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Summary 26 

1. Energy pathways in stream food webs are often driven by allochthonous basal resources. 27 

However, allochthonous dissolved organic carbon (DOC) is generally viewed as a minor if not 28 

insignificant basal resource because much of the DOC pool comprises high molecular weight, 29 

recalcitrant compounds and is inefficiently incorporated into biomass. Nevertheless, there is 30 

increasing evidence that the relatively small, labile fraction of DOC may indeed fuel microbial 31 

activity to a level that stimulates productivity across multiple trophic levels, resulting in a 32 

“trophic upsurge.” Here, we tested the trophic upsurge hypothesis by subsidizing the labile DOC 33 

pool of an Alaskan boreal stream that had relatively high nutrient availability but low levels of 34 

naturally occurring DOC.  35 

 36 

2. We continuously added ecologically relevant (0.250 mg C/L, ~10% increase above ambient 37 

bulk DOC) concentrations of labile DOC (acetate-C) for 62 d to a treatment reach that was 38 

statistically indistinguishable in its channel form and chemistry from an upstream reference 39 

reach. We measured responses of periphyton production and biomass, whole reach metabolism 40 

and nutrient uptake, benthic invertebrate abundances, and juvenile salmonid (Dolly Varden, 41 

Salvelinus malma) abundance and growth.  42 

 43 

3. Measurements of basal ecosystem responses collectively indicated increased energy 44 

mobilization at the base of the food web in response to labile DOC addition. Periphyton bacterial 45 

production in the treatment reach was generally >1.5x reference reach values, and periphyton 46 

ash-free dry mass (AFDM), chl-a, and chl-a:AFDM were all greater in the treatment reach by the 47 

end of the study. Throughout dosing, ecosystem respiration was 1.3x greater in the treatment 48 
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reach and dissolved inorganic nitrogen uptake was greater in the treatment reach on eight out of 49 

nine measurements. 50 

 51 

4. Benthic invertebrate counts, dominated by Baetis spp. and Chironomidae, were ~4x greater 52 

after 28 dosing days and ~8x greater after 56 days in the upstream portion of the treatment reach. 53 

Abundance generally declined with increasing distance from the dosing station. Dolly Varden fry 54 

and parr age classes were nearly 2x more abundant in the upstream portion of the treatment reach 55 

than in any section of the reference reach and also declined with increasing distance from the 56 

dosing station. Further, Dolly Varden tagged with passive integrated transponders prior to the 57 

experiment had significantly higher instantaneous growth rates in the treatment reach than those 58 

recaptured in the reference reach.  59 

 60 

5. The strong consumer responses to small quantities of labile DOC mirrored significant 61 

treatment reach increases in basal ecosystem function and therefore demonstrated a response 62 

consistent with a trophic upsurge. Terrestrial DOC has historically been viewed as contributing 63 

little to metazoan consumers, instead modulating the influence of nutrients and being respired 64 

out of a disconnected microbial loop. Because we dosed the treatment reach with a relevant 65 

concentration of labile DOC, based on measurements in nearby peatland-draining streams, we 66 

suggest that terrestrial DOC deserves more attention as a basal resource for whole food webs, 67 

akin to nutrients fueling green (autochthonous) pathways.  68 

 69 

 70 

 71 
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Introduction 72 

Ecologists have long recognized that stream ecosystems use and transport significant 73 

quantities of terrestrial organic matter, the dominant form typically being dissolved organic 74 

carbon (DOC; Fisher and Likens 1973, Dahm 1981, Stanley et al. 2012). In comparison to lakes, 75 

however, relatively little work has been conducted at relevant temporal and spatial scales to 76 

determine the role that terrestrial and wetland (i.e., allochthonous) DOC plays in stream food 77 

webs, especially productivity. Much focus has instead been placed on stream ecosystem 78 

dependencies on inputs of the particulate fraction of this organic matter, such as leaf litter, which 79 

can indeed be a particularly significant resource (Wallace et al., 1999). Instead of being a key 80 

resource fueling ecosystem function, DOC is often relegated to the role of a “modulator” of 81 

aquatic ecosystem properties because it alters conditions such as light and pH for processes 82 

including primary production (Prairie, 2008; Stanley et al., 2012). In contrast, nutrients (e.g., 83 

nitrogen and phosphorus) are viewed as the “volume knob” directly controlling the magnitude of 84 

ecosystem processes and dominating how biotic ecosystem processes operate (Prairie, 2008). 85 

Part of this view stems from a large percentage of the terrestrial DOC pool being resistant to 86 

biological degradation on short timescales (Wiegner et al., 2005; Koehler et al., 2012). However, 87 

a portion of the DOC pool is in fact labile and readily used by heterotrophic microbial 88 

osmotrophs, especially bacteria (Dahm, 1981; Wiegner et al., 2005; Koehler et al., 2012).  89 

Stream consumer energy and biomass are supported to some degree by allochthonous 90 

DOC (Hall & Meyer, 1998; Collins et al., 2016a b; Neres-Lima et al., 2017), but limited 91 

evidence, especially experimental, exists to suggest that DOC is an important subsidy (i.e., 92 

increases consumer production) to stream invertebrate, fish, or other upper-level consumers 93 

(Polis, Anderson & Holt, 1997; Brett et al., 2017). Although bacteria and fungi upgrade DOC 94 
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into consumable biomass, bacteria and fungi contribute weakly to metazoan growth because they 95 

lack essential lipids (Guo et al., 2016). In contrast, autochthonous resources (e.g., diatoms) 96 

contain essential lipids, so some autochthonous resources are required for consumers relying on 97 

poor quality allochthonous resources such as DOC or leaf litter (Tanentzap et al., 2014; Guo et 98 

al., 2016; Crenier et al., 2017). Additionally, DOC incorporation into food webs is subject to 99 

heavy respiratory losses, such as low bacterial growth efficiency and bacterivorous grazing, so a 100 

large proportion of labile DOC assimilated by bacteria is likely never available for metazoan 101 

consumers (del Giorgio & Cole, 1998; Hall, Wallace & Eggert, 2000; Berglund et al., 2007; 102 

Lischke et al., 2017). Thus, allochthonous DOC may contribute little to stream consumer 103 

production. 104 

On the other hand, bacterivorous protists, which do produce lipids essential to metazoan 105 

growth, can upgrade the quality of terrestrial DOC-consuming bacteria, better supporting growth 106 

of higher trophic levels (Wiegner et al., 2015; Hiltunen et al., 2017); however, this increase in 107 

quality incurs respiratory losses of DOC (Findlay, 2010; Anderson, Pond & Mayor, 2017). 108 

Additionally, benthic primary production in all but the most closed canopy streams may be 109 

adequate to satisfy macroinvertebrate demands for essential lipids (Neres-Lima et al., 2017), 110 

allowing allochthonous inputs to supplement algal portions of diets. Whether DOC subsidizes 111 

metazoan consumers may depend on the quantity and quality of DOC available to microbes 112 

(Faithfull et al., 2011; Hitchcock et al., 2016; Hiltunen et al., 2017), but spatially and temporally 113 

appropriate experiments are needed to suggest to what degree environmentally relevant 114 

concentrations of DOC can subsidize stream metazoans. 115 

Whole-stream labile DOC additions have been used to examine the role of DOC in 116 

streams at spatial scales representative of whole ecosystem responses. Past continuous 117 
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enrichments lasting longer than one day consistently spurred respiration and nitrogen demand 118 

(Bernhardt & Likens, 2002; Johnson et al., 2012; Oviedo-Vargas, Royer & Johnson, 2013), and 119 

have even increased macroinvertebrate and fish abundances and production (Warren et al., 1964; 120 

Wilcox et al., 2005). While informative, these additions have been extreme in terms of dosing 121 

concentrations. Labile DOC is generally not more than 10% of the total stream DOC pool 122 

