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T	he role of land–atmosphere (L-A) interactions in  
	weather and climate prediction has emerged over  
	 the last two decades as important but inher-

ently challenging and complex. One reason is that 
L-A interaction research has proceeded “in reverse” 
compared to most science. Typically in Earth system 
sciences, observations inform theory, which then 
leads to the development and gradual refinement of 

conceptual and numerical models based on elucidated 
physical processes. The benchmark for such models’ 
success, and the progress of the underlying science, 
is when they begin to consistently outperform purely 
statistical approaches inherently not based in the 
representation of physical processes (Best et al. 2015).

Conversely, coupled L-A (i.e., weather and climate) 
models arose well before the theoretical basis for 
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L-A interactions had begun to mature, driven by the 
pressing need to supply accurate lower-boundary 
conditions to atmospheric models as their use was 
extended from weather time scales to seasonal and 
longer periods. Demand for closure of surface energy 
and water budgets in atmospheric models led to the 
development of the first land surface models (LSMs; 
e.g., Manabe 1969) that were internally consistent, but 
not necessarily well behaved when coupled to atmo-
spheric models that often have strong precipitation 
or radiative energy biases over continents.

As was the case with early coupled ocean–at-
mosphere models, strong climate biases developed 
when LSMs were coupled to general circulation 
models (GCMs). But unlike the ocean, for which 
fairly comprehensive measurements of sea surface 
temperatures were available to expose the symptoms 
of coupled model biases, the land surface lacked 
routine observations of states like soil moisture and 
temperature, vegetation water content, and snow 
mass. In addition, key LSM parameters and state 
variables can be difficult to observe routinely, or are 
unmeasurable [e.g., soil moisture in models versus 
observations, as discussed in Koster et al. (2009)]. As 
a result, LSMs traditionally have lacked a full rep-
resentation of components such as water transport 
(e.g., groundwater) and vegetation dynamics, and 
the method for correcting meteorological biases in 
weather and climate forecast models often falls to 
tuning relatively unconstrained LSM parameters, 
such as vegetation rooting depth, to compensate 
for atmospheric model shortcomings (Kleidon and 
Heimann 1998).

Over time, separate atmospheric and land surface 
model development communities have emerged. 
Although working toward related goals, the two 
communities have operated in parallel and have 
been largely unsuccessful in addressing coupled 
process representation via joint modeling efforts. 
As a result, the development and evaluation of tra-
ditional LSMs and hydrological models has occurred 
predominantly in an offline (uncoupled) mode (van 
den Hurk et al. 2011). The study of L-A interac-
tions has emerged from a need to explore system 
feedbacks to improve process understanding and 
model performance. In this paper, we first outline 
the broader context of L-A interactions over time 
and the emergence of the Global Energy and Water 
Exchanges project (GEWEX) international com-
munity-based Local Land–Atmosphere Coupling 
(LoCo) initiative. The following sections discuss the 
evolution of LoCo over time and its contributions to 
the research community.

A BRIEF HISTORY OF L-A INTERACTION 
RESEARCH. It is widely accepted that realisti-
cally representing coupled processes in models is a 
prerequisite for surface climate predictability (Betts 
2004). However, the necessary spatial and temporal 
coverage of observations to underpin coupled L-A 
model evaluation and development has been lacking 
(Guillod et al. 2014). The prototypical two-week field 
campaigns that have been the backbone of develop-
ing atmospheric process understanding have proved 
too short to provide the necessary data, and longer 
campaigns are costly. With few exceptions [e.g., the 
First International Satellite Land Surface Climatol-
ogy Project (ISLSCP) Field Experiment (FIFE; Hall 
and Sellers 1995) and the Cooperative Atmosphere–
Surface Exchange Study (CASES; Yates et al. 2001; 
Moeng et al. 2003)], the majority of campaigns are 
also lacking in terms of addressing the full suite of 
measurements (across the soil–vegetation–atmo-
sphere system) required for L-A studies, focusing 
on observations in one or two of these compart-
ments only. The new Land–Atmosphere Feedback 
Experiment (LAFE), which was conducted in August 
2017, was designed to close these observational gaps 
(Wulfmeyer et al. 2018).

Additionally, land surface properties (e.g., land 
cover, terrain, and soil texture) are highly heteroge-
neous across a wide range of spatiotemporal scales, 
hampering generalization of measurements from 
one location to another. As a result, the multivariate 
and multiscale coupled L-A processes remain poorly 
observed and incompletely understood (e.g., Betts 
et al. 1996; Betts 2000, 2004; Ek and Holtslag 2004; 
Guo et al. 2006; Jimenez et al. 2014; Teuling et al. 
2017). Standard model outputs, especially those from 
climate model intercomparison projects such as the 
Coupled Model Intercomparison Project (CMIP), are 
often insufficient to diagnose coupled sensitivities at 
the L-A interface.

Broadly speaking, the potential linkages between 
land surface variables such as soil moisture (SM) 
and atmospheric variables such as temperature or 
precipitation P are rather intuitive and have been 
highlighted in recent studies and review articles 
(e.g., Seneviratne et al. 2010; Betts and Silva Dias 
2010). The importance of the land surface has been 
demonstrated not only in terms of predictability on 
daily to seasonal time scales (e.g., Koster et al. 2010; 
Hirsch et al. 2014; Dirmeyer and Halder 2016; Betts 
et al. 2017), but also in terms of influencing extremes 
such as drought and heatwaves (Roundy et al. 2013, 
2014; Miralles et al. 2014; Wang et al. 2015; Pai 
Mazumder and Done 2016), planetary boundary 
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layer (PBL) evolution and cloud formation (Milovac 
et al. 2016) and afternoon convection (Findell and 
Eltahir 2003a,b; Gentine et al. 2013a; Guillod et al. 
2015), and tropical cyclone reintensification (Ander-
sen and Shepherd 2014). Other linkages, such as the 
role of SM or vegetation heterogeneity in mesoscale 
circulations (e.g., Taylor et al. 2012; Hsu et al. 2017) 
and planetary waves (Koster et al. 2014), and those 
driven by land-use and land-cover change or man-
agement (e.g., Findell et al. 2007; Pitman et al. 2009; 
de Noblet-Ducoudré et al. 2012; Mahmood et al. 
2014; Lejeune et al. 2015; Hirsch et al. 2015; Findell 
et al. 2017) are topics of active research. The fact that 
coupling studies are carried out across a range of 
time- and space-scale perspectives tends to also con-
found community thinking and consensus building 
(Guillod et al. 2015; Knist et al. 2017). For example, 
assessment of the coupling within GCMs may vary 
significantly from local diurnal scales to large and 
seasonal to interannual time scales (e.g., Wei et al. 
2010; Ferguson et al. 2012; Green et al. 2017).

