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James D. Blakemore*

Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 
66045-7582

Abstract

Manganese tricarbonyl complexes are promising catalysts for CO2 reduction, but complexes in this 

family are often photo-sensitive and decompose rapidly upon exposure to visible light. In this 

report, synthetic and photochemical studies probe the initial steps of light-driven speciation for 

Mn(CO)3(Rbpy)Br complexes bearing a range of 4,4′-disubstituted-2,2′-bipyridyl ligands (Rbpy, 

R = tBu, H, CF3, NO2). Transient absorption spectroscopy measurements for the 

Mn(CO)3(Rbpy)Br coordination compounds with R = tBu, H, and CF3 in acetonitrile reveal 

ultrafast loss of a CO ligand on the femtosecond timescale, followed by solvent coordination on 

the picosecond timescale. The Mn(CO)3(NO2bpy)Br complex is unique among the four 

compounds in having a longer-lived excited state that does not undergo CO release or the 

subsequent solvent coordination. The kinetics of photolysis and solvent coordination for the light-

sensitive complexes depend on the electronic properties of the di-substituted bipyridyl ligand. The 

results implicate roles for both metal-to-ligand charge transfer (MLCT) and dissociative ligand 

field (dd) excited states in the ultrafast photochemistry. Taken together, the findings suggest that 

more robust catalysts could be prepared with appropriately designed complexes that avoid crossing 

between the excited states that drive photochemical CO loss.
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TOC Synopsis

In the presence of light, [Mn(CO)3] complexes bearing bipyridyl-type ligands decompose via CO 

loss, with subsequent solvent coordination in MeCN or other reactions in CHCl3. Ultrafast 

transient absorption studies reveal formation of both the five-coordinate and solvento 

intermediates involved in the photo-speciation process.

Introduction

Manganese tricarbonyl complexes of the form Mn(CO)3(Rbpy)Br (Rbpy = 4,4′-

disubstituted–2,2′-bipyridyl) are promising catalysts for conversion of carbon dioxide (CO2) 

into carbon monoxide and/or formate, valuable precursors to chemical feedstocks and 

commodity chemicals.1,2 The synthetic chemistry for the Mn complexes was developed by 

Wilkinson and co-workers,3 and later extended by Wrighton, Meyer, and others.4 These 

complexes are remarkable for their ease of preparation and can be synthesized from 

commercially available or readily prepared ligands, Rbpy, and the synthon Mn(CO)5Br. 

Similar synthetic chemistry and catalytic properties have been demonstrated with analogous 

rhenium tricarbonyl complexes, Re(CO)3(Rbpy)Br, which were investigated for catalysis 

much earlier by Lehn5 and Meyer6, and popularized by Fujita7, Kubiak8, Ishitani9, and 

others.10 However, considering the significantly greater abundance of manganese, many 

research groups have continued to develop new [Mn(CO)3]-based catalysts. These efforts 

have led to a remarkable flourishing of reports showing that a variety of bidentate ligands 

can support and/or tune the electronic, photo-physical, and catalytic properties of [Mn(CO)3] 

complexes.11,12,13

A defining feature that distinguishes the rhenium complexes from their manganese 

analogues is markedly better stability upon irradiation with visible light.14 Importantly, 

many [Mn(CO)3] complexes are susceptible to speciation15 and/or degradation16 upon 

exposure to visible light. For example, our preliminary investigations in organic solvents 

revealed that Mn(CO)3(Rbpy)Br complexes begin to decompose within minutes under 

ambient fluorescent lighting, as evident from peak broadening in the 1H nuclear magnetic 

resonance (NMR) spectra. A review describing the photochemistry of a variety of metal 
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carbonyl species provides context to the light sensitivity of Mn(CO)3(Rbpy)Br in solution.17 

Specifically, the light sensitivity of many first-row transition metal complexes is often a 

consequence of the inherent excited-state electronic structure of the compounds. However, 

as the light sensitivity of the Mn(CO)3(Rbpy)Br complexes presents a potential challenge to 

their use in electrochemical or, especially, photoelectrochemical systems for CO2 

conversion, we became interested in the underlying processes that contribute to speciation 

and/or degradation.