(Kaplan & Newbold, 2003; Berggren et al., 2010; McLaughlin & Kaplan, 2013). Yet, past 123 

additions have raised DOC concentrations between 50% and 2000%, at dosing concentrations up 124 

to 20 mg C/L. These concentrations more reflect labile DOC inputs from wastewater spills rather 125 

than concentrations typically observed across gradients of, e.g., natural or anthropogenic land 126 

cover (Stanley et al., 2012), as evidenced by frequently observed blooms of the “sewage 127 

bacterium” Sphaerotilus spp. during labile DOC enrichments (Warren et al., 1964; Bernhardt & 128 

Likens, 2002; Johnson et al., 2012). Similarly, Fuller et al. (2004) reported that their labile DOC 129 

enrichment of ~2 mg C/L (~50% increase above ambient) may have been detrimental to some 130 

macroinvertebrate taxa due to gill fouling by bacteria.  131 

Extreme labile DOC enrichments also unrealistically overpower energetic inefficiencies 132 

in trophic transfer through microbial pathways. They may load ecosystems toward complete 133 

bacterial dominance, detrimentally altering conditions or drowning out possible microbial 134 

interactions that may occur under more realistic dosing concentrations. For example, algal 135 

responses to increased labile DOC availability are often negative, likely because bacteria are 136 

excellent competitors for nutrients when they are not dependent on algal-derived DOC 137 

(Blomqvist et al., 2001; Bechtold et al., 2012). Responses to extreme enrichments may therefore 138 

misrepresent how streams respond to increases in DOC (except in extreme cases) or depend on 139 

allochthonous labile DOC. Whole-stream experiments using environmentally relevant 140 
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concentrations are necessary to answer questions about the role of labile DOC in stream 141 

ecosystems and how streams might respond to environmental changes such as browning or land 142 

use change (Carpenter, 1996, 1998; Monteith et al., 2007; Stanley et al., 2012; Solomon et al., 143 

2015; Weyhenmeyer et al., 2016). 144 

We added ecologically relevant concentrations of a labile form of DOC to an Alaskan 145 

boreal headwater stream that supports juvenile Dolly Varden, an anadromous fish in the family 146 

Salmonidae, to estimate how stream consumers depend on and respond to allochthonous DOC. 147 

We demonstrated in a companion paper that labile DOC addition subsidized stream microbes, 148 

increasing respiration, gross primary production, biofilm production, and whole-stream N 149 

demand, also presented here in the context of this study’s goals (Robbins et al., 2017). We 150 

expected this increase in basal ecosystem function to drive a “trophic upsurge” (sensu Tanentzap 151 

et al., 2014) of energy to invertebrates and fish. A trophic upsurge is a bottom-up food web 152 

effect, where additional inputs of allochthonous carbon increase heterotrophic carbon 153 

mobilization and production at the base of the food web (e.g., bacteria), resulting in greater 154 

biomass or production across all higher trophic levels (Tanentzap et al., 2014). A trophic upsurge 155 

is therefore subsidization of a food chain (Polis et al., 1997). We hypothesized that added labile 156 

DOC would increase densities of fast-growing, multivoltine benthic invertebrate taxa (e.g., 157 

chironomids). We also hypothesized that, if multivoltine taxa responded quickly, Dolly Varden 158 

fry (age 0+ fish that hatched following snowmelt in late spring) may survive at a higher rate in 159 

the treatment reach, translating into higher abundances. Further, we hypothesized that parr (age 160 

class 1+; individuals that overwintered for at least one year) would grow faster through increased 161 

abundance of invertebrates and conspecific fry, both of which contribute to their diets. 162 

 163 
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Methods 164 

Site information 165 

We conducted our experiment in 2013 on the western Kenai Peninsula of Alaska in a 166 

first-order tributary of the South Fork Anchor River, previously identified as SANC 1203 (King 167 

et al., 2012, Shaftel et al., 2012, Walker et al., 2012; 59.77974° N, 151.55518° W; Fig. 1 A&B). 168 

We selected SANC 1203 for this experiment for several reasons: (1) well-characterized 169 

catchment and water chemistry from previous studies, including cover estimates of wetlands (32 170 

%, largely discharge slope and riparian wetlands that export limited quantities of DOC; Shaftel et 171 

al., 2012, Walker et al., 2012, Whigham et al., 2012) and N2-fixing alder (12.6%;  Shaftel et al. 172 

2011, 2012); (2) relatively high nutrient availability, specifically PO4-P (~20-50 µg/L) related to 173 

volcanic deposition in the region and NO3-N (~200-500 µg/L) directly related to the alder 174 

(Shaftel et al., 2012; Callahan et al., 2017); (3) relatively low levels of ambient DOC (1.8 – 3.3 175 

mg/L at baseflow) when compared to peat-rich catchments nearby (10 – 20 mg/L, Walker et al., 176 

2012); (4) similar channel width (1.4 m), depth (0.12 m), substrate (gravel-cobble, woody 177 

debris), riparian vegetation (bluejoint grass: Calamagrostis canadensis) and gradient (5%) over a 178 

distance of sufficient length to delineate reaches that would be comparable prior to any 179 

experimental manipulation; (5) representative of headwater streams throughout the Kenai 180 

lowlands (Whigham et al., 2012) and other boreal regions; and (6) moderate to high densities of 181 

juvenile Dolly Varden (Salvelinus malma, Fig. 1C), the most widespread and abundant salmonid 182 

in headwater streams in this region (King et al., 2012). 183 

 184 

Experimental design 185 



   
 

10 
 

We used upstream reference and downstream treatment reaches to assess the effect of 186 

labile DOC on stream metazoan consumers. We chose a reach length of 75 m to include 187 

sufficient length to represent reach heterogeneity (e.g., multiple riffle-pool sequences), but which 188 

also approximated the length over which the labile DOC (acetate) addition might be removed 189 

based on median acetate uptake velocities from a whole-stream DOC uptake synthesis (Mineau 190 

et al., 2016). The paired experimental reaches were identified based on similarity in width, 191 

depth, slope, sinuosity, dominant substrate, riparian topography and vegetation, and water 192 

chemistry, resulting in an 80 m intermediate reach that was not part of the study. Gravel and 193 

small cobble dominated each reach, and discharge was never measured as more than 4% (0.6 194 

L/s) different between reaches. Wetted width (reference: 1.49 ± 0.26 m; treatment: 1.30 ± 0.30 m 195 

(mean ± SD)), depth (reference: 0.12 ± 0.07 m; treatment: 0.12 ± 0.07 m), channel slope 196 

(reference: 5.3%; treatment: 4.9%) and sinuosity (reference: 1.07; treatment: 1.06) were 197 

statistically indistinguishable between reaches. Dissolved inorganic nitrogen (DIN, almost 198 

entirely NO3-N) at the tops of each reach were typically within 10 µg/L of each other. Similarly, 199 

PO4-P was never more than 3 µg/L different between the tops of the reaches, and background 200 

DOC was highly comparable between reaches (usually <<0.2 mg/L different; see Robbins et al., 201 

2017 for detailed nutrient and DOC data). Sampling locations within each reach were designated 202 

by meters from the top of the reference (R) and treatment (T) reaches, and weekly water 203 

chemistry measures for DOC, DIN, and PO4-P were taken at the 0, 37.5, and 75 m points in each 204 

reach, with an additional 10 m sampling point in the treatment reach (i.e., T10) 205 

DOC was dosed as a solution of sodium acetate (C2H3NaO2) from 25 June 2013 (dosing 206 

day 1) through 25 August 2013 (day 62). Acetic acid (dissociated acetate in H2O) is a product of 207 

anaerobic wetland and terrestrial processes and so represents a common DOC substrate for 208 
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microbes in boreal streams (Berggren et al., 2010). We used a model QBG pump (Fluid 209 

