies over a

floating tongue of freshwater ice. Figure 3.9b shows the corresponding echogram from the

θTX = 0◦ transmit beam and combined with the standard weights which form a digital beam

directed at nadir. The range gates are shown as heights measured with respect to the WGS-

84 ellipsoid. The sea ice surface return appears at zero (sea level) and the sidelobes from

the surface response dominate the image for approximately 200 meters. With the exception

of the surface multiple, the later range gates are dominated by off-nadir clutter from the sea

ice until the aircraft flies over the tongue and we see a ridge from exposed rock off to the

side of the track as well as the basal echo of the freshwater ice mass.

Clutter rejection is studied using imagery from a sidelooking transmit beam. Figure

3.10 compares the standard combining method in Figure 3.10a to geonull images formed

with an isotropic manifold model and measured manifold model in Figures 3.10b and 3.10b)
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and measured steering vectors (Figure 3.10) for the transmit beam pointed to the left of the

track (θTX = 30◦). The images are shown using an HSV colormap on a common scale. These

images are presented as a depth relative to the surface which has the effect of flattening the

surface in the imagery. The standard image is formed by pointing a digital beam to nadir.

The geonull images result from pointing nulls at the surface clutter angles to the left and

right sides of the track while pointing a beam towards nadir. The images show a progressive

attenuation of surface clutter from the standard to ideal geonull and ideal geonull to the

measured manifold geonull.

Clutter power values in the combined images are plotted as histograms and cumulative

probabilites by beamforming method. This type of data visualization, shown in Figure

3.11a and Figure 3.11b, provides a quantitative means for comparing clutter rejection in

the results. Provided that we have good knowledge of the surface clutter DOAs a priori,

we expect nulling to improve clutter rejection in the combined image over the standard

beamforming method. Hence we expect a global decrease in the power of pixels containing

scattering from the surface. We also expect larger clutter rejection when using the measured

manifold to null sidelobe clutter over the nulling performance with ideal steering vectors.

Sidelobe clutter pixels are extracted by first only taking pixels containing sea ice backscatter

from range gates of 200 meters or greater. The range gates lying in a small neighborhood

around the surface multiple are also removed from the data set to ensure that only sidelobe

targets are assessed.

The histograms of the sidelobe clutter power by beamforming method are presented in

Figure 3.11a. The y axis denotes frequency of the binned values, given by a ratio of the

number of values in a bin to the total number of values. The normalization ensures that the

sum of the bin heights is equal to one. This result shows how the geometric null-steering

beamformer with the isotropic manifold model concentrates power to lower values relative to

the standard result. The null-steering beamformer with the measured manifold concentrates

sidelobe clutter to a lower power (relative to the standard result) of approximately -162 dB.
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The cumulative distribution functions (CDFs) in Figure 3.11b provide an alternative

illustration of the global reduction of power by beamforming method. In the CDFs we see

a negative translation along the clutter power axis by beamforming method. As postulated,

geonull beamforming with a measured manifold provides the largest attenuation of sidelobe

clutter relative to the standard beamformer. Clutter powers are stated at four specified

cumulative probabilities in Table 3.5. The CDFs show that 95% of the clutter pixels are less

than -131 dB in the LUT-based geonull image. In the ideal geonull result, 95% of the pixels

are less than -128 dB. This result indicates that the measured manifold has the potential to

recover at least 3 to 4 dB of sensitivity in areas with off-nadir clutter from the surface and

may have important implications for sounding challenging areas where basal echo detection

is impeded by clutter returns from a crevassed surface.

3.4 Discussion

This chapter outlines critical methodology that enables the manifold calibration work car-

ried out for the dissertation research. Design details are described for the specific ice depth

sounding SAR instrumentation and data sets used in applying manifold calibration tech-

niques to real data. The research thus far has been limited to a set of RDS measurements

collected from the P-3 aircraft in a multibeam configuration during a 2014 field season on

three separate days in the Canadian Arctic Archipelago. The flight lines show almost no ge-

ographic overlap and offer three independent sets for testing calibration. The application to

real data (presented in Chapter 7) is limited to imagery from the inboard subarray; the tech-

niques have not yet been tested on the wing-mounted subarrays which are subject to distinct

slow-time dependent error mechanisms due to vibration, wing flexure, propeller modulation,

and changing multipath environments presented by the aircraft’s reflective control surfaces

that move throughout flight.

The ArcticDEM provides a means to coregister the RDS imagery to an independent

3-D surface model. This model is queried to determine surface intersection angles in the
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fast-time gates of the multichannel single look complex SAR images in the creation of a

geocoded snapshot database. In manifold calibration, the database becomes the mechanism

for harvesting calibration targets at known arrival angles from the RDS SAR focused outputs.

Thus far, only pixels with one or two sources are considered in calibration. Pixels containing

contributions from three or more sources in elevation are not considered in this work. The

database created for this dissertation coregisters the RDS using the ArcticDEM gridded on

a 10 meter raster. Results have not been recreated to date with the finer 2 meter gridded

spacing to determine if this product improves manifold calibration. It is expected that the

model with 2 meter grid spacing would potentially improve the accuracy of a measured

manifold and justifies an informal test in practical application of the proposed methodology.

We expect the manifold calibration routine developed for this research to improve with the

application of additional ground control using the onboard Airborne Topographic Mapper

(ATM) lidar instrument flown as part of Operation IceBridge. It is recommended that the

surface object creation be modified to read in ArcticDEM metadata when possible and store

reported uncertainties of a tile after ground control. This would enable snapshots to be

tagged with a notional quality based on the ArcticDEM tile level error and may aide in

interpreting calibration performance after generation of RDS-derived DEMs.

3.5 Conclusion

This chapter summarizes the general array manifold calibration methodology carried through-

out the dissertation research and provides engineering detail of the specific instrumentation

and data sets studied in algorithm development. The snapshot database creation is described

as the data processing strategy which enables identification of potential calibration sources

in the SAR imagery. The required auxiliary data sets for database creation are specified and

include an independent model of the surface and land classification data that align to the

RDS swath. Two dimensional beamforming images are presented that serve as initial veri-

fication of the snapshot database methodology and confirm mismatch between our nominal
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array response model and truth.
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Chapter 4

Parametric Manifold Calibration Framework with

Spatially Diverse Calibration Sets

Abstract

Traditional methods for measuring single directional sources with multichannel SAR

sounders rely on capturing specular returns from smooth and flat extended surface

targets with a maneuvering aircraft on dedicated calibration flights. These methods

are subject to roll restrictions of the host platform and mandate crossover lines to mea-

sure unknown terrain slope. Many historic data sets lack measurements from allocated

flights needed to characterize the array and motivates the need for alternative signal

processing solutions capable of calibrating the array when the number of scattering

interfaces exceeds one. Parametric manifold calibration handles multiple targets si-

multaneously, provided a model of the array’s directional transfer function is known.

This chapter proposes a parametric manifold calibration framework for SAR sounders

whose manifolds may be described analytically with functional dependence on a non-

linear parameter set. A maximum likelihood estimator for deterministic and unknown

nonlinear manifold parameters common across disjoint observation sets of spatially di-

verse sources is derived by casting an estimation problem in a separable Gaussian form

composed of many smaller separable Gaussian estimation problems. The derivation is

developed for the use case of systematic geometric phase center position errors but the

approach generalizes to any arbitrary nonlinear manifold parameters that are constant

with respect to the SAR. The technique is numerically demonstrated in simulation
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by exercising the estimator with array shape calibration problems. Examples are pre-

sented that illustrate the role of calibration source spatial diversity in improving angle

estimation performance when the manifold functionally depends on angle of arrival and

a set of nonlinear parameters.

4.1 Observation Model Adopted for Parametric Calibration

An array of P sensors oriented in a two-dimensional plane and characterized by geometric

uncertainties is used to collect many snapshots in a stationary signal environment where the

arrival angles of the far field sources are fixed throughout the collection. We refer to the

subset of snapshots as a calibration bin which is characterized by some arbitrary number of

sources and snapshots. Suppose the array geometry is offset from a nominal model of the

sensor positions and we wish to estimates these geometric offsets. We treat the geometric

uncertainties as nonlinear parameters of the manifold which are common to all calibration

sets while other parameters are not necessarily similar between observation sets.

Let ηr denote the real-valued parameter vector comprised of geometric uncertainties that

we wish to estimate from a collection of Nb subsets. Let Mj denote the number of snapshots

in the jth subset where 1 ≤ j ≤ Nb, with Nb denoting the total set of calibration bins. The

subsets are disjoint in time and we assume that the source DOAs of each subset are generally

distinct so that as we collect calibration bins, we are able to increase the Fisher information

in the accumulated subsets. Note that bin is used to refer to a subset of calibration data.

Each bin is characterized by some number of sources, Qj, which we require to be non-zero

and less than the number of sensors so that our system of equations is overdetermined.

The narrowband model of the array data in the jth calibration bin is stated as:

xj(tmj) =

Qj∑
qj=1

a(θqj ,ηr)sqj(tm) + nj(tmj) = A(ηnlj )sj(tmj) + nj(tmj), (4.1a)

A(ηnlj ) =
[
a1(ηnlj ) . . . aQj(η

nl
j )
]
, (4.1b)
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aqj(η
nl
j ) =

[
a1(θqj)e

−jkT (θqj )r1(ηr1 ), . . . , aP (θqj)e
−jkT (θqj )rP (ηrP )

]T
, (4.1c)

sj(tmj) =

[
s1i(tmj), . . . , sQj(tmj)

]T
, (4.1d)

nj(tmj) =

[
n1(tmj), . . . , nP (tmj)

]T
. (4.1e)

The parameter vector that contains the nonlinear parameters of the manifold in the jth set of

calibration data which includes the geometric perturbations on the elements and the vector

of arrival angles (when taken to be unknown) is:

ηnlj =

[
ΘT
j , η

T
r

]T
(4.2)

Where Θj ∈ RQj×1 contains the Qj arrival angles in the jth set of snapshots. The vector

ηr ∈ R2P×1 contains the geometric uncertainties of each sensor in each dimension

ηr =

[
ηTr1 , . . . , ηTrP

]T
. (4.3)

The two-element vector ηrp contains the geometric uncertainties of sensor p in the y-z plane

ηrp =

[
∆yp,∆zp

]T
, (4.4)

So that the notation rp(ηrp) represents a true position of sensor p, determined by the nominal

position (which we know from a lidar survey and CAD description of the array) plus geometric

offsets in each dimension

rp(ηrp) = r0
p + ηrp . (4.5)
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The matrix of Mj snapshots for bin j is written as

Xj = A(ηnlj )Sj + Nj, (4.6a)

A(ηnlj ) ∈ CP×Qi =
{
a(θqj ,ηr), 1 ≤ qi ≤ Qj

}
, (4.6b)

Sj ∈ CQj×Mj =
{
sj(tmj), 1 ≤ mj ≤Mj

}
, (4.6c)

Nj ∈ CP×Mj =
{
nj(tmj), 1 ≤ mj ≤Mj

}
. (4.6d)

Finally we state a set of assumptions that we require for each set of snapshots here.

A1 : The linear model is overdetermined, hence Qj < P ∀ 1 ≤ j ≤ Nb.

A2 : The columns of A(ηnlj ) are linearly independent.

A4 : The noise process Nj is an ergodic and stationary complex Gaussian random process

of zero mean and covariance σ2
nj
IP .

A5 : Within a bin, each snapshot contains complex Gaussian observation noise. The

noise snapshots contain IID complex Gaussian random variables such that nj(tmj) ∼

C(0,Rnj). We assume that Rnj = E
{
njn

H
j

}
= σ2

nj
IP .

A6 : Noise snapshots are statistically independent, p(nj(tmi),nj(tmj)) =

p(nj(tmi))p(nj(tmj)).

A7 : The measurements between calibration sets are statistically independent, p(Xi,Xj) =

p(Xi)p(Xj).

A8 : Sources are treated as deterministic but unknown.

A9 : The number of sources in the jth bin, Qj, is known.

A10 : Geometric uncertainties are modeled as deterministic but unknown.

As the problem is formulated, we treat sensor position uncertainties and DOAs as the non-

linear parameters of the manifold but the solution generalizes to any nonlinear parameters

upon which the mean of an array snapshot functionally depends in a nonlinear way.
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4.2 Derivation of an Estimator of Nonlinear Manifold Parameters

We introduce the following lemma to support the derivation of the nonlinear parameters of

the manifold:

Lemma 4.2.1. Let x be a multivariate complex Gaussian observation vector distributed as

x ∼ C (A(γnl)γl,Rn), where γnl and γl denote the deterministic and unknown real nonlinear

and linear parameters of the mean. The maximum likelihood estimator of the nonlinear

parameter vector γnl is one that maximizes the following compressed likelihood function

L(γnl) = tr
(

PA(γnl)Rx

)
(4.7)

Where

PA(γnl) = A(γnl)
(
A(γnl)

HA(γnl)
)−1

A(γnl)
H ,

Rx = E
{
xxH

}
.

Lemma 4.2.1 results from the formulation of the problem under separable Gaussian esti-

mation theory [68] which was introduced in Chapter 2. Lemma 4.2.1, which was proven in

Appendix B inadvertently through the derivation of the DOA MLE, is a powerful fact that

asserts that a maximum likelihood estimator of any arbitrary, nonlinear parameters of the

observation mean can always be determined by maximizing the form in 4.7. We generalize

this fact to the array manifold calibration problem with the following corollary.

Corollary 4.2.1.1. Let x denote a snapshot of deterministic and unknown directional sources

described as a linear combination of manifold vectors in observation noise: x = A(Θ,ηnl)s+

n. Assuming a separable Gaussian formulation, then x ∼ C (A(Θ,ηnl)s,Rn). If ηnl rep-

resents nonlinear and nonrandom parameters of the manifold, then a maximum likelihood
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estimator of this parameter vector is obtained by maximization of the compressed likelihood:

L(Θ,ηnl) = tr
(

PA(Θ,ηnl)Rx

)
. (4.8)

We now state the following theorem which contends that the nonlinear parameters can

be estimated from disjoint sets of observations provided that the parameters are common

to all sets and the sets are statistically independent. The resultant estimator is one that

maximizes over a sum of compressed likelihoods where the compressed likelihood of a given

set is as defined in Lemma 4.2.1.

Theorem 4.2.2. Suppose we have Nb disjoint calibration bins. Let Xj denote the snapshot

set of the jth bin which we treat as having a separable Gaussian form Xj ∼ C(Aj(ηnl)Sj,Rnj).

Here Aj(ηnl) = A(Θj,ηnl). Assuming statistical independence across the bins, the maximum

likelihood estimate of the common nonlinear parameter vector is the solution which maximizes

the sum of the compressed likelihoods of each bin:

η̂nl = max
ηnl

{ Nb∑
j=1

Lj(Θj,ηnl)

}

Proof. We seek a likelihood function LT (ηT ; XT ) which we may maximize to obtain an

estimator for the nonlinear parameters of the manifold that are common across calibration

bins. The approach recognizes that the total set of calibration measurements (obtained by

aggregating Nb bins) can be decomposed into Nb separable Gaussian estimation problems.

The distribution of a snapshot in the jth bin is described as xj ∼ C(A(ηnlj )sj,Rnj). The

vector ηnlj = [Θj,ηr]
T contains the nonlinear parameters of the snapshot mean in bin j.

Because the observations admit a separable Gaussian form, we can always derive a com-

pressed likelihood function that provides a maximum likelihood estimate of the nonlinear

parameters [68]. This procedure was detailed in Appendix B.2.3 when deriving the MLE of

the DOA. The steps include finding the MLE of the noise variance and substituting that
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estimator into the likelihood function to eliminate the unknown noise power, σ2
n. Then the

MLE of the source waveform is found to be the pseudoinverse of the observations. This so-

lution is back-substituted into the likelihood function to obtain the compressed form which

solves for the nonlinear parameters of the manifold.

The compressed likelihood of the jth set is written as

Lj(ηj; Xj) = −
Mj∑
mi=1

∥∥∥P⊥A(ηnlj )xj(tmi)
∥∥∥2

(4.9)

Where P⊥
A(ηnlj )

is the P × P perpendicular projection which projects a vector to a subspace

that is orthogonal to the subspace spanned by the columns of A(ηnlj ). The projection matrix

and its orthogonal projector are defined as

PA(ηnlj ) = A(ηnlj )
(
AH(ηnlj )A(ηnlj )

)−1
AH(ηnlj ), (4.10a)

P⊥A(ηnlj ) = IP −PA(ηnlj ). (4.10b)

The ML estimate of the nonlinear parameters in the jth set of measurements is the solution

to the following multidimensional optimization

η̂nlj = min
ηj

{
Mj∑
mi=1

∥∥∥P⊥A(ηnlj )xj(tmi)
∥∥∥2
}
. (4.11)

Hence the MLE of the nonlinear parameter vector is the solution which minimizes the energy

in the orthogonal subspace. In Appendix B.2.3, we showed that the form in Equation 4.11

can be written as a maximization of the trace of the projected covariance matrix:

η̂nlj = max
ηnlj

{
tr

(
PA(ηnlj )Rxj

)}
. (4.12)

This form is consistent with the assertion of Lemma 4.2.1. To define an estimator which

uses information from multiple measurement sets, we first define an aggregated parameter
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vector ηT . Based on the problem formulation, we treat ηr as being a common parameter

vector among all of the sets and define a total parameter vector as

ηT =

[
ηTr , ΘT

1 , . . . ,Θ
T
Nb
, s11, . . . , s1Q1 , . . . sNb1, . . . , sNbQNb , σ2

n1
, . . . , σ2

nNb

]T
.

The vector sij ∈ C1×Mj denotes the discrete representation of the ith source in the jth bin

and corresponds to the ith row of Sj. The density function of the aggregated calibration

bins is the joint density of all of the observations parameterized by ηT and written as

p(X1, . . . ,XNb ;ηT ). Under an assumption of statistical independence between the noise

snapshots within and between calibration bins, we write the parameterized density as the

following product

p(X1, . . . ,XNb ;ηT )

= p(X1;ηr,Θ1,S1, σ
2
n1

)p(X2;ηr,Θ2,S2, σ
2
n2

) . . . p(XNb ;ηr,ΘNb ,SNb , σ
2
nNb

)

=

Nb∏
j=1

p(Xj;ηr,Θj,Sj, σ
2
nj

). (4.13)

Where the probability density of the measurements in the jth set is given by

p(Xj;ηr,Sj, σ
2
nj

) =

Mj∏
mi=1

1

πP
1

σ2P
nj

exp

[
− 1

σ2
nj

‖xj(tmi)−A(Θj,ηr)sj(tmi)‖
2

]
. (4.14)
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The likelihood function of the total set of unknown parameters is written as

LT (ηT ) = LT (ηr,Θ1, . . . ,ΘNb ,S1, . . . ,SNb , σ
2
n1
, . . . , σ2

nNb
; X1, . . . ,XNb),

= ln

[
Nb∏
j=1

p(Xj;ηr,Θj,Sj, σ
2
nj

)

]
,

=

Nb∑
j=1

ln p(Xj;ηr,Θj,Sj, σ
2
nj

),

=

Nb∑
j=1

Lj(ηr,Θj,Sj, σ
2
nj

; Xj).

(4.15)

We see that the total likelihood of the parameter vector ηT is the sum of the individual

likelihoods. Ultimately we seek to estimate the perturbations in ηr using all of the calibration

bins. When the angles are unknown, the estimator of ηr is coupled to {Θj} , for 1 ≤ j ≤ Nb.

To solve for an estimator of the nonlinear parameters, we must eliminate dependence of the

likelihood on the unknown nuisance parameters S1, . . . ,SNb , σ
2
n1
, . . . , σ2

nNb
. Recognizing that

∂

∂σ2
i

Lj(ηr,Θj,Sj, σ
2
nj

; Xj) = 0, for i 6= j (4.16a)

∂

∂si
Lj(ηr,Θj,Sj, σ

2
nj

; Xj) = 0, for i 6= j (4.16b)

We can substitute the ML estimates for
{

Sj, σ
2
nj

}
to create a compressed likelihood for each

set. We denote the compressed likelihood of the jth set as

Lj(ηr,Θj; Xj) = Lj(ηr,Θj,Sj, σ
2
nj

; Xj)

∣∣∣∣∣
σ2
nj

=σ̂2
nj
,Sj=Ŝj

(4.17)

Where the estimates refer to maximum likelihood estimates. The steps for obtaining ML

estimates of each unknown were detailed in Appendix B.2.3. The procedure here is identical
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and leads to the following estimators

σ̂2
nj

=
1

MjP

Mj∑
i=1

∥∥xj(ti)−AH(ηr,Θj)sj(ti)
∥∥2
, (4.18a)

Ŝj =

(
AH(ηr,Θj)A(ηr,Θj)

)−1

AH(ηr,Θj)Xj. (4.18b)

We substitute these forms into Equation 4.17 to obtain the compressed likelihood of the jth

bin

Lj(ηr,Θj; Xj) = tr

(
PA(ηr,Θj)Rxj

)
. (4.19)

The total likelihood with eliminated nuisance parameters is given by

LT (ηr,Θ1, . . . ,ΘNb ; X1, . . . ,XNb) =

Nb∑
j=1

Lj(ηr,Θj; Xj),

=

Nb∑
j=1

tr

(
PA(ηr,Θj)Rxj

)
. (4.20)

We state the final form of the MLE of the nonlinear parameters as the solution to the

following maximization

[
η̂r, Θ̂1, . . . , Θ̂Nb

]
= max
ηr,Θ1,...,ΘNb

{LT (ηr,Θ1, . . . ,ΘNb ; X1, . . . ,XNb)}

= max
ηr,Θ1,...,ΘNb

{
Nb∑
j=1

tr

(
PA(ηr,Θj)Rxj

)}
.

(4.21)

(4.22)

In the case of unknown arrival angles and perturbation of P sensor positions in two

dimensions, the solution requires a multidimensional search of 2P+Q1+· · ·+QNb dimensions.

When the arrival angles are perfectly known, the dimensionality of the search space reduces

to the length of the nonlinear parameter vector (taken to be 2P when we limit consideration
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to unknown geometric perturbations in two dimensions). Note that this result generalizes

to arbitrary nonlinear parameters of the manifold model.

The estimator summarized in Equation 4.22 indicates that the θ dependent length of

the manifold vectors is arbitrary with respect to the maximization due to the underlying

normalization of the model enforced by the projection operator, suggesting that only the

orientation of a manifold vector in CP is required to implement the estimator form as derived.

The estimator projects the observations onto each of the Nb column spaces where the jth

column space is specified as

C(A(ηr,Θj)) = span
{
a(ηr, θ1j) . . . a(ηr, θQj)

}
. (4.23)

Multiplication of the qj manifold vector by a real, nontrivial scalar βqj ∈ R dilates or shrinks

a(ηr, θqj) but does not change the destination subspace of the projection operator. We can

alternatively write the image of the linear transformation summarized by the projection

operator as

span
{
β1ja(ηr, θ1j) . . . βQja(ηr, θQj)

}
, βqj ∈ R and βqj > 0. (4.24)

Equation 4.24 allows us to conclude two important facts:

1. The estimator of nonlinear manifold parameters derived in this chapter and summarized

in Equation 4.22 cannot lead to absolute calibration of element patterns because the θ

dependent length of the manifold vectors is lost,

2. The principal components characterization of the manifold which only pro-

vides the orientation of a manifold vector in CP space is sufficient for the

application of the estimator proposed in Equation 4.22.

Item 2 justifies a unit-norm constraint invoked in the derivation of the principal components

based manifold characterization described in Chapter 5.
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4.3 Fisher Information for the Parametric Framework

The statistical independence of calibration bins enables the total Fisher information matrix

to be written as the sum of Nb information matrices

JT (ηr,Θ1, . . .ΘNb) =

Nb∑
j=1

Jj(ηr,Θj). (4.25)

This form shows explicit dependence on Nb suggesting that the estimator accuracy increases

with an increasing number of calibration bins, provided that the Fisher information in an

individual bin is nonzero. We can note that the m,n entry of the Fisher information matrix

under the separable complex Gaussian formulation adopted in this chapter is given by Bang’s

formula [93], originally presented in Equation C.12 of Appendix C, and restated here for the

jth bin as:

[Jj(η)]m,n = tr
[
Rnj
−1(η)

∂Rnj(η)

∂ηm
Rnj
−1(η)

∂Rnj(η)

∂ηn

]
+ . . .

2Re

[
∂µHxj(η)

∂ηm
Rnj
−1(η)

∂µxj(η)

∂ηn

]
.

(4.26)

In the form above we use the following substitutions

µxj(η
nl
j ,η

l
j) = A(Θj,ηr)η

l
j, (4.27a)

Rnj = σ2
nj
IP , (4.27b)

ηnlj =
[
ηTr ,Θ

T
j

]T
, (4.27c)

And use ηlj to emphasize the interpretation of the unknown waveforms as linear parameters

of the mean. Recognizing that the gradient of the covariance term with respect to geometric

uncertainties on phase center positions is zero (and also holds for any arbitrary nonlinear

manifold parameters under the separable Gaussian formulation outlined in this chapter), we
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can write the Nnl × Nnl Fisher information matrix associated with the unknown nonlinear

parameters of the mean as

Jj(η
nl
j ) =

2

σ2
nj

Re

{(
∇ηnlj

[
(ηlj)

HAH(ηnlj )

])(
∇ηnlj

[
(ηlj)

HAH(ηnlj )

])H}
. (4.28)

Note that this form is a subblock of the total FIM for bin j. The u, v entry of this matrix is

written as

[
Jj(η

nl
j )
]
u,v

=
2

σ2
nj

Re

[
∂µHxj(η

nl
j ,η

l
j)

∂ηu

∂µxj(η
nl
j ,η

l
j)

∂ηv

]
. (4.29)

The general variable ηi here refers to the ith entry of ηnlj . Assuming a practical form of

the noise covariance that does not lead to a singularity, we can conclude that the Fisher

information associated with the mth unknown parameter is nonzero provided the gradient

vector is nonzero.

In the numerical examples presented further in this chapter, we exercise the estimator

in Equation 4.22 using array shape perturbations of an array oriented in a y-z plane. The

manifold model is assumed to be the isotropic steering vector with unknown errors on the

phase center positions. The general expression for the errors on phase center p is given by

∆rp = [∆yp,∆zp]
T . Suppose the spatial sources are uncorrelated, meaning that E {s∗i sj} = 0

for i 6= j, and assume that the angle of arrival is measured off the z axis. The form in

Equation 4.29 leads to the following expressions for the Fisher information associated with
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the errors on the pth element, under an assumption of uncorrelated sources:

J(∆yp) =

Qj∑
i=1

2

σ2
nj

E {s∗i si}

[
k2 sin2 θi

]
=

Qj∑
i=1

2Pi
σ2
nj

k2
y(θi) =

Qj∑
i=1

2 · SNRi · k2
y(θi), (4.30a)

J(∆zp) =

Qj∑
i=1

2

σ2
nj

E {s∗i si}

[
k2 cos2 θi

]
=

Qj∑
i=1

2Pi
σ2
nj

k2
z(θi) =

Qj∑
i=1

2 · SNRi · k2
z(θi). (4.30b)

Here k is the wavenumber and ky(θi), kz(θi) refer to the spatial frequency components in

the y and z dimensions respectively for a plane wave with arrival angle θi. The forms above

are meant to offer intuition into the estimator performance that is demonstrated in the next

section when the model perturbations are purely represented with geometric errors. We may

first notice that the Fisher information associated with the unknown error parameters is

proportional to source SNR, showing that the information in a measurement from a spatial

source increases linearly with the associated SNR. Recall that the lower bound on estimator

error shares an inverse proportionality with the Fisher information. The expressions above

confirm an intuition that high SNR observations lead to more accurate estimates of unknown

parameters. In the limiting cases (provided that ky(θi), kz(θi) > 0) , J(∆yp), J(∆zp) → ∞

when σ2
nj
→ 0 or when Pi →∞ and the associated estimator error decreases.

We can also note that the Fisher information for the errors in a particular dimension

goes to zero when the corresponding spatial frequency component of that dimension goes to

zero. The y component of the spatial frequency is zero at vertical incidence, indicating that

snapshots from θ = 0◦ sources do not contain Fisher information associated with the errors

along the y axis. In other words as θ → 0◦, J(∆yp)→ 0. Similarly we can observe that the

Fisher information associated with ∆zp goes to zero as |θ| → 90◦ indicating that snapshots

collected from sources far off nadir cannot discriminate errors along the z axis. The forms of

the Fisher information for the errors in y and z suggest that snapshots obtained near nadir

improve estimates of errors in the z dimension and snapshots obtained at the large incidence
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angles improve estimates of the errors along the y axis.

4.4 Simulated Performance in Parametric Manifold Calibration

The proposed estimator of nonlinear manifold parameters is demonstrated numerically with

a set of simulated scenarios designed in MATLAB [94]. The examples offer insight into the

estimation framework and demonstrate the restoration of arrival angle estimator accuracy

when we evaluate the model of a perturbed manifold in terms of the maximum likelihood

estimates of the nonlinear parameters admitted by Equation 4.22. The scenarios parallel

those presented in Chapter 2 for validating the implementation of the MUSIC and MLE

estimators. The experiments both assume two equal power spatial sources and evaluate

estimator performance with varying source SNR and snapshot support.

4.4.1 Array Shape Perturbation of the Nominal Manifold

In contrast to the results presented in Figure 2.7 from Chapter 2, this example assumes an

array of 7 elements with nominal sensor positions defined by the RDS lever arms presented

in Table 3.2. The nominal manifold hence refers to the isotropic manifold response vector

in Equation 2.35 evaluated in terms of the nominal sensor geometry. The nominal manifold

is geometrically perturbed in the y-z plane in simulation by imposing systematic position

errors on the nominal geometry as

rp = r0
p + ∆rp. (4.31)

The geometric quantities are illustrated in Figure 4.1 with position vectors referencing a

phase center in the array as the origin. The terms in this expression are defined as follows:

- rp ∈ R2×1 denotes the actual position vector pointing from the reference phase center

to phase center p,
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Figure 4.1: Geometrically perturbed manifold conventions.

- r0
p ∈ R2×1 denotes the nominal position vector pointing from the reference to phase

center p based on our model of the array geometry,

- ∆rp ∈ R2×1 is the unknown geometric error vector given by ∆rp = [∆yp,∆zp]
T .

The RDS phase center positions are perturbed in simulation by adding a geometric error

to each position vector. While the position errors are modeled as samples from a Gaussian

distribution, they are always assumed to be deterministic with respect to the estimation

problem. Position errors in y and z are treated as independent and identically distributed

as ∆yp ∼ N (0, σ2) and ∆zp ∼ N (0, σ2) for an arbitrary phase center. Hence errors are IID

in both dimensions and from phase center to phase center. The length of an error vector

∆rp given by drp =
√
y2
p + z2

p is a Rayleigh distributed random variable [95] whose expected
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value is written in terms of the variance of the geometric error in either dimension as

E {drp} =

√
πσ2

2
. (4.32)

In array shape calibration literature, small scale and large scale perturbations appear to lack

a common definition (see [80] for example). The following definitions of small and large scale

are adopted in this dissertation:

Definition 1 (Small scale). In the small scale perturbation regime, the average Euclidean

length of the monostatic equivalent phase center position error vector is less than 0.05λ

E {drp} ≤ 0.05λ, (4.33)

Which corresponds to the following bound on σ

σ ≤ 0.04λ. (4.34)

Definition 2 (Large scale). In the large scale perturbation regime, the average Euclidean

length of the monostatic equivalent phase center position error vector is greater than

0.05λ

E {drp} > 0.05λ, (4.35)

Which corresponds to the following bound on σ

σ > 0.04λ. (4.36)

The definitions above which assume IID geometric errors across the phase centers can be

used to determine the variance of the error distribution in y and z in simulation. Note that

in demonstrating the estimator of nonlinear manifold parameters, both small and large scale

perturbations are tested. The standard deviation of position errors in either dimension is
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written in terms of variable α, introduced to denote a perturbation scale, as σ = αλ. In the

simulations that follow, the boundary of the small scale perturbation region is tested using a

perturbation scale of α = 0.035 to perturb the monostatic equivalent phase center geometry.

