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Abstract: The state of Paraíba is part of the semi-arid region of Brazil, where severe droughts
have occurred in recent years, resulting in significant socio-economic losses associated with climate
variability. Thus, understanding to what extent precipitation can be influenced by sea surface
temperature (SST) patterns in the tropical region can help, along with a monitoring system, to set up
an early warning system, the first pillar in drought management. In this study, Generalized Additive
Models for Location, Scale and Shape (GAMLSS) were used to filter climatic indices with higher
predictive efficiency and, as a result, to perform rainfall predictions. The results show the persistent
influence of tropical SST patterns in Paraíba rainfall, the tropical Atlantic Ocean impacting the rainfall
distribution more effectively than the tropical Pacific Ocean. The GAMLSS model showed predictive
capability during summer and southern autumn in Paraíba, highlighting the JFM (January, February
and March), FMA (February, March and April), MAM (March, April and May), and AMJ (April, May
and June) trimesters as those with the highest predictive potential. The methodology demonstrates
the ability to be integrated with regional forecasting models (ensemble). Such information has the
potential to inform decisions in multiple sectors, such as agriculture and water resources, aiming at
the sustainable management of water resources and resilience to climate risk.

Keywords: non-stationary; water resources; SST indices; Northeast of Brazil; zero adjusted Gamma
distribution (ZAGA)

1. Introduction

The high spatial-temporal variability of rainfall in the Northeast of Brazil (NEB) is highly influenced
by global teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), as well as
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the sea surface temperature (SST) in the Atlantic Ocean region [1–4]. It is necessary then to investigate
the influence of those phenomena on the climate of different areas of the NEB. The variability of
seasonal and interannual precipitation, associated with tropical SST anomalies and their interaction
with the atmosphere, is associated with how extreme and prolonged droughts will be [5–11].

The tropical Atlantic Ocean’s influence on the NEB rainfall regime is very intense, mainly due
to its proximity. Nevertheless, ENSO events often influence the rainfall regime by either increasing
(La Niña) or decreasing (El Niño) its total amount in this region [3]. Several studies concerning the
climatic variability in the NEB have been developed, such as [12–15]. These studies focus on the NEB
rainfall dependence on the El Niño and La Niña events.

In El Niño years, there is a decrease in the frequency of convection in the north part of the NEB
due to the subsidence of the Walker cell circulation, while in La Niña years, there is an increase in
convection [16]. The presence of El Niño, coupled with negative SST anomalies over the South Atlantic
Ocean, leads to more severe droughts. A decrease in daily rainfall is observed during El Niño periods,
especially during the rainiest period from March to April, increasing the number of consecutive dry
days during this period. In La Niña years, there is an increase in precipitation, especially during the
rainy season, which can cause flooding in major urban centers [13,16,17].

Many meteorological systems act in the region, influencing the spatio-temporal rainfall regime
in the state of Paraíba. The main systems are the Intertropical Convergence Zone (ITCZ) [18],
Upper-Tropospheric Cyclonic Vortices (UTCV) [19], Instability Lines (IL) [20], Mesoscale Convective
Complexes (MCC) [21], Easterly Wave Disturbances (EWD) [22], Frontal Systems, and Land–Sea
breeze [23]. The ITCZ is the most important of these systems to be studied and monitored by the weather
forecast and climate centers. It is easily identified as a band of convective clouds along the equatorial
strip [20] and formed by a confluence of trade winds between the northeast and southeast [22].

The ITCZ migrates seasonally from its northernmost position (around 14◦ N),
during August–September, to its southernmost location (about 2◦ S), during March–April [20]. In rainy
years, when the SST anomalies in the South Atlantic Ocean region are positive, the subtropical high of
the South Atlantic is weakened, causing the ITCZ to move further south from its climatic position.
As a consequence, there is an increase in rainfall associated with it during the northern rainy season of
the NEB [8,17,24]. This is the primary atmospheric system that determines the concentration of the
short rainy season from March to April in the northern and eastern parts of the NEB [9,25].

Drought-related impacts in the NEB have been studied for decades [24,26,27], and these studies
have demonstrated the vulnerability of the region due to lack of significant rainfall [16], shallow soils,
crystalline basement, high evaporations, and also: lack of financial resources, a structured drought
policy, organizing the monitoring/forecasting pillars, vulnerability/resilience assessment and response.
The country’s losses associated with natural disasters exceeded BRL 31.62 billion (BRL = Real, Brazilian
currency) between 2012 and 2015 [28]. Most of these are related to drought in the NEB, representing
about BRL 19.24 billion, equivalent to 60.86% of the total losses for the entire country [28]. Based on
annual decrees of the Government of Paraíba, it is the area most impacted by natural disasters, most of
which are related to water shortages [28].

As part of mitigating the effects of a drought, we must have a forecasting system that allows us to
anticipate actions to mitigate the effects of the temporal variability. In this context, the literature has
shown that it is possible to observe, through dynamic and statistical models, the relationship between
ocean-atmosphere and tropical Pacific and Atlantic Oceans conditions with precipitation in NEB [17].
Time series models may be used to predict climate and hydrological data [29–32]. The Generalized
Additive Model for Location, Scale and Shape (GAMLSS) is capable of observing the sensitivity of
the behavior of the variable to the influence of external parameters over time [33]. Studies conducted
in different regions highlight the efficiency of introducing different climate variables into the model
structure as the most significant advantage of using GAMLSS [34–38].

The authors of [39] emphasize that it is possible to choose different probability distributions using
this model, thus providing significant flexibility in the adjustment to different data series with GAMLSS.
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The flexibility of probabilistic modeling can be observed even under non-stationary conditions,
making it easier to understand how distribution parameters depend on external covariates [40–45].
Consequently, due to these characteristics, GAMLSS can be used in the analysis of the climate risk
associated with hydroclimatic variables [46].

This study aims to identify the influence of SST anomalies on rainfall in the state of Paraíba
using GAMLSS, to quantify the contribution of climatic indices to the distribution of rainfall and,
consequently, to obtain seasonal rainfall forecasts for the state. In this way, the results may serve as
support for decision-makers, since these models with local characteristics are not systematically used
by the agencies responsible for the implementation of Brazil’s climate forecasts, particularly in the
state of Paraíba.