Metering Inc., Syosset, New York, USA) to deliver dosing stock (75 g/L as C) from a 100-L 210 

covered stock tank to the top of the treatment reach (Fig. 1B). Acetate was dosed at a rate of 3.6 211 

mL/min, resulting in a 62-d mean concentration of 250 µg/L acetate-C, about 10% of 212 

background DOC in the study stream (mean 62-d DOC, reference reach = 2.52 mg/L). We chose 213 

this acetate dosing concentration to mimic labile DOC concentrations found in peatland streams 214 

of the western Kenai (~1-1.5 mg/L labile DOC out of 8-13 mg/L total DOC, RDD unpublished 215 

data), noting that acetate is part of the most bioavailable fraction of the labile DOC pool and 216 

lacks the light attenuation potential of natural DOM mixtures (see Discussion). However, 250 217 

µg/L is representative of acetic acid-C concentrations measured in other boreal streams 218 

(Berggren et al., 2010). 219 

Weekly estimates of dosed acetate-C, based on discharge fluctuation and confirmed 220 

dosing rates, were 142 to 324 µg/L (median= 264 µg/L, mean=250 µg/L). Concentrations 221 

fluctuated proportionately with discharge, which ranged from 13.9 L/s to 31.7 L/s during the 222 

dosing period. We did not attempt to maintain a constant dosing concentration of acetate-C 223 

because DOC naturally fluctuates with discharge, typically being diluted by surface-water runoff 224 

in these headwater streams (RSK, unpublished data). We estimated the flux of dosed C into the 225 

treatment reach using the change in total DOC concentration from the top of the reach (based on 226 

known discharge, dosing rate, and background DOC concentrations [T0]) to the bottom of the 227 

reach (T75; data in Robbins et al., 2017). DOC was measured using a Shimadzu TOC-VCSH 228 

(Tokyo, Japan). Sample loss between collection and analysis precluded direct measurement of 229 

acetate concentrations.  230 

 231 
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Basal ecosystem response 232 

Basal ecosystem responses and detailed methods presented in this study, except 233 

periphyton biomass and its methods, were documented in Robbins et al. (2017). In addition to 234 

periphyton biomass, we present these basal responses (and limited methods) here to demonstrate 235 

an experimental ecosystem response to labile DOC from the bottom-up (i.e., increased 236 

ecosystem energy mobilization). However, our goal is not to trace the fate of DOC in terms of a 237 

detailed ecosystem budget or determine the relative contributions of different pathways by which 238 

energy was transferred to higher trophic levels, which go beyond our data.  239 

Ecosystem metabolism was measured using the one-station diel oxygen change method 240 

with propane evasion to correct for reaeration (Bott, 2006). Dissolved O2 concentrations were 241 

logged with YSI EXO1 sondes (YSI, Inc., Yellow Springs, Ohio, USA) placed at the 242 

downstream end (75 m) of each reach on dosing days -4 - 0 (pre-dose), 9 - 13, 23 - 27, and 37 - 243 

41. Daily gross primary production (GPP) was calculated as the area under the curve of corrected 244 

oxygen change above the mean nightly respiration rate, measured using the rate of decline in 245 

oxygen at night. Daily ecosystem respiration (ER) was calculated by scaling the nightly 246 

respiration rate to 24 hours. Night periods were determined by nearby NOAA station (Homer, 247 

AK) 0 PAR measurements. 248 

Dissolved inorganic nitrogen (DIN) and PO4-P net uptake were calculated each week in 249 

each reach following Webster & Valett (2006). We measured ambient nutrient concentrations in 250 

triplicate at each sampling location once weekly during the study (dosing days -21, -14, -6, 1, 8, 251 

14, 22, 28, 36, 42, 50, and 56). We regressed the log-transformed nutrient concentrations against 252 

distance downstream from the top of a reach (0, 37.5, 75, plus a 10 m point for the treatment 253 

reach), where the inverse slope of the regression is the uptake length (Sw). To standardize for 254 
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differences in reach characteristics, we used the depth (z) and stream velocity (u) to calculate 255 

uptake velocity (Vf) for each nutrient as Vf = uz/Sw. Vf is therefore a measure of nutrient demand 256 

that is comparable across stream reaches.  257 

Bacterial biomass production (BBP) and photosynthesis (PS) of periphyton were 258 

measured following methods in Scott et al. (2008). Seven medium-sized gravel rocks were 259 

collected at R10 and T10 on dosing days 14, 28 and 56. Gravels were incubated with site water 260 

from each reach in 60 mL jars, with one formalin killed control, three foil-wrapped ‘dark’ 261 

incubations and three unwrapped ‘light’ incubations. Jars were placed under grow lights (300-262 

350 μE m-2 s-1) in a water bath representative of ambient stream temperatures (10 - 12°C) in the 263 

lab in Homer, AK. Periphyton microbial activity was measured by injecting labelled substrates 264 

into each jar. PS was measured with 14C-bicarbonate and BBP with 3H-leucine. After two hour 265 

incubations, each jar was killed with formalin. Radioactivity of periphyton in each sample was 266 

measured by scintillation counting and then related to incorporation of the labelled substrate as a 267 

measurement of PS or BBP. Rates of substrate incorporation were standardized to rock surface 268 

area. 269 

Periphyton biomass was measured as both ash-free dry mass (AFDM) and algal pigment 270 

(chl-a) following Biggs & Kilroy (2000). We collected 3-5 large gravel rocks from each 271 

sampling location (excluding T0) in each reach on days -9, 28, and 56. Periphyton was scraped 272 

from each rock with a toothbrush into a slurry of known volume. For AFDM, an aliquot of 273 

periphyton slurry was filtered onto a pre-ashed, pre-weighed glass fiber filter (0.7 µm) and dried 274 

for 48 hours at 60 °C. Dried filters were weighed and then ashed at 500 °C for four hours and 275 

weighed again. AFDM was determined by subtracting the ashed mass from the dry mass. For 276 

chl-a, an aliquot of slurry was filtered onto another glass fiber filter, placed in a vial with EtOH, 277 
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heated in a water bath at 85 °C until boiling, and left at room temperature in the dark overnight. 278 

We measured absorbance of the chlorophyll extract on a Lambda 35 UV/Vis spectrophotometer 279 

(Perkin Elmer, Inc., Waltham, Massachusetts, USA). Absorbance was converted to chl-a 280 

concentration using known equations (Biggs & Kilroy 2000). We standardized AFDM and chl-a 281 

to rock surface area. 282 

 283 

Benthic invertebrate sampling 284 

We sampled benthic invertebrate assemblages by placing five Hester-Dendy (HD) 285 

artificial substrate samplers (0.16 m2 sampling area; Wildco, Buffalo, New York, USA) at 286 

sampling locations 5-10 m, 35-40 m, and 70-75 m downstream from the top of each reach (15 287 

samplers per reach). We placed HDs at 5-10 m, rather than 0-5 m, to ensure adequate solute 288 

mixing had occurred before water reached the HDs. HD samplers allowed us to estimate 289 

invertebrate response to DOC additions on a standardized substrate similar to the woody debris 290 

and submerged riparian roots found throughout both stream reaches without disturbing the 291 

benthos. We considered alternative quantitative methods (e.g., Surber, Hess samplers), but we 292 

deemed them excessively disruptive to other key benthic measurements given the relatively 293 

small size of the stream and the fact that we already had disrupted the substrate on day (-)17 294 

during backpack electrofishing (see next). 295 

We secured HDs to cobbles with zip-ties and distributed them longitudinally (~1 m apart) 296 

along the thalweg at each sampling location. We deployed HDs on dosing days 1 - 28, and days 297 