The estimator is also tested under large scale perturbations assuming a perturbation scale

of α = 0.07 (well within the large scale regime by Definition 2).

The benefit of demonstrating estimator performance in the array shape calibration case

is that the perturbed manifold model is immediately available in closed form. The pth entry

of a manifold vector is modeled as

[
a(θ,ηr)

]
p

= e−jk
T (θ)(r0p+∆rp). (4.37)

The perturbed manifold assumes isotropic radiation of the constituent elements in the array

and thereby ignores mutual coupling and all other electromagnetic phenomenology. A point

is emphasized here to the reader: the geometric perturbation model in Equation 4.37 is

a simple analytic function that serves as an algorithm-development convenience; the form

enables a methodology for exercising the estimator of nonlinear manifold parameters derived

in Equation 4.22. The geometrically perturbed manifold is not meant to be completely

representative of a real array manifold which is subject to many influencing factors including

mutual coupling and platform effects.

4.4.2 Synthesis of Calibration Bins

The proposed approach outlined in this chapter aggregates many diverse calibration bins to

estimate nonlinear manifold parameters. The total Fisher information increases as more and

more spatially diverse sources are presented to the estimator. We expect estimator accuracy

to improve as the spatial diversity of sources expands in the calibration sets. To demonstrate

increased estimator accuracy with more spatially diverse sources, two calibration sets are

tested (denoted A and B). Set A uses a single calibration bin (i.e. Nb = 1) to estimate position
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Table 4.1: Calibration bin setup in simulations.

Source Specification in jth Calibration Bin

Nb Mj Qj θqj(
◦) SNRqj(dB)

Set

A 1 100 Qj ∼ Z [1, 2] θqj ∼ U [−20, 20] SNRqj ∼ U [10, 30]

B 100 100 Qj ∼ Z [1, 2] θqj ∼ U [−85, 85] SNRqj ∼ U [10, 30]

1 ≤ qj ≤ Qj

errors and restricts the angular range of calibration sources to ±20◦ while Set B increases the

spatial bandwidth of the observations, using many calibration bins (Nb = 100) originating

from a much larger field of view ±85◦. We expect the estimated unknown geometric error

to be less accurate when the calibration data span a limited part of the spatial frequency

spectrum. We hence anticipate that by increasing the amount of spatial bandwidth spanned

by the calibration sets, we will obtain better estimates of the geometric perturbations which

in turn will lead to more accurate estimates of arrival angle.

Table 4.1 specifies the simulated sources in each calibration set. Note that the script Z

notation is used to indicate a random integer uniformly distributed over an interval. Recall

that we use Q to denote number of sources andM to denote number of snapshots. As shown

here, the number of sources in any calibration bin is limited to at most two. The DOA of

the qth source is drawn from a uniform distribution whose interval is fixed with respect to

the particular set. Per source SNR similarly varies over a uniform distribution and allows a

large range of relative powers to be tested.

4.4.3 Estimation of Perturbation Parameters

The optimization problem in 4.22 is cast as a minimization by expressing the objective

function in terms of an orthogonal projection and searching for a minimum using MATLAB’s

built in constrained minimization function in the Optimization Toolbox [94]. The manifold
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perturbations are initialized to zero. The algorithm constrains the search by restricting

perturbations to a user-defined interval in y and z about the nominal position of each phase

center. The solver perturbs the position errors in an iterative search over 2(P−1) dimensions

for the global minimum. In the simulated results presented here, the position of the reference

phase center is taken to be known (hence not perturbed).

Examples of the estimated unknown errors are plotted for the manifold model subject to

small scale perturbations (α = 0.035) and large scale perturbations (α = 0.07) are presented

for one tested instantiation of geometric error in Figures 4.2 and 4.3 respectively. The

plots are given as errors in the array geometry (as opposed to monostatic equivalent phase

centers) but the perturbation scales refer to the phase center geometry. Geometric errors

are estimated with both sets of calibration data (see Table 4.1). The nominal geometry is

denoted with a gray x marker and perturbed positions (corresponding to truth) are plotted

with yellow circles. Estimates from Set A and Set B are plotted in green and blue respectively.

The cross hairs on each plotted set of estimates indicate the 95% confidence interval of

geometric errors estimated over 100 Monte Carlo trials. Each trial creates a new set of

random calibration measurements. In other words Set A and Set B change with each trial,

providing new estimates of a particular perturbation state.

Comparison of estimates from the small scale scenario in Figure 4.2 and the large scale

scenario in Figure 4.3 suggests that the estimates improve (become less biased) when the

observations provide more information to the estimator in 4.22. The outcomes do not provide

sufficient evidence to interpret whether the increased accuracy is attributable to the fact

that Set B has a larger number of calibration bins or if it produces more accurate estimates

because it allows sources over a larger field of view. An attempt to understand these two

influencing factors on the estimator’s performance is developed further below. In the small

scale case shown in Figure 4.2, the Set B estimates appear unbiased, showing the center

of the blue cross hairs falling over truth (in yellow). The cross hairs are barely observable

in the figure due to the tightening of the estimator error about average estimated values.
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Small Scale Calibration Example
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Figure 4.2: Estimated sensor position errors in a small scale scenario for observation sets with
reduced Fisher information (Set A) and increased Fisher information (Set B) in parameter
estimation. Cross hairs indicate 95% confidence intervals of 100 Monte Carlo trials.

Large Scale Calibration Example
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Figure 4.3: Estimated sensor position errors in a large scale scenario for observation sets with
reduced Fisher information (Set A) and increased Fisher information (Set B) in parameter
estimation. Cross hairs indicate 95% confidence intervals of 100 Monte Carlo trials.
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In the large scale case, the estimates derived with observations spanning a larger spatial

bandwidth demonstrate improved accuracy but maintain some residual bias, albeit small,

after correction of the nominal geometry to the estimated perturbed state.

4.4.4 Angle Estimation Improvement with Parametric Calibration

The estimated perturbed manifold parameters are applied in angle estimation to demonstrate

performance restoration in the classic examples produced in Chapter 2 for the ideal manifold.

The results presented here limit consideration to the MLE. Experiments 1 and 2 (described

in Chapter 2) are carried out assuming the nominal RDS phase centers derived from the

geometry reported in Table 3.2 subject to small scale (on the order of 0.025λ) and large

scale (on the order of 0.05λ) errors as outlined in the previous section. The description of

these experiments is restated below.

1. Experiment 1: Two uncorrelated equal power sources
(

Θ = [−7◦, 12◦]T
)

with a

fixed number of snapshots (M = 50) and per sensor SNR sweeping over the interval

10 dB < SNR < 25 dB.

2. Experiment 2: Two uncorrelated equal power sources
(

Θ = [−7◦, 12◦]T
)

with a fixed

combined SNR of 20 dB and snapshots varying over the interval 10 < M < 1000.

The signal environment contains two equal power mainbeam sources at −7◦ and 12◦, referred

to as Source 1 and Source 2. Sources are modeled as narrowband and centered at the RDS

carrier frequency of 195 MHz.

Maximum likelihood DOA estimation accuracy is numerically evaluated over 500 Monte

Carlo trials per tested snapshot or SNR value for the two sources assuming the following

manifold models in angle estimation:

1. True: True sensor geometry is known and the estimator manifold model perfectly

matches truth (corresponds to perfect calibration),

2. Nominal: Estimator manifold model assumes the nominal geometry (corresponds to

the uncalibrated case),
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3. Cal Set A: Estimator manifold model assumes geometric perturbations and evaluates

the array response in terms of estimated positions obtained with Set A,

4. Cal Set B: Estimator manifold model assumes geometric perturbations and evaluates

the array response in terms of estimated positions obtained with Set B.

Figures 4.4 and 4.5 present simulated MLE performance for Source 2 (θ = 12◦) resulting

from Experiment 1 and 2 respectively. Each figure illustrates outcomes when compensating

for small scale geometric perturbations in subfigure (a) and large scale perturbations in

subfigure (b). The estimates of the Source 2 DOA are marginally worse when calibrating

with Set A. Source 1 DOA estimates are omitted here as they admit similar conclusions

on a smaller scale. In both the small and large scale perturbation scenarios, the ideal

performance (where geometry is perfectly known) shows that the MLE accuracy improves

with increasing SNR (Figure 4.4) and converges to the CRLB with high values of SNR. The

uncalibrated curves (resulting from the use of nominal geometry in angle estimation) verify

degradation in estimator accuracy however we note that both perturbation scenarios show

slight improvement in estimator performance with increasing SNR until about 17 dB when

the RMSE levels off to a constant value. The error converges to approximately 1.65◦ at 25

dB for the small scale perturbation case. In the large scale case, the error appears to be

bound to 2.8◦ in the high SNR regime.

Both scenarios verify improved angle estimator performance with more accurate estimates

of geometric error. Recall that even in the small scale perturbation scenario, the estimated

geometric errors are biased (see Figure 4.2). The observed angle estimator performance

admits bias when biased estimates of positions are assumed in the MLE algorithm. Results

for both scenarios (small and large scale perturbations) evidence bias in their angle estimates

in the highest SNR case when a biased model of geometry (estimated with Set A) is used in

angle estimation. This bias is reduced with improved calibration. The unbiased estimates

of geometry (estimated with Set B) appear to restore the classic performance of the MLE

under matched models (i.e. ideal) in both small and large scale scenarios and we find that the
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Figure 4.4: Experiment 1 outcomes for Source 2: (a) RMS perturbation of nominal phase
center geometry of 0.035λ (small scale), (b) RMS perturbation of nominal phase center
geometry of 0.070λ (large scale).
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Table 4.2: Estimated error distribution parameters with 95% confidence intervals for θ = 12◦

source with 12 dB per element SNR and 1,000 snapshots.

Estimated Error Distribution Parameters

Perturbation Manifold Model µ̂θ(
◦)±m σ̂θ(

◦)± s

0.035λ true 0.0039± 0.0126 0.1432± 0.0089

0.035λ nominal 1.8215± 0.5218 0.2476± 0.0154

0.035λ Set A 0.2125± 0.0355 0.4039± 0.0251

0.035λ Set B −0.0053± 0.0131 0.1432± 0.0093

0.070λ true 0.0035± 0.0128 0.1457± 0.0091

0.070λ nominal 2.9428± 0.0294 0.3340± 0.0208

0.070λ Set A 0.2085± 0.0441 0.5021± 0.0313

0.070λ Set B 0.0569± 0.0134 0.1524± 0.0095

calibrated model closely approaches the CRLB for this particular instantiation of perturbed

geometry.

To offer intuition to the DOA estimation performance curves under varying manifold

models, a Gaussian distribution is fit to the errors θ̂−θ for the case of M = 1, 000 snapshots

and 12 dB per element SNR over the 500 Monte Carlo trials. The maximum likelihood

estimated distribution parameters are reported by manifold model in Table 4.2 along with

the 95% confidence intervals of the estimates for the small and large scale perturbation

cases considered for these examples. The estimates are used to produce plots of the fitted

distributions for the small and large scale cases in Figures 4.6a and 4.6b. The histograms of

the errors measured from the simulated data are well-described by a Gaussian distribution as

we would expect but the binned error plots are omitted from these results to ease readability

of the figure which is only offered as an illustration.

For this particular instantiation of perturbed geometry, the DOA estimation performance

in the ideal manifold case (where the array processor maintains perfect knowledge of the ar-

ray manifold in angle estimation) is not altered with the larger perturbation scale. The effect
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Figure 4.5: Experiment 2 outcomes for Source 2: (a) RMS perturbation of nominal phase
center geometry of 0.035λ (small scale), (b) RMS perturbation of nominal phase center
geometry of 0.070λ (large scale).
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Figure 4.6: Fitted Gaussian distributions to simulated DOA errors estimated with various
manifold models in high SNR, high snapshot regime: (a) σ = 0.035λ (small scale), (b) 0.070λ
(large scale).

of assuming the nominal manifold (where the nominal phase center positions determine the

array response) leads to biased estimates of angle that are larger in the large scale perturba-

tion case. The estimator accuracy improves when estimates of the geometric perturbations

are incorporated into the manifold. We can note that the estimated position errors derived

from Calibration Set A (where position uncertainties are estimated from one array covari-
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ance matrix) reduce the bias of the DOA estimates relative to the uncalibrated case but the

variance increases. The manifold model that most closely approximates the performance of

the ideal case is realized by Calibration Set B which reduces both bias and variance of the

estimator errors.

4.4.5 Summarizing Thoughts on Simulated Outcomes

The simulated results outlined above recreate some of the well-known estimator performance

curves in direction of arrival literature [1] in the context of manifold mismatch. The experi-

ments outlined in the original study aim to contrast super resolution performance of MUSIC

and MLE. The estimator error distributions under various manifold models presented in

Figure 4.6 illustrates the fundamental problem of manifold calibration; even for the best

case signal environment where a directional source with high SNR and large sample support

presents to the array, a poorly matched manifold model leads to biased estimates of angle

with larger uncertainty in angle estimation. We point out that the estimator performance

in Figures 4.4 and 4.5 results from a simulation of one perturbed state in order to compare

measured estimator accuracy to the CRLB.

There is practical interest in studying manifold calibration over many states of position

errors and in assessing the average influence of the number of calibration bins as well as

the spatial bandwidth of calibration sources on the proposed estimator of nonlinear model

parameters derived earlier in the chapter and summarized in Equation 4.22. This motivates

an alternative simulation type to study the influence of training data characteristics on angle

estimation outcomes. The section that follows offers simulator results from experiments

designed to demonstrate the influence of spatial bandwidth and number of calibration bins

on overall angle estimator accuracy over many perturbation states.
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4.5 Influence of Training Data Characteristics on Single Source

DOA Estimation

The remainder of this chapter establishes DOA estimator performance over many realizations

of small scale perturbation states. Estimator accuracy is numerically evaluated with a single

high SNR source that presents a stationary signal environment to the array over many

snapshots at each point in the field of view. Each simulation varies characteristics of the

calibration data set used to estimate the nonlinear manifold parameters and tests a given

value over 100 Monte Carlo trials. The perturbation state changes on each Monte Carlo trial

and hence each measured error curve summarizes 100 different instantiations of randomized

position errors (generated with small scale perturbations). The source parameters assumed

in angle estimation include 12.5 per element SNR and 100 snapshots.

Angle estimation performance curves are evaluated with two additional experiments, de-

noted Experiment 3 and Experiment 4, designed to study angle estimation under various

conditions of the training data. Both simulations rely on small scale array shape perturba-

tions to simulate mismatch between the modeled manifold and truth. Again we reiterate

that the array shape perturbation model is a convenience that allows us to exercise the

parametric calibration technique proposed in this chapter. The experiments are summarized

below.

1. Experiment 3: The angular interval over which calibration sources are selected is

increased from 1◦ to 180◦ to verify sensitivity of the angle estimator to spatial bandwidth

of the calibration sources.

2. Experiment 4: The number of calibration bins is increased from 3 to 100 to verify the

influence of Nb on DOA estimator accuracy.

The tested values of each characteristic of the training data are described in further detail

below.
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4.5.1 Synthesis of Calibration Bins

Experiment 3 investigates the influence of the spatial bandwidth of calibration sources by

increasing the angular interval over which calibration sources are selected. This angular

interval is always defined about θ = 0◦. In the case where a calibration bin contains two

sources, a minimum source separation of 10◦ is enforced. When the angular extent ∆θ is

smaller than the minimum separation, only one source is allowed in each bin. The number

of snapshots used to estimate the covariance matrix is held to a constant value of 100

throughout all simulations described in this chapter. When testing the influence of ∆θ, the

number of bins is assigned to Nb = 100. The calibration source parameters used to establish

the influence of spatial bandwidth on DOA estimator accuracy are summarized in Table 4.3.

Experiment 4 examines the role of the number of calibration bins on DOA accuracy.

Recall that Nb determines the number of covariance matrices passed to the optimization

problem derived in Equation 4.22. In this experiment, we assume a large interval for select-

ing arrival angles of calibration sources. All other parameters remain fixed relative to the

previous test with the exception of Nb which takes discrete values that vary between 3 and

100 calibration bins. The specifications of the sources in the calibration bins are summarized

in Table 4.4.

4.5.2 Angle Estimation Performance Curves

Each simulation tests a characteristic (Nb or ∆θ) of the training data used to estimate the

nonlinear manifold parameters. One tested characteristic is carried out over 100 realizations

of perturbed geometry. The estimated manifold parameters of each realization are used

by the MLE algorithm in angle estimation. The estimated nonlinear parameters of the

manifold are tested against 181 source arrival angles uniformly spaced over −90◦ ≤ θ ≤ 90◦.

The directional sources impinge one at a time on the array so that Q = 1 at all times in

testing. Every tested training data characteristic leads to one θ dependent performance

curve obtained by averaging across the 100 realizations corresponding to different random
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Table 4.3: Calibration bin setup in Experiment 3 (scenario for testing spatial bandwidth
influence on DOA accuracy).

Source Specification in jth Calibration Bin

Nb ∆θ(◦) Mj Qj θqj(
◦) SNRqj (dB)

100 1 100 Qj ∼ Z [1, 2] θqj ∼ U [−0.5, 0.5] SNRqj ∼ U [10, 30]

100 4 100 Qj ∼ Z [1, 2] θqj ∼ U [−2, 2] SNRqj ∼ U [10, 30]

100 10 100 Qj ∼ Z [1, 2] θqj ∼ U [−5, 5] SNRqj ∼ U [10, 30]

100 16 100 Qj ∼ Z [1, 2] θqj ∼ U [−8, 8] SNRqj ∼ U [10, 30]

100 30 100 Qj ∼ Z [1, 2] θqj ∼ U [−15, 15] SNRqj ∼ U [10, 30]

100 50 100 Qj ∼ Z [1, 2] θqj ∼ U [−25, 25] SNRqj ∼ U [10, 30]

100 180 100 Qj ∼ Z [1, 2] θqj ∼ U [−90, 90] SNRqj ∼ U [10, 30]

1 ≤ qj ≤ Qj

Table 4.4: Calibration bin setup in Experiment 4 (scenario for testing impact of number of
calibration bins on DOA accuracy).

Source Specification in jth Calibration Bin

Nb ∆θ(◦) Mj Qj θqj(
◦) SNRqj (dB)

3 170 100 Qj ∼ Z [1, 2] θqj ∼ U [−85, 85] SNRqj ∼ U [10, 30]

5 170 100 Qj ∼ Z [1, 2] θqj ∼ U [−85, 85] SNRqj ∼ U [10, 30]

10 170 100 Qj ∼ Z [1, 2] θqj ∼ U [−85, 85] SNRqj ∼ U [10, 30]

50 170 100 Qj ∼ Z [1, 2] θqj ∼ U [−85, 85] SNRqj ∼ U [10, 30]

100 170 100 Qj ∼ Z [1, 2] θqj ∼ U [−85, 85] SNRqj ∼ U [10, 30]

1 ≤ qj ≤ Qj
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position error states.

Because the sensor position vectors are randomized with respect to the Monte Carlo

trials, the estimator performance technically should not be compared to the classic CRLB;

rather the use of the Hybrid CRLB [30] which handles both deterministic and random model

parameters is better suited for this problem. The implementation here is complicated be-

cause not only are the perturbation states random but calibration source DOAs and number

of sources in the training data are also randomized; the HCRLB is hence not immediately

available. Instead angle estimator performance curves are plotted against an average es-

timator accuracy curve resulting from the use of the ideal manifold in MLE. Recall that

in these simulations ideal implies perfect knowledge of geometric uncertainty and therefore

perfect knowledge of the manifold. Thus the variation of training data characteristics has

no bearing on the ideal performance curves and the perfectly matched case represents the

best possible performance in angle estimation for a given set of test data. For each test of

training data characteristics, the ideal curves are presented but show no sensitivity to the

varying parameters. The ideal RMSE curves are only provided to the reader as justification

of creating one average ideal curve for benchmarking angle estimator accuracy as a function

of varying training data attributes.

4.5.3 Impact of Calibration Source Spatial Bandwidth

Single source angle estimator performance is summarized in Figures 4.7 and 4.8 for a set

of values which determine the angle interval over which calibration sources are selected for

estimating manifold perturbation parameters. Bias and RMSE are reported for seven tested

values of ∆θ which determine the allowable angular interval about θ = 0◦ for selecting cali-

bration sources in training. Figures 4.7a and 4.7c report bias and RMSE in angle estimation

when the true position offsets of each sensor are used in angle estimation while Figures 4.7b

and 4.7d summarize the performance with estimated geometric uncertainty. The bias and

RMSE curves resulting from the matched or ideal manifold case provide verification that
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the variation of training data characteristics does not alter angle estimation performance

when the manifold parameters are perfectly known. The ideal RMSE curves in Figure 4.7c

approach the limit (with increasing Monte Carlo trials) of achievable accuracy on average

with the given nominal conformal RDS geometry which realizes the smallest error near nadir.

The RMSE increases as the test source moves off of θ = 0◦ with the largest errors realized

at the edges of the field of view but not exceeding 0.027◦.

Figures 4.7b and 4.7d illustrate angle estimation accuracy with increasing spatial band-

width in the training set. A detailed view of these results is offered in Figure 4.8. The

performance curves confirm the predicted influence of spatial bandwidth on estimator ac-

curacy that propagates error into angle estimation. We observe convergence in RMSE over

all values of ∆θ at θ = 0◦ due to the experiment setup that increases the angular extent

of calibration sources in training about nadir. We would expect the convergence point to

move if we moved the interval off nadir. In all cases, the RMSE at θ = 0◦ is on the order of

tenths of a degree and increases as the test source moves off nadir. The largest errors of ap-

proximately 19◦ are realized for test sources approaching ±90◦ and when training snapshots

are drawn over the smallest angular interval (∆θ = 1◦). A small increase in ∆θ from 1◦ to

4◦ significantly impacts the errors at the edges reducing the largest errors to approximately

2.5◦.

4.5.4 Impact of the Number of Calibration Bins

DOA estimator performance with single sources is depicted in Figure 4.9 when the test values

ofNb cited in Table 4.4 are used to develop the training data. Similar to the previous example,

the DOA estimator bias and RMSE are reported in Figures 4.9a and 4.9b respectively to

serve as a reference of DOA estimation performance when the manifold is perfectly known.

The DOA estimator performance curves in Figures 4.9b and 4.9d report bias and RMSE

when the manifold model is evaluated in terms of the perturbed geometry estimated in

calibration. The largest errors correspond to the case where the training data has the smallest
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Figure 4.7: Average single source DOA estimator performance for varying degrees of calibra-
tion source spatial bandwidth tested over 100 realizations of small scale geometric perturba-
tions: (a) estimator bias with ideal (matched) manifold, (b) estimator bias with calibrated
manifold, (c) estimator RMSE with ideal (matched) manifold, (d) estimator RMSE with
calibrated manifold.

number of bins in optimization. Unlike the performance curves observed when varying ∆θ,

here the RMSE curves tend to follow a similar shape and the vertex moves closer to zero

as Nb increases. While the error curves also demonstrate increasing uncertainty as angle

increases, the largest errors realized over this experiment are also much smaller compared

to the previous simulation. Here the largest error observed is slightly above 1.2◦ for a test

source at -84◦.
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Figure 4.8: Detailed view of DOA estimator performance with calibrated manifold: (a)
estimator bias, (b) estimator RMSE.

4.5.5 Summarizing Thoughts on Simulated Outcomes

Experiments 3 and 4 demonstrate the influence of training data attributes on angle estimator

accuracy over 100 realizations of random geometric errors (classified as small scale). The

generalized form of the Fisher Information Matrix offered in Equation 4.25 expresses the

total Fisher information as a summation of the information in each calibration bin. The

role of Nb is made explicit in this expression as a discrete summation over number of bins.

The role of ∆θ is rationalized for the case of geometric perturbations in Equations 4.30a and

4.30b. Experiment 3 provides numerical validation of an improvement in angle estimator

performance with increasing spatial bandwidth of the calibration sources realized over 100

instantiations of random position error states. Experiment 4 confirms angle estimation

performance improvements with an increasing number of calibration bins.

A comparison of the outcomes of the two experiments suggests that in the case of per-

turbing the nominal RDS manifold (whose positions are determined from the lever arms of

the P-3 inboard subarray cited in Table 3.2) on a small scale, ∆θ is a more significant driver

of angle estimation performance than Nb. Experiment 3 demonstrates the largest reduction

in error (approximately 19◦) with the additional Fisher information garnered from increased
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Figure 4.9: Average single source DOA estimator performance for varying number of calibra-
tion bins tested over 100 realizations of small scale geometric perturbations: (a) estimator
bias with ideal (matched) manifold, (b) estimator bias with calibrated manifold, (c) estimator
RMSE with ideal (matched) manifold, (d) estimator RMSE with calibrated manifold.

spatial bandwidth in training. Experiment 4 also demonstrates a reduction in angle esti-

mator error as Nb grows to 100 but the total reduction was much smaller (approximately

1◦).

4.6 Discussion

This chapter derives a maximum likelihood estimator of nonlinear manifold parameters that

are common across statistically independent subsets of spatially diverse observations. The
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estimator requires an analytic description of the manifold with functional dependence on

source arrival angle and unknown parameters (such as geometric error or arrival angle when

unknown) and guarantees a maximum likelihood estimate of model parameters under a

separable Gaussian problem formulation. The estimator is numerically exercised in array

shape calibration with four simulated experiments that assume geometric perturbations of

a nominal manifold (consistent with the RDS center subarray’s nominal geometry). The

array shape calibration problem is a mathematical convenience because it admits a model

of the error in closed form that is easily simulated in computation. The reliance on these

examples does not mean to suggest that the dominant source of error is attributed to phase

center position uncertainty. Multiple error mechanisms determine the RDS P-3 manifold in

reality; their study is complex and requires the use of computational electromagnetic solvers

to develop an understanding of the driving sources of error impacting the integrated arrays.

An initial attempt to understand platform effects in the context of array manifold calibration

is addressed further in Chapter 6.

The array shape calibration problem is used to study angle estimation performance before

and after calibration. Experiments 1 and 2 suggest that biased estimates of phase center

positions propagate directly into angle estimation and lead to biased estimates of the DOA.

Experiments 3 and 4 numerically verify the influence of spatial bandwidth of calibration

sources and the number of calibration sets on improving DOA estimation outcomes. This is

demonstrated with sets of DOA estimator error curves realized by testing estimated model

parameters in angle estimation of single sources over the field of view. The simulations

presented in this chapter estimate the nonlinear manifold parameters (modeled as position

errors) assuming perfect knowledge of arrival angle in training. This simplifies the simulation

by reducing the search dimension in optimization. We could also cast a joint estimation

problem that simultaneously searches for calibration source angle and geometric error.

Chapter 3 describes a methodology for characterizing the manifold at the output of the

SAR processor by reorganizing pixels in the image into calibration bins with known direc-
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tional sources. Application of the parametric techniques described here assume the model of

the manifold is slow-time agnostic. This assumption may be ill-suited in describing the SAR

focused images associated with the wing elements. The parametric form is desirable because

it provides an estimator of model parameters using observations containing more than one

spatial source. This is in contrast to the nonparametric forms that require measurements of

single spatial sources over the field of view.

The largest challenge in applying this approach in practice is determining an analytic

form of A(ηr; Θ) that sufficiently describes the phenomenology influencing the array re-

sponse while still offering a tractable optimization problem. A deterministic model of the

array response vectors may be predicted with a full wave solver or estimated from a lookup

table of single source steering vector measurements. Unique challenges face either path in

determining a parametric manifold model. The former leads to a large CEM problem due to

the scale of the platform and complexity of the fairing structure housing the array. The latter

faces a starvation of true single source observations that must be handled with additional

signal processing.

4.7 Conclusion

This chapter outlines a parametric manifold calibration framework that leverages a snapshot

database to aggregate subsets of independent observations from a large snapshot superset for

estimating common nonlinear manifold parameters. Estimator implementation is predicated

on knowledge of the manifold model; specifically a closed form expression for the manifold

with functional dependence on angle and some unknown nonlinear parameters is understood

ahead of time. Analytic evidence is offered to support an argument that the estimator does

not depend on the elevation-angle dependent length of the manifold vectors; such an argu-

ment justifies a unit-norm constraint asserted in the derivation of a principal components

based characterization proposed in Chapter 5. The estimator is applied in a simple simu-

lation to the array shape perturbation problem. Numerical evidence is presented indicating
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that the total Fisher information in the superset increases both when the number of bins

over a fixed angular interval increases and when the angular diversity of calibration sources

increases. The estimation of unknown nonlinear manifold parameters reduces mismatch in

the modeled manifold and leads to more accurate angle estimates. The proposed framework

handles multiple spatial sources simultaneously and easily expands to a joint estimation

problem where angle is only approximately known. The parametric methodology repre-

sents a significant milestone along a broader research trajectory focused on implementing a

practical multitarget calibration strategy for the SAR sounder.
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Chapter 5

Nonparametric Manifold Calibration with Subspace

Clustering and Snapshot Editing

Abstract

Nonparametric manifold calibration techniques characterize an array’s directional re-

sponse by measuring snapshots from single spatial sources with known arrival angles

over dense calibration grids. In cases where the source waveform is unknown, the prin-

cipal component of the array covariance matrix provides a unit norm estimate of the

steering vector. Though germane to the multichannel SAR sounder problem where

scatterers serve as calibration targets (and hence the waveform is unknown), the prin-

cipal component form of nonparametric calibration inherits specific challenges from the

sounder’s sensing geometry that complicates the immediate application of this method.

Specifically, many data sets lack enough single source measurements over the field of

view while the number of two-source measurements are more abundant. Two-source

observations are undesirable in the nonparametric calibration problem because they

lead to biased estimates of manifold vectors that ultimately degrade angle estimation

performance. This chapter proposes and successfully demonstrates an adaptation of

the principal components form of nonparametric calibration for the SAR sounder prob-

lem. The methodology adopts a support measure based on the generalized likelihood

ratio test (GLRT) that is predicted to be more robust to array calibration errors and

that helps to extract approximately single source calibration pixels in the multichan-

nel imagery. Approximately single source calibration bins are assembled by editing
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two-source observations based on a GLRT measure, enabling measurement of RDS

manifolds from three independent calibration sets. The measured manifolds demon-

strate significant improvements in angle estimation relative to the nominal manifold

model, indicating a potential to reduce vertical elevation errors of RDS-derived DEMs

in tomography.

5.1 Introduction

Chapter 4 develops a parametric framework that leverages a large maximum likelihood es-

timator of nonlinear manifold parameters across statistically independent sets of calibration

bins. Application of this estimator is desirable because it handles calibration with multiple

targets simultaneously and generalizes to the case where calibration source angles are only

approximately known. The latter is a powerful property as it offers potential immunity to

registration errors imparted by the ArcticDEM; the surface intersection angles can serve as

well-informed initialization points of the unknown Θ parameters in solving the optimization

problem of Equation 4.22. Of course leveraging this framework requires knowledge of the

parametric model A(Θ,ηnl), which accounts for platform effects influencing the array in

operation.

Nonparametric manifold calibration enables measurement of the array response and is

thus a necessary first step in the development of a parametric model of a(θ) that enables

the implementation of the large estimator framework of Chapter 4. Nonparametric forms

require single source observations collected over dense calibration grids. Historic techniques

for capturing single source observations with the SAR sounder rely on measuring reflections

from the surfaces of smooth and non-penetrative extended surface targets with a maneuver-

ing platform to rotate through the elevation angle θ, interpreting roll as the arrival angle.

This approach is subject to an aircraft’s roll restrictions and prone to errors introduced

when nonzero cross-track slopes are neglected. Dedicated calibration flights are not always

realizable in the field and many seasons lack the benefit of collections of this kind.
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The techniques outlined in this chapter present alternatives for calibrating RDS data

sets after the SAR processor, provided that the imagery aligns with an independent surface

elevation model like the ArcticDEM. It is emphasized here that both approaches would

ideally be leveraged when possible to obtain the most accurate representation of the manifold.