2. Data and Methods

2.1. Study Area

Figure 1 shows the spatial distribution of the rain gauges in the state of Paraíba used in this
study. Paraíba is located in the eastern portion of NEB, between the parallels of 06◦ S–09◦ S and the
meridians of 34◦ W–39◦ W, bounded to the north by the state of Rio Grande do Norte, to the south
by the state of Pernambuco, to the west by the states of Ceará and the east by the Atlantic Ocean.
The population is estimated to be 4,025,558 inhabitants in 223 municipalities, with a demographic
density of 66.70 inhabitants/km2 [47].

Figure 1. Location of the used rain gauges in the state of Paraíba.
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2.2. Data

Rainfall data from 45 locations were used (Figure 1). Monthly time series information was
provided by Development Superintendence of Northeast (SUDENE) [48] from 1948 to 1990, and State
Water Management Executive Agency [49] from 1994 to 2017. The filling of missing data was performed
using the Expectation-Maximization with Bootstrapping (EMB) algorithm. Following the completion of
the missing data, the average seasonal corresponding to the period 1986–2015 was used for this study.

The analysis of SST behavior was performed from anomaly indices in the regions of Niño 1 + 2,
Niño 3, Niño 3.4, Niño 4, and SOI (Southern Oscillation Index) in the Pacific Ocean obtained from
the Climate Prediction Center/National Centers for Environmental Prediction/National Oceanic and
Atmospheric Administration [50]. Anomaly indices in the TNA (Tropical North Atlantic) and TSA
(Tropical South Atlantic) regions, and the decadal scales AMO (Atlantic Multidecadal Oscillation) and
PDO (Pacific Decadal Oscillation), were provided by the Earth System Research Laboratory/National
Oceanic & Atmospheric Administration [51].

2.3. Methods

2.3.1. Descriptive Analysis

Time series analysis describes the data structure, acquiring its characteristics, and enabling
predictions of its future behavior. In this study, all calculations were performed using the R programming
language [52], including its library of described functions.

Missing observations are often found in time-series studies [53] as the methodologies associated
with this type of analysis often must be applied in the presence of a complete historical series. Therefore,
the resampling of these data using the Expectation-Maximization with Bootstrapping (EMB) algorithm,
implemented in the Amelia II R package [54], was carried out to fill missing data found in the time series.

This method seeks to simulate up to four possible precipitation scenarios to replace the missing or
inconsistent information found in the historical series [55]. These four imputations are the combinations
generated by the algorithm, in which the user can subjectively select the value to be used in the
imputation of the missing data. Amelia II is a complete R package for multiple imputations of missing
data, which works faster and is easier to use than various Monte Carlo approaches via the Markov
Chain, and provides essentially the same answer [54].

It is desirable to use the series of rain gauges closest to the location requiring data resampling
so that the method identifies the characteristics and patterns of variability between the series and
improves the method’s ability to simulate missing data. It is also necessary to verify the reliability of
the resampling of these data by simulating the observed data. In order to subjectively select the most
suitable data for resampling, it is imperative to understand the influence of the meteorological systems
regulating the region’s rainfall regime and their dependence on the SST regions. Previous studies have
emphasized the evolution and effectiveness of this method in information reconstruction [56–58].

The use of hierarchical cluster analysis [59–61], using the average monthly total for each location, is
proposed to improve interpretation when interpreting results. This technique quantifies the similarity
between sites by recognizing patterns that divide the area into groups of homogeneous precipitation
regions [61,62]. The hierarchical cluster analysis is a multivariate technique that aims to group data
according to the degree of similarity between them. In this way, its application is useful to generate
precipitation groups with homogeneous regions within the cluster and heterogeneity between them.
It is crucial to instruct that the robustness of this technique will depend on the amount of data available
in the time series, where the sample must be quite representative. As in the context of this work,
30 years of data were applied, it is admissible that the selection of groups of homogeneous regions
(mesoregions) was used safely.

The factoextra package [63] was used to facilitate the measurement of similarity as it provides
accessible functions for extracting and visualizing data output and simplifies hierarchical cluster
analysis using the Ward.D2 method [64]. The Ward.D2 algorithm uses square Euclidean distances to
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minimize errors while selecting dendrogram nodes, showing equivalence between locations. Each node
indicates that there is a set (mesoregions) of cities, in which the rainfall regime has similar characteristics.

One of the difficulties in analyzing the association between the SST anomaly in the Atlantic and
Pacific Oceans with precipitation of a given region is to have prior knowledge of the impact of temporal
lags on this relationship. In order to obtain this information, it is possible to carry out climatological
analyzes applying statistical predictions in precipitation. For this, it is necessary to use some method
that can observe the sensitivity between the changes in the SST and precipitation in Paraíba and the lag
associated with this relationship, before applying the main methodology.

Lag correlations between time series (Yt) and external variables (Xt) are often verified using
the Cross-Correlation Function (CCF). However, this technique is limited to the characteristics of
a stationary series, since the autocorrelation of Yt and Xt influences the CCF. To account for this, we use
the prewhitening method [65] to identify the monthly lag between the SST climatic indices and the
rainfall time series.

Prewhitening generates a visual identification of the signal in which there is a higher probability
of having a temporal dependence, thus highlighting the possible value of the lag between the series.
For this purpose, it is desired the vertical line of the graph (not shown), which varies between the zero
of the CCF, exceeds the horizontal line that indicates the confidence level at p < 0.05. This procedure
has been used and adapted by several authors to remove the influence of serial correlation, as well as
to eliminate the trend structure of the series [66–69]. In this study, we used the prewhitening function
found in the TSA package [70].

2.3.2. GAMLSS Model

A fundamental criterion for studying time series is to analyze the presence of stationarity.
When applying the stationarity criteria, it is possible to choose the best adjustment of the distribution
of potential models to the variables to be explored. However, when working with environmental data,
such as meteorological data that follow non-stationary characteristics, mathematical transformations
are needed to make the series stationary. GAMLSS [33] can adjust to a non-stationary time series,
highlighting its practicality.