Separate from their role as catalysts, the light-induced reactivity of manganese complexes 

makes the [Mn(CO)3] moiety a promising motif for developing a relatively new class of 

putative therapeutics known as photo-induced carbon monoxide releasing molecules (photo-

CORMs).18 Classic work on the photochemical properties of dimanganese decacarbonyl 

([Mn(CO)5]2) revealed the susceptibility of low-valent manganese complexes to release CO 

under irradiation with visible light.19,20 However, [Mn(CO)5]2 absorbs only very weakly in 

the visible region, which is problematic from the standpoint of therapeutic development 

because UV light does not readily penetrate the skin.21 The need for efficient activation of 

photo-CORMs at longer wavelengths has motivated the development of novel [Mn(CO)3]-

based compounds that absorb light in the visible region. Toward this goal, Schatzschneider 

and co-workers developed the first [Mn(CO)3]-based photo-CORMs supported by various 

tripodal ligands.22 Further work by several research groups has led to numerous platforms 

and ligand systems in this family that allow effective photo-induced CO release.23 Notably, 

Mascharak and co-workers highlighted the light sensitivity of Mn(CO)3(Rbpy)Br complexes, 

demonstrating that Mn(CO)3(Hbpy)Br is capable of visible light induced CO release at 420 

nm.24

Despite the potential role of Mn(CO)3(Rbpy)Br complexes in diverse applications ranging 

from catalysis to phototherapeutics, the photophysical properties of these compounds have 

received surprisingly little attention. The analogous [Re(CO)3] complexes have been studied 

with nanosecond and femtosecond transient absorption spectroscopy, as well as time-

resolved infrared absorption measurements.25,26 Vlček and co-workers in particular have 

examined various aspects of the ligand-dependent excited state behavior of [Re(CO)3] 

complexes bearing diimine-type ligands, providing important insights into electron transfer 

behavior and the resulting chemical reactivity.27,28 However, to the best of our knowledge, 

no femtosecond or picosecond pump-probe experiments have examined the fundamental 

photochemistry of [Mn(CO)3] complexes bearing diimine ligands. Only steady-state 

experiments involving spectroscopic characterization of the products following bulk 

photolysis,15 and a nanosecond pulse radiolysis study of the reduction-induced reactivity of 

Mn(CO)3(tBubpy)Br have been reported.29

In this contribution, we examine the fundamental photochemistry of Mn(CO)3(Rbpy)Br 

complexes with disubstituted ligands bearing tert-butyl (1), hydryl (2), trifluoromethyl (3), 

and nitro (4) groups (Chart 1) following exposure to visible light. Ultrafast transient 

absorption (TA) spectroscopy reveals the loss of a CO ligand on the femtosecond timescale, 

followed by solvent coordination on the picosecond timescale for 1, 2, and 3 in acetonitrile. 

The kinetics of these reactions depend on the identity of the substituents at the 4 and 4′ 
positions of the Rbpy ligand and correlate well with the Hammett parameters associated with 
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the substituent groups. In contrast with the results for 1, 2, and 3, TA spectroscopy and gas 

chromatography (GC) measurements indicate that 4 does not undergo CO release. Taken 

together, these observations implicate metal-to-ligand charge transfer (MLCT) and 

dissociative ligand field (LF) states in driving the photoinduced reactivity, and suggest that 

the relative energies of these electronic states are tuned through the modification of the 

supporting ligand. Our results are discussed in the context of developing new design 

principles that could be used to selectively control light-driven CO release from [Mn(CO)3] 

complexes.

Results and Discussion

Synthesis and Characterization

In order to study [Mn(CO)3] complexes with uniformly tuned properties, we prepared 

compounds that differ only in the electron donating/withdrawing nature of the substituents in 

the 4 and 4′ positions of the supporting 2,2′-bipyridyl ligand. Complexes 1 and 2 were 

prepared according to prior reports1,2 and new derivatives 3 and 4 were synthesized and 

isolated using methods similar to those of Wrighton and co-workers (see Experimental 

Section for details).4 Overall, no unusual features were encountered for the synthesized 

complexes. All of the formally manganese(I) complexes were prepared from Mn(CO)5Br 

and isolated with inner-sphere bromide ligands. The compounds have Cs symmetry, and are 

soluble in common organic solvents (e.g., acetonitrile, chloroform) (see Figures S1-S5).

The Mn(CO)3(Rbpy)Br complexes have a variety of useful signatures that can be readily 

interrogated using NMR, IR, and electronic absorption spectroscopies. Trends in the spectra 

can be correlated with the Rbpy substituents using Hammett parameters.30 However, the 

traditional Hammett parameter (σ) does not consider stabilization of partial or full charges in 

reference to inductive and resonance effects of the conjugated ligand. These limitations are 

accounted for in Brown’s sigma plus parameter (σ+) and Kubota’s sigma minus parameter 

(σ−), which stabilize partial or full positive and negative charges, respectively.31,32 To 

determine which parameter is most appropriate for a given system or spectroscopic 

signature, a series of Hammett plots are constructed to compare goodness-of-fit with σ+, σ, 

and σ−. For example, the 1H-NMR chemical shifts for the ortho-pyridyl protons of each 

complex correlate best with Brown’s σ+ parameter (see Figures S6-S7), in agreement with 

prior literature.33 The correlation with σ+ indicates an inductive ground-state interaction 

between the ligand framework and the substituents.