Manifold calibration after the SAR cannot account for slow-time dependent perturbations

over the aperture such as phase variation imparted by moving control surfaces or wing

vibrations. Characterization of these effects from the data will likely mandate a calibration

algorithm that precedes the SAR. The collection of specular surface reflections are expected

to be essential in measuring slow-time dependent manifold perturbations in these cases.

The remainder of this chapter is organized as follows. The principal eigenvector estimate

of the steering vector is derived from the compressed likelihood function for the single source

case in Section 5.2. Section 5.3 approaches nonparametric calibration from the perspective of

the SAR sounder problem, offering an observation model and processing architecture to edit

poor quality calibration snapshots based on a subspace clustering measure prior to eigen-

decomposition. Section 5.4 demonstrates the application of the proposed nonparametric

calibration framework in measuring manifolds from three independent data sets. The mea-

sured manifolds are tested in angle estimation against the nominal model and demonstrate

a large reduction in estimator error realized with a measured manifold. Discussion is offered

in Section 5.5 prior to conclusion of the chapter.

5.2 Principal Components Based Manifold Characterization

Nonparametric manifold calibration via principal components offers a means of characterizing

the array response when pilot calibration (where the source waveform is known) is not

available or practical. A derivation is offered here to justify the estimation of the orientation

of the vector a(θ) ∈ CP×1 in complex P dimensional space using the principal component of

the array covariance matrix resulting from a single directional source. The derivation follows

one that is outlined in the appendix of a recently submitted manuscript that summarizes this
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aspect of the dissertation research [53]. The nonparametric methods assume the availability

of single source observations. In the SAR sounder problem, single source snapshots are not

necessarily available over all angles of interest. This assumption is addressed in Section 5.3

and offers justification for the relaxation of the single source requirement in certain cases.

The derivation that follows requires the following assumptions in addition to the common

assumptions laid out at the beginning of Chapter 2:

A1 : Number of sources, Q, is one,

A2 : Source arrival angle, θ, is known.

We assume the linear model of Equation 2.1 to describe the mth snapshot, restated here:

xm = a(θ)sm + nm. (5.1)

The vector xm is taken to be an observation in a set of M such measurements, denoted with

the matrix X ∈ CP×M . A separable Gaussian form is assumed such that xm ∼ C (a(θ)sm,Rx)

holds, leading to a compressed likelihood function that is parameterized by the unknown

manifold vector for a given set of measurements [68]:

L(a(θ); X) = tr
(

Pa(θ)Rx

)
. (5.2)

Obtaining a nontrivial estimate of a(θ) from this form requires the use of a constraint.

We constrain the problem by forcing the length of the manifold vector to be a constant (in

this case one). This leads to the following constrained optimization which can be solved

using a Lagrange multiplier:

maximize: tr
(

Pa(θ)Rx

)
(5.3a)

subject to: aH(θ)a(θ) = 1. (5.3b)
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An important remark is noted here. Because the constraint in Equation 5.3b removes the

directional dependence of the manifold vector magnitude, the solution to the maximization

cannot recover the angular magnitude variation, ‖a(θ)‖2. This is not expected to have

any influence over the estimator derived in Chapter 4 to estimate the nonlinear manifold

parameters, based on its use of a projection operator to evaluate the cost of a particular

solution. This rationale suggests that the estimated manifold unit vectors are sufficient for

implementing the framework as outlined in Chapter 4. The assumption should be revisited

if the parametric form is formulated in a different manner.

Equation 5.2 is rewritten in terms of the definition of the projection matrix as

L(a(θ); X) = tr
(

a(θ)
(
a(θ)Ha(θ)

)−1
a(θ)HRx

)
. (5.4)

In this form we recognize that a(θ)Ha(θ) is unity based on the constraint and rewrite the

previous expression as

L(a(θ); X) = tr
(

a(θ)a(θ)HRx

)
. (5.5)

The (i, j) entry of the P × P Hermitian matrix Rx ∈ CP×P is defined as

ri,j = [Rx]i,j := E
{
xix
∗
j

}
. (5.6)

The term ri is introduced to represent the ith column vector of Rx. The argument of the

trace operator in Equation 5.5 is rewritten in the form that follows (where the θ argument
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of the manifold vector is suppressed to simplify the equations):

aaHRx =



a1a
Hr1 a1a

Hr2 . . . a1a
HrP

a2a
Hr1 a2a

Hr2 . . . a2a
HrP

...
... . . . ...

aPaHr1 aPaHr2 . . . aPaHrP


. (5.7)

Here we have adopted the general notation ai to indicate the ith entry of the manifold vector.

Equation 5.5 is equivalent to the following sum of diagonal entries of Equation 5.7

L(a; X) = a1a
Hr1 + · · ·+ aPaHrP (5.8)

Which offers a compact representation as the following discrete summation over P :

L(a; X) =
P∑
i=1

aia
Hri. (5.9)

Moving a outside of the summation leads to the following linear combination of the columns

of the covariance:

L(a; X) = aH
P∑
i=1

airi. (5.10)

The expression above is equivalent to the following quadratic form:

L(a; X) = aHRxa. (5.11)

We use this form and introduce the real Lagrange multiplier λ to state the following real-

valued cost function subject to the constraint as:

J(a, aH) = aHRxa + λ
(
aHa− 1

)
, (5.12)
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The gradient of the cost function taken with respect to aH is

∂J(a, aH)

∂aH
= Rxa + λa, (5.13)

Setting this result to zero, admits the classic eigenvector equation (where IP refers to the

P × P identity matrix)

(Rx + λIP ) a = 0, (5.14)

Confirming that the array manifold vector of the calibration source is an eigenvector of the

data covariance matrix.

Introducing σ2
s to denote the average power of the calibration source in Equation 5.1, the

spectral factorization of Rx is written as

Rx = σ2
saaH + σ2

nIP . (5.15)

The expression above makes use of the assumption that nm ∈ CP×1 represents a complex

Gaussian random vector such that nm ∼ C(0, σ2
nIP ). Because the observation covariance

matrix is taken to be positive definite and Hermitian, we can conclude that the P eigen-

values of Rx are real and positive and can be written in descending order as λ1, . . . , λP

with λ1 corresponding to the maximum eigenvalue. The corresponding eigenvectors form an

orthonormal basis [u1, . . . ,uP ] that spans CP×1.

We can substitute the spectral factorization of Rx into the eigenvector equation as follows:

(
σ2
saaH + σ2

nIP
)

a = λa. (5.16)

Factoring the a inside the parentheses and recalling that the manifold vector was defined to

be unit norm, we have (
σ2
s + σ2

n

)
a = λa. (5.17)
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When the power of the incident source exceeds the observation noise of the array, then the

eigenvalue of a is considered the dominant eigenvalue and the corresponding eigenvector is

referred to as the principal component. This vector is parallel to the true manifold vector in

CP×1. Note that the underlying phase reference is unknown. Hence the principal component

obtained in eigendecomposition of an array covariance matrix is phase referenced to a channel

in the array by normalizing all of the elements to ejφref (θ) where φref (θ) refers to the phase

of the entry of the principal eigenvector us corresponding to the reference element:

φref (θ) = ∠ [us]ref . (5.18)

5.3 Nonparametric Methodology for SAR Sounders

Recall that the parametric framework developed in Chapter 4 is desirable because it ac-

commodates calibration with multiple targets simultaneously and natively handles joint es-

timation of manifold parameters and angle. The application of the parametric approach

is predicated on an analytic description of the array manifold with functional dependence

on deterministic model parameters. In the absence of a parametric model of the complex

gain patterns of the embedded elements, we must first determine the single source steering

vectors over the field of view either through a deterministic model (discussed in Chapter 6)

or measurements. In our problem, the pilot calibration method of estimating the steering

vectors is inapplicable; this leaves the principal components approach as the only viable

option for measuring SAR sounder manifolds and motivates a requirement to cull the single

source observations that are suitable for measuring the array response vectors over ±90◦.

The challenge we face in applying the principal components flavor of nonparametric

calibration is that we lack a sufficient number of single source observations over a calibration

grid. Recall that the methodology proposed in Chapter 3 allows us to tag each SAR pixel with

the angles of incidence at the surface which immediately provides knowledge of the number

of scattering sources Q in a pixel. To illustrate the nature of the calibration observations
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Figure 5.1: Number of single and two source pixels in 1◦ DOA bins by calibration data set:
(a) 20140325 07, (b) 20140401 03, (c) 20140506 01.

available in our data sets, the number of single and two source pixels per 1◦ DOA bin are

plotted in Figure 5.1 for each of the calibration data sets analyzed for this dissertation. All

of the data sets suggest that the concentration of single source pixels in 1◦ bins appear far

off nadir while the number of two source pixels span the entire field of view, −90◦ ≤ θ ≤

90◦. This underlines the problem with directly applying the principal component method of

nonparametric calibration for measuring the RDS manifold.

The RDS measures single sources either when it captures the specular return of a flat

interface or when a coincident source is shadowed by the terrain. In most cases, we observe

two sources at a time which justifies the need for multitarget calibration. Yet multitarget
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Figure 5.2: Classic parametric/nonparametric manifold calibration taxonomy with modified
nonparametric route to enable manifold measurements with SAR sounders.

calibration mandates a manifold model which must be predicted from a full-wave solver or

measured from data. The possible solutions for calibrating the RDS manifold face circular

challenges and the application of a classic approach per the taxonomy offered in Figure 1.1 is

not immediately straightforward. Pursuing the measured manifold characterization with the

principal components method means that we need some way of culling those measurements

that sufficiently approximate single source observations before eigendecomposition of the
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array covariance matrix in a calibration bin.

To facilitate extraction of calibration targets from the single look complex SAR imagery,

the classic manifold calibration routes outlined in the taxonomy of Figure 1.1 which assume

single source observations are modified for our problem by introducing a culling or cleaning

step based on subspace clustering prior to estimating single source manifold vectors. The

nonparametric/parametric manifold calibration taxonomy originally offered in Chapter 1 is

hence altered to show a proposed nonparametric approach tailored to the RDS data sets. The

updated taxonomy is presented in Figure 5.2 with a yellow route indicating the path reflected

in this dissertation. The cleaning step is an editing approach that clusters measurements

in a calibration bin and throws away observations that indicate a dominance of subspace

interference.

5.3.1 Adopted Observation Model for Nonparametric Calibration

We relax the single source observation requirement imposed in the nonparametric regime to

allow for an additional spatial source within a calibration bin. We limitQ to be at most two in

our implementation of nonparametric calibration and bin observations based on a calibration

angle of interest. This section describes the model of the measurement sets obtained by

binning observations in the snapshot database. The matrix of Mn complex-valued, length

P observation vectors (which may be single source or two source measurements) in the nth

calibration bin are denoted using the variable Xn ∈ CP×Mn . This matrix may be written as

the following concatenation of the Q = 1 and Q = 2 measurement matrices as follows:

Xn = [Xn1 | Xn2] (5.19)

Where

- Xn1 ∈ CP×Mn1 refers to the Mn1 observations for which Q = 1 in bin n,

- Xn2 ∈ CP×Mn2 refers to the Mn2 observations for which Q = 2 in bin n.
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The total number of snapshots in bin n is then the sum of the single source and two source

snapshots Mn = Mn1 +Mn2.

Following the linear model summarized in Equation 4.6, the single source observations

take the following form:

Xn1 = a(θcn)Scn + Nn1. (5.20)

Here the c superscript emphasizes that θcn refers to the calibration angle of interest in bin n.

To develop a description of Xn2, the variable Θn2 ∈ R2×Mn2 is introduced to denote the

2 ×Mn2 matrix of spatial sources per observation in the Q = 2 subset, determined in the

surface data object creation (by querying an independent surface DEM). Let mn2, defined

as an integer over the interval 1 ≤ mn2 ≤ Mn2, index the observations in this set. The mn2

column vector of the Θn2 matrix is denoted as θmn2 and takes the following general form

θmn2 =
[
θcn, θ

i
mn2

]T
, (5.21)

Where an i superscript intends to emphasize that the source from θimn2 is regarded as sub-

space interference with respect to the calibration angle θcn. The mn2 column of Xn2 is mod-

eled as the following linear combination of a calibration source and interference observed in

multichannel noise

xmn2 = a(θcn)scn + a(θimn2)s
i
mn2

+ nmn2 . (5.22)

Some remarks are stated regarding measurements in the nth calibration bin:

1. The DOAs of each measurement are known a priori based on the creation of snapshot

databases as described in Chapter 3. This allows us to restrict measurements based

on the angular separation of the calibration source and coincident interferer. To ensure

sufficient isolation between the signal of interest and the interference, only measurements

whose coincident interferer are more than a beamwidth away are allowed in a calibration

bin.
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2. Each calibration bin is made up of aggregated observations drawn from disjoint pixel

neighborhoods in the imagery. The snapshots are highly correlated because they each

contain the coherent scattering contribution from a common spatial source corresponding

to θcn, however the set of observations is statistically nonstationary. The observations

within a bin exhibit large variation over the set based on differences in illuminating power,

terrain scattering properties, and propagation losses for example from one snapshot to

the next.

3. The image of the signal subspace in our observation space for the case of Q = 1 is well-

described as a line through the origin in CP that is parallel to the true array response

vector a(θcn).

4. In the case of Q = 2, the image of the signal plus interference subspace in our observation

space can be geometrically interpreted as a set of up to Mn2 intersecting planes in CP

through a common line that is parallel to a(θcn).

5.3.2 Principal Eigenvector Calibration with Low Rank Interfer-

ence

Because the majority of observations in the snapshot database correspond to Q = 2 cases,

the typical assumption of Q = 1 in the derivation of a single source steering vector estimator

is relaxed in this work to allow Q = 2 measurements in a calibration bin provided that the

calibration source dominates the measurement. While we prefer single source snapshots with

high SNR for measuring the manifold, we allow Q = 2 snapshots provided that they have

sufficient isolation or signal to interference ratio (SIR) such that the following is a reasonable

approximation:

xmn2 ≈ a(θcn)scn + nmn2 . (5.23)

In the analysis that follows, SIR or isolation is defined as the ratio of power from the desired

spatial source to the power of the subspace interference.
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Table 5.1: Calibration bin setup for testing DOA estimator accuracy with manifold measured
when calibration source is measured in the presence of subspace interference.

Source Specification in jth Calibration Bin

Nb ∆θc Mj Qj SNRj (dB) INRj (dB)

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 50

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 45

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 40

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 35

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 30

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 25

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 20

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 15

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 10

181 −90◦ ≤ θc ≤ 90◦ 1,000 2 55 5

A simple simulated example is offered to justify this approach. The example that follows

demonstrates maximum likelihood angle estimator performance with a measured manifold

determined in a nonparametric calibration step from binned snapshots each containing two

sources. Subspace interference is injected into each calibration bin. The calibration source

SNR is fixed throughout the simulation to 55 dB and the thermal noise floor is set to unity

with no loss of generality. The interference to noise ratio (INR) is swept over the interval

5 dB ≤ INR (dB) ≤ 55 dB. At the high end of tested isolation values, the interference

is 5 dB higher than the noise floor and on the low end the interference is 5 dB below the

level of the calibration source. The angle of the interfering signal is drawn from a uniform

distribution for every calibration bin but the angle is not allowed within one beamwidth of

the calibration source. The interference angle is fixed within a calibration bin so that one

calibration bin is corrupted with one subspace interferer at a time. Each bin uses 1,000

snapshots to estimate the covariance matrix for determining the principal eigenvector. The
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Figure 5.3: Simulated maximum likelihood DOA estimator performance using a manifold
measured in the presence of low rank subspace interference over varying levels of signal to
interference ratio (SIR): (a) RMSE over ±90◦, (b) Detailed view for 0◦ ≤ θ ≤ 90◦, (c)
Detailed view for |θ| ≤ 50◦.

specification of spatial sources in the calibration bins are summarized in Table 5.1.

Angle estimator performance for a pristine (nonperturbed) array whose geometry is con-

sistent with that of the RDS center P-3 subarray is evaluated over 100 Monte Carlo trials.

Each trial leads to a slightly different realization of the calibration bins used to create a

measured manifold for angle estimation. In other words, each value of θc is tested against
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Figure 5.4: Detail at the edge of the field of view showing simulated MLE DOA performance
when using measured manifolds obtained with high signal to interference (SIR) calibration
sources. Results suggest a SIR limit beyond which angle estimation does not significantly
improve for the given calibration bin size tested (corresponding to 1,000 snapshots per cali-
bration bin).

100 different interference angles for a tested SIR level. The measured manifold is then used

in maximum likelihood angle estimation of a single high SNR directional, source swept over

an angle grid. The test DOAs are chosen to center directly on the calibration grid. The use

of a nonperturbed array facilitates comparison of measured estimator performance to the

classic CRLB.

The simulated angle estimator performance with a manifold measured via principal com-

ponents in the presence of low-rank interference is demonstrated for varying levels of calibra-

tion to interference source isolation in Figure 5.3. The full field of view is offered in Figure

5.3a while 5.3b and 5.3c present detailed views of one side of the angle range and the center

of the field of view respectively. The worst performance (or highest RMSE) is observed when

the interference power takes the highest tested value (corresponding to the lowest tested iso-

lation). The results support a trend of increasing accuracy with increasing isolation; as the

power of the interference decreases with respect to the calibration source power, the estima-
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tor error approaches the lower bound. The RMSE curves corresponding to SINR values that

exceed 10 dB are nearly indistinguishable over the interval of −50◦ ≤ θ ≤ 50◦. Differences

realized in estimator accuracy become more apparent as θ moves out to the edges of the

field of view, especially as |θ| ≥ 80◦. Increasing values of SIR beyond 15 dB show significant

improvement at the edges. The 5 dB increase from 15 dB isolation to 20 dB isolation shows

as much as a 1◦ reduction in error for example at 84◦.

This simulated example presented here models angle estimation outcomes using a man-

ifold measured in the presence of spatial interference and offers evidence that justifies our

relaxation of the Q = 1 assumption as proposed in this dissertation and the associated

manuscript [53]. While the quality of nonparametric manifold calibration through principal

components does degrade when the calibration bins are corrupted by spatial interference,

the degradation (as quantified by carrying the measured manifold through angle estimation)

decreases as the interference power decreases with respect to that of the calibration source.

The results in Figure 5.3 reinforce the rationale of modifying the traditional nonparametric

methodology for the SAR sounder problem as illustrated in the revised taxonomy of Figure

5.2. The degradation observed in lower isolation scenarios and at the edges of the field of

view is attributed to the interference manifold vector a(θi) biasing the estimate of a given

a(θc). The extent to which a biased measurement of the manifold can be used to develop a

manifold model for application of the parametric framework outlined in Chapter 4 remains

unclear. The desire to ultimately determine an A(θ,η) is restated here to remind the reader

of the importance of working towards a calibration strategy that handles multiple targets

simultaneously.

Finally we may note that while this example supports the merit of pursuing nonpara-

metric manifold calibration when Q = 2, the numerical results of this particular experiment

do not appear to confirm a convergence to the CRLB in the high SIR limit. To illustrate

this observation, a detailed view of the RMSE curves for 35 dB ≤ SIR is presented in Fig-

ure 5.4. The results of the four tested isolation levels completely align over the intervals
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72◦ ≤ θ ≤ 82◦ and 87◦ ≤ θ ≤ 90◦. The small variation in RMSEs observed in the 35 dB and

50 dB curves between 83◦ ≤ θ ≤ 86◦ is expected to converge to the values shown by the 40

dB and 45 dB curves with additional Monte Carlo runs. The behavior demonstrated here

seems to suggest a high isolation limit on the calibration sources beyond which DOA estima-

tor accuracy does not improve. The experiment as designed is insufficient to contradict the

efficiency of the MLE with the manifold measured in the presence of low rank interference.

The observations here are interpreted as a bound given the number of snapshots used in each

calibration bin. Though not tested, it is expected that a measured manifold from high SNR

calibration sources that are sufficiently isolated from spatial interference and which provide

a larger number of snapshots in each bin would improve performance at the edges of the

field of view relative to results demonstrated here.

5.3.3 Subspace-Based Snapshot Editing

The results demonstrated in Figure 5.3 show that nonparametric techniques may still be

leveraged in cases where Q = 2 and the resulting angle estimation performance improves as

a function of increasing isolation. This motivates the implementation of techniques for iden-

tifying high SINR observations in the snapshot database. The problem at hand is interpreted

as a subspace detection problem where the objective is to identify a signal from a direction

of interest in the presence of low rank subspace interference. Identifying high quality cali-

bration snapshots in the presence of subspace interference is compounded by the fact that

the array is not well calibrated at the start of calibration processing. The reader is asked

to recall the experimental evidence presented at the close of Chapter 3 that we interpret as

justification for refined manifold calibration. Specifically a geometric nulling beamformer is

applied in 2-D image formation with a coarsely measured manifold and compared to that of

the nominal manifold model. The measured manifold demonstrates greater clutter suppres-

sion over the nominal model (defined based on Equation 2.35). We interpret the improved

clutter mitigation as confirmation that the measured manifold is better matched to truth
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than the nominal model.

The initial approach for culling calibration measurements (see both [54] and [9]) in a

bin derives an estimate of calibration source power to interference source power using the

pseudoinverse based on a measurement’s source DOAs Θm = [θc, θi]
T stored in the snapshot

database and the nominal manifold model. The pseudoinverse is stated here in terms of the

nominal manifold matrix Ã (Θm) as:

[
ŝcm, ŝ

i
m

]T
=

(
ÃH (Θm) Ã (Θm)

)−1

ÃH (Θm) xm. (5.24)

The pseudoinverse solution of the ith source preserves the component of si that is orthogonal

to all 1 ≤ q ≤ Q where i 6= q. This is realized by an underlying null steering for all sources

for q 6= i. This estimator degrades when the manifold vectors admit correlation and requires

knowledge of the array response in both the calibration and interference directions. The

estimates in Equation 5.24 are used to assign an estimate of isolation for each of the two-

source observations in the database as the ratio of ŝcm to ŝim. This is compared to a 15 dB

threshold to extract pixels for characterizing the manifold. The approach is limited in that

it requires knowledge of Q manifold vectors and leads to a heuristic threshold which is not

robust.

Subspace signal detection in the presence of subspace interference and noise is devel-

oped in [96] for several variations of problems which admit matched subspace detectors [97]

through the derivation of their respective generalized likelihood ratio tests (GLRT). The

GLRT refers to a class of detectors that substitute maximum likelihood estimates of unknown

nuissance parameters to solve binary hypothesis testing problems. The authors of [96] derive

a detector to test for a subspace signal from a direction of interest in the presence of interfer-

ence by formulating the following binary detection problem for unknown source power and

noise power (presented in a nomenclature that is consistent with this dissertation):

H0: xm ∼ C (ais
i
m, σ

2
nIP ),
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H1: xm ∼ C (acs
c
m + ais

i
m, σ

2
nIP ).

Under the null hypothesis, the observation xm is modeled as interference, treated as a deter-

ministic and unknown signal from arrival angle θi. The likelihood function under hypothesis

j is written as

Lj(xm; Hj) = Lj(x; η̂j) (5.25)

Where η̂j refers to the maximum likelihood estimates of the unknown nuissance parameter

vector under hypothesis j, denoted as ηj. The nussaince parameters under the null and

alternative hypotheses are

η0 =

[
Re
(
sim
)
, Im

(
sim
)
, σ2

n

]T
(5.26)

η1 =

[
Re
(
sim
)
, Im

(
sim
)
,Re (scm) , Im (scm) , σ2

n

]T
. (5.27)

Note that the authors of [97] and [96] technically assume a real observation vector with

no specificity of a model (hence the model is not taken to be complex). The theoretical

underpinnings of the matched subspace detector (MSD) are extended to develop a class of

matched direction detectors formulated for the complex form of the linear model in studies

such as [98] and [99]. The generalized likelihood ratio for the matched direction detector

leads to
L1(xm; H1)

L0(xm; H0)
=

xHmP⊥aixm

xHm
(
P⊥aiP

⊥
GP⊥ai

)
xm

(5.28)

Where G is introduced as the subspace spanned by the component of ac that is orthogonal

to ai given by G = P⊥aiac. The numerator of Equation 5.28 represents the energy in the

component of the observation that is orthogonal to the modeled interference subspace, P⊥aixm.

In detection, this quantity is then compared to the residual energy of this signal when aligned

to the portion of ac that is orthogonal to ai. The form has the potential to be problematic

for our case where the array is not calibrated in advance and we can not assume that ai

is not perfectly known ahead of time. We expect small perturbations in both ai and ac to
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have undesirable and unpredictable effects on the statistic. It is interesting to note that one

study exists in literature that addresses steering vector uncertainty in the matched direction

detector problem [98] but the problem is formulated to assume that the interference steering

vector is perfectly known a priori. This assumption leads to perfect interference suppression

when computing a statistic to detect the signal of interest aligned with ac.

In this dissertation, we treat the array as being partially calibrated based on our ap-

proximate knowledge of the nominal sensor position vectors. The validity of this assumption

depends on the dominant error mechanisms which determine the θ dependent phase responses

of each channel in the array. It is emphasized here that this is an open area of investigation.

Chapter 6 aims to initiate a more detailed study of the influencing factors on channel to

channel phase variation over the manifold using a deterministic electromagnetic model. Let

φp(θ) denote the angle-dependent phase response of the pth phase center. This term can be

described as a sum of the propagation phase and some unknown portion as

φp(θ) = φ̃p(θ) + φep(θ), (5.29)

Where φ̃p(θ) describes propagation from the origin of the array face to sensor p based on the

nominal model (as determined by a CAD representation of the array and a lidar survey).

The culling approach implemented in the dissertation assumes φ̃p(θ) >> φep(θ) with the

acknowledgment that the validity of such an assumption has not yet been proven.

Following methodology described in [100] for editing observations in a surveillance radar’s

signal processor prior to monopulse estimation, the approach implemented here tests for three

possibilities:

H0: xm ∼ C (0, σ2
nIP ),

H1: xm ∼ C
(

a(θ1)s1
m, σ

2
nIP

)
where θ1 = θc,

H2: xm ∼ C
(

a(θ2)s2
m, σ

2
nIP

)
where θ2 = θi.
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The culling algorithm compares a measurement’s energy when projected onto one of the

tested subspaces to the remaining P − 1 dimensions using the following measure:

Tj(x) =
xHPã(θj)x

xHP⊥ã(θj)
x

j ∈ {1, 2} , (5.30)

Where the projection matrices are evaluated in terms of the nominal manifold, indicated

with a tilde. Following the complex extension for the GLRT in [101], a threshold is fixed

for a certain probability of false alarm by regarding Equation 5.30 as a ratio of independent

random variables and interpreting the probability of false alarm as

PFAj = Qχ2
2qj

(γj), j ∈ {1, 2} . (5.31)

An observation is extracted for calibration when it satisfies the following rule:

xHPã(θc)x

xHP⊥ã(θc)x
−

xHPã(θi)x

xHP⊥ã(θi)
x
> γ1 − γ2 and

xHPã(θc)x

xHP⊥ã(θc)x
> γ1. (5.32)

It is emphasized that here Tj(x) is interpreted as a notional measure of quality rather

than a likelihood. The culling technique is expected to help edit the low SINR observations

which reduce angle estimation performance as illustrated in the simulated example of Figure

5.3. This technique is expected to be more robust to manifold perturbations than the

pseudoinverse approach that is implemented in [54] which relies on null-steering accuracy to

identify approximately single source measurements in a calibration bin.

The use of the GLRT-based quality measured is justified with a simple simulated exam-

ple. In simulation the nominal RDS geometry is perturbed with small scale position errors

to create mismatch between the presumed model of the array response and truth. Here

the phase center positions are perturbed over 50 Monte Carlo trials using an RMS position

uncertainty of σ = 0.035λ, satisfying the small-scale definition discussed in Chapter 4. For

each perturbed manifold state, a set of two-source calibration bins are generated. Each cal-
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ibration bin contains 1,000 Q = 2 observations. The interference source power is nominally

held 10 dB below the level of the calibration source. The pseudoinverse and GLRT measures

are applied to cull calibration measurements from the set following the processing architec-

ture that has been proposed for the dissertation and implemented in the CReSIS toolbox.

The edited snapshot set is then used to measure the manifold via the principal component

method.

Measured manifolds are tested in maximum likelihood estimation using a high SNR test

source and 1,000 snapshots in covariance matrix estimation. The average angle estimation

performance with nonparametric calibration using subspace clustering over 50 Monte Carlo

trials is reported in Figure 5.5. Note that the randomization of geometric errors over the runs

precludes a comparison to the classic CRLB, hence a lower bound is omitted from this result.

The result suggests that for this particular setup, the specified thresholds γ1 = γ2 = 10

applied to the GLRT-based measure lead to improved angle estimator performance. We

emphasize here that this result alone does not provide sufficient evidence to conclude that

the proposed measure is more robust than the pseudoinverse based rule which relies on null

steering accuracy to estimate a measure. Different culling rules lead to different numbers of

snapshots that go onto covariance matrix estimation in calibration. This presents challenges

in comparing the performance of different culling strategies since the number of snapshots

influences the accuracy of the steering vector estimated in a bin. It is difficult to directly

attribute angle estimator outcomes to the specific definition of the measure used in culling

due to this coupling between culling rules and number of measurements remaining in a clean

set for estimating the covariance matrix.

The proposed implementation of nonparametric manifold calibration for the RDS is exer-

cised in simulation with the GLRT measure for culling calibration snapshots. The canonical

MLE performance examples, originally published in [1] and recreated in Chapter 2, are again

carried out here with a perturbed array to study the nonparametric calibration performance.

These examples assume one instantiation of a perturbed manifold enabling comparison to
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Figure 5.5: Simulated maximum likelihood angle estimator performance with nonparametric
manifold characterization based on the proposed subspace clustering and editing prior to
eigendecomposition in a calibration bin. Manifold mismatch is created using phase center
geometric errors with a perturbation scale of 0.035λ.

the classic CRLB. The perturbation scale on the phase center geometry is set at σ = 0.035λ.

In this example the power of the spatial sources is randomized over an interval varying from

the thermal noise level (set to unity) up to 20 dB per channel. Each calibration bin contains

10,000 snapshots before culling. The thresholds are set as γ1 = γ2 = 10.

The measured lookup table is tested in maximum likelihood angle estimation assuming

two sources at 0◦ and 30◦ whose parameters vary within two experiments. Each source

parameter value (of SNR in Experiment 1 and source snapshots in Experiment 2) is tested

over 100 Monte Carlo trials. The experiments are defined as follows:

1. Experiment 1: Two equal power, uncorrelated sources with a fixed number of snapshots

M = 50 and per sensor source SNR sweeping over the interval 10 dB ≤ SNR ≤ 40 dB.

2. Experiment 2: Two equal power, uncorrelated sources with a combined SNR of 20 dB

and snapshots varying over the interval 10 ≤M ≤ 10, 000.

Estimator performance observed in Experiments 1 and 2 are reported in Figures 5.6a and
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Figure 5.6: Simulated maximum likelihood angle estimator performance with nonparametric
manifold characterization based on the proposed subspace clustering and editing with GLRT-
based rule prior to eigendecomposition in a calibration bin. Threshold values assumed in
editing: γ1 = γ2 = 10. Manifold mismatch is created using phase center geometric errors
with a perturbation scale of σ = 0.035λ.

5.6b as measured RMS error on the angle estimate of the θ = 30◦ source for three manifold

models. The following three manifolds are tested in simulation:
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- Nominal manifold: Assumes the isotropic steering vector evaluated in terms of the

nominal phase center positions in MLE and does not account for geometric error (cor-

responds to uncalibrated case).

- True manifold: Assumes perfect knowledge of phase center positions when evaluating

the steering vectors in MLE (corresponds to perfect calibration case).

