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Hard rock landforms generate 130 km ice shelf
channels through water focusing in basal
corrugations
Hafeez Jeofry1,2, Neil Ross 3, Anne Le Brocq4, Alastair G.C. Graham 4, Jilu Li5, Prasad Gogineni6,

Mathieu Morlighem 7, Thomas Jordan8,9 & Martin J. Siegert 1

Satellite imagery reveals flowstripes on Foundation Ice Stream parallel to ice flow, and

meandering features on the ice-shelf that cross-cut ice flow and are thought to be formed by

water exiting a well-organised subglacial system. Here, ice-penetrating radar data show flow-

parallel hard-bed landforms beneath the grounded ice, and channels incised upwards into the

ice shelf beneath meandering surface channels. As the ice transitions to flotation, the ice

shelf incorporates a corrugation resulting from the landforms. Radar reveals the presence of

subglacial water alongside the landforms, indicating a well-organised drainage system in

which water exits the ice sheet as a point source, mixes with cavity water and incises

upwards into a corrugation peak, accentuating the corrugation downstream. Hard-bedded

landforms influence both subglacial hydrology and ice-shelf structure and, as they are known

to be widespread on formerly glaciated terrain, their influence on the ice-sheet-shelf tran-

sition could be more widespread than thought previously.
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From the grounding line of several ice streams, meandering
surface channels in the adjacent ice shelves have been
observed in moderate-resolution imaging spectroradiometer

(MODIS) ice-surface imagery, and linked to upward-incised
channels at the ice-shelf base; their cause being the surface ele-
vation differences of buoyant thick versus thin ice1–3. In this
paper, we refer to these surface channels as M-channels (Fig. 1).
MODIS imagery also reveals lineations in the surface of the
ice sheet that are orientated parallel to ice flow; these are flow-
stripes formed by ice-flow processes, often during lateral
convergence4.

It has previously been demonstrated that M-channels corre-
spond with the likely exit point of subglacial water at the mouths
of ice streams that are inferred to have flat beds1, or sedimentary
landforms (eskers) that route water3. Because of this, M-channels
are thought to be evidence of a well-organised subglacial-hydro-
logical system, channelized by upward melting into the grounded
ice by the basal water. As it exits the grounded ice the subglacial
water forms a buoyant plume due to being fresher than water
within the ice shelf cavity. It then entrains the warmer cavity

water, and melts the underside of the floating ice to form an
upward-incised channel5, which we refer to as U-channels.
Hence, M-channels and U-channels are co-existent. Similar
findings have been reported across a variety of ice-stream
grounding lines across Antarctica2. The flow of ocean water
within the cavity has also been shown to lead to upward-incised
ice-shelf channels in, for example, the floating ice at the margin of
Pine Island Glacier6.

While surface ice-shelf melting does not cause M-channels, if
such melting occurred the water produced would be preferentially
routed into and along M-channels due to the linear depression in
the surface topography, potentially melting them downwards7.
Given this, and the importance of maintaining ice shelf integrity
in support of ice-sheet stability in the context of atmospheric
warming8,9, it is necessary to identify and understand the
hydrological supply of water responsible for the sizable selective
upward linear erosion observed, particularly in deep marine set-
tings in West Antarctica.

