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Abstract. This report presents challenges, opportunities, and directions for computational science
and engineering (CSE) research and education for the next decade. Over the past two
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dustry, and laboratories to advance discovery, optimize systems, support decision-makers,
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experiment, CSE performs computational experiments to answer questions that neither
theory nor experiment alone is equipped to answer. CSE provides scientists and engineers
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CSE brings the power of parallelism to bear on troves of data. Mathematics-based ad-
vanced computing has become a prevalent means of discovery and innovation in essentially
all areas of science, engineering, technology, and society, and the CSE community is at the
core of this transformation. However, a combination of disruptive developments---including
the architectural complexity of extreme-scale computing, the data revolution and increased
attention to data-driven discovery, and the specialization required to follow the applications
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1. CSE: Driving Scientific and Engineering Progress.

1.1. Definition of CSE. Computational science and engineering (CSE) is a multi-
disciplinary field lying at the intersection of mathematics and statistics, computer
science, and core disciplines of science and engineering (Figure 1). While CSE builds
on these disciplinary areas, its focus is on the integration of knowledge and method-
ologies from all of them and the development of new ideas at their interfaces. As
such, CSE is a field in its own right, distinct from any of the core disciplines. CSE is
devoted to the development and use of computational methods for scientific discovery
in all branches of the sciences, for the advancement of innovation in engineering and
technology, and for the support of decision-making across a spectrum of societally im-
portant application areas. CSE is a broad and vitally important field encompassing
methods of high-performance computing (HPC) and playing a central role in the data
revolution.

While CSE is rooted in the mathematical and statistical sciences, computer sci-
ence, the physical sciences, and engineering, today it increasingly pursues its own
unique research agenda. CSE is now widely recognized as an essential cornerstone
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Fig. 1 CSE at the intersection of mathematics and statistics, computer science, and core disciplines
from the sciences and engineering. This combination gives rise to a new field whose character
is different from its original constituents.

that drives scientific and technological progress in conjunction with theory and exper-
iment. Over the past two decades CSE has grown beyond its classical roots in mathe-
matics and the physical sciences and has started to revolutionize the life sciences and
medicine. In the 21st century its pivotal role continues to expand to broader areas
that now include the social sciences, humanities, business, finance, and government
policy.

1.2. Goal of This Document. The 2001 report on graduate education in CSE
by the SIAM Working Group on CSE Education [38] (see page 711) was instrumental
in setting directions for the then nascent CSE field. While its target focus was CSE
education, the report more broadly emphasized the critical need to consider research
and education together when contemplating future directions. Thus, recognizing that
much has changed since the 2001 report, the goal of this document is twofold: (1)
examine and assess the rapidly expanding role of CSE in the 21st-century landscape of
research and education, and (2) discuss new directions for CSE research and education
in the coming decade. We explore challenges and opportunities across CSE methods,
algorithms, and software, while examining the impact of disruptive developments
resulting from emerging extreme-scale computing systems, data-driven discovery, and
comprehensive broadening of the application fields of CSE. We discuss particular
advances in CSE methods and algorithms, the ubiquitous parallelism of all future
computing, the sea change provoked by the data revolution and the synergy with data
science, the importance of software as a foundation for sustained CSE collaboration,
and the resulting challenges for CSE education and workforce development.

1.3. Importance of CSE. The impact of CSE on our society has been so enor-
mous---and the role of modeling and simulation so ubiquitous---that it is nearly im-
possible to measure CSE's impact and too easy to take it for granted. It is hard to
imagine the design or control of a system or process that has not been thoroughly
transformed by predictive modeling and simulation. Advances in CSE have led to
more efficient aircraft, safer cars, higher-density transistors, more compact electronic
devices, more powerful chemical and biological process systems, cleaner power plants,
higher-resolution medical imaging devices, and more accurate geophysical exploration
technologies---to name just a few. A rich variety of fundamental advances have been
enabled by CSE in areas such as astrophysics, biology, climate modeling, fusion-energy
science, hazard analysis, human sciences and policy, management of greenhouse gases,
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CSE Success Story: SIAM Working Group Inspires Community to Create CSE
Education Programs

The landmark 2001 re-
port on ``Graduate Edu-
cation in Computational
Science and Engineer-
ing"" by L. Petzold et al.
[38] played a critical
role in helping define
the then nascent field of
CSE. The report pro-
posed a concrete defini-
tion of CSE's core ar-
eas and scope, and it
laid out a vision for CSE
graduate education. In
doing so, it contributed
a great deal to establish-
ing CSE's identity, to identifying CSE as a priority interdisciplinary area for fund-
ing agencies, to expanding and strengthening the global offerings of CSE graduate
education, and ultimately to creating the current generation of early-career CSE
researchers.

Much of the 2001 report remains relevant today; yet much has changed. Now there
is a sustained significant demand for a workforce versed in mathematics-based com-
putational modeling and simulation, as well as a high demand for graduates with
the interdisciplinary expertise needed to develop and/or utilize computational tech-
niques and methods in many fields across science, engineering, business, and society.
These demands necessitate that we continue to strengthen existing programs as well
as leverage new opportunities to create innovative programs.

materials science, nuclear energy, particle accelerator design, and virtual product de-
sign [27, 3, 36, 5, 34, 13, 6, 37, 28, 30].

CSE as a Complement to Theory and Experiment. CSE closes the centuries-
old gap between theory and experiment by providing technology that converts the-
oretical models into predictive simulations. It creates a systematic method to in-
tegrate experimental data with algorithmic models. CSE has become the essential
driving force for progress in science when classical experiments or conventional theory
reach their limits, and in applications where experimental approaches are too costly,
slow, dangerous, or impossible. Examples include automobile crash tests, nuclear test
explosions, emergency flight maneuvers, and operator emergency response training.
Experiments in fundamental science may be impossible when the systems under study
span microscopic or macroscopic scales in space or time that are beyond reach. Al-
though traditional theoretical analysis would not suffer from these limitations, theory
alone is insufficient to create predictive capabilities. For example, while the well-
established mathematical models for fluid dynamics provide an accurate theoretical
description of the atmosphere, the equations elude analytical solutions for problems
of interest because of their nonlinearity. When combined with the power of numerical
simulation and techniques to assimilate vast amounts of measured data, these math-
ematical models become useful for complex problems such as predicting tomorrow's
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Fig. 2 CSE cycle---from physical problem to model and algorithms to efficient implementation in
simulation software with verification and validation driven by data---leading to new insight
in science and engineering.

weather or designing more energy-efficient aircraft wings. Another example is the use
of simulation models to conduct systematic virtual experiments of exploding super-
novae: CSE technology serves as a virtual telescope reaching farther than any real
telescope, expanding human reach into outer space. And computational techniques
can equally well serve as a virtual microscope, being used to understand quantum
phenomena at scales so small that no physical microscope could resolve them.

CSE and the Data Revolution. The emergence and growing importance of mas-
sive data sets in many areas of science, technology, and society, in conjunction with
the availability of ever-increasing parallel computing power, are transforming the
world. Data-driven approaches enable novel ways of scientific discovery. Using massive
amounts of data and mathematical techniques to assimilate the data in computational
models offers new ways of quantifying uncertainties in science and engineering and
thus helps make CSE truly predictive. At the same time, relying on new forms of
massive data, we can now use the scientific approach of quantitative, evidence-based
analysis to drive progress in many areas of society where qualitative forms of analy-
sis, understanding, and decision-making were the norm until recently. Here the CSE
paradigm contributes as a keystone technology to the data revolution, in synergy with
data science.

CSE Cycle. Many CSE problems can be characterized by a cycle that includes
mathematical modeling techniques (based on physical or other principles), simulation
techniques (such as discretizations of equations and scalable solvers), and analysis
techniques (data mining, data management, and visualization, as well as the analysis
of error, sensitivity, stability, and uncertainty)---all encapsulated in high-performance
scientific software. The CSE cycle is more than a sequential pipeline since it is con-
nected through multiple feedbacks, as illustrated in Figure 2. Models are revised and
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updated with new data. When they reach a sufficient level of predictive fidelity, they
can be used for design and control, which are often posed formally as optimization
problems.

CSE Success Stories. Throughout this document, we highlight a few examples
of CSE success stories in call-out boxes to illustrate how combined advances in CSE
theory, analysis, algorithms, and software have made CSE technology indispensable
for applications throughout science and industry.

CSE Success Story: Computational Medicine

Computational medicine has
always been at the frontier
of CSE: the virtual design
and testing of new drugs
and therapies accelerate med-
ical progress and reduce cost
for development and treat-
ment. For example, CSE re-
searchers have developed elab-
orate models of the electrome-
chanical activity of the hu-
man heart.1 Such complex
processes within the human
body lead to elaborate multi-
scale models. Cardiac function
builds on a complicated interplay between different temporal and spatial scales (i.e.,
body, organ, cellular, and molecular levels), as well as different physical models (i.e.,
mechanics, electrophysiology, fluid mechanics, and their interaction). CSE advances
in computational medicine are helping, for example, in placing electrodes for pace-
makers and studying diseases such as atrial fibrillation. Opportunities abound for
next-generation CSE advances: The solution of inverse problems can help identify
suitable values for material parameters, for example, to detect scars or infarctions.
Using uncertainty quantification, researchers can estimate the influence of varying
these parameters or varying geometry.

1.4. Challenges and Opportunities for the Next Decade. While the past sev-
eral decades have witnessed tremendous progress in the development of CSE methods
and their application within a broad spectrum of science and engineering problems,
a number of challenges and opportunities are arising that define important research
directions for CSE in the coming decade.

In science and engineering simulations, large differences in temporal and spa-
tial scales must be resolved together with handling uncertainty in parameters and
data, and often different models must be coupled together to become complex multi-
physics simulations. This integration is necessary in order to tackle applications in
a multitude of new fields such as the biomedical sciences. High-fidelity predictive
simulations require feedback loops that involve inverse problems, data assimilation,
and optimal design and control. Algorithmic advances in these areas are at the core
of CSE research; in order to deal with the requirements of ever more complex science

1Parallel and adaptive simulation method described in T. Dickopf, D. Krause, R. Krause, and
M. Potse, SIAM J. Sci. Comput., 36 (2) (2014), pp. C163--C189.
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and engineering applications, new fundamental mathematical and algorithmic
developments are required.

Several recent disruptive developments yield the promise of further fundamental
progress if new obstacles can be overcome. Since single-processor clock speeds have
stagnated, any further increase in computational power must result from a further
increase in parallelism. New mathematical and computer science techniques need
to be explored that can guide development of modern algorithms that are effective
in the new era of ubiquitous parallelism and extreme-scale computing. In ad-
dition, the sea change provoked by the data revolution requires new methods for
data-driven scientific discovery and new algorithms for data analytics that are
effective at very large scale, as part of the comprehensive broadening of the applica-
tion fields of CSE to almost every field of science, technology, and society, in synergy
with data science. Moreover, software itself is now broadly recognized as a key cross-
cutting technology that connects advances in mathematics, computer science, and
domain-specific science and engineering to achieve robust and efficient simulations on
advanced computing systems. In order to deliver the comprehensive CSE promise,
the role ofCSE software ecosystemsmust be redefined---encapsulating advances in
algorithms, methods, and implementations and thereby providing critical instruments
to enable scientific progress.

These exciting research challenges and opportunities will be elaborated on in
section 2 of this document.

1.5. The Broad CSE Community. The past two decades have seen tremendous
growth in the CSE community, including a dramatic increase in both the size and
breadth of intellectual perspectives and interests. The growth in community size can
be seen, for example, through the membership of the SIAM Activity Group on CSE,
which has steadily increased from approximately 1,000 members in 2005 to more
than 2,500 in 2017. The biennial SIAM CSE Conference [43] is now SIAM's largest
conference, with growth from about 400 attendees in 2000 to over 1,700 attendees in
2017. The increased breadth of the community is evidenced in many ways: by the
diversity of minisymposium topics at SIAM CSE conferences; through a new broader
structure for the SIAM Journal on Scientific Computing, including a new journal
section that focuses on computational methods in specific problems across science and
engineering; and by the sharply increased use of CSE approaches in industry [37, 19].

As we envision the future of CSE, and in particular as we consider educational
programs, we must keep in mind that such a large and diverse intellectual commu-
nity has a correspondingly broad set of needs. Figure 3 presents one way to view
the different aspects of the broad CSE community: (1) CSE Core Researchers and
Developers---those engaged in the conception, analysis, development, and testing of
CSE algorithms and software---and (2) CSE Domain Scientists and Engineers---those
primarily engaged in developing and exploiting CSE methods for progress in particu-
lar science and engineering campaigns. The latter community can usefully be further
categorized into those who interact with the core technologies at a developer level
within their own applications, creating their own implementations and contributing
to methodological/algorithmic improvements, and those who use state-of-the-art CSE
technologies as products, combining them with their expert knowledge of an applica-
tion area to push the boundaries of a particular application. Within the CSE Core
Researchers and Developers group in Figure 3, we further identify two groups: those
focused on broadly applicable methods and algorithms, and those focused on methods
and algorithms motivated by a specific domain of application. This distinction is a
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useful way to cast differences in desired outcomes for different types of CSE educa-
tional programs as they will be discussed in section 3. As with any such categorization,
the dividing lines in Figure 3 are fuzzy, and in fact any single researcher might span
multiple categories.

CSE Domain Scientists and Engineers
method users

CSE Domain Scientists and Engineers
method developers

CSE Core Researchers and Developers
method-focused domain-focused

Fig. 3 One view of the different aspects of the broad CSE community. The part of the CSE commu-
nity that focuses on developing new methods and algorithms is labeled CSE Core Researchers
and Developers. This group may be driven by generally applicable methods or by methods
developed for a specific application domain. CSE Domain Scientists and Engineers focus
their work primarily in their scientific or engineering domain and make extensive use of
CSE methods in their research or development work.

