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Abstract 

 Magnetic resonance imaging (MRI) is an established radiological technique 

for assessment of cardiac function.  Various MRI methods are utilized for global and 

regional evaluation of the myocardium through tracking the motion of tissue as the 

heart beats.  Such tracking of motion reveals local as well as global deformation of 

the heart wall during contraction and relaxation.  It has been shown that wall motion 

profiles of a healthy heart differ than those of a diseased heart due to variations in 

contractile behavior resulting from complications and abnormalities.  Therefore, 

understanding heart wall motion and quantifying contractility serve as a valuable tool 

for evaluating myocardial viability as well as diagnosis of heart condition.  Hence, in 

this presented work the focus is to utilize cardiac MRI techniques to develop 

computational algorithms that accurately describe myocardial motion in both global 

and regional aspects.  Through acquiring cardiac MRI data from rat subjects, 

quantitative measurements are performed and mathematical models are formulated to 

quantify contractility and map local myocardial motion.  Such measurements and 

formulations serve as means for providing important bio-imaging markers that reflect 

the state of the myocardial tissue, as well as indicators for inspecting the condition of 

the heart.   
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Introduction 
 
Cardiac Magnetic resonance imaging (MRI) is an established radiological technique 

for assessment of cardiac function in clinics.  Particularly, tagged MRI methods allow 

for regional evaluation of the myocardium through generation of dark grid lines in 

acquired cardiac images. These dark lines, also known as tags, follow the motion of 

underlying tissue, as the heart beats, thereby revealing localized deformation of the 

heart wall.  It has been shown that local wall motion profiles of a healthy heart differ 

than those of a diseased heart due to variations in contractile behavior resulting from 

complications like infarct, diabetes or stiff fibrotic tissue deposition.  Understanding 

heart wall motion and quantifying contractility is therefore important to the 

evaluation of myocardial viability and the diagnosis of heart condition.  This 

dissertation work is to develop a computational algorithm that utilizes MRI 

techniques to accurately the describe myocardial motion in both global and regional 

aspects.  With MRI data from rat subjects, a mathematical model of the myocardial 

motion is formulated to quantify contractility and to map local myocardial motion.  

Such measurements and formulations provide important bio-imaging markers that 

reflect the state of the myocardial tissue, and could serve as clinical indicators for 

inspecting the condition of the heart.  This dissertation is organized as follows.  

Chapter 1 introduces the basic physics of MRI.  Chapter 2 discusses cardiac MRI 

methods that were used in this study.  A novel model to describe cardiac wall motion 

from MRI data is introduced in Chapter 3.  A time-reversal approach to estimate 

myocardial motion with MRI data is discussed in Chapter 4.  Chapter 5 presents an 
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innovative method to measure the spin-spin relaxation time of MRI for a beating 

heart.  In Chapter 6, image transformation techniques for the study of the motion of 

the heart’s left ventricle are discussed.  Finally, a graphical user interface (GUI) that 

enables users to apply image transformations that mimic cardiac wall motion is 

included in Appendix A.  
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CHAPTER 1: BASIC MRI PHYSICS 

 In this chapter the basic features of MRI are briefly discussed.  The detailed 

treatment can be found in many references such as Ref [1].   

Dynamics of a Single Spin in an External Magnetic Field 
 
 Most atomic nuclei possess spin angular momentum, a characteristic that 

enables them to interact with external magnetic fields [1, 2].  Such interaction is the 

basis of MRI.  Spin, which is a pure quantum mechanical quantity, can be viewed as 

an angular momentum arising from rotation of the nucleus around an axis through its 

center.  Hence, the nucleus spin is a vector oriented parallel to the axis of rotation 

with a magnitude given by  

(1.1)        
2

 ,     )1(
π
hIIS =+= hh

r
 

where h is the Plank constant and I is the spin quantum number.  Nucleus that is most 

commonly used in MRI is Hydrogen  (1H)  with I = ½.  With an external magnetic 

field 0B
r

, the projection of the spin vector in the direction of 0B
r

is quantized as 

zS = hIm , where Im  = -I, …, I is the magnetic quantum number that represents 2I+1 

orientations of a spin in the external magnetic field.  The magnetic moment of a spin 

S
r

is defined as 

(1.2)                               S
rr γμ =  

whereγ is the gyromagnetic ratio and equals to 42 MHz/T for 1H.  The magnetic 

energy of a spin in the magnetic field can be calculated as 
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Figure 1.1:  Quantization of the spin vector 

 
 

(1.3)                                 0BE
rr

⋅−= μ  
 

which results in the quantized energy states of the spins,  

 

(1.4)                            0BmE ImI
hγ−=  

The energy transition between two states can be expressed as 

 
(1.5)                                      ωh=ΔE  

where ω is the photon frequency of the radiation.  For a transition between two 

adjacent states, the frequency is called the Larmor frequency   00 Bγω = .  For 1H,     

ω0 = 420 MHz at B0=10 T which is in the radio frequency (RF) range.   With the 

interaction between μr and 0B
r

, μr  tends to align with 0B
r

.  Due to thermal 

fluctuations, however, μr  usually orients at an angle to and precesses around 0B
r

.  
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Macroscopic View  
 
 Consider an ensamble of nuclei of spin quantum number I in an external 

magnetic field 0B
r

that is oriented in the z direction.  Each spin has an energy of Em 

given in Eq. (1.4).  The equilibrium distribution of the spins is the Boltzmann 

distribution, 

(1.6)                       0

∑
−=

−

−

=
I

In

Tk
E

Tk
E

m

B

n

B

m

e

eNN  

where mN  is the number of spins in the energy state Em, 0N is the total number of 

spins, T is the temperature, and Bk  is the Boltzmann constant. The magnetization of 

the ensamble of spins is   

(1.7)                                         μr
r
=M  

Because the external magnetic field is in the z direction, the transverse components of 

each μr  is randomly oriented in the transverse (x-y) plane and, thus 0== yx MM .  

The longitudinal component zM  however, does not vanish.  For nuclei with spin ½ 

such as H1 , there are two spin energy states, spin up (m=½) and spin down (m=- ½), 

and the magnetization can be calculated from Eqs. (1.6) and (1.7) as 

(1.8)                          
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For a field of 0B =10 T and at room temperature (~300 K),  /   10~ 0
32 TJNM z
− . 
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For 1 mg of water, N0 ~ 1019 and zM ~ 10-13  J/T.  Such a small zM  can be measured 

by using the induction principle (Faraday’s law) in MRI.  

Dynamics of Magnetization 
 
 In the presence of the external field 0B

r
, the equilibrium state of the 

magnetization of a biological sample is 0== yx MM  and 0zz MM =  where 0zM is 

given in Eq. (1.8).  If the system is perturbed by another magnetic field, the 

magnetization will be away from the equilibrium.  After the perturbation, the 

magnetization will relax back to the original equilibrium state. The relaxation process 

depends on the sample structure.  In MRI, the characteristic of this relaxation is 

therefore measured for the information of the biological structure of the sample. 

 With only 0B
r

 in the longitudinal direction, the spins in a biological sample 

precess at a small angle around 0B
r

 with the Larmor frequency ω0.  To excite the 

spins, another magnetic field 1B
r

that is perpendicular to 0B
r

is applied in MRI. Under 

the perturbation of 1B
r

, the spins will tip away from 0B
r

with a larger angle.  In order to 

efficiently perturb the spins, the direction of 1B
r

has to rotate with the spins. Note that 

1B
r

is much weaker than 0B
r

 (B1/B0 ~ 0.1%).  The rotational frequency of )(1 tB
r

is 

therefore the same as the Larmor frequency.  

 To describe the dynamics of the excited magnetization of a sample, it is 

convenient to use a rotating reference frame in which )(1 tB
r

 is constant.  Consider a 

spin that precesses around 0B
r

in the clockwise direction (see Fig. 1.2).  The transverse 
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plane (x’-y’) of the rotating frame rotates with the precession in the same direction 

with the Larmor frequency ω0.  The transformations between the rotating frame 

),,( ''' zyx eee rrr and the lab frame ),,( zyx eee rrr is then 

zz

yxy

yxx

ee

etete

etete

rr

rrr

rrr

=

+=

−=

'

00'

00'

(1.9)                           )cos()sin(

)sin()cos(

ωω

ωω

 

In the lab frame, )(1 tB
r

is in the transverse plane and is rotating with the spin as  

[ ] (1.10)         )sin()cos()( '10011 xyx eBetetBtB rrrr
=−= ωω  

In the rotating frame, therefore, 1B
r

is a constant field in the 'x direction.  Note that 0B
r

 

is still in the longitudinal direction in both lab and rotating frames.  

 The dynamics of M
r

 in the presence of 0B
r

and )(1 tB
r

 is governed by the Bloch 

equation 

(1.11)                      BM
dt
Md rr
r

×= γ  

 

 

Figure 1.2: Lab and rotating frames.  
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In rotating frame, the time derivative of M
r

 can be written as 

(1.12)                  M
t

M
dt
Md rr

rr

×Ω+
∂

∂
=  

where '0 zer
r

ω−=Ω ,  '''' zzyyxx eMeMeMM rrrr
++= and  

(1.13)              '
'

'
'

'
'

z
z

y
y

x
x e

dt
dMe

dt
dM

e
dt

dM
t

M rrr
r

++=
∂
∂  

In the rotating frame, the Bloch equation becomes 

(1.14)                         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
+×=
γ

γ
r

rr
r

BM
dt
Md

 

where  '10 xz eBeBB rrr
+= .  With the resonance condition of 0B

rr
γ−=Ω , the Bloch 

equation in the rotating frame reduces to  

( ) (1.15)                         '1 xeM
dt
Md rr
r

×= ω  

where 11 Bγω = .  Consider an initial condition of a typical MRI measurement in which 

0' == xx MM , 0' == yy MM , and 00' === zzz MMM at t=0.  )(tM
r

 can be easily 

solved from Eq. (1.15) as 

(1.16)               )cos(

)sin(
0

10'

10'

'

tMM

tMM
M

zz

zy

x

ω

ω

=

=
=

 

where  0zM is the maximum (longitudinal) value of the magnetization.   
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Figure 1.3: Precession of M
r

 around 1B
r

 in the rotating frame. 

 

As shown in Eq. (1.16), M
r

precesses around 'xer  with angular velocity 1ω  in the 

rotating frame (see Fig. 1.3).  In MRI, )(1 tB
r

is usually applied as a pulse.  For a pulse 

)(1 tB
r

with a duration of tΔ , the angle precessed (tipped away from zz ee rr
=' ) for M

r
is 

tBtt Δ=Δ=Δ 11 γωθ .  In MRI measurement, a 90° tip is usually preferred for a strong 

signal.  For 1B ~10 mT, the duration of the pulse )(1 tB
r

is about 2 ms.   

Relaxation Mechanism 

 Consider the case of 90° tip in which o90=Δtθ of M
r

due to )(1 tB
r

.  Right after 

)(1 tB
r

is switched off, 0' zyx MMM == , 0' == xy MM , and .0' == zz MM   After the  

switch-off 1B
r

, the restoration of M
r

to its equilibrium ( 0,0 === yxzz MMMM ) 

occurs via two dissipative  processes.  The first process is the release of the magnetic 

energy in the form of heat from the spins to the surrounding materials.  This process 
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is directly linked to the alignment of M
r

to 0B
r

 as zM recovers from 0 to 0zM .  The 

restoration of the zM is governed by  

(1.17)                                 )1( 1
0

T
t

zz eMM
−

−=  

where 1T is the longitudinal relaxation time.  The second restoration process of M
r

is 

the randomization of xM .  After the switch-off of 1B
r

, xM is gradually randomized 

from 0zx MM =  to  0=xM .  During this process xM is measured by a closely placed 

coil.  This measurement is commonly referred as MRI signal. The decay of the MRI 

signal is therefore 

(1.18)                                                              2
0

T
t

zx eMM
−

=  

where 2T is the transverse relaxation time. Typically   
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CHAPTER 2: CARDIAC MRI 

 The heart is an important organ which is in a continuous state of motion.  Its 

non-stopping beating activity poses challenge to cardiac magnetic resonance imaging 

(CMRI) procedures.  Nonetheless, the importance of the organ serves as a motivator 

for development and improvement of CMRI tools.  Indeed, new CMRI techniques 

allow for obtaining images of high spatial resolution during a fraction of a cardiac 

cycle.  Such treatment requires data acquisition during intervals that are short 

compared to characteristic time scales of cardiac motion.  Such requirement 

necessitates routine use of electrocardiogram (ECG) triggering in CMRI practice.  

Moreover, other CMRI strategies are used depending on the particular application.  

This chapter discusses basic principles and tools of CMRI. 

Motion Compensation 

 As introduced above, the high speed of cardiac motion is a source of artifacts 

in CMRI.  In spite of widely used, fast MRI sequences, time scales of these imaging 

protocols are often inadequate for cardiac imaging [1].  Thus, approaches to 

compensate for motion are required to minimize motion-related artifacts.  

Consequently, combining motion-compensation techniques with imaging sequences 

form the basis of CMRI where the goal is to produce high quality, reliable data.   

