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ITO-WIENER CHAOS EXPANSION WITH EXACT RESIDUAL
AND CORRELATION, VARIANCE INEQUALITIES *

Yaozaong HU **

ABSTRACT We give a formula of expanding the solution of a stochastic dif-
ferential equation (abbreviated as SDE below) into a finite It6-Wiener chaos with
explicit residual. And then we apply this formula to obtain several inequalities
for diffusions such as FKG type inequality and variance inequality and a correla-
tion inequality for Gaussian measure. A simple proof for Houdré-Kagan’s variance
inequality for Gaussian measure is also given this way.

1. Introduction. Let (2, F, P) be the canonical Wiener space on Ry = [0, 00)
and let B be the standard Wiener process on (€2, F, P). It is well-known (see [It])
that any square integrable real random variable F' on (€2, F, P) can be expanded
as

F:IEF+§:JH(fn), (1.1)

n=1

where IE is the expectation with respect to P, f, : R} =R, n=1,2,--- (called
the It6-Wiener coefficients of F'. We omit their explicit dependence on F') are
square integrable with respect to the Lebesgue measure on R7 and J,(fy) is the
multiple 1t6-Wiener integral (of order n),

In(frn) :/ fn(s1,--+,8,)dBs, ---dBs, .
0<s1< <8, <00

In the following, however, we will use J,(f,) to represent the integration till time
1 instead of oo! The convergence of the series in (1.1) is in L?(2, F, P) and this
result is called the It6-Wiener expansion theorem.

Generally, the solution of an SDE is square integrable and then admits an 1t6-
Wiener chaos expansion. The explicit formula for such an expansion is known as
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the Isobe-Sato formula, see for instance, [IS], [HM], [BL] etc. In this paper, using
the transition probability, we obtain in a very simple way the explicit expression of
the It6-Wiener coefficients (for F' being the solution of an SDE) and in particular
the explicit expression for the residual, i.e., F —IEF — Y ¢ _, Jo(fn), expressed
by an n + 1 multiple integral with a random coefficient. This result implies the
Isobe-Sato formula easily. As application of our formula, we first establish an FKG
type inequality and a variance inequality for diffusions and then we obtain a corre-
lation inequality for Gaussian (measure). With an additional simple technique of
integration by parts, we give a simple proof of a variance inequality for Gaussian
measure, recently obtained by Houdré and Kagan [HK].

This paper mainly uses a technique (see (2.6) below) emploied first by Prof. J.
Neveu in his simplest probabilistic proof for Nelson’s hypercontractivity which I
learnt from Prof. P.A. Meyer (see also [DMM]). It is then a great pleasure for me
to dedicate this paper to their 60 birthday.

2. Ito-Wiener chaos expansion with exact residual. For simplicity of
notation, we consider a one dimensional SDE:

dry = o(x4)dBy + b(xg)dt, 0<t<oo, xzp=E€ER. (2.1)

Let Cp° be the set of all C*° functions f : R — R with bounded derivatives.
Throughout this paper, we assume that the coefficients o,b: R — R are in C§°
and that the transition probability Py(x,dy) associated with the equation (2.1)
exists and féR f(y)Pi(z,dy) € Cp° for f € Cp°. Pi(x,dy) satisfies then the
following parabolic equation:

8P, 1 ,0°P,  OP,

ot 27 022 " ox

(2.2)

with initial condition Py(z,dy) = 6(dy — x). The study of above regularity of
the transition density is one of the objectives of the Malliavin calculus. We will
not concern with it here. We will say f is a nice function if f € Cy°. Of course
we could replace Cp° by some other class of functions, for instance, the class of
functions of polynomial growth (not for o,b). However, to keep the paper simple
it is not our attention to state our results in their most generality.

Under the above assumption, (2.1) has a unique solution which is belong to
LP(Q, F,P) for any p > 1. So it admit an It6-Wiener’s expansion. We will
concern with the explicit form of the coefficients and the explicit residual for the
expansion of f(x1) for some nice function f.

