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Abstract

A scheme is proposed for realizing quantum entanglement, information trans-

fer, CNOT gate, and SWAP gate with superconducting-quantum-interference-

device (SQUID) qubits in cavity QED. In the scheme, the two logical states

of a qubit are the two lowest levels of the SQUID. An intermediate level of the

SQUID is utilized to facilitate coherent control and manipulation of quantum

states of the qubits. The method presented here does not involve a real ex-

citation of the intermediate levels during the operations. Thus, decoherence

due to energy relaxation of intermediate levels is minimized. In addition, the

present method does not require the adjustment of the SQUID level spacings,

which simplifies the operation significantly.
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Cavity QED has been extensively studied to implement quantum information processing

(QIP) with a variety of physical systems such as atoms, ions, quantum dots and Joseph-

son junctions [1-5]. A well-known reason for this is that compared with those non-cavity

proposals where significant overhead is needed for coupling distant qubits, the cavity-based

schemes is preferable since the cavity mode acts as a “bus” that can mediate long-range fast

interaction between any qubits, which enables one to perform two-qubit operations involving

any desired pair of qubits.

Recently, a scheme has been proposed for obtaining quantum gates, information trans-

fer, and entanglement with superconductor quantum interference devices (SQUIDs) in cavity

QED [6]. The SQUID-cavity QED scheme may be among the most promising candidates for

demonstrating QIP because (i) the cavity mode can mediate long-range and fast interaction

between distant SQUID qubits, (ii) decoherence induced due to the external environment

can be greatly suppressed since the cavity can be doubled as the magnetic shield for SQUIDs,

(iii) and superconducting qubits have been demonstrated to have relatively long decoher-

ence time [7-9]. In Ref. [6], the operations were performed by inducing transitions to the

intermediate level |ai [see Fig. 1(a)] via microwave pulse and cavity field. However, though
the cavity mode is not populated during the operation, the population of the SQUIDs in the

intermediate levels is non-zero. Thus, energy relaxation of the intermediate level can cause

decoherence during the operation. Another key point is that the operation in [6] requires

rapid adjustments of level spacings of SQUIDs, which is undesirable in experiment, since

tuning the SQUID level spacings not only makes the operation more complicated but also

may cause extra decoherence. In addition, the proposal in Ref. [6] employed the resonant

coupling of the microwave pulses with the SQUIDs, therefore one needs a precise control of

the qubits’ level spacings in order to match the microwave frequency.

In this paper, we propose a significantly improved approach to achieve entanglement,

information transfer, CNOT gate, and SWAP gate with three-level Λ-type SQUID qubits in

cavity QED. As shown below, the above mentioned problems in Ref. [6] are all mitigated in

the present proposal.
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Let us first introduce the Hamiltonian of a SQUID qubit coupled to a single-mode cavity

field and a classical microwave pulse with Bµw(r, t) = Bµw(r) cos ωµwt. Here, Bµw(r) is

the amplitude of the magnetic component and ωµw is the carrier frequency. The qubits

considered in this letter are rf SQUIDs each consisting of a Josephson tunnel junction in a

superconducting loop (typical size of an rf SQUID is on the order of 10 µm−100 µm). The
Hamiltonian of an rf SQUID (with junction capacitance C and loop inductance L) can be

written in the usual form

Hs =
Q2

2C
+
(Φ− Φx)

2

2L
−EJ cos

µ
2π

Φ

Φ0

¶
, (1)

where Φ, the magnetic flux threading the ring, and Q, the total charge on the capacitor, are

the conjugate variables of the system (with the commutation relation [Φ, Q] = ih̄), Φx is the

static (or quasistatic) external flux applied to the ring, and EJ ≡ IcΦ0/2π is the maximum
Josephson coupling energy (Ic is the critical current of the junction and Φ0 = h/2e is the

flux quantum).

The quantized Hamiltonian of the cavity mode is given by Hc = h̄ωc (c
+c+ 1/2) , where

c+ and c are the photon creation and annihilation operators; and ωc is the frequency of the

cavity mode.

Consider a Λ-type configuration formed by the two lowest levels and an excited level of the

SQUID, denoted by |0i , |1i and |ai with energy eigenvalues E0, E1, and Ea, respectively [Fig.
1(a)]. For the sake of concreteness, we choose the following device and control parameters:

C = 90 fF, L = 100 pH, Ic = 3.75 µA,Φx = 0.4995 Φ0 for the SQUID qubit in the rest of

this letter. We can show that when the cavity mode is coupled to the |0i ↔ |ai transition
but far-off resonant with the |0i ↔ |1i and |1i ↔ |ai transitions, and when the microwave
pulse is coupled to the |1i ↔ |ai transition while far-off resonant with the |0i ↔ |1i and
|0i↔ |ai transitions, the Hamiltonian of the system can be written as:

H = E0σ00 + E1σ11 + Eaσaa + h̄ωcc
+c

+h̄(gc+σ0a + h.c.) + h̄
³
Ωeiωµwtσ1a + h.c.