 The idea of motion-compensation is borrowed from photography.  When 

shooting a photograph of a rapidly moving object, long exposure would generally 

cause blurring.  Thus, one approach would be to reduce exposure time such that the 

produced image is artifact-free.  Nonetheless, cardiac motion remains too fast to be 
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captured in one exposure using the current available technology.  Hence, the remedy 

is to divide a single exposure into several short exposures in what is known as k-

space segmentation.  This approach is done by utilizing the periodicity of cardiac 

motion where data acquisition is divided among multiple cardiac cycles.  In our rat 

studies, we typically use 256 cardiac cycles where one k-space line of data is acquired 

per cycle.  Thus, the outcome is a 256x256 snapshot image of the desired cardiac 

phase.   

 Experimentally, image acquisition is performed with ECG triggering, where 

the R peak (highest peak in the cardiac cycle) is used as a synchronizing signal 

(Figure 2.1).  Thus, elements of the data matrix are gathered in consecutive cardiac 

cycles.  For a given cardiac cycle, each act of gathering lasts for the duration of the 

acquisition window and is activated after the delay time with respect to the R peak 

elapses, thereby targeting a specific cardiac phase.  To further enhance image quality, 

selection of a short acquisition window is recommended where fewer elements of the 

data matrix are gathered per cardiac cycle.  It is noteworthy that such enhancement 

comes with the price of long scan times, since a typical scan time is a function of 

duration of acquisition window per cycle and the number of cycles involved.   

 Because breathing motion adds complications, only cardiac cycles that are 

away from rapid respiratory movement are considered for imaging.  Hence, 

monitoring of respiration signal is required, especially for animal experiments where 

breath-hold is not possible.  Figure 2.2 shows a snapshot of ECG and breathing 

monitoring of CMRI experiment performed on a rat subject.  With the selected 
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settings in Fig 2.2 where the respiratory window acquisition (250 ms) was chosen to 

be close to the cardiac period (210 ms), about one cardiac cycle is considered for 

imaging per respiratory cycle.  Thus, for a respiration period of 1940 ms, a 256x256 

cardiac image takes about eight minutes to produce.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: 
Periodicity of cardiac motion is utilized with ECG triggering.  Acquisition 
window starts after trigger delay time elapses with respect to the R peak.  
Collection of the elements of the data matrix lasts for the duration of the 

acquisition window per cycle. 
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Figure 2.2: 
Screen snapshot of ECG and respiration monitoring system taken at a CMRI 
experiment on a rat subject.  The ECG wave has a period of 210 ms, and the 
respiratory wave has a period of 1940 ms.  Acquisition window for cardiac 

signal was set to 20 ms with 0 ms delay (to capture the end diastole as the first 
phase in the sequence of images).  For respiration, acquisition window was set 
to last for 250 ms after a delay of 400 ms that starts right after minimum point 

(dip).  These settings ensure data gathering in the plateau of the respiration 
signal and away from rapid breathing motion.  
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Cine and tagged imaging 

 During a typical cardiac cycle, the myocardium goes through various phases 

with complex behavior.  To observe such rapid changes, it is important to monitor 

myocardial motion throughout the cardiac cycle.  In general, cine imaging is the 

approach of choice to study movement exhibited by the heart [1].  Cine imaging 

employs ECG triggering and k-space segmentation to gather multiple data sets 

corresponding to various cardiac phases.  The result is a set of sequential images that 

could be viewed as a movie, hence the term cine (short for cinema).  Figure 2.3 shows 

an illustration of cine imaging with two phases per cycle.  It is certainly possible to 

fill the available time in each cycle with distinct images to obtain a better description 

of the behavior in myocardial motion.   
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 Using cine imaging by itself is good to study global variation in myocardial 

motion.  To study regional variation, however, cine imaging is combined with tagging 

to yield grids of saturated magnetization that follow the motion of underlying tissue 

[1].  These grids are formed through a technique known as Spatial Modulation of 

Magnetization (SPAMM) [4-7].  Through application of RF pulses, SPAMM places 

tag lines, which make series of parallel and/or orthogonal stripes on the slice being 

imaged.  Typically, a SPAMM pulse consists of two RF pulses with a magnetic field 

gradient lobe sandwiched in between (Figure 2.4).   Assuming both RF pulses have a 

flip angle of 90 degrees and are applied along the x axis in the rotating reference 

frame, Figure 2.5  provides a qualitative description of the tagging process.  The first 

Figure 2.3: 
An 

illustration 
of cine 

imaging is 
shown in 
(a) with 

two phases 
per cycle.  
The two 
acquired 

images are 
shown in 
(b), end 
diastole 
and end 
systole.   
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RF pulse tips the magnetization vector to the transverse plane (Fig. 2.5 a).  Then the 

tagging gradient is applied which causes phase dispersion in the transverse 

magnetization (Fig. 2.5 b), where the degree of dispersion depends on spatial location 

along the gradient direction.  After that, the second RF pulse is applied which causes 

the transverse magnetization to rotate 90 degrees about the x axis, transferring the 

magnetization from the xy plane to the xz plane (Fig. 2.5 c).  The transverse 

component of magnetization will continue to disperse until it dies out, while the 

longitudinal component survives due to the external magnetic field B0.  Hence, the 

magnitude of the magnetization vector will depend on its spatial location  Mz(r), and 

thus a modulation of magnetization is produced.  

 Observing the tagging process quantitatively, after the first RF pulse (Figure 

2.5 a), magnetization in the rotating reference frame could be described as: 

 

Microsoft  Equat ion 
3. 0  

(2.1)                                    
cos
sin
0

1
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⎥
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where 0M  is the equilibrium value of magnetization, and 1θ  is the flip angle of the 

first RF pulse.  Thus, application of the tagging gradient TagG introduces a spatially 

dependent phase to the transverse magnetization 
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∫⋅=
T

Tag dtGrr
0
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where r is a spatial variable along the gradient direction, γ  is the gyromagnetic ratio, 

and T is the duration of TagG .  Phase dispersion causes magnetization to become 
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After the second RF pulse is applied, magnetization vectors rotate about the x axis 
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where xM  and yM dephase and die out, and only zM survives 

(2.5)                    ]coscos)(cossin[sin)( 21210 θθϕθθ −−= rMrM z

  

which is spatially modulated by )(cos rϕ .  Hence, images acquired subsequently will 

have tags that act as if they were attached to underlying tissue (Figure 2.6). 

 

 



 24

 

 

 

 

 

 

 

 

Figure 2.4: 
RF pulses with flip 
angles, and tagging 

gradient lobe 
sandwiched in 

between. 

Figure 2.5: Evolution of 
magnetization during 

SPAMM which leads to 
formation of tags.  
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Figure 2.6: 
An illustration of tag-cine imaging is shown in (a) with two phases 
per cycle.  Notice the tagging sequences are applied right after the 

R-peak before data acquisition. The two acquired images are shown 
in (b), end diastole and end systole.   
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Figure 2.7: 
A Cine image (left) and tag-cine image (right).   
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CHAPTER 3:   
PART I 

A simple time-dependent model of left ventricle motion - implementation using 
tagged MRI  

 

This chapter consists of the manuscript submitted for peer review prior to publication.  

It essentially discusses a model that describes motion of the left ventricle during 

systole. 
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Chapter Summary 

Background: Spatiotemporal modeling of myocardial motion is an active area of 

research.  Its importance arises from the insights provided by the models that help 

understand and evaluate cardiac function.  A valuable tool in model building efforts is 

the in vivo magnetic resonance imaging (MRI).  This paper uses a tagged MRI data to 

construct a time-dependent model of the motion of the left ventricle (LV) at the mid-

ventricular level in the short-axis view. 

Methods:  Theoretical analysis involved imposing assumptions with regard to the 

systolic motion of the LV.  These assumptions were used to construct a Gaussian-

based spatial transformation to describe the myocardial motion.  Experimentally, 

cardiac tagged MRI data were gathered from five rats.  Four of the rats were normal 

and one was diabetic with cardiomyopathy.  The data were processed offline to 

segment the LV in a systematic and consistent manner.  An algorithm was described 

to characterize the LV size and shape at different systolic phases using a realization of 

the Gaussian transformation.  

Results:  The Gaussian transformations were computed from the experimental tagged 

MRI data for normal and diabetic rats.  The transformation for the diabetic rat was 

substantially different than the normative measurements, indicating the sensitivity of 

the model to detect an abnormality in the cardiac condition.   

Conclusion:  The one-parameter simple Gaussian model described in this paper 

provides a new way to characterize the LV wall motion.  The motion measurements 
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made with this model allow evaluating the cardiac function and interpreting the 

viability of the myocardial tissue.   

 

Key words: magnetic resonance imaging, tagged MRI, cardiac modeling, left 

ventricle, left ventricular wall motion.   
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Introduction 

Cardiac dysfunction is associated with a variety of cardiovascular diseases that 

lead to heart failure.  Significant cardiac events such as those in infracted or diabetic 

hearts are associated with the impaired relaxation and contraction of myocardium or 

abnormalities in left ventricular (LV) wall motion [1, 8].  Tagged magnetic resonance 

imaging (MRI) is an established cardiac imaging modality that is used to detect these 

regional conditions in both clinical and experimental studies [9-11].  Applications of 

this imaging technique have proved to be feasible and diagnostically valuable in 

evaluating the performance of normal or diseased hearts in live subjects using 

conventional global and regional measures [4-7, 12, 13].   

Tagged MRI employs electrocardiogram (ECG) gated acquisition.  The imaging 

sequence contains initial saturation pulses followed by a repetitive image acquisition 

[1].  At a specific time between the QRS peaks of the ECG waveform, spatial 

modulation of magnetization pulses is applied to saturate the spins perpendicular to 

the imaging plane in the body.  Then, a series of images is acquired repetitively in 

equal time intervals covering the whole period of the heart beat.  The resulting images 

provide snapshot views of the heart along either its short axis or long axis at different 

phases of the cardiac cycle.  Depending on the nature and orientation of the saturation 

pulses, the first image in the series contains dark parallel lines, known as tags, which 

may be organized in horizontal, vertical or in both directions in a grid fashion.  In the 

grid organization, the tags define boundaries of individual cells.  Thickness and 

separation of the tag lines are set to desired values prior to the initiation of the data 
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acquisition.  As the heart contracts or relaxes, the tags follow the motion of the 

underlying myocardial tissue.  The degree of the deformation experienced by each tag 

cell provides a sensitive measure of regional motion and can be used to assess the 

viability of the myocardium within the cell volume.   

Current research efforts are focused on spatiotemporal modeling of the LV shape 

and motion [8].  To aid these efforts, this paper introduces a mathematical construct 

as a means of quantitatively describing the LV wall motion in a beating heart using 

tagged MRI data.  After providing a physical basis for supporting its construction and 

giving the details of its implementation, we test the sensitivity of the model built with 

data from normal hearts to detect the myocardial alterations in a diseased heart.  In 

the accompanying paper (Part II), we demonstrate how the proposed motion model 

can be used to improve the computer-aided motion and regional deformation 

measurements by minimizing the errors made during the numerical estimation of the 

myocardial displacements. 

 Theory – Model of the LV wall motion in the short-axis view of the heart 

Anatomical and structural characterization of the LV 

For clinical analysis or evaluation purposes, the short axis view of the heart is 

divided into three sections, namely base, mid-ventricle and apex. This division is in 

accordance with the standardized myocardial segmentation published by the 

American Heart Association [11].  To perform its pumping task, the LV and its 

myocardial fibers are organized in a complex architecture both anatomically and 

structurally within these three levels [10].  As a result, the LV wall twists with respect 



 32

to its long axis at the base and apex in opposing directions, and consequently the 

deformations at these levels are governed by torsion together with a combination of 

radial and circumferential strains.  The motion at the mid-ventricular level, on the 

other hand, is relatively twist-free and hence the deformation in this region is 

described mainly by the radial and circumferential strains.  Moreover, the patterns 

and degrees of the LV wall motion are also known to depend on the size of the 

ventricle at the level observed.  At the level of the mid-ventricle, the LV cavity 

diameter experiences its greatest radial shortening (elongation) during the systolic 

(diastolic) phase.  If all aspects of the LV motion are considered, prior knowledge and 

experimental observations suggest that its complete characterization with a model 

would be a challenging task to undertake.  Nevertheless, if the mid-ventricle is chosen 

as the specific level of interest, a simple yet powerful model can be constructed as 

discussed below.  Due to the minimal torsion effects at the mid-ventricle, we propose 

a model that is capable of describing the LV wall motion comprehensively at this 

almost twist-free level.    

Before proceeding further, we make the following basic assumptions for 

constructing the model to properly represent the LV motion at the mid-ventricle.   

1) Constraints imposed on the myocardial tissues have negligible mechanical 

effects.  For example, the LV tissues attached to the chest wall deform in the same 

manner as those attached to the septum.   