1.6. Organization of This Document. The remainder of this document is or-
ganized as follows. Section 2 presents challenges and opportunities in CSE research,
organized into four main areas. First we discuss key advances in core CSE methods
and algorithms, and the ever-increasing parallelism in computing hardware culminat-
ing in the drive toward extreme-scale applications. Next we describe how the ongoing
data revolution offers tremendous opportunities for breakthrough advances in science
and engineering by exploiting new techniques and approaches in synergy with data
science, and we discuss the challenges in advancing CSE software given its key role
as a crosscutting CSE technology. Section 3 discusses how major changes in the CSE
landscape are affecting the needs and goals of CSE education and workforce develop-
ment. Section 4 summarizes findings and formulates recommendations for CSE over
the next decade.

2. Challenges and Opportunities in CSE Research. The field of CSE faces
important challenges and opportunities for the next decade, following disruptive de-
velopments in extreme-scale computing and ubiquitous parallelism, the emergence of
big data and data-driven discovery, and a comprehensive broadening of the applica-
tion areas of CSE. This section highlights important emerging developments in CSE
methods and algorithms, in HPC, in data-driven CSE, and in software.

2.1. Advances in CSE through Mathematical Methods and Algorithms. Al-
gorithms (e.g., see [20]) occupy a central role in CSE. They all transform inputs to
outputs, but they may differ in their generality, in their robustness and stability, and
in their complexity---that is, in the way their costs in operations, memory, and data
motion scale with the size of the input. Mathematical theories and methods are of
fundamental importance for the algorithms developed and employed in CSE. The
types of algorithms employed in CSE are diverse. They include geometric modeling,
mesh generation and refinement, discretization, partitioning, load balancing, solution
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of ordinary differential equations (ODEs) and differential algebraic equations, solu-
tion of partial differential equations (PDEs), solution of linear and nonlinear systems,
eigenvalue computations, sensitivity analysis, error estimation and adaptivity, solution
of integral equations, surrogate and reduced modeling, random number generation,
upscaling and downscaling between models, multiphysics coupling, uncertainty quan-
tification, numerical optimization, parameter identification, inverse problems, graph
algorithms, discrete and combinatorial algorithms, graphical models, data compres-
sion, data mining, data visualization, and data analytics.

2.1.1. Impact of Algorithms in CSE. Compelling CSE success stories stem from
breakthroughs in applied mathematics and computer science that have dramatically
advanced simulation capabilities through better algorithms, as encapsulated in robust
and reliable software. The growing importance of CSE in increasingly many appli-
cation areas has paralleled the exponential growth in computing power according to
``Moore's law""---the observation that over the past five decades the density of transis-
tors on a chip has doubled approximately every 18 months as a result of advances in
lithography allowing miniaturization. Less appreciated but crucial for the success of
CSE is the progress in algorithms in this time span. The advances in computing power
have been matched or even exceeded by equivalent advances of the mathematics-based
computational algorithms that lie at the heart of CSE. Indeed, the development of
efficient new algorithms has been crucial to the effective use of advanced comput-
ing capabilities. And as the pace of advancement in Moore's law slows,2 advances
in algorithms and software will become even more important. Single-processor clock
speeds have stagnated, and further increase in computational power must come from
increases in parallelism. CSE now faces the challenge of developing efficient methods
and implementations in the context of ubiquitous parallelism (as discussed in section
2.2).

As problems scale in size and memory to address increasing needs for fidelity and
resolution in grand-challenge simulations, the computational complexity must scale
as close to linearly in the problem size as possible. Without this near-linear scaling,
increasing memory and processing power in proportion---the way parallel computers
are architected---the result will be computations that slow down in wall-clock time
as they are scaled up. In practice, such optimal algorithms are allowed to have a
complexity of NplogNqp, where N is the problem size and p is some small power,
such as 1 or 2. Figure 4 illustrates the importance of algorithmic innovation since
the beginnings of CSE. We contrast here the importance of algorithmic research with
technological progress in computers by using the historical example of linear solvers
for elliptic PDEs. Consider the problem of the Poisson equation on a cubical domain,
discretized into n cells on a side, with a total problem size N � n3. The total memory
occupied is Opn3q, and the time to read in the problem or to write out the solution
is also Opn3q. Based on the natural ordering, banded Gaussian elimination applied
to this problem requires Opn7q arithmetic operations. Perhaps worse, the memory to
store intermediate results bloats to Opn5q---highly nonoptimal, so that if we initially
fill up the memory with the largest problem that fits, it overflows. Over a quarter of a
century, from a paper by Von Neumann and Goldstine in 1947 to a paper by Brandt
in 1974 describing optimal forms of multigrid, the complexity of both operations
and storage was reduced, in a series of algorithmic breakthroughs, to an optimal
Opn3q each. These advances are depicted graphically in a log-linear plot of effective

2as documented in the TOP 500 list, https://www.top500.org
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Fig. 4 Left: Moore's law for algorithms to solve the 3D Poisson equation (black) plotted with
Moore's law for transistor density (red), each showing 24 doublings (factor of approximately
16 million) in performance over an equivalent period. For algorithms, the factor can be made
arbitrarily large by increasing the problem size N � n3. Here n � 64, which is currently a
modest resolution even on a single processor. Right: Increase in CSE model complexity and
approximate computational cost over time, where the y-axis indicates a qualitative notion
of complexity in the combination of models, algorithms, and data structures. Simulations
have advanced from modestly sized forward simulations in simple geometries to incorporate
complex domains, adaptivity, and feedback loops. The stage is set for new frontiers of work
on advanced coupling, numerical optimization, stochastic models, and many other areas that
will lead to truly predictive scientific simulations.

speedup over time on the left-hand side of Figure 4. During the same period, Moore's
law accounted for approximately 24 doublings, or a factor of 224 � 16 million in
arithmetic processing power per unit square centimeter of silicon, with approximately
constant electrical power consumption. This same factor of 16 million was achieved
by mathematical research on algorithms in the case that n � 26 in the example above.
For grids finer than 64 � 64 � 64, as we routinely use today, the progress of optimal
algorithms overtakes the progress stemming from Moore's law, by an arbitrarily large
factor. Remarkable progress in multigrid has been made since this graph was first
drawn. Progress can be enumerated along two directions: extension of optimality
to problems with challenging features not present in the original Poisson problem,
and extension of optimal algorithms to the challenging environments of distributed
memory, shared memory, and hybrid parallelism, pushing toward extreme scale.

Algorithmic advances of similar dramatic magnitudes across many areas continue
to be the core of CSE research. These advances are often built on the development
of new mathematical theories and methods. Each decade since Moore stated his
law in 1965, computational mathematicians have produced new algorithms that have
revolutionized computing. The impact of these algorithms in science and engineering,
together with the technological advances following Moore's law, has led to the creation
of CSE as a discipline and has enabled scientists to tackle problems with increasing
realism and complexity, as shown on the right-hand side of Figure 4.

2.1.2. Challenges and Opportunities in CSE Methods and Algorithms. With-
out attempting to be exhaustive, we highlight here several areas of current interest
where novel CSE algorithms have produced important advances. This often goes
hand-in-hand with formulating new mathematical theories and their advancement.
We also discuss challenges and opportunities for the next decade in these fields.

Linear, Nonlinear, and Timestepping Solvers. As exemplified by the pursuit
of optimality for algorithms for elliptic PDEs described above, algebraic solvers re-
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CSE Success Story: Lightning-Fast Solvers for the Computer Animation In-
dustry

CSE researchers have
teamed up with com-
puter animators at
Walt Disney Anima-
tion Studios Research
to dramatically im-
prove the efficiency in
linear system solvers
that lie at the heart
of many computer
animation codes.
Building on advanced
multilevel methods originally developed for engineering simulations of elastic
structures and electromagnetic systems, researchers showed that movie animations
with cloth simulation on a fully dressed character discretized on an unstructured
computational grid with 371,000 vertices could be accelerated by a factor of 6 to
8 over existing solution techniques.3 These improvements in computational speed
enable greater productivity and faster turnaround times for feature film production
with realistic resolutions. Another application is real-time virtual try-on of garments
in e-commerce.

ceive extensive attention because they represent the dominant computational cost
and dominant memory occupancy of many important CSE applications. In fact, five
of the ``top ten algorithms of the twentieth century"" as described by the guest edi-
tors of the January 2000 issue of Computing in Science \& Engineering [12] fall into
the category of solvers. Important types of problems requiring solvers that operate
in floating point include linear algebraic systems, nonlinear algebraic systems, and
eigensystems. Timestepping algorithms for differential equations, after discretization,
also rely on algebraic solvers, applying a forward operator for explicit techniques,
an inverse operator for implicit techniques, or a combination for implicit-explicit ap-
proaches. Root-finding problems for nonlinear algebraic systems are conventionally
handled with linearization and Newton-type iteration, focusing the main issue for
progress in many CSE applications on linear solvers. Nevertheless, some recent algo-
rithmic approaches directly work with nonlinear algebraic systems.

A key approach in the pursuit of linearly scaling methods---for example, for ellip-
tic PDE operators---is to employ a hierarchy of resolution scales. The most classical
algorithm of this kind is the fast Fourier transformation (FFT) that is applicable in
many important special cases. Other prominent methods that rely on a hierarchy
of scales are the multigrid, wavelet, multipole, and multilevel Monte Carlo methods,
including their many extensions and descendants. Another fruitful approach is to ex-
ploit known structures and properties arising from the underlying physics, as, e.g., in
physics-based preconditioning techniques and mimetic methods. Geometric multigrid
methods iteratively form a hierarchy of problems derived from the original one on a

3See the video at https://youtu.be/ mkFBaqZULU and the paper by R. Tamstorf, T. Jones,
and S. McCormick, ACM SIGGRAPH Asia 2015, at https://www.disneyresearch.com/publication/
smoothed-aggregation-multigrid/.
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succession of coarser scales and remove from each scale the components of the overall
error most effectively represented on that scale. Challenging features common in appli-
cations include inhomogeneity, anisotropy, asymmetry, and indefiniteness. Geometric
multigrid may lose its optimality on such challenging problems; however, algebraic
multigrid methods have revolutionized many fields that were previously computation-
ally intractable at finely resolved scales. Parallel preconditioners based on advanced
domain decomposition approaches also contribute to robustly scalable linear solvers.
Further progress in multigrid focuses, for example, on indefinite high-frequency wave
problems and efficient performance and resilience for extreme-scale architectures.

In such environments, data motion represents a higher cost than does arithmetic
computation, and global synchronization makes algorithms vulnerable to load and
performance imbalance among millions or billions of participating processors. The fast
multipole method possesses arithmetic intensity (the ratio of flops to bytes moved) up
to two orders of magnitude greater, in some phases, than does the sparse matrix-vector
multiply that is the core of many other solvers. In addition, fast multipole, being
essentially a hierarchically organized fast summation, is less vulnerable to frequent
synchronization. These properties have led fast multipole methods to be considered as
a replacement whenever an analytically evaluated Green's function kernel is available.

Fast multipole is optimal because, for a given accuracy requirement, it com-
presses interactions at a distance into coarse representations, which can be translated
at low cost and re-expanded locally, relying on the ability to represent the interac-
tions with operators of low effective rank. Many relevant operators have hierarchical
low-rank structure even when they do not admit a constructive Green's function ex-
pansion. This structure enables replacement of the dominant coupling represented in
off-diagonal portions of a matrix by low-rank representations with controllable loss
of accuracy and major gains in storage, arithmetic complexity, and communication
complexity. Today, hierarchically low-rank or ``rank-structured"" methods of linear
algebra are finding use in developing optimal solvers for an increasing class of chal-
lenging problems. Efficient approximate eigendecomposition methods are needed in
order to generate low-rank approximations to off-diagonal blocks in hierarchical ma-
trices, identifying the dominant subspace. Methods such as randomized singular value
decomposition are of specific interest. While progress since [38] has been fruitful, the
quest for powerful scalable solvers will likely always be at the heart of CSE.

Uncertainty Quantification. Recent years have seen increasing recognition of
the critical role of uncertainty quantification (UQ) in all phases of CSE, from in-
ference to prediction to optimization to decision-making. Just as the results of an
experiment would not be meaningful unless accompanied by measures of the uncer-
tainty in the experimental data, so too in CSE scientists need to know what confidence
they can have in the predictions of models. This issue is becoming urgent as CSE
models are increasingly used as a basis for decision-making about critical technologi-
cal and societal systems. As one indication of the explosion of interest in UQ in the
past few years, the recent 2016 SIAM UQ conference had more minisymposia than
does the SIAM annual meeting. Moreover, several U.S. federal agency-commissioned
reports focusing wholly or partially on status, opportunities, and challenges in UQ
have appeared in recent years [1, 37].

The need to quantify uncertainties arises in three problem classes within CSE:
(1) The inverse problem: Given a model, (possibly noisy) observational data, and
any prior knowledge of model parameters (used in the broadest sense), infer unknown
parameters and their uncertainties by solving a statistical inverse problem. (2) The
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CSE Success Story: Transforming the Petroleum Industry

Few industries have
been as transformed
by CSE as petroleum,
in which a decision
to drill can commit
\$100,000,000 or more.
Reservoir imaging
solves inverse prob-
lems (seismic and
electromagnetic) to
locate subsurface
fluids in highly het-
erogeneous media and
distinguish hydro-
carbons from water.
Reservoir modeling
simulates the flow of
fluids between injec-
tion and production wells. Correctly predicting a pocket of oil left behind can justify
an entire corporate simulation department. Optimizing reservoir exploitation while
reducing uncertainty requires simulating many forward scenarios. Oil companies
have been behind the earliest campaigns to improve linear algebraic solvers and
today operate some the world's most powerful computers. In the figure,4 a reservoir
is modeled with a coarse grid (left) and with a finer grid (right). Diamonds are
injection wells, and circles are production wells. Unresolved on the coarse grid are
two pockets of oil recoverable with horizontal drilling extensions.

prediction (or forward) problem: Once model parameters and uncertainties have been
estimated from the data, propagate the resulting probability distributions through
the model to yield predictions of quantities of interest with quantified uncertainties.
(3) The optimization problem: Given an objective function representing quantities
of interest and decision variables (design or control) that can be manipulated to
influence the objective, solve the optimization problem governed by the stochastic
forward problem to produce optimal values of these variables.