´
, (2)
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where g is the coupling constant between the cavity mode and the |0i ↔ |ai transition; Ω
is the Rabi-flopping frequency corresponding to the |1i ↔ |ai transition; and σij = |ii hj|
(i, j = 0, 1, a). The expressions of g and Ω are given by

g =
1

L

s
ωc
2µ0h̄

h0|Φ |ai
Z
S
Bc(r) · dS,

Ω =
1

2Lh̄
h1|Φ |ai

Z
S
Bµw(r) · dS, (3)

where S is any surface that is bounded by the SQUID ring, r is the position vector on S,

and Bc(r) is the magnetic component of the normal mode of the cavity. For a standing-wave

cavity, one has Bc (z) = µ0
q

2
V
cos kz (here, k is the wave number, V and z are the cavity

volume and the cavity axis, respectively).

Consider a situation in which the cavity mode is largely detuned from the |0i ↔ |ai
transition , i.e., ∆c = ωa0 − ωc À g, and the microwave pulse is largely detuned from

the |1i ↔ |ai transition, i.e., ∆µw = ωa1 − ωµw À Ω, where ωa0 = (Ea − E0)/h̄ and
ωa1 = (Ea − E1)/h̄ [Fig. 1(a)]. Under this condition, the intermediate level |ai can be
adiabatically eliminated [10,11]. Thus, the effective Hamiltonian in the interaction picture

becomes [10,11]

Hi = h̄[− g
2

∆c
c+cσ00 − Ω2

∆µw
σ11 − geffeiδtcσ+01 − geffe−iδtc+σ01], (4)

where σ01 = |0i h1| , σ+01 = |1i h0| , δ = ∆c − ∆µw, and geff =
Ωg
2
( 1
∆c
+ 1

∆µw
). The first

two terms are ac-Stark shifts of the levels |0i and |1i induced by the cavity mode and
the microwave pulse, respectively. The last two terms are the familiar Jaynes-Cummings

interaction, describing the Raman coupling of the two lowest levels of the SQUID.

Effective Hamiltonian for two SQUID qubits in cavity. To simplify presentation, let us

consider two identical SQUIDs I and II ( the method is also applicable to non-identical

SQUIDs). The two SQUIDs are coupled to the same single-mode microwave cavity and

each driven by a classical microwave pulse Biµw(r, t) = B
i
µw(r) cos ωµwt (i = I, II) [Fig. 2].

The separation of the two SQUIDs is assumed to be much larger than the linear dimension of

each SQUID ring in such a way that direct interaction between the two SQUIDs is negligible.
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Also, suppose that the coupling of each SQUID to the cavity mode is the same (this can

be readily obtained by placing the two squbits at two locations r1 and r2 of the cavity axis

where the magnetic fluxes generated by the cavity field are the same). In this case, it is

obvious that based on Eq. (4), the Hamiltonian for the system in the interaction picture

can be written as

HI =
X
i=I,II

h̄[− g
2

∆c
c+cσ00i − Ω2

∆µw
σ11i]

−h̄ X
i=I,II

[geffe
iδtcσ+01i + geffe

−iδtc+σ01i]. (5)

Under the condition that δ À g2

∆c
, Ω2

∆µw
, geff , there is no exchange of energy between the

SQUIDs and the cavity mode. The effective Hamiltonian is then given by [12-15]

Heff =
X
i=I,II

h̄[− g
2

∆c
c+cσ00i − Ω2

∆µw
σ11i]

+h̄γ[
X
i=I,II

−c+cσ00i + cc+σ11i + σ+01Iσ01II + σ01Iσ
+
01II ], (6)

where the third and fourth terms describe the photon-number dependent Stark shifts in-

duced by the off-resonant Raman coupling, and the last two terms describe the “dipole”

coupling between the two SQUIDs mediated by the cavity mode and the classical fields.

The parameter γ = g2eff/δ characterizes the strength of Stark shift and inter-qubit coupling.

If the cavity is initially in the vacuum state, then the effective Hamiltonian reduces to

Heff = −
X
i=I,II

h̄
Ω2

∆µw
σ11i + h̄γ[

X
i=I,II

σ11i + σ+01Iσ01II + σ01Iσ
+
01II ], (7)

Note that the Hamiltonian (7) does not contain the operators of the cavity mode. Thus, only

the state of the SQUID system undergoes an evolution under the Hamiltonian (7), i.e., no

quantum information transfer occurs between the SQUIDs and the cavity mode. Therefore,

the cavity mode is virtually excited.