2) Although a full cardiac cycle includes both systolic and diastolic phases, to 

keep the analysis simple, the model is built to mimic the systolic LV motion only, as 
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in [9].  Nonetheless, it is straightforward to extrapolate the analysis to include the 

diastolic phase if desired.  The digital cardiac images acquired sequentially in equally 

spaced time intervals in the systolic phases are identified by the frames Fi for 

i=1,2…L, where i=1 is the end diastole frame and i=L is the end systole frame. 

3) The cardiac images are constructed on a virtual canvas with rubber sheet 

properties that can be digitally stretched according to a spatially varying deformation 

pattern.  With this elastic feature, the canvas serves as a basis upon which the model 

acts through the application of a spatial perturbation in the coordinates of the 

myocardial tissue.  Thus, such a spatial transformation describes the local myocardial 

motion.  As shown below, the canvas’ elastic behavior is exploited through the use of 

time-forward operations applied on the images to simulate the real myocardial 

motion.  

Physical Basis of the LV motion model 

The mathematical basis for modeling the LV motion in the current work is an 

extension of the approximations employed in physical sciences.  Such approximations 

are typically chosen to simplify otherwise complex, intractable problems representing 

physical phenomena.  For example, quantum wells are used in solid state physics to 

understand the distribution of the electron density in spatially confined potentials [2].  

Similarly, gravitational wells are used in astrophysics to represent gravitational forces 

of large masses acting on smaller bodies to shape their orbits [14].  Hence, analogous 

to these cases, we approximate the LV systolic motion at the mid-ventricle with a 

well that is shaped by a two-dimensional Gaussian profile chosen symmetric in 
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angular and radial directions to map the transverse section of the heart.  Besides being 

simple and well understood, the Gaussian function has found wide-spread 

applications in many scientific fields.  In the current application, the Gaussian 

function is used for deforming the image canvas to simulate the forward systolic 

motion of the LV wall during the cardiac cycle.  The resulting effect by such 

deformation is equivalent to shifting the image coordinates under a spatially variant 

affine-like transformation, thereby making the transformed state resemble the 

myocardial contraction observed during the systole.  Mathematically, the motion 

model can explicitly be expressed by the coordinate transformation T defined by  
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Here x and y represent spatial coordinates.  The parameter α in the exponent is 

responsible for the amount of radial deformation applied on the canvas, and is 

therefore time dependent when the serially-acquired image frames are considered.  

The real cardiac tagged MRI data are used to estimate αi in characterizing the LV 

motion from the first frame i=1 (α→0) to a selected frame Ii, i=2,3…L, as described 

below.  Figure 1 illustrates the application of this transformation to canvases of two 

tagged images.  A uniform image I1(x,y) in Fig. 1-a is labeled with regular grid tags.  

The operation T[I1(x,y)] yields the deformed image I2(x,y) in Fig. 1-b, where the 

shape and size of the tag cells depict regional motion.  If a donut-shaped disk in Fig. 

1-c is used to mimic the LV wall, Fig. 1–d show the resulting deformed disk. The 
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radial LV wall motion is directly related to the value of α; small α yields small wall 

motion and large α produces large wall motion. 

To accurately describe the myocardial motion, it is necessary to satisfy two main 

criteria observed in the MR experimental data and discussed in the literature [9].  

First, the transformation function should exhibit radial dependence, so that image 

coordinates closer to the LV cavity’s center are deformed more than those further 

away from the origin.  This criterion is clearly satisfied in Figs. 1-b and 1-d. The 

bow-shaped behavior exhibited by the deformed lines indicates that the resulting 

deformation has radial dependence.  Second, the transformation function causes an 

increase in the thickness of the LV walls, and a decrease in the size of the LV cavity 

as observed in the real systolic cardiac motion.  This requirement is also met by the 

Gaussian model.  The resulting donut in Fig. 1-d clearly exhibits increase in the wall 

thickness, and decrease in the cavity size, which are both desired features to 

accurately model the LV motion.  In these regards, the parameter α alone can be seen 

as capable of mimicking the changes in the LV wall’s diameter and thickness. 

 

 

 

Methods and Procedures 

Tagged MRI Acquisition 

Cardiac MRI data from the mid-ventricle level were collected from five male 

Sprague-Dawley rats.  Four of the rats were normal and the remaining one was made 
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diabetic with the procedures described previously in [15].  The rats were anesthetized 

using 1.5% isofluorane in a mixture of air and oxygen (60% and 40%, respectively) 

and scanned using a 9.4 T horizontal bore scanner (Varian Inc., Palo Alto, CA) and 

60 mm radio frequency volume coil.  ECG gated gradient echo based tagged images 

were captured from the short-axis view of the heart.  The cardiac cycle was 

temporally resolved into ten equally incremented phases.  The first five were the 

systolic frames.  The following settings were used for the image acquisition: TR/TE = 

25/2.44 ms, number of averages = 1, field of view = 60 x 60 mm, image matrix = 256 

x 256, slice thickness = 2.0 mm.  The square grid tags had dimensions of width = 0.3 

mm and separation = 0.8 mm.  All experimental procedures were approved by the 

University of Kansas Medical Center Institutional Animal Care and Use Committee. 

Processing of Tagged MRI Data 

Prior to performing the LV motion modeling, a set of image processing routines 

was implemented.  The main task of these routines was to ensure that the resulting 

model was generic enough to either represent the myocardial motion in different 

species or account for the variations seen in the heart volumes within the same 

species under normal or pathological conditions.  Application of this procedure aimed 

to segment out a portion of the acquired tagged image to visualize the LV in a larger 

short-axis view at the mid-ventricle.  This segmentation process is given in detail in 

Fig. 3.2.  As shown algorithmically in the figure, the end-diastole image, which was 

acquired when the LV is fully open as the first image of the systolic phase, was 

displayed on the computer screen.  Next, four points that were 90 degrees apart were 
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selected on the outer circumference of the LV wall.  Then, two crossing lines, each 

passing through two of the selected points, were drawn.  The cross point of the two 

lines was set to represent the center C of the LV.  The average of the lengths of the 

two lines was used as a measure of the LV diameter D.  Next, a square window with 

equal size D in each dimension and centered at C was drawn to distinctly enclose the 

LV wall.  A second concentric square window was applied with a slightly larger 

dimension N = 1.3*D to extract a broader region containing the LV wall of the heart 

and the surrounding tissue mass.  This last window was also used to segment out the 

LV from the remaining systolic image frames Fi for i=2,3…L.  Finally, the extracted 

images from all frames were interpolated to an increased dimension of 256 x 256 

pixels to obtain the final systolic image set Ii for i=1,2…L.  Figure 3.3 shows a set of 

images obtained after the application of this segmentation routine followed by a 

spatial scaling of the image coordinates.  With this standardization outlined and 

depicted in Fig. 3.2 as a flowchart, the displacement measurements are now expressed 

in terms of the pixel units.   

 

 

Construction of the LV motion model using the spatial Gaussian transformation 

The experimental data from each animal were preprocessed separately by 

following the algorithm described in Fig. 3.2 using all systolic frames.  For modeling 

the forward LV motion, the resulting images were further analyzed to empirically 

find an optimal value for the deformation parameter αi in Eq. (1) for each systolic 
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image frame Ii for i=2…L.  This process involved superimposing a computer 

generated grid of binary grid mesh, on the LV image as described by the algorithm in 

Fig. 3.4.  The forward transformation in Eq. (3.1) was applied to the undeformed 

mesh structure with a preselected αi0 value to deform the grid lines to match the tag 

lines in the image Ii as close as possible.  Next, an iterative optimization procedure 

was implemented using a computer to achieve a best match by varying the parameter 

αi.  This procedure involved converting the LV image Ii to a binary form by applying 

an intensity threshold.  The tag lines on the resulting image assumed zero intensity.  

Next, we performed a logical XOR operation between the binary image and the 

deformed grid mesh.  The outcome of this operation in each position was 1 if the two 

pixel values were different, and 0 if they were the same.  The results at pixels where 

the grid lines were collocated were summed.  This sum was then normalized with the 

total number of pixels occupied by the lines on the grid mesh.  A perfect match 

between the grid lines and the real tag lines would ideally produce a zero sum.  This 

computational procedure was repeated for ten αi values distributed between a range 

divided in equal intervals; 0.9*αi0 < αij < 1.1*αi0, j=1…10.  The value of αij 

producing the minimal normalized sum was selected as the optimal value for the 

deformation parameter αi for the frame i.  When the normalized sum attained the 

same value for more than one αij, we made a selection by visually inspected the 

matches on the computer screen.  Figure 3.5 illustrates the deformed grids (in red) 

superimposed on top of all four tagged images acquired serially during the systole.   
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Results and Discussion 

This study was initiated to seek a simple, yet comprehensive model with a 

sufficient number of elements to accurately represent the LV wall motion.  With a set 

of basic assumptions and simplifying approximations, we proposed the Gaussian 

transformation in Eq. (3.1) to model the myocardial motion at the mid-ventricle level 

during systole.  We specifically targeted the mid-ventricle for modeling because the 

minimal amount of torsion and twisting experienced by this level during the heart 

beat allowed building the model to account only for the radial motion of the LV.  We 

empirically constructed the model parameters using real tagged MRI data gathered 

from rat hearts.  This implementation involved data processing steps, which were 

described algorithmically in Figs. 3.2 and 3.4.  The initial step involved windowing 

and scaling the images to consistently depict the LV size and shape with the same 

dimensions at the end-diastole.  This approach made the model versatile enough to 

analyze the LV motion in different species or minimize the inter-variation of the 

measurements when the same species is considered.  This feature of the model 

increases its capacity by simulating the LV motion in both humans and animals.  The 

model is therefore plausible to use in clinical or experimental studies aimed at 

measuring cardiac performance to assess the efficacy of a drug treatment [16, 17] or 

to describe the role of exercise in delaying heart failure in diabetic cardiomyopathy, a 

deficiency of heart function caused by diabetes [18].   

Irrespective of whether the data is clinical or experimental, our Gaussian LV 

model requires estimating a single deformation parameter α for quantifying the 
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temporal motion in the systolic phase of the cardiac cycle with sufficient accuracy.  

Requiring only one parameter to reasonably describe the myocardial deformation is 

another important feature of this model.  Table 3.1 presents estimates for α with 

tagged MRI data obtained from the four normal rats used in the current study.  The 

values are also plotted against the frame numbers in Fig. 3.7.  In light of the data 

presented in the figure, α increases with time in a nonlinear fashion to accommodate 

the shrinkage of the LV size during the systolic contraction.  These α values at 

different time points establishes a normative database which can be used as a 

reference for the comparison of results from tagged MRI experiments preformed on 

rats with abnormal cardiac conditions.  In order to demonstrate this point, we scanned 

a rat with a diabetic history of four weeks duration and estimated an α for each 

systolic frame of the acquired data.  As illustrated in Fig. 3.7, the values of α for the 

diabetic rat were considerably different from those of the normal rats.  This difference 

is directly related to the variations in myocardial contraction between the two groups, 

which is attributed to the diabetic cardiomyopathy [15, 18-20].  In diabetic hearts, the 

myocardium loses its ability to contract efficiently due to fibrotic tissue depositions in 

the LV wall.  The measurements of the deformation parameter α in our model can 

potentially be used to sensitively detect structural and functional changes in 

myocardial tissue early on or follow the progression of a disease longitudinally.  In 

this regard, this parameter may offer a new biomarker not only in experimental 

studies but also in clinical applications. 
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Our model is also open to other clinical relevance.  For example, strain 

calculation and its relation to the parameter α is a good area for future exploration in 

cardiac imaging research.  Such a relation could, in principle, indicate a certain 

systolic dysfunction associated with certain diseases or abnormalities, such as 

diabetes as demonstrated above.  Similarly, another useful parameter well accepted 

by clinicians is the myocardial strain rate.  By calculating the differences in strains 

exhibited by the LV tissues from one systolic phase to another, more insights can be 

gained regarding myocardial behavior and its time dependence.  Thus, investigating 

these and other potential merits of the Gaussian motion model of the LV are left for 

future work. 

From another aspect, knowledge of the α values in Table 1 plays a role in 

applications where projecting the LV motion forward in time is required.  By time-

interpolating the α values, one can reconstruct simulated pseudo images 

corresponding to a specific time point chosen within the systolic phase of the cardiac 

cycle.  These computational processes can be carried out offline by applying the 

transformation T in Eq. (1) to the canvas of the end-diastole image frame i=1 with the 

desired α value.  Sample results from such computations are shown in Fig. 3.6, where 

the simulated pseudo images are presented with their experimental real time 

counterparts.   

When reverse projection of a systolic frame in time is desired, the α values in 

Table 1 can be valuable in undoing the forward myocardial motion in systole.  Briefly 

stated, this can be achieved by the inverse of the transformation T in Eq. (3.1).  T-1 is 
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mathematically equivalent to setting up a time-reversal operator.  Applying T-1 on the 

image frame Ii after substituting by αi produces a simulated pseudo image that closely 

resembles to the end-diastolic image I1.  The ability to invert the motion in a 

mathematically well-defined fashion has important implications in reducing the errors 

made in quantifying the regional myocardial motion, especially when the 

displacements are large.  The time-reversal operator T-1 and its capabilities are the 

subject of the accompanying paper (Part II) and its merits are further discussed in 

detail therein with examples. 