These three classes can all be thought of as ``outer problems,"" since they entail
repeated solution of the deterministic forward problem, namely, the ``inner problem,""
for different values of the stochastic parameters. However, viewing the stochastic in-
verse, forward, and optimization problems merely as drivers for repeated execution
of the deterministic forward problem is prohibitive, especially when these problems
involve large complex models (such as with PDEs) and high-dimensional stochastic
parameter spaces (such as when parameters represent discretized fields). Fundamen-
tally, what ties these three problems together is the need to explore a parameter space
where each point entails a large-scale forward model solve. Randomly exploring this
space with conventional Monte Carlo methods is intractable.

The key to overcoming the severe mathematical and computational challenges
in bringing UQ to CSE models is to recognize that beneath the apparently high-

4Images from A. H. Dogru, ``Giga-cell Simulation Improves Recovery from Giant Fields,"" World
Oil, 231 (2010), pp. 65--70, used by permission of Saudi Aramco.
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dimensional inversion, prediction, and optimization problems lurk much lower-dimen-
sional manifolds that capture the maps from (inversion/design/control) inputs to
outputs of interest. Thus, these problems are characterized by their much smaller
intrinsic dimensions. Black-box methods that are developed as generic tools are in-
capable of exploiting the low-dimensional structure of the operators underlying these
problems. Intensive research is ongoing to develop UQ methods that exploit this struc-
ture, for example, by sparsity-capturing methods, reduced-order models, randomized
algorithms, and high-order derivatives. This research integrates and cross-fertilizes
ideas from statistics, computer science, numerical analysis, and applied mathematics,
while exploiting the structure of the specific inverse, prediction, and optimal design
and control operators in the context of target CSE problems. The new high-fidelity,
truly predictive science that has emerged within the past decade and that addresses
these issues can be referred to as predictive CSE. Ultimately, the ability to account
for uncertainties in CSE models will be essential in order to bring the full power of
modeling and simulation to bear on the complex decision-making problems facing
society.

Optimization and Optimal Control. The past several decades have seen the
development of theory and methods for optimizing systems governed by large-scale
CSE models, typically involving ODEs or PDEs. Such problems usually take the form
of optimal control, optimal design, or inverse problems. Among other reasons, these
problems are challenging because, upon discretization, the ODEs or PDEs result in
very high-dimensional nonlinear constraints for the optimization problem; exploiting
the structure of these constraints is essential in order to make the solution of the
differential equation-constrained optimization problem tractable. The optimization
problems are made further challenging by additional inequality constraints, in the
form of state or control constraints.

We identify five areas where research is needed. First, the successes of the meth-
ods mentioned above must be extended to more complex (multiscale/multiphysics)
state equations. Second, methods must be developed that overcome the curse of
dimensionality associated with discrete decision variables. Third, enhancing scala-
bility of methods developed for nonsmooth objectives or constraints is critical for a
number of large-scale applications. Fourth, the increasing interest in optimization
of systems governed by stochastic ODEs or PDEs necessitates the creation of a new
class of stochastic optimization methods that can handle problems with very high-
dimensional constraints and random variables. This requires advancing mathematical
models of optimal control under uncertainty and risk. Fifth, optimization methods
are needed that can rigorously employ reduced models for much (or even all) of the
optimization as surrogates for the underlying high-fidelity ODE/PDE models when
the latter become particularly expensive to solve.

Highly Accurate Discretizations and Adaptive Grid Refinement. Complex
simulations on realistic geometries challenge the capabilities of traditional single-scale
methods that utilize quasi-equidistant grids and methods of fixed order. Further-
more, hardware developments favor methods with high arithmetic complexity and
low memory footprint. The natural answer to these challenges is to focus on accu-
rate discretizations, often of high or variable order, in combination with full spatial
adaptivity; substantial developments have occurred in both of these key technologies.

Discontinuous Galerkin methods are a prominent example of a family of dis-
cretizations that have come to fruition as flexible and robust modeling tools. Chal-
lenges remain when strong discontinuities occur in the solution, and uniformly high-
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CSE Success Story: Bayesian Inversion for the Antarctic Ice Sheet

The question of how
one infers unknown
parameters character-
izing a given model
of a physical system
from observations of
the outputs of that
model is fundamen-
tally an inverse prob-
lem. In order to ad-
dress the intrinsic ill-
posedness of many in-
verse problems, regu-
larization is invoked to
render the inverse so-
lution unique. The
Bayesian formulation of the inverse problem seeks to infer all models, with asso-
ciated uncertainty, in the model class that are consistent with the data and any
prior knowledge. The figure illustrates the Bayesian solution of an inverse problem
to infer friction at the base of the Antarctic ice sheet, from InSAR satellite observa-
tions of the surface ice flow velocity and a non-Newtonian model of the flow. The
upper left image depicts the observed surface velocity field; the upper right image
shows the inferred basal friction field. The upper row thus illustrates the classical
regularization-based solution. The Bayesian solution contains additional information
about uncertainty in the inverse solution, as illustrated in the lower right image of
the variance of the inferred basal friction. The lower left image shows the predicted
surface velocity field, using the inferred basal friction. In order to overcome the
prohibitive nature of large-scale Bayesian inversion, the low-rank structure of the
parameter-to-observable map is exploited.5

order accurate limiters are needed that remain robust for complex problems on com-
plex grids. Another class of successful methods is the high-order accurate essen-
tially nonoscillatory (ENO) schemes and weighted essentially nonoscillatory (WENO)
schemes. Isogeometric methods, based on rational splines used in geometry descrip-
tions, have positioned themselves as a powerful tool for fluid-structure problems and
complex multiphysics problems. Another area of important advances is the develop-
ment of mimetic finite-volume and finite-element methods. These methods aim to
retain physically relevant geometric and conservation properties of the PDE opera-
tors on the discrete level, often leading to important advantages in terms of stability,
accuracy, and convergence. Numerical methods for fractional and stochastic differ-
ential equations are further areas of current interest, along with meshless methods,
boundary element methods, and radial basis function methods.

Solution-adaptive grid refinement is a key methodology for tackling problems
with widely varying spatial scales. Diverse methods have been developed that may
use block-based, patch-based, or cell-based approaches, with or without overlap. Re-
search in error estimation has a long tradition, but the essential question in computa-

5Images courtesy of Omar Ghattas. Algorithms described in T. Isaac, N. Petra, G. Stadler, and
O. Ghattas, J. Comput. Phys., 296 (2015), pp. 348--368.
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tional practice---how discretization and iteration error affect each other---remains an
open problem. Other research topics include the dynamic coarsening and refinement
on ever-increasing processor numbers as well as local timestepping for time-dependent
problems. In order to ensure the usefulness of solution-adaptive simulations on fu-
ture computers, dynamic load-balancing must be developed to work in scenarios with
millions of processors.

The development of highly accurate methods during the past decade has addressed
a number of key bottlenecks, and substantial advances have been made that enable
the robust solution of large multiscale and multiphysics problems using advanced com-
puting platforms. One central challenge that touches on all existing techniques is the
development of robust and efficient linear and nonlinear solvers and preconditioning
techniques in these more complex scenarios. The development significantly trails that
of low-order solvers, and progress is needed to fully benefit from high-order methods
in large-scale problems of scientific and industrial relevance.

Approximation: Simplified, Surrogate, and Reduced Models. A significant
body of CSE research concerns the conception, analysis, scalable implementation,
and application of approximation methods. These methods introduce systematic ap-
proximations to the computational model of the system at hand---thus reducing the
computational cost of solving the model, while at the same time effecting rigorous
control of the resulting error. While computational efficiency is important in all ap-
plications, it is a critical consideration in two particular settings. First is the real-time
setting, which translates into (often severe) constraints on analysis time, and some-
times also constraints on memory and bandwidth. Real-time applications span many
fields, such as process control, aircraft on-board decision-making, and visualization.
Second is the many-query setting, in which an analysis (i.e., a forward simulation)
must be conducted many times. Examples of many-query applications include opti-
mization, uncertainty quantification, parameter studies, and inverse problems.

Approximation methods can take many forms. The power of multilevel approxi-
mations, such as hierarchies of spatial discretizations in a multigrid solver, has long
been recognized as an elegant means for exploiting the mathematical structure of the
problem and thus obtaining computational speedups. More recently, multilevel ap-
proximations have been shown to have similar benefits in uncertainty quantification,
such as through the multilevel Monte Carlo method. Another class of approxima-
tion methods seeks to approximate the high-fidelity model of interest by deriving a
surrogate model. This surrogate model may take many forms---by applying simplify-
ing physical assumptions, through data-fit regression and interpolation approaches, or
via projection of the high-fidelity model onto a low-dimensional subspace. Projection-
based model reduction has become a widely used tool, particularly for generating effi-
cient low-cost approximations of systems resulting from parameterized PDEs. Data-
driven surrogate models, often drawing on the tools of machine learning, are also
starting to see wider development within the CSE community. In the context of
sampling and integration, quasi-Monte Carlo methods are explored as alternatives to
Monte Carlo methods for high-dimensional problems. With the drive toward CSE
applications of increasing complexity, ensuring the computational tractability of CSE
methods and algorithms is becoming increasingly important but also increasingly
more challenging. In this regard, an important area of future research involves ex-
tending rigorous approximation methods to problems with high dimensionality and
with challenging nonlinear and multiphysics behavior.
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Randomized Algorithms. The field of design and analysis of scalable random-
ized algorithms is experiencing rapid growth. In the context of science and engineering
problems, randomized algorithms find applications in the numerical solution of PDEs,
model reduction, optimization, inverse problems, UQ, machine learning, and network
science.

Many classical sequential and parallel algorithms are based on randomization,
for example, in discrete mathematics (sorting, hashing, searching, and graph analysis
problems), computational geometry (convex hulls, triangulation, nearest-neighbors,
clustering), and optimization and statistics (derivative-free solvers, sampling, random
walks, and Monte Carlo methods). In the past two decades, however, significant
developments have broadened the role of randomized algorithms by providing new
theoretical insights and significant opportunities for research in CSE. A first exam-
ple is compressive sensing, in which under certain conditions one can circumvent the
Nyquist density sampling barrier by exploiting sparsity. A second example is the fac-
torization of matrices and tensors by using probing, in which one exposes and exploits
global or block-hierarchical low-rank structures that may exist in the target matrices
and tensors. Such algorithms can be used for accelerating algebraic operations with
tensors and matrices such as multiplication and factorization. A third example is
randomized gradient descent (especially for nonsmooth problems) for large-scale opti-
mization, which is popular in both large-scale inverse problems and machine learning
applications. A fourth example is sampling for computational geometry and signal
analysis, such as sparse FFTs and approximate nearest-neighbors.

Deep connections exist among these apparently different problems. Their analysis
requires tools from functional and matrix analysis, high-dimensional geometry, nu-
merical linear algebra, information theory, and probability theory. These algorithms
achieve dimension reduction by exploiting sparsity and low-rank structures of the
underlying mathematical objects and exposing these structures using ingenious sam-
pling. Despite the success of these new algorithms, however, several challenges remain:
extensions to nonlinear operators and tensors, algorithmic and parallel scalability for
large-scale problems, and development of software libraries for high-performance com-
puting systems.

Multibody Problems and Mesoscopic Methods. Simulating a large number of
interacting objects is among the most important and computationally challenging
problems in CSE. Applications range from simulations of very large objects such as
stars and galaxies to very small objects such as atoms and molecules. In between is
the human scale, dealing with moving objects such as pedestrians, or the mesoscopic
scale, dealing with granular objects such as blood cells that are transported through
microfluidic devices. Multibody and particle-based modeling, for example, in the form
of the discrete element method, is rapidly gaining relevance since the models can cap-
ture behavior that cannot be represented by traditional PDE-based methods and since
its high computational cost can now be accommodated by parallel supercomputers.
When short-range interactions dominate, efficient parallel implementations can be
constructed by suitable data structures and a dynamic partitioning of the computa-
tional domain. Long-range interactions (such as gravity or electrostatic forces) are
even more challenging since they inevitably require a global data exchange that can be
realized efficiently only by advanced parallel hierarchical algorithms such as multipole
methods, FFTs, or multigrid methods.

Mesoscopic methods are based on a kinetic modeling paradigm, with the lattice
Boltzmann method and smoothed particle hydrodynamics being particularly success-
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ful representatives. Mesoscopic algorithms are derived in a nonclassical combination
of model development and discretization using the principles of statistical physics.
This results in an algorithmic structure that involves explicit timestepping and only
nearest-neighbor communication, typically on simple grid structures. Kinetic meth-
ods are particularly successful when employed in a multiphysics context. Here the
underlying particle paradigm and statistical physics nature enable new and powerful
approaches to model interactions, as, for example, when using the so-called momen-
tum exchange method for fluid-structure interaction. Challenges lie in improving
the algorithms and their parallel implementation, in particular by improving stabil-
ity, analyzing and controlling errors, reducing timestep restrictions, deriving better
boundary conditions, developing novel multiphase models, and incorporating mesh
adaptivity.

Multiscale and Multiphysics Models. Because of increasing demands that simu-
lations capture all relevant influences on a system of interest, multiscale and multi-
physics simulations are becoming essential for predictive science.

A multiscale model of a physical system finds use when important features and
processes occur at multiple and widely varying physical scales within a problem. In
many multiscale models, a solution to the behavior of the system as a whole is aided
by computing the solution to a series of subproblems within a hierarchy of scales. At
each level in the hierarchy, a subproblem focuses on a range of the physical domain
appropriate to the scale at which it operates. Important advances have been made in
this area, but challenges remain, such as atomistic-continuum coupling and problems
without a separation of scales. The coupling of scales can also lead to powerful
algorithms; we note that some of the most successful methods for simulating large
systems, such as the multigrid method, owe their efficiency to using the interaction
of multiple scales.