The Hamiltonian (7) acting on the system can be expressed through the unitary trans-

formation
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U(t > 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 e−iγ
0t cos(γt) −ie−iγ0t sin(γt) 0

0 −ie−iγ0t sin(γt) e−iγ
0t cos(γt) 0

0 0 0 e−i2γ
0t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

in the two-qubit computational subspace {|00i , |01i , |10i , |11i} , where γ0 = γ − Ω2

∆µw
. In

the following, based on Eq. (8) we show how quantum entanglement, information transfer,

and swap gates can be achieved.

Generation of entanglement. The two logical states of each SQUID qubit are represented

by the two lowest energy states |0i and |1i . From (8), one can see that if the two SQUID

qubits are initially in the states |0iI and |1iII , they will evolve to the following maximally
entangled state after an interaction time π/(4γ)

|ψi = 1√
2
(|0iI |1iII − i |1iI |0iII), (9)

where the common phase factor e−iχπ/4 (χ = γ0/γ) has been omitted.

Quantum information transfer. Suppose that the SQUID qubit I is the original carrier of

quantum information, which is in an arbitrary state α |0i+β |1i. The quantum information
transfer from the qubit I to the qubit II initially in the state |0i is described by

(α |0iI + β |1iI) |0iII → |0iI (α |0iII + β |1iII), (10)

which can be easily realized via only two steps: First, apply two microwave pulses to the two

SQUIDs I and II, respectively, so that the states of the two SQUIDs undergo an evolution

under the Hamiltonian (7) for an interaction time π/(2γ). Then, perform a single-qubit

phase shift |0i → e−i(1+χ)π/4 |0i while |1i → ei(1+χ)π/4 |1i on the SQUID qubit II . The

states after each step of the operations are listed below:

(α |0iI + β |1iI) |0iII
Step (i)−→ |0iI [α |0iII + e−i(1+χ)π/2β |1iII ]

Step (ii)−→ e−i(1+χ)π/4 |0iI (α |0iII + β |1iII). (11)
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It is clear that the two-step operation transfers quantum information from the SQUID qubit

I to the SQUID qubit II.

Single SQUID qubit operations can be achieved without real excitation of the in-

termediate level |ai , by applying two microwave pulses a and b with Bkµw (r,t) =

Bkµw (r) cos
³
ωkµwt+ φk

´
(k = a, b) in order to induce two-photon Raman resonant transi-

tion between the qubit levels |0i and |1i [Fig. 1 (b)]. During the single-qubit operation, the
cavity mode can be decoupled from the qubits without adjusting the squbits’ level spacings.

The reason for this is that one can choose the frequencies of the applied microwave pulses so

that two-photon Raman resonant transition between the qubit levels |0i and |1i is satisfied,
while the cavity mode is highly detuned from either pulse [see Fig. 1 (b)]. In the case when

Ωa = Ωb, or δΩ ¿ ΩaΩb/Ω (here, δΩ = Ωa − Ωb and Ω = Ωa+Ωb
2
), the single-qubit rotation

can be realized as follows

|0i → cos g0t |0i+ e−i(φa−φb−π/2) sin g0t |1i ,

|1i → ei(φa−φb+π/2) sin g0t |0i+ cos g0t |1i , (12)

where g0 = Ωa Ωb/∆;and Ωa (Ωb) is the Rabi flopping frequency between the levels |0i and
|ai (the levels |1i and |ai) generated by the pulse a (b).
From (12), one can see that the above single-qubit phase shift |0i → e−i(1+χ)π/4 |0i and

|1i → ei(1+χ)π/4 |1i can be realized in the following two steps:
Step (i). Apply two microwave pulses a and b to the SQUID with a phase difference

δφ = φa − φb = (1 + χ)π/4, so that the states of the SQUID qubit undergo an evolution

under (12) for an interaction time t1 = π/(2g0).

Step (ii). Apply two microwave pulses a and b to the SQUID with φa − φb = π, so that

the states of the SQUID qubit undergo an evolution under (12) for another interaction time

t2 = t1 = π/(2g0).

The states after each step of the above operation are summarized below

|0i
|1i

Step (i)→ e−i(δφ−π/2) |1i
ei(δφ+π/2) |0i

Step (ii)→ e−iδφ |0i
eiδφ |1i

, (13)
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which implies that the operations described above achieve a single-qubit phase shift |0i
→ e−iδφ |0i and |1i → eiδφ |1i with a phase δφ = (1 + χ)π/4.