- Measured manifold: Applies the manifold measured with the proposed methodology

when evaluating the steering vectors in MLE (corresponds to calibration with proposed

methodology).

In both experiments, the nominal manifold (which corresponds to the uncalibrated case)

leads to the largest angle estimator uncertainties that improve slightly with increasing source

SNR in Experiment 1 and with increasing snapshots in Experiment 2 but level off after con-

vergence to an error bound that is approximately 0.5◦ higher than the CRLB. The measured

manifold reduces the overall estimator error and closely tracks the true manifold result in

both experiments. Close examination of the RMSE values shows differences between the

true and measured manifold results at the high SNR edge of Experiment 1 and the high

snapshot edge of Experiment 2. Although small (on the order of hundredths of a degree),

the numerical results suggest that the angles estimated with the measured manifold exhibit

bias. The effect increases slightly as the perturbation scale increases. It is expected that

this small bias would reduce by increasing the number of snapshots in each calibration bin

which increases the likelihood of harvesting more high SINR results in training.

5.4 Application of Nonparametric Methodology to RDS Datasets

The CReSIS toolbox is modified with custom manifold calibration processing modules to

support nonparametric calibration by the principal eigenvector technique with single dom-

inant source culling. These updates will become publicly available in a future release of

the toolbox. A high level overview of the calibration processing flow is illustrated in Figure
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Table 5.2: Frames processed in nonparametric manifold calibration.

Day Segment Frame List Mission

20140325_07 [2-5] Axel Heiberg - Eureka

20140401_03 [4-5, 13, 15-16, 34-36, 40-43, 45-46] North Canada Glaciers

20140506_01 [14-16, 34-36, 40-43, 45, 46] South Canada Glaciers
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Figure 5.8: 2014 Operation Icebridge Canadian Arctic flight lines indicating the data sets
considered in measuring RDS manifolds with the nonparametric approach described in this
chapter.

5.7 in the context of the CReSIS SAR and array processors showing the surface object and

snapshot database creation described in Chapter 3. The nonparametric manifold calibration

routine reads in the geocoded snapshots and culls the single source and two source mea-

surements corresponding to non-penetrative media (sea ice, rock or ocean). The resulting

measurements are then aggregated across frames and sorted into 1◦ angle bins by looping

over a DOA grid and querying the database to return all measurements falling within ±0.5◦
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of a bin center. The measurements are phase shifted to the bin center based on the nominal

manifold model. This has the effect of slightly defocusing the second source but the effect is

assumed to be marginal.

The binned measurements are edited by comparing the measure of subspace alignment

proposed in Equation 5.32 to a parameterized threshold field which is currently derived from

a user-defined PFA type of parameter. Again, the point is reemphasized that the measure

described by Equation 5.32 is not interpreted as a likelihood so this parameter does not relate

to a false alarm probability in the traditional sense. The tuning of the threshold is not yet

entirely understood. Threshold selection is carried out by testing a small set of thresholds

by hand. This is discussed further below.

The code supports independent thresholding for both the Q = 1 and Q = 2 snapshots.

The algorithms for culling calibration-grade observations from the single source and two

source measurements are detailed in Algorithm 1 and Algorithm 2 respectively, provided

in Appendix D. The pseudocode describes the bin-level selection of measurements that are

interpreted as approximately single source observations. Note that Algorithm 2 requires the

definition of a minimum source separation between the calibration and interference sources.

When unspecified, this defaults to an angular extent that is equivalent to a beamwidth

as computed from the array factor. Additionally any snapshots which indicate the second

source impinging on a backlobe are thrown out of the set. Hence the interference angles are

strictly limited to the interval |θi| ≤ ±90◦.

The cleaned observation set is then used to estimate the covariance matrix for carrying out

the eigendecomposition and storing of the eigenvector that maps to the principal eigenvalue.

The cleaned set is stored with the resulting manifold. The snapshots in these sets are

geocoded and tagged with metadata including aircraft inertial measurements, radar transmit

pointing, and originating frame for example to support analysis of a measured manifold.

Additional support functions are implemented to coarsely assess the quality of a measured

manifold prior to its application in array processing.
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The methodology proposed in this chapter for carrying out nonparametric manifold cali-

bration in the presence of low-rank interference is tested on multichannel RDS SAR imagery

from the center subarray on the P-3 aircraft. Three independent datasets collected in the

Canadian Arctic during the 2014 Operation IceBridge mission are considered for calibration.

The three days of interest are also specified in Figure 3.5 as part of the methodology descrip-

tion in Chapter 3 along with the corresponding frames associated with each data set (see

Table 3.4). The map and table are presented again in this chapter as a convenience to the

reader in Figure 5.8 and Table 5.2 respectively. A manifold is measured for each of the three

days indicated on the map which include 20140325_07, 20140401_03, and 20140506_01.

Table 5.2 specifies the input frames of each manifold result.

5.4.1 Observations Captured in Algorithm Development

The final measured manifolds presented in this chapter implement the GLRT-based quality

measure for editing snapshots as it is expected to be more robust to null-steering errors

imparted in the pseudoinverse-based metric. Simulations and assessments of measurements

suggest that the threshold influences a complex trade space that is not fully understood. The

final threshold values assigned in manifold calibration are γ1 = 8.99 and γ2 = 16.2. Multiple

values are tested by hand to understand the influence of culling on manifold quality. A

subset of observations are presented here to offer intuition into the role of the clustering and

editing rule on direction of arrival outcomes.

Figure 5.9 offers histograms of measured phase corrections in the θc = 65◦ calibration bin

from the 20140506_01 data set that are interpreted as being representative of cases when the

implementation of the GLRT-based rule leads to better estimates of the array response to a

give source direction. Note that the histograms are scaled so that the area under each curve

sums to one. The channels are phase referenced to Antenna 4 and the propagation phase

of each channel is removed based on the nominal model. Phase correction distributions are

shown for three cases:
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1. No editing: No culling of snapshots in the calibration bin.

2. Pseudo: Culling based on a measure of SIR, interpreted with estimates of directional

source power obtained by application of the pseudoinverse in Equation 5.24.

3. GLRT: Culling based on the proposed GLRT measure in Equation 5.32.

In this particular example, the distribution of phase offsets from the nominal model on each

channel show the tightest clustering around a mean value when the GLRT based measure is

used to extract calibration snapshots. Some of the distributions appear to broaden under the

pseudoinverse-based culling. Antenna 7 for example shows a fattening of phase corrections

when compared to the case where no editing is applied to the set. This is interpreted as a

possible example of degradation under the pseudoinverse rule that would potentially reduce

the accuracy of the measured manifold response in this bin.

The eigenspectrum of the covariance matrix estimated from a calibration set offers addi-

tional insight into the effect of snapshot culling on angle estimation outcomes. Eigencontrast,

defined as the ratio of the first and second eigenvalues when organized in descending order,

is hypothesized to increase when the snapshot set more closely approximates a single source

set. Figure 5.10 shows an example drawn from the θc = 45◦ bin of the 20140506_01 set

where the eigenspectra of the covariance matrices estimated under the same three possible

culling rules is shown in 5.10a and the corresponding MUSIC pseudospectra are plotted in

5.10b. The eigenspectrum of the covariance matrix estimated with the pseudoinverse rule

shows approximately 18 dB between the maximum eigenvalue and the second largest eigen-

value while the corresponding GLRT result indicates an eigencontrast that is 10 dB larger,

corresponding to 28 dB of separation between the first and second eigenvalues.

A consideration of the MUSIC spectra computed for each case indicates contamination in

the calibration set culled under the pseudoinverse rule (evidenced by a second principal peak

in the pseudospectrum on the opposite side of nadir). The result obtained with no snapshot

editing shows a dominant peak at nadir. Note that the calibration angle is indicated here
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and all three sets produce peaks that align with θc in this particular example. The MUSIC

curve is computed using the nominal steering vectors and while we expect a peak in the

neighborhood of θc, the location varies depending on both the accuracy of the ArcticDEM

and the fact that the nominal manifold is used to compute the spectrum.

An increase in the eigencontrast is expected to lead to more accurate angle estimation

outcomes however the use of eigencontrast as a predictor of angle estimator performance

remains somewhat unclear. Figure 5.11 reports the 90% range of eigencontrasts per 1◦

angle bin (along with the mean and median values) for different editing rules. The GLRT

rules admit narrower spreads at the large arrival angles. This may indicate improved angle

estimator outcomes at the edges of the field of view when using manifolds measured from the

GLRT-culled sets though we lack sufficient evidence at this stage to draw this conclusion.

We expect the number of culled snapshots per angle bin to cluster in θ based on the

transmit pointing angle. Figure 5.12 illustrates cleaned snapshot counts in 1◦ DOA bins,

broken out by transmit beam for the 20140506_01 data set. Here 5.12a, 5.12b, and 5.12c

correspond to pointing angles 30◦, 0◦, and −30◦. The scanned beams cover approximately

a ±47◦ extent within the 3 dB beamwidth on transmit. Note that the pointing angle is

measured off array boresight which only aligns with θ = 0◦ in a zero roll condition. We

expect that when a culling method is performing well, it will favor high energy measurements

concentrated over an angular window that agrees with the direction of illumination. The

cleaned snapshot counts follow similar trends across the tested culling rules and all seem

to show comparable clustering patterns based on transmit pointing angle within the 3 dB

window of ±47◦.

Differences become apparent at the large DOA angles outside of this window. The

pseudoinverse measure appears to produce the largest number of sidelobe detections in the

θTX = 0◦ returns. This may be attributable to the predicted null-steering degradation suf-

fered by this measure. The sidelooking beams demonstrate cases where the culling appears

to breakdown and returns from the θTX = 30◦ beam for example correlate to echoes over the
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−85◦ ≤ θ ≤ −65◦ window. It is unclear if this is attributable to a breakdown in the culling

measures or an indicator of unaccounted for electromagnetic phenomenology in pointing the

beam to these angles.

A final note is made to point out that the increased threshold of the GLRT shows neg-

ligible changes from γ2 = 8.99 to γ2 = 16.24. However the highest value of γ2 tested shows

suppression of measurements in the −85◦ ≤ θ ≤ −65◦ window in both sidelooking beams.

The suppression of observations in this window in both sidelooking beams is possibly as-

sociated with RFI due to an onboard navigation system installed to support the previous

Antarctic mission. The emissions of this system were observed in the starboard subarray

and showed falloff in intensity with increasing distance from the fuselage. This hypothesis

was not tested here but RFI and multipath are pointed out as plausible explanations for the

rejection of these measurements in culling.

5.4.2 Measured RDS Manifolds from Three Independent Data Sets

Three measured manifolds are produced for the three independent data sets specified in

Table 5.2. The GLRT culling is adopted to avoid the potential contamination problem

sometimes encountered in the pseudoinverse-based editing. The single source threshold is

assigned at γ1 = 8.99. The threshold for extracting measurements from the Q = 2 subsets in

each bin is hand selected from a set of manifolds measured with three different values of γ2

based on measured angle estimation performance that tests a given manifold against cleaned

snapshots from a different day. Figure 5.13 demonstrates a representative result intended

to compare threshold performance. This result reports the RMSE of angles estimated with

MUSIC using the 20140506_01 measured manifold against the cleaned 20140401_03 and

20140325_07 data sets.

The measured MUSIC performance shows a slight decrease in the RMS error by approx-

imately 0.5◦ between the γ2 = 8.99 and γ2 = 29.25 curves. The highest threshold admits

degradation over the −70◦ ≤ θ ≤ −50◦ window. Detail of the measured error in this region
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is provided in the bottom of Figure 5.13. From the detailed view we observe as much as 5◦

of uncertainty suffered by increasing the threshold to γ2 = 29.25. The increased error in this

interval is consistent with expected degradation due to the reduced number of calibration

samples in this region, as shown in Figure 5.12. In an effort to avoid large errors at the edges

of the swath, the 16.24 threshold is selected for demonstrating nonparametric calibration

in generating RDS-derived DEMs. This manifold is interpreted as the one that gives up a

marginal amount of accuracy near nadir to avoid large uncertainties in the −70◦ ≤ θ ≤ −50◦

window.

The final values of γ1 = 8.99 and γ2 = 29.25 are specified in snapshot editing and used

to produce a set of manifolds for each of the calibration sets. A 20140506_01 manifold is

also measured using the 15 dB threshold applied to the pseudoinverse-derived measure. This

measured manifold is tested against binned snapshots from 20140325_07 and 20140401_03

in angle estimation and compared to the result obtained under the GLRT editing rule using

the MUSIC algorithm. Measured bias and RMSE of angle estimates in each bin are reported

in Figures 5.14 and 5.15 in degrees respectively. The figures offer detailed views of the interval

−60◦ ≤ θ ≤ 60◦. The bias curves show comparable performance over the 3 dB swath width

of ±47◦. The pseudoinverse result exhibits slightly higher error over 65◦ ≤ θ ≤ 75◦ and

−62◦ ≤ θ ≤ −52◦. The comparison in angle estimation outcomes between the GLRT and

pseudoinverse culling is provided here for the sake of completeness; comparison of the bias

and RMSE of angle estimates show minor differences in performance. The remainder of the

chapter presents results obtained under a GLRT measure in snapshot editing.

Measured manifolds for each of the three days are presented in Figures 5.16-5.18 as

antenna pairs based on the approximate even-symmetry of elements across the center of the

array. Each manifold is phase referenced to Antenna 4 and reported as a correction with

respect to the nominal model as a magnitude and phase residual. A thumbnail of the P-3 with

array numbering is included with each pair to indicate the physical orientation of the antennas

reported in a figure. Figure 5.16 reports measured responses of the outermost elements
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corresponding to Antennas 1 and 7. Advances in the figures correspond to advancements

along the array moving in the inboard direction toward the reference channel. Patterns show

symmetry between pairs that is consistent with our prediction of approximately symmetric

coupling environments. Symmetry in the patterns is most easily observed in comparing the

magnitude corrections between antenna pairs. Antennas 1 and 7 for example share similarity

in their nulls with Antenna 1 consistently showing nulls at −46◦ and −61◦ across all three

data sets while mirror images are observable in Antenna 7 at 46◦ and 61◦. Results for the

most part agree across the days. The largest variation in phase is observed on Antenna 2

near θ = 36◦ where the phase measurements differ by approximately 18◦.

The three manifolds are applied in MUSIC DOA estimation and compared to the nomi-

nal manifold result. Note that the nominal manifold is representative of the current model

implemented in the array processor. The implementation of MUSIC in these tests is consis-

tent with the algorithm used in the CReSIS toolbox. Our implementation of MUSIC casts

the MUSIC cost function as a minimization in order to leverage MATLAB’s constrained

minimization search to numerically evaluate the peaks of the pseudospectrum as defined in

Equation B.20. In assessing angle estimator accuracy, the number of sources is set to one.

Each manifold is tested against independent edited calibration bins to avoid testing with

the training data. For example the 20140325_07 manifold is tested only against binned

measurements from 20140506_01 and 20140401_03.

The test data are broken into processing chunks of 100 snapshots within each calibration

bin. Each chunk provides an estimate of the array covariance matrix that is used to carry

out angle estimation with both a measured manifold and the nominal manifold. The RMS

error and bias on an angle estimate in a given calibration bin are evaluated over the number

158



of chunks as follows, Nchunks as

RMSE(θc) =

√√√√ 1

Nchunks

Nchunks∑
i=1

(
θ̂i − θc

)2

(5.33a)

BIAS(θc) =
1

Nchunks

Nchunks∑
i=1

(
θ̂i − θc

)
. (5.33b)

Note that truth, θc, is taken to be the incidence angle determined with the ArcticDEM. A

nominal result is generated for each measured manifold tested in angle estimation. The three

nominal curves are extremely similar. To ease readability of the figure, the three nominal

outcomes are averaged together into one RMSE curve or bias curve that is representative

of performance in the uncalibrated case (and equivalent to our existing angle estimation

performance to date).

The measured bias and RMSE are summarized in Figures 5.19 and 5.20 respectively. Both

results include a detailed view of −60◦ ≤ θ ≤ 60◦ in addition to the full field of view. The

nominal model and measured manifolds appear to admit comparable bias performance over

the −10◦ ≤ θ ≤ 30◦ interval. The bias in this region is contained within ±1◦. The estimated

bias curve of the nominal case shows large increases in the bias prior to manifold calibration

that grow as the elevation angle moves off nadir while the measured manifold results are

mostly bound within ±1◦ out to ±60◦. The increased bias further off nadir observed in the

nominal result is consistent with historic observations of large elevation errors at the edges

of RDS-derived DEMs produced with tomographic image formation. The RMSE curves

show errors contained within 2◦ when angle estimation is implemented with the measured

manifold. All cases show increased error at the edges of the field of view. We expect angle

accuracy to gracefully degrade as θ approaches ±90◦ in accordance with the CRLB even in

ideal scenarios. The measured bias and RMSE results help to confirm the approach outlined

in this chapter and indicate that the measured manifold has the potential to improve both

null steering accuracy in ice thickness profiling and angle estimation in tomographic image
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formation.

An average error reduction factor is evaluated over θ as the following ratio of uncertainties:

Error Reduction(θ) =
RMSEnom(θ)

RMSEmeas(θ)
. (5.34)

Here RMSEnom refers to the error measured with the application of the nominal array re-

sponse model and RMSEmeas is an average error for the three measured manifold results.

We may interpret angular sectors where the error reduction values that are less than one

as regions of degradation (where the measured manifold model does not outperform the

nominal). The reduction in angle estimator error is reported in Figure 5.21 in orange. The

portions of the curve that dip below one are overlaid in black. The regions of diminished

performance correspond to θ = 5◦, 18◦ ≤ θ ≤ 20◦, and 25◦ ≤ θ ≤ 34◦. The smallest value

of error reduction reported in the sectors of degraded performance is 0.74 (and the average

value of error reduction over all degraded values in 0.86). The average of the error reduction

values that evaluate to one or higher is found to be 4.8.

5.4.3 Combined Manifolds

The measured manifolds are combined across the three data sets. These results are plotted

to demonstrate the spread of measured corrections over the three data sets in Figures 5.22

- 5.24. Each plot illustrates the interquartile range of phase and magnitude corrections as

a shaded region and determined from an empirical cumulative distribution function of the

steering vectors in each calibration bin. The mean and median values are also reported as

dotted and solid lines respectively.

To aid in the interpretation of the spread of magnitude and phase corrections as a function

of angle, detrended spreads are produced by removing the mean from the interquartile range.

The 90% spread is added to this plot as well. The intent is to convey the spread of 50% and

90% of the corrections about their mean values. The spread of the estimated magnitude and
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phase corrections are presented in Figures 5.25 and 5.26. Again these results are organized

as pairs based on the symmetry of antennas within the array. The spreads for the most

outboard pair (Antennas 1 and 7) appear at the top of the figure and the most inboard pair

(Antennas 3 and 5) appear at the bottom.

In most cases we find that 90% of the magnitude corrections fall within about a 2 dB

envelope of their mean values in any bin but some exceptions to this observation are noted

here. The responses of Antennas 1 and 7 demonstrate increased magnitude spreads over the

intervals of −90◦ ≤ θ ≤ −60◦ and 50◦ ≤ θ ≤ 90◦ respectively. The increased uncertainty

in these areas may be due to shadowing experienced by these elements at the large DOAs

based on the conformal geometry of the array that fits the contour of the aircraft belly.

We expect Antenna 1 to experience shadowing at the large negative DOAs while Antenna

7 is expected to suffer shadowing at the large positive DOAs. Antennas 6 and 5 similarly

demonstrate increased spread at the large positive DOAs but the degree of uncertainty

appears to reduce as the channels move more inboard. Most antennas demonstrate a 4 dB

window of uncertainty about the mean values over the angular window corresponding to

the 3 dB beamwidths of the transmitted beams, covering ±47◦. The phase spreads reveal

similar trends. Antennas 2-6 show that 90% of the phases fall within approximately 20◦

of their respective mean values in a given bin over ±47◦. Antenna 1 shows the largest

spread of uncertainties among all the channels. The spread of the measured phases over the

interquartile ranges of all channels are contained well within ±10◦ over the 3 dB illumination

window.

5.5 Discussion

Nonparametric manifold calibration assumes the availability of single source observations in

estimating the directional response of the array. Collecting enough single source measure-

ments over a sufficiently dense angle grid is problematic for the multichannel SAR sounder

whose sensing geometry is more amenable to providing two-source measurements on a cal-
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ibration grid. The historic approach for capturing Q = 1 snapshots relies on calibration

flights over an extremely smooth and non-penetrative surface interface with a maneuver-

ing platform. This technique is subject to the roll restrictions of the aircraft and requires

planned calibration flights over specific terrain.

This chapter reformulates the nonparametric manifold calibration problem in the context

of the multichannel SAR sounder problem space. The observation model is described as a

superposition of a signal of interest measured in low-rank subspace interference and noise.

This description exploits our prior knowledge of the scattering contributions in each pixel,

amassed through the creation of large surface object databases as described in Chapter 3

which allow us to isolate pixels by model order. Numerical evidence indicates that the Q = 1

assumption may be allowed to relax provided the power of the calibration source is sufficiently

large relative to the interference. We demonstrate the validity of the proposed relaxation in

simulation by creating calibration bins over a uniform angle grid, injecting interference into

each bin, measuring the manifold via principal components and carrying out angle estimation

over many Monte Carlo trials. Note that each bin only includes one spatial interferer so that

the number of sources never exceeds two in simulation. The simulated RMS error shows

that estimator accuracy improves with increasing isolation up to a point but performance

appears bounded for SIRs exceeding approximately 35 dB. We expect that the CRLB could

be achieved by increasing the number of snapshots in each bin and making grid spacing

arbitrarily small but this has yet to be confirmed.

Initial efforts to apply nonparametric manifold to the RDS documented in [54] and [9]

reveal a need to identify calibration pixels in the imagery dominated by single sources.

Initially a heuristic threshold of 15 dB was applied to an estimated ratio of spatial source

powers. This measure relies on a pseudoinverse, carried out prior to array calibration using

the nominal steering vectors. To avoid reliance on the null steering accuracy underpinning

the pseudoinverse measure, a generalized likelihood ratio type of measure is adopted that

compares energy along a direction of interest to the remaining P − 1 dimensions. This
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measure is also evaluated using the nominal manifold but does not require simultaneous

knowledge of both interference and desired source steering vectors. This measure is expected

to be slightly more robust to calibration errors, provided they are sufficiently small. Lacking

knowledge of the dominant error mechanisms impacting the RDS array’s performance, it

is difficult to assess the validity of this assumption. The GLRT technique applied in this

chapter uses a hand-selected threshold. Further investigation is needed to understand how

this parameter impacts angle estimation outcomes.

The introduction of an error reduction metric provides insight into the comprehensive

improvement in angle estimator accuracy over a majority of calibration bins. Though not

plotted here, it should be noted that a comparison of the error reduction curves corresponding

to manifolds estimated under the GLRT and pseudoinverse rules for editing shows larger

extents of degradation within the 3 dB illuminated swath. Specifically the manifold measured

with the pseudoinverse clustering leads to diminished error reduction values at θ = −34◦,

−7◦ ≤ θ ≤ −1◦, and 13◦ ≤ θ ≤ 35◦. Further investigation has not been carried out to

explain the diminished error reduction (under either editing rule) observed within angular

regions that fall in the neighborhoods of the off-nadir transmit pointing angles. Degradation

in these areas likely indicates windows of poor isolation where a clustering metric breaks

down. The error reduction measure does not inform the hand-selected threshold parameters

applied in producing the final measured manifold results; in the future, consideration of this

factor is recommended in comparing manifolds measured under various editing rules.

The limitations of the editing technique are attributed to its reliance on a manifold-

dependent measure for conditioning the Q = 2 observations of the sounder calibration sets

into approximations of Q = 1 sets. This assumes the array is partially calibrated prior

to determining the measure and reduces the total number of snapshots in each bin. The

description of the observations in a calibration bin developed in Section 5.3 offers a geometric

interpretation that may admit an alternative estimator for a(θc). Each calibration bin can

be further binned by interference angle θi. Letting θ
(k)
i refer to the kth interference subset, we
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can note that the set of Nk manifold vectors in that bin,
{

a(θc), a
(
θ

(k)
i

)}
, spans a subspace

Sk described as a plane in CP . This interpretation suggests that the calibration bins admit

a geometric description as a set of K planes intersecting along a line in CP that is parallel

to the true manifold vector of interest allowing us to assert the following:

a(θc) ∈ S1

⋂
S2

⋂
· · ·
⋂

SK . (5.35)

This interpretation may lead to a cost function that uses the coincident sources to solve

for the best a(θc) rather than attempting to suppress them by editing. An algorithm that

exploits the interpretation of the steering vector in Equation 5.35 is predicted to provide

more accurate estimates by leveraging the information available in the Q = 2 snapshots

rather than suppressing these measurements.

The manifolds measured for this chapter demonstrate significant improvements in an-

gle estimator performance when tested on the approximately single source snapshots. The

comparison of angle estimator performance by manifold model helps to confirm large errors

that have been observed at the edges of the swath in tomography using the nominal model.

The assessment suggests that these errors are dominated by an angle dependent bias that

increases as the elevation angle moves further off nadir. The use of the measured manifold

removes the bias leading to a large reduction in error over the RDS swath. We expect the

measured manifolds to reduce errors in RDS-derived DEMS which will lead to more accurate

estimates of ice volume. We also expect the measured manifold to improve the null steering

accuracy of the geonull beamformer. The large improvements demonstrated in this chapter

justify thorough testing of the measured manifold in improving sensitivity over challenging

sounding targets like the marine terminating outlet glaciers in Greenland.

The manifolds measured in this chapter show large variations in θ which suggest that

the angle-agnostic forms of coupling commonly evidenced in mutual coupling literature will

not likely hold for our problem. We expect these patterns to lead to complex paramet-
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ric descriptions with many unknown parameters. Attempts to fit the measurements to a

model described by a summation of complex exponential functions indicate the optimization

problem is poorly initialized and poorly understood. Further study is needed to understand

initialization and number of terms required to model each pattern. The parameterization of

measured RDS manifolds is addressed further in the Discussion section of Chapter 6.

5.6 Conclusion

This chapter presents a principal components based nonparametric calibration algorithm for

the characterization of SAR sounder manifolds, enabled by a subspace clustering technique

for extracting pixels that are dominated by single sources. The approach relaxes the single

source requirement generally assumed in nonparametric calibration. Numerical evidence was

presented showing that such a relaxation may be reasonable provided that the power of the

calibration source is much higher than that of a coincident interferer. A GLRT measure

is adopted based on partial knowledge of the array response to identify calibration pixels

in the multichannel SAR imagery. The measure enables clustering of approximately single

source calibration and interference measurements in a bin and edits observations prior to

eigendecomposition. Manifolds are measured from three independent data sets and tested

in angle estimation. Application of the measured manifolds in direction of arrival confirms

improved performance over the nominal manifold model for a majority of the field of regard.

On average, the measured manifold models reduce angle estimation uncertainty by a factor

of 4.8. The improved angle estimation performance indicates that the application of the

measured manifolds in the 3-D image formation step of tomography will lead to reductions

in the vertical elevation errors of RDS-derived DEMs, resulting in more accurate estimates

of freshwater ice volume.
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Figure 5.9: Distribution of residual phases measured in the θc = 65◦ calibration bin of
the 20140506_01 data set under different culling rules, referenced to Antenna 4 and with
propagation phase removed based on nominal model.
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and (b) corresponding MUSIC pseudospectra computed with the nominal model, indicating
contamination in the set obtained with the pseudoinverse measure.
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Figure 5.11: 90% range of eigencontrast values (on dB scale) per calibration bin for the
20140506 01 data set for various clustering rules and threshold combinations: (a) ratio of
the pseudoinverse-based estimates of directional source power to interference and noise power
with γ1 = γ2 = 15 dB, (b)-(d) GLRT-based quality with γ1 = 8.99 in all cases and γ2 = 8.99,
γ2 = 15.2, and γ2 = 29.3 in (b), (c), and (d) respectively. Mean and median eigencontrasts
are indicated with solid and and dotted lines. Eigencontrast is defined as the ratio of the
first to second eigenvalues when listed in descending order.
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Figure 5.12: Clean snapshot count in 1◦ angle bins for 20140506_01 calibration set, broken
out by transmit pointing direction for multiple culling methods.
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Figure 5.13: MUSIC angle estimation performance with manifolds measured from
20140506_01 calibration set under three thresholds, tested against 20140325_07 and
20140401_03 data sets.
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Figure 5.14: MUSIC angle estimation performance with manifolds measured from
20140506_01 calibration with GLRT and pseudoinverse measures in snapshot editing (tested
against 20140325_07 and 20140401_03 data sets). Performance is reported in this figure as
a bias of estimated arrival angles in degrees.
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Figure 5.15: MUSIC angle estimation performance with manifolds measured from
20140506_01 calibration with GLRT and pseudoinverse measures in snapshot editing (tested
against 20140325_07 and 20140401_03 data sets). Performance is reported in this figure as
the root mean squared error of estimated arrival angles in degrees.
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Figure 5.16: Measured manifold corrections for Antenna 1 [(a),(b)] and 7 [(c),(d)] of the RDS
center P-3 subarray from three independent calibration sets collected during 2014 NASA
Operation IceBridge Mission. Manifolds shown as a correction relative to the isotropic
steering vector assuming our nominal model of geometry and reported as magnitude in dB
in (a) and (c) and phase in degrees in (b) and (d).
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Figure 5.17: Measured manifold corrections for Antenna 2 [(a),(b)] and 6 [(c),(d)] of the RDS
center P-3 subarray from three independent calibration sets collected during 2014 NASA
Operation IceBridge Mission. Manifolds shown as a correction relative to the isotropic
steering vector assuming our nominal model of geometry and reported as magnitude in dB
in (a) and (c) and phase in degrees in (b) and (d).
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Figure 5.18: Measured manifold corrections for Antenna 3 [(a),(b)] and 5 [(c),(d)] of the RDS
center P-3 subarray from three independent calibration sets collected during 2014 NASA
Operation IceBridge Mission. Manifolds shown as a correction relative to the isotropic
steering vector assuming our nominal model of geometry and reported as magnitude in dB
in (a) and (c) and phase in degrees in (b) and (d).
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Figure 5.19: Measured MUSIC DOA performance (reported here as estimator bias) compar-
ing angle estimates from four potential manifold models and demonstrating improvements
realized with manifold calibration. The nominal curve denotes to the isotropic steering vector
result in terms of our existing model of phase center geometry. Measured manifolds refer to
results of the nonparametric manifold calibration methodology proposed in this dissertation
and summarized in Figures 5.16 - 5.18.
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Figure 5.20: Measured MUSIC DOA performance (reported here as estimator error) compar-
ing angle estimates from four potential manifold models and demonstrating improvements
realized with manifold calibration. The nominal curve denotes the isotropic steering vector
result, evaluated in terms of our existing model of phase center geometry. Measured man-
ifolds refer to results of the nonparametric manifold calibration methodology proposed in
this dissertation and summarized in Figures 5.16 - 5.18.
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Figure 5.21: Average RMS error reduction demonstrated with measured manifolds, defined
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observed with a measured manifold. The black portions indicate where this ratio is less than
one and hence interpreted as a localized degradation (where the measured manifold does not
outperform the nominal in angle estimation).