The GAMLSS model class was used because the data are complex, given the existence of
considerable asymmetry in the data and many zeros. With this class of models, it was possible
to filter the climatic indexes with greater predictive efficiency and, consequently, make a climatic
forecast of precipitation. The specific method was selected due to the small amount of research using
statistical modeling in the regional context, which associates the rainy season in Paraíba with the SST.
There is a recently published study using GAMLSS modeling in Paraíba, but using latitude, longitude,
and topography as predictor variables [35]. The innovation of this study is due to the use of oceanic
indices that influence and regulate the region’s rainfall regime, mainly between summer and southern
autumn. Therefore, it is expected that the result found will be better because it contains the main
variables that predict precipitation in the localities.

As already described, in this work, the average between three consecutive months was used.
The justification for this analysis is given by the historical context when working with climatic variables.
For example, the Climate Prediction Center (CPC) classifies events from El Niño or La Niña from
reading the averages of the anomalies of three consecutive months in the Niño 3.4 region. Another
advantage of this approach is the smoothing of the high monthly climatic variability that exists in the
region. When applying this form, it facilitates to measure by simulation the volume of water to be
distributed in the regions of Paraíba. This performance is verified during the application of climate
forecasts in the years 2016 and 2017.

In GAMLSS models, the distribution of the response variable Y does not need to be part of
the exponential distribution family. In this sense, for each distribution parameter, different additive
terms can be included in the predictor. This is due to the ability to model not only the mean but
also the higher-order moments, including the variance, skewness, and kurtosis parameters of the
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predictor variable distribution, which is ideal for the analysis of highly variable time series. Therefore,
there is a possibility that the model has the potential to capture the influence of climatic indices
(Niño 1 + 2, Niño 3, Niño 3.4, Niño 4, SOI, AMO, PDO, TNA, and TSA) on rainfall behavior in the
state. The model adjustment can be applied in two general ways, the first is by selecting the predictor
variables with the greatest influence (statistical significance) on rainfall in Paraíba state, and the second
is by differentiating (smoothing) the predictor variables with low statistical significance in the attempt
to improve them. In the development of this work, only the predictor variables with the best statistical
significance in the modeling were selected.

This model was selected for the development of the seasonal forecast with a horizon of three
months. The use of this, in the first half of the year, was chosen to be the period with the highest water
recharge in cities located in the interior of the state of Paraíba. As these localities live with frequent
droughts and a few months of rain, it is essential to use this periodicity to analyze the behavior of the
model’s predictions with the observed values of precipitation to provide a tool that can improve the
management of water resources by decision-makers.

A better understanding of how GAMLSS works can be found in [33,40,41]. In the GAMLSS model
framework, it is assumed that the yi data series are independent, for i = 1, . . . , n, with FY(yi

∣∣∣θi)

being the cumulative probability density function (p.d.f.) where θiT =
(
θi1,θi2, . . . , θip

)
is a vector of p

parameters related to explanatory variables and random effects. This parameter vector includes the
location, scale, and shape parameters of the p.d.f. Usually, in the context of hydro-meteorological data,
p ≤ 4, since one to four parameter families have sufficient flexibility for characterizing continuous and
discrete distributions [39].

In a GAMLSS model [33], the additive terms represent the smoothing terms that allow the
flexibility of the parameter dependence of p.d.f. on climate indices. For a vector of observations of the
response variable given by yT = (y1, y2, . . . , yn), considering k = 1, 2, . . . , p, a monotonous function of
gk(·) relating the kth parameter θk explanatory variables random effects through an additive model
written form

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Z jkγ jk, (1)

where θk and ηk are vectors of size n, for example, θT
k = (θ1k,θ2k, . . . ,θnk), βT

k =
(
β1k, β2k, . . . , βJ′kk

)
is a

parameter vector with size J′k, Xk is a known structure matrix of the order n × J′k. Z jk is a fixed matrix
of known structure n × q jk, and γ jk is a q jk dimensional random variable. When choosing Z jk = In

where In is an identity matrix n × n, γ jk = h jk = h jk
(
x jk

)
for all combinations of j and k, thus obtaining

the semi-parametric additive equation of the GAMLSS,

gk(θk) = ηk = Xkβk +

Jk∑
j=1

h jk
(
x jk

)
, (2)

where the h jk is an unknown function of the explanatory variable x jk and h jk = h jk
(
x jk

)
is a vector

representing the h jk function of x jk.
The attributes of the four parameters (p = 4) are usually characterized by location (µ), scale (σ),

skewness (ν), and kurtosis (τ). The first two parameters θ1 and θ2 (Equation (1)), denoted by µ and σ
are defined in the literature as the location (or mean) and scale (or variance) parameters, respectively;
the last two ν = θ3 and τ = θ4 are called shape parameters.

We used seven probability distributions (Table 1) that have been widely used in the climate
analysis of precipitation time series, such as [71–76], with the support of the gamlss R package [33,77].
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Table 1. Summary of the seven distributions considered in the study.

Distribution Function Abbreviation Probability Density Function

Gamma GA fY(y
∣∣∣µ, σ) = 1

(σ2µ)
1
σ2

y
1
σ2 −1

e
−y

(σ2µ)

Γ
(

1
σ2

)
to y > 0, µ > 0 and σ > 0

Generalized Gamma GG fY(y
∣∣∣µ, σ, ν) = |ν|θθzθexp{−θz}

Γ(θ)y
to y > 0, µ > 0, σ > 0 and−∞ < ν < ∞

Zero Adjusted Gamma ZAGA fY(y
∣∣∣µ, σ, ν) =


ν

(1− ν)

 1

(σ2µ)
1
σ2

y
1
σ2 −1

e
−y

(σ2µ)

Γ
(

1
σ2

)


to 0 ≤ y
〈
∞, µ

〉
0, σ > 0 and 0 < ν < 1

Gumbel GU fY(y
∣∣∣µ, σ) = 1

σ exp
[( y−µ

σ

)
− exp

( y−µ
σ

)]
to −∞ < y < ∞, −∞ < µ〈∞ and σ〉0

Logistic LO fY(y
∣∣∣µ, σ) = 1

σ

{
exp

[
−

( y−µ
σ

)]}{
1 + exp

[
−

( y−µ
σ

)]}−2

to −∞ < y < ∞, −∞ < µ < ∞ and σ > 0

Log-Normal LOGNO fY(y
∣∣∣µ, σ) = 1

√

2πσ2
1
y exp

{
−
[log(y)−µ2]