29 - 56. We did not attempt to deploy samplers pre-dosing because 1) we had disturbed substrate 298 

by wading in the stream during electrofishing and 2) there was not sufficient time between spring 299 

runoff and the first day of dosing for colonization of HDs, as 28 d is the standard deployment 300 
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time for HDs (King & Richardson, 2008).  HD samples were collected by gently lifting the HD 301 

off the stream bottom and simultaneously placing a 250 µm mesh sieve under the submerged HD 302 

prior to removal from the water. HDs were then put into a large storage bag and immediately 303 

stored on ice. Upon return to the laboratory, invertebrates were removed from disassembled HD 304 

samplers with a toothbrush while rinsing with tap water into a 250 µm sieve and stored in 5% 305 

buffered formalin (v/v) for later identification. Due to loss of sample during transport, some 306 

within-sampling location replication was lost on day 28, with a minimum of two HDs per 307 

sampling location (all but one location had N=3 or more; Table S1). Individual invertebrates 308 

were counted and identified to the lowest practical taxonomic unit, typically genus. 309 

Chironomidae (non-biting midges) and Naididae (small Oligochaeta) were identified at the 310 

family level, whereas Amphipoda (scuds), Hydrachnidia (water mites), Nemata (nematodes), 311 

Ostracoda (seed shrimp) and Turbellaria (flatworms) were identified at these coarser levels of 312 

taxonomic classification. 313 

 314 

Salmonid sampling 315 

We sampled juvenile Dolly Varden (Salmonidae: Salvelinus malma) by three-pass 316 

electrofishing with a Smith-Root LR-24 (Smith-Root, Inc., Vancouver, WA, USA) in three 317 

subsections of each reach (0 - 25 m, 25 - 50 m, 50 - 75 m) on dosing days (-) 17 and 62. Each 318 

subsection was separated at the top and bottom with a block net (4 mm mesh) that was secured 319 

tightly to the benthos and stream bank with stakes, and weighted down with large cobbles to 320 

eliminate any gaps. We checked block nets for trapped fish at the end of each of the 3 passes. 321 

Captured fish were placed in an aerated bucket, anesthetized with 70 mg/L tricaine methane 322 

sulfonate (MS-222), measured for fork length and weight (g), and released. We expressed fish 323 
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abundance as total observed counts and not as densities (no./m2) because reaches were identical 324 

in length and not statistically different in mean width (reference: 1.49 ± 0.26 m; treatment: 1.30 325 

± 0.30 m). Further, we did not use depletion models to extrapolate observed counts per pass to 326 

total fish counts because these models are biased and unreliable (Rosenberger & Dunham, 2005).  327 

Parr (year 1+ or older) captured on day (-)17 were tagged with 8.4 mm passive integrated 328 

transponder (PIT) tags (Biomark MiniHPT8, Boise, ID, USA; Bailey et al. 1998, Chittenden et 329 

al. 2008). We tagged 39 parr from each reach (78 total), and PIT tags were used for mark-330 

recapture estimation of growth rate.  331 

 332 

Data analysis 333 

We report response ratios for each basal ecosystem response as the treatment reach mean 334 

divided by the reference reach mean, and tested for reach differences between those means. Error 335 

in DIN and PO4-P Vf estimates was determined by propagating slope error from the regression 336 

models to Vf and calculating 95% confidence intervals (CIs). We concluded that Vf was 337 

significantly different between reaches on a given date when the 95% CIs for the slope 338 

differences did not overlap zero. Between-reach differences in GPP and ER were determined by 339 

treating daily measurements as replicates because our methodology produced no error estimate 340 

for daily metabolism rates. Thus, we compared GPP and ER rates between reaches within 341 

measurement periods (e.g., days 9 – 14) using generalized least squares (gls) modelling that 342 

included a variance weighting function (varIdent) to allow variance heterogeneity by date range 343 

(Zuur et al., 2009). We tested for differences in AFDM, chl-a, and chl-a:AFDM using random 344 

effects models that also included variance weighting functions (varIdent) by sampling date. We 345 

treated sampling location as a random effect after observing that sampling location was not 346 
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meaningfully related to within-reach AFDM, chl-a, and chl-a:AFDM means or variances (i.e., no 347 

clear pattern relating periphyton biomass to within-reach location). Inclusion of random effects 348 

and variance weighting was based on model comparison using AIC and analysis of model 349 

residuals. We performed generalized least squares (gls) and mixed modelling (lme) in R package 350 

nlme (Pinheiro et al., 2019). 351 

We tested for treatment and sampling location (distance) effects (e.g., gradient response) 352 

on counts of total invertebrates and the taxa representing 95% of the total abundance (N = 5 taxa) 353 

by fitting generalized linear models (GLMs) with counts on each HD as the response variable, 354 

with date nested within a reach*distance interaction. We hypothesized that there would be no 355 

effect of distance in the reference reach, whereas, if added DOC had any effect on abundance, 356 

we would also observe the highest values at 5-10 m and a decline in abundance down the length 357 

of the treatment reach. Such a gradient response is considered strong evidence for attributing 358 

effects of experimental manipulations in unreplicated experiments (Barley & Meeuwig, 2017). 359 

Based on the distribution of taxon counts, overdispersion, residual deviance and AIC for each 360 

model (compared to simpler models), we specified GLMs with negative binomial error families 361 

and log link functions (Zuur et al., 2009). We chose not to employ multivariate analyses (e.g., 362 

mvabund; Wang et al., 2012) because we were most interested in detecting increases in 363 

abundance of dominant taxa that could fuel growth and abundance of Dolly Varden rather than 364 

changes in species composition, which we did not expect. Hester-Dendy samples were replicates 365 

by distance (5 m, 37 m and 75 m), reach (reference, treatment), and date (dosing days 28 and 366 

56). Invertebrate GLMs were fit using the glm.nb function in the MASS package (Venables & 367 

Ripley, 2013) in R (version 3.4.3, R Core Team, Vienna, Austria). Post-hoc multiple 368 

comparisons were performed using pairwise contrasts with Tukey correction (emmeans package; 369 
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Lenth 2018). No mean counts for any modelled taxa were significantly different between 370 

reference reach locations (all P>0.05), so we presented treatment/reference post-hoc contrasts 371 

only between corresponding reference and treatment locations (e.g., T5 and R5) for simplicity. 372 

That is, reference reach counts were statistically homogeneous for modelled taxa, so it is roughly 373 

equivalent to compare the counts at a treatment reach location to counts at any reference reach 374 

location. 375 

We tested for differences in Dolly Varden fry (age 0+) and parr (age 1+) abundances 376 

between reaches using chi-squared tests, where the ‘expected’ abundance was an even 377 

distribution of the observed total abundance across both reaches (i.e., a 50-50 split). We also 378 

tested for differences in size-frequency distributions by reach using Kolmogorov-Smirnov tests 379 

and visualisation of empirical cumulative distribution functions. 380 

Instantaneous growth rates (IGRs) were used to quantify the rate of change of mass for 381 

each Dolly Varden parr that was recaptured in the same reach it was initially tagged prior to 382 

dosing. Only one recaptured individual migrated between reaches (moved from reference to 383 

treatment). IGRs were calculated as [ln(Wf)-ln(Wi)]/t, where Wf is weight (g) at recapture, Wi is 384 

weight (g) at initial capture and t is growth period (79 days for all recaptured individuals; 385 

Hopkins 1992). Because we expected Dolly Varden growth rates to decrease with increasing 386 

size, we used IGRs to provide a comparable measure of growth across differently sized 387 

individuals (Elliott, 1975; Hopkins, 1992). We suspected that individual growth responses could 388 

also be size-dependent (e.g., gape can influence prey size), so we used ln(Wi) as a covariate in 389 

ANCOVA regressions (IGR predicted by Reach*ln(Wi); lm function in R) to control and test for 390 

differences in initial weight by reach. We interpreted a significant Reach factor and/or 391 
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Reach*ln(Wi) interaction as evidence for differences in salmonid growth between reference and 392 

treatment reaches. 393 

For all statistical hypothesis tests, we set α=0.05. 394 

  395 

Results 396 

DOC Flux 397 

Our nominal dosing concentration, chosen based on observed concentrations of labile 398 