A multiphysics system consists of multiple coupled components, each component
governed by its own principle(s) for evolution or equilibrium. Coupling individual
simulations may introduce stability, accuracy, or robustness limitations that are more
severe than the limitations imposed by the individual components. Coupling may oc-
cur in the bulk, over interfaces, or over a narrow buffer zone. In typical approaches one
attempts to uncouple dynamics by asymptotics and multiscale analysis that eliminates
stiffness from mechanisms that are dynamically irrelevant to the goals of the simu-
lation. Numerical coupling strategies range from loosely coupled Gauss--Seidel and
operator-splitting approaches to tightly coupled Newton-based techniques [28]. Re-
cent progress includes aspects of problem formulation, multiphysics operator decom-
position, discretization, meshing, multidomain interfaces, interpolation, partitioned
timestepping, and operator-specific preconditioning.

Next-generation advances require further mathematical analysis and software de-
sign to ensure that splitting and coupling schemes are accurate, stable, robust, and
consistent and are implemented correctly. Programming paradigms and mathematics
both need to be revisited, with attention to less-synchronous algorithms employing
work stealing, so that different physics components can complement each other in
cycle and resource scavenging without interference.

2.2. CSE and High-Performance Computing – Ubiquitous Parallelism. The
development of CSE and high-performance computing are closely interlinked. The
rapid growth of available compute power drives CSE research toward ever more com-
plex simulations in ever more disciplines. In turn, new paradigms in HPC present
challenges and opportunities that drive future CSE research and education.
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2.2.1. Symbiotic Relationship between CSE and HPC. HPC and CSE are in-
tertwined in a symbiotic relationship: HPC technology enables breakthroughs in CSE
research, and leading-edge CSE applications are the main drivers for the evolution
of supercomputer systems [27, 39, 47, 48, 49, 40, 31]. Grand-challenge applications
exercise computational technology at its limits and beyond. The emergence of CSE as
a fundamental pillar of science has become possible because computer technology can
deliver sufficient compute power to create effective computational models. Combined
with the tremendous algorithmic advances (see Figure 4), these computational models
can deliver predictive power and serve as a basis for important decisions.

On the other hand, the computational needs of CSE applications are a major im-
petus for HPC research. CSE applications often require closely interlinked systems,
where not only is the aggregate instruction throughput essential, but also the tight
interconnection between components: CSE often requires high-bandwidth and low-
latency interconnects. These requirements differentiate scientific computing in CSE
from other uses of information-processing systems. In particular, many CSE applica-
tions cannot be served efficiently by weakly coupled networks as in grid computing or
generic cloud computing services.

2.2.2. Ubiquitous Parallelism: A Phase Change for CSE Research and Edu-
cation. Parallelism is fundamental for extreme-scale computing, but the significance
of parallelism goes much beyond the topics arising in supercomputing. All modern
computer architectures are parallel, even those of moderate-sized systems and desktop
machines. Since single-processor clock speeds have stagnated, any further increase in
computational power can be achieved only by a further increase in parallelism, with
ever more complex hierarchical and heterogeneous system designs. High-performance
computing architectures already are incorporating large numbers of parallel threads,
possibly reaching a billion by the year 2020.

Future mainstream computers for science and engineering will not be acceler-
ated versions of current architectures but, instead, smaller versions of extreme-scale
machines. In particular, they will inherit the node and core architecture from the
larger machines. Although computer science research is making progress in develop-
ing techniques to make architectural features transparent to the application developer,
doing so remains an ongoing research effort. Moreover, the technological challenges
in miniaturization, clock rate, bandwidth limitations, and power consumption will
require deep and disruptive innovations, dramatically increasing the complexity of
software development.

Parallel computing in its full breadth thus has become a central and critical issue
for CSE. Programming methodologies must be adapted, not only for the extreme
scale but also for smaller parallel systems. Efficient and sustainable realizations of
numerical libraries and frameworks must be designed. Furthermore, for high-end
applications, the specifics of an architecture must be explicitly exploited in innovative
algorithm designs. To meet these demands requires a dramatic phase change for both
CSE research and education.

2.2.3. Emergent Topics in HPC-Related Research and Education.

Extending the Scope of CSE through HPC Technology. Low-cost computa-
tional power, becoming available through accelerator hardware such as graphic pro-
cessing units (GPUs), increasingly is enabling nontraditional uses of HPC technology
for CSE. One significant opportunity arises in real-time and embedded supercomput-
ing. Figure 5 illustrates a selection of possible future development paths, many of
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Fig. 5 Some emerging developments based on real-time or embedded HPC methodology for CSE
applications.

which involve advanced interactive computational steering and/or real-time simula-
tion. Once simulation software can be used in real time, it can also be used for training
and education. A classical application is the flight simulator, but the methodology
can be extended to many other situations where humans operate complex technical
objects and where systematic training on a simulator may save time and money as
well as increase preparedness for emergency situations. Further uses of fast, embedded
CSE systems include the development of simulators for the modeling of predictive con-
trol systems and for patient-specific biomedical diagnosis. The development of these
emerging CSE applications, shown in Figure 5, will require a focused investment in
parallel computing research and education.

As another example, extreme-scale computing will enable mesoscale simulation
to model the collection of cells that make up a human organ or a large collection
of particles directly, without resorting to averaging approaches. The simulation of
granular material has tremendous practical importance. The examples range from the
transport and processing of bulk materials and powders in industry to the simulation
of avalanches and landslides. The potential that arises with the advent of powerful
supercomputers can be seen when realizing that exascale means 1018 but that a human
has ``only"" around 1011 neurons and 1013 red blood cells, and that the 3D printing
of a medical implant may require processing 108 individual grains of titanium alloy.
Thus, extreme-scale computation may open the route to modeling techniques where
each cell or grain is represented individually. This gives rise to research directions
that are out of reach on conventional computer systems but that will exceed the
predictive power of continuum models for such simulation scenarios. In order to
exploit these opportunities, new simulation methods must be devised, new algorithms
invented, and new modeling paradigms formulated. New techniques for validation and
verification are needed. Fascinating opportunities in fundamental research arise that
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go far beyond just developing new material laws and increasing the mesh resolution
in continuum models.

Quantitative Performance Analysis of Algorithms and Software. The advent
of exascale and other performance-critical applications requires that CSE research
and education address the performance abyss between the traditional mathematical
assessment of computational cost and the implementation of algorithms on current
computer systems. The traditional cost metrics based on counting floating-point op-
erations fail increasingly to correlate with the truly relevant cost factors, such as time
to solution or energy consumption. Research is necessary in order to quantify more
complex algorithmic characteristics, such as memory footprint and memory access
structure (cache reuse, uniformity of access, utilization of block transfers, etc.), pro-
cessor utilization, communication, and synchronization requirements. These effects
must be built into better cost and complexity models.

Furthermore, the traditional approach to theory in numerical analysis provides
only an insufficient basis to quantify the efficiency of algorithms and software, since
many theorems are only qualitative and leave the constants unspecified. Such math-
ematical results, although themselves rigorous, permit only heuristic---and thus often
misleading---predictions of real computational performance. Thus much of current nu-
merical analysis research must be fundamentally extended to become better guiding
principles for the design of efficient simulation methods in practice.

Performance Engineering and Co-design. In current CSE practice, perfor-
mance models are used to analyze existing applications for current and future com-
puter systems, but the potential of performance analysis techniques is rarely used
as a systematic tool for designing, developing, and implementing CSE applications.
In many cases an a priori analysis can be used to determine the computational re-
sources that are required for executing a specific algorithm. Where available, such
requirements (e.g., flops, memory, memory bandwidth, network bandwidth) should
be treated as nonfunctional goals for the software design.

Required here is a fundamental shift from the current practice of treating per-
formance as an a posteriori diagnostic assessment to recognizing performance as an
a priori design goal. This step is essential because when performance criteria are con-
sidered too late in the design process, fundamental decisions (about data structures
and algorithms) cannot be revised, and improvements are then often limited to an
unsatisfactory code-tuning and tweaking. The idea of an a priori treatment of perfor-
mance goals in scientific software engineering is related to the co-design paradigm and
has become a new trend for developing next-generation algorithms and application
software systems. The nations of the G-8 have instituted regular meetings to strate-
gize about the formidable task of porting to emerging exascale architectures the vast
quantity of software on which computational science and engineering depend. These
co-design efforts were codified in the 2011 International Exascale Software Project
Roadmap [10].

Ultrascalability. For the foreseeable future all growth in computing power will
be delivered through increased parallelism. Thus, we must expect that high-end
applications will reach degrees of parallelism of up to 109 within a decade. This sit-
uation poses a formidable challenge to the design and implementation of algorithms
and software. Traditional paradigms of bulk-synchronous operation are likely to face
significant performance obstacles. New communication-avoiding algorithms must be
designed and analyzed. Many algorithms permit increased asynchronous executions
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enabling processing to continue even if a small number of processors stay behind; but
this is a wide-open area of research because it requires a new look at data dependen-
cies, exploiting task-based parallelism, and possibly also nondeterministic execution
schedules. Additionally, system software must be extended to permit the efficient and
robust implementation of such asynchronous algorithms.

Power Wall. The increasing aggregate computing capacity in highly parallel com-
puters, from desktop machines to supercomputers, promises to enable the simulation
of problems with unprecedented size and resolution. However, electric power con-
sumption per data element is not expected to drop at the same rate. This creates a
power wall, and power consumption is emerging as one of the fundamental bottlenecks
of large-scale computing. How dramatic this will be for computational science can be
seen from the following simple example.

Assume that the movement of a single word of data can be estimated by 1 NJoule
(� 10�9 Joule) of energy [41]. If we now assume that a specific computation deals with
N � 109 entities (such as mesh nodes or particles), then using an OpN2q algorithm to
transfer N �N data items for an all-to-all interaction, such as computing a pairwise
distance, will cause an energy dissipation of 1018 NJoule � 277 kWh. Assuming
a petaflop computer (which may become available to PC consumers in the coming
decade), we could in theory execute the N2 operations in 1000 seconds. However, a
cost of 277 kWh for the naively implemented data movement will require more than
1 MW of sustained power intake. Clearly such power levels are neither feasible nor
affordable in a standard environment.

The situation gets even more dramatic when we transition to terascale problems
with N � 1012 on supercomputers. Then the same all-to-all data exchange will dissi-
pate an enormous 277 GWh, which is equivalent to the energy output of a medium-
sized nuclear fusion explosion. Clearly, in application scenarios of such scale, a global
data movement with OpN2q complexity must be classified as practically impossible.
Only with suitable hierarchical algorithms that dramatically reduce the complexity
can we hope to tackle computational problems of such size. This kind of bottleneck
must be addressed in both research and education. In the context of CSE, the power
wall becomes primarily a question of designing the most efficient algorithm in terms of
operations and also the data movement. Additionally, more energy-efficient hardware
systems need to be developed.

Fault Tolerance and Resilience. With increasing numbers of functional units
and cores and with continued miniaturization, the potential for hardware failures
rises. Fault tolerance on the level of a system can be reached only by redundancy,
which drives the energy and investment cost. At this time many algorithms used in
CSE are believed to have good potential for so-called algorithm-based fault tolerance.
That is, the algorithm either is naturally tolerant against certain faults (e.g., still
converges to the correct answer, but perhaps more slowly) or can be augmented to
compensate for different types of failure (by exploiting specific features of the data
structures and the algorithms, for example). Whenever there is hierarchy, different
levels and presolutions can be used for error detection and circumvention. At present,
many open research questions arise from these considerations, especially when the
systems, algorithms, and applications are studied in combination.

2.3. CSE and the Data Revolution: The Synergy between Computational
Science and Data Science. The world is experiencing an explosion of digital data.
Indeed, since 2003, new data has been growing at an annual rate that exceeds the
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730 ULRICH RÜDE, KAREN WILLCOX, LOIS CURFMAN MCINNES, AND HANS DE STERCK

data contained in all previously created documents. The coming of extreme-scale
computing and data acquisition from high-bandwidth experiments across the sciences
is creating a phase change. The rapid development of networks of sensors and the
increasing reach of the Internet and other digital networks in our connected society
create new data-centric analysis applications in broad areas of science, commerce, and
technology [2, 37, 22]. The massive amounts of data offer tremendous potential for
generating new quantitative insight, not only in the natural sciences and engineering,
where they enable new approaches such as data-driven scientific discovery and data-
enabled uncertainty quantification, but also in almost all other areas of human activity.
For example, biology and medicine have increasingly become quantitative sciences over
the past two or three decades, aided by the generation of large data sets. Data-driven
approaches are also starting to change the social sciences, which are becoming more
quantitative [29].

2.3.1. CSE and the Data Revolution: The Paradigms of Scientific Discovery.
CSE has its roots in the third paradigm of scientific discovery, computational model-
ing, and it drives scientific and technological progress in conjunction with the first two
paradigms, theory and experiment, making use of first-principles models that reflect
the laws of nature. These models may, for example, include the PDEs of fluid me-
chanics and quantum physics or the laws governing particles in molecular dynamics.
The advent of big data is sometimes seen as enabling a fourth paradigm of scientific
discovery [18], in which the sheer amount of data combined with statistical models
leads to new analysis methods in areas where first-principles models do not exist (yet)
or are inadequate.

Massive amounts of data are indeed creating a sea change in scientific discovery. In
third-paradigm CSE applications (that are based on first-principles models) big data
leads to tremendous advances: it enables revolutionary methods of data-driven dis-
covery, uncertainty quantification, data assimilation, optimal design and control, and,
ultimately, truly predictive CSE. At the same time, in fourth-paradigm approaches
big data makes the scientific method of quantitative, evidence-based analysis appli-
cable to entirely new areas where, until recently, quantitative data and models were
mostly nonexistent. The fourth paradigm also enables new approaches in the physical
sciences and engineering, for example, for pattern finding in large amounts of obser-
vational data. Clearly, CSE methods and techniques have an essential role to play in
all these quantitative endeavors enabled by big data.