2σ2

}
to y > 0, µ > 0 and σ > 0

Weibull WEI fY(y
∣∣∣µ, σ) = σyσ−1

µσ exp
[
−

( y
µ

)σ]
to y > 0, µ > 0 and σ > 0

In the absence of smoothing functions, the model is reduced to the parametric GAMLSS model,
gk(θk) = Xkβk, k = 1, 2, 3, 4 estimated by the maximum likelihood (ML), with the maximum
likelihood function given by [77],

` =
n∑

i=1

log f
(
yi
∣∣∣µi, σi, vi, τi

)
, (3)

where f represents the p.d.f. of the response variable. However, for non-parametric models, it is
necessary to resort to the penalized ML method, through the logarithm of the likelihood function given
by [77],

`p = ` −
1
2

4∑
k=1

Jk∑
j=1

γT
kjGkj

(
λkj

)
γkj. (4)

2.3.3. Model Evaluation Criteria

In order to compare and select the appropriate probability distribution for the rainfall time series
in the different GAMLSS models, we chose the model with the lowest Akaike Information Criterion
(AIC) [78] and the Bayesian Information Criterion (BIC) [79]. The independence and normality of the
residues are verified by the worm plot graph, which is a qq-plot of the residues. These graphs visually
help to decide if the selected model fits the behavior of the studied series when verifying whether the
residuals of the simulated versus the observed value are similar [80,81]. For optimal adjustment, 95% of
the points are expected to be between the two elliptical curves (unit normal quantile). Otherwise, when
finding points outside the range of high-frequency elliptical curves means that the model distribution
adjustments (selection model) are insufficient to explain precipitation behavior (response variable),
the outliers can also be found distant from the two elliptical curves on the graph [77,82] reiterate that
this step is essential to enable model optimization and computational processing and to finally identify
the most significant predictors to be used in the determination of predictions, as stated by [83].
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2.3.4. Efficiency for Seasonal Prediction

Initially, the quantile technique was discussed by [84] and addressed by other authors [85–87],
describing that this method can be applied to precipitation series, where the precipitation Y of a locality
over time is considered a continuous variable capable of characterizing the dry, normal and rainy
periods, based on the quantile categories. A quantile of order p is a numerical value that classifies
a data set between intervals, the choice of which may vary according to the desired percentage of
the research.

We decided to use the quantile technique to characterize the high annual variability of rainfall
found in the region due to the dependence on SST anomalies. For each month, we classified the
forecasted precipitation by applying the “Type = 6” algorithm because it is used in continuous data,
where observations can assume any value in an interval. The algorithm is present in the quantile
function of the stats package, the associated equation in the interactions of this algorithm is m = p.
p [k] = k / (n + 1). Thus p [k] = E [F (x [k])] [88].

Thus, it is possible not only to examine whether the response of the model corresponds to the
classification of the observed value but also to determine whether the model at least captures the
general precipitation behavior towards normality, in the sense of achieving the proper distribution for
that period. In this case, the technique was adapted for the locations studied in Paraíba to classify
the precipitation predictions as extremely dry (ED), very dry (VD), dry (D), normal (N), rainy (R),
very rainy (VR) and extremely rainy (ER), as shown in Table 2.

Table 2. Corresponding range to climate classifications represented by their quantiles.

Quantiles Rating

p < Q(0.05) Extremely dry
Q(0.05) < p < Q(0.15) Very dry
Q(0.15) < p < Q(0.35) Dry
Q(0.35) < p < Q(0.65) Normal
Q(0.65) < p < Q(0.85) Rainy
Q(0.85) < p < Q(0.95) Very rainy

Q(0.95) < p Extremely rainy

Four different statistical indices were adopted to measure the model’s performance and its
applicability in conducting climate studies in Paraíba, due to the need to qualify the adjustment of the
simulated values to those observed. Comparisons for each homogeneous locality and regions were
made by Mean Absolute Error (MAE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and
Coefficient of Determination (R2). The MAE and the RMSE represent the average deviation between
the observed and predicted data. The PBIAS assesses the trend that the mean of the predicted values
has with the observed ones. Therefore, positive and negative values indicate overestimation and
underestimation of precipitation by the model, respectively. Finally, R2 indicates the proportion in
which the variable can be explained by the model [29].

This enabled the quantification of the underestimation, overestimation, and the best adjustments
of the model. Optimal fit estimation occurs when the estimation error indicated by MAE, PBIAS,
and RMSE is nearby to zero, and the R2 is next to one [29]. As noted, the study was designed to
follow multiple statistical criteria to achieve efficiency and enhance time series analysis and its ideal
procedures, significantly improving the product generated by the GAMLSS model.

3. Results

3.1. Series Investigation

The quantile cluster analysis facilitates the identification of five homogeneous precipitation regions
in the state of Paraíba (Figure 2), which were R1 (Litoral), R2 (Brejo), R3 (Agreste), R4 (Cariri and
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Carimataú) and R5 (Sertão). After obtaining the locations belonging to each homogeneous region
(mesoregion), three representative cities were selected from each of the mesoregions, and pre-whitening
was applied to calculate the lag between the precipitation time series and the climatic indices obtained
from the regions of Niño1 + 2, Niño 3, Niño 3.4, Niño 4, SOI, TNA, and TSA (Table 3), except AMO and
PDO. The lag value of the abnormal levels of AMO and PDO due to the characteristics of the series
being multidecadal and decadal, respectively, is not precisely indicated by the pre-whitening method.
Since the calculation obtains signals with strong multicollinearity, the technique would indicate the
existence of several lags (lag = 0, 1, . . . , 12, . . . , n months), which could lead to an error in the
interpretation of the results. As a result, the highest correlation level for these two indices is lag 0 [89],
so we applied a lag equal to zero.

Figure 2. Distribution of the five homogeneous regions by cluster analysis in the state of Paraíba.
(PRP = monthly precipitation, DJF = December, January and February; MAM = March, April and May;
JJA = June, July and August; SON = September, October and November).

Table 3. The time lag between Sea Surface Temperature (SST) anomalies and precipitation in the state
of Paraíba (SOI = Southern Oscillation Index; AMO = Atlantic Multidecadal Oscillation; PDO = Pacific
Decadal Oscillation; TNA = Tropical North Atlantic and TSA = Tropical South Atlantic).