Here we inspect ice-penetrating radar data across the Foun-
dation ice stream (FIS) and Filchner-Ronne Ice Shelf (FRIS) to
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Fig. 1 Ice-surface imagery, bed elevation, ice-surface velocity, and subglacial water flow for the Foundation ice stream. a Ice-surface velocities49 underlain
by MODIS ice-surface imagery (solid-line box outlines refer to magnified region in (d) and dashed-line box is in Supplementary Figure 4). Grounding points
from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry are as follows: in blue—hydrostatic point; orange—ice flexure landward limit; and
green—break in slope47. Grounding lines are from the Antarctic surface accumulation and ice discharge (ASAID) (red)13, the differential satellite synthetic
aperture radar interferometry (DInSAR) (yellow)14, and the mosaic of Antarctica (MOA) (white)48. b MODIS ice-surface imagery of the Foundation ice
stream trunk. Meandering lineations downstream of the grounding line are noted as “M-channels”. Radar transects, annotated as in other figures, are
shown. The inset denotes the location of the study region in Antarctica. c Bed elevation23 and subglacial-hydrological pathways (calculated as discharge
rates). d Regions of enhanced basal reflectivity (>5 dB, noted in white lines) along three transects, superimposed over MODIS imagery50 and the grounding
lines as in (a)
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link ice-surface lineations observed in MODIS imagery to basal
features in the ice sheet and ice shelf. Our aim is to better
understand processes at the transition between grounded and
floating ice, and the role that subglacial conditions can have in
determining ice-shelf morphology and, potentially, structural
integrity. We reveal mega-scale hard-bedded subglacial landforms
at the grounding zone of FIS, which cause the ice base to become
corrugated as it starts to float. The basal landforms also modulate
the flow of basal water, feeding it into a corrugation peak which
then develops the corrugation for more than 130 km from the
grounding zone. Similar hard-rock basal landforms are known to
exist across formerly glaciated terrain in many regions of Ant-
arctica, and landscapes beneath former northern hemisphere ice
sheets, suggesting their influence on ice dynamics may be more
significant than appreciated both in terms of contemporary ice
dynamics and past ice-sheet behaviour.

Results
Foundation ice stream. Despite being a major Antarctic ice
stream, the subglacial topography and basal environment of the
FIS are poorly characterised10,11. The FIS has its trunk in West
Antarctica and a wide complex drainage basin with about half its
ice supplied by the Academy Glacier and Support Force ice
stream in East Antarctica and the other half from West Antarc-
tica. Location of the grounding line of FIS, which is around 2 km
below sea level, is ambiguous depending on whether surface slope
or tidal flexure is used12–14. The separation between two of the
proposed grounding lines is up to 18.5 km, indicating a possible
complex transition between grounded and floating ice (Fig. 1).

The complex nature of the FIS catchment will likely reflect an
equally complex glacial history15, especially considering ice-
dynamic changes that have occurred in West Antarctica over the
last few thousand years16,17, and around and upstream of South
Pole over longer time periods18,19. Numerous “active” subglacial
lakes—those that experience outbursts or infilling of water due to
periodic change in their hydropotential gradients20,21—exist
beneath both Support Force and Academy Glaciers22, indicating
that Foundation Ice Stream is fed with significant volumes of
basal water, particularly of East Antarctic origin (Supplementary
Figure 1).

The main trunk of FIS, and its grounding line with the FRIS,
lies ~2 km below sea level. The bed beneath the ice stream trunk
occupies a deep U-shaped fjord23. While the grounding line is not
located on or near a major reverse bed slope, the depth of the
grounding line is particularly interesting from the perspective of
ice-sheet processes and stability in deep-marine settings, as
grounding line retreat in other locations may lead to similar
situations in the future (e.g., Thwaites Glacier in West Antarctica,
and Lambert and Totten Glaciers in East Antarctica).

Satellite imagery shows the trunk of FIS to be characterised by
a series of flowstripes4,24 (Fig. 1a). Downstream of the grounding
zone, M-channels are clearly demonstrable in MODIS imagery
for a distance of ~130 km. One M-channel abuts the grounding
line derived from surface slopes, and appears to extend in reduced
amplitude a further 10 km toward the grounded ice stream. A
second M-channel occurs about 20 km from the same grounding
line. These two M-channels merge ~100 km from the grounding
zone, and this combined channel fades out ~30 km downstream
(Fig. 1a).