Denote P;f(x) = [o f(y)Pi(z,dy), Vo f(x) = o(z)L f(z) and P(z,dy) =
%Pt (z,dy). In what follows P; and V, are considered as two operators acting
the function space Cp;°. These two operators do not commute. The following
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examples will expalin our notation

VoVof(z) = a(z)o’ (@) (z) + (0(2))*f" (2);

VoP, VP, f(z x)/ (z,dy1)o(y1) P (y1, dy2) f (y2)-

We will only discuss z;. All formulas below are valid for any z; (¢t > 0) with
a slight change. Our first result is

THEOREM 2.1: Let the notation be as above. For any nice function f,

f@) =Ef(@1) + Y Ja(fn) + Tns1(gn+1), (2.3)
k=1
where
gn(sla Tty Sn) - V0'P82—81 o 'Vapl—snf(x&); (24)
frn =Egn(s1,"++,8n) = Ps,VoPsy—s, -+ Vo Pi_s, f(§). (2.5)

Proo¥F: Applying the It6 formula to the process Py, f(zs), 0 < s < ¢ and noting
Pyf = f and equation (2.2), we obtain

t
fz) = Puf(€) + /0 Vo Py f(2)dBy. (2.6)
Applying (2.6) for ¢t = 1, we have
1
flan) = Puf(e) + /0 VoPi_.f(z,)dB

1
~Ef(n) + /0 V, P f(z.)dB

Consider the integrand of the above integral. Applying (2.6) to ¢ = s and
VsPi_sf, we obtain

Vopl—sf(xs) = Psvapl—sf(g) + /OS VUPs—uvopl—sf(xu)dB

So
1
f(z1) = Ef (z1) + / P,V,Pi_,f(¢)dB,
0
1 s
VoPs_ouVePi_g w)dB,dB;.
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Continuing to use (2.6), we proves the theorem.

REMARK 1: We can also obtain a similar formula for a multi-dimensional diffusion
this way (see section 6 below for a multi-dimensional Brownian motion case).

REMARK 2: One can verify easily that J,1(gnt1) is orthogonal to all It6-Woener
chaos of order less or equal to n. According to It6-Wiener chaos expansion theo-
rem, we have

f(e1) =Bf(z1) + Y Julfn), (2.7)

where f,, is given by (2.5) and the series is convergent in L?(Q, F, P). The formula
(2.7) with (2.5) is called the Isobe-Sato formula. Prof. J. Potthoff told me that it
might be difficult to prove the L?(Q,F, P) convergence of (2.7) directly from an
L? estimate of (2.5) (see [HM]) without using the It6-Wiener expansion theorem.

The case 0 =1, b=0 and £ =0, i.e., the case x; is the Wiener process B;

is of particular interest. In this case the transition density Pi(z,y) = %?’de) is
given by
1 le—yl|?
Pi(z,y) = ezt . 2.8

It is not difficult to show

COROLLARY 2.2: Let f be a nice function and let p(dx) = ®1(x,0)dz. Then

£(B) = | r@utds) +an )+ Jus1 (9%,). (2.9)

z2 — 2

where H,, is the n-th Hermite polynomial, H,(z) = (—1)"e= ch—nne T,

/ f(z p(dz) (2.10)

and
95 (51,7 s 8nq1) = D1y, fFOT(By,). (2.11)

Proor: From the fact that ®;®; = ®,,, and dn A" P, f = &, f(™ (We also use the
same notation ®; to represent the operator actmg on Cp° whose kernel is ®,),
we have by (2.5), integration by parts and the definition of H,,,

fo = &1/(0) = /m B, (2) ™ (2)de = /m £ (@) Ho (@) pu(de).

Note that J,(1) = H,(B1). This proves the corollary. g
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REMARK : The formula (2.10) is well-known since long time. But the formula
(2.11) might be new though simple.

3. FKG inequality. Using the formula (2.3) in the case n = 0, we can obtain
an FKG type inequality for diffusions. We need a simple lemma.

LEmMMA 3.1: Let P;(z,dy) be the transition probability of (2.1). Let f be con-
tinuously differentiable and f’ > 0. Then

P/f(z) = %Ptf(x) >0, zekR (3.1)

Proo¥F : Denote the solution of (2.1) by zi(z). From the well-known formula
P.f () = Fof (z(x)) , we have

d d
L Pt @) = B (e) (), (32
Differentiating (2.1) with respect to z and letting z, = -t z,(z), we obtain

d

t t
—x(x) =2z =1 +/ o'(x4)zsdBy —I—/ b (z,)zsds.
dx 0 0

The solution z; of this equation has the following explicit form

2 = exp{/O o'(z5)dBy +/O b (z) — %|a'(xs)|2]ds}

which is almost surely positive. Combining this fact with (3.2), we prove the
lemma. g

THEOREM 3.2: Let the assumption in the beginning of section 2 be satisfied and
let z; be the solution of (2.1). Let f' >0 and ¢’ > 0. Then

E[f(z1)g(21)] 2 IEf (21)Eg(z1). (3-3)
Proo¥r: Taking n =1 in formula (2.3), we have

1
F@) =Bf @)+ [ ow)Pl S, (3.9
A similar formula holds for g. So
1
Ef(z1)g(z1) = IEf(z1)Eg(z1) +/0 E{|o ()| PI_o f (24) Py _yg9(2:) }dt

> Ef(z1)Eg(z1),

where the last inequality follows from the fact that from lemma 3.1, f’ > 0 implies
P{_,f>0 and ¢’ >0 implies P{_,g > 0. 4
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REMARK : This result may have some connection with those of [BM].