Infrared absorption spectroscopy confirms the presence of the fac-tricarbonyl geometry for 

each of the complexes 1-4 in solution (see Figure S8), and demonstrates that the samples are 

free of Mn(CO)5Br starting material (associated with absorption bands at 2004 cm−1,2046 

cm−1, and 2083 cm−1). Our results from IR spectroscopy are consistent with previous 

observations of heteroleptic carbonyl complexes, as we observe a systematic increase of the 

C─O stretching frequencies upon changing the character of the 4,4′-substituents of Rbpy 

from electron donating to electron withdrawing.34 Hammett plots of the A″-symmetry 

C─O stretching frequency35 as a function of ligand substituent are best fit by the σ 
parameter (R2 = 0.993), although the correlations with σ+ (R2 = 0.989) and σ− (R2 = 0.945) 

are not vastly different from the correlation with σ (see Figure S9). This observed 
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correlation of C─O stretching frequencies is in agreement with previous work on para-

substituted isocyanide complexes CpFe(CO)2(CNRPh) and CpMn(CO)2(CNRPh), where Cp 

is cyclopentadienyl.36,37 However, as C─O stretching modes are affected principally by π-

bonding effects, the measured range of 15 cm−1 for the bipyridyl complexes under 

investigation here is consistent with the expected distal influence of the bipyridyl ligand 

substituents on the Mn metal center and the CO ligands.

Complexes 1-4 give vividly colored solutions when dissolved in common organic solvents 

like MeCN (see Figure S10). Figure 1 shows the electronic absorption spectra for all four 

complexes, and Table 1 lists the transition energies and molar absorptivities for each of the 

lowest-energy absorption bands. Plotting the energies of the first absorption band for 1-4 as 

a function of σ− parameter gives an excellent correlation (R2 = 0.998; see Figures S11-S15). 

On the basis of the molar absorptivity and comparison with related compounds, the lowest-

energy absorption bands for 1-4 can all be confidently assigned as having significant MLCT 

character (See Table 1). These findings agree with prior work on Mn(CO)3(diimine)Br 

complexes showing that the highest occupied molecular orbital is primarily localized on the 

Mn center, while the lowest unoccupied molecular orbital has significantly more ligand 

character, suggesting that the visible transitions are primarily MLCT in nature.38 Plotting the 

molar absorptivity of the lowest-energy absorption bands of 1-4 as a function of the 

Hammett parameter also reveals a linear correlation with σ−, where the transition strength 

increases for more electron-donating substituents (see Figure S16). Thus, the trend in 

transition strength across all four compounds is roughly linear with σ−, consistent with 

previous studies of transition metal complexes featuring MLCT behavior.39 A likely 

explanation for the decreasing transition strength with increasing electron-withdrawing 

character of the ligand substituents is reduced overlap of the HOMO and LUMO due to 

increased localization of the LUMO on the electron-withdrawing substituents. The electron-

donating groups, in contrast, localize the LUMO closer to the Mn metal center, leading to 

better overlap with the HOMO and therefore a stronger MLCT transition. Based on this 

reasoning, the relatively weak transition for 4 follows the trend in MLCT transition strengths 

set by the other three compounds, even though the lower absorption strength for 4 would 

typically be associated with a d-d transition. Although we cannot rule out the possibility of 

some d-d character in the lowest-energy transition for 4, the strong correlation of both the 

transition energies and strengths with σ− reinforces our assignment of the lowest-energy 

absorption bands as primarily MLCT in nature for all four compounds.

Transient absorption spectroscopy

Ultrafast transient absorption (TA) spectroscopy probes the reaction dynamics following 

MLCT excitation of the [Mn(CO)3] complexes. Based on the shift of the MLCT bands with 

ligand substitution, we used excitation pulses at 420 nm for 1 and 2, 470 nm for 3, and 510 

nm for 4. Figure 2 shows the evolution of the TA spectra for 1-4 in MeCN. The initial 

excited-state absorption bands for compounds 1-3 are double-peaked and partially decay in 

≤1 ps, followed by the delayed appearance of a narrower absorption band at slightly longer 

wavelength within ~100 ps. The transient spectra are similar for all three compounds at 

longer time delays as well, except for a red-shift of the TA bands that is similar to the shift 

of the ground-state MLCT bands across the three compounds. Notably, both the initial 
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excited-state absorption bands and the new features that appear within ~100 ps follow the 

same trend as the ground-state MLCT bands of 1-3, indicating that the Rbpy ligand remains 

bound to the Mn center for each of the transient species (see Figure S17).

The evolution of the TA spectrum for the nitro disubstituted compound (4), also shown in 

Figure 2, is noticeably different from the other complexes. The initial excited-state 

absorption band is stronger, narrower, and decays more slowly than in the other compounds. 

Furthermore, there is not a secondary absorption feature that appears on the ~100 ps 

timescale in the transient spectrum of compound 4. Unlike 1-3, the shift in wavelength of the 

initial TA band of 4 also does not follow the same trend as the ground-state MLCT bands. 