2.3.2. The Role of Big Data in CSE Applications. In core application areas of
CSE [37], our ability to produce data is rapidly outstripping our ability to use it. With
exascale data sets, we will be creating far more data than we can explore in a lifetime
with current tools. Yet exploring these data sets is the essence of new paradigms of
scientific discovery. Thus, one of the greatest challenges is to create new theories,
techniques, and software that can be used to understand and make use of this rapidly
growing data for new discoveries and advances in science and engineering. For ex-
ample, the CSE focus area of uncertainty quantification aims at characterizing and
managing the uncertainties inherent in the use of CSE models and data. To this end,
new methods are being developed that build on statistical techniques such as Monte
Carlo methods, Bayesian inference, and Markov decision processes. While these un-
derlying techniques have broad applications in many areas of data science, CSE efforts
tend to have a special focus on developing efficient structure-exploiting computational
techniques at scale, with potential for broad applicability in other areas of data ana-
lytics and data science. Data assimilation methods have over several decades evolved

D
ow

nl
oa

de
d 

11
/2

0/
19

 to
 1

29
.2

37
.4

5.
17

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RESEARCH AND EDUCATION IN COMPUTATIONAL SCIENCE AND ENGINEERING 731

into crucial techniques that ingest large amounts of measured data into large-scale
computational models for diverse geophysical applications such as weather prediction
and hydrological forecasting. Large amounts of data are also a crucial component in
other CSE focus areas, such as validation and verification, reduced-order modeling,
and analysis of graphs and networks. Also, enormous potential lies in the emerging
model-based interpretation of patient-specific data from medical imaging for diag-
nosis and therapy planning. CSE techniques to address the challenges of working
with massive data sets include large-scale optimization, linear and nonlinear solvers,
inverse problems, stochastic methods, scalable techniques for scientific visualization,
and high-performance parallel implementation.

Exploiting large amounts of data is having a profound influence in many areas of
CSE applications. The following paragraphs describe some striking examples.

Many geoscience systems are characterized by complex behavior coupling mul-
tiple physical, chemical, and/or biological processes over a wide range of length and
time scales. Examples include earthquake rupture dynamics, climate change, multi-
phase reactive subsurface flows, long-term crustal deformation, severe weather, and
mantle convection. The uncertainties prevalent in the mathematical and computa-
tional models characterizing these systems have made high-reliability predictive mod-
eling a challenge. However, the geosciences are at the cusp of a transformation from a
largely descriptive to a largely predictive science. This is driven by continuing trends:
the rapid expansion of our ability to instrument and observe the Earth system at
high resolution, sustained improvements in computational models and algorithms for
complex geoscience systems, and the tremendous growth in computing power.

The problem of how to estimate unknown parameters (e.g., initial conditions,
boundary conditions, coefficients, sources) in complex geoscience models from large
volumes of observational data is fundamentally an inverse problem. Great strides have
been made in the past two decades in our ability to solve very large-scale geoscience
inverse problems, and many efforts are under way to parlay these successes for deter-
ministic inverse problems into algorithms for solution of Bayesian inverse problems,
in which one combines possibly uncertain data and models to infer model parameters
and their associated uncertainty. When the parameter space is large and the mod-
els are expensive to solve (as is the usual case in geoscience inverse problems), the
Bayesian solution is prohibitive.

However, advances in large-scale UQ algorithms in recent years [1] are beginning
to make feasible the use of Bayesian inversion and Markov chain Monte Carlo methods
to infer parameters and their uncertainty in large-scale complex geoscience systems
from large-scale satellite observational data. Two examples are global ocean modeling
and continental ice sheet modeling. Continued advances in UQ algorithms, Earth
observational systems, computational modeling, and HPC systems over the coming
decades will lead to more sophisticated geoscience models capable of much greater
fidelity. These in turn will lead to a better understanding of Earth dynamics as well
as improved tools for simulation-based decision making for critical Earth systems.

Big data methods are revolutionizing the related fields of chemistry and mate-
rials science, in a transformation that is illustrative of those sweeping all of science,
leading to a successful transition of basic science into practical tools for applied re-
search and early engineering design. Chemistry and materials science are both mature
computational disciplines that through advances in theory, algorithms, and computer
technology are now capable of increasingly accurate predictions of the physical, chem-
ical, and electronic properties of materials and systems. The equations of quantum
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mechanics (including Schr\"odinger's, Dirac's, and density functional representations)
describe the electronic structure of solids and molecules that controls many properties
of interest, and statistical mechanics must be employed to incorporate the effects of
finite temperature and entropy. These are forward methods---given a chemical com-
position and approximate structure, one can determine a nearby stable structure and
compute its properties. To design new materials or chemical systems, however, one
must solve the inverse problem---what is the system that has specific or optimal prop-
erties? Moreover, the system must be readily synthesized, inexpensive, and thermally
and chemically stable under expected operating conditions. Breakthrough progress
has recently been made in developing effective constrained search and optimization
algorithms for precisely this purpose [7], with this process recognized in large funding
initiatives such as the multiagency U.S. Materials Genome Initiative [14]. This suc-
cess has radically changed the nature of computation in the field. Less than ten years
ago most computations were generated and analyzed by a human, whereas now 99.9\%
of computations are machine generated and processed as part of automated searches
that are generating vast databases with results of millions of calculations to correlate
structure and function [32, 35]. In addition to opening important new challenges in
robust and reliable computation, the tools and workflows of big data are now crucial
to further progress.

CSE Success Story: Visual Analytics Brings Insight to Terabytes of Simulation
Data

New techniques are be-
ing developed that al-
low scientists to sift
through terabytes of
simulation data in or-
der to gain impor-
tant new insights from
science and engineer-
ing simulations on the
world's largest super-
computers. The figure
shows a visualization
of a topological analy-
sis and volume rendering of one timestep in a large-scale, multiterabyte combustion
simulation. The topological analysis identifies important physical features (ignition
and extinction events) within the simulation, while the volume rendering allows view-
ing the features within the spatial context of the combustion simulation.6

In scientific visualization, new techniques are being developed to give visual
insight into the deluge of data that is transforming scientific research. Data anal-
ysis and visualization are key technologies for enabling advances in simulation and
data-intensive science, as well as in several domains beyond the sciences. Specific
big data visual analysis challenges and opportunities include in situ interactive anal-
ysis, user-driven data reduction, scalable and multilevel hierarchical algorithms, rep-
resentation of evidence and uncertainty, heterogeneous data fusion, data summariza-

6Simulation by J. Chen, Sandia National Laboratories; visualization by the Scientific Computing
and Imaging Institute, University of Utah.
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tion and triage for interactive queries, and analysis of temporally evolved features
[24, 25, 50].

Computation and big data also meet in characterization of physical mate-
rial samples using techniques such as X-ray diffraction and adsorption, neutron
scattering, ptychography, transmission electron, and atomic microscopes. Only for
essentially perfect crystals or simple systems can one directly invert the experimental
data and determine the structure from measurements. Most real systems, typically
with nanoscale features and no long-range order, are highly underdetermined [4]. Re-
liable structure determination requires fusion of multiple experimental data sources
(now reaching multiple terabytes in size) and computational approaches. Computa-
tion provides a forward simulation (e.g., given a structure, determine what spectrum
or diffraction pattern results), and techniques from uncertainty quantification are
among those proving successful in making progress.

2.3.3. Synergy between Computational Science and Data Science. Big data
is transforming the fabric of society, in areas that go beyond research in the physical
sciences and engineering [22]. Data analytics aims at extracting information from
large amounts of data in areas as diverse as business intelligence, cybersecurity, social
network recommendation, and government policy. Analysis of the data is often based
on statistical and machine learning methods from data science. Similar to CSE,
data science is built on fundamentals from mathematics and statistics, computer
science, and domain knowledge, and hence it possesses an important synergy with
CSE.

The paradigm of scalable algorithms and implementations that is central to CSE
and HPC is also relevant to emerging trends in data analytics and data science. Data
analytics is quickly moving in the direction of mathematically more sophisticated
analysis algorithms and parallel implementations. CSE will play an important role in
developing the next generation of parallel high-performance data analytics approaches
that employ descriptions of the data based on physical or phenomenological models
informed by first principles, with the promise of extracting valuable insight from the
data that crucially goes beyond what can be recovered by statistical modeling alone.
Important mathematical and algorithmic advances in areas such as optimization, ran-
domized algorithms, and approximation are currently driven by problems in machine
learning and deep learning.

HPC supercomputers and cloud data centers serve different needs and are opti-
mized for applications that have fundamentally different characteristics. Nevertheless,
they face challenges that have many commonalities in terms of extreme scalability,
fault tolerance, cost of data movement, and power management. The advent of big
data has spearheaded new large-scale distributed computing technologies and par-
allel programming models such as MapReduce, Hadoop, Spark, and Pregel, which
offer innovative approaches to scalable high-throughput computing, with a focus on
data locality and fault tolerance. These frameworks are finding applications in CSE
problems, for example, in network science, and large-scale CSE methods, such as
advanced distributed optimization algorithms, are increasingly being developed and
implemented in these environments. In many applications, the need for distributed
computing arises from the sheer volume of the data to be processed and analyzed, and,
similar to the discussions on HPC in section 2.2, the growing levels of parallelism in
computer architectures require software in distributed machine learning systems such
as TensorFlow to be highly parallel. Extensive potential exists for cross-fertilization of
ideas and approaches between extreme-scale HPC and large-scale computing for data
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analysis. Economy-of-scale pressures will contribute to a convergence of technologies
for computing at large scale.

Overall, the analysis of big data requires efficient and scalable mathematics-based
algorithms executed on high-end computing infrastructure, which are core CSE com-
petencies that translate directly to big data applications. CSE education and research
must foster the important synergies with data analytics and data science that are ap-
parent in a variety of emerging application areas.

2.4. CSE Software. CSE software ecosystems provide fundamental and perva-
sive technologies that connect advances in applied mathematics, computer science,
and core disciplines of science and engineering for advanced modeling, simulation,
discovery, and analysis. We discuss the importance and scope of CSE software, the
increasing challenges in CSE software development and sustainability, and the future
CSE software research agenda.

2.4.1. Importance and Scope of CSE Software. Software is an essential prod-
uct of CSE research when complex models of reality are cast into algorithms; moreover,
the development of efficient, robust, and sustainable software is at the core of CSE.
The CSE agenda for research includes the systematic design and analysis of (paral-
lel) software, its accuracy, and its computational complexity (see section 2.2). Beyond
this, CSE research must deal with the assessment of computational cost on the relevant
hardware platforms, as well as with criteria such as flexibility, usability, extensibility,
and interoperability. Software that contributes to modeling, simulation, and analysis
is only part of the software required in CSE. Equally important are operating sys-
tems, programming models, programming languages, compilers, debuggers, profilers,
source-to-source translators, build systems, dynamic resource managers, messaging
systems, I/O systems, workflow controllers, and other types of system software that
support productive human-machine interaction. Software in this wider sense also
includes the infrastructure necessary to support a CSE research ecosystem, such as
version control, automatic tests for correctness and consistency, documentation, hand-
books, and tutorials. All this software is essential for CSE to continue to migrate up
computational scales, and it requires an interdisciplinary community to produce it
and to ensure that it coheres.

While the volume and complexity of scientific software have grown substantially
in recent decades [15], scientific software traditionally has not received the focused
attention it so desperately needs in order to fulfill this key role as a cornerstone of
long-term CSE collaboration and scientific progress [23, 16, 17]. Rather, ``software
has evolved organically and inconsistently, with its development and adoption coming
largely as by-products of community responses to other targeted initiatives"" [26].

2.4.2. Challenges of CSE Software. The community faces increasing challenges
in CSE software design, development, and sustainability as a result of the confluence
of disruptive changes in computing architectures and demands for more complex sim-
ulations. New architectures require fundamental algorithm and software refactoring,
while at the same time enabling new ranges of modeling, simulation, and analysis.

New Science Frontiers: Increasing Software Demands. CSE's continual push
toward new capabilities that enable predictive science dramatically affects how codes
are designed, developed, and used. Software that incorporates multiphysics and
multiscale modeling, capabilities beyond interpretive simulations (such as UQ and
design optimization), and coupled data analytics presents a host of difficulties not
faced in traditional contexts, because of the compounded complexities of code in-
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teractions [28, 16, 23]. A key challenge is enabling the introduction of new models,
algorithms, and data structures over time---that is, balancing competing goals of in-
terface stability and software reuse with the ability to innovate algorithmically and
develop new approaches.

Programmability of Heterogeneous Architectures. Designing and developing
CSE software to be sustainable are challenging software engineering tasks, not only
in the extreme scale, but also in conventional applications that run on standard hard-
ware. The best software architecture is often determined by performance consider-
ations, and it is a high art to identify kernel routines that can serve as an internal
interface to a software performance layer. While the optimization of the kernel rou-
tines inevitably requires detailed knowledge of a specific target machine, the design
of the software architecture must support optimizations not only for current but also
for future generations of computer systems. Such long-term sustainability of soft-
ware is essential to amortize the high cost of developing complex CSE applications,
but it requires a deep understanding of computer architecture and its interplay with
algorithms.

All modern computers are hierarchically structured. This structure, in turn, cre-
ates the need to develop software with the hierarchy and the architecture in mind,
often using a hybrid combination of different languages and tools. For example, a
given application may utilize MPI on the system level, OpenMP on the node level,
and special libraries or low-level intrinsics to exploit core-level vectorization. Newer
techniques from computer science, such as automatic program generation, annota-
tions, and domain-specific languages, may eventually help reduce the gap between
real-life hardware structures and model complexity.

This complexity will need to be managed, and to some extent alleviated, in the
future. For example, the development of new and improved unifying languages, com-
bined with the tools to select appropriate algorithms for target architectures and to
implement these algorithms automatically, may ease the burden on CSE software de-
velopers. Such tools are topics of current research and are therefore far from reaching
the level of maturity required to support large-scale development. Consequently, CSE
developers must currently rely on an approach that includes hardware-optimized li-
braries, or they must master the complexity---typically in larger teams where members
can specialize---by undertaking explicitly hardware-aware development. This task is
even more complex when accelerators, such as GPUs, are to be used.