DOC in nearby peatland-draining streams, resulted in the addition of 20 kg acetate-C to the 399 

treatment reach over the course of the experiment. Changes in DOC concentration through the 400 

treatment reach indicated total removal of added DOC on most dates, and substantially more 401 

than the dose was taken up on some dates suggesting a ‘priming’ of the ambient DOC pool (see 402 

Robbins et al., 2017). Thus, we estimate that 20-25 additional kg DOC were taken up in the 403 

treatment reach compared to the reference reach. 404 

   405 

Basal ecosystem 406 

Each basal ecosystem response (BBP and PS were not measured pre-dosing) was largely 407 

similar across reaches pre-dosing, conforming to the similarity in reach physicochemical 408 

characteristics, and most responded to DOC addition at some point during the study (Table 1). 409 

Throughout DOC addition, ER was ~1.3x higher in the treatment reach relative to the reference 410 

reach, whereas treatment GPP did not respond significantly through any measurement period 411 

(this does not exclude positive or negative responses on particular days within each measurement 412 

period). BBP was ~2.6x greater in periphyton in the treatment reach on days 16 and 56, but not 413 

significantly different on day 30. PS was never significantly different between reaches. 414 
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Periphyton AFDM and chl-a were 2.5 and 18.5x greater, respectively, in the treatment reach on 415 

day 56, but similar on dosing days -9 and 28. Similarly, the ratio of chl-a:AFDM in periphyton 416 

was similar between reaches on dosing days -9 and 28, but 6.7x greater in the treatment reach on 417 

day 56. DIN Vf was generally 1.5 to 3.5x greater in the treatment reach during dosing, with eight 418 

out of nine sampling dates having significantly greater DIN Vf with DOC addition. PO4-P Vf was 419 

never significantly different between reaches, even after dosing, and was rarely ever measurable 420 

in either reach.  421 

 422 

Invertebrate response 423 

 Early instar or young larvae of just a few taxa dominated the invertebrate communities on 424 

the HD samplers. By far, Baetis spp. (Ephemeroptera: Baetidae; a small, multivoltine mayfly 425 

nymph) and Chironomidae larvae (Diptera; non-biting midges) were the most abundant taxa, 426 

comprising 46% and 39% of total benthic invertebrates, respectively (Table S1). Naididae 427 

(Oligochaeta, freshwater worm), Zapada nymphs (Plecoptera: Nemouridae; a uni- or semi-428 

voltine stonefly), and Cinygmula spp. (Ephemeroptera: Heptageniidae; a univoltine mayfly) 429 

nymphs comprised 5, 4%, and 1% of the total benthic invertebrates, respectively. Chironomidae 430 

was 80% of the total abundance on day 28, Zapada comprised 7% of the total abundance on day 431 

28, with no other taxa comprising more than 2% of the day 28 total (Table S1). Small size-class 432 

individuals comprised a slightly larger proportion of the counts in the treatment reach on day 28 433 

(Reference: 84%, treatment: 88%) and day 56 (reference: 93%, treatment: 97%).  434 

Modelling of the taxa comprising 95% of benthic invertebrate abundance suggested 435 

generally positive responses to the DOC addition. Both Baetis and Chironomidae strongly 436 

responded to the DOC addition. Baetis nymphs exhibited significant gradient effects on both 437 
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days 28 and 56, where the treatment response to DOC addition was greatest near the dosing 438 

station (T5) and weaker downstream (Fig. 2). Baetis were estimated as ~75x more abundant at 439 

T5 than R5 (P=0.016), which had only one individual, on day 28. On day 56, Baetis nymphs 440 

were 16.5x and 8.5x more abundant at T5 and T37.5 than the corresponding reference reach 441 

locations, respectively (both P<0.0001), with no significant response at T75 (Fig. S2). 442 

Chironomidae larvae generally had higher abundances at T5 compared to T37.5 and T75 on both 443 

sampling dates, suggesting a slight gradient effect (Fig. 2). On day 28, Chironomidae were 5x 444 

and 3.5x more abundant at T5 and T75 compared reference reach locations (both P<0.01). On 445 

day, 56, Chironomidae were 5.6x and 4.7x more abundant at T5 and T37.5 than the 446 

corresponding reference reach locations (both P<0.0001). Throughout the study, Naididae were 447 

2.5x greater in the reference reach compared to the treatment reach (P<0.0001), with no effect of 448 

sampling location (Table S2). Zapada spp. responded positively to DOC addition only on day 28 449 

at T37.5 (P=0.029, Table S2). Cinygmula spp., however, did not respond significantly to the 450 

DOC addition (Table S2). Other identified taxa were generally more abundant in the treatment 451 

reach, and no identified taxon was considerably less abundant in the treatment reach compared to 452 

the reference reach (Table S1).  453 

The response of the total benthic invertebrate community on the HDs corresponded 454 

strongly to the response of the dominant taxa (Baetis and Chironomidae), and overall suggested a 455 

strong gradient response to the DOC addition, as well (Table S2). On day 28, total invertebrates 456 

were ~4x more abundant at T5 than R5 (P<0.001) and 3x greater at T75 than R75 (P=0.013). On 457 

day 56, total invertebrates were 7.7x greater at T5 (P<0.0001), 4.8x greater at T37.5 (P<0.0001), 458 

and 2.7x greater at T75 (P=0.0092) than corresponding reference reach locations.  459 

 460 
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Fish response 461 

 Dolly Varden abundances for both parr and fry age classes were highly similar between 462 

reaches pre-dosing (fry χ2=0.129, P=0.719; parr abundances identical between reach), with low 463 

numbers of very small fry in both reaches because they had recently hatched and were either just 464 

emerging or were too small to capture by electrofishing (Fig. 3). There were 39 parr in each 465 

reach during pre-dosing, and 25 and 21 fry in the reference and treatment reaches, respectively 466 

(Table 2). On day 62, both reaches had considerably higher parr and fry abundances due to 467 

immigration and fry emergence through the growing season; however, both fry (χ2=36.23, 468 

P<0.0001) and parr (χ2=11.63, P=0.0007) abundances were ~2x greater in the treatment reach 469 

compared to the reference reach (Fig. 3). Both fry and parr qualitatively followed a gradient 470 

response in the treatment reach, with the total abundance declining from 174 fish in the top 471 

subreach (0 – 25 m) to 104 fish in the bottom subreach (50 – 75 m). Total Dolly Varden in the 472 

reference subreaches ranged from 81 – 86 (Table 2). Length-frequency cumulative distribution 473 

functions for each age class and date were statistically similar between reaches (Fig. 3, KS-test, 474 

all P>0.2), indicating that we did not detect a difference in overall parr or fry lengths between 475 

reaches. 476 

We recaptured 39 of the 78 Dolly Varden parr that were captured and PIT tagged pre-477 

dosing. Twenty and 19 parr were recaptured in the treatment and reference reach, respectively. 478 

Except one individual that migrated from the reference reach to the treatment reach (excluded 479 

from growth analysis), each individual recaptured at the end of the study was found in the reach 480 

where it was initially captured. Young Dolly Varden tend to have high reach fidelity (Bryant et 481 

al., 2009). We therefore calculated IGRs for 19 individuals in each reach.  482 
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After controlling for initial size, there was a highly significant reach effect on Dolly 483 

Varden growth (Fig. 4, Reach*log Initial Weight interaction P=0.006). Individual fish that were 484 

larger than average prior to dosing were more likely to have higher growth rates in the treatment 485 

reach than in the reference reach. The smallest individuals prior to dosing had similar IGRs by 486 

reach (Fig. 4). IGR for individuals in the reference reach significantly decreased with initial size. 487 