The strongly electron withdrawing nitro groups likely localize the charge in the MLCT state, 

resulting in a more stable and longer-lived excited state for 4.

Based on the TA spectroscopy and kinetics, as well as the observation of CO in the 

headspace of irradiated samples using GC analysis (see Figures S18-S19), we propose a 

pathway for the early speciation process of complexes 1-3 that involves rapid CO loss 

followed by solvent coordination, as shown in Scheme 1. Optical excitation initially 

promotes an electron from a metal d-orbital to the π* orbital of the bpy ligand. The MLCT 

state is likely to be close in energy to a ligand field (LF) state with d-d excitation on the 

metal that has significant antibonding (σ*) character in the equatorial manganese-carbon 

bonds.40 The anti-bonding ligand field state is stabilized by increasing the Mn-CO bond 

length, which results in a curve crossing that allows adiabatic population transfer from the 

MLCT state to the directly dissociative LF state (Figure 3). Impulsive release of a CO ligand 

via the LF state generates an electron-deficient (16 e−), five-coordinate intermediate, 

Mn(CO)2(Rbpy)Br. In acetonitrile, such an intermediate species is likely to bind a solvent 

ligand in order to recover a more stable 18 e− configuration. Thus, we attribute the new 

signal that rises on the tens of picoseconds timescale to the formation of a solvent-

coordinated complex. Reduced electron back-bonding by the newly associated MeCN ligand 

compared with the CO that it replaces explains the red-shift of the MLCT absorption bands 

of the solvent-coordinated complexes compared with the initial compounds.

A global fit to the TA spectrum of each compound using a bi-exponential function reveals 

the time constants for CO loss (τ1) and solvent coordination (τ2). The global fits give the 

time constants in Table 2 and the decay-associated spectra (DAS) in Figures S20-S22 of the 

SI.41 The time-constants indicate a slightly longer timescale for CO release and a shorter 

timescale for solvent coordination as the ligand becomes more electron withdrawing. The 

trend in τ2 is consistent with formation of a relatively more electron-poor 16 e− complex in 

the case of the more electron-withdrawing ligand for 3, compared with 2 and 1.

In the proposed mechanism, the rate of CO loss is dependent on how quickly the MLCT 

state converts to the d-d dissociative LF state. Therefore, the observed rate of CO loss during 

photolysis likely depends on the initial relative energies of the MLCT and dissociative LF 

states. Changing the substituents on the 4 and 4′ positions of the bpy ligand should leave the 

metal d-orbitals relatively unaffected while tuning the ligand π* orbitals to a larger extent. 

The MLCT energy depends on π* of the ligand, but the LF energy should be relatively 

insensitive to substitution, as illustrated in Figure 3. This picture is consistent with the trend 
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that we observe in the timescales for CO loss in Table 2. Changing the substituents on the 

bpy ligand from electron-donating to electron-withdrawing stabilizes the MLCT state and 

therefore increases the barrier to reach the LF state (Figure 3). Accordingly, the increasing 

electron-withdrawing character of Rbpy from 1 to 3 is associated with a corresponding 

decrease in the rate for CO loss (i.e. increase of τ1) due to stabilization of the MLCT state 

and, therefore, larger barrier to charge recombination by accessing the dissociative LF state.

As the substituents become even more electron withdrawing, the π* level of the bpy ligand 

is pushed substantially lower in energy compared with the occupied metal d-orbitals. In the 

limiting case of the NO2bpy complex (4), the MLCT band is > 0.5 eV below that of the 

prototypical Hbpy complex (2) due to charge stabilization and localization of electron 

density on the nitro groups. Thus the MLCT state of 4 is much lower than the dissociative 

LF state, significantly increasing the barrier for charge recombination and strongly 

disfavoring CO loss (see Figure S23 in SI). Instead, the MLCT state of 4 probably relaxes 

through a competing mechanism, possibly intersystem crossing (ISC) to a triplet state that is 

relatively long lived and persists beyond the time resolution of our experiment.

Measurement of CO release by infrared spectroscopy

To confirm that the [Mn(CO)3] complexes undergo CO loss followed by subsequent 

chemical reactivity in MeCN solvent, a series of photolysis experiments were carried out 

with infrared spectroscopic monitoring to interrogate the generation of new species by 

irradiation of 2 with visible light. Following 2 min. of irradiation with 415 nm light (at a 

total lamp power of 175 W), unique CO stretches appear in the IR spectrum, including 

stretches associated with Mn complexes between 2050–1825 cm−1 as well as the diagnostic 

stretch corresponding to free CO gas dissolved in MeCN near 2143 cm−1 (see Figure S24 for 

all spectra). Over time, the bands associated with 2 at 1924, 1934, and 2028 cm−1 decrease 

in intensity, and C─O stretches presumably associated with Mn-containing photoproducts 

grow in at 1883, 1961, and 1976 cm−1; two less intense features also appear at 1856 cm−1 

and 2050 cm−1, but these features show minor variations in intensity over the 15 min. 

irradiation time, suggesting they may be associated with metastable intermediates. The 

presence of the [Mn(CO)3(bpy)]2 dimer can be inferred from related work examining 

electrochemical generation of the analogous [Mn(CO)3(tBubpy)]2 dimer by Kubiak and co-

workers.42 As the speciation processes occurring at longer times are likely complex and 

multistep in nature, a portion of our future work will be devoted to further exploration by 

both time-resolved spectroscopies and more detailed steady-state photolysis experiments.