Composability, Interoperability, Extensibility, Portability. As CSE applica-
tions increase in sophistication, no single person or team possesses the expertise and
resources to address all aspects of a simulation. Interdisciplinary collaboration using
software developed by independent groups becomes essential. CSE researchers face
daunting challenges in developing, deploying, maintaining, extending, and effectively
using libraries, frameworks, tools, and application-specific infrastructure.

Practical difficulties in collaborative research software stem from the need for com-
posable and interoperable code with support for managing complexity and change as
architectures, programming models, and applications continue to advance. Challenges
include coordinating the interfaces between components that need to interoperate and
ensuring that multiple components can be used side by side without conflicts between
programming models and resources. Even more difficult challenges arise with the
need to exchange or control data between components, where many issues center
on ownership and structure of the data on which components act. Moreover, good
software must be extensible, to meet not only requirements known at the time of
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its design but also unanticipated needs that change over time. Software must also
be portable across target architectures, including laptops, workstations, and moder-
ately sized clusters for much of the CSE community. Even researchers who employ
the full resources of emerging extreme-scale machines typically develop and test their
code first on laptops and clusters, so that portability across this entire spectrum is
essential.

CSE Success Story: Numerical Libraries Provide Computational Engines for
Advanced CSE Applications

Alquimia hypre 

Trilinos 

PETSc 

SuperLU 

More 
libraries More 

domain 

components 

Notation: A     B: A can use B to provide functionality on behalf of A 

https://xsdk.info 

App App App 

CSE Applications 

Community collaboration and
support are essential in driv-
ing and transforming how large-
scale, open-source software is de-
veloped, maintained, and used.
Work is under way in developing
the Extreme-scale Scientific De-
velopment Kit (xSDK),7 which
is improving the interoperabil-
ity, portability, and sustainabil-
ity of CSE libraries and applica-
tion components. The vision of
the xSDK is to provide the foundation of an extensible scientific software ecosys-
tem developed by diverse, independent teams throughout the community, in order
to improve the quality, reduce the cost, and accelerate the development of CSE ap-
plications. The xSDK incorporates, for example, the high-performance numerical
libraries hypre, PETSc, Sundials, SuperLU, and Trilinos, which are supported by
the U.S. Department of Energy and encapsulate cutting-edge algorithmic advances
to achieve robust, efficient, and scalable performance on high-performance architec-
tures. These packages provide the computational engines for thousands of advanced
CSE applications, such as hydrology and biogeochemical cycling simulations using
PFLOTRAN and coupled 3D microscopic-macroscopic steel simulations (far left and
far right images, respectively, in the ``CSE Applications"" box in the diagram). For
example, this multiphase steel application, which uses nonlinear and linear FETI-
DP domain decomposition methods (in PETSc) and algebraic multigrid (in hypre),
demonstrates excellent performance on the entire Blue Gene/Q at the J\"ulich Super-
computing Centre (JUQUEEN, 458K cores) and the Argonne Leadership Computing
Facility (Mira, 786K cores).

2.4.3. Software as a Research Agenda for CSE. CSE software ecosystems,
which support scientific research in much the same way that a light source or telescope
does, require a substantial investment of human and capital resources, as well as basic
research on scientific software productivity so that the resulting software artifacts are
fully up to the task of predictive simulations and decision support. Scientific software
often has a much longer lifetime than does hardware; in fact, software frequently out-
lives the teams that originally create it. Traditionally, however, support for software

7Information on xSDK available via https://xsdk.info. PFLOTRAN simulations by G. Hammond
(Sandia National Laboratories). Multiphase steel simulations described in A. Klawonn, M. Lanser,
and O. Rheinbach, SIAM J. Sci. Comput., 37 (2015), pp. C667--C696; image courtesy of J\"org
Schr\"oder, Universit\"at Duisburg-Essen.
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has generally been indirect, from funding sources focused on science or engineering
outcomes, and not the software itself. This circumstance---sporadic, domain-specific
funding that considers software only secondary to the actual science it helps achieve---
has caused huge difficulties, not only for sustainable CSE software artifacts, but also
for sustainable CSE software careers. This in turn has increasingly led to a misman-
agement of research investment, since scientific software as an important CSE research
outcome is rarely leveraged to its full potential.

Recent community reports express the imperative to firmly embrace the funda-
mental role of open-source CSE software as a valuable research product and corner-
stone of CSE collaboration and thus to increase direct investment in the software itself,
not just as a by-product of other research [3, 15, 16, 17, 23, 26]. The past decade has
seen the development of many successful community-based open-source CSE software
projects and community science codes. Aided by advances in supporting technology
such as version control, bug tracking, and online collaboration, these projects leverage
broad communities to develop free software with features at the leading edge of algo-
rithmic research. Examples in the area of finite-element methods include the deal.II,
Dune, and FEniCS projects, and similar efforts have made tremendous contributions
in many other areas of CSE.

Reproducibility and Sustainability. CSE software often captures the essence of
research results. It must therefore be considered equivalent to other scientific out-
comes and must be subjected to equivalent quality assurance procedures. This re-
quirement in turn means that criteria such as the reproducibility of results [44] must
be given higher priority and that CSE software must be more rigorously subjected to
critical evaluation by the scientific community. Whenever a research team is faced with
increased expectations for independent review of computational results, the team's
interest in improved software methodologies increases commensurately. In fact, it is
not too strong to say that the affordability and feasibility of reproducible scientific
research are directly proportional to the quality and sustainability of the software.
Community efforts are beginning to address issues in software sustainability, or the
ability to maintain the scientifically useful capability of a software product over its
intended life span, including understanding and modifying a software product's be-
havior to reflect new and changing needs and technology [51, 16, 17]. Work is needed
to determine value metrics for CSE software that fully acknowledge its key role in
scientific progress; to increase rewards for developers of open-access, reliable, exten-
sible, and sustainable software; and to expand career paths for expert CSE software
developers.

Software Engineering and Productivity. The role of software ecosystems as
foundations for CSE discoveries brings to the forefront issues of software engineer-
ing and productivity, which help address reproducibility and sustainability. Software
productivity expresses the effort, time, and cost of developing, deploying, and main-
taining a product with necessary software capabilities in a targeted scientific comput-
ing environment [16, 23]. Work on software productivity focuses on improving the
quality, decreasing the cost, and accelerating the delivery of scientific applications, as
a key aspect of improving overall scientific productivity. Software engineering, which
can be defined as ``the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software"" [21], is central to any
effort to increase CSE software productivity.

While the scientific community has much to learn from the mainstream software
engineering community, CSE needs and environments are in combination sufficiently
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unique so as to require fundamental research specifically for scientific software. In
particular, scientific software domains require extensive academic background in order
to understand how software can be designed, written, and used for CSE investigations.
Also, scientific software is used for discovery and insight, and hence requirements (and
therefore all other phases of the software lifecycle) are frequently changing.

Consequently, CSE software ecosystems and processes urgently require focused
research and substantial investment. Another pressing need is education on software
engineering and productivity methodologies that are specifically tailored to address
the unique aspects of CSE, in the contexts of both academic training and ongoing
professional development (see section 3). With respect to many of these issues, CSE
software research is still nascent, since these themes have been largely neglected in
the evolution of the field to date. As stated in a recent NITRD report [16], ``The
time is upon us to address the growing challenge of software productivity, quality,
and sustainability that imperils the whole endeavor of computation-enabled science
and engineering.""

2.5. Emergence of Predictive Science. The advances in CSE modeling, algo-
rithms, simulation, big data analytics, HPC, and scientific software summarized in this
document all have the overarching goal of achieving truly predictive science capabil-
ities. Scientific experimentation and theory, the classical paradigms of the scientific
method, both strive to describe the physical world. However, high-fidelity predictive
capabilities can be achieved only by employing numerical computation. Predictive
science now lies at the core of the new CSE discipline.

CSE draws its predictive power from mathematics, statistics, and the natural
sciences as they underlie model selection, model calibration, model validation, and
model and code verification, all in the presence of uncertainties. Ultimately CSE must
also include the propagation of uncertainties through the forward problem and the
inverse problem, to quantify the uncertainties of the outputs that are the target goals
of the simulation. When actual computer predictions are used for critical decisions,
all of these sources of uncertainty must be taken into account.

Current algorithms and methods for coping with these issues have their roots
in the mathematics and statistics of the past century and earlier. In order to deal
with the complexities of predictive modeling, however, new models, algorithms, and
methodologies are needed. Their development, analysis, and implementation consti-
tute the new research agenda for CSE. Achieving these goals will require substantial
research efforts and significant breakthroughs.

What predictive science, and therefore CSE, will eventually be is not yet fully
understood. We may see the coastline of the ``continent of predictive science"" ahead
of us, but we still have to explore the whole mass of land that lies behind this coastline.
We can already clearly see, however, that CSE and the transition to predictive science
will have a profound impact on education, on how scientific software is developed, on
research methodologies, and on the design of tomorrow's computers.

3. CSE Education and Workforce Development. With the many current and
expanding opportunities for the CSE field, there is a growing demand for CSE grad-
uates and a need to expand CSE educational offerings. This need includes CSE
programs at both the undergraduate and graduate levels, as well as continuing ed-
ucation and professional development programs. In addition, the increased presence
of digital educational technologies provides an exciting opportunity to rethink CSE
pedagogy and modes of educational delivery.
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3.1. Growing Demand for CSE Graduates. Industry, national laboratories,
government, and broad areas of academic research are making more use than ever
before of simulations, high-end computing, and simulation-based decision-making.
This trend is apparent broadly across domains---for example, energy, manufactur-
ing, finance, and transportation are all areas in which CSE is playing an increasingly
significant role, with many more examples across science, engineering, business, and
government. Research and innovation, both in academia and in the private sector, are
increasingly driven by large-scale computational approaches. A National Council on
Competitiveness report points out that high-end computing plays a ``vital role in driv-
ing private-sector competitiveness"" and that ``all businesses that adopt HPC consider
it indispensable for their ability to compete and survive"" [8]. With this significant
and increased use comes a demand for a workforce versed in technologies necessary
for effective and efficient mathematics-based computational modeling and simulation.
There is high demand for graduates with the interdisciplinary expertise needed to
develop and/or utilize computational techniques and methods in order to advance
the understanding of physical phenomena in a particular scientific, engineering, or
business field and to support better decision-making [13].

As stated in a recent report on workforce development by the U.S. Department
of Energy Advanced Scientific Computing Advisory Committee [46], ``All large DOE
national laboratories face workforce recruitment and retention challenges in the fields
within Computing Sciences that are relevant to their mission. . . . There is a growing
national demand for graduates in Advanced Scientific Computing Research-related
Computing Sciences that far exceeds the supply from academic institutions. Future
projections indicate an increasing workforce gap."" This finding was based on a number
of reports, including one from the High End Computing Interagency Working Group
[19] stating: ``High end computing (HEC) plays an important role in the develop-
ment and advanced capabilities of many of the products, services, and technologies
that are part of our everyday life. The impact of HEC on the agencies of the federal
government, on the quality of academic research, and on industrial competitiveness is
substantial and well documented. However, adoption of HEC is not uniform, and to
fully realize its potential benefits we must address one of the most often cited barriers:
lack of HEC skills in the workforce."" Additional workforce and education issues are
discussed in [16].

The U.S. Department of Energy has for 25 years been investing in the Compu-
tational Science Graduate Fellowship [9] program to prepare approximately 20 Ph.D.
candidates per year for interdisciplinary roles in its laboratories and beyond. Fellows
take at least two graduate courses in each of computer science, applied mathematics,
and an application from science or engineering requiring large-scale computation, in
addition to completing their degree requirements for a particular department. They
also spend at least one summer at a DOE laboratory in a CSE internship and attend
an annual meeting to network with their peers across other institutions. This program
has been effective in creating a sense of community for CSE students that is often
lacking on any individual traditionally organized academic campus.

In order to take advantage of the transformation that high-performance and data-
centric computing offers to industry, the critical factor is a workforce versed in CSE
and capable of developing the algorithms, exploiting the compute platforms, and de-
signing the analytics that turn data with its associated information into knowledge to
act. This is the case for large companies that have traditionally had in-house simula-
tion capabilities and may have dedicated CSE-focused groups to support a wide range
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of products; it is also increasingly the case for small- and medium-sized companies
with more specialized products and a critical need for CSE to support their advances
in research and development. In either case, exploiting emerging computational tools
requires the critical thinking and the interdisciplinary background that is prevalent
in CSE training [37]. The CSE practitioner has the expertise to apply computational
tools in uncharted areas, often applying previous domain-specific understanding. The
CSE practitioner also has the analytical skills to tease out the problems that often
are encountered when commercial enterprises seek to design new products, develop
new services, and create novel approaches from the wealth of data available. While
often a member of a team of others from varying disciplines, the CSE practitioner is
the catalyst driving the change that industry seeks in order not only to remain com-
petitive but also to be first to market, providing the necessary advantage to thrive in
a rapidly evolving technological ecosystem.

3.2. Future Landscape of CSE Educational Programs. CSE educational pro-
grams are needed in order to create professionals who meet this growing demand and
who support the growing CSE research field. These include CSE programs at both
the undergraduate and graduate levels, as well as continuing education and profes-
sional development programs. They also include programs that are ``CSE focused""
and those that follow more of a ``CSE infusion"" model. The former include programs
that have CSE as their primary focus (e.g., B.S., M.S., or Ph.D. in computational
science and engineering), while the latter include programs that embed CSE train-
ing within another degree structure (e.g., a minor, emphasis, or concentration in
CSE complementing a major in mathematics, science, or engineering or a degree in
a specific computational discipline such as computational finance or computational
geosciences). In fact, interdisciplinary quantitative and computer modeling skills are
quickly becoming indispensable for any university graduate, not only in the physical
and life sciences, but also in the social sciences. Universities must equip their gradu-
ates with these skills. Information about a variety of CSE educational programs can
be found online [42, 11].

