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ABSTRACT This study combines wearable sensors, weather data, and self-reported mood surveys to assess
mental stress on older adults from heat experience. It is designed as a pilot and feasibility study in preparation
for a large-scale experiment of older adults’ mental wellbeing during extreme heat events. Results show that
on-body temperatures from two i-Button sensors coupled with heart rate monitored from a smart watch are
important indicators to evaluate individualized heat stress given a relatively uniform outdoor temperature.
Furthermore, assessing their mood in their own environment demonstrates potential for understanding mental
wellbeing that can change with varying time and location.

INDEX TERMS Wearable sensors, temperature, time factors.

I. INTRODUCTION

The use of sensors in health studies has blossomed in the past
decade with the availability of low-cost wearable and mobile
sensors for health monitoring [1]-[3]. These sensors generate
precise and granular data on physiological, behavioral and
affective states of individuals in a continuous and noninvasive
manner [2]. They monitor health remotely, track and detect
biophysical abnormalities, and evaluate activity monitoring.
Burdensome wearing of sensor equipment on various parts
of the body and the necessity of controlled experiments have
been major obstacles to longer-term studies in one’s natural
environment. Recent developments in wearable sensor tech-
nology (e.g., smartwatches) make data collection easier and
less expensive.

This paper uses sensors embedded and attached to a smart-
watch to observe physiological changes in the daily life of
older adults. The study measures heart rate, skin temperature,
and near air temperature continually for a day to examine
physiological change from exposure to heat during summer
and resulting mental stress. Sensor data are combined with
weather data and self-reported mood surveys using a ded-
icated mobile app and voice calls to understand the multi-
faceted impacts of heat on the mood of older adults.

In addition, this study documents each person’s momentary
experience of heat in their environmental context. To examine
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whether variability in heat experience exists from changing
indoor and outdoor temperatures, we also added weather data
to evaluate against on-person temperatures and activity.

This study also serves as a pilot project in preparation for a
large-scale experiment on the impacts of heat stress on aging
populations in their natural environment. The large-scale nat-
ural experiment will employ sensors for longer duration to
understand participants’ experience of heat. As a feasibil-
ity study, this paper also sheds light on limitations arising
from sensor data collection, data integration, and technology
knowledge of participants. Results gained from the study will
help improve the tools and techniques we employ to collect
and analyze sensor data.

The first part of the paper discusses the current state of
knowledge in the use of wearable sensors on older adults
and advancements in combining wearable sensor data with
other data sources. The second part of the paper explains
each data source — wearable sensors, mobile app and voice
phone-sourced ecological momentary assessments (self-
reported surveys), and weather station. It also describes meth-
ods used to process and integrate these data. The third part of
the paper presents and discusses results including limitations.

A. CURRENT STATE OF KNOWLEDGE

Use of on-person sensors in the aging population has
increased at a rapid pace due to technological advancements
combined with the benefits of continuous monitoring [4].
With increase of both the size of the aging population in the
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US and healthcare costs, sensors can be useful for “aging
in place” programs that enable older adults to stay home
and monitor their chronic conditions. They can be used to
detect falls [5], cardiac arrest [3], and fatigues and depres-
sion [6], [7], among others. Sensor data can also help generate
predictive algorithms that lead to an early diagnosis of dis-
eases. They can contribute to preventive care when coupled
with mobile phones to notify healthcare services to initiate
immediate medical interventions [6], [7].

Despite rising interest and potential benefits of on-person
sensors, their use has mostly been limited to research. In a
review of 422 scientific articles on the use of wearable tech-
nology in patients aged 60 and above, Gordon [8] found
that most were experimental in nature. To remedy the sit-
uation, he called for formal and randomized clinical trials.
Recently, extensive research has been conducted to evaluate
the effectiveness of wearable sensor technologies [9], [10].
For instance, activity monitoring in the home environment
of older adults is a growing area of interest. Monitoring
tools range from vision-based cameras, radio-based WiFi
and radio frequency identification, and sensor-based tools
such as accelerometers and smartwatches [11]-[13]. They
can be attached to the trunk, limbs, wrist, or clothes to detect
physical activities and mobility patterns [14].