Radar bed-topography, grounding line position, and subglacial
landforms. Airborne ice-penetrating radar is the key technique to
measure the morphology and condition of beds of large ice sheets.
The radar data used in this study were compiled from two main
sources: flights conducted by the Center for Remote Sensing of

Ice Sheets (CReSIS) as a part of the NASA Operation IceBridge
(OIB) mission in 2012, 2014, and 2016; and a survey of the
Institute and Möller ice streams undertaken in 2010/2011
(IMAFI)25. Specifically, we analyse twelve equally spaced trans-
ects aligned orthogonal to ice flow (A–A’ to K–K’), two near the
grounding zone (L–L’ and O–O’), and two others parallel to the
axis of FIS (M–M’ and N–N’) (Figs. 1 and 2, and Supplementary
Figure 2). Flow-orthogonal radar data are particularly useful for
delineating the lateral extent and heights of flow-parallel bed-
forms, whereas flow parallel transects can be used to measure bed
roughness along flow, placing into context the flow-orthogonal
roughness26. Radar data were used to form a digital elevation
model of the region23, which updates significantly the Bedmap2
version27. The new DEM also benefits from an interpolation
procedure that accounts for ice-flow mass conservation, as
demonstrated primarily in Greenland28. Using this new DEM,
and surface elevations from Cryosat2, we calculate subglacial
water flowpaths29 (Fig. 1c).

The two radar transects aligned parallel to the FIS axis reveal
the ice stream bed to be extremely smooth (Fig. 2; Profile M–M’
and Profile N–N’). These data also reveal classic ice-surface and
ice-base profiles as the grounded ice sheet transitions to a floating
ice shelf. In M–M’, the grounding line matches that derived from
both ice-surface slopes12 and tidal flexure14. However, in N–N’,
the proposed grounding lines are separated by ~20 km (Fig. 2). A
good determinant of deep-water (and thus where the ice sheet
transitions to the ice shelf) can be derived from radar scattering
properties of the basal interface. The so-called “abruptness” of the
echo waveform (a parameter where higher values are associated
with specular reflections and lower values are associated with
diffuse scattering)30 across N–N’ reveals a step-wise change in
basal water depth upstream of the “surface slopes” grounding
line, and downstream of the “ice flexure” line (Fig. 2, Supple-
mentary Note 1, Supplementary Figure 3). Using a classic ice-
flotation equation25 a 5 m increase in sea level, which is in line
with the tidal range in this region31, is able to shift the grounding
line upstream by at least ~10 km (Fig. 2). Hence, the discrepancy
between the grounding lines may be resolved by tidal-forced
uplift of a substantial portion of the FIS trunk.

Orthogonal to ice flow in the trunk of FIS, three radar transects
show significant bed roughness due to massive flow-parallel
ridges (the peaks of the ridges align well with flowstripes;
Supplementary Figure 4), which are divided into two distinct sets
related to the origin of the ice (i.e., one set from upstream FIS and
another from Academy Glacier). The ridges across the Academy
Glacier side of the trunk are of the order of 100–300m high and
2–3 km wide (Fig. 2; Profile I–K; Supplementary Figure 5). We
are able to track these bed ridges in cross-flow radar transects
along the trunk of the FIS (transects J–J’ and K–K’, Figs. 1 and 2,
and Supplementary Figure 6) ~40 km inland of the grounding
zone. The bed-ridges are similar to those seen in other regions of
the ice base32, and over formerly glaciated terrain and offshore
marine regions where enhanced flow has once occurred33–39

(Fig. 3). The scale of the bedforms, and their relation to hard-
bedded features seen elsewhere, suggests they are formed
predominantly of hard rock. We do not believe they can be
composed of sediment, as most relict streamlined large-scale
sedimentary lineations mapped on the Antarctic continental shelf
have amplitudes one (and often two) order(s) of magnitude less
than those imaged across the trunk of FIS40. In the few areas
where sedimentary bedforms forming part of an active dilatant till
layer have been imaged by radar, the largest is only ~20 m high32.
We do not believe the FIS bedforms are ‘eskers’, as has been
observed elsewhere in Antarctica3, as besides the size considera-
tion we do not observe any sinuosity (although we may under-
sample the morphology). Furthermore, the amplitude of the