Understandably, the focus of the climate commu-
nity in terms of L-A interactions has been on large-
scale SM–P relationships and causality. Most notably, 
the Global Land Atmosphere Coupling Experiment 
(GLACE; Koster et al. 2004, 2006; Guo et al. 2006) 
highlighted potential regions where GCMs indicate 
the influence of antecedent SM on P, and the degree 
to which GCMs differ in describing that relation-
ship (Dirmeyer et al. 2006). The GLACE studies 
highlighted the potential role of the land surface in 
climate predictability and served to galvanize com-
munity interest in L-A interactions, especially toward 
global hot spots of L-A coupling in many semiarid 
and agricultural areas. Since then, numerous studies 
have pursued the notion of coupling hot spots (e.g., 
Notaro 2008; Zhang et al. 2008; Anderson et al. 2009; 
Dirmeyer et al. 2009; Wei et al. 2010; Zeng et al. 2010; 
Zhang et al. 2011; Ferguson et al. 2012; Mei and Wang 
2012). GLACE also exposed the need to revisit the 
complex interactions, controls, and feedbacks inher-
ent to SM–P feedbacks that are indiscernible using 

Fig. 1. A schematic of local L-A interactions in a quiescent synoptic regime, including the SM–P feedback 
pathways. Solid arrows indicate a positive feedback pathway and large dashed arrows represent a negative 
feedback, while red indicates radiative, black indicates surface layer and PBL, and brown indicates land surface 
processes. Thin red and gray dashed lines with arrows represent positive feedbacks. The single horizontal gray 
dotted line (no arrows) indicates the top of the PBL, and the seven small vertical dashed lines (no arrows) 
represent precipitation. Courtesy of M. Ek, embellished from earlier versions appearing in Ek and Mahrt 
(1994) and Ek and Holtslag (2004).
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metrics that rely on large-scale ensemble statistics 
rather than observable features.

EVOLUTION OF LOCO. Over the last decade, 
the importance of L-A coupling for weather and 
climate model development has become more ap-
parent under the GEWEX Imperatives (www.gewex 
.org/about/science/seven-gewex-imperatives) and 
the World Climate Research Programme (WCRP) 
Grand Challenges (www.wcrp-climate.org/grand 
-challenges/grand-challenges-overview). The over-
arching goals of these programs suggest that science 
must integrate approaches to evaluate atmospheric 
or land models to achieve further breakthroughs in 
model development and that comprehensive coupling 
metrics (rooted in observable process-level scales) 
should be integral to the model development cycle.

GLACE was an early element of the GEWEX Global 
Land–Atmosphere System Study (GLASS; van den 
Hurk et al. 2011), which was conceived as a voluntary, 
community-based panel under GEWEX in the late 
1990s and focused on coordinating research efforts to 
evaluate and compare L-A models in four modes: 1) 
local-scale offline (i.e., uncoupled LSMs at the point 
scale), 2) large-scale offline (which have evolved into 

continental and global land 
data assimilation systems), 
3) local-scale coupled (LSMs 
coupled to single-column 
models), and 4) large-scale 
coupled (LSMs coupled to 
GCMs) models. These have 
been addressed through 
communit y-suppor ted 
model intercomparison 
projects (MIPs), including 
the Project for the Intercom-
parison of Land-Surface 
Parameterization Schemes 
(PILPS; Henderson-Sell-
ers et al. 1993, 2002), the 
Global Soil Wetness Project 
(GSWP; Dirmeyer 2011a), 
and the aforementioned 
GLACE (Koster et al. 2006, 
2010; Guo et al. 2006; Sen-
eviratne et al. 2013; van den 
Hurk et al. 2012). However, 
formation of a local-scale 
coupled MIP (mode 3) has 
lagged, initially due to the 
difficulty both in selecting 
sufficiently holistic metrics 

and designing an experiment that incorporates the 
full complexity of local L-A interactions (Fig. 1). Note 
that PILPS and GSWP were performed in offline mode 
without atmospheric feedbacks (i.e., uncoupled), while 
GLACE, despite being a multimodel coupled experi-
ment, lacked process-level diagnosis.

To address this, the GLASS-supported working 
group LoCo was established in the mid-2000s to coor-
dinate and promote process-level, local L-A coupling 
research and develop integrative metrics to quantify 
these complex relationships and feedbacks. Over the 
years, LoCo has grown to facilitate integrated model 
development and identify observational needs to bet-
ter understand the complex nature of L-A interactions 
and their role in a changing climate.

