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Abstract 

 Tourette syndrome is a neurodevelopmental disorder characterized by purposeless, 

uncontrollable muscle movements known as tics. These tics are extremely sensitive to 

environmental factors, especially psychosocial stress. Stress has been demonstrated to increase 

neurosteroids in animal models, but the relationship of these neurosteroids to Tourette syndrome 

is unknown. The neurosteroid allopregnanolone is a key regulator of the stress cascade but has 

also been demonstrated to influence dopamine-mediated behaviors in animal models. Clinical 

results have shown that inhibiting the synthesis of allopregnanolone and other 3α, 5α steroids with 

the 5α-reductase inhibitor finasteride reduces tics in adult male patients with Tourette syndrome; 

however, the mechanism of action is largely unidentified.   

In this dissertation, the mechanism by which stress exacerbates Tourette syndrome 

symptoms and finasteride attenuates these behaviors was examined. We found that in various 

animal models of Tourette syndrome, stress exacerbated tic-like behaviors and deficits in prepulse 

inhibition (PPI), an operational measure of sensorimotor gating aimed at filtering salient 

information from the environment; this process is also disrupted in Tourette syndrome patients. 

These stress-induced tic-like behaviors and PPI deficits were ablated by finasteride treatment, 

which indicated a role for 3α, 5α steroids. We found that one of these steroids, allopregnanolone 

exacerbated tic-like behaviors and induced PPI deficits in our animal models. In addition, we 

determined that allopregnanolone is mediating these effects through several possible receptors; 

specifically we found evidence suggesting that the pregnane xenobiotic receptor and the purinergic 

P2X4 receptor are involved in these processes. Finally, we demonstrated that the isoenzymes 5α-

reductase type 1 and type 2 exert different effects in regulating Tourette syndrome-like symptoms, 

and specifically that 5α-reductase type 1 may be the more beneficial and safe target for inhibition 

over 5α-reductase type 2.  
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1. Clinical features of Tourette syndrome 

Sections of this chapter have been adapted from: 

Bortolato, M., Frau, R., Godar, S.C., Mosher, L.J., Paba, S., Marrosu, F., Devoto, P., The 

implication of neuroactive steroids in Tourette’s Syndrome Pathogenesis: a role for 5α-

reductase?  J Neuroendocrinol, 2013. 25(11): p. 1196-208. 

Godar, S.C., Mosher, L.J., Di Giovanni, G., Bortolato, M., Animal models of tic disorders: a 

translational perspective. J Neurosci Methods. 2014. 238: p. 54-69. 

Introduction 

Gilles de la Tourette syndrome, better known as Tourette syndrome (TS) or simply 

Tourette’s, was first described in 1825 by Jean-Marc Itard [1] and further defined by Georges 

Edouard Albert Brutus Gilles de la Tourette in 1885 [2, 3]. However, for almost the next century, 

TS was not viewed as a neuropsychiatric disorder but an issue of “weak self-control and lack of 

will-power” [4]. Opinions changed following reports of successful treatment with neuroleptics and 

further clinical descriptions published in the 1980’s that highlighted the complexity of TS beyond 

the physical manifestations and identified the high prevalence of comorbid disorders, such as 

ADHD and OCD [5-7]. The results of these clinical studies and others conducted over the 

following decades will be further discussed in the upcoming sections. 

Clinical characteristics 

Tourette syndrome (TS) is a male-predominant, neurodevelopmental disorder defined by 

repetitive, semi-involuntary motor (multiple) and phonic (at least one) tics for more than one year 

(DSM) that effects approximately 0.5-1% of the pediatric population [8]. Motor tics consist of 

sudden, involuntary, nonrhythmic movements that most commonly occur in the head, neck, face 

and mouth muscles but can also be observed in the truck and limbs [9]. Phonic tics are the result 
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of rapid air movements through the upper respiratory tract, which can produce grunts, throat 

clearing or other nonsense phonic sounds, as well as, complete words or phrases [10]. These tics 

can be further classified as simple tics, involving one muscle group, or complex tics, which involve 

multiple muscle groups. Simple tics are the first to manifest in the disorder and include eye blinks, 

eye rolling, head jerking, and grunting or throat clearing. Alternatively, complex tics are more 

coordinated and akin to goal-directed movements [9].  For example, echophenomena (vocal or 

motor reverberations) and coprophenomena (obscene or offensive vocal or motor behaviors) are 

both examples of complex tics [11, 12]. As demonstrated by the examples given above, tics are 

indistinguishable from purposeful movements; however, they are set-apart due to their repetitive 

nature and misplacement in context and time. 

TS symptoms generally manifest in patients around the age of 6-7 years, but diagnostic criteria 

require that symptoms become apparent before the age of 18. The first tics are generally simple 

motor tics followed by the manifestation of phonic tics [13]. Symptom severity can range from 

very mild cases that do not require pharmaceutical intervention and can be handled with behavioral 

therapy alone, to more severe cases that dramatically reduce the well-being and future outcomes 

for the patient.  For most patients, the complexity and frequency of tic manifestations generally 

increase up to puberty (11-12 years of age), followed by a gradual remission as the patient ages 

[14]. However, 30-40% of TS patients retain their symptoms through adulthood and some studies 

suggest that those patients that claim a remission of symptoms continue to display tics without 

being aware of these behaviors [15, 16]. Tics not only fluctuate temporally but also due to 

environmental contexts. In particular, high mental and physical stress have been reported to 

increase tic severity and frequency [17].  
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Comorbid disorders are present in the vast majority of TS patients. The most common of these 

include OCD and ADHD, which further negatively impact the quality of life of these patients [13, 

18, 19]. Despite the challenges posed by the large number of comorbid disorders, the core 

behavioral features of TS include tics, impulsivity, aggressive behaviors (self-injurious behaviors 

and coprophenomena) and compulsive/repetitive behaviors [13, 20-22]. 

Premonitory sensory phenomena 

Patients have reported that tics are preceded by a premonitory urge, an intense feeling of 

generalized or focal discomfort that is relieved by the execution of the tic [23]. This is a hallmark 

characteristic of TS, and the discomfort and tension associated with the premonitory urge has been 

described by some to be the most problematic aspect of TS [24]. While most TS patients can 

suppress the execution of tics for short amounts of time, the buildup of tension associated with the 

premonitory urge results in an increased sense of distress and a greater urge to tic [23]. Often these 

urges manifest either as localized tension or itch that is generally limited to the area the tic will 

manifest or as a generalized feeling of unease. Despite being a core feature of TS, and according 

to patients, the very root of the disorder, premonitory urges are not a diagnostic criteria for TS 

[25].  

 It has been reported that premonitory urges increase in intensity up to the execution of the 

tic but quickly diminish, within 10 seconds, following tic execution [23, 26, 27]. Due to the 

discomfort associated with the premonitory urge, these phenomena are reported to be the main 

negative reinforcement of tics [28, 29]. Therefore, uncoupling of tics and premonitory urges may 

provide a useful therapeutic avenue. Tic suppression has been shown to lead to an increase in the 

intensity of the urge but decreases the correlation between tics and the intensity of the urge [26]. 

However, other conflicting studies have indicated no relationship between the intensity of the urge 
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and tic suppression [30, 31]. Interestingly, an increased rate of premonitory urges in patients with 

co-morbid OCD has been reported [32-34] and a positive correlation between the rate of 

premonitory urges and obsessive-compulsive symptoms has been described as well [35]. Anxiety 

has also been shown to correlate positively with premonitory urge reports [36]. Furthermore, the 

premonitory urges have a negative effect on daily life as demonstrated by a negative correlation 

between premonitory urges and the Global Assessment of Functioning (GAF) scale [35]. These 

findings further suggest that the premonitory urge is a central component of TS and therapies 

targeting this phenomena could assist in alleviating the problems associated with common co-

morbid disorders and enhance the quality of life for these patients. Further discussion on 

therapeutic options will be addressed in later sections.  

In addition to the premonitory urge, patients also exhibit other sensory alterations. The best 

defined of these is the reported deficit in sensorimotor gating as measured by prepulse inhibition 

of the startle reflex [37, 38]. This paradigm measures the capability of the brain to process the 

salience of external stimuli through measuring the natural ability of a prepulse to attenuate the 

startle reflex elicited from a harsh stimuli, such as sound. The deficit observed in TS patients points 

to alterations in informational processing, which may also contribute to the premonitory urge and 

resulting tic [39]; however, there have been no correlations identified between premonitory urges 

or tics and PPI deficits.  

 Other sensory phenomena are also altered in TS patients. Belluscio et al [40] reported that 

80% of TS patients described enhanced sensitivity to external stimuli (such as sound, light, smell 

and touch) versus 35% of control subjects which the authors determined was due to altered central 

processing since the detection threshold for olfactory and tactile stimuli was similar in TS patients 

and controls. TS patients also seem to have greater interoceptive awareness. Eddy et al. [41] 
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described that TS patients report a heighted awareness of their internal state in comparison to 

controls, which has also been correlated to the number of tics [42]. Furthermore, those patients 

with greater internal awareness perceive more urges for the same number of tics [43]. Given the 

description of these premonitory urges as feelings of discomfort, it follows that TS patients score 

higher on the University of Sao Paulo Sensory Phenomena Scale (USP-SPS), a test that assesses 

abnormal sensory experiences, and that these scores correlated positively with the intensity of the 

premonitory urges reported by the patients [44].   

Neurobiology 

The pathological basis of TS remains partially unclear due to the high rate of comorbid 

disorders, the effects of treatments, and small clinical sample sizes. However, strong evidence 

implicates functional and/or morphological impairments in cortico-striato-thalamo-cortical 

(CSTC) pathways [45], which connect subcortical structures to the frontal cortex. Of these circuits, 

three are heavily implicated in the pathology of TS. These include the circuits from the premotor 

cortex to the putamen (the habitual behavioral circuit), the ventral medial prefrontal cortex to the 

caudate nucleus (the goal directed circuit), and inputs to the ventral striatum from the 

hippocampus, amygdala, prefrontal cortex and anterior cingulate gyrus (the emotion-related limbic 

circuit). These circuits are implicated by the behavioral data presented above and morphological 

data. For example, adults and children with tics have a significant, although slight, decrease in 

caudate and putamen volume [46]. In further support, it has been demonstrated in post mortem 

tissue that there is a deficit in interneurons within these same regions; these interneurons include 

the cholinergic tonically active neurons and the GABAergic interneurons expressing either 

parvalbumin or neuronal nitric oxide synthase (nNOS) [47-49]. Functional data also points toward 
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dysfunction in these circuits. Specifically, studies in this field have found activity in the prefrontal 

cortex and caudate during tic suppression [50].  

Further studies on the neurobiology of TS are limited by the nature of TS: 1) small sample 

sizes; 2) the numerous comorbid disorders, which make it difficult to parse out structures 

contributing to TS; 3) the patient’s treatment for TS or comorbid disorders, which can further 

confound clinical results; 4) subject movement during tic emission, which further hinders 

functional imaging. It is also feasible that discrepancies between studies may arise from a 

heterogeneous etiology. In other words, different neurobiological defects that ultimately lead to 

general imbalances of the inhibitory and excitatory inputs within the CSTC and produce multiple 

disorders that all physically manifest as TS. Regardless of the possible heterogeneous 

neurobiological underpinnings, TS, as a whole, is the result of insufficient inhibitory tone from the 

striatal interneurons, as suggested by the work of Dr. Vaccarinno [47-49] and/or excess striatal 

activation from the cortex or other brain regions [51, 52]. The imbalance between inhibitory and 

excitatory inputs may lead to disproportionate striatal stimulation and the activation of ectopic 

foci, as a result of inadequacy of center-surround interactions within this brain region [53]. The 

formation of ectopic foci then manifests as the premonitory urge and subsequent tic.  

Dopamine in TS 

Several neurotransmitters have been implicated in TS, including dopamine, serotonin, 

norepinephrine, acetylcholine, glutamate and GABA [45]. However, the most studied of these in 

relation to TS and the primary neurotransmitter studied in this dissertation has been the 

involvement of dopaminergic dysfunctions. Dopamine is directly involved in the CSTC circuits 

described above. The frontal cortex and ventral striatum receive dopaminergic inputs from the 

ventral tegmental area. In addition, outputs from the substantia nigra par compacta connect within 
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the striatum to glutamatergic cortical projections and on direct and indirect GABAergic striatal 

projections. The direct and indirect projections are populated by excitatory dopamine D1 receptors, 

and inhibitory dopamine D2 receptors respectively. Dysfunctions within the dopaminergic system 

that contribute to TS have been posited to involve presynaptic, intrasynaptic, and postsynaptic 

alterations [54]. For example, developmental hypofunction of dopaminergic neurons would result 

in hyperinnervation and an increased number of presynaptic dopamine transporters. Postsynaptic 

alterations, on the other hand, may include an increased number of striatal and cortical dopamine 

receptors. In addition, alterations in the phasic release of dopamine could lead to rapid variations 

in synaptic dopamine and contribute to the ectopic foci activation and induce tics.  

 These hypotheses and the overall contribution of dopamine to TS pathogenesis are supported 

by several key clinical observations. First, D1-like and D2-like receptor family antagonists are 

commonly used in the treatment of TS [55-58]. In addition, high doses of dopamine-elevating 

psychostimulants have been demonstrated to increase tics in both patients [59-61] and animal 

models [62-65]. The dysregulation in the dopaminergic system may be reflected in neuroimaging 

and post-mortem studies that have shown excessive activity and/or innervation of the cortex and 

basal ganglia of TS patients [66-70]. In addition, perhaps some of the strongest evidence for the 

prominent role of dopamine comes from positron emission tomography (PET) studies. While there 

are some discrepancies, these studies indicate an increased tonic striatal dopamine level in adult 

TS patients [71, 72]. Importantly, this elevation in dopamine has been seen in patients with TS, 

but not those with OCD without comorbid TS [59], indicating a specific role of dopamine in TS 

compared to a common comorbid disorder.  In addition, these PET studies suggest that tics may 

be underpinned by rapid variations in synaptic DA content, leading to a prominent activation of 

D1 receptors in the striatum. Since the D1 receptors regulate the direct pathway projections to the 
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globus pallidus and substantia nigra pars reticulate, this may be directly related to the stimulation 

of ectopic foci.  TS patients display alterations in several key behavioral domains regarding the 

orchestration of critical behavioral functions, such as habit formation, incentive motivation, 

configuration of salience maps and sensorimotor gating, indicating a key role for dopamine in the 

ventral striatum as well [37, 38, 73-76].  

Etiology of TS 

 Genetic contributions. Despite several genome-wide association studies aimed at 

identifying candidate genes for TS, no single genetic mutation has been identified to be the causal 

factor of the disorder. Nevertheless, twin and family studies have revealed that TS is a highly 

heritable disorder with a population-based heritability of approximately 0.77, where 1 is equivalent 

to 100% heritability [77-79]. The findings of the genome-wide association studies and rare, 

familial forms of TS have identified several possible risk genes. Some of the most noteworthy 

genes identified include SLITRK1, which is involved in axonal targeting and neuronal 

differentiations [80-84], and HDC, the gene which converts histadine to histamine [85, 86]. The 

genes that have been identified are commonly involved in either dopamine regulation, for example 

histamine regulates striatal dopamine, or in the development of CSTC neuronal pathways. 

However, these mutations are not widespread throughout the clinical population and animal studies 

aimed at determining the contribution of these genetic mutations capture aspects of TS but not the 

complete disorder. Further discussion of these mutations and the preclinical research aimed at 

determining the specific contributions of these genes will be discussed in the following chapters. 

Still, these findings indicate that TS is highly polygenic and likely the result of gene x environment 

x sex interactions.  
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 Environmental factors. Several environmental factors have been identified to contribute 

to TS pathogenesis.  In the pre- and perinatal stages studies have reported that maternal 

contributions, including psychosocial stress, severe nausea and vomiting in the first trimester, 

smoking and consumption of medications, have been associated with a higher occurrence of TS 

[87-91]. Exposure of the child to infections, in particular Group A β-hemolytic streptococcus, has 

also been identified as a possible risk factor for TS [92-96].  These studies have further led to a 

classification of a new subgroup of TS patients, PANDAS (Pediatric Autoimmune 

Neuropsychiatric Disorders Associated with Streptococcal infection) following the finding of 

antibodies for Group A β-hemolytic streptococci in a subgroup of children with acute-onset tic 

disorders [96-100]. However, further research has challenged this classification and so PANDAS 

is not currently recognized as a distinct entity be either the DSM or the ICD.  

When combined with a genetic predisposition, such as those described above, pre- and 

perinatal insults may trigger the priming of microglia. Further environmental hits could activate 

these microglia, influence synaptic plasticity at critical points in development (such as the age of 

TS symptom onset), and enhance peripheral immune and inflammatory responses [101, 102]. For 

example, the influence of stress on tic fluctuations becomes three-times stronger with the co-

occurrence of an infection [93].  

 In addition to these highlighted risk factors, TS patients demonstrate dysregulated immune-

mediated mechanisms later in life. Post-mortem striatal transcriptome analyses has demonstrated 

that transcripts of genes involved in the activity of microglia are upregulated [49]. Furthermore, in 

vivo studies in children with TS have revealed activated microglia in the caudate nucleus [103]. 

Within the periphery, studies have revealed upregulated genes that encode for proteins involved 

in pathogen recognition and cell-mediated innate and adaptive responses within the peripheral 
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lymphoid and myeloid immune cells of young TS patients [104]. A chronic hyperactive innate and 

adaptive immune response has also been demonstrated through clinical studies that have described 

dysgammaglobulinaemia, decreased numbers of regulatory T cells and increased antibody 

response to pathogens in TS patients [105-107]. While not the focus of this dissertation, further 

research on the role of inflammation in TS pathogenesis will be critical to understanding this 

disorder.  

Sex. Several key observations of TS patients have indicated a strong role for sex steroids, 

and specifically androgens in the pathogenesis of TS. This was first published in the late 1980s in 

articles describing alterations in the secretions of luteinizing hormone, the main regulator of 

gonadal androgen synthesis [108, 109]. Furthermore, clinical observations revealed that anabolic 

androgens exacerbated tics in TS patients [110]. In addition to these studies, other characteristics 

of this disorder point to a role for androgens. First, as mentioned earlier, there is a prominent sex 

difference in the presentation of this disorder. Males are more prone to being diagnosed with TS 

at a ratio of approximately 4:1 [111], which points toward a role of both sex specific steroids and 

sex dimorphic brain structures. In addition, the progression of this disorder further implicates a 

role for sex steroids. Symptoms often begin to manifest at the age of 6-7, which coincides with 

adrenarche, the stage in sexual maturation where the zona reticularis of the adrenal gland expands 

and begins to produce dihydroepiandrosterone (DHEA). Males with TS tend to display an increase 

in the frequency and severity of tics up to puberty and then often show a remittance of symptoms 

following puberty into adulthood, which further points to a key role in sex steroids and sex 

dimorphic brain maturation. However, females with TS do not display this remission of symptoms 

as young adults, but often continue to display severe tics as they age [112]. Finally, behavioral 
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characteristics of TS-affected children demonstrate that tic severity correlates with their preference 

for masculine play [113]. 

Current treatment options 

The appropriate treatment strategy for patients with TS should consider the severity of tics and 

the effect on patient’s daily functioning and quality of life. It is also critical to consider any 

comorbid disorders as these may be more problematic and disrupting than the core TS symptoms. 

In most cases the first course of action is to provide psychoeducation to parents, teachers and peers; 

this may be sufficient to aid patients with mild to moderate tics that are not harming social 

functioning.  Should further intervention be required the first line of treatment is currently 

considered to be behavioral interventions [114-117] which include habit reversal therapy (HRT), 

comprehensive behavioral intervention for tics (CBIT) and exposure and response prevention 

(ERP). HRT involves three components: 1) awareness training to identify the premonitory urge 

and tic onset 2) competing response training where the patient is instructed to do an action that is 

at odds with the tic movement and 3) social support to give the patient praise and reminders [118]. 