 488 

Discussion 489 

Our study demonstrates that environmentally relevant concentrations of labile DOC can 490 

subsidize stream consumers, a result consistent with the trophic upsurge hypothesis (Tanentzap 491 

et al., 2014). Metabolism, nutrient spiraling, and periphyton biomass (basal responses) showed 492 

increased energy mobilization and acquisition of nutrients into the base of the food web in 493 

response to labile DOC addition (Robbins et al., 2017), which elicited strong increases in 494 

invertebrate abundance, fish abundance, and some fish growth. This result is particularly 495 

compelling because DOC is generally thought to be inefficiently transferred to metazoan 496 

consumers, with much of it being respired rather than supporting biomass production of basal 497 

energy sources needed to fuel a trophic upsurge (Faithfull et al., 2011; Hitchcock et al., 2016; 498 

Hiltunen et al., 2017). Although a detailed C mass balance and stable isotope tracing would yield 499 

useful mechanistic information regarding our experimental responses, we did not measure stable 500 

isotope compositions and are unable to estimate invertebrate masses or inputs of C in the form of 501 

drift and migration of invertebrate and fish biomass, and thus cannot calculate in situ production 502 

rates. However, the fact that we observed substantial increases in macroinvertebrate and fish 503 

consumers, as well as fish growth rates, implies that even small concentrations of labile DOC 504 

could supply an appreciable quantity of energy (C) to stream consumers.  505 
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Benthic invertebrates were ~8x more abundant near the dosing station in comparison to 506 

any reference reach sampling locations at the end of the study (August). Bacterial C, derived 507 

from labile DOC, can be a dominant C source for stream macroinvertebrate consumers (Hall & 508 

Meyer, 1998; Collins et al., 2016b), and the few labile DOC addition studies including 509 

macroinvertebrate responses have shown that labile DOC can subsidize macroinvertebrate 510 

populations, albeit at very high dosing concentrations (Warren et al., 1964; Fuller et al., 2004; 511 

Wilcox et al., 2005). The relatively moderate treatment responses in July (day 28) compared to 512 

August (day 56) suggest a time lag for the system to translate increased microbial production 513 

into increased invertebrate abundances, or for invertebrates to respond reproductively. Large 514 

increases in Baetis spp. and Chironomidae densities in the treatment reach supported our 515 

hypothesis that small-bodied, multivoltine taxa would display the strongest responses to the C 516 

addition. More numerous populations of multivoltine taxa in the treatment reach might have 517 

translated increased survivorship or growth from a bolstered resource base to increased 518 

reproductive output, because the common uni- or semi-voltine taxa (Zapada spp. and Cinygmula 519 

spp.) did not strongly increase in response to labile DOC addition. The increase in Baetis spp. 520 

and Chronomidae was dominated by small size-class individuals, implying increased 521 

survivorship of recently hatched nymphs/larvae, rather than strong immigration from upstream 522 

drift. Further, the Chironomidae were dominated by Orthocladiinae and tube-making Tanytarsini 523 

(RSK, personal observation), which do not drift much. 524 

Substantial increases in macroinvertebrate abundances led to a near doubling of Dolly 525 

Varden abundance nearest the dosing station. This increased carrying capacity for Dolly Varden, 526 

particularly fry, was likely sustained by the considerable numbers of Baetis spp. and 527 

Chironomidae. Dolly Varden feed on both drifting and benthic individuals of these taxa (Nakano 528 
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& Furukawa-Tanaka, 1994; Nakano, Miyasaka & Kuhara, 1999). Juvenile salmonid production 529 

was nearly seven times greater in labile DOC-enriched reaches of an experimental stream in one 530 

other study (Warren et al., 1964). That study employed screens to avoid movement of yearling 531 

trout stocked at low densities (compared to the densities found here), whereas our study reaches 532 

were unconstrained and fish were free to move into, throughout or between reaches. Dolly 533 

Varden in our study also congregated closer to the DOC source, where invertebrate counts were 534 

highest, suggesting that the increased macroinvertebrate abundances sustained greater Dolly 535 

Varden abundance. Increased Dolly Varden abundance may have been due to both increased 536 

migration to food-rich habitat and increased survivorship from a bolstered resource base.  537 

In that light, parr growth improved in the treatment reach, specifically in initially larger 538 

individuals. Increased salmonid growth suggests a strong subsidy effect of labile DOC at the top 539 

trophic level for this system. Larger individuals may better exploit the enhanced invertebrate 540 

resource base, possibly outcompeting smaller individuals for space and food (Abbott, Dunbrack 541 

& Orr, 1985). Wipfli et al. (2003) also suggested growth rates of coho (Oncorhynchus kisutch) 542 

fry in experimental streams enriched with salmon carcasses were size dependent due to a 543 

dominance hierarchy where larger fry could acquire food faster than smaller fry. Similarly, larger 544 

parr might have had larger mouth gape to cannibalize the abundant conspecific fry in the 545 

treatment reach as an additional, highly nutritious food source. Other juvenile salmonids prey on 546 

salmonid fry, and this predation can increase as the predators increase in size relative to the fry, 547 

suggesting that larger individual fish can exploit the availability of larger food items (Ruggerone 548 

& Rogers, 1992; Pearsons & Fritts, 1999; Nowak et al., 2004). 549 

Our study was designed to experimentally simulate one role of a specific landscape 550 

element (peatlands) in the context of another specific landscape element (alder). We chose a 551 



   
 

26 
 

study stream with a catchment comprising a high proportion of upland alder stands (N2-fixing 552 

terrestrial plant) and low catchment peatlands, leading to high inorganic N and low DOC. 553 

Additionally, we chose an acetate dosing concentration to approximate the labile DOC found in 554 

nearby peatland-dominated streams. High N availability probably facilitated some of the 555 

observed responses, because nutrients increase microbial growth efficiency on DOC and can also 556 

boost the production of high essential nutrient-containing algae, perhaps in synergy with 557 

increased DOC (Robbins et al., 2017). In fact, N rich boreal streams likely contain numerous C 558 

limited compartments, while use of labile C in wetland-dominated systems may be limited by 559 

low nutrient availability (Burrows et al., 2017). Thus, our study implies the confluence of 560 

catchments with attributes that complementarily alleviate biogeochemical limitations (i.e., high 561 

peatland but low alder with high alder but low peatland) may form a permanent ecosystem 562 

control point that form stream segments with enhanced biogeochemical processing that benefits 563 

consumer production (Bernhardt et al., 2017; Robbins et al., 2017). Holistically understanding 564 

stream ecosystems, from microbes to top consumers, requires consideration of any specific 565 

landscape elements that provide significant basal resources, especially if their flowpaths 566 

converge (Laudon & Sponseller, 2018). 567 

Our study strongly demonstrates that environmentally relevant concentrations of labile 568 

DOC can play an important role in aquatic food webs, particularly streams. Relatively low 569 

concentrations of labile DOC can fuel microbial respiration and growth, in turn subsidizing 570 

multiple trophic levels despite known inefficiencies in heterotrophic pathways (Robbins et al., 571 

2017, this study). Though we tout the small dosing concentration in the context of other DOC 572 

addition studies, our treatment reach took up all added DOC, an additional 20-25 kg of C (at 573 

least 70% was likely respired; del Giorgio and Cole 1998). This emphasizes that small 574 
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concentrations can constitute large fluxes over time. Further, the dosing concentration is 575 

representative of the highly labile fraction of DOC potentially stemming from peatland-576 

dominated streams. So while the observed responses may be an upper bound for natural labile 577 

DOC subsidies, some natural systems export this large quantity of DOC over a relatively short 578 

period of time, representing a large energetic potential.  579 

Except in oligotrophic lakes where associated organic nutrients increase primary production, 580 

DOC is often discounted as a subsidy because the light-attenuating fractions of the DOM pool 581 

subtract from high quality algal production (Jones, Solomon & Weidel, 2012; Finstad et al., 582 