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06679-z ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4576 | DOI: 10.1038/s41467-018-06679-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


bedforms remains largely unchanged upstream of the grounding
line in contrast to ‘tadpole’ shaped eskers proposed elsewhere that
have higher amplitudes only near the grounding line3. It is
interesting to also note that, to our knowledge, no eskers have
been identified across the formerly glaciated Antarctic continental
shelf. This strongly suggests that the FIS bedforms are erosional
landforms with a lithified core40. Any actively deforming till layer
may be superficial at the scale of the bedforms, though may likely
be present between them (as is evident in the very flat bed
separating bedforms). The cross-sectional dimensions of the FIS

bedforms match well to large streamlined linear ridges that have
been mapped across a number of formerly glaciated regions in
Antarctica, where they are carved in hard crystalline bedrock41,
and which are plastered by a till sheet at least several metres thick
(Fig. 3). We presume that ice flow is organised around the
bedforms to maximise flow efficiency, with their streamlining the
result of the relatively stable flow regime of FIS afforded by steep,
constraining lateral topography. Large-scale hard-bed bedforms
are commonly associated with convergent flow of ice33, and so
their presence in the trunk of Foundation ice stream, fed by two
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Fig. 2 Radar transects revealing subglacial landforms in grounded ice and basal channels incised upwards beneath floating ice. a A–A’, b B–B’, d C–C’, d
D–D’, e E–E’, f F–F’, g G–G’, h H–H’, i i-i', j j-j', k k-k', l L–L’, m M–M’, n N–N’, and o O–O’, as located in Fig. 1. Extended versions of i-i' (I-I'), j-j' (J-J') and k-k'
(K-K') can be found in Supplementary Figure 2. Also for these three transects, basal reflectivity (relative values, zero mean) and the echo abruptness are
provided. For transect N–N’, the echo abruptness is provided (revealing a step change between grounded and floating ice) with the thickness of ice above
the level of flotation (with a tidal range of 0m, black line; and +5m, pink line). The identification of three flow-parallel bedforms and U-channels, described
in Supplementary Figure 5, are also shown (see Supplementary Figure 6 for locations). Separation between ice sourced from East versus West Antarctica is
noted by the dashed black line. Surface elevation profiles (from the aircraft altimeter) are also shown
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distinct and sizeable tributaries, is a reasonable supposition. We
are unable to determine the precise nature of the bedforms,
however, (i.e., whether they are rock drumlins or roche-
moutonnées). Between the bedforms, which are separated by less
than 1 km in almost all cases, we observe the bed to be very flat,
indicative of weak water-saturated sediments. While subglacial
morphology on the WAIS-sourced side of the FIS trunk appears
more subdued than that of the EAIS-sourced side, a similar glacial
geological morphology is apparent with small bedrock highs (up
to ~100 m high) interspersed by flat, presumably sediment-
draped, surfaces.

M-channels, U-channels, and basal water flow. Across the ice-
shelf base, several flow-orthogonal radar transects reveal a series

of U-channels (Fig. 2; Profiles A–A’ to L–L’), which map directly
beneath M-channels confirming their association noted pre-
viously1–3. Because the ice is afloat, the surface elevation above a
U-channel (i.e., the elevation of the M-channel) will be less than
the surrounding ice shelf surface. Hence, we are able to confirm
U-channels from this additional diagnostic (Fig. 2).

In one location, within the FIS grounding zone, a distinct
reflection ~800 m in height has been measured (Fig. 2; Profiles i-i'
and L–L’). Close inspection of the radargram reveals the reflection
to involve multiple “peaks”, suggesting that one or more
reflections may be from offline reflections. As transect i-i' is
orthogonal to flow, the 800 m peak reflection is likely to be
sourced downstream. We believe this reflection is from a U-
channel, rather than a rock pinnacle (especially given the high
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Fig. 3 High-resolution multibeam echo-sounder swath bathymetry datasets for the Antarctic shelf, showing examples of relict hard-bedded landforms with
dimensions directly comparable to those imaged with radar beneath the trunk of Foundation ice stream. a Location map of six individual sites spanning the
East Antarctic, West Antarctic, and Antarctic Peninsula coastlines; letters refer to the data shown in the subsequent panels, b–g. b, c Subglacial bedforms
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reflectivity of the peak; Supplementary Note 2, Supplementary
Figure 7). If the U-channel was positioned vertically beneath the
aircraft we would expect a depression in ice-surface elevation.
However, the transect altimetry reveals a slight increase in surface
elevation. Hence, we believe transect i-i' lies very close to the
transition between the bedforms and U-channel initiation.
Downstream of the grounding line, and along the same line of
ice flow, a similar basal reflection is observed (at around 400 m in
height) (Fig. 2 H–H’). This time, however, a depression is
observed in the ice surface (i.e., coincident with an M-channel).