CBIT takes this therapy further by the addition of function-based interventions, relaxation training, 

psychoeducation, and rewards for treatment compliance [29]. While HRT and CBIT address one 

tic at a time, ERP focuses on all tics at once and has shown promising results in pilot studies. ERP 

instructs patients to actively suppress all tics during therapeutic sessions while recognizing and 

fully experiencing the urge to tic [119].  

The second line of treatment for TS patients are pharmacological interventions. These 

treatments are used only for patients that do not respond to behavioral therapy, do not have access 

to these resources, are not of an appropriate age, or in the cases where pharmacological treatment 

is the family’s or patient’s preference. The classes of pharmacological intervention fall into 3 broad 



12 
 

categories: dopamine receptor antagonists, vesicular monoamine transporter-2 (VMAT2) 

inhibitors, and non-dopaminergic agents. Dopaminergic blockade was one of the first 

demonstrated effective treatments [120-122]. The typical antipsychotics pimozide, haloperidol, 

and fluphenazine, and the atypical antipsychotics aripiprazole, risperidone, olanzapine, 

ziprasidone, and quetiapine have all been demonstrated to be effective at treating TS [123, 124]. 

However, only haloperidol, pimozide and aripiprazole have been approved by the FDA for this 

usage. In addition, the D1 antagonist, ecopipam, has shown promising results in initial trials [56] 

and the benzamides, tiapride and  sulpiride, are first-line agents for TS treatment in Europe [125].  

The next class of TS treatments are vesicular monoamine transporter-2 (VMAT2) inhibitors, which 

inhibit the transport of dopamine, norepinephrine, and serotonin from synaptic vesicles to the 

synapse via VMAT2. The VMAT2 inhibitors that are currently being studied for use in TS are 

benazine, deutetrabenazine, and valbenazine; these are all currently FDA approved to treat other 

disorders such as Huntington disease and tardive dyskinesia [124]. Finally, non-dopaminergic 

agents include the α-2 adrenergic receptor antagonists clonidine and guanfacine [126-128], and 

the GABAergic agents baclofen and topiramate [129, 130].  All of these therapies, however, have 

inconsistent efficacies, and often lead to serious side effects such as sedation, dizziness, weight 

gain/loss, and extrapyramidal symptoms that can reduce the quality of life and therapeutic 

compliance of TS patients [131, 132]. In part due to these challenges, alterative agents have been 

studied as well. These include local injections of botulinum toxin [133, 134], cannabinoids [135] 

and Chinese herbal medicines [136], which have shown promising evidence but further research 

on the mechanism of action and long-term safety is warranted on these therapeutic options.  

  



13 
 

2. Animal models 

Sections of this chapter have been adapted from: 

Godar, S.C., Mosher, L.J., Di Giovanni, G., Bortolato, M., Animal models of tic disorders: a 

translational perspective. J Neurosci Methods. 2014. 238: p. 54-69. 

Introduction 

Animal models provide a powerful tool to delve deeper into the biological substrates of 

neuropsychiatric disorders and to test hypotheses in a controlled experimental setting. In the case 

of neuropsychiatric disorders such as TS that exhibit a high degree of complexity, mammalian 

species, and, in particular, rodents, are often the model of choice given their acceptable degree of 

neurobiological similarities with humans and cost-effectiveness. This review will introduce 

behaviors of relevance to TS and discuss the benefits and limitations of studying TS in rodent 

models.  

Animal models of tic disorders: validity criteria and endophenotypes 

The validation of animal models is based on three major criteria [137]: 

1. Face validity: The degree of similarity between the behavioral performance of the 

animal models and the signs and symptoms in tic disorders.  

2. Construct validity: The evaluation of the congruence between the etiological and 

pathophysiological processes in tic disorders and the neurobiological basis of the 

behavioral manifestations in the animal models.  

3. Predictive validity: The responsiveness of an animal model to treatments validated for 

tic disorders.  

It is important to analyze all three criteria of validity when drawing conclusions from animal 

models; however, this can be extremely challenging given the different behavioral repertoire and 
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cognitive abilities between rodents and humans. For instance, in the clinical population, tics are 

akin to purposeful movements that manifest as repetitive or out of context behaviors. However, 

these behaviors may be quite different in rodents. For example, over grooming has often been 

compared to tic-like behaviors since it is a purposeful movement that has manifested into a highly 

repetitive behavior; however, this behavior can result from multiple heterogenous alterations in 

the brain that may or may not be related to TS. Therefore, it is important not to over 

anthropomorphize animal behaviors and to apply the other criteria to the models as well. This is 

highlighted in a report by Swerdlow and Sutherland [138], which describes several instances where 

animal models displayed spontaneous motor jerks, akin to tic-like behaviors, but the underlying 

neurobiological causes were not related to TS. In addition, tic-like behaviors can be induced 

pharmacologically; however, Proietti Onori et al [139] has demonstrated that these behaviors vary 

across different murine strains, indicating a need for further caution when drawing conclusions 

from these studies and when choosing appropriate models. These examples demonstrate that while 

face validity is an important consideration when evaluating an animal model, it by no means can 

stand alone. Furthermore, premonitory urges and other internal experiences in animals are 

impossible to ascertain, making face validity even more challenging in the context of TS. 

Predictive validity can be an effective complement to face validity; however, a percentage of TS 

patients do not respond to any available treatment so excessive reliance on this parameter should 

be avoided as well.  

 Construct validity is a challenging criterion to verify in an animal model of tic disorders 

due to the limited knowledge of the pathophysiological bases of these conditions. This is 

compounded by the diagnostic classification of tic disorders, which are based solely on 

symptomatic parameters, not quantitative, measurable indices. Tic-disorders are further classified 



15 
 

into subtypes, of which TS is only one, by the severity and pervasiveness of tics, as well as the 

ontogeny of symptoms, but not on their neurobiological bases [25]. This system is likely to result 

in potentially heterogeneous conditions that share similar symptomatic aspects but differ in 

pathophysiological mechanisms being mixed in the same category. This is an issue for several 

reasons. One, these patients are likely to respond optimally to different therapies. Two, capturing 

the disorders with an appropriate animal model is further compounded when multiple conditions 

may be clinically categorized as one.  

 To overcome these issues, researchers have begun to dissect complex neuropsychiatric 

conditions down to more elementary “building blocks”. Rather than attempt to capture the entire 

disorder in a single animal model, researchers have focused on intermediate phenotypes [140], 

defined as measurable indices that reflect a more elementary set of neuroanatomic, functional or 

psychological deficits. One such group of intermediate phenotypes are known as endophenotypes, 

which are heritable features corresponding to elements of vulnerability to a given disorder [141].  

Endophenotypes encompass behavioral, neuroanatomical, biochemical, neurophysiological, and 

cognitive traits related to specific genetic factors [142-144]. While endophenotypes are not 

inherently pathological, they may facilitate the development of the disorder in the presence of other 

critical abnormalities or risk factors. As such, the study of endophenotypes and other such 

intermediate phenotypes can greatly enhance and further the field of TS. 

Neurobehavioral phenotypes relevant to tic disorders 

Stereotyped behaviors. Stereotyped behaviors are considered motor and behavioral 

sequences that are repeated purposelessly [145]. Stereotypies are considered like tics in that they 

are repetitive, habit-forming motor patterns, which typically mimic purposeful behaviors. 

Examples of these behaviors include oro-facial and head-bobbing stereotypies. These can be 
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induced by several pharmacological agents that activate neurotransmitter systems of relevance to 

TS, including agonists for dopamine. More specifically, dopamine agonists injected directly into 

the striatum induce stereotyped behaviors in rodents, with a mechanism that involves both D1-like 

and D2-like receptors, which captures construct validity, as well as, face validity. Furthermore, 

predicative validity is confirmed by the ability of antipsychotic agents to fully suppress these 

manifestations [146-148].  

However, it should be noted that stereotyped behaviors likely encompass a broader set of 

phenomena than tics in human. The DSM-V has defined a separation between tics and stereotypies 

in humans [149]. Stereotypies are defined as more severe and pervasive than tics, and are typically 

associated with intellectual disabilities. In addition, stereotypies are characterized by greater 

rhythmicity, fewer temporal fluctuations, and no relation to premonitory antecedents. Therefore, 

while stereotypies may be related to tics they cannot be used alone to study TS in animal models. 

Other behaviors that capture tic-like movements. To narrow the focus to movements 

that more closely replicate TS symptoms other tic-like behaviors can also be observed. These 

include jerks of the head, limbs or torso as is observed in several pharmacological models of TS 

and one genetic model (to be discussed below). However, another homonym of tics in patients is 

found in the eye blink response of preclinical models. Tics that include exaggerated eye blinks or 

other tics of the eyes (such as eye rolling) are usually the first and most common tic observed in 

TS patients [150, 151]. Furthermore, it has been documented that TS patients display increased 

eye blink rates over age matched controls [152-154]. These findings are likely a reflection of the 

hyperdopaminergic state underlying TS, as spontaneous eye blinks are posited to reflect central 

dopaminergic activity [155, 156]. In preclinical animal models it has been found that dopamine 

agonists, and specifically D1 receptor agonists, increase eye blink rates in rats and monkeys. These 
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responses are sensitive to typical TS medications indicating that high face and predictive validity 

for this model [157-161]. There is also demonstrated construct validity because the basal ganglia 

structures regulate the eye blink pathways in the brain, specifically the spinal trigeminal complex 

[156, 162-169].  

Prepulse inhibition (PPI) of the startle reflex. PPI is the reduction of the startle reflex elicited 

by a strong sensory stimulus that occurs when the stimulus is preceded by a weaker signal [170-

172].  This parameter is widely considered to be a highly dependable measure of sensorimotor 

gating, the cognitive function that enables the formation of salience maps by filtering out non-

relevant information. Deficits in PPI indicate that these cognitive functions are impaired. Several 

studies have documented PPI deficits in TS patients [37, 38, 173, 174] and in OCD [175, 176] but 

have not found correlations between the severity of tics and obsessive-compulsive manifestations 

and PPI impairments [38, 173, 176]. Despite this limitation, PPI deficits are still considered a key 

intermediate phenotype for TS, although it should be noted that PPI deficits are found in several 

other neuropsychiatric disorders. PPI and sensorimotor gating are posited to reflect sensory 

alterations, which may underpin the enhanced sensory feedback and somatic sensitivity in TS [17, 

24, 177, 178]. PPI is also a highly translational paradigm of study and captures all three aspects of 

animal model validation. Face and construct validity are captured through the very nature of 

sensorimotor gating. PPI is highly conserved though out the animal kingdom in both behavioral 

presentation and neurobiological mechanisms, and can be studied in species from fish to humans 

[171, 179-182]. In relation to construct validity, sensorimotor gating processes are largely 

contributed to by dopamine systems in the CSTC, which highly overlap with brain regions that are 

hypothesized to be involved in TS pathophysiology. Zeberdast et al [174] demonstrated that PPI 

deficits in TS patients are associated with altered caudate activation patterns. In support of high 
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face and construct validity, PPI deficits can be induced by pharmacological agents that stimulate 

dopamine receptors, as well as, by lesions in the CSTC loops in rodents [183-185]. Furthermore, 

these deficits in rodents can be ablated by pretreatment with TS medications [183]. However, it 

should also be noted that the efficacy of antipsychotic agents in reversing PPI alterations in clinical 

patients has not be validated [186-190]. 

Relevant animal models of tic disorders 

 There have been several approaches to studying TS in animal models including models 

based on clinical observations, which include genetic mutations and observed neurobiology; 

models of environmental risk factors, such as early infections; and models addressing the abnormal 

dopamine system, which are approached through both genetic and pharmacological methods. 

While none of these models capture the complete disorder they provide important insights into the 

syndrome. A few of these models that are of relevance to the dissertation will be discussed below. 

 Animal models of based on genetic screenings. As highlighted in the introduction, 

genetic mutations have been identified in subpopulations of TS patients; however, these mutations 

are not widespread and tend to only account for the predisposition found in certain families. Those 

with the most extensive pairing of preclinical research include the contactin-associated protein-

like 2 (CNTNAP2), the SLIT and NTRK-like 1 (SLITRK1), and the gene encoding for L-Histidine 

decarboxylase (HDC).  

Rare, familial forms of TS highlight the importance of genetic influences in TS and have 

led to the identification of several genes of interest to TS. For instance, CNTNAP2 has been 

identified in one such family [191] and plays a key role in the cell-adhesion pathways and cortical 

development [192-194]. While the CNTNAP2 mutant mice did not display high face validity, they 

did display aspects of construct and predictive validity. Most of the behaviors more closely 
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resembled that of autism mouse models than TS models; however, they did exhibit repetitive 

behaviors and excessive grooming behaviors that were reduced by the antipsychotic risperidone 

and haloperidol respectively [195, 196]. At a neurobiological and neurochemical level, these mice 

displayed abnormalities in neuronal migration, reduced number of interneurons (including 

GABAergic interneurons) and abnormal neuronal network activity, in addition to increased levels 

of dopamine released into the striatum and altered inhibitory signaling [195, 196] which are 

reminiscent of some clinical and postmortem studies of TS patients discussed in chapter 1 [47-49, 

59, 71, 72].  

 Another gene family identified through familial studies is the SLIT and NTRK-like 

(SLITRK) family which consists of 6 genes that encode leucine-rich transmembrane proteins that 

are involved in axonal targeting and neuronal differentiations. SLITRK1 has been identified in 

several studies [80-84] as a candidate gene associated with TS, although there have been a few 

contrasting reports [197-200]. This gene has also been implicated in OCD and trichotillomania 

[80, 201, 202], two common comorbid disorders. In relation to the neuropathology of TS, some 

studies have shown that SLITRK1 is associated with CSTC circuits [203]; although the function 

is still unclear, there is evidence that this molecule regulates neurite growth [204]. However, 

despite promising clinical data, mouse models of SLITRK1 mutations have not been promising. 

The overexpression of SLITRK1 induces neuronal outgrowth, but alterations in behavior have not 

been reported [205]. Conversely, SLITRK1 knockout (KO) mice exhibit high norepinephrine 

levels and anxiety-like behaviors that are subject to reversal by clonidine, but these mice do not 

exhibit tic-like or stereotyped behaviors [206]. Interestingly, mice with null-allele mutations for 

SLITRK5 display excessive autogrooming and high anxiety-like behaviors. The altered 

neurobiology reveals that these behaviors are underpinned by over activation of the orbitofrontal 
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cortex and abnormal morphology of striatal cells [207]. These studies indicate that the SLITRK 

family is involved in the development of behavioral phenotypes related to TS and other 

neuropsychiatric disorders.  

 A mutation in the gene for L-Histidine decarboxylase (HDC), which encodes for the 

enzyme that facilitates the conversion of histidine into histamine [208] has been found in a familial 

type of TS [85, 86]. Interestingly, histamine can modulate striatal dopaminergic transmission 

[209], which makes it a prime candidate in TS pathogenesis. Studies by Dr. Chris Pittenger on 

Hdc-deficient mice have also revealed some interesting findings in relation to the role of HDC in 

TS pathology. While these mice do not exhibit spontaneous tic-like behaviors or stereotypies, they 

display a marked increase in amphetamine-induced stereotypies and fear-induced repetitive 

grooming [64, 210]. Haloperidol treatment and intracerebral histamine infusion were both 

sufficient to ablate the amphetamine-induced stereotypies [64]. Follow-up studies in TS 

individuals carrying the Hdc W317X mutation revealed that these patients exhibited PPI deficits 

like other TS patients and this is mirrored in the HDC KO mice [64]. Furthermore, these same 

studies revealed elevated substantia nigra D2/D3 binding in both Hdc W317X TS patients and 

HDC-KO mice. In addition, it has been demonstrated that this mutation leads to an increase in 

dopamine in the striatum [211] and dysregulated intracellular dopamine signaling [212]. Another 

study by this group demonstrated that silencing histaminergic neurons in the tuberomammillary 

nucleus of the hypothalamus induced activation of the dorsal striatum neurons and resulted in 

pathological grooming [213]. The critical histamine receptor in these processes has been identified 

to be the H3 receptor, which has demonstrated to be essential for dopamine receptor-mediated 

signaling via extracellular signal-regulated kinase 1/2 (ERK1/2) [214-216]. In addition, H3 

receptor KO mice displayed PPI deficits whereas H1 receptor KO and HDC KO mice displayed 
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normal PPI levels [64, 217]. However, HDC KO mice do not display brain morphological 

alterations reminiscent of TS such as the number of striatal interneurons [218]. 

Animal models of observed neurobiology in TS. Several animal models of TS have been 

generated to reproduce brain morphological changes in TS. The most prominent of these address 

the observed deficit in GABAergic and cholinergic interneurons within the basal ganglia [47-49]. 

This has been undertaken through several approaches that include pharmacologically inactivating 

GABA receptors with picrotoxin or bicuculine, as well as, ablating the interneurons surgically.  

Early studies focusing on disrupting GABAergic transmission in the basal ganglia found 

that administering GABAA antagonists directly to the striatum in rats resulted in abnormal 

movements [219, 220]. This was also found in monkeys when GABAA antagonists were injected 

into the putamen [221-223]. The abnormal movements observed in these experiments were 

reminiscent of TS in appearance and importantly could be ablated by administration of haloperidol 

[224]. Interestingly, localized injections into different functional regions of the striatum and globus 

pallidus externa resulted in behaviors similar to common co-morbid disorder of TS, including 

compulsivity, hyperactivity, and attention deficit symptoms [220, 225, 226].  

Similar results have been achieved through targeted ablation of interneurons in mice. Tic-

like behaviors were not observed at baseline; however, the mice did display TS-like tic behaviors 

if challenged with acute stress or d-amphetamine, as well as behaviors common of co-morbid 

disorders depending on the region and interneuron population targeted. For instance, ablation of 

cholinergic interneurons in the dorsolateral striatum produced tic-like stereotypies after acute 

stress or administration of d-amphetamine [227] but did not produce alterations in sensorimotor 

gating. Alternatively targeting fast-spiking interneurons within the same region produced stress-

triggered stereotyped grooming but no increased stereotyped behaviors following d-amphetamine 
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administration; however, the mice displayed higher levels of anxiety compared to controls [228]. 

Reminiscent of clinical observations, further studies reported that conjoint depletion of both 

cholinergic and fast-spiking interneurons resulted in spontaneous stereotyped behaviors and 

deficits in social interaction that were observed in male, but not female, mice [229].      

Animal models of environmental insults. As discussed in chapter 1, environmental risk 

factors for TS include early stress and/or adverse events in the prenatal and perinatal stages [87-

90]. Preclinical studies that focus on obstetric complications and maternal smoking have been 

conducted; however, these studies have largely focused on the link to other mental disorders, given 

that these insults have been linked to multiple neuropsychiatric disorders later in life [230, 231]. It 

should be pointed out that these disorders share commonalities with TS including alterations in 

dopaminergic signaling, stereotyped behaviors and PPI deficits, so further examination of these 

models may reveal further insights into TS as well [230].  For instance treatment of pregnant 

female mice with IL-2 during mid-gestation resulted in behavioral alterations in the offspring that 

included increased self-grooming and rearing [232]; conversely IL-6 treatment resulted in 

decreased PPI in the offspring [233].   