Despite its ability to describe myocardial forward motion, our model suffers from 

two main limitations.  The first limitation is that the model treats the entire 

myocardium as though it were contracting homogeneously.  While such treatment 

greatly simplifies the problem, it completely ignores the heterogeneous nature of 

myocardial contractility.  Evidently, contractility varies with the position of the 

myocardium such that tissues attached to the chest wall, for example, exhibit 

deformation profiles that differ from those of the septum.  This variation in 

deformation is due to the fact that, depending on the location, some tissues have 

constraints that limit their motion while others do not.  Accommodating this behavior 

of regional dependencies requires more complicated models for better description of 

the myocardial motion.  

Another limitation of the model is its inability to handle twisting motion that takes 

place in the basal and apical levels.  Thus, the model is limited to work at the mid-

ventricle level where twist is minimal. Nonetheless, adding a twisting ability is 
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plausible and computationally possible by having position-dependent angles to 

account for rotation in the transform operator in Eq. (3.1). Such improvement may 

help the model describe myocardial motion at various levels of the LV in short axis 

views. 

Although a typical cardiac cycle is composed of both systolic and diastolic 

phases, we chose to focus the model on systolic motion only. This approach was 

chosen to simplify the problem, knowing that we could easily extrapolate the analysis 

to include diastolic motion if desired.  

A quick literature search reveals numerous approaches to modeling LV motion 

[8].  Examples include techniques based on finite elements [9], finite differences [21], 

B-spline methods [22] and prolate spheroidal basis functions [23]. Such techniques, 

along with others [8], have attained good results in describing the cardiac wall motion 

and computing useful clinical data like displacement and strain profiles.  

Nevertheless, to accurately describe the LV wall motion, these models require large 

numbers of parameters and intense numerical computations.  The need for a simple, 

yet reliable model has therefore been met by the current implementation. 

In summary, we presented a simple Gaussian model with a single parameter to 

describe the systolic LV motion.  The model utilized a set of assumptions to simplify 

an otherwise complicated myocardial motion profile.  Simplifications included 

introduction of a unique concept - an elastic image canvas with rubber sheet 

properties - upon which perturbations were performed digitally.  The idea of spatially 

perturbing the canvas with a well was borrowed from other physical sciences and 
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accommodated to fit our requirements in modeling the changes in the shape and size 

of the LV wall.  Our model consists of a simple spatial transformation operator that 

deforms the canvas in a Gaussian fashion.  We showed that the radial time-forward 

motion of the LV at the mid ventricle level can reasonably be represented by this 

model and the model parameter is sensitive to the cardiac condition.  In spite of the 

model’s simplicity, the major potential of the model can be revealed when it is used 

in time-reversal mode while measuring cardiac function and output as demonstrated 

in the second paper (Part II).   
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Figure Captions 

Figure 3.1.  A uniform image I(x,y) in Fig. 1-a is labeled with regular grid tags.  The 

operation T[I(x,y)] yields the deformed image in Fig. 1-b, where the shape and size of 

the tag cells depict regional variations in motion.  Similarly, a donut-shaped disk in 

Fig. 1-c is used as a simple model of the LV.  Fig. 1–d shows the resulting deformed 

disk.  

 

Figure 3.2.   Algorithm describing the segmentation of the LV from a larger tagged 

image. 

 

Figure 3.3.   Segmented serial images (1-5) of the LV resized to 256x256 pixels 

during systole. 

 

Figure 3.4.  An algorithm to estimate an optimal value for the parameter α in the 

Gaussian transformation T using an image acquired at a systolic phase.  

 

Figure 3.5.  Real time systolic images (2-5) of the LV from Fig. 3.  Superimposed is a 

grid (red) that was deformed offline using the Gaussian transformation T applied on 

the image 1 according to the algorithm in Figure 4.  The grid (red) mimics the 

deformed tag lines in the underlying myocardial tissue.  The estimated optimal α 

values are respectively 12, 16, 19 and 20.  
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Figure 3.6. Real and simulated pseudo images in systole.  The simulated images were 

obtained offline using the operation T on the real tagged image 1 with the optimal α 

values 12, 16, 19 and 20, as in Fig. 5.  

 

Figure 3.7. The deformation parameter α is plotted against the systolic image 

numbers, which are directly proportional to the acquisition time in the systolic phase.  

The curves in the graph show the results from the normal (n=4) and diabetic (n=1) 

rats. 
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Figure 3.1 
 

A uniform image I(x,y) in Fig. 1-a is labeled with regular grid tags.  The operation 
T[I(x,y)] yields the deformed image in Fig. 1-b, where the shape and size of the tag 
cells depict regional variations in motion.  Similarly, a donut-shaped disk in Fig. 1-c 
is used as a simple model of the LV.  Fig. 1–d shows the resulting deformed disk.  
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Figure 3.2 

 
Algorithm describing the segmentation of the LV from a larger tagged image. 
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Figure 3.3 

Segmented serial images (1-5) of the LV resized to 256x256 pixels during systole.   
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Figure 3.4 

 
An algorithm to estimate an optimal value for the parameter α in the Gaussian 
transformation T using an image acquired at a systolic phase.  
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Figure 3.5 

Real time systolic images (2-5) of the LV from Fig. 3.  Superimposed is a grid (red) 
that was deformed offline using the Gaussian transformation T applied on the image 
1 according to the algorithm in Figure 4.  The grid (red) mimics the deformed tag 
lines in the underlying myocardial tissue.  The estimated optimal α values are 
respectively 12, 16, 19 and 20.  
 

 
 

 

 
Figure 3.6 

  
 
Real and simulated pseudo images in systole.  The simulated images were obtained 
offline using the operation T on the real tagged image 1 with the optimal α values 12, 
16, 19 and 20, as in Fig. 5.  
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Figure 3.7 

 
The deformation parameter α is plotted against the systolic image numbers, which are 
directly proportional to the acquisition time in the systolic phase.  The curves in the 
graph show the results from the normal (n=4) and diabetic (n=1) rats. 
 
 
 

0

5

10

15

20

25

0 1 2 3 4 5 6

Frame numbers for systolic image

Radial 
Deformation 

(α)
Control (n=4)
Diabetic (n=1)

 
 
 
 
 
 

 
 

 



 53

 

 

 

 

 

 

 

 

 

 

Table 3.1 

The values (mean ± std) for the parameter α estimated using the data acquired from 
the control rats (n=4). Because the MR sequence applies tagging gradients in the 
image frame i=1(end diastole), the first noticeable deformation in tag lines occur s in 
frame i=2. 
 

Frame α (in pixels) 
2 12.0 ± 0.8 
3 16.0 ± 0.6 
4 19.0 ± 0.4 
5 20.0 ± 0.8 
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CHAPTER 4: 
Part II  

Time-reversal of radial motion to characterize regional deformation of the left 
ventricle using tagged MRI  

 
This chapter consists of a manuscript submitted for peer review prior to publication.  

It discusses a novel method to estimate motion of the left ventricle during systole. 
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Chapter Summary 

Background:  Myocardial motion is an important observable for assessment of 

heart condition.  In Part I, we introduced a novel model to describe left ventricle (LV) 

wall motion in tagged magnetic resonance imaging (MRI) data using a Gaussian 

based transformation.  In the current paper, we demonstrate the utility of the model in 

enhancing myocardial motion estimation through utilization of a time-reversal 

approach by inverting the Gaussian transformation. 

Methods:  Theoretical analysis leading to the construct of the time-reversal 

approach is discussed.  A quantitative example is given to show the methodology of 

utilization of time-reversal approach using tagged MRI data.  The utility of the 

approach is further demonstrated by incorporating it with harmonic phase (HARP) 

techniques.   

Results:  The time-reversal approach estimated the bulk portion of the motion of 

the myocardium from a subject population.  The remaining residual portion of the 

motion was obtained from inter-variation calculations using HARP or similar 

techniques.   

Conclusion: Utilizing a time-reversal approach enhances computation of the 

myocardial tissue motion.  It can be utilized in combination with standard motion 

estimation techniques to yield improved estimates for the LV wall motion. 
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 Introduction 

In Part I, we introduced a simple forward model of the LV wall motion by 

utilizing a spatial operator based on a Gaussian transformation.  This model mimics 

the motion of the myocardial tissue at the mid-ventricular level.  In the model, a 

deformation parameter α was introduced to represent radial contractility of the LV, 

and accounts for the time variation of its shape and size in the systolic phase of the 

cardiac cycle.  To standardize the cardiac motion with the model in a species-

independent fashion, an offline image processing algorithm was designed to segment 

out the LV from the whole body tagged MRI data prior to the analysis of data.  The 

extracted images with this preprocessing step included the LV alone and were 

expressed in pixel units.  Using experimental data, the Gaussian transformation was 

characterized empirically to describe the forward systolic motion of the LV in normal 

rats.  Fitting the LV model to the data obtained from a diabetic rat however yielded 

considerably different values for the parameter α.  This observed difference 

demonstrated the model’s capability and sensitivity to detect myocardial contractile 

deficiencies associated with a disease or a pathological condition that lead to a poor 

cardiac performance.   

In this paper, another important utility of the Gaussian LV model is introduced in 

measuring the regional myocardial motion and quantifying the resulting deformation 

in the LV wall.  Deformation is related to changes in relative distances between the 

myocardial tissues as they move during the cardiac cycle.  Quantification of the 

deformation involves accurately measuring the motion and relative displacements 
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experienced by the myocardial tissue.  To improve the performance of the myocardial 

motion estimation, this paper introduces a time-reversal concept where the forward 

LV model is applied on the real data, but in a reverse sense in time.  The next section 

gives background information that led to the construction of the time-reversal 

operator, and describes details of the processing involved with an example.  In 

Section 3, we demonstrate improvements in estimation of myocardial tissue 

displacement by using a motion tracking algorithm based-on harmonic phase (HARP) 

analysis [4, 6, 7].  We conclude the paper with a concise discussion and a recap in 

Section 4.  

 

Time-reversal operation 

Forward LV motion Model 

The forward LV motion model at the mid-ventricle and its characterization were 

described in detail in Part I.  The model is based on a Gaussian function encapsulated 

in an affine-like transformation operator, T, with diagonal elements that are identical 

to 
2

22 )(

1 α
yx

e
+−

+ .  The parameters x and y in this expression represent spatial 

coordinates, and α is a time-dependent parameter accounting for the temporal 

changes in the LV size in the short-axis view at the mid-ventricle level.  The real 

tagged MRI data were preprocessed by the algorithm developed in Part I, to yield the 

images Ii for i=1,2…L depicting the LV motion sequentially from end-diastole i=1 to 

end-systole i=L in equally spaced time intervals.  The function of the operator T is to 
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deform the image canvas I1 by an amount defined by α.  Figure 4.1 shows the 

application of this operator using a digitally simulated data set.  A uniform image 

D1(x,y) labeled with regularly spaced grid tags in Fig. 4.1-a is transformed to a 

deformed image, D2(x,y) = T[D1(x,y)], in Fig. 4.1-b.  The operation yields the 

deformed image in Fig. 4.1-b, where the shape and size of the tag cells depict regional 

motion.  If a donut-shaped disk in Fig. 4.1-c is used to mimic the LV wall, Fig. 4.1–d 

shows the resulting radially contracted disk.   

The characterization of the forward LV model from real data requires finding an 

αi value such that the computationally-deformed end-diastole image I1 of the LV 

matches the image Ii in the sequence. Optimal αi values obtained with this procedure 

for normal rat hearts are listed in Table 4.1.   

Motivation and application of the time-reversal operation 

During a cardiac cycle, the LV wall experiences relatively large motion as seen in 

Figure 4.2, which shows the image frames acquired sequentially within the systolic 

phase of a cardiac cycle.  Quantifying the regional tissue deformation and assessing 

the local myocardial function and viability require estimates of the myocardial tissue 

displacements.  The displacement measurement becomes a challenging task to 

perform especially when the motion between the two images in the sequence is large.  