2014; Benoît, Beisner & Solomon, 2016; Kissman et al., 2017). Similar limitations likely exist in 583 

streams, but consumer production may be more resilient to light-attenuating DOM because of 584 

their shallow profiles, especially in riffles, and already high dependencies on allochthonous C 585 

due to riparian canopies. Frost et al. (2007) added natural (i.e., colored) DOM to shallow stream 586 

mesocosms and observed only very minor reductions in benthic photosynthetically active 587 

radiation, while also observing increases in chlorophyll-a for much of the study. Further, 588 

headwater stream systems are already generally light-limited and higher trophic levels may be 589 

better at using allochthonous organic matter than commonly studied lake pelagic consumers. 590 

When compared to pelagic lake systems there may be a much higher potential for DOC, 591 

particularly its labile fraction as we have shown here, to subsidize rather than subtract from 592 

stream food webs. However, this needs testing within the context of a naturally light-attenuating 593 

DOM source, because high quantities of labile DOM are usually accompanied by high quantities 594 

of colored and recalcitrant DOM. 595 

We contend that further understanding the role of DOC in stream ecosystems, 596 

particularly as a subsidy, will require a greater understanding of microbial interactions with light 597 
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availability and catabolic losses within the microbial loop. Microbial (primarily algal-bacterial) 598 

interactions may be the ‘gate-keeper’ for how and whether labile DOC influences nutritionally 599 

important autotrophic biofilms (Scott et al., 2008; Kamjunke, Herzsprung & Neu, 2015), and the 600 

microbial loop should control the degree to which inputs of labile DOC are lost as respired CO2 601 

prior to any trophic upgrading (e.g., incorporation by protozoan bacterivores) that could supply 602 

essential lipids. It is interesting to note that we observed a strong preservation of chl-a in the 603 

treatment reach at the end of the study when light availability was strongly inhibited by riparian 604 

vegetation cover. The explanations for this response go beyond the scope of this paper, but it 605 

does suggest that labile DOC may indeed interact with autotrophic structure and function in more 606 

complicated ways than have been observed in other studies. The interaction of green, autotrophic 607 

and brown, heterotrophic pathways needs much more attention to fully understand allochthonous 608 

C fate in freshwater ecosystems. Additionally, there is a strong need for future studies to build 609 

understanding of how regional sources of carbon (e.g., peatlands) may influence streams through 610 

differing, potentially very large, contributions of labile DOC. We suggest allochthonous DOC 611 

controls the ‘volume’ of stream ecosystems more positively than has been appreciated in lakes 612 

(Prairie, 2008).  613 
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Table 1. Basal ecosystem responses to the acetate addition in this study. Response ratios 851 
(treatment reach rate or stock divided by reference reach rate or stock) are presented for whole-852 
stream gross primary production (GPP), ecosystem respiration (ER), dissolved inorganic N 853 
(DIN) and PO4-P uptake velocity (Vf), bacterial biomass production (BBP), and photosynthesis 854 
(PS), aforementioned quantified in Robbins et al. (2017), and epilithic periphyton biomass (ash-855 
free dry mass, AFDM) and algal pigment concentration (chl-a), and their ratio. Ratios >1 856 
indicate response was greater in Treatment reach, while <1 indicates response was greater in 857 
Reference reach. PS/BBP and AFDM/Chl-a were measured on separate and slightly differently 858 
sized rocks. Negative values were unique to PO4-P, and indicate that one reach’s Vf was trending 859 
toward net production of PO4, but this never occurred at a statistically significantly level. 860 
Asterisks denote significant (P<0.05) between-reach differences for periphyton and metabolism 861 
responses or non-zero overlapping 95% confidence intervals for differences between reach Vfs. 862 
The response ratio for DIN Vf on day 28 is likely inflated because the reference reach value was 863 
very low and not different from zero.  864 
 865 
 866 

Response Day Ratio SE Difference Response Day Ratio SE Difference 
ER -4 - 0 1.08 0.06  DIN Vf -21 1.19 2.54  

 9 - 14 1.33 0.05 *  -14 1.67 0.73  

 23 - 28 1.33 0.09 *  -6 0.58 0.38  

 37 - 42 1.35 0.07 *  1 1.59 0.21 * 
GPP -4 - 0 1.09 0.10   8 2.58 0.88 * 

 9 - 14 1.09 0.08   14 1.66 0.36  

 23 - 28 0.85 0.06   22 2.79 0.73 * 

 37 - 42 0.87 0.15   28 9.02 7.22 * 
BBP 16 2.54 0.76 *  36 2.02 0.63 * 

 30 1.60 0.72   42 2.31 1.00 * 

 56 2.64 0.79 *  50 3.78 2.21 * 
PS 16 1.25 0.88   56 2.20 0.81 * 

 30 1.45 0.30  PO4 Vf -21 -3.91 10.6  

 56 0.22 1.40   -14 2.57 3.91  
AFDM -9 1.04 0.16   -6 -1.73 2.56  

 28 0.97 0.12   1 2.32 6.28  

 56 2.54 0.47 *  8 0.15 0.55  
Chl-a -9 0.88 0.18   14 -1.54 1.97  

 28 1.53 0.46   22 -0.33 2.87  

 56 18.51 5.65 *  28 0.14 1.99  
Chl-a:AFDM -9 0.83 0.11   36 -10.63 34.9  

 28 1.67 0.61   42 -0.61 1.37  

 56 6.67 2.33 * 
 

50 -0.51 0.50  

      56 -0.11 0.38  
 867 
  868 
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Table 2. Dolly Varden (Salvelinus malma) parr and fry counts and total masses (g) of individuals 869 
collected from each subreach (0-25 m, 25-50 m and 50-75 m) in the reference reach (R) and 870 
treatment (T) reach on days (-)17 (pre-dosing) and 62. 871 
 872 
  

Fry Parr 
 

Subreach Count Mass (g) Count Mass (g) 

Pre-Dosing 

(Day (-)17) 

R 0-25 m 8 5.9 15 106 

R 25-50 m 9 3.9 12 91 

R 50-75 m 8 3.5 12 86 

T 0-25 m 4 1.5 15 138 

T 25-50 m 15 6.5 12 92 

T 50-75 m 2 2.3 12 79 

      

Day 62 R 0-25 m 51 46 30 443 

R 25-50 m 72 66 14 304 

R 50-75 m 61 51 24 373 

T 0-25 m 128 106 46 736 

T 25-50 m 111 103 44 603 

T 50-75 m 80 73 24 383 

873 
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Figure Captions 874 

Fig. 1. Photos of the study stream, SANC 1203. A) The upper portion of the treatment reach pre-labile DOC dosing in early June; B) 875 

Labile DOC (acetate) dosing station, with protective tarp removed from stock container, at the top of the treatment reach in early 876 

August, showing extensive vegetation growth; C) large Dolly Varden (Salvelinus malma) parr (age 1+) captured while electrofishing. 877 

 878 

Fig. 2. Counts for Baetis spp. and Chironomidae (two taxa accounting for 85% of total benthic invertebrates counted, Table S1) from 879 

Hester-Dendy samplers in the reference (open blue) or treatment (closed orange) reach. Samplers were incubated in the stream reaches 880 

from dosing days 1 – 28 and 29 - 56. Samplers were deployed at ~1 m intervals at points 5, 37.5 and 75 m downstream from the top of 881 

each reach – each sampler was treated as a replicate from those locations. Circles indicate counts from each individual Hester-Dendy 882 

sampler. Squares and error bars are predicted mean and ±1 standard error from negative binomial regressions. Asterisks represent 883 

significant (P<0.05) post-hoc contrast between treatment mean and reference mean. Because reference reach counts were never 884 

different among sampling locations, we compared each treatment reach location’s mean to its corresponding reference reach location 885 

for simplicity. 886 

 887 

Fig. 3. Dolly Varden (Salvelinus malma) size-frequency histograms for fry (age 0, orange) and parr (age 1+, blue) age classes captured 888 

by electroshocking the reference reach and treatment reach on days (-)17 (pre-dosing) and 62 (post-dosing). 889 