Models of early neuroinflammation have been more revealing in the context of TS. In 

relation to infection with group A streptococci infection, mice immunized with these bacteria were 

found to exhibit TS-related manifestations, which included increased grooming and rearing [234-

236]. The mice also displayed anti-brain antibodies in their serum, as well as increased IgG 

concentrations in several brain regions, such as the striatum, cerebellum, and hippocampus [234, 

235]. Interestingly, experiments where the investigators injected serum from TS patients into the 

striatum of rats resulted in the manifestation of motor and oral stereotypies, episodic vocalizations 

and increased genital grooming [237-239]. The rats also exhibited increased levels of dopamine 
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and reduced DAT expression [240]. Taken together these animal models support a contribution of 

environmental insults and neuroinflammatory events in the pathogenesis of TS. Nonetheless, 

further studies are warranted to determine the exact nature of these insults in the pathogenesis of 

TS versus other mental disorders.  

Models of dopamine hyperactivity. Investigators have employed multiple means of 

inducing TS-like symptoms in animal models through manipulation of the dopamine system. 

These include genetic manipulations of dopamine receptors and pharmacological means.  

A few genetic animal models have been created to focus on the role of excessive dopamine 

or hyperactive dopamine signaling in the CSTC circuits. Of these the most prominent are the 

dopamine transporter (DAT) KO and knockdown mutant mice and the D1CT-7 mouse. The main 

function of DAT is to facilitate the reuptake of dopamine into the presynaptic terminal. Therefore, 

a reduction in DAT activity would result in an increase in synaptic levels in the striatum and so 

studies have been undertaken to determine if there exists a relationship between variants of the 

gene encoding DAT, DAT1, and TS. While not conclusive, there have also been studies implicating 

DAT1 as a potential risk factor for TS susceptibility [241-244]. DAT KO mice display 

perseverative behaviors, hyperlocomotion, attentional alterations, and PPI deficits [245-252] 

Furthermore, the PPI deficits and perseverative patterns observed in these mice are ablated by 

dopamine receptor antagonists [249]. Notably, DAT-deficient mice display lower surface 

expression and binding of D1 receptors [253, 254].  

  The D1CT-7 mouse line was created to investigate the contribution of D1 containing 

neurons to psychiatric disorders. It was generated via the attachment of the cholera toxin 

intracellular enzymatic subunit A1 to the human dopamine D1 receptor promoter [255]. This 

construct resulted in the chronic potentiation of the activity of a subset of D1-containing neurons 
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located in layer II of the piriform cortex, layers II and III of the somatosensory cortex and 

intercalated nucleus of the amygdala [255]. Despite not harboring this transgene in the D1-

harboring neurons of the striatum, as other data suggests is a critical region for TS pathology 

(however, see the discussion on HDC KO mice, as an example of mutations outside the basal 

ganglia inducing TS-like behaviors), D1CT-7 mice exhibit a number of TS-related phenomena. 

This mutant line is one of the few to exhibit spontaneous tic-like manifestations, consisting of 

sudden axial jerks, from the third week of postnatal life, which roughly coincides with the age of 

onset of TS in humans. These behaviors are attenuated by several TS treatments, including 

antipsychotic drugs and clonidine [256](Nordstrom and Burton, 2002). Furthermore, D1CT-7 

mice exhibit sexual dimorphism in that males display tic-like behaviors of greater severity and 

complexity [256](Nordstrom and Burton, 2002). Other behavioral alterations include 

hyperlocomotion, leaping and other psychomotor abnormalities, and perseverative responses (such 

as overgrooming), which have been likened to compulsive manifestation of OCD. However, 

outside of and prior to the work presented in this dissertation the construct validity of the D1CT-7 

mouse has been questioned, despite the high face and predictive validity observed. This is due in 

part to the artificial nature of the line and the anatomical localization of their transgene [138]. 

Clinical data suggests cortical hypoactivation in TS, which conflicts with the implications from 

this animal model. Pyramidal cells in layer II and III are the primary source of intracortical 

horizontal projections [257] and receive abundant input from dopaminergic neurons [258, 259], 

which enhance excitatory post-synaptic currents through D1 receptor activation [260] and suggests 

that tic-like manifestations may result from corticostriatal hyperactivity. In addition, the role of the 

intercalated nucleus of the amygdala in TS is unknown. However, the D1 potentiation in this region 

may underpin the OCD-like manifestations in D1CT-7 mice [261, 262]. Further research into this 
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model is needed to determine the true validity with respect to TS and will be discussed in further 

length in the experiments presented in later chapters.  

Pharmacological models of dopamine hyperactivity. A multitude of studies have been 

undertaken using dopamine receptor agonists and antagonists to replicate certain phenotypes of 

TS. Both indirect (i.e., d-amphetamine) or direct (apomorphine) dopamine receptor agonists have 

been shown to induce stereotypies and PPI deficits [183, 249, 263-266]. Further research has also 

demonstrated that the contribution of D1-like and D2-like receptor agonists to PPI disruptions 

varies depending on the species and strain of the experimental animals [267]; however, for most 

cases these phenotypes are contributed to by both receptor families. The mechanism by which 

these compounds elicit these TS-like behaviors is in part the result of the disequilibrium of 

activation in the striosomes (which display abundant D1 receptors on striatonigral neurons of the 

direct pathway) with respect to the matrix (which features high levels of D2 receptors on the 

striatopallial neurons of the indirect pathway) [63, 268-271]. In contrast, the PPI deficits induced 

by dopaminergic agonists have been demonstrated to reflect the activation D1 and D2 receptors in 

the nucleus accumbens [272-274]. These behavioral alterations are highly sensitive to 

antipsychotic agents, signifying high predictive validity [56, 146, 183]. 

The purpose of chapters 3 and 4. 

 There are several large gaps in the knowledge concerning TS and other tic disorders. For 

instance, the contribution of different dopamine receptors is largely unknown. It has largely been 

assumed that this disorder is primarily due to abnormalities concerning the D2 receptors since D2 

antagonists are the first line of pharmacological therapy prescribed to patients. However, there is 

repeated evidence that these therapies are not always efficacious and at the most effective doses 

they result in significant sedation or risk of extrapyramidal side effects. Initial clinical studies have 
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been conducted to treat TS patients with D1 antagonists as well, but these are still in preliminary 

trials and only one study has been published [56]. In addition, the approved treatments rarely 

address stress-induced fluctuations in symptom severity, indicating a need for further research on 

the underlying mechanisms of these symptoms. As suggested by the genetic studies and brain 

imaging results discussed in chapter 1, this disorder may be highly heterogeneous. As such, it will 

be important to uncover other receptors and therapeutic targets to give physicians more options in 

treating TS and to treat tic fluctuations due to stressful life events. Therefore, we have undertaken 

experiments to study the contribution of D1 receptors to TS-related endophenotypes and the 

induction of these endophenotypes by stress to expand the field of animal models with which to 

study novel therapeutics related to D1 receptors and stress. 

 To address these experiments, we have chosen two complementary experimental models. 

As discussed above, there is not a single animal model that completely captures all aspects of TS; 

therefore, we have chosen to address the problem with multiple animal models. The first model is 

the D1CT-7 mouse model. We chose this model because it is the only animal model to 

spontaneously display tic-like behaviors without further manipulations. Despite the questions 

regarding the validity of this model, there are several important aspects of TS that can be addressed 

using this model. For starters, it has not been demonstrated that they display PPI deficits, which 

calls into question aspects of the validity of this model. Furthermore, the response of these mice 

to stress, compared to wildtype littermates has not been determined. Since TS patients exhibit a 

heightened sensitivity to stress this is potentially an important aspect to study in animal models as 

well. We will present in the next chapter our findings that these mice exhibit stress-exacerbated 

phenotypes of TS, including an increase in tic-like behaviors and PPI deficits. To better support 

these findings and to overcome the challenges and weaknesses posed by the D1CT-7 model we 
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also addressed these issues in an animal model of TS that relies on observing tic-like behaviors in 

a wildtype mouse, namely eye blinks. As discussed above eye blink tics are one of the most 

common tics observed in TS patients and both clinical and preclinical studies have indicated that 

eye blink responses are heavily regulated by dopamine. Therefore, we measured eye blink 

responses to specific D1 receptor agonists and stress to determine the nature of these behaviors in 

relation to TS in mice.   
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3. The D1CT-7 mouse model of Tourette syndrome displays sensorimotor gating 

deficits in response to spatial confinement 

This chapter has been adapted from: 

Godar, S.C., Mosher, L.J., Strathman, H.J., Gochi, A.M., Jones, C.M., Fowler, S.C. Bortolato, 

M., The D1CT-7 mouse model of Tourette syndrome displays sensorimotor gating deficits 

in response to spatial confinement. Br J Pharmacol, 2016. 173(13): p. 2111-21 

Introduction 

To further explore the validity of the D1CT-7 mutant mouse line and determine the extent 

of its construct validity, the present study was designed to assess the sensorimotor gating and stress 

susceptibility of D1CT-7 mice, given the importance of these phenomena in the pathophysiology 

of TS. In particular, we examined the behavioral responses of D1CT-7 and wild-type (WT) 

littermates subjected to a naturalistic environmental stressor, which consisted of a 20 min spatial 

confinement (SC) within a cylindrical enclosure placed in their home cages (Figure 3.1A). The 

advantage of SC over other common modalities of experimental stress (such as foot shock or 

restraint) is that it does not lead to marked anxiety-like behaviors, which may mask or interfere 

with tic-like responses or other spontaneous behaviors. 

Methods 

Animal welfare and ethical statement. We used 3- to 4-month-old, experimentally naïve 

male Balb/c mice weighing 20–30 g. Animals were purchased by Jackson Labs (Bar Harbor, ME, 

USA) and bred and genotyped as reported by Campbell et al. [255]. Because the pattern of 

inheritance of D1CT-7 mice is autosomal dominant, WT females were bred with heterozygous 

D1CT-7 sires; this breeding scheme was selected to standardize maternal behavior. Animals were 

housed in group cages with ad libitum access to food and water. The room was maintained at 22°C, 
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on a 12:12 h light/dark cycle from 0800 to 2000 h. Animals were tested during their light cycle 

between 1200 and 1600 h to minimize any potential circadian effects. All experimental procedures 

were in compliance with the National Institute of Health guidelines and approved by the 

Institutional Animal Use Committee of the University of Kansas. All studies involving animals 

are reported in accordance with the ARRIVE guidelines for reporting experiments involving 

animals [275, 276]. 

Experimental design. The first experiment (n = 8 per group) was carried out to validate 

the stressful effects of SC, by testing plasma corticosterone levels at the end of the 20 min 

manipulation, as compared with non-confined (NC) counterparts. We then tested the effects of SC 

on spontaneous behaviors of D1CT-7 and WT mice (n = 8 per group), with a particular focus on 

tic-like manifestations and repetitive digging responses. The third, fourth, fifth and sixth studies 

were performed to verify the effects of SC exposure on startle and PPI, locomotor behavior, novel 

object exploration and social interaction respectively. All experiments were performed with groups 

of eight mice per genotype, with the exception of the assessment of the correlation between startle 

parameters and tic-like behaviors, which was conducted with 15 SC-exposed D1CT-7 mice to 

confer sufficient statistical power for regression analyses. The final series of experiments was 

performed to test the efficacy of haloperidol, clonidine and SCH23390 on tic-like behaviors and 

PPI deficits in D1CT-7 mice. These experiments were conducted with 12 mice per group for each 

pharmacological assessment. 

All experiments were conducted by trained observers unaware of the treatments using a 

randomized design for treatment assignment. Mice were not used for more than one experiment to 

avoid stress carry-over effects. The numbers of animals for each test were based on preliminary 

power analyses based on pilot studies. 



30 
 

Space confinement. Animals were confined within a clear, bottomless Plexiglas cylinder 

(10 cm in diameter × 30 cm in height), which was placed in their home cages, deeply embedded 

in bedding to ensure stability. A schematization of this experimental setting is provided in Figure 

3.1. Space confinement (SC) lasted 20 min, and behaviors were video-recorded for the last 10 min 

so as to allow animals to avoid potential behavioral alterations caused by neophobia induced by 

the exposure to the unfamiliar enclosure. Tic-like manifestations were defined as rapid (<1 s) 

twitches of the head and/or body. Observations were obtained by trained observers, blinded to the 

genotype and treatment, as previously indicated [256]. For each experiment, one cohort was 

subjected to 20 min SC prior to behavioral testing. Another cohort consisting of NC control mice 

remained in their home cages. In order to avoid potential carry-over effects of SC stress, each 

animal was used only once in our experimental design. 

Corticosterone measurements. Animals were exposed to SC or NC conditions for 20 min 

between 1200 and 1600 h, then rapidly killed via decapitation. Trunk blood was collected at 1200 

and 1600 h. Serum corticosterone was measured in triplicate using an enzyme immunoassay kit 

(Arbor Assays, Ann Arbor, MI, USA). Intraassay precision and inter-assay precision was 

calculated as 4.6 and 8.3% respectively. Limit of detection was determined as 16.9 pg·mL−1.  

Acoustic startle reflex and PPI. Startle testing was conducted as previously described 

[277]. Briefly, the apparatus used for detection of startle reflexes (SR-LAB; San Diego 

Instruments, San Diego, CA, USA) consisted of five Plexiglas cages (diameter: 5 cm) in sound 

attenuated chambers with fan ventilation. Each cage was mounted on a piezoelectric 

accelerometric platform connected to an analogue digital converter. The response to each stimulus 

was recorded as 65 consecutive 1 ms readings. A dynamic calibration system was used to ensure 

comparable sensitivities across chambers. The startle testing protocol featured a 70 dB background 
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white noise, and consisted of a 5 min acclimatization period, followed by three consecutive blocks 

of pulse, prepulse + pulse and ‘no stimulus’ trials. During the first and the third block, mice 

received only five pulse-alone trials of 115 dB. Conversely, in the second block mice were exposed 

to a pseudorandom sequence of 50 trials, consisting of 12 pulse-alone trials, 30 trials of pulse 

preceded by 73, 76 or 82 dB pre-pulses intensities (10 for each level of prepulse loudness) and 

eight no stimulus trials, where only the background noise was delivered. Intertrial intervals were 

selected randomly between 10 and 15 s. Sound levels were assessed using an A-scale setting. 

Percent PPI was calculated with the following formula:  

100 −
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

× 100 

The first five pulse-alone bursts were excluded from the calculation. As no interaction between 

prepulse levels and treatment was found in the statistical analysis, %PPI values were collapsed 

across prepulse intensity to represent average %PPI.  

Open-field locomotor behavior. Spontaneous locomotor behaviors to novel environments 

were tested for 60 min in a square force plate actometer (side: 42 cm; height: 30 cm) as previously 

described [278]. Each force plate actometer consisted of four force transducers placed at the 

corners of each load plate. Transducers were sampled 100 times s−1, yielding a 0.01 s temporal 

resolution, a 0.2 g force resolution and a 2 mm spatial resolution. Custom software directed the 

timing and data-logging processes via a LabMaster interface (Scientific Solutions Inc., Mentor, 

OH, USA). Additional algorithms were used to extract macrobehavioural variables, such as 

distance travelled, number of low-mobility bouts etc. Distance travelled was calculated as the sum 

of the distances between coordinates of the location of center of force recorded every 0.50 s over 

the recording session. Low-mobility bouts were defined as periods of 5 s during which mice 

confined their movements to a 15 mm radius virtual circle. Time spent in the center was measured 
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in a central quadrant (side: 21 cm) over the first 5 min block. Rotation bias was calculated by 

summing the locomotor turn direction over time using the center of the actometer floor as a 

reference point. Wall leaps were identified based on specific force–time waveform (required to 

have minimum force below −90% of body weight for 0.03 s or longer, and at no more than 3 cm 

from the wall), using custom scrolling graphics software. 

Novel object exploration. Novel exploration was measured by placing foreign objects in 

the animal’s home cage for 15 min as previously described [279]. The number and duration of 

exploratory approaches towards the objects were scored from video recordings and quantified. 

Exploratory activity was defined as sniffing or touching the objects with the snout, but not climbing 

or sitting on the objects. 

Social interaction. Social behaviors were tested for 10 min in an unfamiliar cage and video 

recorded as previously described [280]. Behavioral measures consisted of the number and duration 

of interactions towards foreign age- and weight-matched male Balb/c WT conspecifics, as well as 

the number and duration of fighting behaviors (attacks and fighting episodes). Care was taken in 

differentiating fighting episodes from compulsive biting or allogrooming in D1CT-7 mice, which 

have been shown to result in occasional harm to cage mates. Social interaction was defined as 

sniffing or touching the conspecific with the snout. 

Statistical analyses. Normality and homoscedasticity of data distribution were verified 

using Kolmogorov–Smirnov and Bartlett’s tests. Statistical analyses of parametric data were 

performed with one-way or two-way ANOVAs, followed by Newman–Keuls’ test for post hoc 

comparisons. Locomotor behaviors were analyzed using a two-way ANOVA design for repeated 

measures with genotype, condition and time as the factors. Correlations were performed between 
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tic-like outbursts and PPI, as well as between tics and startle amplitude by means of linear 

regression analyses. Significance threshold was set at 0.05. 

Drugs. The following drugs were used: clonidine and SCH23390 (Sigma-Aldrich, St. 

Louis, MO, USA) were dissolved in saline. Haloperidol (Sigma-Aldrich) was dissolved in a single 

drop of 1 M HCl and diluted with saline. The doses of each drugs were selected so as to yield 

≥80% occupancy of their targeted receptors [281, 282] without reducing spontaneous activity in 

the SC paradigm (as verified in pilot studies). Different cohorts of animals were used for each drug 

treatment group. The nomenclature of all receptors and drug targets mentioned in this article 

conforms to the guidelines indicated in British Journal of Pharmacology’s Concise Guide to 

Pharmacology [283]. 

Results 

SC increases corticosterone levels. The efficacy of SC as a stressor was verified in WT 

and D1CT-7 mice by testing the changes in plasma corticosterone levels induced by this 

manipulation. A two-way ANOVA revealed that SC induced a marked increase in corticosterone 

concentrations in both genotypes (main effect of SC); furthermore, D1CT-7 mice displayed higher 

corticosterone levels than WT, irrespective of the environmental conditions (main effect of 

genotype) (Figure 3.1B). Nevertheless, no significant interactions between SC and genotype were 

found. 

SC enhances tic-like responses and digging in D1CT-7 mice. We then tested the 

behaviors of D1CT-7 and WT littermates in response to SC, as compared with NC counterparts 

kept in their home cages. In D1CT-7 mice, SC induced a dramatic increase in tic-like responses 

(Figure 3.2B) and digging behavior (Figure 3.2C). In contrast, SC did not significantly alter the 

behaviors of WT mice. Furthermore, tic-like and digging behaviors in SC-exposed D1CT-7 mice 
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were significantly greater than those observed in SC WT controls. These data suggest that this SC 

elicits a pronounced enhancement of TS-related behaviors in D1CT-7, but does not significantly 

affect WT mice. 

Figure 3.1 Effect of SC on plasma corticosterone. (A) Graphical representation of the experimental setting used for 
SC. (B) Effects of SC on corticosterone levels. Data are shown as means ± SEM. *P < 0.05 for comparisons indicated 
by dotted lines. Curvy brackets are used to indicate main effects. n = 8 per group. For more details, see text. 

Figure 3.2 SC elicits a robust increase in tic‐like behavior, repetitive digging behavior and deficits in PPI in D1CT‐7, 
but not WT mice. (A) Experimental timeline. (B) Effects of SC on tic‐like responses. (C) Effects of SC on repetitive 
digging. (D) Effects of SC on startle amplitude. (E) Effects of SC on PPI of the startle. Data are shown as means ± 
SEM. *P < 0.05 for comparisons indicated by dotted lines. Curvy brackets are used to indicate main effects. n = 8 per 
group. For details, see text. 
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D1CT-7 mice exhibit sensorimotor gating deficits following SC. In a separate 

experiment, we investigated whether SC exposure led to alterations in sensorimotor gating, as 

assessed through the PPI of the acoustic startle. D1CT-7 mice exhibited a reduction in startle 

amplitude (Figure 3.2D), irrespective of exposure to SC. Furthermore, SC exposure elicited a 

significant reduction in PPI (Figure 3.2E) in D1CT-7, but not WT mice. Linear regression analyses 

revealed that the number of tic-like behaviors was not correlated with either startle amplitude [F 

(1, 14) = 1.19; NS; R2 = 0.08] or %PPI values [F (1, 14) = 2.69; NS; R2 = 0.16] (data not shown). 