When referring to water and energy cycle research, 
LoCo defines local coupling as “the impact of land 
surface states on the evolution of surface fluxes, the 
PBL, and free atmosphere, including clouds and pre-
cipitation, as well as positive and negative feedback 
mechanisms that modulate extremes” (Santanello 
et al. 2011b). This incorporates the notion that all in-
teractions between land and atmosphere begin locally 
through the interface of the land surface and PBL (see 
Fig. 1). The LoCo process chain, a simplification of the 

Fig. 2. Schematic of the LoCo process chain describing the components of 
L-A interactions linking soil moisture to precipitation and ambient weather 
(T2m, Q2m), where SM represents soil moisture; EFsm is the evaporative frac-
tion sensitivity to soil moisture; PBL is the PBL characteristics (including 
PBL height); ENT is the entrainment flux at the top of the PBL; T2m and Q2m 
are the 2-m temperature and humidity, respectively; and P is precipitation.
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complexities illustrated in Fig. 1, is shown schemati-
cally in Fig. 2 and written as (Santanello et al. 2011a,b)

∆SM → ∆EF → ∆PBL → ∆Ent → ∆T2m,Q2m ⇒ ∆P,Cloud.
	 a	 b	 c	 d	 (1)

The links (arrows a–d) in the current process chain 
describe the sensitivities of a) surface sensible (H) and 
latent (LH) heat f lux partitioning [i.e., evaporative 
fraction; EF = LH/(LH + H)] to SM, b) PBL height 
evolution to surface fluxes, c) entrainment fluxes to 
PBL height evolution, and d) the collective feedback 
of the free atmosphere (through the entrainment 
zone) on PBL thermodynamics. Taken in full, these 
interactions (a–d) contribute toward the development 
of convective cloud and precipitation, outlining the 
pathways that define the SM–P relationship (Fig. 2). 
The importance of these processes and interactions 
have been documented individually (e.g., Pan and 
Mahrt 1987; Oke 1987; Diak 1990; Brubaker and 
Entekhabi 1996; Dolman et al. 1997; Peters-Lidard 
and Davis 2000; Betts and Viterbo 2005; Santanello 
et al. 2005, 2007; LeMone et al. 2010a,b; Gentine et al. 
2013a,b). Within this chain, there are also numerous 
positive and negative feedback loops, which have been 
detailed by Santanello et al. (2007), van Heerwaarden 
et al. (2009), and Seneviratne et al. (2010).

The LoCo process chain is far from being all-inclu-
sive and can be augmented 
in the future to account for 
terms such as radiation, 
snow, landscape type (e.g., 
desert, grassland, and tun-
dra), canopy interception, 
large-scale convergence, 
and additional feedbacks 
such as those related to 
clouds (Fig. 1). In addition, 
the focus to date has been 
on daytime process and 
interactions with the con-
vective PBL. Nevertheless, 
it provides a framework 
for simplifying the myriad 
process interactions into a 
manageable and measurable 
series of quantities. Within 
this definition and scope, 
LoCo has been working to 
develop metrics and global 
mappings that quantify 
the components of Eq. (1). 
Voluntary contributors to 

LoCo span several continents and include both gov-
ernment and academia, and research interests include 
regional to global modeling and weather to climate 
prediction scales.

LOCO CONTRIBUTIONS. Arguably the most 
prominent contribution of LoCo has been the con-
tinued development and promotion of quantifiable 
L-A coupling metrics to diagnose the land and PBL/
precipitation coupling. Rather than common single-
variable factors such as bias, root-mean-square error, 
or skill scores, where compensating errors are often 
hidden and causality is obscured, multivariate met-
rics can be used to quantify critical aspects of the L-A 
coupled system in models and observations, allowing 
for the exposure of model differences and deficiencies 
in a systematic fashion.

Metrics and their diagnostic nature can be catego-
rized in several ways. Figure 3 illustrates the suite of 
LoCo-relevant metrics defined by their temporal scales 
of application (x axis), by the link(s) within the LoCo 
process chain [Eq. (1]) they encapsulate (y axis), and 
by their statistical versus process-based nature (gray 
solid and dashed outlines). Some metrics, such as those 
quantifying soil moisture effects on surface fluxes, 
cover two-component interactions, and others, such as 
those connecting soil moisture to precipitation, capture 
the totality of interactions. LoCo metrics can shed light 

Fig. 3. LoCo metrics (see Table 1) across temporal scales (x axis), relationship to 
the LoCo process chain [Eq. (1)] along the y axis, and statistical vs process-based 
nature (elliptical outlines). Green background shading indicates land surface 
related states and fluxes, while blue indicates PBL and atmospheric variables.
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on systematic model biases in coupled processes that 
might otherwise have been overlooked in a classical 
model calibration–validation paradigm. Table 1 lists the 
metrics from Fig. 3 along with some of their character-
istics, including the nature of input requirements (states 
versus fluxes and land versus atmosphere), spatial- and 
temporal-scale characteristics, and primary foundation 
for the metrics in terms of variables included. A selec-
tion of LoCo metrics and approaches, highlighted in 
Fig. 3, are described in more detail below.

Process-level metrics. Mixing diagrams and thermody-
namics. One diagnostic approach that incorporates 
components of the LoCo process chain is the concept 
of thermodynamic “mixing diagrams,” demonstrated 
for LoCo applications by Santanello et al. (2009). This 
approach, first introduced by Stommel (1947), relates 
the daytime coevolution of 2-m potential temperature 
θ and humidity q to the full energy and water bud-
gets and growth of the PBL. Mixing diagrams break 

down the evolution of θ and q into vector components 
that represent the flux contributions of surface heat 
(sensible) and moisture (latent) versus those from the 
atmosphere (including PBL entrainment and advec-
tion; see Betts 1992; Freedman and Fitzjarrald 2001). 
Mixing diagrams require only near-surface or mixed-
layer temperature and humidity, surface fluxes, and 
PBL height information to infer entrainment fluxes 
that are notoriously difficult to observe (Lenschow 
and Stankov 1986; Grossman and Gamage 1995). 
Fortunately, to overcome the expense and difficul-
ties of aircraft measurements, a new generation of 
ground-based active remote sensing systems permits 
the measurement of water vapor, temperature, and 
wind turbulence and flux profiles from the mixed to 
the entrainment layer (Muppa et al. 2016; Behrendt 
et al. 2015; Wulfmeyer et al. 2016; Bonin et al. 2017; 
Wulfmeyer et al. 2018).

Furthermore, the spread in model results due 
to different physics scheme combinations (e.g., 

Table 1. L-A coupling metrics portrayed in Fig. 3. A more thorough list of metrics and their descriptions is 
available at http://cola.gmu.edu/dirmeyer/Coupling_metrics.html.

Name of metric

U
ses lan

d 
states?

U
ses su

rface 
flu

xes?

U
ses atm

o


sp
h

eric states?