Involvement of MLCT vs. LF states

Although the changing energy of the MLCT state with ligand substituents is evident from 

the shifting of the ground-state absorption bands of 1-4, we have been unable to directly 

observe the relative energies of the LF states. The weak d-d transitions are not evident in the 

absorption spectra, due to the stronger overlapping MLCT bands. We also attempted to 

measure the d-d transition for the analogous bis-pyridine complex, Mn(CO)3Br(py)2 (5), in 

an effort to determine the relative energy of the LF state in [Mn(CO)3] complexes (see 

Figure S25).
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Although the synthesis of 5 has been previously reported, the molecular structure of the 

complex was not reported. To obtain the structure, we grew single crystals of 5 suitable for 

X-ray diffraction (XRD) analysis by vapor diffusion of diethyl ether into a concentrated 

MeCN solution (see Figures S26-S27). Single crystals of the new complexes 3 and 4 suitable 

for XRD analysis were obtained with similar conditions (see Figures S28-S30). The 

expected atomic connectivity and fac-tricarbonyl geometry were confirmed in each case. 

While the donor strengths of py and bpy are similar (both molecules are conjugated imines 

with roughly the same electronic character), the average Mn─N bond distance in 5 
(2.096(8) å) is significantly longer than that found in the bipyridyl complexes 3 or 4 
(2.051(4) and 2.039(6) å, respectively), indicating a weaker interaction of the independent 

pyridyl rings in the (py)2 complex compared with bpy. Eliminating conjugation between the 

rings also pushes the π* orbital of py to higher energy and shifts the MLCT band of 5 to 

shorter wavelength. However, even with the simultaneous blue shift of the MLCT band and 

weaker donation by pyridine, we do not observe a distinct d-d transition in the absorption 

spectrum of 5. On the other hand, it is interesting to note the presence of a shoulder band 

near 390 nm in the absorption spectra of all four diimine complexes (Figure 1), as well as 5; 

this band could be consistent with the presence of an overlapping d-d feature at higher 

energy than the observed lowest-energy MLCT bands.

Considering all of these features, the ultrafast TA results show that we can selectively 

control the sensitivity of the initial CO release by tuning the orbital energy levels of the 

[Mn(CO)3Br(Rbpy)] complexes based on ligand substitution. Selectively controlling the loss 

of a CO ligand at the femtosecond timescale can lead to improved catalysts and more 

efficient photo-CORMs. On one hand, preventing CO release would give more stable 

catalysts, and on the other hand, complexes with tunable reactivity could serve as model 

compounds for regulating the therapeutic release of CO.

Secondary reactivity following CO loss

The CO release step is only the beginning of a more complex speciation process for these 

Mn complexes. After CO release in MeCN, the resulting electron deficient five-coordinate 

species [(Rbpy)Mn(CO)2Br] quickly binds a ligand to regain a full 18 e− valence. Table 2 

shows that the time constants for solvent coordination (τ2) decrease markedly as the ligand 

becomes more electron withdrawing. Complexes with a more electron deficient Mn center 

due to the electron-withdrawing CF3bpy ligand (3) bind an acetonitrile more quickly than the 

complexes bearing electron-donating tBubpy (1) or Hbpy ligands (2).

In order to test the solvent dependence of the secondary reactivity occurring upon CO loss, 

we also measured the evolution of the TA spectrum of 2 in chloroform (CHCl3). Unlike 

MeCN, CHCl3 is not generally considered to be a coordinating solvent.43 Figure 4 shows 

that the evolution of the TA spectrum following MLCT excitation of 2 is very different in the 

two solvents. Specifically, the spectroscopic feature that appears on a picosecond timescale 

and is assigned as solvent-coordination in MeCN is completely attenuated in CHCl3, 

resulting in a broad and featureless spectrum that persists beyond the duration of our 

experiment.
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In both the cases of MeCN and CHCl3 as solvent, CO release exposes the coordinatively 

unsaturated, 16 e− metal center to the solvent. Although direct solvent coordination is 

suppressed in CHCl3, the electron-deficient, 5-coordinate complex is likely to be susceptible 

to other bimolecular reactions, possibly including oxidative addition of CHCl3 or hydrogen 

atom transfer from the solvent. The products from any of these reactions, or a combination 

of them, could be responsible for the broad, featureless TA spectrum that develops following 

excitation of 2 in CHCl3. Indeed, the reactivity of this complex in CHCl3 is consistent with 

recently reported transient absorption measurements for Mn tetracarbonyl complexes 

supported by anionic chelating ligands.44 However, regardless of the subsequent reactivity 

following solvent coordination, our results suggest that the feature that grows in at 100 ps in 

MeCN is likely a solvent coordinated species, and this event can be controlled based on the 

choice of solvent.