Also, the statistical errors made during the estimation process increase with the 

magnitude of the motion.  Although, sophisticated signal processing approaches may 

improve the estimation performance by minimizing such errors, these methods also 

demand significantly increased computation time, as in the case of motion tracking 
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algorithms employing window-based search techniques.  In addition, signal 

decorrelation between the image frames in the presence of large deformations may 

also cause more difficulties in estimation.  A severe decorrelation between windowed 

signals subsequently contributes to a poor outcome for the performance of 

displacement estimation.  In our previous work in elastography imaging, we 

introduced global and adaptive regional signal stretching methods to compensate for 

these degrading effects and to yield better performance in displacement estimation 

under large tissue motion [4, 6, 7, 24-26].  The stretching procedures employed 

earlier were, however, directionally linear and uniform.  In ultrasonic elastography, 

we globally decompressed the post-compression acoustic wave field composed of the 

backscattered signal received by each element of the array transducer by the same 

stretch value equivalent to the applied strain on the sample.  In the adaptive stretching 

approach, the post-compression signals localized to a region within the ultrasonic 

wave field were expanded or compressed to increase the signal similarity with the 

pre-compression signals.  Here, we adapt similar strategies and introduce a time-

reversal operation to improve performance in tracking the LV wall motion from 

tagged MRI data.  This adaptation utilizes the same Gaussian function defined in Part 

I for the systolic forward LV motion.  In the current application, however, the 

Gaussian function is utilized to stretch the cardiac signals back in a radial fashion to 

the initiation of systole.  This effect is demonstrated in Figure 4.3, where a deformed 

grid is restored to its pre-deformed state (Fig. 4.3a), and a deformed tagged donut is 

brought back to its original undeformed shape (Fig. 4.3b) by means of the time-
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reversal operation.  In this application, the forward model is essentially operated in 

reverse. Hence, in real MRI data, the forward model determined for the image frame i 

on the average is operated in reverse, but on an individual image from a given set of 

sequential images.  The result is a time-reversed pseudo image where the LV wall 

shape and size are expected to be close to those seen in the image in frame i=1, 

acquired at the beginning of the systole in the image set.  Thus, in cause and event 

terminology, the time-reversal operation attempts to reverse a displacement event, by 

inverting its cause, namely the systolic contraction.  Mathematically, the time reversal 

of motion can be obtained by the operator T-1, i.e., the matrix-inverse of the forward 

motion operator T.  

The true displacement d of myocardial tissue at a spatial location in the LV wall 

can be decomposed into two components: 

    d = Δ + δ   .                                                   (4.1) 

Here Δ denotes the bulk motion predicted by the time-reversal model and its elements 

along the x and y directions are given by 
2
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 respectively (from 

Eq. 3.1 in Part I).  The term δ is the residual displacement that is not accounted for by 

the time-reversal operation and remains to be estimated using algorithms applied 

between the image I1 and the time-reversed image. However, because the residual 

displacement is smaller in magnitude as compared to the true displacement, the 

estimation results in small estimates with smaller errors.    

 To describe the above procedure in a compact form, we devise the following 

algorithm: 
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1. Obtain time-reversed image by applying T-1 to the desired image frame Ii 

using αi. 

2. Calculate the amount of bulk motion Δ between the time-reversed image 

TR=T-1[Ii] and image frame Ii using simple matrix multiplication.  

3. Estimate the amount of residual motion δ between the time-reversed 

image TR=T-1[Ii] and the first systolic frame I1 using a method of 

preference for the motion estimation, e.g., Harmonic Phase Analysis 

(HARP) [4, 6, 7, 27].  

4. Add δ to Δ to yield a value for the estimate of the true total displacement 

d. 

 Results 

Figure 4.4 illustrates the time-reversal operation applied to a real MRI data set – two 

image frames I1 (Fig. 4.4-a ) and I2 (Fig. 4.4-b ) are taken from a cardiac image 

sequence obtained from a normal rat heart.  By applying the operation TR=T-

1[I2(x,y)], the time-reversed image of the frame i=2 is obtained and displayed as a 

third image (Fig. 4.4-c ) in the figure. Comparing the intensity features between the 

first and third images indicates that the LV wall size and dimensions on the time-

reversed image TR are nearly restored to those seen on the image I1, and the tag lines 

are straightened.  Figure 4.5 depicts the images in Fig. 4.4 side-by-side and illustrates 

a material coordinate in the LV wall moves with real forward and time-reversed 

motions.  The figure also depicts vertical components of the displacement described 

by Eq. 4.1. The displacement of the tissue at the selected coordinates appears to be 
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much smaller in the (I1, TR) pair than it is in the (I1, I2) pair making the former pair a 

simpler choice for motion calculations in terms of the noise considerations.  Once the 

residual motion profile between the image pair (I1,TR) is estimated, the result is 

added to the bulk motion quantity obtained from the time-reversal to reach the final 

estimate of the motion between the image pair (I1,I2).  Hence, the bulk motion 

quantity Δ which is resembles the average from the subject population, is added to the 

residual quantity δ that represents sample-dependent inter-variation, to yield a final 

motion estimate. 

Potential application of the time-reversal operation to aid the analysis of cardiac 

motion using HARP 

In this section, we further demonstrate how reversing an event (displacement) by 

inverting its cause (systolic contraction) can play a beneficial role in improving the 

performance of the motion estimation using HARP analysis.   Below, we give a brief 

description of HARP and its methodology in computing myocardial motion from the 

tagged MRI data.  For a thorough discussion of HARP, the reader is invited to see 

Refs. [4, 6, 7, 27]. 

HARP makes use of the information embedded in the Fourier spectrum of the 

tagged MRI data for the purposes of quantifying the cardiac motion.  The tag patterns 

give rise to spectral peaks, also known as harmonic peaks, in the spectrum.  The peak 

corresponding to the fundamental frequency defined by the separation of the tagged 

lines is extracted by means of a band-pass filter.  Two filters were designed to select 

the vertical or horizontal tag line.  Essentially, the inverse Hilbert transform of the 
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filtered spectrum has two signal parts, namely magnitude H and phase φ.   The 

resulting complex signal H can be written as ϕjHe=H .  While the magnitude is not 

of importance in motion quantification, the phase is considered to be the basis of the 

HARP analysis.  It has been shown that phase information is directly linked to the 

material coordinates of the myocardial tissue, and therefore used for tracking and 

quantifying its Lagrangian motion.   

The HARP analysis requires two filtered complex images H1 and H2 from which 

the displacement to be estimated from the phase difference in between using the 

formula 

      ( ) ( ))(
21

*
1212

12HH ϕϕϕϕ −∠=∠=− jeHH .   (4.2) 

The computed phase difference )( 12 ϕϕ −  however, wraps within the interval ][ π,π− , 

especially in the presence of large motion between the two image frames.  This effect 

is demonstrated in Figure 4.6, where a vertical motion map is produced from image 

sets I1 and I2 in Fig. 4.4 using Eq. 4.2.   The large motion between the frames 

produces phase wraps, making it inadequate to accurately describe the motion.  While 

phase unwrapping offers a remedy [27, 28] to this issue, its complex and 

computationally time consuming implementation is often a drawback.  However, a 

simplified approach with a quick outcome can be provided by the time-reversal 

operation.  Incorporation of the time-reversal operation prior to the HARP analysis  

yields more reliable results by avoiding sources that lead to phase wrapping.   Since 

the Δ component of a large motion d between two images is primarily responsible for 

the resulting phase wraps, its removal with the time-reversal operation leaves the 
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smaller magnitude component δ behind to be estimated using the HARP analysis.  

With this small δ, HARP analysis applied between the images I1 and TR is expected 

to produce a motion map free of phase wraps.  Figure 4.7 provides an example of 

such cooperation using both time-reversal and HARP methods, and shows that the 

phase wrapping is no longer an issue in the vertical motion map.  

Conclusion 

This paper presented a method to enhance the estimation performance of the 

regional myocardial motion measured from sequentially-acquired tagged MRI data.  

The method combines the Gaussian model of the real forward motion model of the 

LV wall, introduced in Part I, with the time-reversal operation to account for the large 

displacements experienced by the myocardial tissue.  The remaining smaller 

deviations from the real motion can be estimated by an estimation technique of 

preference selected by the user.  Following such a two-step approach reduces the 

computation time and errors made in the displacement measurements.  If HARP is 

utilized for the analysis of the motion, the simple prior time-reversal operation 

applied on the data reduces the phase wrapping greatly and increases the accuracy of 

the displacement measurements while reducing the computational time.  Motion 

estimates with reduced errors allows better interpretation of the results and enable 

computation of accurate strain fields to characterize the regional deformation aimed 

at evaluating the function, viability and pathological state of the underlying 

myocardial tissue.   
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Table 4.1 

The values (mean ± std) for the parameter α estimated using the data acquired from 
the control rats (n=4). Because the MR sequence applies tagging gradients in the 
image frame i=1(end diastole), the first noticeable deformation in tag lines occur s in 
frame i=2. 
 

Frame α (pixels) 
2 12.0 ± 0.8 
3 16.0 ± 0.6 
4 19.0 ± 0.4 
5 20.0 ± 0.8 
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Figure Captions 

Figure 4.1.  A uniform image I(x,y) in Fig. 1-a is labeled with regular grid tags.  The 

operation T[I(x,y)] yields the deformed image in Fig. 1-b, where the shape and size of 

the tag cells depict regional variations in motion.  Similarly, a donut-shaped disk in 

Fig. 1-c is used as a simple model of the LV.  Fig. 1–d shows the resulting deformed 

disk.  

 

Figure 4.2.  Systolic part of the cardiac cycle exhibits relatively large displacements 

due to large magnitudes of the myocardial motion. 

 

Figure 4.3.  Applying the operation T -1[T[I(x,y)]]  on the deformed grid brings it back 

to an undeformed state (Fig. 1-a). 

Similarly, a deformed donut shaped disk is brought back to an undeformed state 

through application of time reversal (Fig. 1-b). 

 

Figure 4.4.  Cardiac systolic motion changes image I1 (a) to I2 (b) causing large wall 

motion.  Applying time-reversal to I2 yields a time reversed image (c ) with LV wall 

tissues almost restored to its initial positions in I1. 
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Figure 4.5.  Utilizing time reversal, the bulk motion Δ  between I2 and TR is 

computed using simple matrix multiplication. The residual motion δ between TR and 

I1 is estimated by a method of preference, such as HARP. 

 

Figure 4.6.  The large magnitude of vertical motion between the two image frames 

gives rise to phase wraps in the HARP-based motion map (black arrows point at 

phase-wrapped regions). A mask is superimposed on the image frames to indicate the 

ROI. 

 

Figure 4.7.  Utilizing time-reversal computes motion between TR and I2. Thus 

magnitude of motion is considerably reduced between TR and I1 thereby yielding a 

phase-wrap free HARP motion map. A mask is superimposed on the image frames to 

indicate the ROI. 
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Figure 4.1 

A uniform image I(x,y) in Fig. 1-a is labeled with regular grid tags.  The operation 
T[I(x,y)] yields the deformed image in Fig. 1-b, where the shape and size of the tag 
cells depict regional variations in motion.  Similarly, a donut-shaped disk in Fig. 1-c 
is used as a simple model of the LV.  Fig. 1–d shows the resulting deformed disk.  
 
 

 

 

 

 

Figure 4.2 

Systolic part of the cardiac cycle exhibits relatively large displacements due to large 
magnitudes of the myocardial motion. 
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Figure 4.3 
 
Applying the operation T -1[T[I(x,y)]]  on the deformed grid brings it back to an 
undeformed state (Fig. 1-a). 
Similarly, a deformed donut shaped disk is brought back to an undeformed state 
through application of time reversal (Fig. 1-b). 
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Figure 4.4 

Cardiac systolic motion changes image I1 (a) to I2 (b) causing large wall motion.  
Applying time-reversal to I2 yields a time reversed image (c ) with LV wall tissues 
almost restored to its initial positions in I1. 
 

 

 

 

 

 

Figure 4.5 
Utilizing time reversal, the bulk motion Δ  between I2 and TR is computed using 
simple matrix multiplication. The residual motion δ between TR and I1 is estimated 
by a method of preference, such as HARP. 
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Figure 4.6 
The large magnitude of vertical motion between the two image frames gives rise to 
phase wraps in the HARP-based motion map (black arrows point at phase-wrapped 
regions). A mask is superimposed on the image frames to indicate the ROI. 
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Figure 4.7 

Utilizing time-reversal computes motion between TR and I2. Thus magnitude of 
motion is considerably reduced between TR and I1 thereby yielding a phase-wrap free 
HARP motion map. A mask is superimposed on the image frames to indicate the 
ROI. 
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CHAPTER 5:  SPIN-SPIN RELAXATION WITH RESPECT TO CARDIAC 

PHASE 

Introduction 

 Spin-spin relaxation is the time required for the transverse magnetization Mxy 

to decrease by a factor of e, or loose 63% of its maximum value Mxy0, following a 90° 

RF pulse.  This relaxation time which is denoted by T2, is mainly due to loss of 

coherence between individual spins as a result of field inhomogeneities internal to the 

spin system.  Such process does not involve loss of energy from the spin system; 

rather energy is exchanged between individual spins within the system allowing for 

dephasing and thus decay of Mxy.  Transverse magnetization decay is governed by the 

transverse part of the Bloch equation in the rotating reference frame: 

(5.1)                                                                 
2T

M
dt

dM xyxy −
=  

 

The solution for Eq. 1 is an exponential decay with T2 as the time constant (Figure  

5.1) 

(5.2)                                                              2
0

T
t

xyxy eMM
−

⋅=  
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 Biological tissues are characterized by distinct T2 values.  In general, T2 is 

prolonged for diseased tissues due to pathological processes of increasing water 

content associated with disease progression.  This feature allowed measurement of T2 

to play a key factor in identifying diseased regions [29-32].  .Measurement of T2 is 

typically performed with the widely used MRI spin-echo sequence [1] which is 

mathematically described as: 

  

(5.3)                                                              )( 2T
TE

etAS
−

⋅=  

 

where S denotes the signal intensity, A(t) is a time dependent sequence parameter, and 

TE is the echo time; a user controlled parameter to set the time between application of 

RF pulse and acquiring signal (Figure 5.2). 