Region Niño 1 + 2 Niño 3 Niño 3.4 Niño 4 SOI AMO PDO TNA TSA

R1 0 0 0 7 3 0 0 3 1
R2 0 0 0 7 3 0 0 3 1
R3 0 0 0 7 3 0 0 3 1
R4 2 2 2 6 3 0 0 3 2
R5 2 2 2 6 3 0 0 3 2

It is necessary to justify that there are situations in which two or three “ideal” lag values are
indicated by pre-whitening due to the different seasonal dependencies. Therefore, we generated Table 3
and compared this result with those already described in the existing rainy season literature in the
eastern and northern parts of the NEB [8,90–95], which is the target of this research.
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3.2. Application of the GAMLSS Model

The performance of the GAMLSS model class was verified by adjusting the non-linear
characteristics (shape) of the precipitation time series (similar to [45]), and by assessing the dependence
of the series at 45 locations in Paraíba based on SST anomaly indices. SST anomalies, classified as
predictive variables, have been used in the distributions to obtain the best fit and combination.

The distributions that best fit the Paraíba precipitation time series can be seen in Table 4. The GG
distribution resulted in the best model of rainfall in the regions R1, R2, and R3, which are localities
in the state where there are no long periods with zero precipitation and are close to the east coast.
The application of the GG distribution at the other locations of the study (i.e., R4 and R5) would not be
adequate due to the presence of zeros in the observed data. It should be noted that the total annual
rainfall of R3 is less than or equal to R5. However, R3 has more months of zero precipitation than
R5. The precipitation deficit in R3 for the June to December period is often affected by negative TSA
anomalies [95].

Table 4. Selection of Generalized Additive Models for Location, Scale and Shape (GAMLSS) by Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) criteria corresponding to each
study location.

Location Region Distribution AIC BIC

Alhandra R1 GG 4268.73 4338.68
Mataraca R1 GG 4042.68 4081.54
Santa Rita R1 GG 3978.83 4033.24

Areia R1 GG 3954.90 4013.20
Bananeiras R2 ZAGA 3946.78 3989.53

Mamanguape R2 GG 4000.79 4055.20
Sapé R2 GG 3838.31 3900.49

Araruna R3 GG 3638.50 3696.79
Campina Grande R3 GG 3618.09 3656.95

Ingá R3 ZAGA 3571.23 3617.87
Itabaiana R3 GG 3571.47 3629.76

Umbuzeiro R3 ZAGA 3701.84 3752.36
Barra de Santa Rosa R4 ZAGA 3313.38 3360.02

Caraúbas R4 ZAGA 3183.71 3242.00
Pedra Lavrada R4 ZAGA 3148.88 3207.17

Picuí R4 ZAGA 3239.29 3285.92
Pocinhos R4 ZAGA 3189.53 3240.05

Salgadinho R4 ZAGA 3292.98 3335.73
Santa Luzia R4 ZAGA 3344.64 3406.82

São João do Cariri R4 ZAGA 3356.13 3410.54
São João do Tigre R4 ZAGA 3276.69 3334.98

Soledade R4 ZAGA 3297.82 3332.80
Sumé R4 ZAGA 3376.54 3419.28

Taperoá R4 ZAGA 3501.20 3551.72
Água Branca R5 ZAGA 3675.94 3730.34

Aguiar R5 ZAGA 3670.64 3721.16
Belém do Brejo do Cruz R5 ZAGA 3553.75 3592.61

Bonito de Santa Fé R5 ZAGA 3751.72 3802.24
Brejo do Cruz R5 ZAGA 3674.20 3724.72

Cajazeiras R5 ZAGA 3853.81 3896.55
Catingueira R5 ZAGA 3587.68 3630.43

Catolé do Rocha R5 ZAGA 3678.56 3740.74
Conceição R5 ZAGA 3641.92 3711.87
Imaculada R5 ZAGA 3554.64 3628.47

Mãe D’Água R5 ZAGA 3463.90 3518.31
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Table 4. Cont.

Location Region Distribution AIC BIC

Malta R5 ZAGA 3612.42 3666.82
Manaíra R5 ZAGA 3631.18 3689.47

Nova Olinda R5 ZAGA 3714.25 3780.31
Patos R5 ZAGA 3656.41 3718.59

Pombal R5 ZAGA 3646.57 3708.77
Princesa Isabel R5 ZAGA 3694.23 3748.63

São João do Rio do Peixe R5 ZAGA 3710.70 3776.77
São José de Piranhas R5 ZAGA 3746.43 3816.37

Sousa R5 ZAGA 3685.23 3739.64
Triunfo R5 ZAGA 3666.80 3728.98

The inflated zero model, i.e., the ZAGA distribution function, provided the best time-series
adjustments with zero presence, according to the AIC and BIC. Consequently, given that regions R4
and R5 present frequent periods of drought, the ZAGA distribution was the best way to characterize
the behavior of the series.

Once the characteristic distribution for each location was determined, we verified the residual
behavior of the model and the predictions under two scenario hypotheses. In the first scenario (S1),
only the location parameter (µ) was used in the model equation, i.e., only the mean of coefficients of
the predictor variables associated with the SST was used in the framework of the GAMLSS model,
both in residual analysis and in the obtaining of climatic predictions. For the second scenario (S2),
the location (µ), scale (σ) and asymmetry (ν) parameters are adopted to not only using the mean of
the distribution of the GAMLSS model but also inserting information related to the behavior of the
variability and asymmetry associated with the SST indices.

Understanding the pattern of climate variability increases the accuracy found in climate modeling
methodologies [96–98]. Therefore, the estimation of climatic parameters (Figures 3 and 4) allows the
identification of probable variables that regulate the state rainfall regime. The GAMLSS model structure
penalizes p-values above 5%, avoids multi-collinear problems, and increases the model’s predictive
capacity to select which climate indices have the highest correlation with rainfall at each location.

Figure 3. Magnitude of the parameter µ for each of the five homogeneous study regions (R1–R5),
associated with the climatic indices and their absolute frequency under S1 at the 5% significance level
in the state of Paraíba.
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Figure 4. Magnitude of the parameter µ for each of the five homogeneous study regions (R1–R5),
associated with the climatic indices and their absolute frequency under S2 at the 5% significance level
in the state of Paraíba.