Combining wearable sensors with other data sources to
provide context has increased especially in the area of wellbe-
ing. The MIT affective computing group pioneered a combi-
nation of physiological sensors with e-diaries, smart phone
geolocation, and a phone application to assess stress and
wellbeing of 201 college students [15]. Since then, several
studies have examined affective states of individuals using
a mix of wearable sensors and smart phone capabilities.
Nalepa et al. [16] and Kanjo et al. [17], for example, speak to
an integrated system of physical sensors, GPS coordinates,
and ambient luminance; environmental data from weather
and road traffic; and data stored in smart devices such as
events in a calendar or current phone usage to assess context.
Hayano et al. [18] targeted five participants for 10 weeks
in their experiment using built-in sensors in the wristband
to measure temperature, acceleration, pulse wave, environ-
mental ultraviolet light, and sound to detect continuously
physical activity along with options to record their strong
emotion including happy, relaxed, sad, or angry every 30 min-
utes. Similarly, the Healthyoffice app in combination with
wearable sensors asked participants at workplace to docu-
ment their emotional state every two hours that ranges from
excitement, happiness, calmness, tiredness, boredom, sad-
ness, stress to anger [19].

In these novel combinations to denote affective states,
physiological sensors such as galvanic skin response, heart
rate and skin temperature integrated in smart wristbands
are interpreted as proxy indicators of stress and mental
wellbeing [20]. Ecological momentary assessments (EMAs)
are often used to collect behavioral, physiological, or self-
reported data in nearly real time and in a person’s natural
environment several times a day. They are less susceptible
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TABLE 1. Participant information.

Individual | Borough
Participant | Gender | Age Ethnicity Levelnf l'.lnusehold Income of
education | size
Level
. Between
1 Female 7740' White Grad Single S2ALL [
person and 37350 anhattan
High Single Less than
2 Female | 85+ Black School person $22410 Brooklyn
Between
75- . Single $37351
3 Female 79 White Grad person and Manhattan
$59760
. Between
4 Female 6"95' White College Multiple | 65411 Manhatt
person and 37350 anhattan
Between
; 65- Single $37351
3 Female 69 White College person and Manhattan
$59760
Between
. 65- . ) Multiple $37351
6 Male 69 White Grad person and Manhattan
$59760
. Between
7 Male 6695' Other Undergrad | MUPIE | 6001 Manhatt
person and 37350 anhattan
. . Between
8 Female | S5 | Mispanicor | yndergraq Multiple | 3241 Manhatt
atino person and 37350 anhattan
75- . . N Multiple Less than
0 Female 79 White College person $22410 Manhattan

to recall bias and reflects the influence of contextual fac-
tors [21]. They employ a dedicated app to pose questions
on people’s smartphones. These combined data collection
and analysis are done primarily for adolescents and younger
adults thus far [22], and this study is first of its kind to
combine physiological sensors, EMAs, and weather data and
observe older adults.

Il. MATERIALS AND METHODS

A. PARTICIPANTS

This study recruited participants using the city’s network of
senior centers affiliated with the Department for the Aging.
There are more than 250 centers distributed in the five bor-
oughs of New York City. This study used the Carter Bur-
den Network to recruit three senior centers in East Harlem,
Roosevelt Island and Brooklyn. We contacted the centers
by phone and visited each location multiple times to recruit
and collect data. This study is approved by the University of
Kansas Institutional Review Board. Participants enrolled in
the study included nine between the ages of 65 and 87 and
without self-reported mental disorders. We conducted a sur-
vey to collect their demographic information, neighborhood
of residence, and presence of air conditioner before initiating
data collection. Eight participants live in Manhattan and one
lives in Brooklyn, and seven participants have air conditioners
installed at home. The income ranges between $22410 and
$59760 (See Table 1). As a pilot study, cohort sample size
is small and biased towards Caucasian female. The goal is
to diversify and use representative sampling in a large-scale
experiment. Weather on participant data collection days was
relatively mild, with temperatures around 26.7° C, although
at least one day registered temperatures exceeding 32.2°C.