178



-100 -50 0 50 100
DOA (°) 

-100 -50 0 50 100
DOA (°) 

M
an

ifo
ld

 c
or

re
ct

io
n 

( d
B

 )
M

an
ifo

ld
 c

or
re

ct
io

n 
( d

B
 )

-100 -50 0 50 100
DOA (°) 

-100 -50 0 50 100
DOA (°) 

M
an

ifo
ld

 c
or

re
ct

io
n 

( °
)

M
an

ifo
ld

 c
or

re
ct

io
n 

( °
)

[7, 6, 5, 4, 3, 2, 1]

(a) (b)

(c) (d)

Antenna 1

Median
Mean

Median
Mean

-10

-8

-6

-4

-2

0

2

-40

-20

0

20

40

60

80 Antenna 1

-10

-8

-6

-4

-2

0

2

4 Antenna 7 Antenna 7

Median
Mean

Median
Mean

-20

0

20

40

60

80

Figure 5.22: Measured manifold offsets relative to nominal model for the RDS P-3 center
subarray calibration data collected during the 2014 NASA IceBridge campaign. Responses of
antennas 1 and 7 are presented as pairs based on approximate symmetry of antennas within
the array. Interquartile ranges (shaded) shown with median and mean steering vectors as:
(a), (c) magnitude (dB) and (b), (d) phase (◦).
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Figure 5.23: Measured manifold offsets relative to nominal model for the RDS P-3 center
subarray calibration data collected during the 2014 NASA IceBridge campaign. Responses of
Antennas 2 and 6 are presented as pairs based on approximate symmetry of antennas within
the array. Interquartile ranges (shaded) shown with median and mean steering vectors as:
(a), (c) magnitude (dB) and (b), (d) phase (◦).
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Figure 5.24: Measured manifold offsets relative to nominal model for the RDS P-3 center
subarray calibration data collected during the 2014 NASA IceBridge campaign. Responses of
antennas 3 and 5 are presented as pairs based on approximate symmetry of antennas within
the array. Interquartile ranges (shaded) shown with median and mean steering vectors as:
(a), (c) magnitude (dB) and (b), (d) phase (◦).
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Figure 5.25: Measured spread of combined manifold’s magnitude corrections per antenna,
showing 90% and 50% spreads in each calibration bin.
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Figure 5.26: Measured spread of combined manifold’s phase corrections per antenna, showing
90% and 50% spreads in each calibration bin.
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Chapter 6

Deterministic Manifold Modeling with a Full Wave Solver

Abstract

Parametric manifold calibration techniques handle multiple spatial sources simultane-

ously and pose attractive solutions in the SAR sounder problem space. The parametric

approaches assume prior knowledge of a manifold model which may be measured from

data or predicted in simulation. Predicting the manifolds of practical sounder air-

borne arrays requires a high fidelity, full wave solution that accurately accounts for the

electromagnetic phenomenology (mutual coupling, multipath, and other platform ef-

fects) determining the complex response of the individual elements in their operational

environment. To fully understand the error mechanisms determining the RDS array

response and to support parametric algorithm benchmarking, a legacy computational

electromagnetics (CEM) model of the RDS inboard subarray on the P-3 is refactored

for studying manifold calibration as a part of this dissertation. This chapter docu-

ments the refactoring of this model and offers some initial predictions of RDS receive

manifolds under varying degrees of complexity (from free space to fully integrated on

the aircraft with a fairing enclosure). A full method of moments solution for the RDS

P-3 receive manifold is presented that realizes tractability with a coarse surface mesh

on the platform. Application of this manifold in angle estimation with real sounder

observations reduces angle estimator error on average by a factor of 3. The improved

angle estimator performance helps confirm the value of CEM predictions in manifold

calibration. While the development and validation of this model is still in the early
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stages of refinement, the predicted manifolds are expected to offer important utility in

parametric manifold calibration algorithm development.

6.1 Introduction

A lack of mensurated embedded element patterns for the RDS P-3 array limits both the

application of parametric calibration techniques in the array processor capable of supporting

multitarget calibration as well as the interpretation of a manifold measured from data. As a

part of the dissertation research, a legacy HFSS model of the RDS P-3 subarrays developed

at CReSIS during the initial array design and optimization stages [7], [3], [6] is customized

for simulating the embedded patterns with Feko [4], a commercial off-the-shelf CEM software

package from Altair. To date, the legacy model has not successfully confirmed the embedded

gain patterns of RDS P-3 subarrays. Discrepancies between observations and predictions are

attributed to limitations in both the generation of CEM tools and computational resources

available at the time the model was developed. Predictive capacity of modeled manifolds is

expected to improve with the availability of CEM software that supports hybrid solvers which

simultaneously handle both the differential form and integral forms of Maxwell’s equations in

one model and that offer advanced meshing techniques to capture electrically small features

that are known to alter the resonance of the antennas against electrically large structures.

Predicting receive RDS P-3 manifolds with a full wave solver is a complex modeling problem,

driven by the structural intricacies of the fairing enclosures; results offered in this chapter

should be regarded as tertiary predictions that warrant further investigation.

This chapter documents the refactoring of the legacy RDS P-3 inboard subarray model

and its integration into Feko. The antenna model of the RDS wideband dipole elements

is described including its feeding, balancing and basic performance validation. The fairing

structure is discussed in detail, describing material properties and component dimensions.

CEM methodology is offered which outlines the approach for scaling the computational size

of the model (required to carry out simulations given the computational resources available)
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and potential limitations imposed in scaling the problem are discussed. Predicted receive

manifolds are presented to illustrate deviations from a nominal manifold with varying degrees

of platform complexity.

6.2 CEM Model Development of Inboard Subarray

In the section that follows, the porting and refactoring of the legacy HFSS model in Feko

is documented. Antenna feeding and validation are described. We document modifications

meant to increase the representation of structural detail in the near field of the radiators.

Specific modifications include representing the layered dielectric substrate structure of the

fairing’s bottom skin with embedded conductive structural components.

6.2.1 RDS Wideband Antenna Element Model

The wideband dipole element design of the RDS antennas making up the P-3 subarrays

optimizes return loss and operating bandwidth of the elements when embedded in the fairing

structure and an individual element is designed to have a 50 Ω input impedance [3]. The

final design supports operation of the subarrays over the 160-240 MHz frequency range with

a minimum return loss of 10 dB. The planar antenna elements have two layers of copper

on opposite sides (top and bottom) of a 69 mil FR-4 substrate, modified from their original

bow-tie design to reduce mutual coupling with triangular notches at the copper edges [3]. A

Feko [4] model of the RDS P-3 antenna element is illustrated in Figure 6.1, showing the top

conductor layer with modified edges (copper) lying on the dielectric substrate (in blue).

This figure specifies the geometry assumed in the Feko model. Script angle variables are

used here to emphasize a distinction between those assumed in the array processor. The

Feko coordinate system measures elevation angle, ϑ, with respect to zenith (aligned to up

in an East-North-Up coordinate system). We measure angle of arrival, θ, with respect to

nadir (aligned to down in a North-East-Down coordinate system) in tomography. Results
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Figure 6.1: RDS wideband dipole model developed in Feko [4] showing top copper layer on
69 mil FR-4 substrate.

presented further in this chapter plot gains and manifolds with respect to our angle of arrival,

θ. These plots cover the angular range of −90◦ ≤ θ ≤ 90◦ when reporting results within

the field of regard. Patterns plotted over the range −180◦ ≤ θ ≤ 180◦ include antenna field

quantities in the backlobe region where |θ| > 90◦

A center-fed dipole antenna is said to be balanced when the current distributions in the

arms of the dipole are of equal magnitude and opposite direction. Symmetrical element

designs are inherently balanced by their physical symmetry. Balanced and unbalanced ge-

ometry is illustrated for a wire dipole shown in Figure 6.2. The balanced configuration in

6.2a ensures equal magnitude currents in the arms of the dipole while the asymmetry in 6.2b

alters the impedance of the element leading to an asymmetric current distribution in the

arms. While parallel wires provide inherently balanced feeds for a balanced element such as

the wire dipole, a coaxial cable leads to unbalanced current distributions when currents flow

on the outside of the outer conductor which may cause the cable to radiate. The balun is a

device designed to transform the balanced antenna impedance to the unbalanced impedance

of the coax in order to suppress current flow out the outside of the outer conductor.

The feed design of the P-3 array, described in [3], involves ferrite transmission line trans-

formers created from twisted-pair magnet wire looped through the interior of binocular ferrite

core to suppress current propagation on the outside of the outer conductor. Ferrite beads

spaced along the coaxial cables that route from the interior of the cabin out to the arrays
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Figure 6.2: Illustration of (a) balanced and (b) unbalanced operation of a wire dipole,
recreated from [5].

serve as common mode current chokes that suppress parasitic currents leading to uninten-

tional radiation of the feed cables. These components add complexity to the Feko model

considered beyond the scope of this dissertation. Hence the model which generates results

presented in this chapter regards the antenna ports as the plane of reference and does not

handle the microwave network attached to the array.

The legacy HFSS model of the antenna includes a via passing through the FR-4 substrate

and electrically connecting the top and bottom conductors as shown in Figure 6.3. The

box is slightly offset from the center of the element and creates a small asymmetry in the

surface current distribution when the antenna is excited without the balun. The HFSS

excitation port, also indicated in Figure 6.3, is a rectangular face that points to an input

source file, presumably measured experimentally. For the purpose of this study, both the via

and the excitation aperture are removed to restore structural symmetry, thereby balancing

the current distribution in the Feko model. The antenna faces are modified slightly to allow a

small overlap at the center of the geometry to accommodate a conductive face for installation

of an ideal edge port. In the Feko model, the antenna is fed with a voltage source at the very

center of the element where the top and bottom patches overlap in the z dimension. The

modified feed point is shown in Figure 6.4. The balanced instantaneous current distribution

is illustrated in Figure 6.5 to visually demonstrate symmetry across the top and bottom

conductors. The dielectric is suppressed from the figure to show both faces simultaneously.

The modeled RDS antenna is benchmarked in Feko prior to simulating the element in
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Figure 6.3: Structural components of the legacy HFSS model altered for this study.
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Figure 6.4: Modified feed site and installed edge port in the Feko model.

the context of an array. The following antenna performance parameters are reported here:

frequency-dependent return loss and mismatch efficiency referenced to 50 Ω, antenna input

impedance and polarization properties. The purpose of reviewing the performance metrics

of the modeled antenna element is to identify a reasonable operating frequency for the Feko

based studies that follow.

Scattering parameters of the antenna over the 150 to 300 MHz frequency range are
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Normalized Current Density (dBA/m)

0 -100-50

Figure 6.5: Normalized instantaneous surface current density in top and bottom conductors
of an RDS antenna with a 195 MHz excitation. The dielectric substrate is suppressed in the
figure to show symmetry between conductive faces.

measured from the modeled antenna using the S-Parameter configuration in Feko with a 50

Ω reference impedance. The simulation creates a Touchstone file that can be used to create

an S-parameter object with MATLAB’s RF toolbox [94]. The measured S11 is interpreted

as the voltage reflection coefficient, Γ, that is used to compute the return loss and mismatch

efficiency as

RL(dB) = −20 log10(Γ), (6.1)

and

q = 1− |Γ|2. (6.2)

The input impedance of the isolated element, ZA, is computed using the following relationship

between the reflection coefficient, the reference impedance, Z0, and ZA

Γ =
Z0 − Z∗A
Z0 + ZA

. (6.3)

Return loss, mismatch efficiency and input impedance are plotted as a function of fre-

quency in Figure 6.6. The Feko implementation of the RDS wideband dipole achieves at

least 13 dB return loss in isolation over the RDS band of 180 to 210 MHz, thereby satisfying
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the specified minimum value of 10 dB cited in [3]. We can expect this metric to alter when

the antenna is embedded in the array due to platform effects such as capacitive loading of

aluminum doublers in the fairing structure described in [3]. Matching efficiency, derived

from Γ using Equation 6.2, exceeds 95% over the band. We note from Figure 6.6(c) that

over the frequency range of interest, the antenna is slightly inductive. This can be offset

with a matching circuit that introduces capacitance in feeding the element or terminating in

a perfectly matched load on receive.

The three-dimensional far field gain pattern is shown in Figure 6.7(a) at 195 MHz overlaid

on the element showing a typical dipole shaped pattern. A cut through the pattern in

elevation is shown in Figure 6.7 as a polar plot divided in 10 dBi rings. The pattern realizes

a peak gain of approximately 1.9 dBi at 195 MHz, which suggests that at this frequency the

RDS antenna lies between the characteristics of a short wave and half-wavelength dipole [102].

The peak gain, G0, and peak directivity, D0 are measured in Feko as a function of frequency

over the 150 to 300 MHz band and used to determine the radiation efficiency of the antenna

based on the following relationship

G0 = erD0. (6.4)

The radiation efficiency er is plotted in Figure 6.8(a) while peak gain and directivity are

shown in (b).

6.2.2 Constitutive Parameters of Materials in Feko Model

The components of the integrated array model are handled as one of the four types of

materials: perfect electric conductor, aluminum, S-2 glass, FR-4 epoxy, and Rohacell 71 IG

foam. The constitutive parameters of the conductive materials and dielectric materials are

summarized in Table 6.1 and Table 6.2 respectively. Both tables categorize the components

of the Feko model by material type and offer references for the cited values. Note that

conductive materials are defined using Feko libraries only thus Table 6.1 does not offer
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Figure 6.6: RDS isolated antenna performance parameters measured in Feko: (a) return loss
referenced to 50 Ω, (b) mismatch efficiency referenced to 50 Ω, (c) antenna input impedance.

associated references.

6.2.3 Inboard Fairing Model

The antenna fairings are aerodynamic enclosures surrounding the subarrays, allowing them

to suspend from hard points on the aircraft in flight. The original design, which was driven

by NASA’s airworthiness certification requirements [87], was modified to improve measured

return loss over several design iterations following the inaugural flight of the RDS P-3 sub-
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Figure 6.8: RDS isolated element performance characteristics over 150 to 300 MHz band:
(a) radiation efficiency and (b) peak gain and directivity.

arrays at NASA Wallops Flight Facility in the Spring of 2010. In an attempt to faithfully

represent the state of the array flown during the 2014 IceBridge mission, the following sources

are consulted and referenced in development of the Feko model: [87], [107], [3], [7]. The sec-

tion that follows reports the representation of the primary structural components in the
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Table 6.1: Summary of conductive materials in model.

Material σc(S/m) µr tan δ Components

Perfect conductor inf 1 0 Antenna conductors

Aluminum 38,160,000 1 0

Doublers

Gang channels

Junction ribs

Rib inserts

Aircraft skin

Table 6.2: Summary of dielectric materials in model.

Material εr tan δ ρ
(
kg/m3

)
Reference Components

FR-4 Epoxy 4.8 0.017 1,000 [4] Antenna substrate

S-2 Glass 5.3 0.002 2,488 [103]

Bottom skin

Top skin

Spars

Fairing ribs

Outer edges

Rohacell 71 IG 1.09 0.0003 75 [104], [105], [106] Bottom skin layer

electromagnetic model including bottom and top fairing skins, leading and trailing edges

and spars, and non-embedded aluminum components.

The legacy model [7] provides the geometry of the platform as well as the dimensions,

shapes, and relative orientation of structural components needed to model the inboard fair-

ing. When possible, basic structural components are rebuilt in Feko with parameterized

dimensions. Parameterization of lengths enables the model to be modified by simply chang-

ing user-defined dimensional variables which in turn updates the entire model in Feko. The

more complex shapes including the glass ribs, junction ribs, and spars are taken directly

from the legacy model and assigned the appropriate material properties based on Table 6.2
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Figure 6.9: Placement of the inboard fairing on P-3 model in Feko. Original HFSS model
provided courtesy of Emily Arnold [6].

and Table 6.1. The placement of the inboard fairing relative to the aircraft is demonstrated

in Figure 6.9.

The inboard fairing consists of three sections shown in Figure 6.10 The outer sections

slope upwards from horizontal to conform to the curvature of the P-3 belly. The angle of the

outer sections measured relative to the x-y plane is indicated in Figure 6.10. The port section

houses Antennas 1-3 while the starboard section houses Antennas 5-7 and the center section

encloses only Antenna 4. When developing the model in Feko, the geometric parameters such

as component length in each dimension and offsets from the origin are parameterized and

one outboard section of the inboard fairing is built and mirrored across the x axis. The outer

sections of the inboard fairing are hence modeled as symmetric for this study. In practice,

the array and it’s fairing enclosure are not perfectly symmetric.

6.2.4 Bottom Skin

The bottom skin is modeled as a layered dielectric substrate following the descriptions in

[3], [87], and [6] which illustrate the lower skin as being a thick core of Rohacell 71 IG
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Figure 6.10: Dimensions of fairing sections and dihedral angle of the outer sections assumed
in the Feko model (as inherited from the HFSS model). A more recent lidar survey of the
subarrays on the P-3 indicates that rotation of the outer sections of the inboard fairing off
of the x-y plane may be slightly less than shown.

foam sandwiched between two layers of S-2 glass. Embedded strips of 2024-T3 aluminum

doublers line the edges of the very bottom layer of S-2. The original design which included a

continuous edge of aluminum along the edges of the bottom skin [87] were found to degrade

array performance [107]. Modifications and optimizations to the original design reported

in [6] document improvements to the doubler design which involve breaking up the path of

aluminum to restore overall return loss of the array elements.

The approach for modeling the bottom skin in Feko departs from the HFSS model which

does not embed the aluminum doublers within the S-2 glass nor does it model the layered

materials described in [87], [3], and [6]. This was likely a simplification to make the model

more computationally tractable at the time it was developed. These structural details are

included in the Feko model in order to improve the fidelity of the model in the near field of

the radiators. The layered substrate with embedded aluminum doublers is reconstructed in

Feko using aspects of the legacy model [7] and details from [87]. The layered media of one

of the outer sections is illustrated in Figure 6.12. Detailed descriptions and dimensions of

the individual structural components as well as the differences between the center and outer
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Figure 6.11: Feko inboard fairing model with array antennas in position and bottom skin
dropped to show internal structure and antenna placement. The Feko adaptation is partially
developed using structural components from a legacy HFSS model provided courtesy of Emily
Arnold [7].

assemblies of the inboard fairing are allocated to Appendix F for the sake of completeness

and to support future work with the model.

One approach for embedding a conductor in a dielectric medium in Feko may be realized

by first creating voids in the host dielectric with physical dimensions that are consistent with

those of the conductor. The empty region must be enclosed by a surface (a sphere or cube for

example) and declared as free space. The inside faces of the voided region are defined as the

corresponding conductive material. For any material other than a perfect electric conductor,
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Figure 6.12: Detail of the bottom skin model showing the voided footprint for the foam core
(top) and filled in footprint (bottom) as well as one of the embedded doublers.

the user must define the thickness of the enclosing faces. In this model, the thickness is

assigned using a parameterized thickness corresponding to the frequency-dependent skin

depth of aluminum as

δAL(f) =
1√

πfµ0σAL
, (6.5)

Where σAL is the conductivity of aluminum defined in Table 6.1 and µ0 is the free space

magnetic permeability. This modeling technique ensures that the MoM solver will properly

handle the boundary conditions at a dielectric interface encountered in the model.
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6.3 Pattern Prediction from Full Wave Model

Feko is used to simulate θ dependent complex voltages captured across the array on receive.

The simulations are designed to develop an understanding of the error mechanisms influ-

encing the phase response of elements embedded within the array. In particular, the tests

intend to demonstrate the impacts of mutual coupling, the fairing enclosure, and the irregu-

lar ground plane presented to the center subarray by the belly of the P-3. Receive manifolds

are presented for the following configurations:

1. Test 1 (Free space RDS array): Free space array of RDS wideband dipole elements with

the conformal geometry specified in Table 6.3. Residual phase after removing propagation

phase is interpreted as error due to mutual coupling.

2. Test 2 (RDS array with P-3, no fairing): RDS wideband dipole array with conformal

geometry and positioned below P-3 belly.

3. Test 3 (RDS array with fairing and P-3): RDS wideband dipole array with conformal

geometry is enclosed in the fairing and positioned below P-3 belly.

6.3.1 Lever Arms in Feko Model

Both linear and conformal geometries of the RDS wideband dipole array are considered in the

simulations in studying the array. The conformal geometry is approximately representative

of the actual RDS antenna positions within the fairing. The feed point of the center element,

Antenna 4, is taken to be the origin of both the linear and conformal geometries as well as

the global origin in Feko of each individual model. The feed point positions in the linear

configuration are determined by rotating the conformal geometry of the outer sections back

to the x-y plane.

It is emphasized here that the Feko models presented in this chapter have assumed

geometries that preserve perfect symmetry across the x axis. This is not necessarily an
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Table 6.3: RDS lever arms in Feko model.

Linear Conformal

Antenna x (m) y (m) z (m) x (m) y (m) z (m)

1 0 2.279 0 0 2.274 0.149

2 0 1.530 0 0 1.527 0.090

3 0 0.780 0 0 0.780 0.031

4 0 0 0 0 0 0

5 0 -0.780 0 0 -0.780 0.031

6 0 -1.530 0 0 -1.527 0.090

7 0 -2.279 0 0 -2.274 0.149

accurate representation of the array geometry that was hand fitted to the underside of the

aircraft during fairing integration. To this point, it is emphasized that the rotation of the

outer fairing panels off the x-y plane by 4.5◦ as specified in Figure 6.10 is an assumption of

the geometry in the Feko model that is inherited from the legacy HFSS model. A recent more

recent lidar survey of the P-3 subarrays carried out in 2017 indicates that this angle may

be slightly smaller in actuality (by approximately 1◦-1.5◦). The RDS lever arms specified in

Table 3.2 reflect the model adopted from this survey and indicate the positions assumed in

determination of the phase center position vectors of the nominal manifold inside the array

processor. Small discrepancies between the various models and truth justify a broader need

to estimate geometric errors from the multichannel array data as proposed in Chapter 4.

6.3.2 CEM Methodology

With respect to array manifold calibration in the direction of arrival problem, we require θ

dependent complex voltage patterns to model the manifold over angle. Antenna reciprocity

ensures that we can characterize the antennas on transmit or receive. Reciprocity is verified

in Feko by comparing far field gain patterns on transmit to current measured through a load
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when an antenna is presented with a plane wave excitation over a ϑ grid. The normalized

amplitude quantities produce equivalent patterns. In our problem however, we need angle-

dependent phase measurements for each channel as well. Prediction of the complex receive

manifold from field quantities simulated on transmission is possible but requires careful

tracking of coordinate systems and additional post-processing of Feko outputs to properly

convert complex electric field vector quantities.

A more straightforward receive characterization is proposed that eliminates sources of

error introduced in the interpretation of Feko outputs and obviates the need for carrying

out P independent runs. Receive manifolds are instead simulated for this dissertation by

terminating the array elements with a common load impedance and presenting an ideal far

field source over a uniformly sampled grid in elevation angle. The origin of the coordinate

system is placed at the feedpoint of the center element, Antenna 4. For each plane wave

position, the complex currents are measured through the loads. With no loss of generality,

these are phase referenced to the measurement on Antenna 4 in the θ = 0◦ position. The

receive mode setup is illustrated in Figure 6.13, showing a far field source that is presented

to the array over a ϑ grid. The plane wave propagation vector is indicated in blue and its

polarization vector is indicated in red.

While the manifolds presented further below in this chapter correspond to predictions

from receive mode simulation, both transmit and receive simulations are carried out when

studying aspects of the array performance. When obtaining field quantities while operating

an antenna element in transmission, an ideal voltage source is used with a 50 Ω generator

impedance. To evaluate far field directivity, the voltage source is set to unity. In cases 2

and 3 from the enumerated list above, where the array is tested with the P-3 included in the

model, surface currents on the aircraft skin may be requested in simulation; in these cases,

each antenna is driven with 150 Watts. A receive manifold is simulated with all elements

terminated in 50 Ω loads. Hence ZL = 50 · IP , where IP is the P × P identity matrix.

The procedure for measuring the receive manifold is validated by verifying the reciprocity
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Figure 6.13: Grid of ideal, linearly polarized far field sources in Feko [4] simulations of
receive manifolds. Blue vectors indicate planewave propagation vectors and red vectors
indicate electric field polarization state.

of the array using the mutual coupling model proposed in [32] and given in Equation 2.54

of Chapter 2. The model, restated below for the convenience of the reader, specifies the

predicted multichannel response of an array on receive given its complex open circuit voltage

patterns (characterized in transmission), its associated Z-parameters denoted by the matrix

ZA ∈ CP×P and terminating multichannel load, ZL:

a(θ) = ZL (ZL + ZA)−1 aoc(θ). (6.6)

The model above is derived assuming an asymptotically thin and perfectly conducting wire

dipole in [35]. The form is interpreted for our purposes as an approximation of the coupled

manifold of a free space dipole array. Following a description of the open circuit voltage

quantity based on induced electromotive force (EMF) outlined in [34], the open circuit

manifold is interpreted as follows:

aoc(θ) ∝ −ZAeθ. (6.7)

202



Here ZA refers to the Z-parameters measured under unit excitation. The vector eθ ∈ CP×1

is a vector whose pth entry contains the complex electric field measured at given angle θ due

to the open circuit pattern of element p, obtained by driving antenna p on transmit with

all other antenna ports left open. The proportionality above assumes eφ is sufficiently small

relative to eθ such that it can be neglected; such an assumption is taken to be valid for

practical dipoles but may not necessarily be valid for other element types. The assumption

is only made here to enable a coarse validation of the receive configuration and a verification

that Feko outputs are properly interpreted in post-processing.

The open circuit element pattern refers to the transmit pattern measured when an ele-

ment in the array is excited with a unit voltage and all other elements are left open (not

terminated). Note that the phase reference of the pth open circuit pattern is the phase center

of the pth antenna in the array. In Feko, [eθ]p is simulated by driving element p with a unit

voltage source and measuring the complex field over a θ grid. Hence the global origin of the

Feko coordinate system translates to the feed point of the antenna under test in evaluating

the open circut pattern of a specified element.

Figures 6.14 and 6.15 demonstrate the results of the reciprocity test used to confirm

proper interpretation of Feko outputs. Similar to the measured manifolds in Chapter 5, the

curves here are presented as row-wise pairs obtained from antennas sharing approximate

even symmetry about Antenna 4. Each curve specifies the real and imaginary component

of simulated quantities, normalized to the value measured on Antenna 4 at θ = 0◦ in the

simulation. In receive mode, the quantities refer to currents in the terminating loads of the

array measured on receive for a given plane wave excitation. These quantities are plotted as

solid lines and compared to the predictions of the receive manifold derived from transmit field

quantities using the model in Equation 6.6 and the simplifying assumption in Equation 6.7.

The predictions are laid on top of each receive manifold using circular and square markers

to indicate the real and imaginary points respectively.

The structural and material complexity of the fairings pose distinct challenges in speci-
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Figure 6.14: Reciprocity validation comparing measured received manifold to predicted man-
ifold based on transmit field quantities for Antennas 1 and 7 and Antennas 2 and 6. Manifolds
presented as antenna pairs based on symmetry in array.

fying a method for numerically solving Maxwell’s equations. For example the lower skins of

the fairings are made up of a bottom substrate of S-2 glass containing strips of embedded

aluminum cured inside the material and lined on its surface with aluminum channels at at-
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Figure 6.15: Reciprocity validation comparing measured received manifold to predicted man-
ifold based on transmit field quantities for Antennas 3 and 5 and Antenna 4. Manifolds
presented as antenna pairs based on symmetry in array.

tachment points that are electrically very small with respect to our wavelength but are known

to alter the resonance of the antennas [3]. This portion of the model is better suited for a

volume-meshing Finite Element Method (FEM) solver for solving for fields within dielectric
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regions while the surface-meshing Method of Moments (MoM) solvers are more appropriate

for computing field interactions with the fuselage, wings, and propellers. Both solvers lead

to extremely large mesh sizes due to the large range of electrical dimensions in our problem,

mandating extremely large RAM requirements needed to carry out computations.

Our problem requires a solver that simultaneously handles both electrically small and

electrically large scales in one simulation while also accurately representing dielectric regions

and fields at surface boundaries simultaneously. The complexity of modeling the RDS subar-

ray when enclosed in the fairing and installed on the aircraft indicates a need for a software

package that efficiently implements hybrid solvers. Electrically large problems can often be

solved with fast numerical techniques like the MoM-based Multilevel Fast Multipole Method

(MLFMM) which leverages sparseness of the near field coupling of an antenna relative to a

large background structure to approximate the integral equation. The fine detail of features

known to influence array performance inside the fairing and which must be included in the

model disqualifies the P-3 model from leveraging the fast MLFMM solver.

The simulations carried out for the dissertation (specified as cases 1-3 above) implement

the full Method of Moments solver in producing the receive manifolds. The validity of the

MoM solutions in handling dielectric regions with embedded conductors is not studied here

but should be revisited in the future to understand differences imparted by a solver method on

the predicted manifolds. The full model including the array enclosed in the complete fairing

and installed on the aircraft leads to an extremely large computational problem. Application

of standard meshing in Feko (where triangle edges are on the order of approximately λ
12
) leads

to 264,359 triangles; a CEM problem of this size requires approximately 1.9 TB of memory

(which may distribute across cores) for computation.

The simulations outlined in this chapter are run on a machine with 256 GB of available

RAM. This motivates two changes to reduce the computational load. First, the leading and

trailing edges of the fairing are identified as introducing a significant number of unknowns to

the CEM problem. This is attributed to the fine mesh requirement needed to avoid triangle
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Spar Trailing 
Edge

Figure 6.16: Detailed view of a spar nested inside the fairing’s trailing edge with simulation
mesh overlaid. The tight curvature of these components requires a very fine mesh to avoid
intersecting triangles in the areas where the pieces nest together.

intersection where the components cup together. The spar and trailing edge with overlaid

simulation mesh are illustrated in Figure 6.16. When the simulation mesh is too coarse, the

inner triangles of the trailing edge’s mesh intersect with the spar’s mesh in the regions where

these components nest together, leading to errors in simulation. To avoid triangle intersection

in the meshed model, 1 mm gaps are inserted between components throughout the model;

this can be noted in Figure 6.16. The trailing edges are omitted in simulation to reduce

the number of unknowns. Omission of the leading and trailing edges of the fairing is not

expected to significantly alter the pattern cuts through φ = 90◦; this simplification reduces

the number of triangles and the RAM requirement to 236,638 and 1.32 TB respectively.

The most significant reduction in computational scale is realized in applying local meshing

rules to specific faces in the model. Local meshing rules allow the creation of mesh that

relaxes the average triangle edge length on specific faces (such as the back of the fuselage

and the tail) and also enforces a finer mesh in areas closer to the radiators. The final

meshing solution of the full problem (including the array, fairings and platform) requires

approximately 155 GB of RAM. Here it is emphasized that the mesh on the body of the

aircraft may not be sufficient for modeling the effects of the ground plane. In the vicinity
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Table 6.4: Mesh summary for modeling receive manifolds.

Edge Lengths (cm)

Model Triangles Average Standard Deviation Min Max

Free space 5,318 2.54 1.56 0.075 8.38

Free space, P-3 65,548 15.99 3.09 0.061 38.63

Fairing, P-3 85,788 14.06 3.98 0.061 29.37

Loaded 
ports

Figure 6.17: Feko [4] model of RDS free space array with overlaid simulation mesh. Arrows
point out loaded, ideal edge ports with positive face indicated in red.

where the elements see their image, the local mesh is specified at λ
10

because a finer mesh

leads to a problem that cannot be solved given the computational resource limitation (of 256

GB of RAM). The final simulation sizes are defined in Table 6.4.

An example of the simulation mesh for the free space test is shown in Figure 6.17. The

mesh overlays the model in this illustration. Arrows are used to indicate the markers on the

loads on the ideal edge ports. Positive marker ends refer to the edge that is treated as the

positive port edge in the simulation. Figures demonstrating the models that include the P-3

are shown in 6.18a and 6.18b with overlaid meshes.