The M- and U-channels originate from the Academy Glacier
side of the FIS trunk. This is consistent with subglacial water
flow-routing calculations (Fig. 1, Supplementary Figure 1), which
demonstrate three important features about the hydrological
system. First, the majority of the water from the Academy
catchment is supplied to the head of the main FIS trunk, and then
flows parallel to ice flow and, hence, the bedforms. Second, the
FIS captures two extremely large catchments of subglacial water;
one emanating from the interior of West Antarctica, and one
from the South Pole region in East Antarctica. In the latter
catchment, water is preferentially routed into Academy Glacier to
the detriment of Support Force Glacier. The third aspect is that
the FIS hydrology comprises two distinct components, derived
from the two catchments, with no interaction between them.
Hence, one side of the FIS trunk is supplied by water from West
Antarctica, while water in the other half comes from East
Antarctica.

The main drainage pathway from East Antarctica exits the FIS
trunk in the zone where there is grounding line uncertainty and
the largest (~800 m in height) U-channel (labelled U-2 in Fig. 2,
Supplementary Figure 4). The channel decreases in height, but
not in elevation or width, down-ice flow as noted in earlier
studies1, due to mixing of the waters and freezing onto the ice-
shelf base. Importantly, the width of the U-channel is very similar
to the width of the bedforms upstream, further indicating their
association. Another U-channel (U-1 in Fig. 2, Supplementary
Figure 5), which starts ~20 km from the grounding line derived
from surface slopes (see Fig. 2, profile G–G’), is also of similar
width to the bedforms. However, we do not observe its existence
at the grounding line (see Fig. 2, profile H–H’). The two U-
channels merge ~100 km from the grounding zone (Figs. 1, and 2
profile C-C’), and by ~130 km the combined U-channel has
largely disappeared.

Based on the correspondence between surface and basal
features with the modelled hydrological flow paths below the
grounded ice, we conclude that U-2 at the grounding zone is
formed by the action of a well-organised basal hydrological
system ejecting an outflow of water to the ice-shelf cavity. This
water mixes with warm cavity ocean water to form a plume that is
less saline than cavity water and warm enough to melt the ice
above. U-1 is less obviously consistent with formation by
subglacial water. Instead, tidal pumping of water may keep
channel U-1 open. Because the widths of both U-channels are so
similar to the bedforms, and since we are able to connect one of
them to a specific bedform, we believe U-1 may have been created
in a similar way to U2. If this is the case, the gap between U-1 and
the grounding zone may reflect grounding line migration and/or
past hydrological variability.

Radar reflectivity measurements. Precisely how the water flows
across the ice sheet bed within the trunk of FIS requires analysis
of the reflectivity and scattering properties of the radar bed-echo
data. The flow-parallel, likely hard-bedded, subglacial landforms
influence the flow direction of water (especially as the surface

slope is very low42). Basal power was extracted from the radar
data43 along profiles i-i’, j-j’ and k-k’. Relative basal reflectivity
values (used to discriminate basal water) were then obtained
performing a separate attenuation correction for radar traces in
East and West Antarctica (see Supplementary Note 1 and Sup-
plementary Figure 3 for more details).