B. WEARABLE SENSOR DATA
Each participant was given a Fitbit watch and two iButton
sensors attached to the watch using a customized sensor
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holder to minimize potential discomfort while wearing the
watch (Fig 1). Participants were instructed to wear the watch
on their non-dominant wrist for a period of 24 continuous
hours. They were asked to only remove the watch while tak-
ing a shower as the iButton sensors are not waterproof. Fitbit
watches were fully charged when delivered to participants
and were expected to last for three days.

Before deployment, we synchronized the time on the watch
and iButton sensors with a designated computer used for the
study. The synchronization disabled automatic time updates
and ensured that the watch and sensors produced timestamps
that could be compared and would represent nearly the same
time window as the computer clock. This synchronization
was necessary when using iButton sensors along with the
watch to ensure that both sensors are getting nearly the same
timestamp during the data collection period. Collection rate
for iButton sensors was set to 0.07 Hz for a total of four
samples per minute to ensure enough memory for 48 hours.
When the collection rate was set to a higher rate of six to eight
times per minute, these sensors can collect less than 12 hours
of data. Biometric data collection included participant heart
rate using an optical sensor embedded in the watch and
step counts estimated through an accelerometer that was a
proxy for physical activity. Frequency of data collection for
heart rate and step count from the watch was 1 Hz and then
downsampled for the data analysis process to 1 sample per
minute, and sent directly to cloud storage. These records were
downloaded from the equipment vendor via an application
programming interface API. Recent studies [23], [24] have
shown that optical heart rate sensors are reliable and accu-
rate if ambient light, electromagnetic coupling with other
sensors, and motion artifacts do not interfere with sensing
heart rate [25]. One study, for example, [26] compared pho-
toplethysmography (PPG) sensors from a smartwatch with a
commonly used electrocardiagram, and found that they are
highly correlated.

Given some limitations of sensing heart rate from wear-
able devices, we checked to assure limited interference from
motion such as intense physical activities. Our step count
assessment, for instance, showed that only two individuals
exceeded 12,5000 steps per day. The continuous sensor mea-
surement of heart rate also offered redundant information that
provided a robust dataset to work with. There is a growing
body of literature that shows mechanisms for improvement
of heart rate datasets based on machine learning [27] and
denoising algorithms [28]. We plan to use such algorithms
in a larger study to improve the quality of the heart rate data.

Regarding on-body temperatures using two iButton sen-
sors — skin and near air temperature sensors. These sensors
were calibrated and used on the Fitbit watch previously by
the Project Coolbit [29]. The skin temperature represents a
heat exchange of the environmental temperature and body
temperature [30], [31]. Wrist is also considered the best place
to estimate subjective thermal sensation [32]. Given that skin
temperature suffers from the influence of sweat or physical
activities [33], [34], near air temperature serves as a better
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proxy indicator for assessing individually experienced ambi-
ent temperature.

C. SMART-PHONE BASED MOBILE SENSOR DATA
Ecological momentary assessments (EMAs) - self-reported
surveys conducted multiple times a day - are used to assess
the mood of participants. We used a mobile app, Ethica to
prompt EMAs. In this study, participants received a notifica-
tion from the app whenever EMA was conducted. We chose
to do three times a day at 12 pm, 3 pm, and 6 pm for one
day. We selected this time period to target the hotter parts
of the day. Participants were requested to complete each
survey before the next one came up, giving an expiration time
of 180 minutes. Every time a participant sent a new survey
the interaction was recorded, providing the exact time and
location. Telephone surveys were used for the six participants
with no technical knowledge of smartphone apps. From these
six participants three provided a landline for the surveys while
the rest provided a mobile phone number. Participants with
mobile phones were asked for their location every time they
completed the EMA survey. Phone survey followed the same
procedure as the mobile app.