Undergraduate Education. At the undergraduate level, the breadth and depth
of topics covered in CSE degrees depends on the specific degree focus. However, the
following high-level topics are important content for an undergraduate program:

1. Foundations in mathematics and statistics, including calculus, linear algebra,
mathematical analysis, ordinary and partial differential equations, applied
probability, stochastic processes, and discrete mathematics.

2. Simulation and modeling, including conceptual, data-based, and physics-
based models, use of simulation tools, and assessment of computational mod-
els.

3. Computational methods and numerical analysis, including errors, solutions
of systems of linear and nonlinear equations, Fourier analysis, interpolation,
regression, curve fitting, optimization, numerical differentiation and inte-
gration, Monte Carlo methods, statistical inference, numerical methods for
ODEs, and numerical methods for PDEs.

4. Computing skills, including compiled high-level languages, algorithms (nu-
merical and nonnumerical), elementary data structures, analysis of algo-
rithms and their implementation, parallel programming, scientific visualiza-
tion, awareness of computational complexity and cost, and use of good soft-
ware engineering practices including version control.
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Feedback from the community has noted an increasing demand for CSE graduates
trained at the bachelor's level, with particular note of the increased opportunities at
small- and medium-sized companies. A report from the SIAM Working Group on
CSE Undergraduate Education further develops foundations for directions in under-
graduate CSE education [45].

Graduate Education. At the graduate level, again the breadth and depth of top-
ics covered depends on the specific degree focus. In the next section, we make specific
recommendations in terms of a set of learning outcomes desired for a CSE graduate
program. We also note the growing importance of and demand for terminal master's
degrees, which can play a large role in fulfilling the industry and national laboratory
demand for graduates with advanced CSE skills. All CSE graduates should possess
a solid foundation in mathematics; an understanding of probability and statistics;
a grasp of modern computing, computer science, programming languages, principles
of software engineering, and high-performance computing; and an understanding of
foundations of modern science and engineering, including biology. These foundations
should be complemented by deep knowledge in a specific area of science, engineering,
mathematics and statistics, or computer science. CSE graduates should also pos-
sess skills in teamwork, multidisciplinary collaboration, and leadership. A valuable
community project would be to collect resources to assist early-career researchers in
advancing skills to support CSE collaboration and leadership.

Continuing and Professional Education. A third area of educational programs
is that of continuing and professional education. Opportunities exist for SIAM or
other institutions to engage with industry to create and offer short courses, includ-
ing those that target general CSE skills for the non-CSE specialist as well as those
that target more advanced skills in timely opportunity areas (such as parallel and
extreme-scale computing, CSE-oriented software engineering, and computing with
massive data). Often one assumes that much of the workforce for industry in CSE
will come at the postgraduate level; increasingly, however, industry needs people who
have an understanding of CSE even at the undergraduate level in order to realize
the full potential growth in a rapidly expanding technological workplace. Future
managers and leaders in business and industry must be able to appreciate the skill
requirements for the CSE professional and the benefits that accrue from CSE. Con-
tinuing education can play a role in fulfilling this need. The demand for training
in CSE-related topics exists broadly among graduate students and researchers in
academic institutions and national laboratories, as evidenced by the growing num-
ber of summer schools worldwide, as well as short courses aimed at the research
community. For example, the Argonne Training Program on Extreme-Scale Com-
puting [33] covers key topics that CSE researchers must master in order to develop
and use leading-edge applications on extreme-scale computers. The program tar-
gets early-career researchers to fill a gap in the training that most computational
scientists receive and provides a more comprehensive program than do typical short
courses.8 Continuing education also has an important role to play in addressing
the challenge of changing computer architectures---skills developed around optimiz-
ing algorithms for today's machines might become obsolete within the lifetime of a
student's professional career. Lastly, we note that the recent creation of the SIAM
Activity Group on Applied Mathematics Education represents another opportunity

8Videos and slides of lectures are available online via the ATPESC website http://
extremecomputingtraining.anl.gov.
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for collaboration to pursue some of these ideas in continuing and professional educa-
tion.

Institutional Structure. Because of CSE's intrinsically interdisciplinary nature
and its research agenda reaching beyond the traditional disciplines, the development
of CSE is often impeded by traditional institutional boundaries. CSE research and
education have found great success over the past decade in those settings where CSE
became a clearly articulated focus of entire university departments,9 faculties,10 or
large interdisciplinary centers.11 In many of the newer universities in the world,
institutional structures often develop naturally in line with the CSE paradigm.12 In
other cases, institutional traditions and realities make it more natural for successful
CSE programs to develop within existing departments13 or in cross-departmental14 or
cross-faculty15 initiatives. Information about a variety of CSE educational programs
can be found online [42, 11]. In any case, universities and research institutes will
need to implement new multidisciplinary structures that enable more effective CSE
research and education. One ingredient appears crucial for success, regardless of the
particular institutional structure: It is critical to have both top-down support from
the university administration and ground-up enthusiasm from the faculty. To fully
realize its potential, the CSE endeavor requires its own academic structures, funding
programs, and educational programs.

3.3. Graduate Program Learning Outcomes. A learning outcome is defined
as what a student is expected to be able to do as a result of a learning activity. In
this section, we describe a set of learning outcomes desired of a student graduating
from a CSE Ph.D. program. We focus on outcomes because they describe the set of
desirable competencies without attempting to prescribe any specific degree structure.
These outcomes can be used as a guide to define a Ph.D. program that meets the
needs of the modern CSE graduate; they can also play an important role in defining
and distinguishing the CSE identity and in helping employers understand the skills
and potential of CSE graduates.

In Table 1, we focus on the ``CSE Core Researchers and Developers"" category
in Figure 3. We distinguish between a CSE Ph.D. with a broadly applicable CSE
focus and a CSE Ph.D. with a domain-driven focus. An example of the former is a
``Ph.D. in computational science and engineering,"" while an example of the latter is a
``Ph.D. in computational geosciences."" The listed outcomes relate primarily to those
CSE-specific competencies that will be acquired through classes. Of course, the full
competencies of the Ph.D. graduate must also include the more general Ph.D.-level

9For example, the School of Computational Science \& Engineering at the Georgia Institute of
Technology and the Department of Scientific Computing at Florida State University.

10For example, the Division of Computer, Electrical, and Mathematical Sciences and Engineering
at the King Abdullah University of Science and Technology (KAUST).

11For example, the Institute for Computational Engineering and Sciences at the University of
Texas at Austin, the Scientific Computing and Imaging Institute at the University of Utah, the
Cluster of Excellence in Simulation Technology at the University of Stuttgart, and CERFACS (Centre
Europ\'en de Recherche et de Formation Avanc\'e en Calcul Scientifique) in Toulouse.

12KAUST is, again, a good example.
13For example, the master's program in CSE at the Technische Universit\"at M\"unchen.
14For example, CSE graduate programs in engineering faculties at the University of Illinois at

Urbana-Champaign, at the Massachusetts Institute of Technology, and at the Technische Universit\"at
Darmstadt

15For example, the School of Computational Science and Engineering at McMaster University, the
Institute for Computational and Mathematical Engineering at Stanford University, and the master's
program in CSE at the \'Ecole Polytechnique F\'ed\'erale de Lausanne.
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Table 1 Learning outcomes desired of a student graduating from a CSE Ph.D. program. Italicized
text denotes differences in learning outcomes for programs with a broadly applicable CSE
focus (left) and a domain-driven focus in a particular field of science or engineering (right).
Learning outcomes that are common to both types of Ph.D. programs span left and right
columns.

CSE Ph.D. with Broadly Applicable CSE
Focus

CSE Ph.D. with Domain-Driven Focus in
Field X

Combine mathematical modeling, physical
principles, and data to derive, analyze, and as-
sess models across a range of systems (e.g.,
statistical mechanics, continuum mechanics,
quantum mechanics, molecular biology).

Combine mathematical modeling, physical
principles and data to derive, analyze, and as-
sess a range of models within field X.

Demonstrate graduate-level depth in devising, analyzing, and evaluating new methods and algo-
rithms for computational solution of mathematical models (including parallel, discrete, numerical,
statistical approaches, and mathematical analysis).

Demonstrate mastery in code development to
exploit parallel and distributed computing ar-
chitectures and other emerging modes of com-
putation in algorithm implementation.

Demonstrate proficiency in code development
to exploit parallel and distributed comput-
ing architectures and other emerging modes of
computation in algorithm implementation.

Be aware of available tools and techniques from software engineering, their strengths, and their
weaknesses; select and apply techniques and tools from software engineering to build robust,
reliable, and maintainable software.

Develop, select, and use tools and methods to represent and visualize computational results.

Critically analyze and evaluate results using mathematical and data analysis, physical reasoning,
and algorithm analysis, and understand the implications on models, algorithms, and implemen-
tations.

Identify the sources of errors in a CSE simulation (such as modeling errors, code bugs, prema-
ture termination of solvers, discretization errors, roundoff errors, numerical instabilities), and
understand how to diagnose them and work to reduce or eliminate them.

Appreciate and explain the context of decision-
making as the end use of many CSE simula-
tions, and as appropriate be able to formulate,
analyze, and solve CSE problems in control, de-
sign, optimization, or inverse problems.

Appreciate and explain the context of decision-
making as the end use of many CSE simula-
tions, and as appropriate be able to formulate,
analyze and solve CSE problems in control, de-
sign, optimization or inverse problems as rele-
vant to field X.

Understand data as a core asset in computational research, and demonstrate appropriate pro-
ficiencies in processing, managing, mining, and analyzing data throughout the CSE/simulation
loop.

Demonstrate the ability to develop, use, and analyze sophisticated computational algorithms in
data science and engineering, and understand data science and engineering as a novel field of
application of CSE.

Demonstrate graduate-level proficiency in one
domain in science or engineering.

Demonstrate graduate-level depth in domain
knowledge in field X.

Communicate across disciplines and collaborate in a team.

skills, such as engaging deeply in a research question, demonstrating awareness of
research context and related work, and producing novel research contributions, many
of which will be acquired through the doctoral dissertation. We note that it would
be desirable for graduates of a CSE master's degree program to also achieve most
(if not all) of the outcomes in Table 1. In particular, in educational systems with
no substantial classwork component for the Ph.D., the learning outcomes of Table 1
would also apply to the master's or honors degree that may precede the Ph.D.

In the next two subsections, we elaborate on the interaction between CSE ed-
ucation and two areas that have seen considerable change since the design of many
existing CSE programs: extreme-scale computing and computing with massive data.
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CSE Success Story: Computational Modeling and Data Analytics Undergrad-
uate Degree at Virginia Tech
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In Spring 2015, Virginia
Tech launched a new under-
graduate major in Compu-
tational Modeling and Data
Analytics (CMDA). The cur-
riculum is a collaboration
among the Departments of
Computer Science, Mathe-
matics, and Statistics, across
the Colleges of Science and
Engineering. The program
includes ten new courses spe-
cially designed for the ma-
jor, building skills in dy-
namical systems and math-
ematical modeling, statistics
and data analytics, and high-
performance computing; specialized options in physics and economics are available.
The curriculum intentionally builds an interdisciplinary perspective. For example,
sophomore-level multivariable calculus, differential equations, probability, and statis-
tics are taught together in two 6-credit courses (Integrated Quantitative Science),
team-taught by a mathematician and statistician. A capstone project course empha-
sizes leadership, teamwork, communication, and project management skills, as small
teams tackle semester-long modeling and analytics challenges from clients. The new
degree program has proven to be popular: total enrollment in Spring 2017 was al-
ready above 300 students, with the first class of 22 graduating in May 2017.

3.4. Education in Parallel Computing and Extreme-Scale Computing. Engi-
neers and scientists need to be better prepared for the age of ubiquitous parallelism
(as addressed in section 2.2; see also [19, 39, 47, 46, 49]). Parallelism has become
the basis for all computing technology and necessitates a shift in teaching even the
basic concepts. Simulation algorithms and their properties have been at the core of
CSE education, but now we must emphasize parallel algorithms. The focus used to
be on abstract notions of accuracy of methods and the complexity of algorithms; to-
day it must be shifted to the complexity of parallel algorithms and the real-life cost
of solving a computational problem---a completely different notion. Additionally,
the asymptotic complexity and thus algorithmic scalability become more important
when the machines grow larger. At the same time, the traditional complexity metrics
increasingly fail to give guidance about which methods, algorithms, and implementa-
tions are truly efficient. As elaborated in sections 2.2 and 2.4, designing simulation
software has become a complex, multifaceted art. The education of future computa-
tional scientists must address these topics that arise from the disruptive technology
that is dramatically changing the landscape of computing.

Extreme-scale computing also presents new challenges to education. Education in
programming techniques needs to be augmented with parallel programming elements
and a distinctive awareness of performance and computational cost. Additionally the
current trends are characterized by a growing complexity in the design of computer ar-
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chitectures, which are becoming hierarchical and heterogeneous. These architectures
are reflected by complex and evolving programming models that should be addressed
in a modern CSE education.

Today's extreme scale is tomorrow's desktop. An analogous statement holds for
the size of the data that must be processed and that is generated through simulations.
In education we need to distinguish between those whose research aims to simulate
computationally demanding problems (see section 2.2 and Figure 5) and the wider
class of people who are less driven by performance considerations. For example,
many computational engineering problems exist in which the models are not extremely
demanding computationally or in which model reduction techniques are used to create
relatively cheap models.

In defining the educational needs in parallel and high-performance computing for
CSE, we must distinguish between different intensities. Any broad education in CSE
will benefit from an understanding of parallel computing, simply because sequential
computers have ceased to exist. All students must be trained to understand concepts
such as concurrency, algorithmic complexity, and its relation to scalability, elemen-
tary performance metrics, and systematic benchmarking methodologies. In more
demanding applications, parallel computing expertise and performance awareness are
necessary and must go significantly beyond the content of most current curricula.
This requirement is equally true in those applications that may be only of moder-
ate scale but that nevertheless have high-performance requirements, such as those in
real-time applications or those that require interactivity; see Figure 5. Here, CSE
education must include a fundamental understanding of computer architectures and
the programming models that are necessary to exploit these architectures.