4. Variance inequality. We are going to deduce a variance inequality for
diffusions. Let the assumption in the beginning of section 2 be satisfied. Denote
by A the operator

2
Af(@) = 2o*(@) 0 L (a) +b@) oL (x) = Lo? " bf, [ e O

and Lg = %g + Ag for g € C12(]0,1] x R;R). We will establish a variance
inequality for the measure determined by x,. Precisely, we have

TueorREM 4.1: If b’ < %, then

E|f(21) — Ef (z1)]* < Elo(z1)f'(z1)]%, (4.1)
where we understand b’ < % as multiplying by o in the case o = 0.

ProoF : From (3.4), we obtain

E|f(z1) — Bf(z1)] = / o (2) Pl f (x0)|2d. (4.2)

Set gs(z) = o(z)Pj_,f(x) and apply the Itd formula to the process [gs(zs)]?, t <
s <1. Then

1
Elo (1) f'(21)|* = Elge(ze)|? +/ E[L(g7)(x)]ds.
¢
Using the simple identity £(fg) = fLg+ gLf +c%f'g’, we have

Elo(z1) f'(z1)]* > Elgy(z:)|* + 2/t Elgs(25)L(9s)(x5)]ds (4.3)

and
‘C(gs) = (AO)Pl,—sf + O-‘C’P{—sf + U20,P{,—sf' (44)

Differentiating then the equation LP;_¢f = 0 with respect to x, we obtain
LP_,f=—00'P] ,f—bP_,f. (4.5)
Combining (4.4) and (4.5),

Loy = [(A0) oV 1PL_T = [27 = V. (1.6
Inserting (4.6) into (4.3), we have
Elo(z1) ' (21)|* > Blge(wr)|* + 2/t E{o(z;)[(A0) — ob'|(zs) [P, f (xs)]" }ds.
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When the condition of the theorem is satisfied, we have
E|o(z1)f (21)* > Blo(ze) Pi_, f (z¢)[*.
Together with (4.2), we have been proved the theorem.

REMARK 1: M. Ledoux [Lel] and [Le2] obtained an expansion of the variance for
a class of general Markov processes using iterated gradients. A simple consequence
is that he also obtained a variance inequality of type (4.1). But his method works
for the process which has an invariant measure. We do not assume this condition
for diffusion processes. Moreover, his variance inequality may be different from
ours.

REMARK 2: The condition of the theorem is equivalent to I'; > 0 in [BE|. This
condition and the logarithmic Sobolev type inequalities under this condition have
been studied extensively.

5. Variance identity and inequality for Gaussian. Using the same idea as
in the preceding sections we will give a simple proof of a variance inequality for
Gaussian (measure) obtained recently by Houdré and Kagan. Denote

n

VO(a0) = g ile), V() = [ ) )iy

x™ R
where ®; is given by (2.8).

LEMMA 5.1 : Let B; be the standard Brownian motion starting at 0, n > 1 and
let f e Cp°. Then

tn—l

/0 mE[V%l_tf(Bt)Pdt

1

= %]E[f(n)(Bl)]Q _ i %]E[vn—i_l@l—tf(Bt)Pdt- (51)

ProoOF : Applying the integration by parts formula to the left hand side of (5.1),
we obtain

LT Ve, (Bt = LEV e, (B
/Om (V'@ f(By)]"dt = SB[V 1 f(By)] .

1
t" d
— | =—{E[V"®:_f(B)]’}dt. (5.2
| GBI P, (52)
To calculate the above differential, we use (2.6) for f(z) to be V*®,_;f(z) and
X; = B; (Note that By = 0). Thus we have

t
V"®,_f(By) :V"chf(O)-i-/ V&, f(Bs)dBs.
0
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Consequently

E[V"®1_f(By))* = [V"®1£(0 / E[V™0, , f(B,)ds.
Then
%E[V"(I)l tf(Bt)]2 — E[Vn+1(b1_tf(Bt)]2. (5.3)

Inserting (5.3) into (5.2) we obtain (5.1). g

THEOREM 5.2: Let X be a centered normalized Gaussian random variable and
f € Cp°. Then

n

Bl - B (0 = 3 ED e o

k=1

+ (—1)F+? / 1 gE[V"+1¢1_t F(B)dt.  (5.4)

Proor : Obviously we can put X = B;. We prove this theorem by recurrence
on n. When n =1, (2.9) gives

(Bl) = ]Ef / Vo,_ tf(Bt)dBt

So
| f(B,) - Ef(By)[? f E|V&,_,f(B,)[dt.