SC exposure does not affect hyperactivity in D1CT-7 mice in a novel open field. Next, 

we investigated whether SC exposure can alter other behavioral parameters related to TS 

symptoms. Accordingly, we tested the locomotor responses in SC-exposed D1CT-7 and WT mice 

using a novel open field on a force–plate actometer. Three-way ANOVA (with genotype, 

environmental condition and time as factors) revealed that D1CT-7 mice exhibited a hyperactive 

phenotype compared with WT mice (Figure 3.3B). Furthermore, SC was found to increase overall 

locomotor activity. Conversely, no significant time-dependent differences were found. A 

significant genotype × condition interaction was also detected, and post hoc analyses revealed that 

SC significantly increased locomotor behavior in WT mice, but failed to affect the 

hyperlocomotion of D1CT-7 mice. The analysis of low-mobility bouts (Figure 3.3C) revealed 

significant main effects for genotype and condition, as well as their interaction. Post hoc 

comparisons showed that D1CT-7 animals engaged in fewer low-mobility bouts than WT mice 

pre-exposed to the same conditions. In addition, SC-exposed WT mice showed fewer low-mobility 

bouts than NC-exposed WT counterparts; however, no differences were detected in the time spent 

in the center (Figure 3.3D). NC D1CT-7 mice were also found to display a significantly higher 

rotation bias than both NC WT and SC D1CT-7 mice (Figure 3.3E). D1CT-7 mice also exhibited 
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a genotype-specific increase in the number of wall leaps (Figure 3.3F) compared with WT 

counterparts. 

 

Figure 3.3 D1CT‐7 mice exhibit open‐field 
locomotor hyperactivity regardless of SC. (A) 
Experimental timeline. (B) Effects of SC exposure on 
locomotor activity of D1CT‐7 and WT mice. (C) 
Effects of SC exposure on low‐mobility bouts. (D) 
Effects of SC exposure on rotation bias. (E) Effects 
of SC exposure on wall leap behavior. Data are 
shown as means ± SEM. *P < 0.05 for comparisons 
indicated by dotted lines. Curvy brackets are used to 
indicate main effects. n = 8 per group. For details, see 
text. 

Figure 3.4 D1CT‐7 mice show increased 
exploratory approaches towards novel objects. (A) 
Experimental timeline. (B) Effects of SC exposure 
on the number of exploratory approaches. (C) 
Effects of SC exposure on total exploratory 
duration. Data are shown as means ± SEM. *P < 
0.05 for comparisons indicated by dotted lines. 
Curvy brackets are used to indicate main effects. n 
= 8 per group. For details, see text. 



37 
 

SC does not affect novel object exploration in D1CT-7 mice. We next examined whether 

SC evoked anxiety-related behaviors towards novel objects. D1CT-7 mice exhibited an increase 

in novel object exploratory approaches (Figure 3.4B), but no differences were detected for 

condition (i.e. SC vs. NC) or genotype × condition interactions. Two-way ANOVA analyses of 

exploratory duration (Figure 3.4C) revealed no significant effects of genotype, condition or their 

interaction.  

SC increases aggressive behavior in D1CT-7 mice. To determine whether SC modified 

behavioral responses to foreign conspecifics, animals were tested in the social interaction 

paradigm. We found that social exploratory approaches were significantly reduced following SC 

(Figure 3.5B), irrespective of the genotype. The duration of the social interaction was equivalent 

among all groups (Figure 3.5C). Notably, D1CT-7 mice exhibited a higher number of aggressive 

episodes during social encounters compared with their WT counterparts (Figure 3.5D), but no 

differences were detected for condition or genotype × condition. SC exposure increased aggressive 

behaviors in D1CT-7 mice, but not in WT animals. (Figure 3.5E). Notably, fighting behaviors 

were characterized by defensive postures (such as tail rattling) and typical aggressive 

manifestations, and were clearly distinct from harmful tic-like manifestations, such as compulsive 

biting and exaggerated allogrooming. 

Tic-like behaviors and PPI deficits in D1CT-7 mice are sensitive to haloperidol, 

clonidine and SCH23390. Because D1CT-7, but not WT mice, exhibited tic-related behaviors 

and PPI deficits and only following exposure to SC, we limited our pharmacological testing to this 

group in order to avoid potential floor effects. Next, we tested the predictive validity of D1CT-7 

mutants as animal models of TS by evaluating the effect of standard anti-tic agents on the number  
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Figure 3.5 SC increases aggression in D1CT‐7 mice 
in the social interaction paradigm. (A) Experimental 
timeline. (B) Effects of SC exposure on the number 
of social approaches. (C) Effects of SC exposure on 
total duration of social interaction. (D) Effects of SC 
exposure on number of fighting episodes. (E) Effects 
of SC exposure on total fighting duration. Data are 
shown as means ± SEM. *P < 0.05 for comparisons 
indicated by dotted lines. Curvy brackets are used to 
indicate main effects. n = 8 per group. For details, see 
text. 

Figure 3.6 Haloperidol (HAL; 0.3 mg/kg, i.p.) 
reduced repetitive (perseverative) and tic‐like 
behaviors, as well as PPI deficits in D1CT‐7 mice 
exposed to SC. (A) Timeline of treatments and 
experiments. (B) Effects of HAL on tic‐like 
responses. (C) Effects of HAL on perseverative 
digging. (D) Effects of HAL on startle amplitude. 
(E) Effects of HAL on PPI. All data refer to SC‐
exposed D1CT‐7 mice. Data are shown as means ± 
SEM. *P < 0.05 compared with vehicle (VEH). n = 
12 per group. For more details, see text. 
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of tic-like behaviors (during SC) and sensorimotor gating disruptions (following SC). Haloperidol 

(0.3 mg/kg, i.p., injected 45 min before testing) elicited a reduction in the number of tic-related 

manifestations (Figure 3.6B) and reduced digging activity (Figure 3.6C) in D1CT-7 mice. 

Although haloperidol attenuated PPI disruptions (Figure 3.6E), it did not affect overall startle 

amplitude (Figure 3.6D) or latency to peak startle (data not shown). Similar to haloperidol, 

clonidine (0.2 mg/kg, i.p., administered 30 min before testing) decreased the expression of tic-like 

behaviors (Figure 3.7B) and digging activity (Figure 3.7C). Clonidine also significantly reduced 

startle amplitude (Figure 3.7D) and countered PPI disruptions (Figure 3.7E), but did not affect 

latency to peak startle (data not shown). 

Finally, we examined whether the D1 receptor antagonist SCH23390 (1 mg/kg, s.c., 

injected 20 min before testing) prevented the TS-related features in SC D1CT-7 mice. We found 

that D1 receptor blockade decreased tic-like behaviors (Figure 3.8B) and digging (Figure 3.8C) 

during SC; furthermore, SCH23390 reduced startle amplitude (Figure 3.8D) and restored PPI 

(Figure 3.8E) following SC. In contrast, no differences were observed in the latency to peak startle 

(data not shown). 
Figure 3.7 Clonidine (CLON; 0.2 mg/kg, i.p.) reduced repetitive 
(perseverative) and tic‐like behaviors, as well as PPI deficits in 
D1CT‐7 mice exposed to SC. (A) Timeline of treatments and 
experiments. (B) Effects of CLON on tic‐like responses. (C) 
Effects of CLON on perseverative digging. (D) Effects of CLON 
on startle amplitude. (E) Effects of CLON on PPI. All data refer to 
SC‐exposed D1CT‐7 mice. Data are shown as means ± SEM. *P 
< 0.05 compared with vehicle (VEH). n = 12 per group. For more 
details, see text. 
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Discussion 

The results of the present study show that the environmental stress caused by SC, triggered 

a number of TS-related phenotypes in D1CT-7, but not WT mice, including a robust exacerbation 

of tic-like and repetitive responses, as well as PPI deficits and aggressive behaviors. These effects 

are in line with previous reports documenting exacerbation of leaping and climbing compulsions 

in D1CT-7 mice exposed to predator urine odor [284]. We also found that SC-induced tic-like 

responses and PPI deficits were significantly inhibited by standard TS therapies, such as the 

antipsychotic haloperidol and clonidine, as well as the D1 dopamine receptor antagonist 

SCH23390. Although D1CT-7 mice displayed lower startle amplitude than their WT litter-mates, 

this parameter was not affected by SC, suggesting that the observed reduction of %PPI did not 

result from computational artefacts. 

Figure 3.8 The D1 receptor antagonist SCH23390 (SCH; 
1 mg·kg−1, s.c.) reduced repetitive (perseverative) and tic‐like 
behaviors, as well as PPI deficits in D1CT‐7 mice exposed to 
SC. (A) Timeline of treatments and experiments. (B) Effects of 
SCH on tic‐like responses. (C) Effects of SCH on perseverative 
digging. (D) Effects of SCH on startle amplitude. (E) Effects 
of SCH on PPI. All data refer to SC‐exposed D1CT‐7 mice. 
Data are shown as means ± SEM. *P < 0.05 compared with 
vehicle (VEH). n = 12 per group. For more details, see text. 
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As mentioned earlier, the exacerbation of tic behavior in response to stress and PPI deficits 

are essential elements of TS pathophysiology [37, 38, 285], which are posited to reflect perceptual 

and information-processing alterations. In particular, PPI deficits have therefore been highlighted 

as key parameters to assess construct validity of animal models of TS [138, 286]. Based on this 

background, our findings collectively support the construct validity of this TS model. The 

pathophysiological relevance of D1CT-7 transgenic mice to TS symptoms is also supported by the 

recent discovery that TS patients display hyperactivity of the same sensorimotor circuit that is 

neuropotentiated in these mice [255, 287-289]; furthermore, it is worth noting that recent data 

indicated that in rodents the optogenetic stimulation of the cortex has been shown to  produce 

features similar to symptoms of OCD – a highly co-morbid syndrome with TS [290].  

There is ample evidence showing that behavioral stereotypes are a common sign of 

discomfort in animals subjected to prolonged SC [291-294]. The responsiveness of D1CT-7 mice 

to short-term SC may signify their high sensitivity to the spatial restriction and low contextual 

stimulation imposed by this manipulation, which contrast with the environmental requirements for 

their high spontaneous locomotor and exploratory activity. In addition, the higher plasma levels of 

corticosterone in D1CT-7 mice subjected to baseline conditions suggest that these mice display an 

intrinsically elevated stress response. The results of our experiments suggest that the summation 

of the baseline stress levels of D1CT-7 mice and the effect of SC may lead these animals to reach 

a critical threshold of activation, which may trigger the exacerbation of tic-like behaviors and the 

reduction in PPI. Irrespective of this issue, future studies are warranted to explore the basis of the 

higher baseline corticosterone plasma levels in D1CT-7 mice. 

The fact that tic-like behaviors and PPI deficits were prevented by the modulation of 

dopamine and noradrenaline receptors suggests that the effects of SC in D1CT-7 mice are probably 
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caused by an enhanced catecholamine release in critical areas of the CSTC circuit, which is the 

anatomical substrate of TS pathophysiology, stereotyped behaviors and PPI regulation [38, 54, 

289] Accordingly, acute stress has been shown to stimulate dopamine and noradrenaline release 

in the striatum and in the prefrontal cortex, [295, 296]. Further microdialysis studies are needed to 

evaluate the variations in dopamine and noradrenaline release during SC in D1CT-7 and WT mice. 

In baseline conditions, D1CT-7 mice were shown to express the transcript of their 

neuropotentiating transgene in a subset of D1 receptor-containing neurons, including 

glutamatergic pyramidal projection neurons in somatosensory and piriform cortex as well as 

GABAergic interneurons in the intercalated nucleus of the amygdala [255]. Although the 

somatosensory cortical areas potentiated in the mice similarly hyperactivate to trigger premonitory 

urges in human TS, to the best of our knowledge these regions have not been directly implicated 

in the regulation of PPI. Thus, the observed sensorimotor deficits in D1CT-7 mutants may be due 

to the effect of potentiated glutamatergic projections from these regions to limbic circuits. Given 

that the elevation of the transgene’s cAMP in the CT potentiates the responsiveness of neurons to 

their own endogenous excitatory neurotransmitters [255], it is possible that these neuropotentiated 

cortical and amygdala neurons in the D1CT-7 mice may respond to stress-triggered endogenous 

fast-acting neurotransmitter input by subsequently ‘stepping up’ their own neurotransmitter 

output, which could aggravate any baseline, sub-threshold symptoms. In this respect, it is worth 

noting that the increase in glucocorticoids produced by acute stress has been shown to enhance 

glutamate release from the cortex and amygdala [297], highlighting the possibility that changes in 

corticolimbic glutamate output may participate in the effects of SC in these animals. 

Alternatively, SC may affect the expression of the D1 receptor-associated 

neuropotentiating effect in CSTC areas; indeed, previous studies have shown that acute stress 
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elicits rapid changes in the expression and transcription of dopaminergic genes [298]. Thus, it is 

possible that SC may lead to the expression of the D1CT-7 construct in areas of the CSTC circuits, 

which may remain undetected under baseline conditions. Future studies are warranted to examine 

the effects of SC on neurochemical changes in CSTC in D1CT-7 mice. 

The effects of SC on tic-like behaviors and PPI in D1CT-7 mice were antagonized by 

haloperidol and clonidine, in line with previous findings on the effectiveness of both drugs at 

reducing spontaneous tic-like responses in this context [256]. In addition, the effectiveness of the 

selective D1 receptor antagonist SCH23390 suggests that D1 receptors are involved in the tic-like 

behaviors and PPI deficits and is in agreement with previous findings indicating that these 

molecular targets contribute to both the PPI and stereotyped behaviors in mice [277, 299, 300]. D1 

receptors play a key role in the processing of informational salience and the enactment of 

behavioral stereotypies in rodents. For instance, D1 receptor agonists disrupt sensorimotor gating 

in mice [277, 300] and striatal D1 receptor activation induces locomotor hyperactivity and 

stereotyped behavior through the reinforcement of ongoing behaviors [51, 299]. It is worth noting 

that ecopipam, a selective D1 receptor antagonist, is currently under investigation as a potential 

therapeutic agent for the treatment of tics [56].  

In parallel with clinical reports, we did not detect any correlation between the severity of 

the tic-like outbursts and PPI deficits in D1CT-7 mice [37]. Because both tic-like responses and 

PPI deficits were triggered by SC and responded to anti-tic therapies, it is likely that these two 

parameters may depend on converging, but not identical, anatomical substrates. 

Another remarkable effect of SC in D1CT-7 mice was a significant enhancement in 

aggressive behaviors towards foreign conspecifics in the social interaction paradigm. These 

manifestations were characterized by typical aggressive and hostile behavior, including tail rattling 
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and aggressive chasing of the conspecific, and were clearly distinct from compulsive biting during 

allogrooming, as previously reported [255, 256]. The observed stress-induced aggressiveness in a 

model of TS is in line with clinical reports documenting disruptive behaviors, rage outbursts and 

anger control problems in TS patients, which are often preceded by stressful feelings of tension 

similar to sensory phenomena [301, 302]. 

In agreement with previous studies, we found that D1CT-7 mice displayed hyperactive 

locomotor behavior [255], which was demonstrated as fewer low-mobility bouts and greater 

distances travelled. The hyperlocomotion displayed by D1CT-7 mice was paralleled by an increase 

in the number of approaches, but not overall duration, of exploratory activity directed towards 

unfamiliar objects. Neither phenomenon was significantly affected by SC; however, this 

manipulation significantly increased the exploratory activity of WT mice. D1CT-7 mutants also 

showed a greater locomotor rotational bias, which probably reflects elevated brain dopamine levels 

and its tendency to induce repetitive, compulsive behavior [255] in this transgenic line.  Indeed, 

rodents treated with indirect-acting dopamine agonists, such as amphetamine or cocaine also show 

large rotational biases [278, 303-305], which probably signify behavioral stereotypy [303]. In 

accord with previous reports [255], D1CT-7 mice displayed more wall leaps than WT mice, a 

finding consistent with the hypothesis that the D1CT-7 mice express an increased tendency to 

engage in repetitive, short-duration topographically distinct motor behavior. Notably, rotational 

bias was strikingly reduced by SC in D1CT-7 mice; although the specific cause of this 

phenomenon remains unclear, it is possible that this effect may reflect the higher occurrence of 

other repetitive behaviors, such as rearing or grooming, which may have partially over-ridden their 

locomotor responses. 
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SC D1CT-7 mice failed to exhibit open-field thigmotaxis, a response that has been 

associated with anxiety-related responses [306]. Although this finding may appear 

counterintuitive, given the increased stress levels in SC D1CT-7 mice, it should be noted that the 

extrapolation of anxiety-related phenomena (and particularly thigmotaxis) in hyperactive mice is 

generally considered to be unreliable, in view of the high risk of false-positive and false-negative 

findings [307].  

Although the SC-exposed D1CT-7 mice exhibited several behavioral features that closely 

mirror phenotypic traits found in TS patients, several limitations of the study should be recognized. 

Firstly, our study focused solely on males, in view of the high predominance of TS in this gender. 

Although males have a higher severity of tic-like manifestations, mutants of both sexes display 

these behavioral abnormalities [256], and further studies on the sex differences in this line are 

warranted. Secondly, we found that D1CT-7 mice exhibited fewer spontaneous tic-like outbursts 

than previously described [256] and more sensitivity to the D1 receptor antagonist, SCH23390, 

than previously described [308], both of which may be due to a different penetrance of the gene 

mutation in our colony. Thirdly, the evaluation of the pharmacological effects of haloperidol, 

clonidine and SCH23390 was only performed in SC-exposed D1CT-7 mice, but not in NC 

counterparts (or in WT controls). This design was made necessary by the small number of D1CT-

7 mice available, in view of their suboptimal reproductive efficiency, which allowed us to obtain 

no more than 10–12 males per generation (with an equivalent number of breeders), as well as our 

specific experimental decision of testing each animal only once (in order to avoid potential carry-

over effects). Fourthly, although the effects of all drugs were observed to produce no overt 

alterations in the activity of the mice, we could not measure the locomotor behavior in these mice 

subjected to SC, and therefore cannot fully rule out the possibility that the observed amelioration 
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in tic-like responses is partially due to subtle changes in locomotion. Finally, in spite of the analogy 

between SC-induced behavioral responses and symptoms of TS, our analyses revealed that the 

D1CT-7 mutants do exhibit some behavioral responses not directly related to this disorder, such 

as reduced startle acoustic reflex, and hyperlocomotor activity (although the latter activity can be 

likened to manifestations of ADHD or perseverative traits in OCD, both conditions that are often 

co-morbid with TS). 

In spite of these limitations, our findings showing that SC exacerbated the tics and PPI 

deficits in D1CT-7 mice, and that these deficits were sensitive to validated therapies for TS, appear 

to confirm the translational relevance of D1CT-7 mice as a valuable animal model that may 

replicate the influence of environmental stress on TS symptoms. Future studies are needed to 

elucidate the specific neurobiological changes induced by SC in this model, and their role in the 

symptoms of TS. 
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4. Studying tics in wild-type rodents: examining eye blinks as a proxy for tics 

Introduction  

 Often, the first tic observed in TS patients involves exaggerated or increased eye blinking 

[150, 151]. In addition, patients have also been reported to display an increase in spontaneous eye 

blink rates [152-154], which is likely a reflection of the hyperdopaminergic state underlying this 

disorder, as spontaneous eye blinks are posited to reflect central dopaminergic activity[155, 156]. 