Conclusions

Mn(CO)3(Rbpy)Br complexes are stable in the absence of light, which allowed us to 

extensively characterize them using a variety of techniques. Transitions in the NMR, IR, and 

electronic absorption spectra are linearly correlated with the Brown (σ+), Hammett (σ), and 

Kubota (σ−) parameters, respectively, providing insight into how ligand substituents govern 

electronic properties at the metal center. In the presence of light, Mn(CO)3(Rbpy)Br 

complexes 1, 2, and 3 decompose via CO loss, with subsequent solvent coordination in 

MeCN or other reactions in CHCl3. Ultrafast TA spectroscopy revealed the previously 

unknown 5-coordinate and solvento intermediates in the photo-speciation process. Complex 

4 follows a different reaction path that is likely the result of a long-lived triplet excited state 

that does not undergo decay to a dissociative LF (d-d) state. The different behavior of 1-4 
illustrates how the reactivity and speciation of these complexes can be tuned by changing the 

electronic properties of the bidentate diimine ligand. Notably, as only limited computational 

modeling has examined the excited state electronic structure of Mn(CO)3Br(diimine) 

complexes,38,45 further experimental work combined with computational modeling would be 

useful in providing new insights into the speciation mechanisms operative during irradiation. 

Our ongoing experimental work aims to analyze the structure and electronics of the transient 

species generated upon irradiation using time resolved X-ray absorption and IR 

spectroscopies.

Experimental Section

Potential Hazards:

Working with carbonyl complexes poses a potential hazard of generating the colorless, 

odorless, tasteless, and acutely toxic gas carbon monoxide (CO). Work with carbonyl 

complexes should be carried out in a well ventilated fume hood and with use of a sensitive 

CO monitor. The synthesis of complexes 1-5 involves the displacement of two CO ligands, 

resulting in generation of a significant amount of CO during the reaction; this is especially 

true when working on larger scales, as has been done in the course of this work (hundreds of 

milligrams). Additionally, when complexes 1-5 are exposed to even low-intensity ambient 
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visible light, they readily undergo photolysis to release CO. Caution should always be 

exercised when working with metal-carbonyl complexes.

General Considerations:

Manganese pentacarbonyl bromide (98%, Beantown Chemical Co.), 2,2′-bipyrdiyl (bpy) 

(98%; Alfa Aesar), 4,4′-bis(tert-butyl)-bipyridine (tBu-bpy) (98%, Sigma Aldrich), 2-

chloro-4-trifluoromethyl-pyridine (98%; Oakwood Chemical), fuming nitric acid (90%, Alfa 

Aesar), and PCl3 (98%, Alfa Aesar) were used as received. 2,2′-bipyridyl-N,N′-dioxide46, 

4,4′-dinitro-2,2′-bipyridyl-N,N′-dioxide46, 4,4′-dinitro-2,2′-bipyridyl46 (dnbpy), 4,4′-

bis(trifluoromethyl)-2,2′-bipyridyl (CF3-bpy)47, Mn(CO)3Br(pyridine)248, 

Mn(CO)3Br(2,2′-bipyridyl)1, and Mn(CO)3Br(4,4′-bis(tert-butyl)-2,2′-bipyridyl)2 were 

prepared according to literature methods with minor modifications. If necessary, the ligands 

2,2′-bipyridyl, 4,4′-bis(tert-butyl)-2,2′-bipyridyl, and 4,4′-bis(trifluoromethyl)-2,2′-

bipyridyl can be sublimed (at ca. 80°C and 1 mTorr) if pre-purification is necessary.

Deuterated NMR solvents were purchased from Cambridge Isotope Laboratories; CD3CN 

was dried over molecular sieves. 1H, 13C, and 19F NMR spectra were collected with 400 or 

500 MHz Bruker spectrometers. Spectra were referenced to the residual protio-solvent signal 

in the cases of 1H and 13C.49 Heteronuclear NMR spectra were referenced to the appropriate 

external standard following the recommended scale based on ratios of absolute frequencies 

(Ξ).50 19F NMR spectra are reported relative to CCl3F. Chemical shifts (δ) are reported in 

units of ppm, and coupling constants (J) are reported in Hz.

All manipulations were done in dry N2-filled gloveboxes (Vacuum Atmospheres Co. 