D. AIR AND SURFACE TEMPERATURE

In addition to on-person data sources, this study provided
environmental context via the addition of outdoor weather
data. Contrasts between temperature from the weather sta-
tions and wrist mounted equipment provided insight into
adaptations each participant had available, such as air
conditioning or shaded areas. Weather station data was
extracted from NOAA’s Automated Surface Observing Sys-
tems (ASOS) network, which includes four stations within
NYC. Of the four stations, Central Park records observa-
tions at five minute intervals, while the rest do so hourly.
To account for spatial variation of environmental conditions
in the urban environment, we integrated land surface tem-
perature estimated from the Landsat 8 satellite. Whenever
a location was available for a participant, their coordinates
were mapped to the closest 30m by 30m pixel in the Landsat
8 scene most recent to each participant record. During the
study period, land surface temperatures for all participants
varied between 55.6°C and 58.9°C, with those in the Roo-
sevelt Island experiencing coolest values.

Ill. DATA PROCESSING/ANALYSIS

A. WEARABLE SENSORS

We imported CSV files of heart rate and step count from
the Fitbit API, skin temperature from an iButton sensor that
is in contact with the wrist of the participant, and near air
temperature from an iButton sensor placed on the watch
away from the skin contact. We converted all the data into
time series and aligned them to generate measurements at
one-minute interval for a 24-hour period. iButton sensors
recorded data at 1 second intervals, which we downsampled
by computing the mean value of each group of measurements
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DATA SOURCES

EMA

Skin Temp. °C

Accelerometer
Step Count SPM

NOAA(ASOS)
Air Temperature °C

PROMIS Emotional Distress
Anxiety and Depression
Short Form.

Optical Sensor DATA INTEGRATION
Heart Rate BPM

iButtop Sensors

Near Air Temp. °C EMA

[SPACE] Nearest Station
[TIME] Linear Interpolation

Air Temperature
Relative Humidity

= | Integrated

Skin temperature | Database
Step count-—_lj_
Near body temperature

Heart rate

W Outdoor environment data
W Wrist-mounted sensor data

Automated Surface

(ASOS)

FIGURE 1. Data sources and integration.

within a 60 second interval. Step count was sampled at this
same frequency.

We used time-series analysis to integrate all the data into
a single dataset. This allowed us to visualize relationships
among all the variables included in the study over the pro-
posed period for each participant. We also created plots to
illustrate within person variations by time.

B. EMAS

To analyze EMA survey data we used two validated tools,
PROMIS Emotional Distress—Anxiety— Short Form and
PROMIS Emotional Distress—Depression— Short Form.
Each item on the measure was rated on a 5-point scale
(1=never; 2= rarely; 3= sometimes; 4= often; and
5= always) with a range in score from 8 to 40 with higher
scores indicating greater severity of depression or anxiety.
We asked one question, ‘How did you feel in the last three
hours?’ asking them to rate how fearful, anxious, or worried
they felt, among others. Unanswered questions are prorated
using the following formula:

score = raw Z totalquestzonsanswere dquestions

We added the responses for each time of the day when
we administered the survey on the Ethica mobile app. Then,
we assigned the T-score for the corresponding measure.
A lookup table was provided that mapped rounded total raw
scores to a T-score, which was then mapped to anxiety levels
as follows:

< 55: None to slight

55-59.9: Mild

60-69.9: Moderate

> 70: Severe

These categorical anxiety levels were then assigned a
timestamp at the time they were finished and uploaded to
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Observing Tools

a cloud-based service from which they were available for
download to administrators.

We added two columns called ’INTERPRETED DEP’ and
‘INTERPRETED ANX’ as shown in Figure 1. The values in
this column associated the range and severity of depression
or anxiety in a scale of, None to slight, Mild, Moderate
and Severe. None of the participants in the study reported
signs of depression beyond the Slight level during the EMA
surveys, while five participants reported changes in their
anxiety level going from None to Slight to Mild anxiety
levels.

C. WEATHER

Because weather stations collect data less frequently than
wrist sensors, they are resampled to the latter’s one-minute
interval via linear interpolation. Although this step potentially
introduced uncertainty in outdoor conditions, air temperature
and relative humidity were both known to exhibit large tem-
poral autocorrelation, lessening the impact of the resampling.
In addition, as weather stations were geographically static,
each participant’s location was used to map their nearest
station using Euclidean distance:

D =/ — 52 + i — )’ @)

where D is the distance between a weather station and a
participant, X and y are the longitude and latitude respec-
tively, while i and n subscripts denote the participant and
weather station, respectively. The station with the smallest
calculated distance was assigned to the participant whenever
their location particular data record, the participant’s previous
coordinates were used for all computations.