Several preclinical studies have been undertaken to investigate the contribution of dopamine 

receptors in eye blink responses in nonhuman primates and rats [157-161, 309]; however, to date 

there have not been any reports addressing eye blink responses in mice or the contribution of stress 

in any animal model. Here we analyze the eye blink response of freely moving or restrained mice 

following pharmacological challenge with the dopamine D1 receptor agonist SKF 82958 to study 

the contributions of stress and the D1 receptor on these responses. We also verify the specificity 

of the eye blink response by pretreating with the D1 receptor antagonist, SCH 23390 and the 

Tourette syndrome therapeutics, haloperidol and clonidine.  

Methods 

Animals.  We used 3-4-month-old, experimentally naïve male C57BL/6 mice (n = 8-10 

per treatment group) weighing 20-30 g. Animals were purchased by Jackson Labs (Bar Harbor, 

ME). Animals were housed in group cages with ad libitum access to food and water. The room 

was maintained at 22°C, on a 12 h: 12 h light/dark cycle from 8 am to 8 pm. Animals were tested 

during their light cycle between 12 and 4 pm to minimize any potential circadian effects. All 

experimental procedures were in accordance with the NIH guidelines and approved by the 

IACUCs of the Universities of Kansas and Utah.  
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Drugs. The following drugs were used: SCH 23390, haloperidol, clonidine, and SKF 

82958 (Tocris Bioscience, Bristol, UK; Sigma-Aldrich, Saint Louis, MO). SCH 23390 was 

dissolved in distilled water. Haloperidol was dissolved in 10% acetic acid buffered with sodium 

hydroxide and diluted with saline. Clonidine and SKF 82958 were both dissolved in saline. 

Eye blink observations. Eye blinks were scored by trained observers blinded to the 

treatment. Observations were made for 5 minutes either while the mouse was allowed to move 

freely on the underside of a 10 cm diameter beaker or while restrained in a clear 5 cm diameter 

tube. 

Experimental design.  

Experiment 1. Mice were treated with SKF 82958 (0.3mg/kg, IP) or saline 20 minutes 

before eye blinks were recorded while the mice moved freely on the bottom of a beaker. 

Experiments 2-4. A total of 12 groups of mice were used for these experiments. 8 groups 

of mice were treated with SCH 23390 (1mg/kg, SC), clonidine (0.2 mg/kg, IP) or the 

corresponding vehicle 10 minutes before a second treatment of either SKF 82958 or saline. Eye 

blinks were observed in freely moving mice 20 minutes after the last injection. 4 more groups of 

mice were treated with haloperidol (0.3mg/kg, IP) or vehicle 25 minutes before SKF 82958 or 

saline treatment. These mice were also observed for eye blinks while freely moving.  

Experiment 5. Mice were exposed to a 20-minute restraint in a clear Plexiglas tube (5cm 

diameter) or left in a clean standard mouse cage for 20 minutes. Eye blinks were then recorded for 

five minutes while the mice remained restrained in the tube or were allowed to move freely on the 

bottom of a beaker. Experiments 6-9. 16 groups of mice were tested in these experiments. 8 of the 

groups were treated with SCH 23390, clonidine or the corresponding vehicle 10 minutes before 

being placed in the restrainer or clean standard mouse cage. The next 4 groups were treated with 
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haloperidol or vehicle 25 minutes before exposure to restraint or left freely moving. The final 4 

groups were treated with SKF 82958 immediately before being place in the restrainer or mouse 

cage for 20 minutes. In all experiments eye blinks were recorded at the end of the 20-minute 

experimental manipulation for five minutes while the restrained subject remained in the restrainer 

and freely moving mice were allowed to move about on the bottom of a beaker. 

Statistical analyses. Normality and homoscedasticity of data distribution were verified by 

using Kolmogorov-Smirnov and Bartlett’s tests. Statistical analyses of parametric data were 

performed with one-way or multi-way ANOVAs, followed by Tukey’s T-test for post-hoc 

comparisons. The significance threshold was set at 0.05. 

Results 

Dopamine D1 receptors regulate the eye blink response. We first investigated the 

contribution of D1 receptors to normal eye blink responses by treating the mice with the D1 agonist 

SKF 82958 (Fig. 1A). Mice displayed an increased rate of eye blinks following SKF 82958 

treatment (P < 0.05). To verify that these responses were specific to the D1 receptor we next pre-

treated the animals with the D1 receptor antagonist SCH 23390 (Fig 1B). As expected SKF 82958 

treatment increased eye blinks/min [pre-treatment x treatment interaction: F (1,30) = 11.84, P < 

0.01; vehicle + vehicle vs vehicle + SKF 82958, P < 0.001)]. Furthermore, SCH 23390 pre-

treatment significantly reduced the number of eye blinks in the SKF 82958 treated mice (P < 

0.001). We also tested the possible contribution of D2 receptors by pre-treating the mice with the 

D2 antagonist haloperidol (Fig 1C). A main effect of both haloperidol pretreatment [F(1,28) = 

15.16, P < 15.16, P < 0.001] and SKF 82958 treatment [F(1,28) = 18.16, P < 0.001], but no 

interaction was found. Finally, we tested clonidine, a noradrenergic α2 receptor agonist that is 

commonly used to treat TS. We found that while SKF 82958 produced a significant increase in 
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eye blinks [main effect of SKF 82958: F(1,28) = 7.04, P < 0.05)], clonidine did not ablate these 

effects.  

Eye blink responses are sensitive to stress in a D1 dependent fashion. We next 

examined the response of mice to an acute restraint stress of 20 minutes. We found that restraint 

increased eye blinks over freely moving mice (P < 0.001). To determine if D1 receptors mediated 

this response we treated the mice with SCH 23390 prior to restraint. We found that vehicle treated 

restrained animals displayed increased eye blinks over vehicle treated controls [treatment x 

condition interaction: F(1,29) = 5.76, P < 0.01; Freely moving + vehicle vs restrained + vehicle, P 

< 0.001]. Importantly, we also found that SCH 23390 decreased eye blinks in restrained animals 

(P < 0.001). The TS therapeutic haloperidol did not have an effect on restraint induced eye blinks 

[main effect of condition: F(1,29) = 83.36, P < 0.001). However, another TS therapy, clonidine, 

did ablate the effects of restraint on eye blink responses [treatment x condition interaction: F(1,28) 

Figure 4.1 Eye blink responses are regulated by dopamine D1 receptors in mice. (A) The D1 agonist SKF 82958 (SKF; 
0.3mg/kg) increased eye blinks in wildtype C57bl/6 mice. (B) The D1 antagonist SCH 23390 (SCH; 1 mg/kg) ablated 
eye blink responses induced by SKF. (C) The D2 antagonist haloperidol (HAL; 0.3mg/kg) non-selectively reduced 
eye blink responses in mice following SKF treatment. (D) The noradrenergic α2 receptor agonist Clonidine (CLON; 
0.2mg/kg) did not alter eye blink responses in mice treated with SKF. *P < 0.05 and ***P < 0.001 for comparisons 
indicated by dashed line.  Date are shown as mean ± SEM. N=8/group. Abbreviations: VEH, vehicle.  
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= 18.05, P < 0.001; Freely moving + vehicle vs restrained + vehicle P < 0.01; restrained + vehicle 

vs restrained + clonidine, P < 0.001]. We also tested the combined effects of both restraint and 

SKF 82958 treatment on these mice. We found that both restraint [F(1,30) = 17.86, P < 0.001] and 

SKF 82958 treatment [F(1,30) = 13.19, P < 0.01] increased eye blinks, but there was no significant 

interaction between the two.  

Figure 4.2 Stress increases the eye blink rate in mice. (A) 20 minutes of restraint stress increases eye blinks in wildtype 
C57bl/6 mice. (B) The D1 antagonist SCH 23390 (1mg/kg) attenuated the stress-induced eye blink response in mice. 
(C) The D2 antagonist haloperidol (HAL; 0.3mg/kg) did not alter eye blink responses. (D) The noradrenergic α2 
receptor agonist Clonidine (CLON; 0.2mg/kg) selectively ablated stress-induced eye blink responses. (E) The D1 
agonist, SKF 82958 (0.3mg/kg) did not further exacerbate eye blink responses in conjunction with stress. **P < 0.01 
and ***P < 0.001 for comparisons indicated by dashed line.  Date are shown as mean ± SEM. N=8/group. 
Abbreviations: VEH, vehicle. 
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Discussion 

In this study, we found that dopamine D1 receptors contribute to eye blink responses in 

mice. Specifically, we showed that the D1 agonist SKF 82958 increased eye blinks and this 

response was selectively inhibited by the D1 receptor antagonist SCH 23390. The TS therapeutic 

haloperidol decreased both spontaneous eye blinks and those induced by SKF 82958; however, 

this result may be due to the overall sedative effect of haloperidol and not specific to D2 

mechanisms [310]. Another TS therapy, clonidine was also investigated but it did not decrease eye 

blinks following SKF treatment. These studies are in agreement with previous research on 

Sprague-Dawley rats [157] and primates [158-161, 311] that have all demonstrated that D1 

receptor specific agonists increase eye blinks in the species of study. The results presented here 

extend this work to include mice in the group of experimental models to study the contribution of 

dopamine D1 receptors to eye blink responses. In addition, this is the first study to measure eye 

blinks in unrestrained rodents. This is a very important methodological consideration since we also 

found that eye blinks in mice are sensitive to restraint stress. Interestingly, an acute restraint stress 

of 20 minutes was sufficient to drastically increase eye blink responses. This response was ablated 

by the D1 receptor antagonist SCH 23390 and the alpha-2 adrenergic receptor agonist clonidine. 

Haloperidol had no effect on eye blinks in this experiment.  

The relevance of these data to TS are multifold. It has been demonstrated that alterations 

in dopaminergic activity directly alter spontaneous eye blink rates. For example, an increase in eye 

blinks is often the first reported symptom of TS [150, 151] and further studies have shown that the 

spontaneous blink rate in TS patients is higher than in controls [152-154]. Since spontaneous eye 

blinks is considered a measure for central dopaminergic activity, the increase of spontaneous eye 

blinks in TS patients is hypothesized to reflect the hyperdopaminergic state of these patients. It has 
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also been observed that patients with other disorders of the dopamine system have alterations in 

spontaneous blinking rates. For example, schizophrenic patients, another group of patients 

considered to have increased dopamine levels also display increased blinking [312-314]. 

Alternatively, patients with Parkinson’s disease, which is characterized by low dopamine levels, 

have decreased eye blinking [313-315]. These clinical observations have been mirrored in the 

MPTP primate model of Parkinson’s disease [316, 317].  

TS symptoms are underpinned by hyperdopaminergic systems in the CSTC loop [45]. 

While the basal ganglia do no directly regulate blinking, this region can modulate input to the 

spinal trigeminal complex through the superior colliculus and nucleus raphe magnus [156, 162-

169]. The spinal trigeminal complex has been posited to be directly involved in the spontaneous 

blink generator circuit and furthermore, it has been proposed that basal ganglia dopamine 

projections inhibit this complex through the inhibition of the superior colliculus, and subsequent 

excitation of the nucleus raphe magnus [162, 163, 167, 309, 318]. It has been demonstrated that 

reduced dopamine levels and dopamine antagonists increase the trigeminal reflex blink amplitude 

and excitability, which results in a decrease in the spontaneous eye blink rate [164, 165, 309]. 

Alternatively, apomorphine, a dopamine receptor agonist decreases the trigeminal reflex blink and 

spontaneous eye blink amplitude and is associated with an increase in the eye blink rate [165, 309]. 

Therefore, an increase in dopamine activity in TS patients may increase blinking rates through this 

system.  

In addition, these data, along with previously published data investigating D1 receptor 

agonists on eye blink responses, underline a fundamental role of D1 receptors in eye blink 

responses and ultimately eye blink tics. The contribution of dopamine D1 receptors in the 

pathogenesis of TS is poorly understood, although the D1 receptor antagonist ecopipam has shown 
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efficacy in clinical trials [56] suggesting a critical role for D1 receptors. Research on animal 

models further supports D1 receptors as a key therapeutic target for TS as outlined in these and 

other animal studies on Tourette syndrome [277, 319, 320].  

These data are also in agreement with clinical findings that tics in TS patients are 

exacerbated by stress. Furthermore, it may in part explain the lack of efficacy of some TS 

therapeutics to address stress-induced fluctuations of symptoms. As seen here, haloperidol is a 

poor therapeutic to address stress-induced TS-like eye blink responses. However, the D1 receptor 

antagonist SCH 23390 decreased eye blinks both in groups challenged with the D1 receptor agonist 

SKF 82958, as well as mice exposed to restraint stress. In addition, while clonidine did not ablate 

SKF 82958 induced eye blinks, the drug did attenuate the eye blink response to stress. These results 

suggest that targeting the D1 receptor or the adrenergic system could be a more appropriate 

therapeutic options to address stress- induced Tourette syndrome symptom fluctuations. However, 

more research on these fluctuations are necessary to better understand the contributions of stress 

to this disorder and develop more appropriate therapeutics. 

. 
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5. Neurosteroids in TS pathogenesis 

Sections of this chapter has been adapted from: 

Bortolato, M., Frau, R., Godar, S.C., Mosher, L.J., Paba, S., Marrosu. F., Devoto, P., The 

implication of neuroactive steroids in Tourette’s syndrome pathogenesis: A role for 5α-

reductase? J Neuroendocrinol, 2013. 11: p. 1196-208 

Introduction 

The research presented in the previous chapters identifies stress as a key component to 

exacerbate TS-like behaviors or replicate dopamine induced TS-like behaviors. This has been 

highly corroborated by clinical observations that have identified stress as a factor in the waxing 

and waning course of symptom severity. However, the molecular underpinnings of this 

observation remain poorly understood. The possible contributions of stress to TS symptoms are 

numerous and will be discussed in the upcoming chapter. 

Clinical studies associating psychosocial stress and tics 

While it has been assumed that stressful life events may impact both the onset of TS and 

tic exacerbations later in the course of the disorder, the clinical research has not fully supported 

these assumptions. This is especially the case where TS onset is concerned and is highlighted in 

two conflicting reports published almost 20 years apart. Bornstein et al [321] published a large 

survey that identified several adverse events as common occurrences in the year prior to TS onset, 

which included fever, undergoing operations using general anesthesia and emotionally tense 

events such as divorce of parents or moving to a new home. However, a subsequent publication 

by Horesch et al [322] did not find a greater number of stressful events leading up to the onset of 

symptoms. Therefore, further research is necessary before conclusions can be drawn on these 

studies. 



57 
 

The research on the impact of psychosocial stress in relation to tic exacerbations has been 

more thoroughly researched. Psychosocial stress or anxiety has been reported repeatedly to worsen 

tics [321, 323], with greater correlation between the severity of tics and daily life stressors rather 

than global stress level [324]. Interestingly, TS patients also reported a higher number of stressful 

life events, as well as an increased level of perceived stress [324]. Similar findings, although not 

all to the same degree of significance have been repeatedly reported [325-330]. Finally, as 

mentioned in chapter 1 it has been reported that maternal psychosocial stress during pregnancy is 

a strong predictor of tic severity [88, 90].    

 At a more acute level, there have also been limited reports on the effects of psychosocial 

or physiological stress on tic fluctuations through the course of the day. One series of studies 

reported that thermal stress increased the frequency of tics [331, 332]. Studies on short-term effects 

of psychosocial stress have indicated that activities that elicit feelings of tension can result in an 

increased frequency of tics. These activities include socializing and watching movie clips that 

provoked anticipation [333-335]. In addition, activities that require intense concentration, such as 

mental math, have been demonstrated to decrease the patient’s ability to suppress tics, indicating 

that psychosocial stress may not directly influence tic frequency but rather reduce the ability to 

suppress tics [336, 337]. In line with this finding, it has been posited that stressful events may 

increase cortex excitability that thereby compromise motor control which is needed for tic 

suppression [336, 338, 339].  

The interactions between stress and dopamine. 

 In line with the clinical observations described above, TS patients exhibit a more 

pronounced activation of the hypothalamic-pituitary-adrenal (HPA) axis than controls. The HPA 

axis is a multistep biochemical pathway that is activated in response to a perceived stress. In brief, 
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the prefrontal cortex and/or the amygdala perceive an environmental stressor and transmit this 

information to the paraventricular nucleus (PVN) of the hypothalamus. The PVN releases 

corticotrophin-releasing hormone (CRH), which acts on receptors on corticotropic cells in the 

pituitary gland to trigger the release of adrenocorticotropic hormone (ACTH) into the bloodstream. 

In the adrenal gland, ACTH induces the secretion of glucocorticoids (cortisol in humans and 

corticosterone in rodents) from the cortex. Through the steroid hormone receptors in the brain, 

these periphery-synthesized steroids are able to regulate signaling pathways and long-term 

remodeling of dendrites and synapses [340, 341]. In addition to the glucocorticoids, there is also 

an increase in the synthesis of other neurosteroids, namely 3α, 5α-tetrahydroprogesterone 

(allopregnanolone, AP) and 3α, 5α tetrahydrodeoxycorticosterone (alloTHDOC) [342-344]. AP 

and alloTHDOC are among the most potent allosteric modulators of GABAA receptors and through 

this receptor they aide in closing the stress cascade by suppressing the endocrine response to stress. 

In this manner they restore the HPA axis to homeostatic functioning [343-349]. The adrenal gland 

and the gonads are the primary sources for AP in the periphery; however, the brain also synthesizes 

neurosteroids to mediate the stress cascade. In fact, AP levels increase in response to stress within 

the brain even in animals that have been adrenalectomized or gonadectomized [350].  

 Clinical evidence highly supports that TS patients have a stronger activation of the HPA 

axis than controls. In fact, several studies have shown increased salivary cortisol levels, plasma 

ACTH, and CRH following various stressors, including mock MRI scans and lumbar puncture 

[351-353]. A few conflicting studies have not found increases in cortisol levels; however, these 

studies took blood samples in the morning so differences may have been masked by the circadian 

rise in plasma cortisol levels early in the day [353, 354]. To date there have not been reports on 

the levels of AP or alloTHDOC following acute stress in TS patients.  
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 There is a plethora of evidence indicating that stress impacts the dopaminergic system. In 

humans it has been demonstrated that psychosocial stress induces dopamine release in the ventral 

striatum and prefrontal cortex [355-357]. Furthermore, in rodent studies, stress has been shown to 

increase extracellular dopamine concentrations in several brain regions of interest to TS and 

comorbid disorders. These include the prefontal cortex [358-362], the amygdala [363] and the 

nucleus accumbens [364, 365]. In addition, Pat et al [366] demonstrated that ovine CRH stimulated 

dopaminergic neuron terminals in the nucleus accumbens of rats. These findings are very 

interesting to TS pathogenesis for several reasons. 1) Enhanced dopamine activity following stress 

may lead to a imbalance of the direct and indirect pathways of the striatum and thus lead to an 

increase in tics; 2) The prefrontal cortex is highly involved in the patient’s ability to suppress tics; 

therefore, abnormalities in dopamine signaling in this brain region may lead to a decreased ability 

to suppress tics and lead to an enhancement of tic frequency. This may in turn explain how stressors 

that require intense concentration, such as the mental math exercise, can reduce the ability of 

patients to suppress tics [336, 337].  

 The reciprocal of these observations has also been found, or in other words, altered 

dopaminergic systems might induce alterations in the physiological stress response. Despite 

findings that TS patients exhibit enhanced HPA responses to stressful stimuli, clinical data 

assessing a direct relationship between altered dopamine levels or signaling pathways and stress 

responsivity is lacking [336, 351-353]. However, in animal studies there has been extensive 

research that indicates modulation of physiological stress responses from dopamine [367-370].   