Figures 3 and 4 illustrate the frequency and magnitude of the parameters obtained for the climatic
indices for each region. Figure 3 represents S1, where only the mean behavior of the climatic indices is
used. When using the other parameters of variance and asymmetry, as in the equations expressed in
S2, it is possible for the model to remove some of the climatic indices from the equation of the mean
parameter, to reallocate the equations associated with the parameters of variance and asymmetry.

The parameters estimated by the GAMLSS model (Figures 3 and 4) indicated that the indices
associated with the Niño regions in the Tropical Pacific Ocean showed a low frequency of contribution
to the state’s rainfall regime when compared to the other analyzed indices. This does not mean that the
Tropical Pacific Ocean region plays a weak role in the state since the large-scale contribution associated
with the Niño region influences the behavior of smaller systems, such as those associated with SST
anomalies in the tropical Atlantic Ocean. It is worth noting that [20] also observed this contribution.

Therefore, it is essential to highlight the influence of Niño 1 + 2 in the R3, Niño 3 in the R4, Niño
3.4 in the R1 and R4, and Niño 4 in the R5. The SOI, AMO, PDO, TNA, and TSA indices are found to
be more prevalent in rainfall behavior, as shown in Figures 3 and 4, with SOI and PDO being the most
present. For this reason, the potential of these indices can be highlighted as good predictors, as already
stated by some authors [36,99,100]. It is also noted that during the positive phase of SST in the North
Atlantic Ocean, the behavior of TNA in the R1, R2, and R3 regions, and, in particular, the magnitude of
AMO in the R4 and R5, makes it difficult for precipitation to occur in these regions.

The quality of the linear relationship between precipitation and climatic indices by the GAMLSS
model can be verified by using only the practicality found in the information from the worm-plot
graph observed in Figures 5 and 6, as confirmed by [101].

Characteristics of the quality of the model can be verified in most of the analyzed locations because
the points of the worm-plot graphs (Figures 5 and 6) are close to the solid red line, with little oscillation,
close to the zero-deviation line, and within the 95% confidence intervals (dotted elliptical curves).
This indicates that the model fits the time series better during the rainy season of the regions. However,
it is necessary to be careful, since the large deviations found in the upper and lower normalized
quantiles can be interpreted as a limitation of the model in capturing the occurrence of maximum and
minimum accumulated precipitation because the curve behavior is asymmetric and leptokurtic at the
ends of the worm-plot graphic. This limitation of time series adjustment associated with observed
environmental data has already been verified in recent studies [34,77]. Therefore, caution is needed
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when using this methodology in periods of irregular rainfall, such as those that occur during the
dry season.

Figure 5. Residual diagnosis of the GAMLSS model characteristic of each homogeneous region in
scenario S1, by structural worm-plot analysis.

Figure 6. Residual diagnosis of the GAMLSS model characteristic of each homogeneous region in
scenario S2, by structural worm-plot analysis.
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3.3. Quantile Prediction

When quantile residues approximately follow the characteristic behavior of normal
distribution [102], the rationale validates that the coefficients of the parameters found are capable of
diagnosing the influence of the climate indices [103] on the distribution of rainfall and, consequently,
its use in the simulation of the seasonal precipitation forecast in the state of Paraíba. Therefore,
we used the quantile technique to examine the data and to classify the observed precipitation by
percentile intervals (categories) of seasonal rainfall for each of the 45 locations, and to observe
the applicability of the GAMLSS model to reproduce seasonal rainfall variability in the post-2015
period. This makes it possible to evaluate in practice (operational work), the quality of the model
in estimating the behavior of the rainy season for the next two years (2016 and 2017) in the
region, which were climatologically dry. As the ideal period, i.e., with less climate variability
and more stable meteorological systems, for forecasting in the NEB is the six-month seasonal rainy
(from January to June), given that rainfall during the dry season is insignificant [104], particularly
in R4 and R5, for representing the highest percentage of annual rainfall, presenting more weather
systems and less climatic variability. The three-month periods used in the approach were divided
as DJF (December/January/February), JFM (January/February/March), FMA (February/March/April),
MAM (March/April/May), AMJ (April/May/June), MJJ (May/June/July).

Predictions found in both scenarios were satisfactory for the observed rainfall data in the first
period of 2016 (Figure 7). Even with the high seasonal and interannual variability of rainfall in the
state resulting from mechanisms associated with SST [10], the model was able to highlight the role of
climate indices as good predictors. As presented in Figure 7, the predictive capability of the model was
able to indicate the general behavior of rainfall for R1, R2 and R3 during the DJF, JFM, FMA, AMJ and
MJJ periods. The most reliable predictions for R4 and R5 were found in FMA, MAM, and AMJ.

Figure 8 presents the forecast simulation for 2017, emphasizing the results found between the
JFM and AMJ periods. The most reliable rainfall estimates for R1, R2, and R3 were during the periods
of FMA, MAM, and AMJ characterized for the proximity of forecasting, as demonstrated by a good
association between the sign of observed rainfall and the simulated values. The adjustment of the
model to the observed data was also present in the R4 region, in the periods of JFM, FMA, MAM,
and AMJ. Subjectively, it is possible to see in Figure 8 coherence between the observed and predicted
quantiles in MJJ. In the R5 region, the estimates did not achieve the same success as those found in the
R4 region. However, acceptable results for DJF are observed because they indicate approximately the
variability of the rainfall volume identified between normal, dry and very dry.
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Figure 7. Quantiles of values observed and simulated by the GAMLSS model for S1 and S2 scenarios
in Paraíba state for 2016 (Legend: ER = Extremely Rainy (N), VR = Very Rainy (N), R = Rainy (N),
N = Normal (•), D = Dry (H), VD = Very Dry (H) and, ED = Extremely Dry (H)).
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Figure 8. Quantiles of values observed and simulated by the GAMLSS model for S1 and S2 scenarios
in Paraíba state for 2017 (Legend: ER = Extremely Rainy (N), VR = Very Rainy (N), R = Rainy (N),
N = Normal (•), D = Dry (H), VD = Very Dry (H) and, ED = Extremely Dry (H)).