The radar reflectivity characteristics of the FIS bed are
consistent with significant well-organised flow of water within
FIS (Fig. 2). The overall dB range for basal reflectivity is ~30 dB
(refer to Supplementary Note 1 for the frequency distribution).
This is consistent with the predicted range for subglacial materials
at radar frequencies44,45, although it is important to bear in mind
that the FIS is a region where anomalous radar power losses (e.g.,
due to crevassing) are likely to be present. The bed of the trunk of
the FIS is likely to be above pressure melting point and comprised
(in between the hard-bedded landforms) of subglacial till. In this
scenario, the basal reflectivity hierarchy is likely to correspond to
basal water greater than ~5 m deep (highest values), saturated till,
hard-bedded regions, and dry till (lowest values)44,45. The
oscillations in basal reflectivity along transects i-i’, j-j’ and k-k’
are therefore consistent with material transitions from drier
surrounding regions to water channels (the reflectivity peaks).
Supporting evidence for the water channel locations comes from
the correlation between the reflectivity peaks and the abruptness
peaks. Specifically, high values of both are consistent with water
being present43.

While the subglacial flow routing model shows the path of
basal water is consistent with flow alongside the bedforms in the
trunk of the ice stream, we regard the most compelling evidence
of water at the bed to come from the radar data. Within the
region of grounding zone uncertainty, where the highest (~800
m) U-channel is measured, reflectivity is above +10 dB in three
regions; one over a flat region of the bed, and two associated with
the fringes of the U-channel (Profile i-i’). The U-channel in
profile i-i’ (Fig. 2) is an offline reflection, and has a reflectivity
greater than the bed between the landforms, similar to that
observed over deep-water subglacial lakes (Supplementary
Note 2).

Upstream, across the permanently grounded ice-stream trunk,
points where reflectivities reach ~+10 dB are observed (Profile
j-j’). Further upstream, an additional three points with reflectiv-
ities ~+10 dB are seen, and in one location on the fringe of the
trunk reflectivities are >+10 dB (Profile K–K’). Basal reflectivities
above 5 dB are mapped in Fig. 1. They plot along a discrete
flowstripe, confirming the flow of water to be well-organised and
aligned with flow and the bedforms. We see no evidence for basal
water cross-cutting the ice-stream flowline in the trunk of the ice
stream (i.e. they are channelled by the basal landforms).

Discussion
Because of the similar widths, and spatial relationship, between
the subglacial landforms and the sub ice-shelf U-channels (Sup-
plementary Figure 5) we propose that the bedforms are dictating
the position and form of the U-channels. Since the ice will mould
around the subglacial bedforms46, as the ice-sheet becomes afloat
the base of the ice sheet will inherit a “corrugated” morphology
from the bedforms. The bedforms thus modulate the upstream
flow of subglacial water, allowing a focused stream of water to
flow upwards into the peak of a U-channel corrugation across the
grounding zone (Supplementary Figure 8). The combination of
subglacial hydrology and hard-rock bedforms across and
upstream of the grounding zone is therefore critical to the pro-
pagation of U-channels downstream. This finding, though not
previously reported, is unlikely to be unique in Antarctica. For
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example, the Institute ice stream, which lies above a pre-
dominantly flat bed, indicative of wet sediment, is also associated
with a small region of rough bed across the deepest parts of the
Robin Subglacial Basin coinciding with a U-channel1, and could
be explained by “glacial excavation” of sediment revealing hard-
rock landforms21. As a consequence, the association between U-
channels and hard-rock flow-parallel landforms could be gen-
erally applicable across the margins of marine ice sheets both now
and in the past.

While our observations of subglacial landforms and basal water
dictating U-channel genesis and development are clear, the rea-
son for why U-channels can exist so far from the grounding line,
and thus from the source of subglacial water, remains less certain.
One explanation is that tidal pumping of water can maintain the
channel once developed. For FIS, the tidal range is at least 5 m,
meaning there is huge potential flux of water into and out of the
ice-shelf cavity daily. This may provide an explanation for why
some of the U-channels meander and merge downstream of the
grounding zone, if they are actively being reworked by tidewater.