6.3.3 Predicted Embedded Element Patterns

The directivity patterns of each embedded element are presented for the three test cases

as co-polarized and cross-polarized directive gains. The embedded element patterns are
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(a) (b)

Figure 6.18: FEKO [4] model of (a) the RDS array with P-3 ground plane and (b) the RDS
array inside the fairing and integrated onto the P-3.

simulated by exciting one element at a time on transmit with all other elements terminated

in 50 Ω. Feko computes directivity by referencing in the far field to radiated power and

hence does not account for losses in the structure. Directivity results are presented as polar

plots on a dBi scale in Figures 6.19-6.22. Antenna pairs are presented side by side based on

their approximate symmetry in the array. Each figure illustrates predicted directivities for

each of the tests, organized in order of increasing model complexity. The free space array

is considered the simplest setup, shown at the top of each figure, while the full model (with

fairing and P-3) is interpreted as the most intricate case, shown at the bottom. Antenna 4

is presented in its own figure. The radial limits on all plots span 110 dBi which increments

from -100 dBi to 10 dBi in 10 dBi steps. All plots are shown in terms of the DOA, θ. Thus

|θ| ≤ 90◦ corresponds to the field of regard with 0◦ referring to nadir and ±180◦ mapping to

zenith. The region of angles |θ| > 90◦ is regarded as the backlobe of the array.

The figures confirm symmetry in the patterns of antenna pairs that is consistent with the

approximate symmetry of elements in the array. In the free space case for example, a null of

the Antenna 1 pattern appears in the field of view, near approximately −86◦ while Antenna

7 has a null at 86◦. The nulls in the visible region appear to fill in slightly when the P-3 is

placed behind the array. The conformal geometry of the array tilts the dipole patterns in

θ. It is worth noting that a linear array case was tested. The results are not shown in this

chapter but the patterns show squinting of the outer elements that is attributed to mutual
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Table 6.5: Predicted total directivity of embedded patterns at nadir for each test.

Antenna

Model 1 2 3 4 5 6 7

Free space 1.5 0.011 0.775 0.432 0.778 0.011 1.49

Free space, P-3 6.86 3.15 6.1 2.75 6.13 3.24 6.85

Fairing, P-3 5.87 4.94 2.86 5.43 3.05 4.83 5.97

DT (θ = 0◦) dBi

coupling. Figure 2.10 in Chapter 2 illustrates the open circuit patterns simulated for that

case.

The cuts predicting performance when the array is placed inside the fairing and installed

on the platform suggest the dipole nulls are much more filled in these regions. The results

confirm the gain improvement with the ground plane in place behind the array, evidenced by

an average increase in directive gain in the visible region. Though the patterns show rippling

across θ that is not easily observed on the polar plots. The rippling is more visible in the

receive manifolds presented further below. The values of the total predicted directivity at

nadir are reported in Table 6.5 and demonstrate an alternating of high to low directivities

from channel to channel at one grid point in θ. The presence of the rippling in the simplest

setups such as the linear array of RDS dipoles in free space indicates that this phenomenon

is largely attributable to mutual coupling.

Two additional observations drawn from the element directivity patterns are noted here.

First, the dipole nulls appear largely filled in when the RDS array operates inside the fairing.

The element patterns predicted with the full model show reduced element rolloff in the regions

of 60◦ ≤ |θ| ≤ 90◦. This suggests that the rolloff of signal to noise ratio for the angles far off

nadir may not have as much of an impact on manifold measurement as originally anticipated.

The patterns also indicate a decreasing polarization isolation as the platform effects increase.

Antennas 2 and 6 show less than 10 dB of isolation in the cross-polarization at the angles
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−60◦ and 60◦ respectively. This may justify additional study to determine the impacts of

degraded polarization isolation on manifold characterization.

6.3.4 Predicted RDS Receive Manifolds

To help describe the complex patterns that are presented in the following sections, some

notation is introduced here. The vectors i(θ) ∈ CP×1 and aR(θ) ∈ CP×1 are adopted to refer

to a θ dependent multichannel current, i(θ), that leads to a predicted receive manifold aR(θ).

Feko provides a multichannel vector of complex currents measured across the loaded ports

for each position of the far field source over the user specified θ grid, illustrated in Figure

6.13. The pth entry of i(θ) is proportional to an embedded gain pattern measured by driving

antenna p with a voltage source and an appropriate generator impedance while all other

elements in the array are terminated in an impedance ZL. The measured receive currents

can be converted back to directive gains with additional processing of the Feko outputs that

accounts for the polarization of the far field source to obtain a gain relative to an isotropic

radiator.

The multichannel current vectors are normalized with respect to the complex current on

the reference sensor, Antenna 4, at θ = 0◦ to obtain aR(θ). This is summarized as

aR(θ) =
1

[i(0)]4
i(θ). (6.8)

This form, which describes offsets of each channel relative to the complex current on Antenna

4 at array boresight, preserves the angle dependent rolloff of the embedded elements and

represents the multichannel data after channel equalization. A manifold correction, denoted

by the quantity d(θ), is introduced to describe the offset of each manifold vector from the

isotropic form, evaluated in terms of the true geometry. Evaluation of this correction is

carried out by scaling aR(θ) by its norm in each direction and removing the propagation
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Figure 6.19: Predicted embedded element directivity patterns of Antennas 1 and 7 for each
test. Both co-polarized (solid line, labeled as Dϑ) and cross-polarized (dashed lines, labeled
as Dϕ) gains are reported.
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Figure 6.20: Predicted embedded element directivity patterns of Antennas 2 and 6 for each
test. Both co-polarized (solid line, labeled as Dϑ) and cross-polarized (dashed lines, labeled
as Dϕ) gains are reported.
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Figure 6.21: Predicted embedded element directivity patterns of Antennas 3 and 5 for each
test. Both co-polarized (solid line, labeled as Dϑ) and cross-polarized (dashed lines, labeled
as Dϕ) gains are reported.
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Figure 6.22: Predicted embedded element directivity patterns of Antenna 4 for each test.
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Dϕ) gains are reported.

phase based on the true model of the sensor positions.

d(θ) =
aR(θ)

‖aR(θ)‖
� a∗0(θ). (6.9)

Here � is a Hadamard product (corresponding to element-wise multiplication of vector en-

tries) and a∗0(θ) is the conjugated isotropic steering vector whose pth entry is restated as

having the following form: [
a0(θ)

]
p

= e−jr
T
p k(θ). (6.10)

Note that the feed point of the reference sensor, Antenna 4, is taken to be the origin of the
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geometry. Hence the phase of the manifold references this point in the array geometry. It is

emphasized here that the propagation to the feed points are removed and not the propagation

to our assumption of a phase center. Manifold correction plots are meant to be consistent

with the conventions in the measured manifolds with the only difference being that the

measured manifolds remove a propagation phase based on our model of the effective phase

center of each channel. Discrepancies exist between our initial model of the lever arms, the

model assumed in Feko, and the lever arms measured in survey. In Feko, the measurement

of the offsets of each feed relative to a corresponding surface normal on the underside of the

aircraft is prone to error and the choice was made to avoid introducing these uncertainties

into the plotted patterns.

Figure 6.23 presents the receive manifolds and manifold corrections for Test 1 (where the

RDS array is operated in free space). Figures 6.24a and 6.24b correspond to the multichannel

complex currents, corrected to Antenna 4 at nadir. The phase unwraps about the value

at 0◦. The outputs help to confirm the simulation setup. For example, Antenna 1 leads

the reference element for θ > 0◦ which is consistent the assumed geometry in the CReSIS

toolbox. The results show a transition in the direction of the unwrapped phase responses

near approximately ±85◦. The major to minor axial ratio (obtained from the transmit

characterization of the elements carried out above) in these regions, which align with the nulls

of the dipoles, is much greater than one and indicates an increase in the cross-polarization

component of the field. The manifold corrections in these areas suggest that small changes in

θ lead to much larger changes in phase, perhaps justifying a finer grid spacing when binning

snapshots further off nadir. Mutual coupling is interpreted as the dominant mechanism

inside of ±80◦.

The predicted manifolds for the Test 2 simulation (where the array is placed below the

aircraft without the fairing) are shown in Figure 6.24. The receive manifold confirms rippling

of the patterns over θ. The outer elements appear to show the smallest swing in values from

peak to trough. Antennas 2, 4, and 6 show a large dip at nadir relative to Antennas 1, 3, 5,
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Figure 6.23: Receive manifold predictions of the RDS array in free space (corresponding
to Test 1) in response to a linearly polarized plane wave. The magnitude and phase of
the receive manifold, normalized to the Antenna 4 pattern at boresight, are shown in (a)
and (b) respectively. The magnitude and phase of the manifold corrections, normalized to
the Antenna 4, are shown in (c) and (d) respectively. The corrections of each channel are
presented in a consistent manner to the measured manifolds in Chapter 5.

and 7. The gain offsets of the channels relative to Antenna 4 at θ = 0◦ and listed in order

from Antennas 1 to 7 are [5.099, 0.0467, 3.5422, 0.000, 2.9258, 0.3076, 4.2260] dB. Note these

217



values are very close to the relative gains in the directivity patterns at nadir, cited in Table

6.5. Small differences between the two sets are possibly attributable to differences in the

meshes. It is worth noting here that the gain offsets listed are expected to be symmetric

across the antenna pairs because the EM model is symmetric. The differences such as those

observed in the gain offsets of Antennas 2 and 6 are interpreted being caused by asymmetry

in the mesh that perhaps indicates that the ground plane mesh is too coarse.

The predicted receive manifolds with the fully modeled inboard array are presented in

Figure 6.25. The magnitude patterns show a large amount of variation per channel in θ.

The dipole nulls are all visible in the field of view but show filling over the channels. The

range of the predicted magnitude corrections is similar to that of the measured manifolds

presented in Chapter 5. The predicted receive manifolds exhibit asymmetric values despite

the perfect symmetry of the model. For example we would expect the phase correction of

Antenna 1 at a particular θ0 to be very close to the value observed in the Antenna 7 pattern

at the corresponding angle −θ0 but examples can be drawn from these results that violate

this anticipated symmetry. The phase offset of Antenna 1 at θ = −56◦ is measured at 23.49◦

while on the opposite side of the array, Antenna 7 shows a phase offset of 37.26◦ at θ = 56◦. It

is worth noting here that in the free space case, symmetry in the phase responses is verifiable

within ±85◦ indicating even symmetry in the mutual coupling across 0◦ for the antenna pairs

in the EM model. Again it is emphasized that the EM model exhibits symmetry that we do

not anticipate in true array geometry due to the hand fitting of the fairing to the aircraft

during integration.

The predicted manifolds of Test 3 are compared to the measured RDS manifolds in

Figures 6.26 - 6.21 below. It is acknowledged here that variation is anticipated due to

differences in the lever arms assumed in the toolbox and those inherited from the legacy EM

model. Perfect agreement is especially not anticipated in the phase corrections. Unwrapped

phase is presented, showing measured and predicted values against the nominal model of

θ dependent propagation phase on each channel. Magnitude corrections are shown in dB
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relative to Antenna 4. On some patterns, peak locations in the magnitude curves appear

consistent between predictions and measurements. Antenna 5 for example exhibits peaks in

the response at ±10◦ in both the Feko and measured results. Similarly Antenna 7 shows a

peak in both the EM manifold and measured manifold at 36◦. Some portions of the patterns

appear to show dilation or contraction over finite angular windows.

6.4 Electromagnetic Manifold Application in Angle Estimation

Despite the differences observed in comparison of predictions to measurements, the EM

manifold is applied in angle estimation using the edited snapshot sets. The performance is

compared to measured and nominal manifold angle estimator error. Results are produced

that are consistent with those used to assess the performance of the measured manifolds in

Chapter 5 (see Figures 5.19 and 5.20). The bias and RMS errors measured in this test are

presented in Figure 6.29. The observed bias and RMS errors over ±40◦ indicate that the

EM manifold performs better over the angular window of −40◦ < θ < 0◦ compared to the

0◦ < θ < 40◦ range. RMS errors over |θ| ≤ 40◦ are all bound within 3◦. The EM manifold

leads to lower errors compared to the nominal case over −90◦ ≤ θ ≤ −18◦ and 40◦ < θ ≤ 90◦.

The measured bias suggests that the EM manifold consistently produces biased estimates of

angle with the exception of a small window near −30◦.

Similar to the result presented in Figure 5.21 of Chapter 5, an error reduction factor is

offered to help in quantifying angle estimation performance improvement. Following the form

of Equation 5.34, this is computed as the following ratio of RMS errors measured between

the nominal and predicted manifolds as:

Error Reduction(θ) =
RMSEnom(θ)

RMSEfeko(θ)
. (6.11)

This form is interpreted as a reduction when the ratio is at least one. The error reduction

factor comparing MUSIC angle estimates under nominal and predicted RDS manifolds is
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Figure 6.24: Receive manifold predictions of the RDS array when P-3 is included in the
model (corresponding to Test 2). The fairing is not used in this simulation. The magnitude
and phase of the receive manifold, normalized to the Antenna 4 pattern at boresight, are
shown in (a) and (b) respectively. The magnitude and phase of the manifold corrections,
normalized to the Antenna 4, are shown in (c) and (d) respectively. In plotting corrections,
only the propagation to the feed point of the antenna is removed (and does not account
for the offset of the feed from the ground plane). Phase residuals on each channel contain
propagation from the feed to the unknown effective phase center.
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Figure 6.25: Receive manifold predictions of the RDS array inside the fairing and attached
to the P-3 (corresponding to Test 3). The magnitude and phase of the receive manifold,
normalized to the Antenna 4 pattern at boresight, are shown in (a) and (b) respectively.
The magnitude and phase of the manifold corrections, normalized to the Antenna 4, are
shown in (c) and (d) respectively. In plotting corrections, only the propagation to the feed
point of the antenna is removed (and does not account for the offset of the feed from the
ground plane). Phase residuals on each channel contain propagation from the feed to the
unknown effective phase center.
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shown in Figure 6.30. The ratio of RMS errors is plotted in green and the black markers

indicate regions where the nominal result outperforms the prediction. We observe that the

nominal manifold leads to better angle estimation outcomes (where the ratio is at least one)

over the windows of -17◦ ≤ θ ≤ −8◦ and 0◦ ≤ θ ≤ 40◦. The predicted manifold provides

an average error reduction (evaluated over the values that are at least one) of 3 in angle

estimation.

6.5 Discussion

Interpretation of the deterministic manifolds produced with the full wave solver is likely

limited in Test 2 and Test 3 where the full aircraft is meshed for the simulation. Although

the mesh technically satisfies common surface meshing rules of thumb adopted in CEM

communities, these may not be sufficient for representing the ground plane. Symmetric

responses across 0◦ are expected based on the symmetry of the CAD model. The Feko model

exploits symmetry to simplify construction of the fairing. One outer panel is constructed

and the mirrored across the x axis to force symmetry before dropping the antennas inside.

Component positions are parameterized at onset to ensure precise translations and rotations

in construction. Although the RDS array is not perfectly symmetric across the center line of

the fuselage, forced symmetry in the model helps to reveal the artifacts imposed by the solver

and its configuration. We may use this knowledge to levy requirements on the simulation

that ensure minimal error is imparted on the predicted manifolds when the model is perfectly

symmetric. Once the relationships between simulator parameters and predicted patterns are

better understood, the model may be modified to reflect the true nuances of the actual

system.

The tests that include the aircraft demonstrate asymmetries in the complex patterns

(both in magnitude and phase) that are not observed in the free space array simulation. It is

possible that the P-3 CAD model is not symmetric across the x axis. It is also possible that

the center line of the P-3 CAD is not perfectly aligned to the x axis. If the aircraft model
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is symmetric and properly aligned in the full model, the multipath presented in simulation

is also expected to exhibit symmetry. The most plausible explanation for small differences

between antenna pairs is due to the asymmetry of the surface mesh. Given the coarse

mesh used on the body (needed to scale the problem to fit within the constraints of the

available computational resources), the ground plane which curves above the array is likely

too faceted to accurately represent the image of each antenna. It is recommended that

manifold predictions are recreated with a minimum triangle edge length of λ
16

on the faces

behind the array once computational resources become available.

The predicted patterns indicate that at the edges of the field of view, for example for

|θ| > 70◦, the phase response changes more rapidly with angle. This may offer insight

into the consistent increase in RMS errors observed in angle estimation with the measured

manifold and justifies some localized testing in these regions with finer calibration bin spacing

than the 1◦ grid used for this work. The measured angle estimation performance under

varying manifold types indicates that the EM predictions lead to better performances at

the large angles. Additional testing is recommended to evaluate the potential of using the

EM predictions to compute the subspace clustering measure in the angular regions where

we suspect the measure degrades due to the reliance on the nominal manifold. Improving

angle estimation at the large angles is critical for using automated tracking of the surface in

extracting bed topography.

The predicted array response computed with the full model suggests that a large number

of coefficients will be needed to model the relative magnitude and phase within a parametric

framework. Several attempts were made to apply the parametric framework to the EM

manifold of a geometrically perturbed linear array of RDS dipoles in free space using a

manifold model that relied on a sum of complex exponential basis functions with an unknown

propagation phase, expressed in terms of the geometric perturbation model discussed in

Chapter 4. The number of complex exponentials in each summation was estimated from the

number of significant terms in the Fourier Transform of each channel’s measured complex
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pattern, estimated to be between 15 and 20 (per antenna). In simulation, the reference

antenna was always unperturbed. When the manifold model included propagation phase to

represent unknown geometric errors, the optimization problem grew to involve more than

100 unknowns. Attempts to solve this problem with a global search algorithm and a particle

swarm approach suggest that the optimizer was converging on local minima as evidenced

by a large number of coefficients that were left unchanged at the output of the optimization

routine. This behavior was observed even when initializing the unknown geometric terms

with their real answers (known from the EM simulation).

It is emphasized here that the evidence of failed convergence is observed when using a

deterministic manifold result from a perturbed linear geometry of RDS dipoles in free space.

MATLAB’s curve fitting tools [94] are applied to both measurements and predictions. Both

cases are examined with Fourier series fits to the real and imaginary components. The results

are not included here but indicate at least 17 parameters are needed to represent each channel

(judged by the number of coefficients that result in R-squared goodness of fit measures over

0.9 for all channels). This indicates approximately 102 unknown parameters are expected

for the full model if Antenna 4 is regarded as a reference. The predicted manifolds from

Feko are expected to be critical in validating the parametric framework. It is recommended

that the EM manifold be fit with a Fourier series using the built in curve fitting tools in

MATLAB [94]. This will help to initialize the optimizer when all of the coefficients are

exactly known so that the range on the search bounds can be studied.

6.6 Conclusion

The computational electromagnetic modeling methodology presented in this chapter lays

down a foundation for understanding the error mechanisms influencing the RDS manifold

on the P-3 aircraft. The chapter documents the refactoring of a legacy EM model to study

the manifold calibration problem. RDS receive manifolds are presented for three scenarios,

designed to capture an increasing complexity of environmental effects. The predicted pat-
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terns indicate that finer grid spacing of calibration bins in manifold characteriztion is likely

justified at the large off-nadir angles where small changes in elevation angle correspond to

large changes in the phase response of a given channel. The predicted manifold is applied

to RDS snapshots and demonstrated improved angle estimation performance relative to the

nominal manifold in certain angular regions, suggesting that potential performance gains

may be realized by using the EM results to evaluate the subspace alignment measure for

harvesting calibration targets in the SAR pixels in these regions. The predicted manifolds

are expected to improve algorithm development in support of the parametric framework

outlined in Chapter 4 that will lead to the application of a multitarget calibration strategy.

225



[7, 6, 5, 4, 3, 2, 1]

(a) (b)

(c) (d)

-8

-6

-4

-2

0

2

4

Prediction
Measured

Prediction
Measured
Nominal

Prediction
Measured
Nominal

Prediction
Measured

-100 -50 0 50 100
DOA (°) 

M
an

ifo
ld

 c
or

re
ct

io
n 

( d
B

 )

-100 -50 0 50 100
DOA (°) 

U
nw

ra
pp

ed
 p

ha
se

 ( 
°)

Antenna 1 Antenna 1

-10

-5

0

5

-800

-600

-400

-200

0

200

400

600

-100 -50 0 50 100
DOA (°) 

M
an

ifo
ld

 c
or

re
ct

io
n 

( d
B

 )

-100 -50 0 50 100
DOA (°) 

U
nw

ra
pp

ed
 p

ha
se

 ( 
°)

Antenna 7 Antenna 7

-800

-600

-400

-200

0

200

400

600

Figure 6.26: Comparison of predicted receive manifolds to measurements for Antennas 1
and 7, reported as magnitude and unwrapped phase in (a),(b) and (c),(d) respectively.
The measured manifold is an aggregated result from three measured RDS receive manifolds
that are reported individually in Chapter 5. This result represents a season level manifold
correction for the 2014 Greenland P-3 data set.
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Figure 6.27: Comparison of predicted receive manifolds to measurements for Antennas 2
and 6, reported as magnitude and unwrapped phase in (a),(b) and (c),(d) respectively.
The measured manifold is an aggregated result from three measured RDS receive manifolds
that are reported individually in Chapter 5. This result represents a season level manifold
correction for the 2014 Greenland P-3 data set.
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Figure 6.28: Comparison of predicted receive manifolds to measurements for Antennas 3
and 5, reported as magnitude and unwrapped phase in (a),(b) and (c),(d) respectively.
The measured manifold is an aggregated result from three measured RDS receive manifolds
that are reported individually in Chapter 5.This result represents a season level manifold
correction for the 2014 Greenland P-3 data set.
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Figure 6.29: MUSIC DOA estimation performance for comparing manifold models, reported
as (a) bias in degrees and (b) root mean squared error in degrees. The nominal model
refers to the isotropic steering vector evaluated in terms of our current model of phase
center positions. Measured manifolds correspond to those presented in Chapter 5. The EM
manifold is the result of a full wave solution which outputs complex multichannel data in
response to an ideal, linearly polarized plane wave source.
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Chapter 7

Application of Manifold Calibration in Tomography

Abstract

The nonparametric manifold calibration approach outlined in Chapter 5 leads to im-

proved angle estimation outcomes when the measured manifold is applied in MUSIC.

The reduction of the estimated bias and RMS error reported in Chapter 5 suggests

that the measured manifold will lead to improved outcomes in tomography when the

measured manifold is applied in the angle estimation step of 3-D image formation. This

chapter documents the application of measured manifolds in tomography and the as-

sessment of 16 RDS-derived DEMs of sea ice and rocky terrain in the Canadian Arctic.

Comparison of the vertical elevation errors of RDS DEMs generated with the nomi-

nal array response model to those generated with measured manifold model confirm

significant reductions in elevation errors measured over the 3 dB illuminated swath.

This chapter presents quantitative evidence that confirms the significant reduction in

vertical elevation errors of RDS-derived DEMs produced with the measured manifold,

judged by comparing mean and RMS elevation errors before and after calibration. It

is shown that the measured manifold on average reduces RMS elevation errors by as

much as 14.7 meters over the 3 dB swath width. Qualitative results are presented that

substantiate better surface tracking outcomes after calibration, enabling a wider swath

to be imaged before the tracker pulls off into noise..
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7.1 Introduction

Chapter 5 presents three measured RDS receive manifolds that characterize the response of

the inboard P-3 subarray to directional sources. The manifolds are measured by estimating

the principal component of the array covariance matrix obtained from the edited snapshots

in a calibration bin. The quality of manifolds is assessed by carrying out angle estimation

with the MUSIC algorithm on cleaned snapshot bins and comparing estimator bias and

RMS error to estimator errors observed when the nominal manifold is applied. Recall that

the assessment tests a measured manifold against snapshots from a different day to avoid

testing with the training data. The results reveal bias in the angle estimates obtained with

the nominal model that increase as the elevation angle progresses further off nadir. DOA

estimation with the measured manifold reduces angle estimator uncertainty and bounds the

error well below 2◦ over a 120◦ angular extent about nadir.

Based on the initial assessment described above, we expect significantly improved out-

comes in tomography. This chapter confirms the improvements realized when the measured

manifold is applied in the angle estimation step of tomography. This chapter summarizes the

results documented in [53] offering frame level detail of measured errors for each combination

of measured manifold and tested frame. Qualitative examples are presented that illustrate

the more focused scattering signatures observed in the 3-D images formed with measured

manifolds.

7.2 RDS DEM Generation for Assessing Manifold Quality

Calibration performance is assessed by applying various manifold models in the direction of

arrival stage of tomography and comparing RDS-derived DEMs to the ArcticDEM model

of the surface. In this assessment, only non-penetrative surfaces are considered including

sea ice and rocky terrain; subsurface returns are excluded. Manifolds are tested against a

subset of the frames processed in nonparametric calibration that were reported in Table 5.2
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Table 7.1: Frames processed in tomography.

Day Segment Frame List Mission

20140325_07 [2] Axel Heiberg - Eureka

20140401_03 [4,5, 13, 15-16, 19, 34-35, 38, 41,42,45] North Canada Glaciers

20140506_01 [41, 42, 45] South Canada Glaciers

of Chapter 5. Table 7.1 reports the frames processed in tomography. The multichannel

data are SAR processed for targets on the surface; the permittivity is assigned for free space

propagation, εr = 1, in f -k migration. The MUSIC algorithm is applied for estimating angle

in array processing. The number of sources, which remains fixed over a frame, is assigned

to two in angle estimation.

7.2.1 Surface Reconstruction with CReSIS Toolbox

In tomographic processing with the MUSIC mode enabled, we estimate a pseudospectrum

for every synthesized aperture and two-way delay gate in the scene. This produces a set

of slices in two-way propagation and wavenumber space which we collectively refer to as

the three-dimensional image. A nominal result is produced for each of the tested frames.

Recall that the nominal model refers to the isotropic steering vector whose propagation phase

is evaluated in terms of our understanding of the phase center positions based on a CAD

description of the P-3 subarrays and a lidar survey. The nominal result is interpreted as the

uncalibrated case and represents the baseline of the RDS tomography work preceding this

dissertation research.

The array processor is modified to support three-dimensional image formation with mea-

sured manifold models. Both MUSIC and MLE methods are upgraded to handle angle

estimation with a measured manifold, gridded in θ, by interpolating between grid points

when evaluating their respective cost functions. To date, RDS DEMs produced with tomog-

raphy apply the nominal steering vector in angle estimation. Hence the results presented
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in this chapter and the resulting manuscript documented in [53] are the first examples in

literature that demonstrate manifold calibration in ice sheet tomography.

The CReSIS toolbox implements a sequential tree reweighted (TRW-S) message passing

algorithm for tracking surfaces in the 3-D image. The adaptation of TRW-S to ice sheet

tomography, documented in [108], relies on a model of the air-to-ice interface to track the

ice subsurface. Layer tracking aided by a surface model is disabled in TRW-S when recon-

structing surface terrain for assessing manifold calibration in this research; the tracker does

not use the ArticDEM in extracting a surface from the 3-D image in the results that follow.

Additional support is implemented to update the surface layer extracted from the 3-D image

with the binary ice mask described in Chapter 3. This step allows the coregistered mask

to be carried through DEM generation so that any point on an RDS-derived DEM grid is

associated with a binary value indicating the presence or absence of glacial ice. This ensures

that subsurface targets are excluded from the error analysis presented below.

7.2.2 DEM Accuracy Assessment

DEM vertical elevation errors are reported for the portion of the 3-D image lying approx-

imately within the 3 dB beamwidth of the scanned transmit beams, |θ| ≤ 47◦ and whose

corresponding ice mask is false. The elevation height error of the nth point on a the gridded

DEM is determined as

ehn = hRDSn − hADEMn , (7.1)

Where hRDSn and hADEMn refer to the nth elevation point on the RDS and ArcticDEMs

respectively. A sample mean elevation error and standard error are evaluated for the NT

ice-free grid points as

mh
e =

1

NT

NT∑
n=1

ehn, (7.2a)

234



she =

√√√√ 1

NT − 1

NT∑
n=1

(
hRDSn −mh

e

)2

. (7.2b)

The total RMS elevation error and mean error (ME) are reported for each frame processed

in tomography. Due to the sensitivity of the RMSE to outliers, outliers are identified as

those elevation measurements lying more than 3 standard deviations from the mean error in

Equation 7.1 before computing an RMSE and ME. These measures are evaluated over the

NT ′ remaining grid points (after outlier removal) using the following expressions

ME =
1

NT ′

NT ′∑
n=1

hRDSn − hADEMn , (7.3a)

RMSE =

√√√√ 1

NT ′

NT ′∑
n=1

(
hRDSn − hADEMn

)2

. (7.3b)

When reporting RMSE and ME for a frame, outliers are removed at the frame level. When

reporting an RMSE and ME per manifold, all of the ice-free elevation points from the tested

frames are aggregated prior to rejecting outliers.

7.3 Application of Measured Manifolds in Tomography

The measured manifolds presented in Chapter 5 are applied in tomography to produce RDS-

derived DEMs for the 16 test frames specified in Table 7.1. Note that the frames tested

in tomography are drawn from the larger calibration data sets (originally specified in Table

5.2). The reason for choosing test frames from the calibration set is because these frames

provide the most comprehensive set of collections over non-penetrative terrain. Tomographic

image formation is carried out with each of the three measured manifolds. It is acknowledged

here that errors evaluated by testing a measured manifold against a frame from its training

set may not provide a fair performance assessment (such as error reported when generating

a DEM with the 20140325_07 measured manifold against the 20140325_07_002 frame).

These occurrences are emphasized when reporting statistics on a frame by frame basis in
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a comprehensive table. This table is reserved for Appendix E due to its large size. These

cases are still reported for the sake of completeness in the figure of frame-level summary

statistics with the disclaimer that the manifolds and test frames of coincident days may not

be independent.

The ME and RMSE per frame are plotted in Figure 7.1 by manifold model. The measured

manifolds demonstrate elevation error reduction in all cases relative to the nominal result,

indicated by the green curve in these figures. In most cases the manifold measured from the

20140325_07 data set admits slightly larger errors than the 20140401_03 and 20140506_01

manifolds. This may be attributable to the fact that the 20140325_07 manifold is measured

from the smallest number of frames (4 in this case as compared to 12 and 13 frames in

the cases of the 20140401_03 and 20140506_01 manifolds respectively). The mean errors

appear to track somewhat across the measured and nominal models with the nominal results

appearing to show amplified biases. The large biases presented in the nominal results confirm

the angle biases observed in the measured angle estimation performance. The measured

elevation errors for each of the days tested are also reported by frame in Tables E.1-E.4 of

Appendix E. The summary statistics are rolled up in Table 7.2 over all of the frames to

present a summary mean elevation error and RMS elevation error for each manifold. The

reported errors demonstrate bias in the DEMs produced with the nominal manifold model.

In all cases, the measured manifold DEMs lead to significant reduction of elevation errors.

The largest RMS elevation errors are observed with the 20140325 07 manifold, attributed to

the fact that the 20140325 07 manifold is measured from the smallest number of frames.

The reduction in RDS elevation errors indicates better performance with the TRW-S

tracking algorithm. This is supported with qualitative examples that are demonstrative of

the large performance improvements observed with the measured manifold. The first example

in Figure 7.2 shows fast-time/cross-track MUSIC slices from the 3-D image corresponding

to returns from a frozen channel crossing. We expect the sea ice in the channel to present a

smooth, non-penetrative interface to the RDS which should lead to a parabolic signature in
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Figure 7.1: Measured elevation errors of RDS DEMs (reported as meters with respect to the
WGS-84 ellipsoid) for 16 tested frames, comparing vertical accuracy when varying manifold
model applied in tomography.

237



the slice. The DEMs estimated with the nominal and measured manifolds are presented in

Figures 7.2a and 7.2b respectively, draped over Landsat-7 imagery. A black solid line crosses

the flight line at along-track bin 2,200 to indicate the corresponding platform position. The

MUSIC slices pulled from the nominal and measured manifold results are shown in 7.2c

and 7.2d respectively. The slices confirm the anticipated improvements in the 3-D images

produced with the measured manifold in angle estimation and show that the measured

manifold outputs lead to a more focused scattering signature with higher intensity values.

We anticipate these features to lead to more accurate layer tracking in surface extraction.

Figure 7.3 offers an example that points to better performance in layer tracking with the

calibrated result. This figure follows a consistent format with Figure 7.2. From a side-by-side

comparison of the DEMs, we can observe that the measured manifold result is smoother,

especially in the drainage channels (corresponding to the low elevation valleys on the maps).