The stations exhibit some variability in their distribution
due to meteorological (e.g., sea breezes) and land cover.
The warmest stations are LGA and JRB. JFK is located in
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FIGURE 2. Heat experience of participant 5.

TABLE 2. Inventory of data completeness.
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ID: 14936-1 ID: 14936-1 ID: 14936-1 ID: 14936-1 ID: 14936-1
3550030 | 500533550 N s s

the southern coast of Long Island, which is often subject
to land breezes that lead to cooler temperatures [35]. These
differences are starker during the day when sea breezes form.
An inventory of data collection was produced in order to
asses completeness of sensor and EMA surveys across par-
ticipants (Table 2). The ASOS weather stations, at least one
of which has been operating for over 100 years, showed the
least amount of missing data, for a single participant. On-
person data collection proved less reliable, as three partici-
pants sometimes removed the wrist-mounted sensors before
sleep. Sensors malfunctioned at least three times, such as
wrist temperatures for participant 8 and skin temperatures for
participants 3 and 4.

Missing data can prevent the inference of statistically
significant results when they significantly impact the mea-
surement sample size. However, significant correlations have
been found between some of the measured data, open-
ing the possibility of using multiple imputation (MI) tech-
niques to fill in gaps [36]. However, if > 50% data
from a sensor is provided, it will be tagged with a
quality control flag so it may not be used in certain
analyses.
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IV. RESULTS

This section starts with a description of one participant’s
heat experience using on-person sensor data analysis (Fig
2). It is to illustrate holistically how environmental context
affects the individual differently depending on the avail-
ability of air conditioning, time, and location. Participant
#5 was a female, 67 years old without an air conditioner
at home. She was active during the day while at a senior
center. Because senior centers served as cooling centers
during summer, they were air conditioned. At night when
she returned home that had no air conditioning, her near
air temperature increased on average to 33.9° C and skin
temperature to 31.4°C. These temperatures were higher than
during the day, which recorded on average 30.9 ° for near
air temperature and 26.6°C for skin temperature. These tem-
peratures were higher than during the day, which recorded
on average 30.9°C. Skin temperature typically reflects the
environment, and can drop to 17.7°C on average with ambient
temperatures recording between 13.3°C and 23.9°C based
on a study measuring hand temperature in moderately cold
environments [37]. The heart rate also spiked while she
was sleeping. The spikes were observed when the near air
and skin temperatures increased to 35.6°C at 12:20 am,
at 2:30 am and 4:00 am. Despite the absence of step counts,
the periodic peaks in heart rate might have be caused by the
higher night temperature at home without the air conditioner.
Acute stress levels are known to elevate heart rates during
sleep, increasing wakefulness [38]. Other reasons can be
correlations between heart rate activity and various stages of
sleep [39], [40], with peaks during the rapid eye movement
stage (REM).

We also observed mood shifts with the increased on-person
temperatures. Peaks in light blue and yellow indicate the
times when the participant completed the survey that was
requested and the T-Score on the depression and anxiety
scale. There was no change in the level of depression as it
stayed ‘None’ with a rise in on-person temperatures. There
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FIGURE 3. Scatter plot of skin temperature versus near air temperature.
Marginal plots show histograms of each variable.

was, however, an increased level of anxiety from None to
Slight to Mild.

A. COHORT CORRELATIONS

We analyzed correlations among variables generated by dif-
ferent data sources we measured at the group level. This
is to demonstrate relationships among on-person and out-
side temperatures, stress, and activity. They also provided an
opportunity to select one data source over the other if they are
highly correlated. This will also cut down the cost of sensor
purchase and processing time.