Hawthorne, CA) or under a N2 atmosphere using standard Schlenk techniques unless 

otherwise noted. All solvents were of commercial grade and dried over activated alumina 

using a Pure Process Technology (PPT; Nashua, NH) solvent purification system prior to use 

and were stored over molecular sieves. All chemicals were from major commercial suppliers 

and used as received after extensive drying.

IR spectra were collected on a PerkinElmer Spectrum 100 FTIR spectrometer. UV-visible 

spectra were collected with an Ocean Optics FLAME-S spectrometer equipped with a DH-

Mini light source. Steady-state photolysis experiments were carried out using an Oriel HgXe 

arc lamp operating at 175 W and equipped with an Oriel Cornerstone 130 1/8 m 

monochromator accessory. For the experiments in which IR spectroscopic monitoring was 

used to examine the products of photolysis, an appropriate KBr-plate cell was charged with a 

17 mM solution of 2 in MeCN under inert atmosphere, and an initial IR spectrum was 

collected prior to irradiation. Subsequent short periods of irradiation (totaling 2, 5, 10, and 

15 min) with 415 nm light generated by the HgXe arc lamp operating at 175 W were 

followed in each case by collection of a new spectrum in order to examine evolution of the 

system over time. These spectra are given in Figure S24.

Elemental analyses were performed by Midwest Microlab, Inc. (Indianapolis, IN).

Single-crystal diffraction data were collected with a Bruker KAPPA APEX/II X-ray 

diffractometer. CCDC entries 1922040, 1922041, and 1922042 contain the supplementary 
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crystallographic data for this paper. These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

The transient absorption measurements used pump and probe pulses derived from the 800 

nm output of a 1 kHz regeneratively amplified Ti:sapphire laser (Legend Elite, Coherent). A 

portion of the laser fundamental pumped an optical parametric amplifier with two stages of 

nonlinear frequency conversion (TOPAS) to generate the visible pump pulses. The beam 

diameter at the sample was 160 μm with an energy of 800 nJ per pulse. The relative 

polarization was set to magic angle by rotating the pump pulses with a zero-order λ/2 wave-

plate. We used active background subtraction by passing the pump beam though a 

synchronized chopper wheel running at 500 Hz to block every other pump pulse. Broadband 

probe pulses with the desired wavelength range were generated by focusing a small fraction 

of the fundamental 800 nm laser light into a mechanically rotating CaF2 crystal. The sample 

is cycled through a flow cell with a path length of 0.5 mm. After passing through the sample 

the probe pulse is dispersed using a prism onto a 2069-element CCD array. Each TA 

spectrum is an average of 103 laser pulses per time delay.

Synthesis of Mn(CO)3(4,4′-bis(trifluoromethyl)-2,2′-bipyridine)Br (3):

To a 50 mL Schlenk flask equipped with a stir bar was added 4,4′-bis(trifluoromethyl)-2,2′-

bipyridine (0.0998 g, .342 mmol) in 50 mL of pentane. Then Mn(CO)5Br (0.0890 g, .324 

mmol) was added and the reaction was brought to reflux under an argon atmosphere. The 

reaction was monitored by 1H NMR until consumption of the starting material was observed 

(~ 6 hours). Once the reaction had reached completion the Schlenk flask was placed into a 

refrigerator at −20°C for 30 minutes. The resulting solid is then filtered off with a fritted 

glass funnel and washed with cold pentane to afford the title compound as an orange-red 

solid. Yield: 0.0801 g (48%). 1H NMR (400 MHz, CD3CN): δ 9.48 (d, 2H, 3JH,H = 5.8 Hz), 

8.77 (s, 2H), 7.91 (dd, 2H, 3JH,H = 5.8 Hz, 4JH,H = 1.8 Hz) ppm. 13C{1H} NMR (176 MHz, 

CD3CN): δ 185.5, 157.5, 156.4, 141.2 (q, 1JC,F = 35.3 Hz), 124.8, 123.9 (q, 4JC,F = 3.5 Hz), 

122.6, 121.4 (q, 4JC,F = 3.5 Hz) ppm. 19F NMR (376 MHz, CD3CN) δ 65.4 ppm. Electronic 

absorption spectrum (MeCN): 208 (32000), 224 (33000), 293 (10000), 374 (1800), 454 nm 

(1500 M−1cm−1). IR (THF): νC═o 2027 (m) (A′), and νC═o 1944 (m) (A″), νC═o 1923 

(m) (A′) cm−1. ESI-MS (positive) m/z: 471.9 (100%) (3-Br−+NCMe), 472.9 (23%), 474.0 

(11%); 430.9 (87%) (3-Br−), 431.9 (16%), 432.9 (2%); 429.0 (23%) (3-Br−-3CO+2NCMe), 

430.0 (4%); 402.9 (17%) (3-Br−-CO), 403.9 (3%); 388.0 (20%) (3-Br−-3CO+NCMe), 389.0 

(4%); 374.9 (22%) (3-Br−−2CO), 375.9 (4%); 346.9 (11%) ((3-Br−−3CO), (2%) (see Figure 

S15). Anal. Calcd. for MnC15H6BrF6N2O3: C, 35.25; H, 1.18; N, 5.48. Found: C, 35.20; H, 

1.24; N, 5.46.