S
trictly lo

cal 
 in

 sp
ace?

Data time scale, 
perioda

C
alcu

late fro
m

 
o

b
servatio

n
s? Based on

Mixing diagrams N Y Y Nb Daytime Y
2-m temperature and humidity evolu-
tion, surface fluxes, PBL depth

LCL deficit N N Y Y Daytime Y
2-m temperature, humidity, PBL 
depth

CTP–HIlow N N Y Y Morning Y
Temperature and humidity at specific 
atmospheric levels

HCF N Y Y Y Any time of day Y
Atmospheric profile, available energy 
at land surface

RH tendency N Y Y Y Daytime Y Atmospheric profile, surface fluxes

Priestley–Taylor ratio N Y Y Y
Instantaneous or 

time means
Y

2-m temperature, humidity, surface 
fluxes

SMM Y N N Y
Daily or longer 

intervals
Y

Lagged autocorrelations of soil 
moisture

Terrestrial coupling leg Y Y N Y
Daily or longer 

means
Y

Variances and covariances of surface 
fluxes, land states

Atmospheric coupling leg N Y Y Y
Daily or longer 

means
Y

Variances and covariances of surface 
fluxes, atmospheric states

TFS/AFS N Y Y Y
Morning and after-

noon
Y

Variances and covariances of CTP, 
HIlow, precipitation, surface fluxes

GLACE coupling strength (Ω) Y Y Y Y
Time means 

(~5 day)
N

Ensemble statistics from model 
simulations

a “Daytime” means (typically hourly) from sunrise through afternoon; data for some terms may be only for specific times or intervals.
b Can consider advection.
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LSM + PBL) can be evaluated directly against obser-
vations. Other well-known metrics like the Bowen ra-
tio and lifting condensation level are inherent in this 
approach and can be used in complementary fashion 
to pinpoint weaknesses in the land and atmospheric 
components of coupled models (Santanello et al. 2009, 
2011a,b, 2013a,b, 2015).

The coevolution of θ and q (as energy variables, 
J kg−1) simulated by three different versions of a 
coupled mesoscale model [Advanced Research ver-
sion of the Weather Research and Forecasting (WRF) 
Model (WRF-ARW) with Noah LSM] is shown for 
dry and wet soil moisture locations over the South-
ern Great Plains (SGP; Fig. 4; from Santanello et al. 
2011a). Simulations were run with varying LSM–PBL 
combinations in WRF and allowed for the model to 
evolve in response to L-A interactions generated by 
each combination as compared with observations (us-
ing flux tower, radiosonde, and meteorological data). 
Overall, the results show that different soil moisture 
states lead to distinct diurnal patterns of θ and q evo-
lution throughout the day. In this mixing diagram, 
vectors are defined for the 
daytime surface and at-
mospheric (advection + 
entrainment) f lux contri-
butions to the PBL budget. 
Over drier soils, significant 
warming and drying occurs 
due to strong surface heat-
ing (sensible heat flux) that 
leads to deep PBL growth 
and aggressive warm, dry 
air entrainment at the PBL 
top. Over wetter soils, there 
is strong surface moisten-
ing due to evaporation and 
little warming and drying 
throughout the day because 
of limited PBL growth and 
entrainment. Overall, these 
diagrams also demonstrate 
that, in order to further 
constrain the causes of 
model errors, it is desirable 
to have observing systems 
(such as that available at 
the SGP site shown here) 
that can measure a full suite 
of L-A variables including 
vertical profiles and sen-
sible and latent heat and 
entrainment fluxes.

CTP–HI
low

. The convective triggering potential 
(CTP)–low-level humidity index (HIlow) framework 
[see Findell and Elthair (2003a,b) for details] was 
developed to better characterize the circumstances 
in which LoCo could influence afternoon convec-
tion, that is, when positive feedbacks (moist surface 
conditions increasing the chances of rain) or nega-
tive feedbacks (dry surface conditions increasing the 
chances of rain) were more likely to prevail or when 
large-scale atmospheric conditions would dictate 
the occurrence or absence of rain. It is built on the 
idea that early morning atmospheric profiles of 
temperature and humidity can provide information 
on whether boundary layer moistening or boundary 
layer deepening would be more likely to lead to con-
vective triggering during the course of the day, or if 
the fluxes from the surface are unlikely to influence 
convective conditions. For example, if HIlow indicates 
that the early morning lower atmosphere is extremely 
dry, moisture evaporated into the PBL from the 
surface cannot increase the PBL’s moist static energy 
enough to allow for convection to occur. Such days are 

Fig. 4. Mixing diagrams showing coupling behavior of three different modeling 
schemes vs observations for dry and wet soil locations on 12 Jun 2002 over 
the SGP, as indicated by the diurnal (0700–1900 local time), hourly coevolu-
tion of 2-m temperature (y axis) and humidity (x axis) for a range of model 
simulations (green, red, and blue representing different PBL schemes in the 
WRF Model), observations (dashed black), and the derived surface and atmo-
spheric flux vectors (black arrows). The x and y axes are in units of J kg−1 after 
multiplying humidity by the latent heat of vaporization and temperature by 
the specific heat, respectively. Adapted from Santanello et al. (2011a, their 
Fig. 1) based on experiments in Santanello et al. (2009).
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termed atmospherically controlled, as rain cannot be 
triggered by local surface processes (Fig. 5).

The CTP assesses the stability of the lower tropo-
sphere by measuring the departure of the temperature 
profile from moist adiabatic conditions in the region 
between 100 and 300 hPa above the ground surface. 
This is important because deep convection is trig-
gered when the growing daytime PBL reaches the 
level of free convection (LFC). The lowering of the 
LFC during this period of boundary layer growth is 
impacted by the moist static energy within the bound-
ary layer and the temperature lapse rate of the air 
through which the LFC falls: the LFC falls faster when 
the temperature profile is close to moist adiabatic. 
For convective triggering, high sensible heat f lux 
accompanied by rapid PBL growth is more effective 
when the low-level atmospheric profile is near dry 
adiabatic and the CTP is high (a negative feedback), 
while PBL moistening accompanied by rapid LFC 
fall is a more effective mechanism when the lower 
atmosphere is close to moist adiabatic and CTP is low 
(a positive feedback). A negative CTP indicates the 
local atmosphere is too stable to convect; any rainfall 
would likely come from large-scale systems moving 
into the area during the course of the day.