In Figure 3, we see a high correlation between skin and near
air temperatures with a Pearson’s coefficient value of 0.73.
As the iButton sensors that measure skin and near air temper-
atures are located on the opposite sides of the watch (Fig 1),
they may be exposed to a similar external environment. How-
ever, when both temperatures are examined in relation to
heart rate, we see some difference in that near air temperature
shows the Pearson’s coefficient of —0.19 whereas skin tem-
perature exhibits —0.03. This is partly due to the fact that the
skin temperature sensing is in direct contact with the skin and
can generate sweat that is not present in near air temperature
sensor, which cools off the skin surface as it evaporates.

‘We also observe another strong correlation of 0.32 between
heart rate and step count (Figure 4). When isolating times
when participants moved (i.e., step count > 0), the correlation
between the two increased to 0.45. This indicates that step
count may be an important covariate to heart rate. As walking
or running may not be the only source of physical activity
for participants, additional insights may be gained from more
granular data on speed of the participant movement. At the
same time, we also observe that heart rate increases when
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FIGURE 4. Scatterplot of heart rate and step count.

there are no or little step counts. For instance, Participant
8 showed an increased heart rate up to 155 BPM when the
steps amounted to 19 in a one minute period. The same par-
ticipant showed a decreased heart rate around 115 BPM when
there were 118 steps. These differences may be explained by
heat stress or anomalies of the participant’s heart condition.
Two participants did not have air conditioning at home, and
they showed a lower level of activity with a mean value of
three steps per minute when compared to other participants
with an average of 6.8 steps per minute. A lack of adaptive
measures to combat heat (e.g., air conditioning) can be a
barrier to physical activity by increasing discomfort among
the participants.

There is little correlation between skin temperature and
step count with a Pearson’s coefficient of 0.053. Although
Pearson coefficient is smaller than that of heart rate, it is
nonetheless significant at the p < 0.001 level. Finally, results
show nearly no relationship between near air temperature and
heart rate.

B. PER-PARTICIPANT CORRELATIONS

Correlations among temperature related variables observed
in each participant is useful in generating personal assess-
ment of each individual’s heat experience. The aggregated
information on correlations discussed above is valuable
in delineating important relationships that can be general-
ized with a large dataset. However, it has limitations in
understanding how temperature-relevant factors interact and
produce an individual-specific outcome. We selected two
variables of considerable importance given past research on
the topic. Mental stress has long been associated with heart
rate [41], [42]. Studies have also shown that stress affects skin
response. Sano et al [43] found that using heart rate and skin
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FIGURE 5. Scatter plot of skin temperature versus heart rate.

responses as features in a machine learning model resulted
in 87% accuracy when classifying individuals into low and
high stress groups.

For each individual, correlation coefficients of skin tem-
perature and heart rate vary between —0.32 to —0.20. All
participants exhibit a negative correlation coefficient, except
for participant 2. The slope of the linear regression between
these variables indicates decreases (increases) of —1.6°C
(0.6°C) per unit increase of heart rate. Data from at least
three of the participants show outliers in skin temperature,
which may skew the linear regression coefficients towards
lower values (ID = 2, 8, and 9). These outliers may be due to
sensor mis-readings, a loose fit of the wrist strap on partici-
pants, or from participants temporarily removing their device.
Participant 5 shows the largest variation of skin temperature,
going from 23.9°C to 35°C, which may be due in part to their
lack of air conditioning, different levels of physical stress,
pre-existing medical conditions, or a combination of these.
This participant has reported to not have air conditioning
installed at home which corresponds to the highest reported
temperature of 35.6°C at night. His on-body temperature at
the ’cooled’ senior center recorded the lowest temperature
of 23.9°C around lpm. Longer measurement records may
help in attributing higher temperatures to lack of adaptive
measures (e.g., air conditioning), different levels of physical
stress, pre-existing conditions, or a combination of these
factors.

In Figure 5, skin temperature sensors registered a failure
for Participants 3 and 4 so data were not collected for them
as they did not wear the watch immediately at the begin-
ning of the study. This delay on the data collection at the
beginning caused the iButton internal memory to fill up even
before the collection started. iButton sensors were initially
set up to collect data at a higher frequency (1 Hz: 60 times

VOLUME 8, 2020

175

150

125

Heart Rate
g 3 B
.‘
l.! .
’ (]
s
. L]
.
B 1
$

D=4 D=5 D=6
175
150
)
525 0 R o™ ac
= e J
5 100 P, . * AC
z ¢ ° ®  NON_AC
T 5 _
50
D=7 D=8 ID=9

175

150

125

100

Heart Rate

1]

g

o 50 100 150 o 50 100 150 o 50 100 150
Step Count Step Count Step Count

FIGURE 6. Scatter plot of heart rate versus step count by participant.
Green markers denote participants without air conditioning.