Synthesis of Mn(CO)3(4,4′-dinitro-2,2′-bipyridyl)Br (4):

To a Schlenk flask equipped with a stir bar was added 4,4′-dinitro-2,2′-bipyridine (0.3761 

g, 1.53 mmol) and 50 mL of Et2O. Then Mn(CO)5Br (0.4005 g, 1.46 mmol) was added and 

the reaction was brought to reflux under an argon atmosphere. The reaction was monitored 

by 1H NMR until consumption of the starting material was observed (~ 12 hours). Once the 

reaction had reached completion the Schlenk flask was placed into a −20°C refrigerator for 

30 minutes. The resulting solid is then filtered off with a fritted glass funnel and washed 
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with cold Et2O to afford the title compound as a purple solid. Yield: 0.6409 g (95 %). 1H 

NMR (400 MHz, CD3CN): δ 9.58 (d, 2H, 3JH,H = 6.0 Hz), 9.21 (s, 2H), 8.29 (dd, 2H, 4JH,H 

= 6.0 Hz) ppm. 13C{1H} NMR (176 MHz, CD3CN): δ 158.1, 157.1, 156.3, 120.5, 118.2 

ppm. Electronic absorption spectrum (MeCN): 223 (1800), 245 (1400), 325 (800), 393 

(200), 510 nm (230 M−1 cm−1). IR (THF): νC═o 2027 (m) (A′), νC═o 1945 (m) (A″), 

vC═o 1927 (m) (A′) cm−1. ESI-MS (positive) m/z: 425.9 (100%) (4-Br−+NCMe), 426.9 

(17%), (3%); 411.0 (31%) (4-Br−−2CO+2NCMe), 412.0 (6%) 413.0 (1%); 384.9 (9%) (4-Br
−), 385.9 (1%), 386.9 (1%); 383.0 (51%) (4-Br−−3CO+2NCMe), 384.0 (9%); 369.9 (7%) (4-

Br−−2CO+NCMe), 370.9 (1%), 372.0 (1%); 368.0 (20%) (4-Br−-CO-2O+2H+NCMe), 

369.0 (3%) (see Figure S16). Anal. Calcd. for MnC13H6BrN4O7 (+1H2O): C, 32.32; H, 

1.67; N, 11.60. Found: C, 32.52; H, 1.41; N, 11.67.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Chart 1: 
Mn(CO)3(Rbpy)Br complexes 1-4.
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Figure 1: 
Electronic absorption spectra of 1, 2, 3, and 4 in MeCN (left). Hammett plot of MLCT 

energy in eV as a function of the σ− parameter (right). The best fit line in the Hammett plot 

reveals a correlation with R2 = 0.998, and a slope of −0.41 ± 0.01.
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Figure 2: 
Transient absorption spectra of 1, 2, 3, and 4 (top to bottom) in MeCN. Left panel shows 

spectral evolution, right panel shows the absorption change at a single wavelength. For 

reference, the ground-state absorption spectra are scaled by 1/10 and shown as grey lines.
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Figure 3: 
Schematic energy-level diagram illustrating how the change in Mn-CO bond length affects 

the curve crossing between MLCT and LF states. The barrier for adiabatic population 

transfer increases with decreasing MLCT energy across the series 1-4 (R = tBu, H, CF3, 

NO2).
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Figure 4: 
Transient absorption spectrum of 2 in CHCl3 (upper panel), and comparison of the kinetics 

at 575 nm for 2 in the coordinating solvent MeCN (blue markers) and in the noncoordinating 

solvent CHCl3 (red markers).
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Scheme 1: 
Proposed mechanism for the initial pathway leading to speciation for complexes 1-3.
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Table 1:

Hammett parameters of the ligand substituents and selected spectral parameters for complexes 1-4.

Compound Hammett
parameter

(σ−)

λ (nm, eV) ε (M−1 cm−1)

1 −0.13 412, 3.00 2426

2 0.0 415, 2.99 2288

3 0.65 457, 2.71 1502

4 1.27 510, 2.43 228
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Table 2:

Time constants for CO release (τ1) and solvent coordination (τ2) 
a

Compound τ1 (ps) τ2 (ps)

1 0.50 ± 0.10 39 ± 4

2 0.46 ± 0.10 30 ± 4

3 0.68 ± 0.20 18 ± 3

a
From global fits to the TA spectra for ~2 mM solutions of 1-3 in MeCN.
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