Findell and Eltahir (2003b) used one-dimensional 
PBL modeling with U.S radiosonde data to map re-
gions with frequent positive and negative feedback 
days (Fig. 5). Ferguson and Wood (2011) used satellite 
data sources to generate global maps of CTP, HIlow, 
and regional convective regime classifications of four 
types: local atmospheric conditions favoring convec-
tion over wet soils, over dry soils, and either support-
ing or suppressing convection, independent of land 
surface conditions. They developed a methodology to 

derive dataset-specific threshold values in CTP–HIlow 
parameter space that compensates both for biases 
in the satellite-derived datasets and for limitations 
of the original thresholds. Roundy et al. (2014) ex-
tended the work of Ferguson and Wood (2011) and 
developed the coupling drought index (CDI), which 
allows for day-to-day diagnosis of wet-soil advantage, 
dry-soil advantage, or atmospherically controlled 
conditions, given a long historical record to establish 
“climatological” joint probabilities between surface 
soil moisture, CTP, and HIlow. This allows for real-
time assessment of convective sensitivity to local 
land surface conditions and has been used to better 
understand the role of the land surface in modulating 
drought events (Roundy et al. 2013, 2014; Roundy and 
Santanello 2017).

Heated condensation framework. The heated con-
densation framework (HCF; Tawfik and Dirmeyer 
2014; Tawfik et al. 2015a,b) diagnoses the contribu-
tion of surface f luxes to convective initiation based 
on atmospheric profiles of temperature and humid-
ity. The HCF differs from traditional convective 
diagnostic approaches; rather than lifting an isolated 
air parcel to quantify convective instability due to 
sensible heating and moisture f lux, the HCF quan-
tities are calculated by considering the well-mixed 
turbulent growth of the PBL. This construction 
emphasizes local buoyancy forced motions rather 
than large-scale mechanical parcel lifting and di-
agnoses a critical atmospheric level referred to as 
the buoyant condensation level (BCL). The BCL is 
the height where clouds would form atop a develop-
ing PBL through surface buoyancy f luxes alone. To 
find the BCL, the surface temperature is increased 

Fig. 5. (left) Regional categorizations based on the distribution of daily CTP–HIlow values at radiosonde stations (+) 
through the contiguous United States given (right) the CTP–HIlow framework (Findell and Eltahir 2003b).
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incrementally, with the resulting heat mixed into 
the atmosphere producing an adiabatic temperature 
profile that intersects the original temperature pro-
file at some height above the ground. The moisture 
within that depth is also mixed to a constant specific 
humidity. This incremental heating is repeated un-
til saturation occurs at the top of the adiabatically 
mixed temperature profile, determining the BCL 
height. Locally triggered convection is initiated 
when no further surface heating is required (e.g., 
the PBL height equals the BCL height).

If some surface energy goes into evaporation in-
stead of sensible heat flux, the PBL specific humidity 
would increase and the BCL would descend. How-
ever, that latent heat energy would be at the expense 
of sensible heat flux, and the lower BCL may not be 
reached as easily depending on the atmospheric pro-
file. An optimum partitioning between sensible heat 
and moisture flux will trigger convection with the 
minimum total energy input. Surface soil moisture 
conditions and available energy (net surface radia-
tion) may determine whether the PBL will grow to 
the BCL height. It should also be made clear that the 
HCF does not quantify the intensity of convection but 
rather whether convection is initiated locally.

Using the HCF, the atmospheric and land surface 
conditions leading up to any convective initiation can 
be quantified in models, reanalyses, or observations, 
elucidating emergent land–convection relationships. 
Figure 6 shows the percent chance of convective 
initiation given a morning convective inhibition (as 
defined by the HCF variable θdef, which represents 
the temperature inputs needed in order for saturation 
to occur at the top of the mixed layer) and morning 
10-cm soil moisture using 34 years of summer (June–
August) reanalysis data from the North American 
Regional Reanalysis (NARR; Mesinger et al. 2006) 
over the contiguous United States, and indicates that 
these regions have between a 15% and 35% probability 
of local convective cloud initiation.

Starting from the regional average of soil moisture 
and θdef over the southeastern United States (indi-
cated by the SE in Fig. 6), the sensitivity of convective 
initiation to morning states of soil moisture and θdef 
can be determined. For example, decreasing soil 
moisture from the 0.28 m3 m−3 average to 0.15 m3 m−3 
would increase the likelihood of local convective 
initiation by roughly 10%. Overall, Fig. 6 shows that 
the likelihood of convective initiation is more sensi-
tive to the morning state of θdef, and soil moisture 
provides a secondary control on convective initiation. 
In addition to this emergent soil moisture–convective 
initiation relationship, the HCF also contains a set 

of other diagnostic quantities (not covered here) that 
quantify the most efficient surface energy partition-
ing needed to achieve convective initiation (Tawfik 
et al. 2015b).

Statistical metrics. Soil moisture memory. As the first 
link of the process chain [Eq. (1)], soil moisture has 
the ability to influence the L-A processes over time 
and has been the focus of a number of quantitative 
metrics (e.g., Schlosser and Milly 2002; Betts 2004; 
Notaro 2008; Orlowsky and Seneviratne 2010; Mei 
and Wang 2012; Miralles et al. 2012; Roundy et al. 
2013, 2014). Soil moisture memory (SMM) is a mea-
sure of the persistence of SM anomalies, which may 
then affect coupled feedbacks (e.g., McColl et al. 
2017a,b). This is important because the soil accumu-
lates and retains past precipitation and other weather 
anomalies (e.g., heat waves). This memory extends 
the impact of weather and climate events forward 
in time and can provide additional predictability of 
future weather and climate, improving predictions.