ID=1 D=3

Skin Temp Celsius
N B8 R B
o o 0 o

B
o

)
-

8
o

ID=4 ID=5

@
&
°

8 8

i
o

Skin Temp Celsius
]
o o
=]
1
o
LIS

5]
&

D=7 D=8 D=9

350
3
& 325
K
© 300
a
5 o5
i
£ 250
w

25

15 20 25 15 20 25 15 20 25
Air Temp Air Temp Air Temp

FIGURE 7. Scatter plot of skin versus outdoor air temperature by
participant.

per minute) which means that sensors collected data 60 times
per second. To address this issue the data collection rate was
downsampled to 0.07 Hz (4 times per minute) to expand
the duration of memory to 2-3 days and iButtons were pro-
grammed to delay start data collection for at least 240 minutes
after configuration to guarantee successful data collection
process. In general, step count showed a positive correlation
with heart rate across all participants (Figure 6). The slope of
the linear regression across participants varied from 0.10 to
0.9 when accounting only for timestamps where a step was
registered. The correlation between these variables was also
relatively strong, from 0.10 to 0.67. All these relationships
were statistically significant at the 0.001 level, except for
Participant 6, which only had 11 measurements available.
We checked the availability of AC with heart rate/step
count, and it appears to not have a large effect on partic-
ipant heart rate during the observation period (Figure 7).
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We included AC in this set of correlations because studies
have associated weather and ambient temperature with heart
rate [44], [45]. However, given the relatively less extreme
weather during the study, a longer study during the sum-
mer months might yield more conclusive results. Moreover,
indoor temperatures cool at slower rates than outdoor due
to heat storage in buildings, leading to longer lasting warm
conditions that extend into the night in rooms without air
conditioning [46]-[48]. The availability of indoor cooling
(i.e., air conditioning) may have a significant effect on heart
rates and stress levels. Participant 5, for example, recorded
the largest skin temperature variation, which could be due to
the lack of AC. However, as data collection consisted of only
a single day, which was not concurrent across all participants.
A study with a longer period of time may be able to provide
adequate results regarding the relationship between AC use
and activity levels.

Finally, when looking at environmental factors, results
show little to no correlation between outdoor air and near air
temperature. Differences between these two values may be
due to participants staying indoors or behaving in different
ways as a function of outdoor temperatures. This highlights
the importance of on-person sensing to capture the sample’s
experience of thermal comfort as it relates to mental and phys-
ical stresses. We summarize correlations among biometric
variables in Figure 8 at the cohort level.

Results from EMA surveys are interpreted, with collected
data across all participants only registering either None to
slight or Mild anxiety levels without any depressive symp-
toms (Fig 9). Overall, participant heart rates, and both
on-person and outside temperatures show higher values when
patients experienced “Mild” levels of anxiety than ‘“None
to slight.” Although the small amount of participant and
short time period limits the total number of samples to 27
records, a larger cohort and time period may yield statistically
significant results.
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V. DISCUSSION

Measurements of sensor-based on-person temperatures have
several benefits that previous research on heat stress lacks.
They serve as proxy indicators for indoor temperatures often
difficult to identify without installing temperature sensors
inside homes and buildings. Although studies have installed
sensors within homes, these efforts often have short time
spans, or fail to distinguish between air conditioned and
non-air-conditioned areas. Indoor temperatures can also be
affected by building construction (e.g., materials, window
size and placement, and roof treatments) as well as particular
details of actual units (unit floor, air conditioning, insulation,
and maintenance). For example, building materials play a
large role, with bricks having a larger heat capacity than glass
or wood, often leading to warmer temperatures that persist
into the night or subsequent days. In addition, households
may have air conditioners but do not use them because they
do not want to pay for high utility bills [49]. Moreover,
the fact that indoor temperatures stay warm several days
after a heat wave poses higher risk for the elderly who tend
stay indoors [47]. All these variations are difficult to capture
without on-person temperature data.