The slices validate the anticipated tracking improvements, showing better agreement between

the ArcticDEM and the RDS surfaces in the calibrated result. This result also shows that the

calibrated result enables TRW-S to track the surface longer in fast-time (corresponding to

further in cross-track). In the nominal result we more commonly observe that the low pixel

intensities pull the tracker off into noise much earlier. In the DEM, this behavior appears as

increased elevation at the edges of the swath. This is observable in the next example.

The final example shows the terminus of an outlet glacier on Ellesmere Island in Figure

7.4 Note that this example is produced to assess the vertical elevation error of RDS-derived

DEMs. This means that the layer tracker is modified to ensure that it does not use the

ArcticDEM in tracking and the bottom is not tracked. In mapping glacier beds with tomog-

raphy, TRW-S also tracks the bottom. Thus in typical tomographic image formation, we

would have a third layer to indicate the TRW-S picks of the bottom interface in the slices.

It is pointed out that the lower parabolic scattering signature (meaning the signature that

starts at a later propagation time) observed in the slices corresponds to scattering from the

bottom of the glacier. Where the lower parabola intersects with the surface signature rep-
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Figure 7.2: Comparison of RDS-derived DEMs and an example of fast-time/cross-track
MUSIC slices showing scattering from a frozen channel, pulled from the 3-D images of
the 20140401_03_035 frame. Figure (a) presents the RDS-derived DEM produced with
the nominal manifold model and draped over Landsat-7 imagery. Figure (b) presents the
RDS-derived DEM produced with the 20140506_01 measured RDS manifold presented in
Chapter 5. The MUSIC slices produced with nominal and measured manifolds are shown
in (c) and (d) respectively and correspond to the along-track position (range line 2,200)
indicated by a black solid line on the DEMs. The slices demonstrate observed improvements
after calibration, evidenced through the more focused scattering signatures and higher value
of the MUSIC cost functions. Landsat-7 image courtesy of the U.S. Geological Survey.
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Figure 7.3: Comparison of RDS-derived DEMs and an example of fast-time/cross-track
MUSIC slices showing scattering over rocky terrain, pulled from the 3-D images of the
20140401_03_035 frame. Figure (a) presents the RDS-derived DEM produced with the
nominal manifold model and draped over Landsat-7 imagery. Figure (b) presents the RDS-
derived DEM produced with the 20140506_01 measured RDS manifold presented in Chapter
5. The MUSIC slices produced with nominal and measured manifolds are shown in (c) and
(d) respectively and correspond to the along-track position (range line 940) indicated by a
black solid line on the DEMs. The ArcticDEM surface layer is plotted in blue with TRW-S
surface picks plotted in red. The result confirms improved surface tracking performance
in the slice produced with the measured manifold in angle estimation. Landsat-7 image
courtesy of the U.S. Geological Survey.
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Table 7.2: Summary of elevation errors (WGS-84, meters) of RDS-Derived DEMs relative
to the ArcticDEM by manifold model [9].

Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

Nominal 1,227,632 26,740 2.13 7.0299 19.7090

20140325 07 1,279,866 24,163 1.85 0.5810 6.1548

20140401 03 1,286,332 25,146 1.92 -0.6374 5.0240

20140506 01 1,285,332 24,377 1.85 -0.5326 5.1309

resents the physical margins of the glacier where the bottom layer and surface layer should

merge. The slice from the calibrated 3-D image demonstrates resolution of the margins of the

glacier. In the nominal result, these portions of the image are comparatively much noisier.

7.4 Discussion

The quantitative and qualitative results presented in this chapter offer substantial evidence

of the consistent reduction in the vertical elevation accuracy of RDS DEMs produced with

the application of the measured manifolds in angle estimation. The three manifolds all lead

to significant reduction of mean elevation errors and RMS elevation errors. This is important

because the manifolds are measured from three independent data sets collected on flights at

the beginning, middle, and end of the season. This suggests that the manifolds are stable in

time. The measured manifolds do not mandate an underlying model of the error mechanisms.

The technique simply measures the offset of the manifold from nominal and the source of

that offset (be it mutual coupling, perturbed geometry, or higher order platform effects) is

arbitrary.

It is emphasized that hardware changes on the receive path will likely change the manifold

and it is recommended that a new manifold be measured following such a change mid-season

(if possible). The 2014 Greenland IceBridge mission is unique from other seasons because

the hardware was not removed from the aircraft after the preceding mission as the P-3 was
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Figure 7.4: Comparison of RDS-derived DEMs and an example fast-time/cross-track MUSIC
slices showing scatteringover the terminus of a glacier on Ellesmere Island, pulled from the
3-D images of the 20140401_03_035 frame. Figure (a) presents the RDS-derived DEM
produced with the nominal manifold model and draped over Landsat-7 imagery. Figure (b)
presents the RDS-derived DEM produced with the 20140506_01 measured RDS manifold
presented in Chapter 5. The MUSIC slices produced with nominal and measured manifolds
are shown in (c) and (d) respectively and correspond to the along-track position (range
line 2,749) indicated by a black solid line on the DEMs. The slices demonstrate observed
improvements after calibration and increased agreement between the TRW-S picks. We also
observe better resolution of the glacier margins in the calibrated result. Landsat-7 image
courtesy of the U.S. Geological Survey.
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used in both the preceding 2013 Antarctic IceBridge mission and the 2014 Arctic campaign.

The measured manifolds presented in this dissertation are expected to improve performance

for the previous mission as well and it is recommended that the 2013 data set be reprocessed

with these corrections.

An important implication of the results presented in this chapter is emphasized here.

The slices from the calibrated 3-D image exhibit larger pixel intensities over broader angular

extents in comparison with the nominal images. The nominal images exhibit low intensity

pixels that pull the tracker off into noise much earlier in fast-time. TRW-S is able to track

the surface in the calibrated images longer in fast-time, indicating that the calibrated results

will increase the width of the RDS swath in 3-D imaging. This is an important outcome

of this research: manifold calibration enables 3-D imaging over a wider swath. Hence more

area can be imaged in a single pass with higher accuracy. We expect the improved fine

resolution 3-D swath maps of the subsurface to support morphometric analyses and process

studies such as [14] and [15]. The 2014 Greenland P-3 data set tested in this chapter stands

to support the AtaaMap project, a multi-disciplinary research effort focused on producing

bed maps that will help to constrain the contributions of the Canadian Arctic Archipelago

to sea level rise.

The measured manifolds admit more accurate angle estimates and it is anticipated that

null steering accuracy will improve with the RDS receive manifolds measured for this work.

This indicates the potential to recover detection performance in areas where the basal returns

are dominated by surface clutter (such as over the marine terminating outlet glaciers of

Greenland’s margins). Improved nulling of the surface returns is also important for high-

altitude sounding configurations. It is recommended that the methodology outlined here be

applied to historic data sets to assess profiling performance with the measured manifold.
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7.5 Conclusion

This chapter confirms that manifold calibration leads to more accurate DEMs produced with

tomography. The results put forth in this chapter indicate that the RDS-derived DEMs

produced with the nominal manifold are biased in elevation (by approximately 7.03 meters).

The total RMS elevation errors of the nominal DEMs are on average 19.71 meters over the

3 dB swath width. The mean elevation errors of the calibrated DEMs range from -0.64

meters to 0.58 meters with RMS elevation errors ranging from 5.02 meters to 6.2 meters.

On average, the RDS-derived DEMs produced with the measured manifolds reduce vertical

elevation uncertainty by a factor of 3.7 in tomography. Qualitative results from the 3-D

images indicate that the layer tracker benefits from the more focused scattering signatures

and higher pixel intensities produced with the calibrated result. The improved layer tracking

outcomes means that the application of the measured manifold in the angle estimation step

of 3-D image formation enables imaging over a wider swath and with higher accuracy in a

single pass.
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Chapter 8

Summary and Conclusions

The research summarized in this dissertation establishes a framework for handling the ar-

ray manifold calibration problem of airborne ice-penetrating SARs that rely on parametric

angle estimation to resolve scattering interfaces in elevation as part of the 3-D image for-

mation step in tomography. Several outcomes of this study merit highlighting. First, the

research proves that the SAR sounder imagery can be coregistered to a surface DEM and

land classification map to identify calibration pixels with known arrival angles. The creation

of snapshot databases as described in Chapter 3 will be crucial in calibrating seasons which

lack collections on dedicated calibration flights from a maneuvering platform over smooth

extended surface targets. Building an observation database facilitates both parametric and

nonparametric forms of manifold calibration described in Chapters 4 and 5. The data pro-

cessing architecture holds the potential to evolve in the future in order to support calibration

frameworks where the arrival angles are only approximately known. Additional lidar data

could be ingested to improve our knowledge of truth in the calibration bins. Because a vast

majority of the observations that feed into manifold measurement correspond to rocky ter-

rain returns, one can envision using surface altimetery from many collections to ensure good

ground control. The current code does not support this yet but could easily augmented to

improve correction of the ArcticDEM.

Both parametric and nonparametric forms of manifold calibration are advanced in this

dissertation. A parametric estimation framework is derived in Chapter 4 that lays the

groundwork for calibration with multiple sources simultaneously. The derivation interprets

the snapshot database as a superset of statistically independent subsets which share com-
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mon unknown nonlinear manifold parameters and casts a large separable Gaussian estimation

problem composed of many smaller Gaussian estimation problems, leading to a total like-

lihood expression that is a simple summation of compressed likelihoods from each of the

subsets. The mathematics suggest that the large estimator is suitable for multitarget cali-

bration provided that the manifold admits an analytic form that is parameterized by some

nonlinear unknowns and arrival angle. We show analytically that the proposed estimator

does not rely on the scan dependent length of the manifold vectors from which we conclude

that only the orientation of the manifold vector in CP space is needed to leverage the para-

metric form. This analysis justifies the principal components based characterization derived

under a unit norm constraint in Chapter 5 as sufficient for application of the parametric

form. Although the framework is not yet applied to real measurements, the estimator per-

formance is established numerically and evidence is presented that explores the influence of

spatial bandwidth (determined by the angular extent of calibration sources) and number of

calibration bins on angle estimation outcomes.

Chapter 5 outlines nonparametric manifold calibration for the SAR sounder. The prin-

cipal components characterization is derived for a single spatial source under the unit norm

constraint on the manifold vector. Evidence is presented that emphasizes the challenge of

applying nonparametric manifold calibration techniques to our data sets. In particular it is

shown that the RDS snapshots when binned into 1◦ grids do not lead to a sufficient num-

ber of single source observations for carrying out the nonparametric characterization. The

sparsity of single source observations in angle forces us to consider measurements with two

sources in the nonparametric framework, contradicting the traditional procedures found in

literature. A methodology is described that circumvents the single source requirement by

applying a subspace measure to the two source SAR pixels to extract high SINR measure-

ments for calibration. The technique edits out the observations that appear more correlated

to an interference source, leading to improved angle estimation outcomes when manifolds

are measured with the edited snapshot set. The editing technique is not derived here but
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adopts the form of generalized likelihood ratio test that is expected to hold provided that

the manifold errors are sufficiently small relative to the nominal array response model. The

validity of this assumption is not easily verified without further study using a CEM model.

When applied in angle estimation, the measured manifolds reduce angle estimation errors

by a factor of 4.8 on average foreshadowing reductions of vertical elevation errors in their

associated RDS-derived DEMs in tomography.

The RDS manifold is studied in Chapter 6. Groundwork is laid that is necessary in using

the CEM model to predict the RDS manifolds. Although the model has yet to be fully

validated with a forced symmetric geometry to understand errors imparted by the asymmet-

ric mesh, the predicted manifold is applied in angle estimation and compared to measured

and nominal manifolds. This leads to an unexpected result. The observed RMS error as a

function of angle indicates that the Feko predictions are better matched to the true array

response outside of ±50◦, in the areas where the nominal errors grow extremely large in angle

estimation and the snapshot editing is expected to break down. The predicted manifolds on

average reduce angle estimation error over the nominal manifold model by a factor of 3. The

improved angle estimation outcomes at the large incidence angles measured when applied

to real RDS snapshots are signficant for two reasons. The improvements provide the first

confirmation of the utility of the CEM model in predicting the embedded element patterns

of our integrated P-3 subarrays. The reduced angle estimation errors measured at the large

incidence angles indicate that the predictions should be used to compute the editing measure

at the edges of the field of regard where we suspect the measure to degrade.

The parametric framework is tested on a deterministic manifold predicted by Feko for a

linear array of RDS wideband dipoles with perturbed geometry. Multiple attempts to fit the

observations to an array response model where an element pattern is expressed as a sum of

complex exponential basis functions that includes a term to account for the propagation error

were unsuccessful. The minimization carried out with built in MATLAB search functions

has not yet reproduced the receive patterns on any of the channels, even when the problem
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is initialized with the known geometric errors and the global search framework is provided.

Convergence failures in optimization are attributed to poor initialization of the coeffcients of

the basis functions and the complexity of the problem. The test only imposes geometric error

on 5 out 7 sensors. Position errors in two dimensions leads to 10 unknowns. The number

of nontrivial terms in the Fourier transform of a channel’s θ dependent manifold indicates

at least 15 coefficients are needed to fit a pattern to the model, leading to 105 unknowns in

optimization (when the position errors are treated as known).

The measured manifolds are demonstrated in tomography and compared to the nominal

results using RDS-derived DEMs of rocks and sea ice collected in the Canadian Arctic. Both

quantitative and qualitative evidence is presented that confirms the significant performance

improvements realized with the calibrated manifold. The findings substantiate the bias of

the nominal manifold that leads to biased estimates of topography. On average, the nominal

manifold produces DEMs with a mean elevation error of 7.03 meters and an RMS elevation

error of 19.71 meters. The RDS DEMs produced with the measured manifold in angle

estimation lead to mean elevation errors that range from -0.64 meters to 0.58 meters and

RMS elevation errors ranging from 5.02 meters to 6.15 meters. The more focused scattering

signatures with higher pixel intensities realized with the application of the measured manifold

lead to better tracking outcomes that enable the TRW-S algorithm to track the surface for a

longer duration in time (corresponding to a longer cross-track extent) before pulling off into

noise. The improved tracking performance during surface extraction enables a wider swath

to imaged in tomography.

8.1 Recommendations and Future Work

It is recommended that the parametric framework be validated with an electromagnetic

manifold predicted from the full-wave solver. The validation should model a very simple free

space array of RDS dipoles using the conformal geometry of the inboard subarray with no

perturbations. The real and imaginary components of the θ dependent complex pattern of
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each channel should be fit with a Fourier series using MATLAB’s built in curve fitting tools.

Using a cost function expressed in terms of the following Fourier series

ap(θ) =

Np∑
n=1

αr0 + αrn cos(wrθn) + βrn sin(wrθn) + . . .

j ·
Np∑
n=1

αi0 + αin cos(wiθn) + βin sin(wiθn)

(8.1)

The problem can be cast into a regression and minimized as demonstrated in Chapter 4.

The first step should be to verify that initialization with the correct coefficients (from the

MATLAB curve fitting) and a definition of tight windows leads the solver to converge to

truth. Once the convergence is verified by initializing with truth, the search windows can be

broadened to understand the behavior of the optimization problem.

It is recommended that the CEM model be run with a much finer mesh to verify that

the asymmetric mesh leads to marginal phase differences across geometrically symmetric

channels. The predicted manifolds produced with a finer mesh should be applied to the

snapshot bins to confirm that the angle estimation performance is at least as good as what

was observed with a coarse mesh of the ground plane. Additional study is warranted to de-

termine if the application of the predicted manifold in snapshot editing (using the prediction

to evaluate the subspace alignment measure) leads to better angle estimation outcomes and

more accurate RDS-derived DEMs.

Reprocessing the 2014 Greenland data set with both a geometric nulling beamformer and

an adaptive generalized sidelobe canceller is recommended to study potential basal detection

improvements over areas known to suffer sensitivity loss by masking surface clutter. This

season includes flights over Jakobshavn glacier. These frames are good candidates to carry

out such a study. Finally it is recommended that the measured manifold be used to produce

3-D bed maps of the Canadian Arctic Archipelago data set to support the Ataamap effort
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currently underway that aims to constrain the estimated volume of freshwater ice in the

Canadian Arctic.
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Appendix A

Optimal Beamformer Derivations

A.1 Problem Statement

Beamforming weight vectors are derived for an array of sensors that spatially samples a field

presented by Q directional sources in the presence of observation noise. We assume the

narrowband snapshot model in equation 2.1 restated here as

xm = A(Θ)sm + nm, (A.1)

Where the terms have the same meanings as described in Chapter 2. We derive the optimal

combining weights by treating sources as deterministic but unknown and regard n as a

realization of a zero-mean random process with covariance Rn = E
{
nnH

}
. We seek an

estimate of a source waveform, sm, at the output of the beamformer. The general form of

the beamformer output assumed in the derivations that follow is stated as:

ym = wHxm. (A.2)

A.2 Spatial Matched Filter

The spatial matched filter is sometimes referred to as the Maximum SNR beamformer [55],

[56] because the weights are derived to maximize the signal-to-noise ratio at the output of

array processor. To derive the spatial matched filter, we assume that a single plane wave

(Q = 1) from a source of interest with an associated arrival angle θt is incident on the array
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leading to the following model of our observation:

xm = a(θt)sm + nm. (A.3)

The spatial matched filter weights are given by the solution to the following optimization

wMF = max
w
{SNRout} , (A.4)

Where SNRout denotes the signal to noise ratio at the beamformer output. Let Ps denote

the average power of the source. Dropping the discrete time arguments (so the math reads

more easily), the average power at the beamformer output is

E {y∗y} = E
{(

wHx
)H (

wHx
)}

,

= E
{(

wH (a(θt)s+ n)
)H (

wH (a(θt)s+ n)
)}

,

= E
{(

wHa(θt)s+ wHn
)H (

wHa(θt)s+ wHn
)}

,

= E
{(
s∗aH(θt)w + nHw

) (
wHa(θt)s+ wHn

)}
,

= E
{
s∗aH(θt)wwHa(θt)s+ s∗a(θt)

HwwHn + nHwwHa(θt)s+ nHwwHn
}
.

(A.5)

We simplify the expectations to obtain

E {y∗y} = E
{
s∗aH(θt)wwHa(θt)s+ s∗aH(θt)wwHn + nHwwHa(θt)s+ nHwwHn

}
,

= wHa(θt)Psa
H(θt)w

signal

+ wHRnw

noise

.

(A.6)
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Using the signal and noise terms from Equation A.6 and letting Rs = Psa(θt)a
H(θt), we

write the output SNR as the following ratio of two quadratic forms

SNRout =
wHRsw

wHRnw
(A.7)

And restate the optimization in A.4 as

wMF = max
w

{
wHRsw

wHRnw

}
. (A.8)

We solve Equation A.8 by taking a complex gradient with respect to wH and solving for w

at the critical point. Using the quotient rule we have the following

∂SNRout

∂wH
=

RswwHRnw −RnwwHRsw

(wHRnw)2 . (A.9)

Setting A.9 equal to zero leads to

Rsw
(
wHRnw

)
= Rnw

(
wHRsw

)
. (A.10)

We can divide through by wHRnw and write this form in terms of A.7 as

Rsw = RnwSNRout. (A.11)

Finally we left multiply by the inverse Rn to obtain the expression below

R−1
n Rsw = SNRoutw. (A.12)

In this form we recognize that the spatial matched filter is an eigenvector of the matrix

R−1
n Rs. We simplify this further to garner some additional insight. If we assume the noise to

be independent and identically distributed, we can rewrite the noise covariance as Rn = σ2
nIP
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where Ip refers to the P × P identity matrix. Assuming a noise covariance of this form and

expanding Rs, we obtain the following

Ps
σ2
n

a(θt)a
H(θt)w = SNRoutw. (A.13)

At this point we can recognize the input SNR on the left hand side of this expression

(corresponding to the SNR on a single element). We restate the previous result and relate

it to the orginal optimization criterion below:

a(θt)a
H(θt)w =

SNRout

SNRin

w,

⇓

a(θt)a
H(θt)wMF = λmaxwMF

(A.14)

Hence the optimal weights are given by the eigenvector of the matrix a(θt)a
H(θt) corre-

sponding to the largest eigenvalue λmax. The matrix a(θt)a
H(θt) is the rank one positive

semi-definite matrix whose only non-trivial eigenvalue corresponds to the eigenvector given

by a unitary vector that is parallel to a(θt). This is simply the normalized steering vector

given by:
a(θt)√

aH(θt)a(θt)
. (A.15)

Thus the spatial matched filter solution is the steering vector scaled by its Euclidean length

wMF =
a(θt)

‖a(θt)‖2

. (A.16)
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We determine corresponding eigenvalue by substituting Equation A.16 into A.14 and assum-

ing that the magnitude of any entry in wMF is unity (i.e. a∗i ai, 1 ≤ i ≤ P ).

a(θt)a
H(θt)wMF = λmaxwMF ,

a(θt)a
H(θt)

a(θt)

‖a(θt)‖2

= λmaxwMF ,

a(θt)

‖a(θt)‖2

aH(θ)a(θ) = λmaxwMF ,

PwMF = λmaxwMF .

(A.17)

From this expression we find that the largest eigenvalue (and equivalently the largest SNR

improvement) is given by

λmax =
SNRmax

out

SNRin

= P. (A.18)

This derivation confirms a well-known result for the maximum SNR improvement of P

realized by the matched filter for the beamforming problem formulation. The result is

consistent with the SNR improvement realized in the temporal problem which can be shown

to be equal to the number of digital samples in the filter [109].

A.3 Minimum Power Distortionless Response Beamformer

Here we derive the MPDR beamformer using the array model in A.1 and the form of the

beamformer output in A.2, restated here with discrete time dependence suppressed

x = A(Θ)s + n, (A.19a)

y = wHx. (A.19b)

Following [55], we treat sources as deterministic and unknown and assume n to be a zero-

mean random vector with covariance Rn = E
{
nnH

}
. In the MVDR and MPDR formu-

lations, the vector n contains noise plus interference. We seek a minimum variance and
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unbiased estimate of a signal st which corresponds to a source with DOA θt.

minimize: wHRxw

subject to: wHa(θt) = 1.

(A.20)

The second statement in A.20 is the linear constraint that admits a non-trivial solution to the

minimization of the quadratic form wHRxw. We can show that the distortionless constraint

above ensures that the estimator of the source st will be unbiased.

We want to constrain our solution w such that y = ŝt = wHx is unbiased. As such, the

estimator must satisfy the following

E {ŝt} = st. (A.21)

We expand the expected value of the beamformer output as

E {ŝt} = E
{
wH (a(θt)st + n)

}
,

= E
{
wHa(θt)st + wHn

}
,

= E
{
wHa(θt)st

}
+ E

{
wHn

}
,

= wHa(θt)st.

(A.22)

This leads us to the final statement

E {ŝt} = wHa(θt)st. (A.23)

From this form we can conclude that for the unbiased estimator, the following must be true

wHa(θt) = 1. (A.24)

Thus the distortionless constraint ensures an unbiased estimate of the signal of interest at
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the output of the spatial filter. We solve the constrained minimization in A.20 using the

method of Lagrange multipliers which leads to the following form of the cost function

J(w) = wHRxw + Re
{
λ∗
(
wHa(θt)− 1

)}
. (A.25)

Taking the gradient with respect to wH

∂J(w)

∂wH
= Rxw + λ∗a(θt). (A.26)

Setting this equal to zero gives the following

w = −λ∗R−1
x a(θt). (A.27)

Taking the conjugate transpose both sides, we get

wH = −λaH(θt)R
−1
x (A.28)

Where we have made the assumption that (R−1
x )

H
= R−1

x . We right multiply by a(θt) and

apply the constraint to solve for λ

wHa(θt) = −λaH(θt)R
−1
x a(θt) = 1,

λ =
1

aH(θt)R−1
x a(θt)

.
(A.29)

Thus

wMPDR =
aH(θt)R

−1
x

aH(θt)R−1
x a(θt)

. (A.30)
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Appendix B

Derivation of Arrival Angle Estimators

B.1 MUltiple SIgnal Classification (MUSIC)

The MUSIC pseudospectrum is formulated here for the general linear model presented in

Equation 2.1 and restated (with time dependence suppressed) as

x = A(Θ)s + n, (B.1)

Where the terms have the same meanings as described in Chapter 2. We suppress the

angle dependence in A(Θ) to simplify the discussion that follows. To formulate the MUSIC

pseudospectral estimator, we state the following assumptions upfront:

A1: The number of spatial sources is strictly less than the number of sensors (Q < P ) and the

steering vectors are linearly independent. This ensures that A has full column rank and

that the mapping of the signal subspace to its image in our observation space is injective.

In other words, every s ∈ CQ×1 in the signal subspace maps to a unique As ∈ CP×1.

A2: The multichannel noise observation vector is a zero-mean random vector whose entries are

independent and identically distributed. The distribution of n is not assumed however we

require the following: E {n} = 0, E
{
nnH

}
= σ2

nIP , and E
{
nnT

}
= 0 × IP . The final

assertion guarantees that the real and imaginary components of an arbitrary element of n

will have the same second moments.

A3: The observation covariance matrix E
{
xxH

}
is positive definite (hence non-singular).
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MUSIC is referred to in literature as a subspace technique. This is because given Equation

B.1, we can view the array observation model through the lens of linear algebra. Based on

the first of our stated assumptions, we know that the steering vectors must form a basis

for the image of the signal subspace in the observation space, CP×1. The image of the

signal subspace is exactly equal to the column space C(A) ⊆ CP×1 and in the absence of

observation noise x ∈ C(A).

Given the initial assumptions, the array covariance matrix takes the following form

Rx = ARsA
H + σ2

nIp. (B.2)

Here Rs ∈ CQ×Q is assumed to be a positive definite matrix defined as

Rs = E
{
ssH
}
. (B.3)

The P × P matrix ARsA
H is a positive semi-definite matrix with Q non-trivial eigenval-

ues. The observation covariance in Equation B.2 is a non-singular P × P Hermitian matrix

from which we can conclude that there exists a set of P orthonormal eigenvectors whose

corresponding eigenvalues are all real and non-trivial.

If we assume the sources to be uncorrelated, we may write Rs as a diagonal matrix whose

main diagonal contains the source powers:

Rs =



p1 0 . . . 0

0 p2 . . . 0

...
... . . . ...

0 0 . . . pq


. (B.4)
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We can then express ARsA
H as the following weighted sum of Q rank-one matrices

ARsA
H =

Q∑
i=1

piaia
H
i . (B.5)

The matrix ARsA
H has Q nontrivial eigenvalues associated with Q principal eigenvectors

and Q− P trivial eigenvalues whose corresponding eigenvectors are an orthonormal set and

orthogonal to each ai. When Rx can be written in the following form

Rx =

Q∑
i=1

piaia
H
i + σ2

nIp, (B.6)

Then the eigenvectors of Rx are the eigenvectors of ARsA
H . Let ui be the ith principal

eigenvector of Rx with eigenvalue λi. From the eigenequation we can write the following

Rxui = λiui. (B.7)

By definition ui is a principal eigenvector of ARsA
H with a corresponding eigenvalue λsi

that is not equal to λi. Equation B.7 can be rewritten as

Rxui =
(
ARsA

H + σ2
nIp
)

ui = λiui,

ARsA
Hui + σ2

nui = λiui,

λsiui + σ2
nui = λiui,(

λsi + σ2
n

)
ui = λiui.

(B.8)

Hence the eigenvalues of Rx are given by

λi =


λsi + σ2

n, i = 1, . . . , Q,

σ2
n, i = Q+ 1, . . . , P.

(B.9)

Based on the orthogonality of the eigenvectors, we can write the eigenexpansion of Rx as
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the following sum of orthogonal subspaces

Rx = UΛUH = UsΛsU
H
s + UnΛnU

H
n . (B.10)

The matrix Us ∈ CP×Q is the matrix whose columns span the signal subspace and takes the

following form

Us =
[
us1, . . . ,u

s
Q

]
, (B.11)

And Λs is the Q×Q matrix of eigenvalues

Λs = diag
[
λs1 + σ2

n, . . . , λ
s
Q + σ2

n

]
. (B.12)

The matrix of orthonormal noise eigenvectors are stored in Un ∈ CP×(P−Q) which takes the

general form

Un =
[
un1 , . . . ,u

n
P−Q

]
, (B.13)

And maps to the eigenvalues

Λn = σ2
nIP−Q. (B.14)

From here we can note that there will be a noise component in the signal subspace but more

importantly the noise subspace contains no signal contribution. Hence we can write the

following statement

RxUn = ARsA
HUn + σ2

nIpUn = σ2
nUn, (B.15)

From which we can conclude

AHuni = 0 ∀ uni ∈ Un. (B.16)

Therefore the vectors in Un span the left null space of A and we may write

span {a1, . . . , aQ} ⊥ span
{
un1 , . . . ,u

n
P−Q

}
. (B.17)
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Also we know that the Hermitian symmetry of ARsA
H and Rx ensures the orthogonality

of all of the eigenvectors thus we may equivalently write

span
{
us1, . . . ,u

s
Q

}
⊥ span

{
un1 , . . . ,u

n
P−Q

}
. (B.18)

From Equations B.17 and B.18 we can infer that the principal eigenvectors span the signal

subspace. Following the rationale outlined above, we conclude that

‖Unai‖2 = 0, i = 1, . . . , Q. (B.19)

Restoring the θ dependence of the steering vectors, we state the MUSIC pseudospectrum as

the following one-dimensional function of the DOA as

Smusic(θ) =
1

aH(θ)UnUH
n a(θ)

. (B.20)

This form will produce large peaks when a steering vector under test is orthogonal (or at

least nearly orthogonal) to the noise subspace.

B.2 Maximum Likelihood Estimator

We derive a Maximum Likelihood Estimator of parameters of the linear model presented in

Equation 2.2 and restated here:

X = A(Θ)S + N, (B.21)
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Whose terms are given by

X =

[
x1, . . . ,xM

]
, (B.22a)

A(Θ) =

[
a(θ1), . . . , a(θQ)

]
, (B.22b)

N =

[
n1, . . . ,nM

]
, (B.22c)

S =

[
s1, . . . , sM

]
. (B.22d)

Here derive Maximum Likelihood Estimates of the following parameters of the linear model

1. The noise power σ2
n,

2. The set of bearing angles, Θ = [θ1, . . . , θQ]T ,

3. The source signals S.

We must first determine the distribution of X conditioned on one of the aforementioned

unknowns. To do this, we state a set of assumptions up front

A1 : The linear model is overdetermined, hence Q < P ,

A2 : The columns of A(Θ) are linearly independent,

A3 : The noise process N is an ergodic and stationary complex Gaussian random process of

zero mean and covariance σ2
nIP ,

A4 : The noise snapshots are statistically independent, p(ni,nj) = p(ni)p(nj),

A5 : Sources are modeled as deterministic but unknown,

A6 : The number of sources is known.

The Maximum Likelihood Estimator is derived from the density of X conditioned on an

unknown parameter. A snapshot of array data is regarded as an observation of a deterministic
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signal in the presence of observation noise. Hence we consider xm to be a complex Gaussian

random vector with mean µxm = A(Θ)sm and covariance σ2
nIP , in other words xm ∼

(µx, σ
2
nIP ). The distribution of xm conditionally distributed on the directional sources and

noise variance is

p

(
xm; Θ, sm, σ

2
n

)
= π−Pσ−2P

n exp

[
− 1

σ2
n

‖xm −A(Θ)sm‖2

]
, (B.23)

Where the operator ‖ ‖2 gives the square of the Euclidean norm (equivalent to the inner

product of its argument).

From the independence of the snapshots of N, we assume that the snapshots of X are

also independent. We then write the distribution of X as a joint probability of the snapshots

which becomes a product of the marginals based on the independence of adjacent snapshots:

p

(
X; Θ,S, σ2

n

)
= p

((
x1; Θ, s1, σ

2
n

)
, . . . ,

(
xM ; Θ, sM , σ

2
n

))
,

=
M∏
i=1

p

(
xi; Θ, si, σ

2
n

)
,

= π−MPσ−2MP
n

M∏
i=1

exp

[
− 1

σ2
n

‖xi −A(Θ)si‖2

]
,

= π−MPσ−2MP
n exp

[
− 1

σ2
n

M∑
i=1

‖xi −A(Θ)si‖2

]
.