Delworth and Manabe (1988, 1989) showed that 
the time evolution of the surface water budget can 
be represented as a first-order Markov process, such 
that the lagged autocorrelation of soil moisture [de-
fined as r(τ) = exp(–λτ)] has an e-folding time scale 
of  1/λ that can redden the spectrum of atmospheric 

Fig. 6. Percent probability of triggering convection 
as a function of θdef (a measure of convective inhibi-
tion) and 10-cm soil moisture derived from 34 years 
of daily NARR summer data. Average morning soil 
moisture and conditions are shown for four different 
regions over the United States: the Southeast (SE), 
the southern plains (SP), the northern plains (NP), 
and the Southwest (SW). Adapted from Tawfik et al. 
(2015a, their Fig. 11b).
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variability where feedbacks are present. This time 
scale is typically defined as the SMM and is sensitive 
not only to the time spectrum of precipitation but also 
terrestrial hydrologic processes (e.g., infiltration, run-
off, evapotranspiration), making it a tool to validate 
LSM simulation of these processes. SMM is generally 
calculated from long time series of data as a seasonally 
varying climatological characteristic of local hydrol-
ogy (cf. Koster and Suarez 2001). SMM has been 
estimated in observational studies (e.g., Vinnikov 
and Yeserkepova 1991; Koster et al. 2003; Dirmeyer 
et al. 2016) and applied as a robust metric for verify-
ing soil moisture persistence in both uncoupled and 
coupled LSMs and across observational datasets from 
in situ to satellite instruments (e.g., Robock et al. 1995; 
Koster and Suarez 2001; Seneviratne and Koster 2012; 
Dirmeyer et al. 2013; Hagemann and Stacke 2015). It 
should be noted that the frequency of data (observa-
tions or model output) affects the estimation, so care 
must be taken when comparing results; longer periods 
between samples (weekly instead of daily, or monthly 
instead of weekly) act as a low-pass time filter, remov-
ing higher frequencies from consideration.

Two-legged metrics. The most common multivari-
ate statistic is the correlation r(υ1, υ2), where high 
correlations between variables can hint at causality. 
However, high correlations within the LoCo process 
chain do not guarantee important feedbacks are act-
ing. For instance, in the Sahara there are very strong 
correlations between soil moisture and evapotranspi-
ration (ET), but there is rarely enough soil moisture 
to contribute to meaningful evaporation. To have an 
impact on the atmosphere, there must be sufficient 
variability in the terms over time. Guo et al. (2006) 
recognized this and presented a metric combining 
correlation and standard deviation σ. Dirmeyer 
(2011b) generalized this as a terrestrial coupling index 
I, noting the relationship

	 I r d
d

= ( ) =σ φ σ
φ

φ SM
SMSM, ,	 (2)

where the linear regression slope of surface flux ϕ on 
SM, dϕ/dSM, is a measure of the sensitivity of ϕ to SM. 
Like CTP–HIlow, coupling indices are calculated from 
large time series of daily (or longer) data.

Progressing along the process chain in Eq. (1) to 
the response of atmospheric states to surface fluxes, 
coupling indices for the atmospheric leg can also be 
generated using the same formulation in Eq. (2), but 
substituting the surface fluxes for soil moisture and 
atmospheric properties for the surface fluxes. When 
atmospheric leg indices are paired with indices from 

the terrestrial leg, we have “two legged” coupling 
metrics showing the potential link from land surface 
states to atmospheric responses. Separate pathways 
in the process chain through the heat and moisture 
cycles can be examined, for example, noting the 
strong relationships between surface sensible heat 
flux and daytime PBL growth (Betts 2004).

Two-legged metrics are easily applied to model 
output, provided that the necessary variables are 
saved and complete in time and space. Figure 7 
shows the global distribution of terrestrial (through 
the moisture variables, SM, and latent heat flux) and 
atmospheric (through the thermal variables, sensible 
heat flux, and PBL height) legs for boreal and austral 
summers estimated from multidecade simulations of 
the operational coupled L-A model from the Euro-
pean Centre for Medium-Range Weather Forecasts 
(ECMWF; Dirmeyer et al. 2012). Application to ob-
served data can be more challenging as surface flux 
measurements are not widespread or typically long 
term. For the terrestrial leg, collocated soil moisture, 
and surface flux measurements are necessary. For the 
atmospheric leg, collocated surface flux and meteoro-
logical or profile measurements are necessary. There 
is also a seasonality in coupling that is made evident 
using these metrics, as seen in Fig. 7.

Triggering and amplification feedback strength. 
Findell et al. (2011) evaluated the sensitivity of after-
noon rainfall to morning EF using 25 years of data 
from the North American Regional Reanalysis data-
set (NARR; Mesinger et al. 2006). The EF dependence 
on rainfall was assessed using two statistical metrics: 
triggering feedback strength (TFS), which reflects 
how afternoon rainfall frequency changes with EF, 
and amplification feedback strength (AFS), which 
quantifies how accumulated rainfall varies with EF 
on those afternoons when rainfall occurs. They are 
defined as

	 TFS
EF

AFSEF EF=
∂ ( )
∂

=
∂  
∂

σ σ
r rE

EF
Γ

; ,	 (3)

where σEF is the standard deviation of evaporative 
fraction, Γ(r) is the probability of afternoon rainfall 
occurrence, and E[r] is the expected value of rainfall 
amount when rainfall does occur (>1 mm).

To limit the analysis to local conditions when 
large-scale forcing was not dominant, TFS was 
calculated using data from only summertime days 
with no rain in the morning and with CTP > 0. Days 
contributing to the AFS calculation were further 
limited to those when afternoon rainfall occurred. 
This work showed that high evaporation enhances 
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the probability of afternoon rainfall over the United 
States, primarily east of the Mississippi River (Fig. 8). 
Variations in surface f luxes were shown to lead to 
10%–25% changes in afternoon rainfall probability 
in these regions (Fig. 8a). The intensity of rainfall, 
by contrast, was largely insensitive to surface fluxes 
(Fig. 8b). These results indicate that while surface flux 
partitioning can shift the local atmosphere from non-
convecting to convecting in non-moisture-limited 
regions, other controls such as free-tropospheric 
moisture content or large-scale moisture convergence 
largely determine how much rainfall occurs.