This is (5.4) for n=1.

To pass from n to n + 1, we need only a simple application of lemma 5.1
(formula (5.1)).

Now the following variance inequality due to Houdré and Kagan [HK] is an
easy consequence of theorem 5.2.

THEOREM 5.3: Let X be a centered normalized Gaussian random variable
and let f be a sufficiently differentiable function from R¢ to ® with bounded
derivatives. Then

k=1 :
(5.5)

REMARK : M. Ledoux [Lel], [Le2] gave an another simple proof of (5.5). He also
obtains a similar expansion for entropy, see also [Ho|.
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6. Correlation inequality. In contrast with the preceding sections, we will work
on an arbitrary Euclidean space R?. We use < -,- > to denote the Euclidean scalar
product and |- | the Euclidean norm on R?¢. Let p be the standard Gaussian
measure on R? with the density ®(z) = (27)~%2 exp(—|z|?/2).

Recall that H,(y) = (=1)"¢1(y)~ 1d‘§7n 1(y),y € R is the real Hermite poly-

nomial of degree n. If f € L?(R% du), then f can be expanded according to the
Hermite polynomials

f: ana fn = Z Cth...’ndHnl(ilh)"'Hnd(l'd),
n=0 ni+-+ng=n

where ay, ...n, are some real numbers. We say that f is degenerate if f; = 0.
Our main result of this section is

THEOREM 6.1: If f,g € L2(R?;du) are convex and one of them is degenerate,
then

J@g(@uda) > [ fle)ulde) / 9()u(de). (6.1)
Rd Rd Rd

PRrOOF : Let now By = (B},---,B%),0 <t <1 be the d-dimensional Brownian
motion starting at 0 on the interval [0,1]. Let

®4(z,y) = (2nt) "2 exp[—|y — 2[?/(2t)], =,y € R%.
Let Vf be the gradient and V2f be the Hessian of f, i.e.,
_of of \« 2 _ 0%
Vf(l') - (81'17 3 81}(1) ) \% f($) - (8.71'1‘81}]‘)151"-7.5‘1.

LEMMA 6.2: If f € L2(R%;du) is a convex function, then for any ¢ > 0, ®.f is
convex and smooth (as a function of z).

PRrROOF: Using @, f(z) =IEf(B: + z),z € R%, we can prove the lemma easily. g

We return to the proof of the therem. Analogue to (2.6), we have
f(B) =Ef(By) + Z / 5 Oeef)(B.)dB (6.2)
Applying the above formula to ¢ = 1, we obtain

d 1
f(By) =Ef(By) + Z/O

)dB;. (6.3)




In (6.2), replacing f by am ®,_,f, and using the fact that CI)t ( ) = a%iq)th for
any differentiable function h (this follows simply from an 1ntegrat10n by parts),
we obtain

d t
3y 041 (B) =Bl @B+ 3 [0l 1845
d t 2
=Bl e B+ [ | 8$?8xj<1>1_sf](35)d32- (6.4)

We also used the fact that ®;_;®;_;f = ®1_;f in the obtention of (6.4). Inserting
(6.4) into (6.3) we obtain

d 1 9 .
f(B1) =IEf(B1) + Z/O E{%‘h—tf(Bt)}de

d

E 0? o
’ / ®,_,f(B,)}dBldB:;. 65
i,j=1 0<s<t<1{3$i83;j 1-sf(Bs)} f (6.5)

A formula similar to (6.5) also holds for g. Now for 1 < < d,

0 0
(By)} = @4 0z,

[aizplf]u / () (2)is

/ P(x Yu(dx) = / Hq(z;) f(x)p(dx).