(B.24)

Define the log likelihood function to be the natural logarithm of the conditional density

determined above,

L

(
X; Θ,S, σ2

n

)
= ln p

(
X; Θ,S, σ2

n

)
,

= −MP ln(π)−MP ln(σ2
n)− 1

σ2
n

M∑
i=1

‖xi −A(Θ)si‖2 .

(B.25)

From this point forward, we ignore the constant term −MP ln(π) since it has no bearing on
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the maximization and use the following expression for L
(

Θ,S, σ2
n; X

)

L

(
Θ,S, σ2

n; X

)
= −MP ln(σ2

n)− 1

σ2
n

M∑
i=1

‖xi −A(Θ)si‖2 . (B.26)

B.2.1 Maximum Likelihood Estimator of Noise Power

The Maximum Likelihood Estimate of σ2
n is determined by solving the following maximization

problem

σ̂2
n = max

σ2
n

∂L

(
Θ,S, σ2

n; X

)
∂σ2

n

. (B.27)

We solve this maximization by differentiating (B.26), setting it equal to zero and solving for

the parameter of interest σ2
n

∂L

(
Θ,S, σ2

n; X

)
∂σ2

n

=
−2MP

σn
+

2

σ3
n

M∑
i=1

‖xi −A(Θ)si‖2 . (B.28)

Setting this equal to zero and solving for σ2
n we have the following ML estimator for the

noise variance

σ̂2
n =

1

MP

M∑
i=1

‖xi −A(Θ)si‖2 . (B.29)

We substitute this solution into L
(

X; Θ,S, σ2
n

)
to eliminate σ2

n from our expression, leaving

the likelihood of an observation matrix X conditioned on Θ and S

L

(
Θ,S; X

)
= −MP ln

[
1

MP

M∑
i=1

‖xi −A(Θ)si‖2

]
−MP. (B.30)

This expression is a monotonically decreasing function (based on the negative scaling) that

is maximized when the argument of the natural logarithm is minimized. Hence the following
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form is an equivalent likelihood function

L

(
Θ,S; X

)
=

1

MP

M∑
i=1

‖xi −A(Θ)si‖2 . (B.31)

B.2.2 Maximum Likelihood Estimator of Waveform

The ML estimate of si is obtained from a ML estimate of the S matrix, found by minimizing

the cost function L
(

Θ,S; X

)
as defined in (B.31) with respect to S. This is stated as the

following minimization problem (where the 1
MP

may be ignored)

Ŝ = min
S

{
M∑
i=1

‖xi −A(Θ)si‖2

}
. (B.32)

The solution of (B.32) is one that minimizes a for each single snapshot. We write this

likelihood as

L

(
Θ, si; xi

)
= ‖xi −A(Θ)si‖2 . (B.33)

Thus to solve (B.32), we first solve the following

ŝi = min
si

L

(
Θ, si; xi

)
= min

si

{
‖xi −A(Θ)si‖2

}
. (B.34)

L

(
Θ, si; xi

)
has a quadratic form which we minimize by differentiating the expression with

respect to our parameter of interest, setting it equal to zero and solving for a ML estimator.

We solve the partial derivative with respect to sHi to simplify the solution for si.
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∂L

(
Θ, si; xi

)
∂sH

=
∂

∂sH

(
(xi −A(Θ)si)

H (xi −A(Θ)si)

)
,

=
∂

∂sH

(
xHi xi − sHi AH(Θ)xi − . . .

xHi A(Θ)si + sHi AH(Θ)A(Θ)si

)
,

= −AH(Θ)xi + AH(Θ)A(Θ)si.

Setting this expression equal to zero leads to

AH(Θ)A(Θ)si −AH(Θ)xi = 0,

AH(Θ)A(Θ)si = AH(Θ)xi.

Here we acknowledge assumptions A1 and A2 from which we conclude that the matrix

A(Θ) has full column rank (equal to Q). The product AH(Θ)A(Θ) is a Q×Q non-singular

matrix with full rank. By definition this means that
(
AH(Θ)A(Θ)

)−1 exists. Multiplying

both sides by
(
AH(Θ)A(Θ)

)−1, we find the well known Maximum Likelihood Estimator of

si obtained by applying a pseudo-inverse to the observation

ŝi =
(
AH(Θ)A(Θ)

)−1
AH(Θ)xi. (B.35)

From this, we write the ML estimate of S as

Ŝ =
(
AH(Θ)A(Θ)

)−1
AH(Θ)X. (B.36)
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We use the result in (B.35) to present a likelihood function of X conditioned on the unknown

parameter Θ by substituting this solution into (B.31)

L

(
Θ; X

)
= L

(
Θ,S; X

)∣∣∣∣∣
si=ŝi

=
M∑
i=1

‖xi −A(Θ)ŝi‖2 ,

=
M∑
i=1

∥∥∥xi −A(Θ)
(
AH(Θ)A(Θ)

)−1
AH(Θ)xi

∥∥∥2

.

(B.37)

B.2.3 Maximum Likelihood Estimator of DOA

The likelihood determined above may now be solved for a MLE of Θ as the solution to the

minimization problem

Θ̂ = min
Θ

{
L

(
Θ; X

)}
,

= min
Θ

{
M∑
i=1

∥∥∥xi −A(Θ)
(
AH(Θ)A(Θ)

)−1
AH(Θ)xi

∥∥∥2
}
.

(B.38)

Here we introduce the projection matrix PA(Θ) which projects a vector onto the subspace

spanned by the columns of A(Θ). We define this matrix as

PA(Θ) = A(Θ)
(
AH(Θ)A(Θ)

)−1
AH(Θ). (B.39)

By definition, the matrix P⊥A(Θ) is the matrix that projects a vector onto the orthogonal

compliment of the subspace spanned by A(Θ). This projection matrix is defined as

P⊥A(Θ) = I −PA(Θ). (B.40)
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Hence the ML estimate of Θ is obtained by solving the following minimization problem

Θ̂ = min
Θ

{
M∑
i=1

∥∥P⊥A(Θ)xi
∥∥2

}
, (B.41)

Which is equivalent to the solution of the maximization problem stated as

Θ̂ = max
Θ

{
M∑
i=1

∥∥PA(Θ)xi
∥∥2

}
. (B.42)

So an equivalent likelihood function is

L(Θ; X) =
M∑
i=1

∥∥PA(Θ)xi
∥∥2
. (B.43)

This may be rewritten in terms of a sample covaraince matrix estimated from the array

snapshots as

R =
1

M

M∑
i=1

xix
H
i . (B.44)

We start by rewriting (B.43) in terms of the inner product as follows

L(Θ; X) =
M∑
i=1

∥∥PA(Θ)xi
∥∥2
,

=
M∑
i=1

(
PA(Θ)xi

)H (
PA(Θ)xi

)
,

=
M∑
i=1

xHi PH
A(Θ)PA(Θ)xi.

(B.45)

Here we leverage the following two properties of the projection matrix. Consider an arbitrary

projection matrix PA = A
(
AHA

)−1
AH , where A is a matrix with full column rank. Since

A has full column rank, we know that AHA is a square invertible matrix with non-zero

determinant. The follow properties of PA hold

1. The projection matrix PA is Hermitian, PA = PA
H .
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Proof:

PA
H =

(
A
(
AHA

)−1
AH

)H

,

=

((
AHA

)−1
AH

)H

AH ,

= A

((
AHA

)−1

)H

AH ,

= A
(
AHA

)−1
AH ,

= PA

2. The projection matrix is idempotent, PAPA = PA.

Proof:

PAPA = A
(
AHA

)−1
AHA

(
AHA

)−1
AH ,

= A
(
AHA

)−1 IAH ,

= A
(
AHA

)−1 IAH ,

= A
(
AHA

)−1
AH ,

= PA.

Using the Hermitian and Idempotent properties of PA(Θ), (B.45) simplifies further as follows

L(Θ; X) =
M∑
i=1

xHi PH
A(Θ)PA(Θ)xi,

=
M∑
i=1

xHi PA(Θ)PA(Θ)xi,

=
M∑
i=1

xHi PA(Θ)xi.

(B.46)
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Because multiplication by a scalar will not change the maximization of (B.46), an equivalent

cost function is

L(Θ; X) =
1

M

M∑
i=1

xHi PA(Θ)xi. (B.47)

We now use an identity that relates the inner product of two arbitrary vectors x and y to

the trace (sum of the diagonal elements) of their outer product. This is stated as

yTx = tr(xyT ). (B.48)

We pull the 1
M

inside the summation and use this identity to rewrite (B.47) as

L(Θ; X) =
M∑
i=1

1

M
xHi PA(Θ)xi,

=
M∑
i=1

tr

(
1

M
PA(Θ)xix

H
i

)
,

= tr

(
1

M
PA(Θ)x1x

H
1

)
+ . . .+ tr

(
1

M
PA(Θ)xMxHM

)
.

(B.49)

Finally we recognize an important property of the trace that allows us to express the sum

of traces as the trace of a sum. For two arbitrary square matrices A and B,

tr(A) + tr(B) = tr(A + B). (B.50)

Hence (B.49) is rewritten as

L(Θ; X) = tr

(
1

M
PA(Θ)x1x

H
1

)
+ . . .+ tr

(
1

M
PA(Θ)xMxHM

)
,

= tr

(
M∑
i=1

1

M
PA(Θ)xix

H
i

)
,

= tr

(
1

M

M∑
i=1

PA(Θ)xix
H
i

)
.

(B.51)
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Because PA(Θ) is constant with respect to the summation, (B.51) is equivalent to

L(Θ; X) = tr

(
PA(Θ)

1

M

M∑
i=1

xix
H
i

)
. (B.52)

Finally we recognize

Rx =
1

M

M∑
i=1

xix
H
i ,

Which we substitue into (B.52) to obtain our final form of the likelihood function

L(Θ; X) = tr

(
PA(Θ)Rx

)
. (B.53)

The Maximum Likelihood Estimator of Θ is the solution to the following maximization

Θ̂ = max
Θ

{
tr

(
PA(Θ)Rx

)}
. (B.54)
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Appendix C

Cramér-Rao Lower Bound

In estimation theory, the Cramér-Rao Lower Bound (CRLB) is used to benchmark the

accuracy of unbiased estimators by providing a theoretical lower bound on estimator variance.

For unbiased estimators of a real vector of Nη deterministic parameters, η ∈ RNη , the CRLB

bounds the covariance matrix of the estimates [110] which we denote as Cη. The estimator

covariance takes the following general form

Cη , E
{

(η̂− η) (η̂− η)T
}
, (C.1)

where η̂ denotes the estimate of the true parameter η. The CRLB of the estimator of the

true parameter vector η, denoted CCR(η), is given by the inverse of the Fisher Information

Matrix, J(η)

Cη ≥ CCR(η) , J−1(η). (C.2)

The definition of the Nη ×Nη Fisher Information Matrix (FIM) is stated as

J(η) , E
{

[∇ηL (x;η)] [∇ηL (x;η)]H
}

= −E {∇η [∇ηL (x;η)]} , (C.3)

Where ∇η and L (x;η) represent the gradient vector and likelihood function respectively.

These terms are defined as

∇η ,

[
∂

∂η1

, · · · ,
∂

∂ηNη

]T
, (C.4)
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And

L (x;η) = ln [px;η(x;η)] . (C.5)

The general form of the (i, j) element of the Fisher Information Matrix is given by

[J(η)]i,j , E

{
∂L (x;η)

∂ηi
· ∂L (x;η)

∂ηj

}
= −E

{
∂2L (x;η)

∂ηi∂ηj

}
. (C.6)

Where the expectation is taken with respect to the parameterized density function, px;η(x;η).

This appendix summarizes the relevant expressions with appropriate citations. For the

complete derivation, which can be tedious and at times detracts from the mathematical

intuition of some of the results, the interested reader is referred to the following texts [110],

[111], [68].

C.1 CRLB for Parameters of Interest and Nuissance Parameters

Van Trees often frames interpretations of the Fisher information with respect to parameters

of interest and nuisance parameters [110] in order to organize J(η) into a convenient block

partitioned form which admits an identity for finding the inverse of a sub block. We start

by partitioning the parameter vector η into wanted and unwanted (or nuisance) parameters

denoted by the parameter vectors ηw and ηu respectively

η =


ηw

ηu

 . (C.7)
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The FIM may be written as a block partitioned matrix in terms of the information from

wanted and unwanted parameters as

J(η) =


J(ηw) J(ηw,ηu)

J(ηu,ηw) J(ηu)


. (C.8)

The CRLB matrix may similarly be partitioned as

CCR(η) =


CCR(ηw) CCR(ηw,ηu)

CCR(ηu,ηw) CCR(ηw)


. (C.9)

In this form we can use the identity for inverting block matrices in [112] to obtain a CRLB

of the parameters of interest

CCR(ηw) =
[
J(ηw)− J(ηw,ηu)J−1(ηw)J(ηu,ηw)

]−1

. (C.10)

C.2 General Form of CRLB for Gaussian Estimation Model

The closed form expression of the (i, j) element for the general Gaussian estimation model

is presented in [110] for a snapshot modeled as a complex random vector distributed as

x ∼ C(µx(η),Rx(η)) with likelihood function given by

L(x;η) = − ln det [πRx]−
{

(x− µx(η))H Rx
−1(η) (x− µx(η))

}
, (C.11)
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It can be shown that when the likelihood function takes this form, then Equation C.6 is

given by

[J(η)]i,j = tr
[
Rx
−1(η)

∂Rx(η)

∂ηi
Rx
−1(η)

∂Rx(η)

∂ηj

]
+ 2Re

[
∂µHx (η)

∂ηi
Rx
−1(η)

∂µx(η)

∂ηj

]
. (C.12)

The result in Equation C.12 is attributed to [93]. We can use the definitions above to

determine the information in a single snapshot of array data which we could denote as

J(η;m). Assuming independence between observations of a random vector x, the total

information in M snapshots is the summation of the information in each observation [68]

J(η) =
M∑
m=1

J(η;m). (C.13)

Recall the separable Gaussian form introduced in Chapter 2 which regarded a snap-

shot as an instantiation of a multivariate Gaussian random vector distributed as x ∼

C (µx(ηµ),Rx(ηc)), where the terms ηµ and ηc were introduced to delineate the param-

eters of the mean and covariance of the observation vector. When the parameter vector can

be partitioned in the following form

η =


ηµ

ηc

 (C.14)

Then in a similar fashion to the case where we partitioned the Fisher Information into wanted

and unwanted blocks, we may also partition J(η) based on the parameters associated with

the mean and the covariance as [113]

J(η) =


J(ηµ) J(ηµ,ηc)

J(ηc,ηµ) J(ηc)


. (C.15)
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In the separable Gaussian problem, J(ηc,ηµ) = J(ηµ,ηc) = 0 and the FIM reduces to the

following block diagonal form

J(η) =


J(ηµ) 0

0 J(ηc)


. (C.16)

From this form, we see that the estimator performance of the mean and covariance parameters

are decoupled in the separable Gaussian problem.

The array snapshot model is described as separable Gaussian when we treat the direc-

tional sources as time samples of deterministic but unknown variables. The mean of our

observation in this case is given by

µx(ηµ) = A(ηnl)ηl. (C.17)

The parameters associated with the mean are

ηµ =


ηnl

ηl

 (C.18)

Where ηnl and ηl are the nonlinear and linear parameters respectively. In the separable

Gaussian problem, the block diagonal structure of J(η) simplifies the matrix inverse calcu-

lation and we find that

CCR(ηµ) = J−1(ηµ), (C.19a)

CCR(ηc) = J−1(ηc). (C.19b)
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The FIM associated with the mean parameters can be similarly organized as

J(ηµ) =


J(ηnl) J(ηnl,ηl)

J(ηl,ηnl) J(ηl)


. (C.20)

When the observations are complex, the real vector of linear parameters is written in terms

of its real and imaginary components as

ηl =


ηI

ηR

 . (C.21)

Note that this doubles the number of unknown parameters in ηl over the case of real obser-

vations. For complex observations, the FIM for the parameters of the mean J(ηµ) is a 3× 3

block matrix given by

J(ηµ) =



J(ηnl) J(ηnl,ηR) J(ηnl,ηI)

J(ηR,ηnl) J(ηR) J(ηR,ηI)

J(ηI ,ηnl) J(ηI ,ηR) J(ηI)


. (C.22)

We now define the blocks of the FIM in Equation C.22 assuming the observation noise

to be a vector of complex Gaussian noise distributed as n ∼ C (0, σ2
nI). The computational

steps are not included but result from evaluating the form in C.12 with the mean and
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covariance of the observation vector defined as

µx(ηµ) = A(ηnl)η̃l (C.23a)

Rx = σ2
nI. (C.23b)

The tilde is used here to emphasize that the linear variable is a complex vector containing

the real and imaginary parameters, i.e.

η̃l = ηR + jηI , (C.24)

And the vector of real linear parameters is as defined in C.21. The nine submatrices needed

to populate the FIM in C.22 are then defined as follows:

J(ηnl) =
2

σ2
n

Re

{(
∇ηnl

[
η̃Hl AH(ηnl)

])(
∇ηnl

[
η̃Hl AH(ηnl)

])H}
(C.25a)

J(ηnl,ηI) = − 2

σ2
n

Im

{(
∇ηnl

[
η̃Hl AH(ηnl)

])
A(ηnl)

}
(C.25b)

J(ηnl,ηR) =
2

σ2
n

Re

{(
∇ηnl

[
η̃Hl AH(ηnl)

])
A(ηnl)

}
(C.25c)

J(ηI ,ηnl) =
2

σ2
n

Im

{
AH(ηnl)

(
∇ηnl

[
η̃Hl AH(ηnl)

])H}
(C.25d)

J(ηR,ηnl) =
2

σ2
n

Re

{
AH(ηnl)

(
∇ηnl

[
η̃Hl AH(ηnl)

])H}
(C.25e)

J(ηR) =
2

σ2
n

Re

{
AH(ηnl)A(ηnl)

}
(C.25f)

J(ηI) =
2

σ2
n

Re

{
AH(ηnl)A(ηnl)

}
(C.25g)
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C.2.1 Example: CRLB on Estimators of the DOA

We can use the results above to determine the estimator bounds for the classic angle of

arrival problem where ηnl is our vector of unknown arrival angles and ηl contains the real

and imaginary parts of the source vector s. The mean and covariance of the observation

vector are defined as

µx = A(Θ)s, (C.26a)

Rx = σ2
nI. (C.26b)

We typically limit our interest to the parameters of the mean specified by the following

ηnl = Θ (C.27a)

ηl =


Re (s)

Im (s)

 . (C.27b)

The FIM in C.22 with blocks as defined in C.25a can be used to determine the CRB on

estimators of Θ and s. We first define a Q×Q matrix Rs to be the diagonal matrix whose

only nonzero entries correspond to the source powers down its main diagonal

Rs =



s∗1s1 0 . . . 0

0 s∗2s2
. . . 0

... . . . . . . ...

0 0 . . . s∗QsQ


. (C.28)
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We also define a matrix D ∈ CP×Q whose ith column, di is the gradient of the ith steering

vector with respect to θi

di =
∂a(θi)

∂θi
, (C.29)

AssumingM available snapshots, the CRB matrix of bounds on the unknown angle estimates

is given by

CCR(Θ) =
σ2
n

2M

{
Re

[
Rs �

[
DHP⊥A(Θ)D

]T]}−1

, (C.30)

Where the matrix P⊥A(Θ) ∈ CQ×Q is the projection matrix onto the null-space of A(Θ).

This form is derived in section 8.4.4 of [110] and can be found by populating the FIM as

described above, performing the matrix inverse to obtain the corresponding CRB matrix and

just retaining the submatrix associated with Θ.
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Appendix D

Snapshot Editing Algorithm

D.1 Snapshot Editing Algorithms

Algorithm 1 Single source snapshot editing
Input: Xn1, θcn, γ1

Output: Xclean
1

1: Xclean
1 = [ ] . Initialize edited snapshot matrix to empty.

2: ac ← ã(θcn) . Assign array response to θnc based on nominal model.

3: Pac ← ac
(
aHc ac

)−1
aHc . Projection onto span {ac}.

4: P⊥ac ← IP −Pac . Projection onto span
{
a⊥c
}
.

5: for mn1 ← 1,Mn1 do . Loop over single source measurements in the bin.
6: x← xmn1 . Test measurement is one column of Xn1.

7: T1 ←
xHPacx

xHP⊥acx
. Compute the subspace alignment measure.

8: if T1 > γ1 then . Compare test measurement to the threshold.
9: Xclean

1 =
[
Xclean

1 | xmn1
]

. Keep x if measure exceeds threshold.
10: end if
11: end for
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Algorithm 2 Two source snapshot editing
Input: Xn2, θcn, θin2, γ1, γ2, θnull
Output: Xclean

2

1: Xclean
2 = [ ] . Initialize edited snapshot matrix to empty.

2: ac ← ã(θcn) . Assign array response to θnc based on nominal model.

3: Pac ← ac
(
aHc ac

)−1
aHc . Projection onto span {ac}.

4: P⊥ac ← IP −Pac . Projection onto span
{
a⊥c
}
.

5: for mn2 ← 1,Mn2 do . Loop over Q = 2 snapshots.
6: θi ← [θin2]mn2 . Assign interference angle.
7: ∆θ ← |θcn − θi| . Determine angular separation between sources.
8: ai ← ã(θi) . Assign array response to θi based on nominal model.
9: x← xmn2

10: Pai ← ai
(
aHi ai

)−1
aHi . Projection onto span {ai}.

11: P⊥ai ← IP −Pai . Projection onto span
{
a⊥i
}
.

12: T1 ←
xHPacx

xHP⊥acx
. Calibration subspace alignment measure.

13: T2 ←
xHPaix

xHP⊥aix
. Interference subspace alignment measure.

14: if ∆θ > θnull then . Angular separation requirement between sources.
15: if T1 − T2 > γ1 − γ2 and T1 > γ1 then . Assert culling rule.
16: Xclean

2 =
[
Xclean

2 | xmn2
]

17: end if
18: end if
19: end for
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Appendix E

Elevation Errors

E.1 Elevation Errors Reported for Tested Frames

This section offers a frame level summary of elevation errors summarized in Chapter 7. The

manifold column indicates the model assumed in angle estimation while the frame column

specifies the tested frame. Red is used to indicate cases where the manifold measured from

a particular day is tested against a frame from the same data set. These correspond to cases

where the test data is drawn from the training set. The elevation errors reported in Tables

E.1 - E.4 provide frame level detail of the rolled up mean elevation error and root mean

squared elevation error reported for each manifold model in [53] and also in Chapter 7.
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Figure E.1: Measured elevation errors of RDS DEMs (reported as meters with respect to
the WGS-84 ellipsoid) for 16 frames tested with measured manifolds and including errors for
subset of 20140401_03 frames tested with the electromagnetic manifold model.
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Table E.1: Summary of elevation errors (WGS-84, meters) from 20140325 07 test frames.

Frame Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

002

Nominal 102,387 2,219 2.17 8.575 20.8433

20140325 07 106,528 1,748 1.64 -0.2610 5.5166

20140401 03 106,881 2,024 1.89 -0.8003 4.7752

20140506 01 106,778 1,622 1.52 -0.5312 4.8124

301



Table E.2: Summary of elevation errors (WGS-84, meters) from 20140401 03 test frames.

Frame Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

004

Nominal 145,818 3,184 2.18 6.2164 17.1631

20140325 07 150,385 1,243 0.83 1.2986 6.6333

20140401 03 151,639 1,706 1.13 -0.5635 3.1773

20140506 01 151,456 1,789 1.18 -0.4779 3.2560

005

Nominal 131,642 2,938 2.23 5.4239 18.0012

20140325 07 135,714 1,309 0.96 0.4258 5.9720

20140401 03 136,576 1,491 1.09 -1.0850 4.3074

20140506 01 136,363 1,469 1.08 -1.1118 4.2756

013

Nominal 89,746 1,694 1.89 8.7277 20.7070

20140325 07 93,620 1,587 1.70 1.5197 6.3888

20140401 03 94,228 1,094 1.16 0.1489 3.8803

20140506 01 94,107 1,349 1.43 0.3255 4.2538

015

Nominal 23,822 479 2.01 7.3865 19.1307

20140325 07 24,954 282 1.13 2.0847 7.1665

20140401 03 25,098 342 1.36 -0.0685 4.1857

20140506 01 25,060 328 1.31 -0.0836 4.4189

016

Nominal 51,803 949 1.83 1.4140 23.6574

20140325 07 54,085 1,324 2.45 -6.0128 16.3317

20140401 03 54,256 1,526 2.81 -6.2778 15.6783

20140506 01 54,206 1,428 2.63 -5.9464 15.4123

019

Nominal 151,829 3,227 2.13 9.1100 22.1687

20140325 07 158,742 3,424 2.16 1.5057 8.2149

20140401 03 159,885 3,577 2.24 -0.4424 6.0053

20140506 01 159,546 3,801 2.38 -0.6274 6.4325
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Table E.3: Summary of elevation errors (WGS-84, meters) from 20140401 03 test frames.

Frame Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

034

Nominal 38,937 729 1.87 7.442 19.1181

20140325 07 40,012 498 1.24 0.3681 6.2939

20140401 03 40,363 568 1.41 -0.6115 4.0296

20140506 01 40,229 556 1.37 -0.6619 4.5018

035

Nominal 132,697 3,203 2.41 5.9842 19.6467

20140325 07 138,597 1,654 1.19 0.7145 5.6460

20140401 03 139,539 1,563 1.12 -0.6646 3.7598

20140506 01 139,323 1,438 1.03 -0.5198 4.0230

038

Nominal 58,226 1,027 1.76 10.098 19.5464

20140325 07 60,129 1,471 2.45 1.5048 8.1048

20140401 03 60,292 1,424 2.36 1.0931 7.2635

20140506 01 60,278 1,454 2.41 1.1382 7.2037

041

Nominal 56,842 1,484 2.61 6.6041 18.0980

20140325 07 59,617 939 1.58 -0.3732 4.8190

20140401 03 60,007 744 1.24 -0.8198 3.7732

20140506 01 59,900 787 1.31 -0.3844 4.1054

042

Nominal 100,742 2,264 2.25 3.6788 17.4560

20140325 07 104,636 2,708 2.59 -0.7809 6.1608

20140401 03 105,022 2,806 2.67 -1.6653 5.4631

20140506 01 104,948 2,592 2.47 -1.4049 5.3361

045

Nominal 17,977 530 2.95 7.1013 19.1607

20140325 07 18,592 426 2.29 2.4102 10.0747

20140401 03 18,707 454 2.43 0.7477 9.0282

20140506 01 18,662 458 2.45 -0.0571 8.0363
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Table E.4: Summary of elevation errors (WGS-84, meters) from 20140506 01 test frames.

Frame Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

041

Nominal 34,916 725 2.08 14.2723 29.6026

20140325 07 36,877 1,060 2.87 2.6762 9.5964

20140401 03 37,026 1,042 2.81 1.6084 7.8443

20140506 01 37,073 1,062 2.86 1.3458 7.9620

042

Nominal 46,706 867 1.86 7.3034 17.3808

20140325 07 48,729 1,056 2.17 -0.7300 6.3632

20140401 03 48,816 1,043 2.14 -0.7898 5.9799

20140506 01 48,816 969 1.99 -0.5533 6.0895

045

Nominal 70,282 1,830 2.60 6.6554 18.4534

20140325 07 72,812 1,480 1.93 -1.0560 6.2789

20140401 03 73,002 1,381 1.89 -1.5090 5.9233

20140506 01 72,954 1,387 1.90 -1.2163 5.6722
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Table E.5: Summary of elevation errors (WGS-84, meters) from 20140401 03 test frames.

Frame Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

034

Nominal 38,937 729 1.87 7.442 19.1181

20140325 07 40,012 498 1.24 0.3681 6.2939

20140401 03 40,363 568 1.41 -0.6115 4.0296

20140506 01 40,229 556 1.37 -0.6619 4.5018

035

Nominal 132,697 3,203 2.41 5.9842 19.6467

20140325 07 138,597 1,654 1.19 0.7145 5.6460

20140401 03 139,539 1,563 1.12 -0.6646 3.7598

20140506 01 139,323 1,438 1.03 -0.5198 4.0230

038

Nominal 58,226 1,027 1.76 10.098 19.5464

20140325 07 60,129 1,471 2.45 1.5048 8.1048

20140401 03 60,292 1,424 2.36 1.0931 7.2635

20140506 01 60,278 1,454 2.41 1.1382 7.2037

041

Nominal 56,842 1,484 2.61 6.6041 18.0980

20140325 07 59,617 939 1.58 -0.3732 4.8190

20140401 03 60,007 744 1.24 -0.8198 3.7732

20140506 01 59,900 787 1.31 -0.3844 4.1054

042

Nominal 100,742 2,264 2.25 3.6788 17.4560

20140325 07 104,636 2,708 2.59 -0.7809 6.1608

20140401 03 105,022 2,806 2.67 -1.6653 5.4631

20140506 01 104,948 2,592 2.47 -1.4049 5.3361

045

Nominal 17,977 530 2.95 7.1013 19.1607

20140325 07 18,592 426 2.29 2.4102 10.0747

20140401 03 18,707 454 2.43 0.7477 9.0282

20140506 01 18,662 458 2.45 -0.0571 8.0363
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Table E.6: Summary of elevation errors (WGS-84, meters) from 20140401 03 test frames.

Frame Manifold NT Outliers Rejection (%) ME (m) RMSE (m)

004
GLRT 151,456 1,789 1.18 -0.4779 3.2560

Pseudo 151,450 1,624 1.07 0.0225 3.3675

005
GLRT 136,363 1,469 1.08 -1.1118 4.2756

Pseudo 136,259 1,525 1.12 -0.8453 4.4022

013
GLRT 94,107 1,349 1.43 0.3255 4.2538

Pseudo 94,053 1,317 1.40 0.7908 4.5930

015
GLRT 25,060 328 1.31 -0.0836 4.4189

Pseudo 25,079 326 1.30 -0.1065 4.5335

016
GLRT 54,206 1,428 2.63 -5.9464 15.4123

Pseudo 54,196 1,418 2.62 -5.9629 16.3622

019
GLRT 159,546 3,801 2.38 -0.6274 6.4325

Pseudo 159,533 3,755 2.35 -0.2637 6.5172

034
GLRT 40,229 556 1.37 -0.6619 4.5018

Pseudo 40,266 517 1.28 0.0017 4.6310

035
GLRT 139,323 1,438 1.03 -0.5198 4.0230

Pseudo 139,237 1,468 1.05 -0.1562 4.1753

038
GLRT 60,278 1,454 2.41 1.1382 7.2037

Pseudo 60,239 1,427 2.37 1.6738 7.5150
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Appendix F

Structural Detail of Modeled P-3 Inboard Fairing

F.1 Doubler Dimensions of Outer Sections

The dimensions of the embedded doublers assumed in the CEM model of the bottom skin

are specified here. The dimensions for an outboard panel of the inboard P-3 subarray are

summarized in Table F.1 relating the physical dimensions with designators that are labeled

in Figure F.1

D0

LX

δy1

δx11

δy2 δy3 δy4 δy5 δy6 δy7 δy8 δy9 δy10

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

LY

D11

y

x

Figure F.1: Bottom skin of an outboard panel in the CEM model, showing embedded dou-
blers.
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Table F.1

Designator δx (cm) δy (cm)

D0 33.3 3.1

D1 3.1 12.4

D2 7.1 6.35

D3 3.1 12.4

D4 3.1 16.3

D5 3.1 9.3

D6 3.1 9.3

D7 3.1 23.2

D8 3.1 12.4

D9 7.1 12.4

D10 3.1 12.4

D11 33.3 3.1
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