 

 

Figure 5.1: 
Mxy decays 
exponentially. 
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The typical spin-echo method of T2 calculation is based on acquiring two images 

with different echo times (TE1 and TE2), yielding different signal intensities (S1 and 

S2 respectively) [1]. Thus, T2 is calculated by: 

(5.4)                                       
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Table 5.1 lists measured T2 values for various biological tissues [33].   

 

Figure 5.2: Spin-echo sequence with a 90 degree RF pulse. The echo time 

(TE) is the time between application of RF pulse and acquiring signal. 
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Table 5.1 
T2 relaxation times in human subjects  
Tissue   T2 (ms)  
     
    1.5 T   4 T 
     
Gray matter 77-90  63
White matter 62-80  50
Muscle  31  26
Fat  47  38
Bone marrow 47  42
          

  

 Unlike most tissues which are imaged in a motionless state, live myocardial 

tissues are in continuous motion due to contraction and relaxation of a beating heart.  

To avoid motion artifacts caused by this beating activity, proper utilization of 

electrocardiogram (ECG) gating is a typical practice in cardiac MRI studies where 

data acquisition is set in accordance to the heart rhythm.  In addition, usage of ECG 

gating aids in selection of a specific cardiac phase such as end systole, where the 

resulting image represents a snapshot of the heart at the specified phase.  

Interestingly, it was reported that MRI signals of the myocardial during systole 

(contraction) are significantly higher than signals obtained during diastole 

(relaxation) [34].  This result which implies similar variation between T2 values of 

systolic and diastolic phases, acted as a motivator to investigate T2 variations with 

respect to cardiac phase.  Consequently, an innovative method was required to enable 

selection of desired cardiac phases in conjunction with measurement of T2.  Hence, 

the aim of this study is to develop a novel method to measure myocardial spin-spin 
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relaxation (T2) at various cardiac phases.  Development of such method would aid in 

MRI research of a beating heart in addition to clinical applications of cardiac exams.   

 The rest of the chapter is organized as follows.  The method of phase-selective 

T2 measurement is discussed in the next section.  Section 3 describes the MRI 

experimental procedures used in the study, as well as offline image analyses.  Display 

of the results and discussion of the outcome are presented in section 4, along with a 

summary and a recap of the study.  

 

Phase-selective T2 measurement 

 This section presents an innovative method to measure the spin-spin 

relaxation time (T2) for a particular cardiac phase.  The method has two main parts, 

experimental and computational.  The experimental part deals with imaging aspects 

and data acquisition, while the computational part deals with offline calculations to 

obtain numerical values for the relaxation time T2.  The experimental procedure starts 

with identifying the ECG temporal location of the desired phase with respect to the R-

peak in the cardiac cycle.  For example, if the desired phase is end systole the 

temporal location is ~ 125 ms for a typical R-R interval of 250 ms for a rat’s heart 

(Figure 5.3).  Hence, data must be acquired at the specific temporal location of 125 

ms to yield a snapshot image at the desired phase of end systole.  From Eq. 5.3, it is 

easy to see that signal intensity of the resulting image is a function of TE.  Thus, 

acquiring a set of images at specified cardiac phase with different TE values requires 

separate experimental runs.  Consequently, each run yields an equation similar to Eq. 
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5.3.  Nevertheless, to target a specific cardiac phase it follows that consistent data 

acquisition is to be performed by accordingly adjusting the delay time (TD) of the 

ECG gating, and the echo time (TE) of the spin-echo sequence for each experimental 

run (Figure 5.4).  For example, to target the end systolic phase (temporal location 125 

ms), a four-run set of data requires TD=115, 105, 95, and 85 ms and TE=10, 20, 30 

and 40 ms respectively in each run.  Thus, in each run TD+TE yield the temporal 

location of the desired phase.  Therefore, a four-run set of data yields four nonlinear 

equations to be solved numerically: 

(5.5)                       4..1           2 =⋅=
−

ieAS T
TE

i

i

. 

 

  

 

 

 

Figure 5.3: 
The figure 

shows 
temporal 

location of the 
end systolic 
phase with 

respect to the 
cardiac cycle. 
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 Exploiting the T2 exponential decay behavior, the computational part of the 

method utilizes a numerical scheme to solve sets of nonlinear four-equation systems 

[35, 36].  The scheme is mainly composed of a curve-fitting routine that implements 

least squares to find solutions for systems of equations.  Thus, the routine finds the 

coefficient vector cr  that best fits the equation: 
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Figure 5.4: 
Selecting the 

desired cardiac 
phase requires 
TD+TE=const. 
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The relaxation time T2 is equal to 
2

1
c

 , where 02 <c .  Implementing the routine on a 

pixel by pixel basis yields a T2 map of the entire image, where each pixel carries a T2 

value.  Figures 5.5 and 5.6 show T2 maps obtained computationally from data 

acquired experimentally at end systole and end diastole phases respectively.  

 

 Methods and procedures 

MRI Acquisition 

Cardiac MRI data were collected at the mid-ventricle level from two normal Sprague-

Dawley rats.  The rats were anesthetized using 1.5 % isoflourane in a mixture of air 

and oxygen (60% and 40% respectively) and scanned using a 9.4 T horizontal bore 

scanner (Varian Inc., Palo Alto, CA) and 60 mm radio frequency volume coil.  ECG 

gated cine-spin echo images were captured from the short axis view of the heart.  For 

each rat , two sets of data were acquired; one at end systole and one at end diastole.  

Each data set consisted of four scan-runs where TD and the TE were varied for each 

run to target the desired cardiac phase as described above.  Depending on the R-R 

interval period, TD and TE were slightly different for each animal.  To target end 

systole, nominal values were TD=115, 105, 95, and 85 ms, and TE = 10, 20, 30, and 

40 ms respectively.   Similarly, to target end diastole, nominal values used where 

TD=230, 220, 210, and 200 ms and TE = 10, 20, 30, and 40 ms respectively.  The 

following settings were used for image acquisition: repetition time (TR) = one cardiac 

cycle, number of averages = 1, field of view = 60 x 60 mm, image matrix = 256 x 
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256, slice thickness = 2 mm.  All experimental procedures were approved by the 

University of Kansas Medical Center Institutional Animal Care and Use Committee.  

 

Processing of MRI data 

Raw MRI data was processed offline to obtain T2 maps of the LV region.  All data 

sets from all rats were subject to the same processing operations.  The process started 

by loading the four-run data set corresponding to a specific cardiac phase (end systole 

or end diastole) which were previously saved in fdf format to preserve pixel intensity 

values.  Using the fdf images as input, a Matlab code with a least squares routine was 

implemented to fit a mono-exponential decay on a pixel by pixel basis yielding a T2 

map of the entire axial slice covering the cross section of the animal.  Next, a squared 

region containing the left ventricle (LV) was extracted from the T2 map and 

interpolated to 512 x 512 pixel-size yielding a T2 map consisting of the LV only.  To 

select an ROI, unwanted regions such as the chamber and tissues surrounding the 

myocardium were masked out in the LV T2 map.  Finally, an average T2 value was 

calculated for the selected ROI.   

 

 Results and discussion 

 In this study, the use of a phase selective data acquisition allowed for T2 

measurement at specified cardiac phases, namely end systole and end diastole.  Figure 

5.5 shows a T2 map produced at end systole, along with associated MRI images 

acquired with different TE values.  Similarly, Figure 5.6 shows T2 map along with 
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associated MRI images with different TE values captured at end diastole.  

Interestingly, calculating average T2 for the entire myocardial tissue yielded 

significantly higher T2 values for end systole than end diastole as listed in Table 2.  

This considerable difference in spin-spin relaxation is in accordance with the higher 

signal intensities observed at end systole as seen in Figure  5.7, where signal intensity 

is plotted against TE for both studied cardiac phases.  Profiles of the curves in the 

figure agree with the theoretical exponential decay behavior of signal as a function of 

TE as described in Eq. 5.3.  Moreover, fading of signal with higher TE is noticeable 

in Figs. 5.5 and 5.6, where some myocardial region exhibit dark pixel intensities.  

 The numerical scheme used to calculate T2 exploited the exponential decay 

behavior of signal with respect to TE.  Such development helped in convergence of 

the curve-fitting routine, and hence in attainment numeric values for T2.  Despite the 

small number of rats used in the study (n = 2), the statistical significance (P < 0.02) 

exhibited by the computed T2 values indicate the precision if the numerical scheme 

and its consistency with the experimental part.  This successful integration between 

the constituents, namely experimental and numerical, led to the success of the phase-

selective T2 measurement method as a whole.  

 In summary, this study investigated the relation of T2 with respect to cardiac 

phase for a beating heart.  For quantitative analysis, a novel method was developed 

that allowed for T2 measurement for a specific cardiac phase.  The method consisted 

of an experimental procedure to target a user-selected cardiac phase, as well as a 

numerical scheme to produce a T2 map of the entire myocardium.  Although the 
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observed phases in this study were end systole and end diastole, the method is 

applicable for any phase in the cardiac cycle.  To the best of our knowledge, this 

study is the first to present a method that allows for in vivo myocardial T2 

measurement at a user-selected phase.  The findings were in agreement with what was 

reported in the literature [34], thereby supporting the use of our method for in vivo 

cardiac investigations for phases of interest.  Successful implementation of such 

method would promote its utility in cardiac MRI research as well as in clinical 

environments.  

 

 

 

 

 

 

Table 5.2: Spin-spin relaxation for end systole and end diastole phases (mean ± std). 

Statistical significance was determined by P<0.02.  

 T2 (ms) 

 End Systole 15.24 ± 0.92 

End Diastole 11.04 ± 0.04 
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Figure 5.5: 
Output of the phase selective method applied to end systole. 

Figure 5.6: 
Output of the phase selective method applied to end diastole. 
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Figure 5.7: 
Signal intensities fall with TE in an exponential decay. End 

systole exhibits higher signal than end diastole. 
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CHAPTER 6:  IMAGE TRANSFORMATION TECHNIQUES  
 
Introduction 
 
 The left ventricle (LV) goes through various modes of motion in a typical 

cardiac cycle [37-40].  Viewed from the short axis, LV tagged MRI images reveal 

myocardial deformation, elongation, shortening, and twist among other modes 

exhibited by LV wall tissue.  While such motion is essential for pumping sufficient 

amounts of blood, its complexity poses a challenge for analyzing movement of 

myocardial tissue.  Fortunately, image processing tools provide a remedy by de-

synthesize complex motion through introducing a set of transformation operators.  

Hence, motion undergone by the LV disk is easily mimicked using digital 

perturbations that transform pixels to new locations according to defined mapping 

operations.  Thus, the aim of this chapter is to present a set of transformation 

operators that are useful in mapping operations for digital images.   

 

Synthetic data 

 The transformation operators presented in this chapter are applied on synthetic 

data for presentation purposes.  This treatment was chosen to focus attention on 

motion-related effects without needing to account for noise and artifacts which often 

accompany real MRI data.  Thus, the synthetic data used here are composed of a 

donut-shaped figure that resembles the LV disk in the short axis view.  To imitate 

MRI tags, the figure is multiplied by a 2-D grid with user-controlled tag width and 
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separation. Hence, the resulting image reveals a tagged donut that depicts data 

obtained from tagged MRI procedures (Figure 6.1).  

 

 

 

 

 

 

Elongation and shortening 

 Among the simplest image transformations are elongation and shortening 

[41]. Mathematically, these two operations are generated by a diagonal matrix that is 

described as:  

   .
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The parameters yx σσ  and  produce changes in the x and y directions respectively.  

Positive values of either parameter result in elongation in the desired direction, while 

Figure 6.1: 
Digital tagged donut represents LV image 

obtained in the short axis view from tagged 
MRI procedures. 
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negative values result in shortening.  For  0  == yx σσ , it is easy to see that the 

operator is reduced to the identity matrix.  Figure 6.2 shows the effect of elongation 

and shortening on the tagged donut.  

 

 

 

 

 

 

 

 

 

Figure 6.2 
Tagged donut in (a) undergoes elongation of 2.0=xσ in (b), 

2.0=yσ  in (c) and  0.2  == yx σσ  in (d).  The donut undergoes 
shortening of 2.0- =xσ  in (e) and 2.0- =yσ  in (f). 
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Shear 

 Another simple transformation is shear [41].  The shear operator is described 

mathematically by: 

.
1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

y

x

τ
τ

 

The parameters yx ττ  and are responsible for shearing parallel to the x and y axes 

respectively.  When both yx ττ  and  vanish, it is easy to see that the operator reduces 

to the identity matrix.  Figure 6.3 shows effect if the shear operator on the tagged 

donut.  
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Figure 6.3 
Tagged donut in (a) undergoes shear parallel to the x axis of 

5.0=xτ in (b), shear parallel to the y axis of 5.0=yτ in (c) and 
shear parallel to both x and y axes of 5.0== yx ττ  in (d). 
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Rotation and twist 

 Rotation is considered among the basic and important image transformations 

[41]. Mathematically, rotating an image by an angle θ is achieved by applying the 

operator 

.
cossin
sincos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− θθ

θθ
 

Positive values of θ yield counter clockwise rotation, while negative values yield 

clockwise rotation.  Figure 6.4 shows effect of the rotation operator on the tagged 

donut. 