3.4. Efficiency Indicators

Possible changes in climate are likely to reduce the NEB rainy season [105], intensifying the
meteorological systems that cause extreme rainfall and droughts [106], thus requiring the effectiveness
of the models [107]. The reliability of the forecasts using SST anomalies in tropical regions is evident,
and the efficacy of the models must be presented by statistical criteria [108]. Due to the adequacy of
the scenarios for the first semester of 2016 and 2017, it was necessary to assess the accuracy of the
estimates for each homogeneous region of the study. The authors of [109] found that using a statistical
model could be the easiest way to predict reservoir capacity and drought events at the regional level.
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The performance of the model in estimating the rainfall volume of each homogeneous region of Paraíba
through statistical and efficiency indicators can be seen in Tables 5–9. For this purpose, it was chosen
to compare the average rainfall of the observed and simulated data for 2016 and 2017.

Table 5. Statistical and efficiency indicators for the evaluation of prognostic performance in R1.

Period Scenario MAE (mm) PBIAS (%) RMSE (mm) R2 (%)

DJF S1 59.56 55.1 60.87 0.65
S2 71.14 65.9 75.23 0.62

JFM S1 34.21 25.3 37.54 0.8
S2 45.11 33.3 45.54 0.75

FMA
S1 12.95 −4.2 15.02 0.96
S2 1.31 0.5 1.64 0.99

MAM
S1 85.25 −34 86 0.66
S2 79.65 −31.8 79.65 0.68

AMJ S1 69.62 −28.2 70.19 0.72
S2 62.41 −25.3 64.45 0.75

MJJ S1 49.27 −22 69.05 0.74
S2 48.91 −18.5 64.17 0.77

MAE = Mean Absolute Error; PBIAS = Percent Bias; RMSE = Root Mean Square Error; R2 = Coefficient
of Determination.

Table 6. Statistical and efficiency indicators for the evaluation of prognostic performance in R2.

Period Scenario MAE (mm) PBIAS (%) RMSE (mm) R2 (%)

DJF S1 35.31 31.5 44.53 0.81
S2 29.19 26.2 36.89 0.84

JFM S1 25.27 17.6 30.53 0.32
S2 19.77 12.7 23.31 0.25

FMA
S1 15.12 −7.1 17.79 0.92
S2 12.51 −9.5 13.44 0.9

MAM
S1 64.68 −34.6 71.69 0.64
S2 62.57 −33.5 64.78 0.66

AMJ S1 47 −25.8 53.4 0.73
S2 44.15 −24.3 45.72 0.75

MJJ S1 30.4 −18.4 39.19 0.79
S2 38.2 −16.7 47.1 0.79

MAE = Mean Absolute Error; PBIAS = Percent Bias; RMSE = Root Mean Square Error; R2 = Coefficient
of Determination.

Table 7. Statistical and efficiency indicators for the evaluation of prognostic performance in R3.

Period Scenario MAE (mm) PBIAS (%) RMSE (mm) R2 (%)

DJF S1 44.86 15.1 45.96 0.83
S2 37.06 1.8 37.08 0.78

JFM S1 21.97 17.1 24.71 0.96
S2 20.34 8.6 21.11 0.97

FMA
S1 10.49 14.8 10.59 0.87
S2 3.58 5.1 3.62 0.95

MAM
S1 15.91 −16.7 17.83 0.83
S2 22.7 −23.8 23.55 0.95

AMJ S1 12.86 −12.8 13.73 0.88
S2 21.13 −21 21.3 0.79

MJJ S1 22.67 −7.6 23.79 0.86
S2 23.02 −16.5 27.82 0.78

MAE = Mean Absolute Error; PBIAS = Percent Bias; RMSE = Root Mean Square Error; R2 = Coefficient
of Determination.
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Table 8. Statistical and efficiency indicators for the evaluation of prognostic performance in R4.

Period Scenario MAE (mm) PBIAS (%) RMSE (mm) R2 (%)

DJF S1 26.26 12.3 26.61 0.77
S2 27.28 11.8 27.6 0.76

JFM S1 14.86 −0.2 14.86 0.88
S2 17.6 −3.7 17.69 0.83

FMA
S1 8.55 15.8 10.66 0.86
S2 5.66 10.6 7.11 0.9

MAM
S1 4.36 −2 4.43 0.98
S2 3.09 −3.2 3.31 0.97

AMJ S1 10.03 26.8 12.35 0.86
S2 9.44 25.9 11.74 0.86

MJJ S1 13.13 68.5 16.68 0.76
S2 13.11 68.4 17.11 0.77

MAE = Mean Absolute Error; PBIAS = Percent Bias; RMSE = Root Mean Square Error; R2 = Coefficient
of Determination.

Table 9. Statistical and efficiency indicators for the evaluation of prognostic performance in R5.

Period Scenario MAE (mm) PBIAS (%) RMSE (mm) R2 (%)

DJF S1 15.33 −16.8 20.28 0.82
S2 20.58 −17.1 24.64 0.81

JFM S1 52.9 −40.3 54.47 0.59
S2 55.35 −42.3 59.26 0.56

FMA
S1 47.08 −37.6 52.52 0.61
S2 49.75 −39.8 52.34 0.59

MAM
S1 44.77 −42.3 46.1 0.57
S2 43.65 −41.2 44.29 0.59

AMJ S1 24.41 −9.2 24.94 0.79
S2 22.77 −3.8 22.87 0.84

MJJ S1 16.64 48.5 21.79 0.89
S2 18.84 64.9 24.98 0.8

MAE = Mean Absolute Error; PBIAS = Percent Bias; RMSE = Root Mean Square Error; R2 = Coefficient
of Determination.

The MAE, PBIAS, and RMSE indicators (Table 5) allowed the identification of the limited reliability
of the model in estimating rainfall in R1, with only the FMA period being adequate. In other periods,
indicators display significant disparity between observed and estimated rainfall.

High values of MAE, PBIAS and RMSE were also observed in the R2 region, as shown in Table 6.
However, these values were lower than those shown in Table 5. The FMA seasonal continued to be
the most statistically significant for estimating since the associated error between the observed and
the simulated values was small, as observed in the MAE, PBIAS and RMSE indicators. As in the R1
region, the values found in the coefficient of determination for the JFM, FMA, AMJ and MJJ periods
indicate that the forecast was able to follow the general pattern of rainfall in the region. Once the
climate forecast for a given region has been obtained, decision-makers can prepare measures that
are resilient to known climatic adversities, corroborating the findings of [98], which underlines the
importance of investing in hydro-climatic monitoring systems.