Quantum CNOT gate. A non-trivial and universal two-qubit controlled NOT gate

(CNOT) can be realized by combining two-qubit operations with single-qubit operations.

We find that the CNOT gate |iiI |jiII → |iiI |i⊕ jiII (i, j ∈ {0, 1}) acting on the two
SQUID qubits I and II can be achieved through the following unitary transformations

UCNOT = H−1II UIUIISISIIUI,IIU 0ISIIUI,IIHIIHIHII , (14)

where the common phase factor e−iχπ/4 is omitted, the subscripts I and II represent qubits

I and II, UI,II is a two-SQUID-qubit joint unitary operation defined by (8) with t = π/(4γ),

SI and SII are both single-qubit phase-shift operations each resulting in |0i → e−iχπ/8 |0i
and |1i→ eiχπ/8 |1i, UI = H−1I HI , UII = H

−1
II H−1II , and U 0I = σyISI (σy is the Pauli operator).

In above, H,H−1,H, and H−1are the following Hadamard transformations

H = 1√
2

⎛⎜⎜⎝ 1 −1
1 1

⎞⎟⎟⎠ ,H = 1√
2

⎛⎜⎜⎝ 1 −i
−i 1

⎞⎟⎟⎠ ,HH−1 = HH−1 = I (15)

in the single-qubit Hilbert subspace formed by |0i = (0, 1)T and |1i = (1, 0)T. It is straight-
forward to show that with a proper choice of φa, φb, and t, the four basic single-qubit

Hadamard transformations can be obtained from the above single-qubit rotation (12).

Quantum SWAP gate. It is known that constructing a SWAP gate requires at least three

CNOT gates as follows [16]

|iiI |jiII → |iiI |i⊕ jiII
→ |i⊕ (i⊕ j)iI |i⊕ jiII = |jiI |i⊕ jiII
→ |jiI |(i⊕ j)⊕ jiII = |jiI |iiII , (16)

where i, j ∈ {0, 1} and all additions are done modulo 2. As described above, a CNOT
requires 10 single-qubit operations and 2 two-qubit operations. Thus, at least 36 basic

operations for three CNOT gates are needed to implement a two-SQUID-qubit SWAP gate
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by using the above method. In the following discussion we present a simple way to perform

a SWAP.

Note that the information transfer (10) is equivalent to a transformation |iiI |0iII →
|0iI |iiII (i ∈ {0, 1}). Thus, a two-SQUID-qubit SWAP |iiI |jiII → |jiI |iiII (i, j ∈ {0, 1})
can be realized through the following procedure:

|iiI |jiII |0ia → |0iI |jiII |iia → |jiI |0iII |iia → |jiI |iiII |0ia , (17)

i.e., transfer information first from qubit I to the auxiliary qubit a; then from qubit II to

qubit I; and finally, from the auxiliary qubit a to qubit II. The irrelevant qubit in each

step can be decoupled from the cavity field and the other two qubits by turning off the

microwave pulse directed to it. As described above, the information transfer from one qubit

to another only needs one two-qubit operation plus two basic single-qubit operations for

realizing a single-qubit phase-shift. Thus, nine basic operations are sufficient to construct a

two-SQUID-qubit SWAP gate.

It is necessary to give a brief description on experimental parameters. For the SQUIDs

with the parameters given above and with junction’s damping resistance R > 1 GΩ [17], the

level |ai’s energy relaxation time T1 ' R
60MΩ

·µs would be ∼ 15 µs. The transition frequency
is ωa0/(2π) ' 30 GHz. Hence, we choose ωc/(2π) = 29.7 GHz as the cavity-mode frequency.
For a superconducting standing-wave cavity with a volume 10 × 1 × 1 mm3 and a SQUID

with a 50×50 µm2 loop located at one of the antinodes of the B field, the coupling constant

can be calculated using Eq. (3), which gives g ' 1.8×108 s−1, i.e., about 0.1∆c. By choosing

the frequency and amplitude of the microwave pulse appropriately such that ∆µw = 10Ω and

g = 1.2Ω for each SQUID, we have δ ' 10geff ' 3.1× 108 s−1, i.e., γ = g2eff/δ ' 3.1× 106

s−1. Then the time needed for creating the entangled state (9) or the typical SQUID-cavity

interaction time (the time for each two-SQUID-qubit joint operation) required for CNOT

gate is Ts−c = π/(4γ) ' 0.25 µs, and the typical SQUID-cavity interaction time needed

for quantum information transfer or SWAP gate is T 0s−c = π/(2γ) ' 0.5 µs, which are

much shorter than the level |ai’s effective decay time T1/Pa ≥ 1.5 × 103 µs for T1 = 15

9



µs, where Pa ≤ 0.01 is the occupational probability of the level |ai for the present case.
The photon lifetime is given by Tc = Qc/ωc where Qc is the quality factor of the cavity.