We can correlate on-person data with outside temperature
and location information to assess the micro environmental
conditions that the person is situated in. This correlation
addresses different types of indoor and outdoor environment
ranging from home, senior centers, shopping malls to streets
and parks. The wider the gap between the on-person tem-
peratures and the outdoor temperature signifies the presence
of an air conditioned surrounding or other types of adaptive
environment to the heat.

The third benefit is the illustration of individual variations
of heat experience despite similar environmental settings.
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For example, participants without air conditioning recorded
higher skin temperature variations than the rest of the cohort.
On hot days, this might mean that these participants are at
a higher risk of heat-related illness. What can strengthen the
personalized assessment is a survey of pre-existing physical
and mental health conditions. This will reveal the reasons for
abnormal heart rate, step counts, or depression/anxiety levels
that are not accounted for by extreme heat.

Moreover, group-level assessment of on-person data makes
possible to test the relationship between variables that are
not easily distinguishable at an individual scale. For exam-
ple, group-level statistics show a slight positive relationship
between activity level measured by step counts and skin
temperature, although on an individual basis this relationship
could be either positive or negative. Comparing on-person
skin temperatures to outdoor temperature, the impact of indi-
vidual behavior becomes more evident. For example, two
participants without air conditioners experienced a larger
variation of temperatures than their counterparts.

There may be other environmental factors related to phys-
ical activity not measured here. These may include meteoro-
logical hazards such as rainfall or high winds. Rainfall, for
example, can prevent participants from being outside their
home, in spite of how uncomfortable indoor conditions might
be. Meanwhile, warm sunny days may prompt participants
to be outdoors more often, potentially increasing their heat
stress. One suggestion is to combine data at the person-
level with outdoor factors to build a more useful model of
mental stress by including factors that affect its indicators
both directly (e.g., heat stress) and indirectly (i.e., behavior).

Collected data also yielded examples of adaptive
mechanisms to warm conditions that were relatively counter-
intuitive. For example, subjects with air conditioning avail-
able experienced warmer near air temperatures at night versus
daytime. Participants reported difficulty sleeping and breath-
ing when using AC at night in informal conversations after the
study. These reports are consistent with studies that found air
conditioning to be a significant risk factor in asthma patients,
meaning that respiratory issues may influence behaviors that
in turn impact heat stress [50], [51].

Given the results collected from this pilot study, useful
additional data sources on the impact of heat exposure on the
older adult include:

« Baseline biometric data: Establishing a baseline for par-
ticipants’ resting heart rates and near air temperature
under thermal comfort conditions can establish a context
to observed changes throughout the study.

« Pre-existing conditions: Participants’ pre-existing health
conditions may provide insight into patterns in sensed
data either due to adaptive behaviors (e.g., turning off
AC at night) or irregular biometric patterns (e.g., irreg-
ular heart rates).

Baseline biometric conditions can be established via a
longer study period. Collecting data for enough days to
capture both cool and warm conditions would allow for
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baselines to be established across all biometric data, and vari-
ables can then be expressed as departures from the baseline.
Pre-existing conditions may be found via an initial survey
administered directly to the participants.

In addition to these limitations, we address further con-
straints that can be improved in future studies. Due to par-
ticipant and instrument availability, data collection among
participants was not concurrent. No two participants were
exposed to the same outdoor weather conditions. In addition,
weather on participant data collection days was not consid-
ered extreme, with temperatures around 26.7°C to warrant
a formal heat warning, although at least one day registered
temperatures exceeding 32.2°C.

Finally, the use of smart technologies on older adults aged
65 and above was challenging. Wearable sensors on the wrist
inconvenienced participants who suffered arthritis; some par-
ticipants did not have smart phones or did not want to use
them. Formal and personalized technology training needs to
be built into the project of this nature. This will garner not
only immediate benefit to the project but also raise their
capacity to use technology in the long run.
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