 These clinical and preclinical data suggest that there are many points of interaction between 

the stress cascade and the dopamine system. However, the exact nature of these interactions 

remains unclear. Based on the current research, there are several possible hypotheses that can be 
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stated [336]: 1) psychosocial stress initiates and/or exacerbates tics through the activation of 

dopaminergic neurotransmission; 2) dysfunctions within the dopaminergic system leads to the 

elevated physiological stress response: 3) abnormalities in both the physiological stress response 

and underlying hyperdopaminergic state of TS feed off each other in a feedforward loop that 

aggravates and exacerbates both issues. It is outside the scope of this dissertation to fully determine 

which of these hypotheses may be most correct; however, some parts of these questions will be 

addressed. 

Neurosteroids and dopamine: how do neurosteroids affect the course of TS and interact 

with dopamine? 

 Several avenues of potential research and unanswered questions arise from the clinical and 

preclinical data discussed. However, the research presented here will focus on the neurosteroids 

that are upregulated following acute stress, specifically AP and to a lesser extent alloTHDOC.  

This research has followed clinical and preclinical findings from our laboratory that have 

pinpointed a key role for neurosteroids to modulate dopamine-mediated responses. In addition, our 

previous data has indicated a therapeutic potential for targeting the synthesis of AP and 

alloTHDOC, along with other potent neurosteroids, in the treatment of TS. Since this is a largely 

understudied aspect of TS, these studies will be especially valuable in understanding the waxing 

and waning nature of TS and in identifying novel therapeutic targets.   

 Acute stress increases the synthesis of AP and alloTHDOC (Fig 5.1) via an increase in the 

enzyme 5α-reductase (5αR) [371-373]. There are two isoenzymes of 5αR that are capable of 

mediating this reaction, which consists of the saturation of the 4,5 double bond of the A ring of 

Δ4-3-ketosteroid substrates, including deoxycorticosterone, progesterone, androstenedione and 

testosterone [374]. This step in steroidogenesis forms the precursors to AP and alloTHDOC, 5α-
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dihydroprogesterone and 5α-dihydrodeoxycorticosterone, respectively. While these isoenzymes 

carry out identical reactions and are both found in the membrane of the endoplasmic reticulum, 

5αR type 1 (5αR1) and 5αR type 2 (5αR2) vary in several key characteristics. The most important 

of these are the localization throughout the body, substrate affinity, and pH optima [374].  5αR1 

was the first isoenzyme to be isolated and is encoded by the gene SRD5A1. This enzyme is 

expressed in cells and structures originating in the ectoderm, including epidermal keratynocytes, 

melanocytes, sebaceous and sweat glands, neurons of the central and peripheral nervous system 

and adrenal glands [375-379]. 5αR1 has also been found in fibroblasts, hepatocytes and various 

organs including the prostate, lung, colon and kidney [376, 380-384]. Furthermore, 5αR1 is the 

predominant isoenzyme in the adult brain [383, 385-391]. The substrate affinity (Km) of the 

substrates, testosterone and progesterone are 1.7uM and 1.3uM respectively. This enzyme also 

functions optimally at a neutral pH range of 6-8.5. In contrast 5αR2, encoded by SRD5A2, is found 

primarily in organs and tissues of the male urogenital tract (prostate, epididymis, testicles, and 

seminal vesicles), genital skin, hair follicles and liver [381]. Within the brain, the 5αR2 transcript 

has been mainly identified in early development stages [392]; however, this isoenzyme has also 

been found in the adult brain [393]. Interestingly, the brain regions where 5αR2 is found is also 

more distinct than 5αR1, which is found throughout the brain. 5αR2 is most highly expressed in 

the hypothalamus, prefrontal cortex, and nucleus accumbens [372, 392, 394]. In further contrast 

to 5αR1, 5αR2 has a higher affinity for testosterone (Km = 0.2uM) and progesterone (Km = 0.2uM) 

and the optimal pH range is much narrower, 5-5.5 [374]. These characteristics indicate that the 

role of 5αR2 is much more heavily regulated than 5αR1 and the two isoenzymes may function in 

phasic and tonic manners respectively. It is also worth noting that due to the localization of 5αR2, 

the primary physiological function of 5αR2 is the development of male genitalia and androgen 
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synthesis. In humans, mutations in 5αR2 lead to normal urogenital tracts but underdeveloped 

external male genitalia and prostate [395]. 

Figure 5.1 Schematization of major neurosteroidogenic pathways.  
Metabolic changes in steroid configurations are represented in the same color as the enzymes (boxes) catalyzing the 
reactions. Red arrows represent the major reactions corresponding to the “backdoor” pathway of DHT synthesis. 
Dotted arrows represent reactions that have been hypothesized, but not fully ascertained in the brain. Enzymes: 3β-
HSD; 3β-hydroxysteroid dehydrogenase; 5αR, 5α-reductase 17β-HSD: 17β-hydroxysteroid dehydrogenase; 3α-
HSOR: 3α-hydroxysteroid oxidoreductase; CYP21A2: Steroid 21-hydroxylase; CYP17A1: cytochrome P450 17A1. 
Steroids: DOC, deoxycorticosterone; 5α-DHDOC, 5α-dihydro deoxycorticosterone; 3α,5α-THDOC, 3α,5α-
tetrahydrodeoxycorticosterone; 3S- pregnenolone, pregnenolone sulfate; DHP, 5α-dihydroprogesterone; AP, 3α,5α-
tetrahydroprogesterone (allopregnanolone); 17-OH-Preg, 17-hydroxypregnenolone; 17-OH-Prog, 17-
hydroxyprogesterone; 17-OH-DHP, 17-hydroxydihydroprogesterone; 17-OH-AP, 17-hydroxyallopregnanolone; 3-S 
DHEA dehydroepiandrosterone sulfate; DHEA, dehydroepiandrosterone; 3S- androstenediol, androstenediol sulfate; 
DHT, 5α-dihydrotestosterone; 3α-diol, 5α-androstane-3α,17β-diol. 
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Since 5αR mediates the rate limiting step in steroidogenesis it has been the target of several 

pharmacological therapies. In particular, the 5αR inhibitors, finasteride and dutasteride, are 

prescribed for benign prostate hypoplasia and male-pattern alopecia; however, research is being 

conducted to utilize these compounds for other disorders [374]. One of the most commonly 

prescribed 5αR inhibitors is the compound finasteride. This compound completely inhibits 5αR2 

at clinical doses but not 5αR1; however, due to the chronic nature of finasteride treatment there is 

significant inhibition of both isoenzymes [396-398].   Importantly, finasteride has a very low 

dissociation constant for 5αR2 (Ki = 3-5 nM), which results in a half-life of about 30 days making 

this inhibition almost irreversible in the short term [383]. The side effects of finasteride are very 

limited and are most commonly described are decreased libido, ejaculatory disorders and erectile 

dysfunction [399-402]. Of note, however, a subset of patients has developed a severe untreatable 

depression following treatment with finasteride for the FDA approved uses (alopecia and benign 

prostate hypoplasia) which, did not remit upon termination of finasteride treatment and while rare, 

has resulted in instances of suicide [403-406]. Therefore, further research is warranted concerning 

the role of finasteride and 5αR in the mediation of depressive behaviors.  

 The research surrounding the use of finasteride as a therapy for TS started with several key 

clinical observations: 

1) The stress sensitivity described in the introduction and further expanded on in this 

chapter highlights a possible role for AP and alloTHDOC 

2) The age of onset of TS coincides with adrenarche. This is the time period when the 

innermost zone of the adrenal gland, the zona reticularis develops and begins producing 

DHEA, DHEA-sulfate (DHEAS) and small amounts of testosterone [407-410].  
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3) Following puberty, tics and other symptoms remit in many male patients. Although, in 

contrast it has been noted that there is a high occurrence of tic disorders in familial 

male precocious puberty [411], which may imply that steroidal changes involved in 

puberty may be conducive to tic exacerbation, rather than remission. This is in line with 

the increase in symptoms up through puberty and the remittance being observed in late 

adolescence. Other neurodevelopmental aspects during this time frame may also 

account for the decrease in symptoms following puberty, such as maturation of the 

dopaminergic system and sexually dimorphic brain structures.  

4) This disorder is highly sex dimorphic. Female patients often do not exhibit a remission 

in symptoms as they age and tics can actually worsen as they enter young adulthood 

[112]. Furthermore, males are diagnosed with this disorder at a much higher rate (4:1) 

over females. The severity of TS symptoms is also correlated with a preference for 

masculine play and some of the core features of TS are reminiscent of androgen-

mediated behaviors such as impulsivity, aggressiveness, rage, increased sex drive and 

premature erotic urges [113, 301, 412-415]. These observations indicate that androgens 

may play an important role in the pathogenesis of this disorder. Alternatively, as 

suggested in #3, this dimorphism may also result in the contribution of sexually 

dimorphic brain structures. However, it has also been noted that exogenous androgens 

exacerbate TS symptoms [110] suggesting a more direct role for androgen steroids.  

Addressing all of these possible lines of research is outside the scope of this dissertation; however, 

these observations in conjunction with promising preclinical results led to clinical trials conducted 

by our laboratory. The subjects were limited to adult males with refractory TS; however, the 

findings indicated that finasteride would be a promising therapeutic option [416, 417]. In these 
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studies, finasteride reduced the severity and frequency of both motor and vocal tics and did not 

induce side effects associated with the typical anti-dopaminergic therapeutic options. In addition, 

other therapies have been investigated that target the androgen receptors; however, these therapies 

had short-lived efficacy and a marked potential for severe hepatic side effects [418-421]. Despite 

these promising results there are drawbacks to the use of finasteride as a TS therapy. For one, the 

induced depression is a critical issue that must not be ignored. Furthermore, this drug cannot be 

used on male children, who represent the clear majority of patients, due to the demasculinizing 

effects of inhibiting androgen synthesis during this critical stage in development. Therefore, we 

have expanded our research to explore finasteride’s mechanisms of action to identify novel targets 

and therapeutic options for children. We have focused primarily on targeting the stress induced tic 

fluctuations since this is a therapeutic avenue that many drugs do not target. 

 Our preclinical research to the point of this dissertation was focused on the interaction 

between steroids and dopamine modulation. This research has led to several important findings 

and paved the way for the research presented in this dissertation. The first study conducted by 

Bortolato et al. in 2008 [422] demonstrated that both finasteride and dutasteride could ablate the 

PPI deficits induced by the nonspecific dopamine receptor agonist apomorphine and amphetamine. 

In subsequent studies it was identified that finasteride infusion directly into the nucleus accumbens 

core or shell replicated the effects of the systemic administration of finasteride on apomorphine-

induced PPI deficits [423]. These studies were both conducted in rats using general dopamine 

receptor agonists; in contrast, finasteride did not affect the reductions of PPI produced by 

apomorphine in mice. However, finasteride did attenuate the PPI deficits induced by the D1 

receptor agonist SKF 82958. Interestingly, whereas the D2 receptor agonist quinpirole is not 

capable of inducing PPI deficits in mice alone, the combination of quinpirole and finasteride 
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produced significant PPI deficits [277]. The replication of these results in rats has been limited by 

the assumption that while mice are susceptible to PPI disrupting effects from D1, but not D2, 

receptor agonists, the opposite is true for rats. However, further investigation has found that this 

is a strain, rather than species, specific difference [267], and so part of the research presented in 

the remainder of this dissertation will focus on translating these findings from mice to rats.  

 In summary this evidence points to a critical role for stress steroids in the mediation of TS 

symptom fluctuations throughout the course of the disorder. In the following chapters, research 

that aims to address the mechanism of these observations will be discussed. Whether or not 

psychosocial stress activates dopamine neurotransmission to exacerbate tics, abnormal dopamine 

sensitizes the HPA axis to elevate the patient’s response to stress, or a combination of the two, it 

is clear that TS patients have a stronger HPA axis activation over controls. This elevated HPA 

response would also increase 5αR activity and drive an increase in AP and alloTHDOC that could 

promote the exacerbation of TS symptoms. This hypothesis will be explored in the presented 

research by investigating the responses of the TS animal models described in chapters 3 and 4 to 

neurosteroids and/or the inhibition of steroidogenesis. The molecular mechanisms underpinning 

these observations will also be investigated through genetic knockout and pharmacological means. 

In addition, we will address the issue of 5αR1 versus 5αR2 as they contribute to this disorder and 

parse out the separate roles of each isoenzyme. Based on the specific characteristics outlined 

above, such as the role of 5αR2 to mediate androgen synthesis, the distinct pH optima and 

localization in the brain (areas that mediate emotional responses), we hypothesize that targeting 

5αR1 specifically may be a therapeutic option to reduce levels of AP and reduce increases in tics 

as a result of stress, without causing demasculinization or depression in the patients. These 
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experiments will focus on mice with genetic deficiencies of either isoenzyme to determine the 

separate roles of each in PPI regulation and depressive-like behaviors.  

Mechanisms of AP action in the brain 

 Following the research described above, we also aimed to determine the molecular 

mechanisms through which AP mediates dopamine-stress interactions. As highlighted above, AP 

is a positive allosteric modulator for the GABAA receptor at nanomolar concentrations [424, 425] 

and is capable of directly opening GABAA at micromolar concentrations [426, 427]. In the capacity 

of a positive allosteric modulator, AP enhances the actions of GABAA by prolonging the opening 

time of the chloride ion channels [428, 429]. It has been demonstrated that the subunit composition 

of GABAA alters the effectiveness of AP [426]. The five subunits of GABAA consist of two α 

subunits, two β subunits, and either a δ or γ subunit [430]; GABAA receptors containing the δ 

subunit are modulated by AP to a greater extent than those containing the γ subunit [431-433]. The 

contribution of these subunits to the effectiveness of AP is unknown and binding sites involving 

these subunits have not been identified. The two known binding sites for AP consist of binding to 

the trans-membrane domain of α-subunits (to potentiate GABA) and the interfacial residues 

between α and β subunits (to directly activate GABAA) [427]. Through this receptor AP acts to 

shut down the stress cascade to protect the brain against excitotoxity following stress [434]. This 

is accomplished by increasing the GABAergic inhibitory neurotransmission in the CRH-releasing 

parvocellcular neurons of the hypothalamus PVN which results in the downregulation of CRH and 

ACTH gene transcripts [349, 435-437]. AP also modulates GABAergic neurotransmission in other 

parts of the limbic system and prefrontal cortex [345, 438-441].  

Another receptor of interest is the pregnane x receptor (PXR). PXR is a nuclear hormone 

receptor that has largely been studied in the periphery and especially in the liver where it has been 
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found to been a key regulator in drug clearance through the transcriptional activation of drug 

detoxification genes [442]. In addition, PXR regulates genes involved in cholesterol and bone 

homeostasis [443, 444]. A diverse array or endogenous and exogenous compounds and chemicals 

activate PXR, which include pregnanes (such as AP), glucocorticoids, bile acids, vitamin E and 

vitamin K2, and drugs such as rifampin and protease inhibitors, in addition to environmental 

contaminants [443, 445-450]. The expression of PXR is widespread throughout the body of both 

humans and rodents [443, 447, 448, 451], including several regions of the brain [452-455]. Of note 

to steroidogenesis and dopamine modulation, it has been found that PXR knockdown in rats 

decreased the levels of AP in the midbrain, striatum and hippocampus and interferes with 

dopamine motivated behaviors such as mating [453, 454, 456-460]. These findings suggest that 

PXR is both a receptor for AP and acts as part of a feedforward mechanism to produce more AP. 

In addition, these data support the hypothesis that AP modulates dopamine mediated behaviors. 

To further this research and apply it to our studies we will be studying the effects of AP in PXR 

KO mice.  

Finally, we investigated contributions of the purinergic receptor P2X4R [461]. A large 

portion of the research on P2X4R in the brain has focused on the role of P2X4R in inflammation 

and microglia, which may contribute to some of the observed risk factors for TS, including β-

streptococcus infection, although this possible connection has not been fully explored. The P2X4R 

is part of the purinergic ionotropic P2X family of receptors, which are homotrimeric cation-

permeable channels that are activated by extracellular adenosine 5’-triphosphate (ATP) [462, 463]. 

P2X4R is the most abundant of these in the central nervous system [464, 465], where this receptor 

is expressed in both neurons and microglia [466, 467]. Preclinical research has found that 

ivermectin, a positive allosteric modulator of P2X4R induced anxiolytic-like effects and PPI 
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deficits [468]. Interestingly, knockout of P2X4R also induces PPI deficits, as well, as 

sociocommunicative impairments [469]. These findings are in agreement with other reports that 

P2X4R modulate N-methyl-D-aspartate (NMDA) glutamate receptors [470] that are known to be 

involved in emotional and cognitive responses [471] and have been implicated in autism-spectrum 

disorder (ASD). Furthermore, NMDA receptor antagonists have been shown to induce PPI deficits 

in rodent models [472] so modulation of these ion channels by P2X4R may explain the alterations 

in sensorimotor gating capabilities in the mouse studies described above. P2X4R have also been 

shown to regulate striatal dopamine homeostasis, which would also contribute to sensorimotor 

gating functions [473]. To date there have not been any studies exploring the role of P2X4R in AP 

mediated effects outside of the original study identifying AP as a P2X modulator [461]. Therefore, 

we will begin characterizing the effect of AP in the P2X4R KO mice as an initial step in 

determining these interactions.  
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6. Allopregnanolone mediates the exacerbation of Tourette-like responses by acute 

stress in mouse models 

This chapter has been adapted from: 

Mosher, L.J., Godar, S.C., Nelson, M., Fowler, S.C., Pinna, G., Bortolato, M., Allopregnanolone 

mediates the exacerbation of Tourette-like responses by acute stress in mouse models. Sci 

Rep, 2017. 7(1): p. 3348 

 

Introduction 

As previously discussed tics are highly variable in intensity and frequency. Among other 

factors, these symptom fluctuations are posited to reflect the impact of select physical and 

psychological stressors [17, 39, 474]. The neurobiological mechanisms whereby tics are 

exacerbated by contextual triggers, however, are poorly understood; as a result, no 

pharmacological interventions are currently available to prevent or mitigate tic aggravation in 

response to stress. Therefore, to further study the role of stress and stress steroids in an animal 

model of TS we expanded on our findings presented in chapter 3 where we documented that D1CT-

7 mice display exacerbated tic-like responses and PPI deficits in response to a naturalistic 

environmental stressor, consisting of a 20-min spatial confinement (SC) within a 10-cm diameter 

cylindrical enclosure in their home cages. In particular, we focused on the stress steroid, AP and 

how this steroid contributes to the stress-induced fluctuations observed in the D1CT-7 mouse. We 

limited our analysis to the prefrontal cortex (PFC), given that rich evidence has established that 

this region is particularly sensitive to the effects of acute stress on neurosteroid synthesis [342] 

and plays a fundamental role in the control of tics (and its modulation by stress) in TS [43, 336]. 

Methods 
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Animals. We used 3–4-month-old, experimentally naïve male Balb/c mice (n = 8–15 per 

genotype and treatment group) weighing 20–30 g. Animals were purchased from Jackson Labs 

(Bar Harbor, ME) and genotyped as previously described [255]. Since the inheritance pattern of 

D1CT-7 mutation is autosomal dominant, we bred WT females with heterozygous D1CT-7 sires. 

This breeding scheme was selected to standardize maternal behavior. Animals were housed in 

group cages with ad libitum access to food and water. The room was maintained at 22 °C, on a 

12 h: 12 h light/dark cycle from 8 am to 8 pm. Animals were tested during their light cycle between 

12 and 4 pm to minimize any potential circadian effects. All experimental procedures were in 

accordance with the NIH guidelines and approved by the IACUCs of the Universities of Kansas 

and Utah. 

Drugs. The following drugs were used: progesterone, DHP, AP (Tocris Bioscience, 

Bristol, UK), finasteride (Astatech, Bristol, PA) and haloperidol (Sigma-Aldrich, Saint Louis, 

MO). Finasteride, progesterone, DHP and AP were suspended in 5% Tween 80, diluted with 0.9% 

saline, and administered by IP injection in a 10 ml/kg volume. Haloperidol was dissolved in 10% 

acetic acid buffered with NaOH and diluted with saline. 