 

 

 

 

 

The general case of rotation is twist, where the angle θ varies with location.  For 

example, consider 

(6.1)                                   nrm ⋅=θ  

Figure 6.4 
Tagged donut is rotated by 45 degrees. 
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where m and n are constants, and r is the distance from the center.  Then, the rotation 

operator is used to apply twist on an image.  Figure 6.5 shows the effect of twist in 

the tagged donut.   

 

 

 

 

 

Translation 

 Another simple image transformation is translation [41].  Despite its 

simplicity, it differs from most operators by two main features.  First, the translation 

operator is a vector, while most operators are square matrices.  Second, the translation 

operator is added to the vector of the pixel to be translated, while most operators act 

through multiplication, not addition.  Mathematically, the translation operator is 

described as 

Figure 6.5 
Tagged donut is twisted using values of 5E-5 and 2 for m and n 

respectively. 
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The terms X and Y control translation along the x and y axes respectively.  Figure 6.6 

shows the effect of the translation operator on the tagged donut.  

 

 

 

 

 

 

 

 

 

Figure 6.6 
Tagged donut in (a) undergoes translation in the x 

direction by -35 (b), in y direction by 35 (c), in both 
directions simultaneously ( -35 in x  and 35 in y ) (d). 
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ROI Tracking 

 The preceding discussion introduced image transformations in which pixels 

are relocated according to defined operations.  The operators act as mapping 

functions where input and output images reveal differences in content position and 

geometry.  The degree of difference depends mainly upon the magnitude and type of 

change set by the operators.  Monitoring these changes is important for quantification 

purposes such as strain and displacement calculations.  Yet, this monitoring activity 

requires ability to track user-selected regions of interest (ROI) throughout the 

duration of motion.  Hence, this section presents a computerized procedure to track 

ROI in sequential image frames.  The procedure is coded into interactive software 

that enables the user to select an ROI and track it through all image frames thereby 

monitoring motion and quantifying its evolution.  

 The tracking software presented herein was specially designed for images 

with tagging grids that are similar to tagged MRI data.  The software utilizes tagging 

patterns as borders that define individual regions, where each region is a traceable 

ROI.  Upon execution, the user is prompted to select an ROI in the first image frame.  

Next, the software converts the image to binary form and identifies the ROI using 

connectivity features of binary images.  The ROI is simply identified as a connected 

body of 1’s surrounded by a ring of 0’s. Then the centroid of the ROI is calculated 

and the binary form of the second image frame is uploaded.  Under the small motion 

assumption, the location of the ROI centroid in the first frame should lie within the 

ROI in the second frame, and the ROI is thus tracked.  Next, the centroid of the 
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tracked ROI of the second frame is calculated and the procedure is repeated with the 

third and subsequent frames.  Figure 6.7 shows an ROI (in red) that was tracked 

through 6 consecutive frames.     
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Figure 6.7 
User-selected 
ROI (red) is 

tracked 
throughout the 

motion using the 
tracking 

procedure 
described in the 

text. 
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Conclusion 

 This chapter presented image transformations that mimic motion exhibited by 

the LV in the short axis view.  The transformations were performed on digital data by 

virtue of mapping functions that relocated pixels to new positions according to user-

defined operators.  The mimicked motion included elongation, shortening, shear, 

rotation and twist.  Moreover, the chapter introduced a novel tracking software that 

enables the user to track an ROI throughout all phases of motion.  Thus, the 

transformation operators and the tracking software compose a computerized toolbox 

that aid in analyzing LV motion.   
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APPENDIX A 
 
This appendix contains Matlab software of a graphical user interface (GUI) used to 

transform images [35, 41].  The GUI which is composed of one main program and 

seven subroutines, gives the user freedom to choose the type of transformation in 

addition to track regions of interest (ROI).  Built with a user-friendly environment, 

the GUI utilizes image transformation operators discussed in chapter 6.  

Main program 

function image_deform(arg)   
global H_popup    Hf_1  Hf_2 
global  a 
  
if nargin ==0 
    arg='Initialize'; 
end 
switch arg 
    case 'Initialize' 
        Hf_1 = figure ('Position' , [200 50 310 400]); % figure 
(parent of all)  [200 50 1000 600] 
  
H_browse_button = uicontrol(Hf_1 , 'Style' , 'pushbutton', 
'Position', [10 150 150 25], 'String' , 'Browse Image'); 
set(H_browse_button, 'Callback' , 'image_deform Browse') 
  
  
  
  
  
H_popup = uicontrol(Hf_1 , 'Style' , 'popup', 'String' , 'Stretch / 
Shear|Rotation / Twist|Translation|Gaussian|Track' , 'Position' , 
[20 280 100 20] ); 
H_text_above_popup = uicontrol(Hf_1 , 'Style' , 'text' , 'Position' 
, [10 299 90 20], 'String' , 'Deformation Type', 'BackgroundColor', 
[0.8 0.8 0.8]) ; % 
set(H_popup, 'Callback' , 'image_deform Popup') 
  
  
logo=imread('logo.jpg'); 
        H_pic_button = uicontrol(Hf_1 , 'Style' , 'pushbutton', 
'Position', [220 55 83 53], 'cdata' ,logo ); 
  
case 'Browse' 



 99

    [filename , pathname]=uigetfile({'*.jpg','JPEG (*.jpg)'},'Open 
File'); 
    file_string=strcat(pathname,filename); 
    a=imread(file_string,'jpg'); 
    figure , imshow(a); 
     
    case 'Popup' 
         p = (get(H_popup , 'Value')); 
         if p==1 % Affine option 
%          
image_stretch % function image affine 
  
     elseif p==2 
         image_rotate 
    elseif p==3 
         image_translate 
   elseif p==4 
         image_gaussian 
%    elseif p==5 
%          image_stack 
  elseif p==5 
         image_track 
 end % end if 
end % end function 
  
  
     
Stretch and shear subroutine 

function image_stretch(arg)  
global Hf_2 Hf_2_edit_box_stretch_in_x Hf_2_edit_box_stretch_in_y 
Hf_2_edit_box_shear_in_x Hf_2_edit_box_shear_in_y Hf_2_save_button 
%AI_G 
global a 
if nargin ==0 
    arg='Initialize'; 
end 
switch arg 
     case 'Initialize' 
Hf_2 = figure ('Position' , [300 90 400 400]);  
  
Hf_2_edit_box_stretch_in_x = uicontrol(Hf_2 , 'Style' , 'edit', 
'Position' , [20 360 130 20]); %  
  
  
Hf_2_text_above_stretch_in_x = uicontrol(Hf_2 , 'Style' , 'text', 
'Position' , [20 380 130 20], 'String' , 'Stretch in y', 
'BackgroundColor', [0.8 0.8 0.8]) ; % string, written above edit box 
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Hf_2_edit_box_stretch_in_y = uicontrol(Hf_2 , 'Style' , 'edit', 
'Position' , [160 360 130 20]); %  
  
  
Hf_2_text_above_stretch_in_y = uicontrol(Hf_2 , 'Style' , 'text', 
'Position' , [160 380 130 20], 'String' , 'Stretch in x', 
'BackgroundColor', [0.8 0.8 0.8]) ; % string, written above edit box 
  
Hf_2_edit_box_shear_in_x = uicontrol(Hf_2 , 'Style' , 'edit', 
'Position' , [20 260 130 20]); %  
  
  
Hf_2_text_above_shear_in_x = uicontrol(Hf_2 , 'Style' , 'text', 
'Position' , [20 280 130 20], 'String' , 'Shear in y', 
'BackgroundColor', [0.8 0.8 0.8]) ; % string, written above edit box 
  
  
Hf_2_text_above_shear_in_y = uicontrol(Hf_2 , 'Style' , 'text', 
'Position' , [160 280 130 20], 'String' , 'Shear in x', 
'BackgroundColor', [0.8 0.8 0.8]) ; % string, written above edit box 
  
Hf_2_edit_box_shear_in_y = uicontrol(Hf_2 , 'Style' , 'edit', 
'Position' , [160 260 130 20]); %  
  
  
  
Hf_2_deform_button = uicontrol(Hf_2 , 'Style' , 'pushbutton', 
'Position', [20 60 130 20], 'String' , 'Deform'); 
set(Hf_2_deform_button, 'Callback' , 'image_stretch Deform') 
  
% Hf_2_save_button = uicontrol(Hf_2 , 'Style' , 'pushbutton', 
'Position', [170 60 130 20], 'String' , 'Save'); 
%  set(Hf_2_save_button, 'Callback' , 'image_stretch Save') 
  
case 'Deform' 
     X = str2double(get(Hf_2_edit_box_stretch_in_x, 'String')); 
     Y = str2double(get(Hf_2_edit_box_stretch_in_y, 'String')); 
     S_X=str2double(get(Hf_2_edit_box_shear_in_x,'String')); 
     S_Y =str2double(get(Hf_2_edit_box_shear_in_y,'String')); 
     c=128; 
     w=waitbar(0,'Please Wait ...'); 
    for x_d=1:256 
        waitbar(x_d/256); 
    for y_d=1:256 
         
        O = [X S_X; S_Y Y]; 
        A_S= inv(O) * ( [x_d;y_d]-[c;c])+[c;c]; 
          
        x_s=round(A_S(1)); 
        y_s=round(A_S(2)); 
        if x_s > 256 || x_s <=0 
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            x_s=1; 
        end 
        if y_s > 256 || y_s <=0 
            y_s=1; 
        end 
         
        AI_G(x_d,y_d)=a(x_s,y_s); 
         
    end 
    end 
close (w) 
   figure , imshow(AI_G)  
%    imwrite(AI_G,'new_sheared_image.jpg','jpg') 
%     case 'Save' 
%         imwrite(AI_G,'new_stretched_image.jpg','jpg') 
end % end function 
 

Rotation and twist subroutine 

function image_rotate(arg)  
global Hf_3 Hf_3_radio_button_rotation Hf_3_radio_button_twist 
Hf_3_deform_button p q Hf_3_edit_box_rotation Hf_3_edit_box_twist_m 
Hf_3_edit_box_twist_n 
global a 
if nargin ==0 
    arg='Initialize'; 
end 
  
switch arg 
     case 'Initialize' 
Hf_3 = figure ('Position' , [300 90 400 400]);  
  
Hf_3_radio_button_rotation = uicontrol(Hf_3,'Style' , 
'RadioButton','Position',[20 360 130 20], 'String','Rotation', 
'BackgroundColor', [0.8 0.8 0.8]); 
set(Hf_3_radio_button_rotation, 'Callback', 'image_rotate 
rotation_button') 
  
  
Hf_3_radio_button_twist=uicontrol(Hf_3,'Style' , 
'RadioButton','Position',[20 230 130 20], 'String','Twist', 
'BackgroundColor', [0.8 0.8 0.8]); 
set(Hf_3_radio_button_twist, 'Callback', 'image_rotate 
twist_button') 
  
Hf_3_edit_box_twist_m = uicontrol(Hf_3, 'Style' , 'edit', 
'Position',[20 180 130 20]); 
Hf_3_text_above_twist_m = uicontrol(Hf_3, 'Style', 'text', 
'Position',[20 200 130 20], 'String' , 'm', 'BackgroundColor',[0.8 
0.8 0.8]); 



 102

  
Hf_3_edit_box_twist_n = uicontrol(Hf_3, 'Style' , 'edit', 
'Position',[180 180 130 20]); 
Hf_3_text_above_twist_n = uicontrol(Hf_3, 'Style', 'text', 
'Position',[180 200 130 20], 'String' , 'n', 'BackgroundColor',[0.8 
0.8 0.8]); 
  
  
Hf_3_deform_button = uicontrol(Hf_3 , 'Style' , 'pushbutton', 
'Position', [20 60 130 20], 'String' , 'Deform'); 
 set(Hf_3_deform_button, 'Callback' , 'image_rotate Deform') 
  
 Hf_3_edit_box_rotation = uicontrol(Hf_3 , 'Style' , 'edit', 
'Position' , [20 310 130 20]); %  
  
  
Hf_3_text_above_rotation = uicontrol(Hf_3 , 'Style' , 'text', 
'Position' , [20 330 130 20], 'String' , 'Constant Angle', 
'BackgroundColor', [0.8 0.8 0.8]) ; % string, written above edit box 
  
  
text(0.4,1.05,'\bf\theta = const.', 'FontSize', 18) 
text(0.4, 0.6, '\bf\theta = m \times r^{n}', 'FontSize', 18) 
axis('square') 
axis off 
  
% if one button is on, the other must be off 
    case 'rotation_button' 
        p = (get(Hf_3_radio_button_rotation , 'Value')); 
        q = (get(Hf_3_radio_button_twist , 'Value')); 
  
    set(Hf_3_radio_button_twist, 'Value', 0) 
  