 890 
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Fig. 4. Instantaneous growth rates (IGR) of PIT-tagged Dolly Varden (Salvelinus malma) parr recaptured in the reference (blue open 891 

circles) or treatment (orange closed circles) reach (N=19 per reach). All tagged fish were recaptured in the same reach as captured, 892 

with one exception that was excluded from this analysis. IGRs are regressed against Dolly Varden weights at initial capture (log-893 

scaled x axis). Solid lines are predicted regression slopes and dotted lines are 95% confidence intervals for the predicted slopes. 894 

ANCOVA slopes were significantly different by reach (Reach*log(Initial Weight) interaction P=0.006). 895 
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Supplementary Table (Appendix S1) Legends 905 

Table S1. Counts for all benthic invertebrate taxa identified at each sampling location in reference (R) and treatment (T) reaches, 5, 906 

37.5 and 75 m downstream from the top of each reach. Counts are totals from Hester-Dendy samplers at each sampling location. Due 907 

to sample loss in transport, the number of Hester-Dendy samplers counted is given after the sampling location. 908 

 909 

Table S2. Summary of GLMs for total benthic invertebrate counts and the taxa comprising the 95% of the total abundance observed 910 

on Hester-Dendy samplers pulled at 28 and 56 days into the acetate addition. 911 

  912 
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Appendix S1.   913 

 914 

“Low-level dissolved organic carbon subsidies drive a trophic upsurge in a boreal stream” 915 

 916 

Caleb J. Robbins, Alyse D. Yeager, Stephen C. Cook, Robert D. Doyle, Jasmine Maurer, Coowe M. Walker, Jeffrey A. Back, Dennis 917 

F. Whigham, and Ryan S. King 918 

 919 

 920 
Table S1. Counts for all benthic invertebrate taxa identified at each sampling location in reference (R) and treatment (T) reaches, 5, 921 

37.5 and 75 m downstream from the top of each reach. Counts are totals from Hester-Dendy samplers at each sampling location. Due 922 

to sample loss in transport the number of Hester-Dendy samplers counted is given after the sampling location. 923 

 924  
Day 28 Day 56 

 
 

Reference Treatment Reference Treatment 
 

Taxon 5 m (N 
= 3) 

37.5 m (N 
= 2) 

75 m 
(N = 5) 

5 m (N 
= 4) 

37.5 m (N 
= 5) 

75 m 
(N = 3) 

5 m (N 
= 5) 

37.5 m 
(N = 5) 

75 m 
N = 5) 

5 m (N = 
5) 

37.5 m 
(N = 5) 

75 m (N 
= 5) 

Taxon Sum 

Baetis spp. 1 1 5 100 0 8 1636 1382 1860 27092 11725 8046 51856 
Chironomidae 930 357 979 6194 848 2054 2022 1839 2939 11301 8698 5476 43637 
Naididae 0 0 0 0 0 0 711 688 338 1116 1776 1528 6157 
Zapada spp. 155 143 197 238 73 313 548 620 519 1037 754 634 5231 
Cinygmula 
spp. 

48 53 62 23 93 46 113 129 99 134 169 103 1072 

Oligochaeta 8 1 21 23 32 50 27 21 18 148 416 227 992 
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Ostracoda 16 3 30 8 42 24 53 114 23 160 416 65 954 
Amphipoda 5 16 4 31 10 13 54 67 62 84 180 92 618 
Acarina 26 1 30 105 32 26 40 59 23 83 62 69 556 
Nemata 20 7 33 50 39 20 9 14 24 64 96 77 453 
Turbellaria 8 6 8 6 60 58 33 67 28 67 50 42 433 
Neoplasta spp. 0 0 9 18 4 3 9 10 46 110 60 22 291 
Simuliidae 2 0 2 3 3 7 60 43 22 76 40 31 289 
Tipulidae 40 20 43 35 16 39 5 1 0 0 0 5 204 
Rhyacophila 
spp. 

9 2 12 10 13 12 25 25 13 17 18 19 175 

Ecclisomyia 
spp. 

0 1 3 1 12 18 6 14 0 8 14 75 152 

Isoperla spp. 0 0 0 0 0 0 9 20 8 32 6 13 88 
Limnephilidae 0 0 0 0 0 0 16 14 5 6 18 3 62 
Ameletus spp. 0 0 1 2 6 0 0 4 0 2 0 5 20 
Collembola 0 2 1 0 0 0 1 1 0 6 4 3 18 
Epeorus spp. 0 0 0 0 1 3 0 1 0 12 0 0 17 
Chloroperlidae 0 0 0 0 0 0 1 0 0 3 8 4 16 
Tardigrada 0 0 0 0 0 0 0 0 4 8 0 0 12 
Copepoda 0 0 0 0 0 0 0 0 4 0 0 1 5 
Psychoglypha 
spp. 

0 0 0 0 0 5 0 0 0 0 0 0 5 

Psychodidae 0 0 0 0 0 1 2 0 1 0 0 0 4 
Perlodidae 0 0 0 0 0 0 0 0 3 0 0 0 3 
Coleoptera 0 0 0 0 1 0 0 0 0 0 0 0 1 
Drunella 
doddsi 

0 0 0 0 0 1 0 0 0 0 0 0 1 

Ectoprocta 0 0 1 0 0 0 0 0 0 0 0 0 1 
Grensia spp. 0 0 0 0 0 1 0 0 0 0 0 0 1 
Heteroptera 0 0 1 0 0 0 0 0 0 0 0 0 1 
Total 1268 613 1442 6847 1285 2702 5380 5133 6039 41566 24510 16540 113325 

925 
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Table S2. Summary of GLMs for total benthic invertebrate counts and the taxa comprising the 926 

95% of the total abundance observed on Hester-Dendy samplers pulled at 28 and 56 days into the 927 

acetate addition. 928 
 

Analysis of Deviance Table 
 

Estimated Marginal Means C   

Modelled 
Taxon 

Model Parameter LR Chisq df P Deviance 
explained 
(%) 

Day 5m 
Ratio 

5m P 3  
R  

 
 

 
 

  

All date 152.7 1 <0.0001 85.1 28 4.045 0.0012      
distance 21.2 2 <0.0001 

 
56 7.73 <0.0001      

date*reach 94.8 2 <0.0001 
        

 
date*distance 10.4 2 0.0054 

        
 

date*distance*reach 18.1 4 0.0012 
        

Chironomidae date 46.3 1 <0.0001 78.4 28 4.99 <0.0001      
distance 21.9 2 <0.0001 

 
56 5.59 <0.0001      

date*reach 80.4 2 <0.0001 
        

 
date*distance 19.5 2 <0.0001 

        
 

date*distance*reach 21.2 4 0.0003 
        

Baetis spp. date 204.9 1 <0.0001 83.8 28 75 0.016 NA     
distance 10.8 2 0.0046 

 
56 16.5 0.0003      

date*reach 33.3 2 <0.0001 
        

 
date*distance 12.4 2 0.0021 

        
 

date*distance*reach 12.6 4 0.0134 
        

Naididae reach 15.2 1 <0.0001 38.0 28 NA – No naidids obse      
distance 1.77 2 0.412 

 
56 Only main factor reac    

Treatment/Reference      
reach*distance 3.23 2 0.199 

        

Zapada spp. date 35.393 1 <0.0001 51.9 28 1.15 1      
distance 1.972 2 0.373 

 
56 1.89 0.656      

date*reach 2.781 2 0.249 
        

 
date*distance 5.204 2 0.074 

        
 

date*distance*reach 18.347 4 0.0011 
        

Cinygmula spp. date 7.4154 1 0.0065 22.7 No significant Treatment/Ref   
 

 
distance 4.472 2 0.1069 

        
 

date*reach 1.719 2 0.4234 
        

 
date*distance 1.864 2 0.3939 

        
 

date*distance*reach 2.892 4 0.576 
        

 929 

 930 
 931 