So the second term of (6.5) is f1 in the expansion of f, which is zero in the case
f is degenerate. By the orthogonality of the expansion (6.5), if one of f and g is
degenerate, then

(0)

" f(@)g(x)p(dw) = IEf(B1)g(B1)
82
— /BB B+ 151'2,9'25(1 /0<s<t<1 B OOz il (B0)

82
O0x;0x;

[ r@utao) [ gf@)n(an

+ / ETr{V?®;_, f(B,)V’®1_,9(B;) }dsdt,
<s<t<1

@1 sg(B )}det
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where Tr means the trace of a matrix. By lemma 6.2, when f and g are convex,
®,_;f and ®;_;g are also convex and smooth. So, for any z € R4, V2®,_, f(x)
and V2®;_, f(z) are positive definitive. Thus, Tr{V2®;_, f(B,)V2®1_,9(B;)} >
0 almost everywere. Combining this with the above last equality we conclude the
proof of theorem 6.1. g

REMARK The formula (6.5) is a mulit-dimensional version of (2.9) when n = 1.
Since an even function is always degenerate, we have

COROLLARY 6.3: If f,g € L?2(R% du) are convex and one of them is even, i.e.
f(=z) = f(x), then (6.1) holds.

REMARK: The inequalities (3.3) and (6.1) are of the same type but under different
assumptions. In the Gaussian case, the convexity type condition is studied by L. D.
Pitt [Pi] in the case d = 2 and f, g are indicator functions of convex, balanced set.
C. Borell [Bo] and H. Sugita [Su] have extended this result to any finite dimension
but for more restrictive sets. This is also the reason that we have been worked on
any dimension in this last section. we refer to [GJ] and [FFS] for the correlation
inequality for non-Gaussian measures.

We should mention that our result does not imply the result of L.Pitt. Since
the indicator function f of a convex set is quasiconcave (defined by f(az + (1 —
A)y) > min(f(z), f(y))), a result such as theorem 6.1 but replacing “convex”
by “quasiconcave” (or equivalently “quasiconvex”) is very strong and implies the
result of Pitt. It is conjectured that for any A, B € R¢ (d > 3), convex and
symmetric,

(AN B) = u(A)u(B).

AckNOWLEDGEMENT : The author thanks Profs. M. Emery, C. Houdré and P.A.
Meyer for many helpful comments.

REFERENCES :

[BE] D. Bakry and M. Emery, Diffusions hypercontractives, Sem. Prob. XIV,
Lecture Notes in Mathematics 1123, Springer, 1985, 177-206.

[BL] N. Bouleau and D. Lépingle, Numerical methods for stochastic processes,
John Wiley & Sons Inc. 1994.

[BM] D. Bakry and D. Michel, Sur les inégalités FKG, Sem. Prob. XXVI, 170-188,
Lecture Notes in Mathematics 1526, Springer, 1992.

[Bo] C. Borell, A Gaussian correlation inequality for certain bodies in R¢, Math.
Ann. 256 (1981), 569-575.

11



[DMM] C. Dellacherie, P. A. Meyer and B. Maisonneuve, Probabilités et Potentiel,
vol 5. 1992.

[FFS] R. Ferndndez, J. Frohlich and A.D. Sokal, Random Walks, Critical Phe-
nomena, and Triviality in Quantum Field Theory, Springer, 1992.

[GJ] J. Glimm and A. Jaffe, Quantum Physics, A Functional Integral Point of
View, 2nd edition, Springer, 1987.

[HM] Y.Z. Hu and P.A. Meyer, Chaos de Wiener et intégrales de Feynman, Sem.
Prob. XXIII, Lecture Notes in Mathematics 1321, Springer, 1988, 51-71.

[Ho| C. Houdré, L.2-expansion via iterated gradients: Ornstein-Uhlenbeck semi-
group and entropy, preprint, 1994.

[HK] C. Houdré and A. Kagan, Variance inequalities for functions of Gaussian
variables, J. Theoretical Prob., to appear.

[HP] C. Houdré and V. Pérez-Abreu, Covariance identities and inequalities for
functionals on Wiener space and Poisson space, J. of Theoret. Prob. 8 (95),
23-30.

[IS] E. Isobe and Sh. Sato, Wiener-Hermite expansion of a process generated by
an Itd stochastic differential equation, J. Appl. Prob. 20 (1983), 754-765.

[It] K. It6, Multiple Wiener integrals, J. Math. Soc. Japan, 3 (1951), 157-169.

[Lel] M. Ledoux, L’algebre de Lie des gradients itérés d’un générateur Markovien,
C.R. 317 (1993), 1049-1052.

[Le2] M. Ledoux, L’algeébre de Lie des gradients itérés d’un générateur Markovien
— Développements de moyennes et entropies, Prepublication 1994.

[Pi] L. D. Pitt, A Gaussian correlation inequality for symmetric convex sets, Ann.
Prob. 5 (1977), 470-474.

[Su] H. Sugita, Various topologies in the Wiener space and Lévy stochastic area,
Prob. theory and related fields, 91 (1992), 283-296.

12