Findell et al. (2011) suggest that local surface 
fluxes represent an important trigger for convective 
rainfall in the eastern United States during the sum-
mer, leading to a positive evaporation–precipitation 
feedback. This focus on the impact of surface fluxes 
on subsequent rainfall does not include the soil mois-
ture portion of the process chain in Fig. 2 (arrow a), 
but is a statistical assessment of the net sensitivity of 
∆P to ∆EF (arrows b–d). Berg et al. (2013) showed 
results from a GCM with similar TFS and AFS sig-
natures as the NARR model data, but demonstrated 
that the GCM’s TFS resulted from a weaker sensitiv-
ity of rainfall to EF than the NARR model data yet 
showed enhanced variability of EF, highlighting the 

complexity of characterization of interdependent 
processes. In addition, Guillod et al. (2014) showed 
that the TFS patterns are sensitive to the choice of 
observational data, highlighting the need for better 
constrained observations of surface turbulent fluxes.

RESOURCES AND OUTREACH. In addition 
to the GEWEX, GLASS, and LoCo websites (www 
.gewex.org/loco/), there have been a number of re-
sources developed by the LoCo Working Group to 
help support community involvement.

The Coupling Metrics Toolkit. The Coupling Metrics 
Toolkit (CoMeT; www.coupling-metrics.com) is an 
open-source code package for calculating selected 
LoCo coupling metrics. Specifically, CoMeT is a set 
of portable FORTRAN 90 modules with thorough 
inline documentation currently available via a Git 
repository. The modules are designed to be easily 
wrapped into existing Python or NCAR Common 
Language (NCL) code using the f2py and WRAPIT 
commands, respectively. Development of CoMeT 
was motivated by the growing need from the broader 
research community to examine L-A coupling and 
interactions and the lack of a standard code package 
to facilitate calculation. Currently CoMeT contains 

Fig. 7. (left) Terrestrial and (right) atmospheric coupling indices based on the formulation in Eq. (2) for the in-
dicated seasons: SM is soil moisture, LHF is latent heat flux, SHF is sensible heat flux, and PBL is height of the 
planetary boundary layer. Positive values indicate coupling, and insignificant correlations are masked. Adapted 
from Dirmeyer et al. (2012, their Fig. 8).
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six metrics, five of which are discussed in this article: 
1) SMM, 2) the variables from the mixing diagram 
approach, 3) CTP–HIlow, 4) the two-legged coupling 
indices, 5) HCF, and 6) the relative humidity (RH) 
tendency (Ek and Mahrt 1994; Ek and Holtslag 2004; 
Gentine et al. 2013b). Future plans for CoMeT in-
clude a Python-based wrapper that would allow users 
to specify the path to data and desired metrics, where 
CoMeT would return an output file with the results. 
This will enable a friendlier interface that does not 
require the user to write wrapping code. Because 
this resource is intended for broad use, community 
input and requests regarding additional metrics are 
highly welcome.

Quick reference for metrics. A growing reference cata-
log of L-A coupling metrics is maintained at http://
cola.gmu.edu/dirmeyer/Coupling_metrics.html. 
Some two dozen metrics are listed, with links to sin-
gle-page PDF documents on each that give a basic de-
scription, input/variable requirements, applicability, 
caveats, and references for further information. The 
catalog also outlines to which portion of the LoCo 
process chain each metric is relevant, the applicable 
space and time scales of the metric, and whether it can 
be estimated from observational data (cf. Table 1 for a 
subset). As with CoMeT, this is a community resource 
that can expand to accommodate new metrics, and 
user input is welcome.

Community connections. LoCo Working Group mem-
bers serve to facilitate and advocate for L-A coupling 
considerations in several science communities. As 

with the LoCo metrics, these connections span a 
wide range of scales and applications and aim to 
increase awareness of the role of L-A interactions in 
weather and climate. This includes the subseasonal-
to-seasonal (S2S) prediction community (Vitart et al. 
2017), where LoCo has been utilized to elucidate how 
global models should initialize their LSMs. This also 
includes strong involvement in the planning and 
execution of field campaigns and dataset production 
like those led by the U.S. Department of Energy’s 
Atmospheric Radiation Measurement (ARM) pro-
gram’s SGP test bed. Over the past 20 years, the ARM 
community has utilized observations of the PBL to in-
vestigate L-A interactions from a mostly atmospheric 
perspective (e.g., Berg and Stull 2004; Zhang and 
Klein 2010), and the SGP site has recently undergone 
significant reconfiguration to better monitor L-A 
interactions, including new soil moisture sensors and 
an overall instrument synergy that spans the LoCo 
process chain. LoCo efforts have helped lead to de-
velopment of “best estimate” products of land surface 
[ARM Best Estimate (ARMBE)-Land; Xie et al. 2010] 
and additional PBL profile measurements [Enhanced 
Soundings for Local Coupling Studies Field Cam-
paign (ESLCS; Ferguson et al. 2016)] complementing 
the traditional suite of atmospheric measurements to 
more fully assess coupled processes and utilize LoCo 
metrics. Ongoing and future campaigns over the 
SGP are focused on the surface layer (<100 m above 
surface; Cheng et al. 2017). L-A interactions, includ-
ing the observation and theoretical derivation of key 
variables in the PBL such as variance and flux profiles 
as well as entrainment fluxes, have recently become 

Fig. 8. The sensitivity of convective triggering and rainfall amount to evaporative fraction. (a) TFS [units of 
probability of afternoon (1200–1800 local time) rain] and (b) AFS (units of millimeters of afternoon rain) during 
Jun–Aug, derived from 25 years of NARR data (Findell et al. 2011).
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available, for example, within the LAFE (Wulfmeyer 
and Turner 2016; Wulfmeyer et al. 2018), which can 
be applied for testing new similarity relationships 
(Wulfmeyer et al. 2016) and extended analyses of 
LoCo metrics.