  
  
case 'twist_button' 
        p = (get(Hf_3_radio_button_rotation , 'Value')); 
        q = (get(Hf_3_radio_button_twist , 'Value')); 
  
    set(Hf_3_radio_button_rotation, 'Value', 0) 
  
  
  
  
case 'Deform' 
if p==1 %rotation 
    theta = str2double(get(Hf_3_edit_box_rotation, 'String')); 
    theta=theta * pi/180; 
    c=128; 
     w=waitbar(0,'Please Wait ...'); 
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    for x_d=1:256 
        waitbar(x_d/256); 
    for y_d=1:256 
         
        O = [cos(theta) sin(theta); -sin(theta) cos(theta)]; 
        A_S= inv(O) * ( [x_d;y_d]-[c;c])+[c;c]; 
          
        x_s=round(A_S(1)); 
        y_s=round(A_S(2)); 
        if x_s > 256 || x_s <=0 
            x_s=1; 
        end 
        if y_s > 256 || y_s <=0 
            y_s=1; 
        end 
         
        AI_G(x_d,y_d)=a(x_s,y_s); 
         
    end 
    end 
close (w) 
   figure , imshow(AI_G)  
    
elseif q==1 
     
    m = str2double(get(Hf_3_edit_box_twist_m, 'String')); 
    n = str2double(get(Hf_3_edit_box_twist_n, 'String')); 
        c=128; 
     w=waitbar(0,'Please Wait ...'); 
    for x_d=1:256 
        waitbar(x_d/256); 
    for y_d=1:256 
        r=sqrt((x_d - 128)^2 + (y_d-128)^2); 
        theta = m * r^n; 
        O = [cos(theta) sin(theta); -sin(theta) cos(theta)]; 
        A_S= inv(O) * ( [x_d;y_d]-[c;c])+[c;c]; 
          
        x_s=round(A_S(1)); 
        y_s=round(A_S(2)); 
        if x_s > 256 || x_s <=0 
            x_s=1; 
        end 
        if y_s > 256 || y_s <=0 
            y_s=1; 
        end 
         
        AI_G(x_d,y_d)=a(x_s,y_s); 
         
    end 
    end 
close (w) 
   figure , imshow(AI_G) 
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end % end if rotation 
     %imwrite(AI_G,'new_rotate_image.jpg','jpg') 
end % end function 
 

 

Translation subroutine 

function image_translate(arg)  
global Hf_4  Hf_4_edit_box_trans_x Hf_4_edit_box_trans_y 
Hf_4_deform_button  Hf_4_save_button   AI_G 
global a  
a=im2double(a); 
if nargin ==0 
    arg='Initialize'; 
end 
switch arg 
     case 'Initialize' 
Hf_4 = figure ('Position' , [300 90 400 400]);  
  
Hf_4_edit_box_trans_x = uicontrol(Hf_4, 'Style' , 'edit', 
'Position',[20 180 130 20]); 
Hf_4_text_above_trans_x = uicontrol(Hf_4, 'Style', 'text', 
'Position',[20 200 130 20], 'String' , 'Translation in y', 
'BackgroundColor',[0.8 0.8 0.8]); 
  
Hf_4_edit_box_trans_y = uicontrol(Hf_4, 'Style' , 'edit', 
'Position',[180 180 130 20]); 
Hf_4_text_above_trans_y = uicontrol(Hf_4, 'Style', 'text', 
'Position',[180 200 130 20], 'String' , 'Translation in x', 
'BackgroundColor',[0.8 0.8 0.8]); 
  
Hf_4_deform_button = uicontrol(Hf_4 , 'Style' , 'pushbutton', 
'Position', [20 60 130 20], 'String' , 'Deform'); 
 set(Hf_4_deform_button, 'Callback' , 'image_translate Deform') 
  
 Hf_4_save_button = uicontrol(Hf_4 , 'Style' , 'pushbutton', 
'Position', [170 60 130 20], 'String' , 'Save'); 
 set(Hf_4_save_button, 'Callback' , 'image_translate Save') 
  
 case 'Deform' 
      
     X = str2double(get(Hf_4_edit_box_trans_x, 'String')); 
     Y = str2double(get(Hf_4_edit_box_trans_y, 'String')); 
      c=128; 
     w=waitbar(0,'Please Wait ...'); 
 for x_d=1:256 
        waitbar(x_d/256); 
    for y_d=1:256 
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        O = [1 0; 0 1]; 
        A_S= inv(O) * ( [x_d;y_d]-[c;c])+[c;c] + [X;Y]; 
          
        x_s=round(A_S(1)); 
        y_s=round(A_S(2)); 
%         if x_s > 256 || x_s <=0 || y_s > 256 || y_s <=0 
%             AI_G(x_d,y_d)=0 
%         else 
%             AI_G(x_d,y_d)=a(x_s,y_s); 
%         end 
        if x_s > 256 || x_s <=0 
             x_s = x_s-256; 
        end 
        if y_s > 256 || y_s <=0 
            y_s = y_s-256; 
        end 
         
        AI_G(x_d,y_d)=a(x_s,y_s); 
         
    end 
    end 
close (w) 
   figure , imshow(AI_G)  
    
   case 'Save' 
        
       imwrite(AI_G,'new_translated_image.jpg','jpg') 
end % end func 
 

Gaussian deformation subroutine 

function image_gaussian(arg)  
global Hf_5 Hf_5_deform_button Hf_5_edit_box AI_G aa 
global a  
  
a=im2double(a); 
if nargin ==0 
    arg='Initialize'; 
end 
switch arg 
     case 'Initialize' 
Hf_5 = figure ('Position' , [300 90 400 400]);  
text(0.4,1.05,'\bf 1 + e^{-r^{2}/\alpha^[10]}', 'FontSize', 18) 
text(0.1, 0.55, '\bf\alpha^[10]', 'FontSize', 18') 
axis('square') 
axis off 
  
Hf_5_deform_button = uicontrol(Hf_5 , 'Style' , 'pushbutton', 
'Position', [20 60 130 20], 'String' , 'Deform'); 
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 set(Hf_5_deform_button, 'Callback' , 'image_gaussian Deform') 
  
 Hf_5_edit_box = uicontrol(Hf_5, 'Style' , 'edit', 'Position',[20 
180 130 20]); 
  
  
 case 'Deform' 
  
  aa = str2double(get(Hf_5_edit_box, 'String')); 
     
    c=128; 
     w=waitbar(0,'Please Wait ...'); 
    for x_d=1:256 
        waitbar(x_d/256); 
    for y_d=1:256 
         
        D = 1+exp(-(((x_d-128)^2 + (y_d-128)^2))/aa); 
        D=1/D; 
        O = [D 0; 0 D]; 
        A_S= inv(O) * ( [x_d;y_d]-[c;c])+[c;c]; 
          
        x_s=round(A_S(1)); 
        y_s=round(A_S(2)); 
        if x_s > 256 || x_s <=0 
            x_s=1; 
        end 
        if y_s > 256 || y_s <=0 
            y_s=1; 
        end 
         
        AI_G(x_d,y_d)=a(x_s,y_s); 
         
    end 
    end 
close (w) 
   figure , imshow(AI_G)  
  
end % end function 
 
 

ROI tracking subroutine 

function image_stack(arg)  
global Hf_6 Hf_6_edit_box_no_of_frames f 
global a aa 
  
a=im2double(a); 
if nargin ==0 
    arg='Initialize'; 
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end 
switch arg 
     case 'Initialize' 
Hf_6 = figure ('Position' , [300 90 400 400]);  
  
Hf_6_edit_box_no_of_frames = uicontrol(Hf_6 , 'Style' , 'edit', 
'Position' , [20 360 130 20]); %  
  
Hf_6_text_above_box_no_of_frames = uicontrol(Hf_6 , 'Style' , 
'text', 'Position' , [20 380 130 20], 'String' , 'No. of frames', 
'BackgroundColor', [0.8 0.8 0.8], 'FontSize', 10) ; % string, 
written above edit box 
  
Hf_6_get_frames_button = uicontrol(Hf_6 , 'Style' , 'pushbutton', 
'Position', [20 320 130 20], 'String' , 'Get Frames', 'FontSize' , 
10); 
set(Hf_6_get_frames_button, 'Callback' , 'image_stack Get_Frame') 
  
% Hf_6_get_track_button = uicontrol(Hf_6 , 'Style' , 'pushbutton', 
'Position', [20 280 130 20], 'String' , 'Track ROI', 'FontSize' , 
10); 
% set(Hf_6_get_track_button, 'Callback' , 'image_stack Track_ROI') 
  
case 'Get_Frame' 
     no_of_frames = str2double(get(Hf_6_edit_box_no_of_frames, 
'String')); 
     for i=1:no_of_frames 
         f = sprintf('Open File Number %d' , i); 
  
         [filename , pathname]=uigetfile({'*.jpg','JPEG (*.jpg)'}, 
f); % 
    file_string=strcat(pathname,filename); 
    aa(:,:,i)=imread(file_string,'jpg'); 
    end % end for 
  
        Hf_7 = figure ('Position' , [300 90 400 400]);  
    for i=1:no_of_frames 
         
    imshow((aa(:,:,i)),[]); 
    F(i) = getframe; 
end 
  
  
movie(F,20) 
  
  
  
end % end function 
 



 108

 

Subroutine called by ROI tracking subroutine 

function [area_1 , area_image , centroid ] = area_con_2 (image) 
  
% This function calculates area of chosen region 
% It utilizes connectivity ! 
  
% Input = image 
% output = area 
  
% we need to convert input image to binary, then to label different 
regions 
image = im2double(image); 
[labeled_image num]= bwlabel(im2bw(image)); 
  
  
% get ROI 
%figure , imagesc(image) , axis('square') 
%figure , imagesc((image)) , zoom on 
%figure , imshow((image)) , zoom on 
 imshow((image))  
colormap(gray) 
[x , y] = ginput(1); 
x = round(x); 
y = round(y); 
  
value = labeled_image(y,x) ; % notice switching y and x 
% value is the pixel intensity in the labeled_image. It is used 
later for 
% connectivity 
  
%value 
%num 
  
[r,c] = find(labeled_image==value) ; 
  
%r 
%c 
  
s = size(image) ; %s(1) is col or i ,,,, s(2) is row or j :-) 
  
area_image = zeros(s(1),s(2)); 
  
s_r=size(r); 
  
  
for i=1:s_r(1) 
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            area_image(r(i),c(i)) = 1; 
end 
  
  
%figure , imagesc(area_image) 
area_1 = bwarea(area_image); % finding area 
  
%% perimeter calculation 
perim_image = bwperim(area_image); 
%figure , imagesc(perim_image) 
perimeter = bwarea(perim_image) ; % perimeter 
  
% centroid 
centroid = regionprops(bwlabel(area_image),'centroid'); 
centroid.Centroid(1); 
  
  
oplot_image = ones(s(1), s(2)); 
oplot_image = oplot_image .* image; 
  
  
  
 
figure , imshow(oplot_image) 
  
  
  
colormap(gray) 
hold on 
for i=1:s_r(1) 
y = r(i); 
x=c(i); 
fill([x x+1 x+1 x],[y y y+1 y+1],'r', 'LineStyle', 'none'); 
hold on 
end 
 

 

Subroutine called by ROI tracking subroutine 

function [area_1 , area_image , centroid , perimeter] = track 
(image,x,y) 
  
% This function calculates area of chosen region 
% It utilizes connectivity ! 
  
% Input = image 
% output = area 
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% we need to convert input image to binary, then to label different 
regions 
image = im2double(image); 
[labeled_image num]= bwlabel(im2bw(image)); 
  
  
% get ROI 
%figure , imagesc(image) 
%colormap(gray) 
%[x , y] = ginput(1); 
x = round(x); 
y = round(y); 
  
  
distance = 30; 
value = labeled_image(y,x) ; % notice switching y and x 
 
[r,c] = find(labeled_image==value) ; 
  
%r 
%c 
  
s = size(image) ; %s(1) is col or i ,,,, s(2) is row or j :-) 
  
area_image = zeros(s(1),s(2)); 
  
s_r=size(r); 
  
  
for i=1:s_r(1) 
    
            area_image(r(i),c(i)) = 1; 
end 
  
  
%figure , imagesc(area_image) 
area_1 = bwarea(area_image) ;% finding area 
  
%% perimeter calculation 
perim_image = bwperim(area_image); 
%figure , imagesc(perim_image) 
perimeter = bwarea(perim_image) ; % perimeter 
  
% centroid 
centroid = regionprops(bwlabel(area_image),'centroid') ; 
centroid.Centroid(1) ; 
centroid.Centroid(2) ; 
  
oplot_image = ones(s(1), s(2)); 
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oplot_image = oplot_image .* image; 
 
  
figure , imshow(oplot_image) 
  
  
  
  
colormap(gray) 
hold on 
for i=1:s_r(1) 
y = r(i); 
x=c(i); 
fill([x x+1 x+1 x],[y y y+1 y+1],'r', 'LineStyle', 'none'); 
hold on 
end 
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