Another unresolved issue relates to the significance of sub-
glacial water in creating the U-channel at the grounding zone. If
basal water is not present, then we may expect the channel to
experience creep closure from the surrounding ice as it flows
around the bedform and the U-channel would fail to form.
Further, if the supply of basal water was switched off to an
existing U-channel it may cease to initiate. This may explain why
U-1 is not observed at the grounding zone; instead it is both
advecting downstream and being held open by tidewater. If this
idea is correct, U-1 may be evidence of temporal variability in the
supply of basal water from FIS. All Antarctic ice shelves are
potentially sensitive to atmospheric warming induced surface
melting, but those with weaknesses inherited from upstream
glaci-geological and subglacial-hydrological processes may be
particularly vulnerable compared with ice shelves fed by ice
streams on flat beds.

Methods
Radar data. The radar data used in this study were compiled from two main
sources. First, a survey of the Institute and Möller ice streams undertaken by the
British Antarctic Survey (BAS) in 2010–2011. The survey used the BAS Polari-
metric radar Airborne Science Instrument (PASIN), operating at a centre fre-
quency of 150MHz, with a 10MHz bandwidth and a pulse-coded waveform
acquisition rate of 312.5 Hz. Second, a series of geophysical flights conducted by the
CReSIS during the NASA Operation Ice Bridge programme in 2012, 2014, and
2016, which used the Multichannel Coherent Radar Depth Sounder system
developed at the University of Kansas. The system operated with a carrier fre-
quency of 195MHz and a bandwidth of 10MHz in 2012 and 50MHZ in 2014
onward.

Radar data processing—PASIN. Chirp compression was applied to the along
track data. Unfocused synthetic aperture (SAR) processing was used by applying a
moving average of 33 data points, whereas two-dimensional SAR (i.e., focused)
processing based on the Omega-K algorithm was used to enhance both along track
resolution and echo signal noise. Doppler filtering was used to remove the back-
scattering hyperbola in the along track direction. The bed echo was depicted in a
semi-automatic manner using ProMAX seismic processing software.

Radar data processing—CReSIS. The data were processed in three steps to
improve the signal-to-noise ratio and increase the along-track resolution. The raw
data were first converted from a digital quantization level to a receiver voltage level.
The surface was captured using the low-gain data, microwave radar or laser alti-
meter. A normalized matched filter with frequency-domain windowing was then
used for pulse compression. Two-dimensional SAR processing was used after
conditioning the data, which is based on the frequency wave number (F–K)
algorithm. The F–K SAR processing requires straight and uniformly sampled data,
however, which in the strictest sense are not usually met in the raw data since the
aircraft’s speed is not consistent and its trajectory is not straight. The raw data were
thus spatially resampled along track using a sinc kernel to approximate a uniformly
sampled dataset. The vertical deviation in aircraft trajectory from the horizontal
flight path was compensated for in the frequency domain with a time-delay phase

shift. The phase shift was later removed for array processing as it is able to account
for the nonuniform sampling; the purpose is to maintain the original geometry for
the array processing. Array processing was performed in the cross-track flight path
to reduce surface clutter as well as to improve the signal-to-noise ratio. Both the
delay-and-sum and minimum variance distortionless response (MVDR) beam-
formers were used to combine the multichannel data, and for regions with sig-
nificant surface clutter the MVDR beamformer could effectively minimize the
clutter power and pass the desired signal with optimum weights.

Radar data measurements. In both datasets, the waveform was retrieved and
sequenced according to its respective transmit pulse type. The modified data were
then collated using MATLAB data binary files. A nominal value of 10 m is used to
correct for the firn layer during the processing of ice thickness, which introduces an
error of the order of ~3 m across the survey field. This is small relative to the total
error budget of the order of ~1%. Finally, the GPS and RES data were combined to
determine the ice thickness, ice-surface and bed elevation datasets. Elevations are
measured with reference to WGS 84. The ice-surface elevation was calculated by
subtracting terrain clearance from the height of the aircraft, whereas the bed ele-
vation was computed by subtracting the ice thickness from the ice-surface
elevation.

Data availability
Airborne radar data used in this study are freely available at the CReSIS website. The
digital elevation model of the Foundation ice stream, and radar data used to build it, are
available at [https://doi.org/10.5194/essd-10-711-2018]. In addition, all relevant data are
available from the corresponding author.
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