LoCo is supporting the organization of a North 
American regional hydroclimate project (www.gewex 
.org/panels/gewex-hydroclimatology-panel/regional 
-hydroclimate-projects-rhps/north-american 
-regional-hydroclimate-project-initiative/) under 
GEWEX’s water availability grand challenge, and 
it convenes or contributes to numerous conference 
sessions, workshops, and yearly summer schools. 
LoCo also contributes to the National Research 
Council Decadal Survey by identifying gaps in our 
observational suite, especially from space, that are 
needed to utilize LoCo metrics to further improve 
understanding of L-A coupling.

CHALLENGES AND THE FUTURE OF 
LOCO. It is evident that the scope of LoCo, defined 
by Eq. (1), captures only a subset of L-A processes 
and types of coupling that exist in nature. However, 
the LoCo paradigm serves as a foundation, rooted in 
water and energy exchanges, from which to expand 
upon in terms of breadth and complexity. As the 
second decade of LoCo begins, the Working Group 
has broadened its scope to consider cold processes 
(snow, ice), radiation and cloud feedbacks, spatial 
SM–P feedbacks, human land and water management 
impacts (drainage, irrigation, land-use/land-cover 
change, dams), soils and groundwater, biogeochem-
istry (carbon), vegetation state (e.g., Williams and 
Torn 2015), and stress (solar-induced fluorescence, 
transpiration) and to extend to phenomena such as 
monsoons and landfalling tropical cyclones. There 
is also a strong push to extend to nighttime/stable 
coupling assessment and interactions with the PBL 
community. The expanding themes are reflective of 
science steering at higher levels within GEWEX and 
WCRP, as well as new areas of expertise represented 
within the LoCo Working Group. There is also work 
to quantify the relative contribution of local versus 
external forcing to event- and seasonal-scale L-A 
coupling strength, in the midst of internal vari-
ability (e.g., Song et al. 2016; Ford et al. 2015; Berg 
et al. 2017a,b). This evolution coincides with, and 
contributes to, the evolution of Earth system models 
that encapsulate additional processes, but at the same 
time require more complex and quantitative metrics 
to employ in their development.

In terms of recent community-based projects, 
there are direct connections that are being made to 

the GEWEX Diurnal Land/Atmosphere Coupling 
Experiment (DICE; http://appconv.metoffice.com/dice 
/dice.html) and the Protocol for the Analysis of Land 
Surface Models (PALS) Land Surface Model Bench-
marking Evaluation Project (PLUMBER; Best et al. 
2015; Haughton et al. 2016); the latter can provide a 
paradigm for extending model benchmarking vertical-
ly into the atmosphere. LoCo is also connected to the 
GLACE modeling community via the GLACE-CMIP5 
project (Seneviratne et al. 2013), which seeks to evaluate 
SM–atmosphere coupling and its impact on climate 
change in models using idealized GCM simulations 
with and without interactive SM (e.g., Berg et al. 2016, 
2017a,b), and LoCo approaches have been used to find 
coherency in trends as part of the Intergovernmental 
Panel on Climate Change Fifth Assessment Report 
(van Heerwaarden et al. 2010). Likewise, as the CMIP6 
exercise comes to fruition, LoCo will look to support 
and inform the analysis of climate model simulations, 
in particular modeling experiments focusing on the 
role of land surface processes, such as soil moisture 
and snow feedbacks [Land Surface, Snow and Soil 
Moisture Model Intercomparison Project (LS3MIP); 
van den Hurk et al. 2016].

The theme of the 2017 American Meteorological 
Society Annual Meeting—“Observations Lead the 
Way”—is also highly relevant to the success of LoCo. 
Advanced metrics are only as good as the observations 
applied to confront models. While tremendous prog-
ress has been made in retrieving components of the 
water cycle (e.g., soil moisture, clouds, precipitation) 
from space, the layer of interaction between the land 
and atmosphere (i.e., the PBL and its diurnal evolution) 
remains largely undersampled, and thus the full suite 
of variables needed to assess the process chain in Eq. 
(1) has been very difficult to observe completely at 
the necessary spatial or temporal scales (Findell et al. 
2015). It is also clear that the metrics most useful in 
terms of characterizing L-A feedback include variables 
that contain the characteristics of the PBL from which 
entrainment fluxes and atmospheric boundary layer 
depth are most important and can also be observed. 
In particular, the lack of continuous monitoring of the 
lower troposphere (the PBL “gap”) has become quite 
evident. Therefore, the community must also support 
1) the development and application of suitable observ-
ing systems to address L-A coupling and 2) the design 
and the application of a suitable sensor synergy to 
directly measure the required components of coupling 
metrics without any use of model data.

To this end, there is now increasing activity in 
ground-based PBL profiling using active remote sens-
ing techniques that will likely lead to methods that 
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can be applied to future satellite missions (Wulfmeyer 
et al. 2015). Efforts to produce long- (Liu et al. 2012), 
medium- (Kolassa et al. 2016, 2017), and short-term (R. 
Bindlish 2017, personal communication) homogenized 
satellite-based soil moisture records, a surface flux 
record [e.g., Water, Energy, and Carbon with Artificial 
Neural Networks (WECANN; Alemohammad et al. 
2017)], and within-GEWEX subdaily precipitation 
records (e.g., Blenkinsop et al. 2017) will further en-
able observationally based LoCo studies in the future.

Finally, the ultimate utility of improved under-
standing of the physical processes driving the L-A 
system should be felt in advancing our community 
models, improving weather and climate predictions, 
and ultimately enhancing decision-making capabili-
ties that protect life and property. This will require a 
change in model development philosophy, where pa-
rameterizations in GCMs and LSMs are not developed 
in separation but as linked parts of a coupled system 
that are calibrated, validated, and diagnosed together. 
Closer connections between research and operational 
communities, including joint development of bench-
marks for coupled L-A modeling, will greatly aid 
progress, and we invite interested readers to contact 
the authors and/or refer to the LoCo website for more 
information. These are the ultimate aims of the LoCo 
community—building effective scientific linkages that 
mirror the links we are recognizing in nature.
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