In the present case, the cavity has a probability Pc ' 0.01 of being excited during the

operation. Thus, the effective decay time of the cavity is Tc/Pc ' 10 µs À Ts−c, T 0s−c

for Qc = 2 × 104, which is realizable for superconducting microwave cavities since recent
experiments have demonstrated that the quality factor of microwave cavities loaded with

thin film superconducting circuits (on single crystal Si or MgO substrates) are greater than

104 [7-9,18] and a superconducting microwave cavity with a Q > 106 has been also reported

more recently [19].

In addition to the advantages of the scheme described in Ref. [6], i.e., virtually excitation

of the cavity mode and no tunneling between the qubit levels |0i and |1i being needed, the
present scheme has the following distinct features: (i) During the operation, the intermediate

level is virtually excited and thus the operation errors caused by energy relaxation is greatly

suppressed. (ii) No adjustment of level spacings is needed during operations, since the qubit-

qubit interaction required for the two-qubit operations is via the cooperative actions of the

cavity mode and the microwave pulses. (iii) The method does not require two SQUIDs

with identical parameters, since in the case of non-identical SQUIDs I and II, one has

δI = ωIa0 − ωIa1 − ωc + ωIµw and δII = ωIIa0 − ωIIa1 − ωc + ωIIµw, which can always be set to

equal by adjusting the frequencies, ωIµw and ωIIµw, of the two microwave pulses applied to

the SQUIDs. Thus, the present scheme can allow finite device parameter non-uniformity.

(iv) The method could be extended to perform QIP on many SQUID qubits in a cavity.

In the present case, SQUID qubits are chosen by the application of the microwave pulses,

i.e., those SQUIDs who are unaddressed by the microwave pulses are not involved in the

operation. However, in the scheme of [6], one has to adjust SQUID level spacings to have

SQUID qubits to be coupled or decoupled.

Before we conclude, we should mention that coupling qubits via cavity/trap-assisted

collision without real excitation of the cavity/vibrational mode was previously reported in

Ref. [15] and that the type of effective Hamiltonian (6) or (7), obtained after the adiabatic
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elimination of both the excited states of the SQUIDs and the cavity mode, was proposed

previously for a trapped-ion based quantum processor [15] or atom-cavity based quantum

processor [12,13]. However, we point out that the main purpose of this work is to show that

the same interaction model can be obtained in a solid-state system in which the qubits are

embodied by rf SQUIDs. We think that this result is interesting by itself as a consequence

of the analogy between a superconducting qubit and an atom/ion under proper conditions.

In summary, we have proposed a theoretical method for realizing quantum entanglement,

information transfer, CNOT gate, and SWAP gate with SQUID qubits in cavity. It is

shown that the approach is robust against important sources of decoherence due to energy

relaxation of the intermediate level. We stress that in all above analysis, all Stark shift

terms, which might affect the operation fidelity, are included. In addition, we have shown

that the realization of the scheme is possible within the present technique. To the best of

our knowledge, there has been no experimental demonstration of entanglement, information

transfer or logical gates for the SQUID systems. Therefore, we hope that this work will

stimulate further theoretical and experimental activities in this emerging research field.
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Figure Captions

FIG. 1. (a) The potential and level diagram of an rf SQUID with a Λ-type three levels

|0i , |1i and |ai. The cavity field is detuned from the classical microwave pulse by δ =

∆c− ∆µw. (b) Illustration of single-qubit operation. The two microwave pulses a and b

with frequencies ωaµw and ωbµw are applied to induce two-photon Raman resonant transition

between the qubit levels |0i and |1i with ω10 = ωaµw − ωbµw, for the purpose of single-qubit

logic operation. To have the intermediate level |ai not populated during the operation, the
setting ∆ = ωa0 − ωaµw = ωb0 − ωbµw À Ωa,Ωb should be met, where Ωa (Ωb) is the Rabi

flopping frequency between the levels |0i and |ai (the levels |1i and |ai) generated by the
pulse a (b).

FIG. 2. Schematic illustration of two SQUIDs (I, II) coupled to a single-mode cavity

field and manipulated by microwave pulses. The two SQUIDs are placed along the cavity

axis (the Z axis) and in the X-Z plane.The two SQUIDs are placed along the cavity axis

(the Z axis) and in the X-Z plane. Bc, B
I
µw and B

II
µw are in Y direction.
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