The statistical indicators presented in Table 7 show that the model was capable of capturing
rainfall characteristics in the R3 region for the entire first semester. Precipitation estimates for the FMA
and MJJ periods stand out as those with the best statistical efficiency, which can be observed in the
results of MAE, PBIAS and RSME, with the indication of little associated error and the coefficient of
determination to indicate that the model can explain the variability of rainfall.
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In addition, the validation of the model demonstrates its applicability qualitatively throughout
the semester in the display of the expected climatological behavior, thus enabling the implementation
of the climate forecast. This statement is associated with the low value found for PBIAS and the
minimally acceptable value of the coefficient of determination

The predictive ability of the model showed efficiency in making estimates in the R4 region,
as observed in the MAE, PBIAS, and RMSE indicators (Table 8). The reliability of the prognoses
in reproducing the climatological behavior for the region is justified by the determination
coefficient, which proves the adequacy in using the GAMLSS model class to generate seasonal
precipitation prediction.

DJF and AMJ, as can be seen in Table 9, were seasonal that the model was able to follow at
least the variability of rains that occur in R5. In others, it was possible to observe the model’s low
efficiency through statistical indicators. The predictions managed to follow the general pattern of
rainfall behavior observed, as highlighted in the results obtained by the coefficient of determination.
Although the indicators highlight the low efficiency in estimating the observed value, it can be seen that,
at some locations in Figures 7 and 8, the forecast classification followed the observed rainfall pattern,
suggesting that regions with the best predictive characteristics could be filtered when performing these
tests by location.

The authors of [110] highlighted the importance of calibration in the modeling of statistical
downscaling to obtain quality in the final result. However, they recommend that this modeling cannot
be considered as an alternative, but that it should be integrated with other models in an ensemble.
The authors of [111] identified that the choice of the appropriate model is not simple and depends on
several factors such as location, climatic factors, data quality, among others. They observed a significant
improvement in the ability of the models when selecting predictive variables with a higher level of
influence in the study area.

4. Discussion

Studies on SST interactions and their impact on NEB rainfall are essential for the assessment
of climate change scenarios [106,107] argue that rainfall forecasts have the potential to benefit
different sectors of society, but that there is a need for effective implementation of climate services,
public policies, and close collaboration between scientists, climate professionals and organized civil
society. This information makes it possible to reduce seasonal errors, to filter periodicity with higher
statistical significance, and to improve the accuracy of the statistical models. Several authors have
discussed the influence of SST in the precipitation variability on NEB [86,90–95].

Seasonal forecasts are crucial for the management of water resources [109], mainly from January
to May in Paraíba, a critical period that guarantees the recharge of reservoirs [104] in the R4 and R5
regions. This is due to the frequent problem of water scarcity, which requires a higher predictive
capacity of the model; this enables sustainable regional water management, reducing conflicts by
improving food and water security [98].

The parameters estimated by the GAMLSS model for precipitation time series allow
an understanding of the physical mechanisms associated with precipitation, indicating the climatic
indices with the most significant influence on rainfall in the region, as shown in [69]. The presence of
AMO, SOI, PDO, TNA and TSA indices was found to be highly representative, with the most relevant
AMO, TNA and TSA indices, highlighting the importance of the tropical Atlantic Ocean as the primary
regulator of the rainfall regime in the region. These results agree with [17].

The positive TSA phase, associated with the negative TNA phase, contributes to the formation
of the north-south thermodynamic gradient [112,113], favoring the intensification of the low TSA,
which in turn strengthens the northeast trade winds, displacing the southernmost ITCZ from its average
climate position. As observed by [20], this pattern contributes to the occurrence of meteorological
systems such as instability lines, easterly wave disturbances, and more frequent convective mesoscale
complexes, which cooperate in the distribution of rainfall in all regions, particularly R4 and R5.
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The possible explanation for the existence of TNA favoring precipitation in the R4 and R5 regions
may be related to the behavior of trade winds [95] because, during the positive TNA phase, the northeast
trades are weakened. As a result, rainfall in the R1, R2 and R3 regions is reduced. In this scenario,
the increase in consecutive dry days and, thus, the reduction in expected rainfall for some locations can
be observed [113]. However, this configuration contributes to the advancement of weather systems by
the NEB, to some front and UTCV fragments inside Paraíba during the rainy pre-season, due to the
strengthening of southeastern trade winds and cyclonic circulation in eastern South America and the
South Atlantic [114].

A description of the behavior of rainfall distribution, which is conditioned by climate indices,
is valuable information for water resource management in the state of Paraíba. Resilience measures
for social problems associated with weather events, floods, landslides, and drought conditions can,
therefore, be planned for the development and implementation of public policies. As the potential of
the GAMLSS model is extensive, it can be discussed in future studies, in particular on the subject of
environmental science. We also believe that this research can stimulate new applications of statistical
modeling, particularly in the preparation of climate forecasts for the northeast region of Brazil.

5. Conclusions

It was proposed in this study to create a methodological structure capable of establishing
a significant relationship between climatic indices and rainfall in the state of Paraíba, corresponding
to 30 years (1986–2015), to develop seasonal rainfall predictions in 2016 and 2017. The results of the
GAMLSS model showed the dominant influence of the tropical Atlantic Ocean on rainfall in Paraíba.
In addition, the tropical Pacific Ocean also contributes to rainfall behavior in the R4 and R5 regions.

The model emphasized that the SOI, PDO, TNA, TSA, and AMO indices are the main precipitation
regulators in Paraíba, classifying them as good predictors. The indices associated with the Niño regions
have their characteristics of rainfall contribution, which stand out from the performance of Niño 3 and
Niño 3.4.

The model has been shown to have predictive capabilities in all regions of the state during the
summer and southern autumns. However, improvements can be applied to the development of the
model. The potential contribution of the ZAGA regression model is highlighted in locations where
there is no rainfall during the dry season. More significant results are found on a local scale than on a
regional level.

The methodology applied can be used as an additional tool for the achievement of climate
predictions by decision-makers. It highlights innovation in the application of statistical models for
the simulation of rainfall behavior. This will allow the various sectors to promote strategies and
planning for water resources in the region, as they proactively manage, with actions to combat, prevent,
and respond to climate risks.
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