Dissection of brain regions. Immediately after decapitation, brains were frozen and the 

frontal portion cut into 1-mm-thick slices using a Jacobovitz brain slicer (Zivic Miller, Portersville, 

PA). The slices obtained from 1.18 to 0.14 anterior to bregma were mounted on a coverslip kept 

at 4 °C and disks (1.5-mm diameter) were punched out from these slices. 

Measurement of neurosteroid content. Extraction, derivatization, and GC-MS analyses 

of neurosteroids were performed with minor modifications as described [475, 476]. The steroid 

measurements included progesterone, 5α-dihydroprogesterone, AP, and pregnanolone (3α, 5β-

tetrahydro-progesterone). Supernatants were extracted with ethyl acetate and, 
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after lyophilization, neurosteroids were purified and separated by 

HPLC. Tritiated neurosteroids (American Radiolabeled Chemicals, St. Louis, MO) were added to 

monitor retention time through HPLC while deuterated internal standards (CDN Isotopes, Pointe-

Claire, QC, and Steraloids, Newport, RI) were added to allow quantification of the compound of 

interest. The HPLC fractions containing progesterone, AP, and pregnanolone were derivatized 

with heptafluorobutyric acid anhydride (HFBA) (Supelco, Bellefonte, PA). 5α-

dihydroprogesterone was derivatized with N-methyl-N-(trimethylsilyl) trifluoroacetamide 

(MSTFA)-ammonium iodide (NH4I)/1,4-dithioerythritol(DTE)/ acetonitrile(CH3CN) (Sigma-

Aldrich) in a ratio of 1,000/2/5/1,000, and subjected to GC-MS. Mass fragmentography analysis 

of derivatized hormones was performed in the standard electron impact mode with a detection 

limit of ≈10 fmol and intra-assay coefficients of variation less than 5%. Neurosteroids were 

identified based on their GC/MS retention time characteristics; the definitive structural 

identification of each neurosteroid was provided by its unique mass fragmentation pattern. To 

calculate the quantity of the neurosteroid of interest in each fraction, the area under the peak of 

the neurosteroid in the sample was divided by the area under the peak of the deuterated internal 

standard. Only peaks with a signal-to-noise ratio greater or equal to 5:1 were integrated.    

Western Blot. Samples were homogenized on ice in a buffer containing 10 mM Tris-

HCl pH 7.4, 5 mM EDTA, 320 mM sucrose, protease and phosphatase inhibitor cocktail. 

Homogenates were centrifuged for 5 min at 3000 x g to precipitate nuclei; supernatant fractions 

were collected and centrifuged at 20,000 x g for 60 min. The resulting pellet (P2) was solubilized 

in T-PER lysis buffer (Tissue Protein Extraction Reagent, Pierce, Rockford, IL) supplemented 

with protease and phosphatase inhibitor cocktail. Small aliquots of the homogenate were used for 

protein determination by a modified Lowry protein assay method (DC protein assay, Bio-Rad 
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Laboratories, Hercules, CA). Equal amounts of proteins were separated on a 4–15% Criterion 

TGX Precast Gel (Bio-Rad Laboratories) by electrophoresis and transferred to a polyvinylidene 

difluoride membrane using the Trans-Blot Turbo Transfer system (Bio-Rad Laboratories). 

Membranes were then blocked with 3% BSA (Sigma-Aldrich) in TRIS-buffered saline 

supplemented with 0.1% Tween 20 for 2 h at room temperature and then incubated overnight with 

primary antibodies (1:1000) at 4 °C. Primary antibodies used in this study include the following: 

anti-actin (ab3280, Abcam, Cambridge, MA); anti-GABAA receptor α1 (NB 300-191, Novus 

Biologicals, Littleton, CO); anti- GABAA receptor α4 (NB 300-194, Novus Biologicals); anti-

GABAA receptor δ (ab111048, Abcam); and anti-GABAA receptor π (ab26055, abcam). These 

GABAA receptor subunits were chosen as they express a high affinity for neurosteroids and have 

been indicated to regulate the binding of AP and neurosteroids to GABAA receptors [477-479]. 

After washing, membranes were incubated with HRP-conjugated secondary antibodies. Antibody 

binding was detected using Clarity ECL substrate (Bio-Rad Laboratories) and proteins were 

analyzed by the ChemiDoc Touch system and the Image Lab software (Bio-Rad 

Laboratories). Membranes were stripped and re-probed with an anti-actin antibody for 

normalization.  

Behavioral Studies. Tic-like manifestations were scored by trained observers blinded to 

the treatment, as previously indicated [256]. Tic-like manifestations were defined as rapid 

(<1 second) twitches of the head and/or body. SC, PPI and locomotor analyses were carried out as 

previously described in chapter 3. 

Statistical analyses. Normality and homoscedasticity of data distribution were verified by 

using Kolmogorov-Smirnov and Bartlett’s tests. Statistical analyses of parametric data were 
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performed with one-way or multi-way ANOVAs, followed by Newman-Keuls’ test for post-hoc 

comparisons. The significance threshold was set at 0.05. 

Results 

SC increases neuroactive steroid levels in the prefrontal cortex (PFC). The first study 

was aimed at the measurement of steroid levels in the PFC of D1CT-7 and wild-type (WT) 

littermates following SC (Fig. 6.1). The analysis of progesterone content (Fig. 6.1A) revealed a 

significant genotype × confinement interaction [F(1,17) = 8.15, P < 0.01], reflecting significant 

differences between confined D1CT-7 mice and either WT controls (P < 0.001) or non-confined 

D1CT-7 mice (P < 0.001; Newman-Keuls). In contrast, DHP levels (Fig. 6.1B) were higher in 

D1CT-7 mice than WT controls [Main effect for genotype: F(1,21) = 6.03, P < 0.05]; however, SC 

had no significant effect on the content of this neurosteroid. Furthermore, no significant 

interactions between genotype and stress were found. The PFC concentrations of AP (Fig. 6.1C) 

in D1CT-7 mice were higher than those detected in their WT littermates [F(1,22) = 14.97, 

P < 0.001]. The same neurosteroid was found to be enhanced by SC [F(1,22) = 6.38, P < 0.05]. No 

Figure 6.1 Neurosteroid levels in the prefrontal cortex of D1CT-7 and wild-type mice following space confinement. 
(A) progesterone, (B) 5α-dihydroprogesterone (DHP) and (C) allopregnanolone were measured after 20 min of SC. 
Data are shown as means ± SEM. *P < 0.05, and ***P < 0.001 for comparisons indicated by dashed lines. Main effects 
for genotype are indicated as comparisons between brackets. Main effects for SC are indicated as comparison between 
symbols. N = 4–7/group. NC, no spatial confinement. For further details, see text. 
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significant genotype × stress interaction was detected. Finally, no significant differences were 

found in the content of pregnanolone, the 3α,5β-reduced derivative of progesterone (Table 6.1). 

NC WT  4.77 ± 4.12  
NC D1CT7  0.7 ± 0.18  
SC WT  2.38 ± 1.13  
SC D1CT7  1.5 ± 0.34  
Table 6.1 Levels of pregnanolone in the prefrontal cortex of D1CT-7 and wild-type (WT) littermates following 
spatial confinement (SC). Data are shown as means ± SEM (in pg/mg). NC, non-confined. N=4-7/group.  

AP selectively increases tic-like responses and induces PPI deficits in D1CT-7, but not 

WT mice. Given that our previous results showed that SC was associated with increased levels of 

progesterone, DHP and AP, we next tested whether the administration of any of these steroids may 

reproduce the adverse effects of this stressor on tic-like responses and PPI deficits (13). Behavioral 

testing began 10 min after steroid injections. Neither progesterone (15 mg/kg, IP) (Fig. 6.2A–D) 

nor DHP (15 mg/kg, IP) (Fig. 6.2E–H) elicited any significant behavioral change in D1CT-7 mice. 

The only significant effect detected by these analyses was a significant reduction in startle 

amplitude in D1CT-7, in comparison with WT counterparts [Fig. 6.2C: F(1,28) = 45.65, P < 0.001; 

Fig. 6.2G: F(1,28) = 44.92, P < 0.001], as previously reported (13). However, this effect was not 

modified by any treatment. 

In contrast with these findings, AP (5–15 mg/kg, IP) significantly increased tic-like 

responses in D1CT-7 mice (Fig. 6.2I) [F(2,30) = 4.27, P < 0.05; 2-way ANOVA]. Specifically, the 

15 mg/kg dose significantly increased the frequency of tic-like responses between 10 and 20 min 

after the injection (P < 0.01; Newman-Keuls) (Fig. 6.2I). Conversely, AP did not affect digging 

behavior in either genotype (Fig. 6.2J). The analysis of startle magnitude (Fig. 6.2K) showed only 

statistical trends with respect to main effects of genotype [F(1,57) = 3.62, P = 0.06] and AP 

treatment [F(2,57) = 2.53, P = 0.09]; however, no significant interactions between these two 

factors were detected. Notably, a significant genotype × treatment interaction was found for the 
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mean PPI values [F(2.57) = 3.25, P < 0.05] (Fig. 6.2L). Post-hoc analyses showed that the 

15 mg/kg dose of AP induced a significant reduction in mean PPI values as compared with WT 

counterparts treated with the same dose (P < 0.01), as well as D1CT-7 treated with either vehicle 

(P < 0.01) or 5 mg/kg of AP (P < 0.05). 

Figure 6.2 Allopregnanolone exacerbates TS-like behaviors in D1CT-7 mice. Effects of (A–D) progesterone (PROG), 
(E–H) 5α-dihydroprogesterone (DHP) and (I–L) allopregnanolone (AP) on behavioral phenotypes related to Tourette 
syndrome. Data are shown as means ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001 for comparisons indicated by 
dashed lines. Main effects for genotype are indicated as comparisons between brackets. Doses are indicated in mg/kg 
(IP). N = 8–13/group. VEH, vehicle; WT, wild-type; PPI, prepulse inhibition of the startle. For further details, see text. 

Figure 6.3 D1CT-7 mice do not exhibit alterations in GABAA receptor subunit expression. Expression 
of GABAA receptor (A) α1, (B) α4, (C) δ and (D) π subunits in the prefrontal cortex of D1CT-7 and wild type (WT) 
mice. Data are shown as means ± SEM. Representative gels for each subunit and actin controls are presented. Gel 
images have been cropped to the band of interest for each protein.  N=6/group. For further details, see text. 
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D1CT-7 mice do not exhibit alterations in the levels of key neurosteroid-binding 

GABAA receptor subunits in the PFC. To explore whether the observed effects of AP may reflect 

changes in GABAA receptors, we measured the levels of key GABAA subunits that are posited to 

modulate the activity of AP and other neuroactive steroids, namely α1, α4, δ and π. Nevertheless, 

the expression of these proteins in the PFC (as captured by western blotting) was equivalent in WT 

and D1CT-7 littermates (Fig. 6.3), indicating that the actions of AP were not supported by apparent 

changes in GABAA stoichiometry. 

AP increases locomotor activity in D1CT-7, but not WT mice. Next, we examined 

whether the behavioral changes induced by 15 mg/kg of AP were accompanied by variations in 

locomotor activity. As previously observed [286], D1CT-7 mice exhibited significantly higher 

locomotion [Main effect of genotype: F(1,23) = 58.42, P < 0.001]. In addition, a significant 

genotype × treatment interaction [F(2,46) = 5.34, P < 0.01] revealed that AP selectively increased 

the locomotor activity between 10 and 20 min after injection in D1CT-7 mice (P < 0.01 in 

comparison with baseline), but not WT controls (Fig. 6.4A). The analysis of rotation bias (Fig. 

6.4B) and velocity (Fig. 6.4C) revealed that these indices were significantly elevated in D1CT-7 

mice [Main genotype effects: Rotation bias: F(1,23) = 19.91, P < 0.001; Velocity: F(1,18) = 2.39, 

P < 0.001], but were not altered by AP administration in either genotype. Conversely, D1CT-7 and 

WT mice showed similar thigmotactic behavior (Fig. 6.4D), but AP increased the average distance 

from the walls of the arena in both genotypes [Main effect: F(1,19) = 10.08, P < 0.01]. In 

confirmation of previous data [480], D1CT-7 mice displayed a decreased stride length 

[F(1,18) = 22.81, P < 0.001] (Fig. 6.4E) and an increased stride rate [F(1,18) = 82.33, P < 0.001] 

(Fig. 6.4F) compared to WT mice. Neither parameter, however, was affected by AP treatment. 
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Haloperidol countered the enhancement in tic-like responses induced by AP. We 

previously documented that haloperidol (0.3 mg/kg, IP) suppressed the increase in tic-like jerks 

and PPI deficits induced by SC in D1CT-7 mice. Given that our previous resulted showed that AP 

treatment led to similar effects as those caused by SC, we tested whether its effects may be 

countered by haloperidol. D1CT-7 mice were pretreated with haloperidol (0.3 mg/kg, IP) 20 min 

Figure 6.4 Effects of allopregnanolone (AP; 15 mg/kg, IP) on the locomotor activity of D1CT-7 and wild-type (WT) 
mice. Data are shown as means ± SEM. **P < 0.01 and ***P < 0.001 for comparisons indicated by dashed lines. Main 
effects for genotype are indicated as comparisons between brackets. Doses are indicated in mg/kg (IP). N = 12–
13/group. VEH, vehicle. For further details, see text. 

Figure 6.5 Combined effects of haloperidol (HAL; 0.3 mg/kg, IP) and allopregnanolone (AP; 15 mg/kg, IP) on 
behavioral phenotypes related to Tourette syndrome in D1CT-7 mice. Data are shown as means ± SEM. **P < 0.01 
and ***P < 0.001 for comparisons indicated by dashed lines. N = 8–9/group. VEH, vehicle; PPI, prepulse inhibition. 
For further details, see text. 
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prior to AP (15 mg/kg, IP) administration. Analysis of tic-like behaviors (Fig. 6.5A) revealed a 

significant haloperidol × AP interaction [F(1,31) = 12.92, P < 0.001]. This effect indicated that, 

while AP increased tic-like responses, pre-treatment with haloperidol suppressed this response 

(Ps < 0.001). Conversely, digging (Fig. 6.5B) was suppressed by haloperidol, irrespective of AP 

administration [Main effect of haloperidol: F(1,31) = 7.02, P < 0.05]. Startle analysis (Fig. 6.5C) 

revealed that haloperidol reduced the mean amplitude of this parameter [Main effect of 

haloperidol: F(1,31) = 8.63, P < 0.01], while AP increased it [Main effect of AP: F(1,31) = 10.38, 

P < 0.01]; however, no significant interaction between these two treatments was detected. As 

expected, PPI was reduced by AP [Main effect of AP: F(1,31) = 9.58, P < 0.01] and increased by 

haloperidol [Main effect of haloperidol: F(1,31) = 4.41, P < 0.05], but these two effects did not 

significantly interact (Fig. 6.5D). 

Finasteride counters the behavioral and neuroendocrine effects of SC. To further 

assess whether AP mediated the effects of SC in D1CT-7 mice, we then verified whether the 

observed increase in tics and PPI deficits induced by SC could be countered by finasteride. While 

progesterone levels in the PFC of confined D1CT-7 mice were confirmed to be higher than those 

in wild type controls [Main effect of genotype: F(1,20) = 7.51, P < 0.05], the content of this steroid 

was not affected by finasteride treatment (Fig. 6.6A). The analysis of finasteride’s effects on DHP 

revealed a statistical trend for a reduction in DHP levels in both wild type and D1CT-7 mice 

[F(1,20) = 4.05, P = 0.06] (Fig. 6.6B). Finally, ANOVA detected a significant 

genotype × treatment interaction on AP levels [F(1,22) = 6.77, P < 0.05]. Post-hoc analyses 

revealed that finasteride fully countered (P < 0.001) the enhancement in AP produced by SC in 

D1CT-7 mice (P < 0.05) (Fig. 6.6C). 
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Figure 6.7 Effects of finasteride (FIN; 25–50 mg/kg, IP) on behavioral phenotypes related to Tourette syndrome. 
Data are shown as means ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001 for comparisons indicated by dashed lines. 
Doses are indicated in mg/kg (IP). N = 8/group. VEH, vehicle; WT, wild-type; PPI, prepulse inhibition of the startle. 
For further details, see text. 

Figure 6.6 Finasteride reduces allopregnanolone in D1CT-7 mice following space confinement. Effects of finasteride 
(FIN; 50 mg/kg, IP) on levels of (A) progesterone, (B) 5α-dihydroprogesterone (DHP) and (C) allopregnanolone (AP) 
in the prefrontal cortex of D1CT-7 and wild-type (WT) littermates following spatial confinement (SC). Data are shown 
as means ± SEM. **P < 0.01, and ***P < 0.001 for comparisons indicated by dashed lines. Main effects for genotype 
are indicated as comparisons between brackets. Main effects for SC are indicated as comparison between symbols. 
N = 5–7/group. VEH, vehicle. For further details, see text. 
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We next tested whether the reduction in AP levels induced by finasteride could be 

paralleled by the normalization of behavioral responses in spatially-confined D1CT-7 mice (Fig. 

6.7). Finasteride dose-dependently reduced the tic-like bursts (Fig. 6.7A) induced by SC in D1CT-

7 mice [F(2,21) = 8.15, P < 0.01; P < 0.01 for comparisons between vehicle and 25 mg/kg of 

finasteride; P < 0.01 for comparisons between vehicle and 50 mg/kg of finasteride]. Finasteride 

also reduced digging behavior (Fig. 6.7B) in D1CT-7 mice [F(2,21) = 15.51, P < 0.01; P < 0.001 

for comparisons between vehicle and 25 mg/kg of finasteride; P < 0.001 for comparisons between 

vehicle and 50 mg/kg of finasteride]. The analysis of startle amplitude revealed a significant 

genotype × treatment interaction [F(2,42) = 3.56, P < 0.05], which reflected a greater startle-

reducing effect of finasteride (50 mg/kg) in D1CT-7 than WT mice (P < 0.05) (Fig. 6.7C). PPI 

analyses (Fig. 6.7D) also revealed significant genotype × treatment interactions [F(2,42) = 3.63, 

P < 0.05]; post hoc scrutiny of this effect confirmed that SC significantly reduced PPI in vehicle-

treated D1CT-7 mice (P < 0.05). In addition, finasteride ablated the gating deficits induced by SC 

in D1CT-7 mice at both the 25 mg/kg (P < 0.05) and 50 mg/kg (P < 0.05) doses. 

Finally, the analysis of locomotor activity in both WT and D1CT-7 mice (Fig. 6.8) showed 

a significant genotype × treatment × time interaction [F(10,210) = 2.37, P < 0.05]. Overall, while 

D1CT-7 mice exhibited higher locomotor activity than their WT counterparts, the 50 mg/kg dose 

of finasteride exerted a profound hypolocomotive effect in both genotypes. 

AP opposes the effect of finasteride on gating deficits, but not tic-like responses, in 

D1CT-7 mice. Lastly, we verified whether AP may reverse the ability of finasteride to attenuate 

the effects of SC in D1CT-7 mice. Finasteride (25 mg/kg, IP) and AP (15 mg/kg, IP) were 

administered at 40 and 10 min prior to SC, respectively. Only the 25 mg/kg dose of finasteride was 

used for these studies, since initial observations showed that the combination of AP with the higher 
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dose of finasteride had profound sedative effects in D1CT-7 mice. Finasteride was confirmed to 

reduce tic-like behaviors [Main effect: F(1,28) = 16.23, P < 0.001] (Fig. 6.9A) and digging 

responses [F(1,28) = 23.21 P < 0.001] (Fig. 6.9B); however, these effects were not countered by 

AP injection. In contrast with these findings, analysis of PPI revealed a significant finasteride × AP 

interaction [F(1,28) = 7.10, P < 0.05], which reflected the ability of AP to reverse (P < 0.001) the 

ameliorating effects of finasteride (P < 0.001) on this endophenotype (Fig. 6.9D). 