Besides classification according to scientific content and HPC intensity, educa-
tional structures in CSE must also address the wide spectrum of the CSE community
that was described and analyzed in section 1.5 (see also Figure 3).

CSE Domain Scientists and Engineers: Method Users. Users of CSE technol-
ogy typically employ dedicated supercomputer systems and specific software on these
computers; they usually do not program HPC systems from scratch. Nevertheless,
they need to understand the systems and the software they use, in order to achieve
leading-edge scientific results. They must be capable of extending the existing appli-
cations, if needed, possibly in collaboration with CSE and HPC specialists.

An appropriate educational program for CSE users in HPC can be organized in
courses and tutorials on specific topics such as are regularly offered by computing
centers and other institutions. These courses are often taught in compact format
(ranging from a few hours to a week) and are aimed at enabling participants to use
specific methods and software or specific systems and tools. They naturally are of
limited depth, but a wide spectrum of such courses is essential in order to widen the
scope of CSE and HPC technology and to bring it to bear fruit as widely as possible.

CSE Domain Scientists and Engineers: Method Developers. Developers of
CSE technology are often domain scientists or engineers who have specialized in using
computational techniques in their original field. They often have decades of experi-
ence in computing and using HPC, and thus historically they are mostly self-taught.
Regarding the next generation of scientists, students of the classical fields (such as
physics, chemistry, or engineering) will increasingly want to put stronger emphasis on
computing within their fields.

The more fundamental knowledge that will be needed to competently use the next
generation of HPC systems thus cannot be adequately addressed by compact courses
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as described above. A better integration of these topics into the university curriculum
is necessary, by teaching the use of computational methods as part of existing courses
or by offering dedicated HPC- and simulation-oriented courses (as electives) in the
curriculum. An emphasis on CSE and HPC within a classical discipline may be taught
in the form of a selection of courses that are offered as electives by CSE or HPC
specialists, or---potentially especially attractive---by co-teaching of a CSE specialist
jointly with a domain scientist.

CSE Core Researchers and Developers. Scientists who work at the core of
CSE are classified in two groups according to Figure 3. Domain-driven CSE stu-
dents as well as those focusing on broadly applicable methods should be expected to
spend a significant amount of time learning about HPC and parallel computing topics.
These elements must be well integrated into the CSE curriculum. Core courses from
computer science (such as parallel programming, software engineering, and computer
architecture) may present the knowledge that is needed also in CSE, and they can
be integrated into a CSE curriculum. Often, however, dedicated courses that are
especially designed for students in CSE will be significantly more effective, since such
courses can be adapted to the special prerequisites of the student group and can better
focus on the issues that are relevant for CSE. Again, in many cases co-teaching such
courses, labs, or projects may be fruitful, especially when such courses cover several
stages of the CSE cycle (see Figure 2).

CSE Success Story: Computer-Aided Engineering in the Automotive Industry

CSE-based simulation
using computer-aided
engineering (CAE)
methods and tools
has become an indis-
pensable component of
developing advanced
products in industry.
Based on mathematical
models (e.g., differ-
ential equations and
variational principles),
CAE methods such as
multibody simulation,
finite elements, and
computational fluid
dynamics are essential
for assessing the func-
tional behavior of products early in the design cycle when physical prototypes are
not yet available. The many advantages of virtual testing compared with physical
testing include flexibility, speed, and cost. This figure16 shows selected application
areas of CAE in the automotive industry. CSE provides widely applicable methods
and tools. For example, drop tests of mobile phones are investigated by applying
simulation methods that are also used in automotive crash analysis.

16Figure courtesy of AUDI AG.
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These three levels of CSE education are naturally interdependent, but we empha-
size that all three levels are relevant and important. In particular, the problem of
educating the future generation of scientists in the competent use of computational
techniques cannot be addressed solely by offering one-day courses on how to use the
latest machine in the computing center.

3.5. CSE Education in Uncertainty Quantification and Data Science. The
rising importance of massive data sets in application areas of science, engineering,
and beyond has broadened the skillset that CSE graduates may require. For exam-
ple, data-driven uncertainty quantification requires statistical approaches that may
include tools such as Markov chain Monte Carlo methods and Bayesian inference.
Analysis of large networks requires skills in discrete mathematics, graph theory, and
combinatorial scientific computing. Similarly, many data-intensive problems require
approaches from inverse problems, large-scale optimization, machine learning, and
data stream and randomized algorithms.

The broad synergies between computational science and data science offer op-
portunities for educational programs. Many CSE competencies translate directly to
the analysis of massive data sets at scale using high-end computing infrastructure.
Computational science and data science are both rooted in solid foundations of math-
ematics and statistics, computer science, and domain knowledge; this common core
may be exploited in educational programs that prepare the computational and data
scientists of the future.

We are already beginning to see the emergence of such programs. For exam-
ple, the new undergraduate major in ``Computational Modeling and Data Analytics""
at Virginia Tech17 includes deep integration among applied mathematics, statistics,
computing, and science and engineering applications. This new degree program is
intentionally designed not to be just a compilation of existing classes from each of
the foundational areas; rather, it comprises mostly new classes with new perspectives
emerging from the intersection of fields and is team-taught by faculty across depart-
ments. Another example is the Data Engineering and Science Initiative at Georgia
Tech.18 Degree programs offered include a one-year M.S. in analytics, and M.S. and
Ph.D. programs with a data focus on CSE and biotech fields. These programs are
jointly offered by academic units drawn from the colleges of computing, engineering,
and business. About a quarter of the courses are offered by the School of CSE, with
the focus on computational algorithms and high-performance analytics. A similar
picture is emerging around the world, with interdisciplinary programs that combine
data analytics and mathematics-based high-end computing.19

3.6. Software Sustainability, Data Management, and Reproducibility. As dis-
cussed in section 2.4, simulation software is becoming increasingly complex and often
involves many developers, who may be geographically distributed and who may en-
ter or leave the project at different times. Education is needed on issues in software
productivity and sustainability, including software engineering for CSE and tools for
software project management. For example, code repositories that support version
control are increasingly used as a management tool for projects of all sizes. Teaching
students at all levels to routinely use version control will increase their productivity
and allow them to participate in open-source software projects in addition to better
preparing them for many jobs in large-scale CSE.

17http://www.ais.science.vt.edu/programs/cmda.html
18http://bigdata.gatech.edu/, http://www.analytics.gatech.edu/
19See, e.g., several of the programs listed at http://www.kdnuggets.com/education/index.html.
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CSE Success Story: Simulation-Based Optimization of 3D Printing
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CSE researchers have de-
veloped advanced models
of 3D printing processes,
where thin layers of metal
powder are molten by a
high-energy electron beam
that welds the powder se-
lectively to create complex
3D metal structures with
an almost arbitrary geom-
etry by repeating the pro-
cess layer by layer. The
two snapshots on the right
visualize the effects of a
simulated electron beam
that scans over a powder
bed in a sequence of parallel lines. Simulation can be used for designing the elec-
tron beam gun, developing the control system, and generating the powder layer,
thereby accelerating the printing process in commercial manufacturing, for example,
of patient-specific medical implants. The greatest simulation challenge is to develop
numerical models for the complex 3D multiphysics welding process. A realistic sim-
ulation with physical resolution of a few microns requires millions of mesh cells and
several hundreds of thousands of timesteps---computational complexity that can be
tackled only with parallel supercomputers and sophisticated software.20

Researchers in CSE fields (and from governments, funding agencies, and the pub-
lic) also have experienced growing concern about the lack of reproducibility of many
scientific results based on code and data that is not publicly available and often not
properly archived in a manner that allows future confirmation of the results. Many
agencies and journals are beginning to require open sharing of data and/or code. CSE
education should include training in the techniques that support this trend, including
data management and provenance, licensing of code and data, full specification of
models and algorithms within publications, and archiving of code and data in repos-
itories that issue permanent identifiers such as DOIs.

The important issues of ethics and privacy also come into play with an increased
community focus on sharing data and codes. These topics are an essential part of CSE
education---they should be covered as part of a class as well as reinforced through
research process and mentoring.

3.7. Changing Educational Infrastructure. As we think about CSE educational
programs, we must also consider the changing external context of education, particu-
larly with regard to the advent of digital educational technologies and their associated
impact on the delivery of education programs.

One clear impact is an increased presence of online digital materials, includ-
ing digital textbooks, open educational resources, and massive open online courses
(MOOCs). Recent years have already seen the development of online digital CSE re-

20Simulation results from M. Markl, R. Ammer, U. R\"ude, and C. K\"orner, Internat. J. Advanced
Manufacturing Technol., 78 (2015), pp. 239--247.
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sources, as well as widespread availability of material in fields relevant to CSE, such as
HPC, machine learning, and mathematical methods. An opportunity exists to make
better community use of current materials, as well as to create new materials. There
is also an opportunity to leverage other resources, such as Computational Science
Graduate Fellowship essay contest winners21 and archived SIAM plenaries and other
high-profile lectures. The time is right for establishing a SIAM working group that
creates and curates a central repository linking to CSE digital materials and coordi-
nates community development of new CSE online modules. This effort could also be
coordinated with an effort to pursue opportunities in continuing education.

Digital educational technologies are also having an impact on the way university
courses are structured and offered. For example, many universities are taking ad-
vantage of digital technologies and blended learning models to create ``flipped class-
rooms,"" where students watch video lectures or read interactive online lecture notes
individually and then spend their face-to-face class time engaged in active learning
activities and problem solving. Digital technologies are also offering opportunities
to unbundle a traditional educational model---introducing more flexibility and more
modularity to degree structures. Many of these opportunities are well suited for tack-
ling the challenges of building educational programs for the highly interdisciplinary
field of CSE.

4. Conclusions and Recommendations.

4.1. Summary. Over the past two decades, computational science and engineer-
ing has become tremendously successful and influential at driving progress and innova-
tion in the sciences and technology. CSE is intrinsically interdisciplinary, and as such
it often suffers from the entrapments created by disciplinary boundaries. While CSE
and its paradigm of quantitative computational analysis and discovery are permeat-
ing increasingly many areas of science, engineering, and beyond, CSE has been most
successful when realized as a clearly articulated focus within its own well-defined aca-
demic structures and its own targeted funding programs and aided by its own focused
educational programs. The past decade has seen a comprehensive broadening of the
application fields and methodologies of CSE. For example, mathematics-based com-
puting is an important factor in the quantitative revolution that is sweeping through
the life sciences and medicine, and powerful new methods for uncertainty quantifica-
tion are being developed that build on advanced statistical techniques.

Quantitative and computational thinking is becoming ever more important in
almost all areas of scientific endeavor. Hence, CSE skills and expertise must be
included in curricula across the sciences, including the biomedical and social sciences.
A well-balanced system of educational offerings is the basis for shaping the future
of CSE. Creating a unique identity for CSE education is essential. Dedicated CSE
programs have been created up to now only in a relatively small number of universities,
mostly in the United States and Europe. More such undergraduate and graduate-
level (master's and Ph.D.) programs in CSE are necessary in order to train and
prepare the future generation of CSE scientists to make new scientific and engineering
discoveries. This core CSE education will require designing dedicated curricula, and
where such programs already exist, continuous adaptation is needed to address the
rapidly changing landscape of CSE.

21https://www.krellinst.org/csgf/outreach/cyse-contest
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4.2. Central Findings.
 F1: CSE as a discipline. CSE has matured to be a discipline in its own
right. It has its own unique research agenda, namely, to invent, analyze, and
implement broadly applicable computational methods and algorithms that
drive progress in science, engineering, and technology. A major current focus
of CSE is to create truly predictive capability in science. Such CSE-based
scientific predictions will increasingly become the foundation of technical,
economic, societal, and public policy advances and decisions in the coming
decades.

 F2: Algorithms and software as research artifacts. Innovations in math-
ematical methods and computational algorithms lie at the core of CSE ad-
vances. Scientific software, which codifies and organizes algorithmic models
of reality, is the primary means of encapsulating CSE research to enable
advances in scientific and engineering understanding. CSE algorithms and
software can be created, understood, and properly employed only by using a
unique synergy of knowledge that combines an understanding of mathematics,
computer science, and target problem areas.

 F3: CSE and the data revolution. CSE methods and techniques are essen-
tial in order to capitalize on the rapidly growing ubiquitous availability of
scientific and technological data, which is a major challenge that calls for the
development of new numerical methods. In order to achieve deeper scientific
benefit, data analytics must proceed beyond the exposition of correlations.
CSE develops new statistical computing techniques that are efficient at scale,
and it incorporates physical models informed by first principles to extract
from the data insights that go far beyond what can be recovered by statisti-
cal modeling alone.

4.3. General Recommendations.
 R1: Universities and research institutions should expand CSE to realize
its broad potential for driving scientific and technological progress
in the 21st century. This requires removing disciplinary boundaries, engaging
with new application areas, and developing new methodologies. Multidisci-
plinary research and education structures where CSE is a clearly articulated
focus should be increasingly encouraged.

 R2: Funding agencies should develop focused and sustained funding
programs that address the specific needs of research in CSE. These pro-
grams should acknowledge the multidisciplinary nature of CSE and account
for specific research agendas of CSE, including CSE algorithms and software
ecosystems as critical instruments of a novel kind of predictive science and
access to leading high-performance computing facilities.

4.4. Recommendations for CSE Education.
 E1: Universities should strengthen and broaden computational think-
ing in all relevant academic areas and on all levels. This effort is vital
for driving scientific, technological, and societal progress and needs to be ad-
dressed systematically at the university level as a crucial factor in workforce
development for the 21st century.

 E2: Dedicated CSE programs at all university degree levels should
be created to educate future core CSE researchers for jobs in the private
and government sectors, in research laboratories, and in academia. New CSE-
centric teaching materials are required to support such programs.
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 E3: The common core of CSE and data science, as well as their synergy,
should be exploited in educational programs that will prepare the com-
putational and data scientists of the future. Aided by scientific visualization
and interactive computational experiments, CSE is a powerful motivator for
study in the STEM disciplines at pre-university levels. Outreach materials
are required.
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