Figure 6.8 Effects of finasteride (FIN; 25-50 mg/kg, IP) on locomotor activity of D1CT-7 and wild-type (WT) 
littermates. Data are shown as means ± SEM. #P < 0.05, ##P < 0.01 ###P < 0.001 for WT vs D1CT-7 of the same 
time block and treatment. *P < 0.05, **P < 0.01 and ***P < 0.001 for indicated time point vs the 1st time block of the 
same genotype and treatment. ^P < 0.05, ^^P < 0.01 and ^^^P < 0.001 for comparisons between the indicated time 
point vs VEH treated of the same genotype and time block. N = 8/group. Abbreviations: VEH, vehicle.   
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Discussion 

The present results show that, in the D1CT-7 mouse model of TS, acute stress exacerbates 

tic-like responses and impairs PPI by promoting the synthesis of the neurosteroid AP. Indeed, 

while these responses were associated with a generalized enhancement in progesterone, DHP and 

AP in the PFC, only the latter steroid elicited behavioral abnormalities akin to those observed 

following SC. Furthermore, the 5α-reductase inhibitor finasteride led to a normalization of stress-

induced behavioral changes and of cortical AP levels in D1CT-7 mice, without eliciting any such 

effects in wild type littermates. 

As mentioned above, tics are characterized by striking fluctuations in intensity and 

frequency, which are greatly contributed by the influence of select environmental triggers [39, 

474]. Against this backdrop, the results of this study provide the first evidence of a mechanism 

that may be responsible for the adverse effects of stress on TS symptoms. The translational 

relevance of these results is underscored by our previous observations and open-label trials, 

documenting the therapeutic action of finasteride in adult male TS patients [394, 416, 417]. The 

present data are also in agreement with our finding that sleep deprivation, a common trigger for 

Figure 6.9 Combined effects of finasteride (FIN; 25 mg/kg, IP) and allopregnanolone (AP; 15 mg/kg, IP) on behavioral 
phenotypes related to Tourette syndrome in D1CT-7 mice. Data are shown as means ± SEM. ***P < 0.001 for 
comparisons indicated by dashed lines. Main effects for genotype are indicated as comparisons between brackets. 
N = 8/group. Abbreviations: VEH, vehicle; PPI, prepulse inhibition. For further details, see text. 



84 
 

tic exacerbation [39, 481], leads to sensorimotor gating deficits in rats via the enhancement of AP 

biosynthesis in the PFC [482]. 

The observed increase in neurosteroid concentrations in the PFC is in alignment with their 

well-documented role in the regulation of stress responses [454]. Our studies did not explore the 

mechanisms whereby SC increases cortical progesterone levels. A possible explanation for this 

effect may be the upregulation of the translocator protein 18KDa (TSPO), which has been observed 

following acute stress in other rodent models [483]. TSPO transports cholesterol into the inner 

mitochondrial membrane, thereby enabling the conversion of cholesterol into pregnenolone, the 

direct precursor of progesterone [484, 485]. 

Acute stress has been shown to increase 5α-reductase expression in the PFC [372]. 

Although the neurophysiological role of AP in humans in response to stress may be different from 

that recognized in rodents [486], preliminary observations suggest that acute stress may also 

increase AP biosynthesis in humans [487]. The notion that the stress-induced increase in AP is 

aimed at reducing anxiety is of particular interest in the context of TS. Indeed, tic execution in TS 

patients is generally regarded as a response to stressful stimuli that mitigates the discomfort 

associated with premonitory urges [23], and, indeed, tic severity has been found to be negatively 

correlated with cortisol levels [353]. This idea suggests that tic execution may be a by-product of 

the mechanisms of stress coping mounted by the cortex to offset the anxiogenic effects of stress 

itself [39]. Furthermore, tics are typically preceded by uncomfortable sensory phenomena [23, 

488], which often reflect a psychological fixation on specific somatic cues and are typically 

exacerbated by environmental stress [17]. Although sensory phenomena are subjective in nature 

and cannot be captured in animal models, the underlying alterations in information-processing 

have been related to deficits in PPI of the startle. Accordingly, a reduction of this index has been 
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observed in TS patients [37, 38] and may be a key phenotypic marker to assess construct validity 

in TS models [138, 286]. Previous work from our group has provided support for a role of 

neurosteroids in the regulation of PPI and finasteride pretreatment can prevent PPI deficits, which 

are induced by dopaminergic agonists as well as environmental stressors [422, 482, 489]. 

Furthermore, our work has shown that these effects can be regulated by the PFC, as well as by the 

nucleus accumbens, but not the dorsal striatum [423]. 

The molecular mechanisms whereby AP leads to a robust exacerbation of tic-like behaviors 

and PPI deficits in D1CT-7 mice remain elusive. Although no alterations of cortical GABAA 

receptor subunit composition were detected in this mouse model, it is conceivable that the 

behavioral outcomes of AP may be contributed by the positive allosteric modulation of GABAA 

receptors in the PFC. Both GABAA receptors and neurosteroidogenic enzymes are expressed in 

the same cortical pyramidal neurons [490], providing a mechanism for excessive inhibition of 

glutamatergic neurons in the PFC; in turn, this process may result in the activation of striatum and 

other subcortical areas. Accordingly, stress has been shown to impair the function of the PFC 

[491]. In addition, the effects of AP may also be contributed by other mechanisms, such as the 

activation of membrane progesterone or pregnane X receptors. Alternatively, we cannot rule out 

that some of these actions may be due to the conversion of AP into its sulfo-conjugated derivative, 

AP sulfate, which acts as a negative allosteric modulator of NMDA glutamate receptors [492]. 

Irrespective of the specific receptors involved in the transduction of AP-mediated signals, 

exacerbation of Tourette-like manifestations may also be facilitated by AP-driven stimulation of 

dopamine release in the dorsal and ventral striatum [493]. In keeping with this concept, our data 

indicates that the dopamine receptor antagonist haloperidol reverses the enhancement in tics 

produced by AP, and countered - albeit not selectively – the PPI deficits induced by this 
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neurosteroid in D1CT-7 mice. These effects are in line with the effects of haloperidol on stressed 

D1CT-7 mice (chapter 3). 

Several limitations of the study should be recognized. First, the translational value of these 

findings is partially limited by the evaluation of AP’s effects only in one model of TS. 

Nevertheless, it is worth noting that, among the currently available animal models of TS [286], 

D1CT-7 mice feature unique characteristics with respect to face and predictive validity. For 

example, tic-like alterations in D1CT-7 mice are sex-dimorphic; furthermore, these responses are 

sensitive to all major TS therapies, such as haloperidol and clonidine ([255], chapter 3). While the 

construct validity of D1CT-7 mice with respect to TS was not apparent at the time of their 

development, their brain pattern of neuropotentiation was found to be restricted to the 

somatosensory/ insular cortex and amygdala [255, 256]; notably, all these regions, and in particular 

the insular cortex, have been recently shown to be particularly relevant in the regulation of 

premonitory sensory phenomena [39, 43, 494]. Nevertheless, D1CT-7 mice feature phenotypes 

that may not be directly related to TS, such as their hyperactivity; thus, future studies in other 

models of TS are necessary to confirm the role of AP in stress-elicited exacerbation of symptoms. 

Second, we have shown that the doses of finasteride used in our experiments can reduce locomotor 

activity in mice; this observation raises the possibility that the effects of finasteride may be due to 

non-specific sedative effects. While it is possible that the hypolocomotion induced by this drug 

may have contributed to some of the effects reported in this study, this possibility is substantially 

tempered by the finding that the doses that reduced tic-like behaviors in D1CT-7 mice did not lead 

to a suppression of startle responses, a common feature of sedative drugs [495]. Third, although 

our results point to a key role of AP in the regulation of TS-like responses in D1CT-7 mice, we 

cannot exclude that other neurosteroids may also participate in the behavioral effects of stress. 
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Further investigations will need to focus on other neurosteroids increased by stress such as 

tetrahydrodeoxycorticosterone or androgenic neuroactive steroids, as well as the role of the 

GABAA receptor and other AP-sensitive receptors. These analyses may prove essential to help 

clarify the male predominance of TS, as well as potential mechanisms of comorbidity with other 

neuropsychiatric problems, including ADHD and OCD. Fourth, our analyses were only limited to 

the PFC of adult mice; however, it is likely that the effects of other neurosteroids may differ with 

age; furthermore, other regions, such as the nucleus accumbens, may be involved in the effects of 

finasteride [496]. Given the limitations in the size of this region, however, further improvements 

in our ability to detect neurosteroid levels will be needed to address this issue. 

Despite these limitations and caveats, the present findings are the first to suggest the potential 

involvement of AP in the adverse effects of acute stress on tics and related sensory correlates. 

Future studies will be essential to confirm these findings in TS patients and explore the therapeutic 

potential of neurosteroid-targeting therapies in tic disorders. 
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7. Neurosteroid contributions to eye blink responses in mice 

Introduction 

 Restraint has been demonstrated in chapter 4 to increase the rate of eye blinks in mice. 

Since eye blinks are regulated by dopaminergic neurotransmission, this paradigm is ideal for 

continuing the research on dopamine and neuroactive stress steroid interactions. Therefore, we 

employed this method of studying TS-like tic behaviors in mice treated with finasteride, as well 

as those with genetic knockout of either 5αR1 or 5αR2.   

Materials and Methods 

Animals.  We used 3-4-month-old, experimentally naïve male C57BL/6 mice (n = 8-10 

per treatment group) weighing 20-30 g. Animals were purchased from Jackson Labs (Bar Harbor, 

ME). We also studied 5αR1KO and 5αR2KO mice along with the heterozygous (HZ) and WT 

littermates (strain: C57BL/6), obtained from breeding colonies at the Universities of Kansas and 

Utah. All mice were generated from HZ x HZ crosses. Progenitors were obtained by Dr. Mala 

Mahendroo (Southwestern University). Unless stated otherwise for specific experimental 

purposes, all mice were housed in groups of 4-5/cage, with at least 1 mouse/genotype, and had ad 

libitum access to food and water. Housing facilities were maintained at 22ºC with a reverse 

light/dark cycle (lights off at 08:00 AM hours and on at 08:00 PM). Whenever the same mice were 

used for multiple behavioral paradigms, the order of animals in each test was counterbalanced 

throughout the study. Experimental manipulations were carried out in the animals’ dark cycle 

between 10:00 AM and 6:00 PM. All handling and experimental procedures were performed in 

compliance with the National Institute of Health guidelines and approved by the local Institutional 

Animal Care and Use Committees.  
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Genotyping. Mouse genotyping was performed by PCR. Samples of genomic DNA were 

extracted from tail biopsies acquired from mice at weaning (postnatal day 21). The following 

primers were used to identify 5αR1 KO mice: 1) GAT TGG GAA GAC AAT AGC AGG CAT 

GC 2) CCA GAC ACG AAC TTC CAC GCT TCT G 3) ATG GAG TTG GAT GAG TTG TGC. 

Reaction conditions were: 94°C x 1.5 min, 94°C x 20s, 55°C x 30s, 72°C x 2 min, 4°C x ∞. The 

following primers were used to identify 5αR2 KO mice: 1) GAT GAC CTC TCC GGG CTT CC 

2) GAA TGT TCC AAG TCA CAG GC 3) CGC TTC TGA GGA GAG AAC TGA CTG A. 

Reaction conditions were: 94°C x 2 min, 94°C x 40s, 55°C x 40s, 72°C x 5 min, 4°C x ∞, as 

previously described [497].   

Drugs. Finasteride (Astatech, Bristol, PA) was dissolved in 5% tween 80 and diluted with 

saline. Finasteride was administered 40 min before scoring. SKF 82958 (Sigma Aldrich, St. Louis 

MO) was dissolved in saline and administered 20 min before scoring. 

Eye blink observations. Eye blinks were scored by trained observers blinded to the 

treatment as described in chapter 4.  

Statistical analyses. Normality and homoscedasticity of data distribution were verified by 

using Kolmogorov-Smirnov and Bartlett’s tests. Statistical analyses of parametric data were 

performed with t-tests, one-way, or multi-way ANOVAs, followed by Tukey’s T-test for post-hoc 

comparisons. The significance threshold was set at 0.05. 

Results 

 The first series of experiments was designed to determine if finasteride (50mg/kg, IP) had 

an effect on eye blink rates at baseline, in the context of restraint stress, or against SKF 82958 

treatment. This was accomplished through three separate experiments. In the first experiment, 

finasteride was administered and baseline eye blink rates were determined. In this case, there was 
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no effect of finasteride on eye blinks (Fig 7.1A). Second, we pretreated the mice with finasteride 

prior to SKF 82958 (0.3mg/kg, IP) treatment. We demonstrated in chapter 4 that SKF 82958 

induced an increase in eye blinks. Surprisingly, finasteride did not decrease the rate of eye blinks 

in the mice treated with the D1 antagonist. (Fig 7.1B). Finally we exposed mice to a 20 minute 

restraint stress prior to scoring the eye blinks. In this experiment, finasteride did decrease the eye 

blink frequency in mice exposed to restraint stress (P < 0.001).  

The next series of experiments was aimed at determining if the effects of finasteride on eye 

blinks following restraint stress was contributed to by 5αR1 or 5αR2 inhibition. 5αR1 KO and 

5αR2 KO mice were tested along with WT littermates. In the first experiments, the mice were 

exposed to restraint stress prior to counting the eye blink frequency to determine if there were 

alterations in the response of these mice to stress. However, both 5αR1 KO (Fig. 7.2A) and 5αR2 

KO (Fig 7.2B) mice responded in a similar manner to restraint stress as their WT counterparts 

(5αR1 KO, main effect of restraint: F(1,25) = 37.97, P < 0.001; 5αR2 KO, main effect of treatment: 

Figure 7.1 Finasteride reduces eye blinks in stressed mice.  
(A) Eye blink responses from freely moving mice pretreated with finasteride (50mg/kg) or vehicle. N=11-12/group 
(B) Eye blink responses from freely moving mice pretreated with finasteride or vehicle prior to SKF 82858 treatment 
(0.3mg/kg). N=12/group (C) Eye blink responses from restrained mice pretreated with finasteride of vehicle. 
N=10/group Data are shown as means ± SEM. ***P < 0.001 compared to the corresponding vehicle treated group. 
Abbreviations: VEH, vehicle; FIN, finasteride. For further details, see text. 
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F(1,28) = 64.54, P < 0.001). In a subsequent experiment we pretreated the mice with finasteride 

prior to restraint to determine if either genotype was resistant to the effects of finasteride. However, 

we again found that the 5αR1 KO mice (Fig 7.2C) and 5αR2 KO mice (Fig 7.2D) responded the 

same as the WT littermates (5αR1 KO, main effect of treatment: F(1,28) = 28.68, P < 0.001; 5αR2 

KO, main effect of treatment: F(1,28) = 82.47, P < 0.001).  

 

Figure 7.2 Both 5αR1 and 5αR2 mediate the effects of finasteride on eye blink responses.  
5αR1 KO (A) and 5αR2 KO (B) mice along with their WT littermates were exposed to no stress or restraint stress for 
20 minutes prior to scoring of eye blink responses. In a separate experiment 5αR1 KO (C) and 5αR2 KO (D) mice and 
the WT littermates were pretreated with finasteride or vehicle before they were all exposed to restraint stress for 20 
minutes before eye blink observations. N=7-8/group. Data are shown as means ± SEM. Abbreviations: VEH, vehicle; 
FIN, finasteride; 5αR1 KO, 5α-reductase type 1 knockout; 5αR2 KO 5α-reductase type 2 knockout. For further details, 
see text. 
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Discussion 

 The experiments presented here demonstrate that finasteride reduces eye blinks in the 

context of stress but not against the D1 agonist SKF 82958. This implies that either D1 receptors 

and stress mediate different pathways to exacerbate eye blink frequencies (as demonstrated in 

chapter 4) or D1 receptors are functioning downstream of the effects from neurosteroids. In 

addition, we show that both 5αR1 and 5αR2 contribute to stress induced increases in eye blink 

frequency and that the loss of neither is sufficient to reduce the effect of stress. Furthermore, 

finasteride is capable of reducing eye blink responses from stress in both 5αR1 KO and 5αR2 KO 

mice indicating that acute inhibition of either isoenzyme ablates this stress response. However, 

these results also emphasize the need for specific inhibitors of mouse 5αR1 and 5αR2 or 

conditional KO animals that allow for the study of a reduction in these enzymes in adulthood or at 

specific developmental milestones rather than as a constitutive knockout. The results from these 

studies indicate that while acute inhibition of either 5αR isoenzyme is sufficient to attenuate the 

eye blink stress response, chronic inhibition is not, which indicates that compensatory mechanisms 

are likely at work to overcome the loss of either isoenzyme.  
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8. The neurosteroid enzyme 5α-reductase modulates the role of D1 dopamine 

receptors in rat sensorimotor gating 

This chapter has been adapted from: 

Frau, R., Mosher, L.J., Bini, V., Pillolla, G., Pes, R., Saba, P., Fanni, S., Devoto, P., Bortolato, 

M., The neurosteroid enzyme 5α-reductase modulates the role of D1 dopamine receptors 

in rat sensorimotor gating. Psychoneuroendocrinology, 2016. 63: p. 59.67. 

Mosher, L.J., Frau, R., Pardu, A., Pes, R., Devoto, P., Bortolato, M., Selective activation of D1 

dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol, 

2016. 173(13): p. 2122-34. 

Introduction 

The therapeutic mechanism of finasteride has been previously demonstrated to be limited 

to dopamine D1 receptors in mice [277]; however, replication of these data and a full analysis of 

dopamine receptor antagonism by finasteride are complicated by the observations that most mouse 

strains are inherently unresponsive to PPI disrupting effects of D2 receptor agonists, while rats are 

observed to be sensitive to PPI deficits induced by D2 receptor agonists but not D1 receptor 

agonists. However, further research has demonstrated that these limitations are due to strain, not 

species differences [267]. Furthermore, we have previously reported that finasteride is effective at 

ablating the PPI disrupting effects of nonspecific dopamine agonists in Sprague Dawley (SD) rats, 

a strain of rats that respond to D2 but not D1 agonists. Nevertheless, D1 receptor activation has 

been shown to be directly involved in the PPI deficits induced by non-specific dopaminergic 

agonists, such as apomorphine (APO) [498] indicating that the therapeutic mechanism of 

finasteride may involve the D1 receptor in rats as well.  
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To test this hypothesis we first expanded on previous research by further investigating other 

strains of rats to determine if other strains are sensitive to PPI disrupting effects from D1 receptor 

agonists. We found that the selective and independent activation of D1 and D2 receptors produces 

PPI deficits in the hooded Long-Evans (LE) strain ([320]; see appendix for full paper). Expanding 

on these findings we investigated the effects of finasteride in both SD and LE rats treated with 

dopamine receptor agonists. 

Materials and Methods 

Animals. All animal care and experimental procedures were in compliance with the 

National Institute of Health guidelines and approved by the Institutional Animal Use Committees 

of the University of Kansas and Cagliari. All studies involving animals are reported in accordance 

with the ARRIVE guidelines for reporting experiments involving animals [275, 276]. The present 

study was conducted on male SD, Wistar (WIS) (Harlan, Italy) and LE rats (Charles River 

Laboratories, Raleigh, NC, USA). Rats (3–4 months old; 300–350 g of body weight) were housed 

3–4 per cage in rooms maintained at a temperature of 22 ± 2°C and a humidity of 60%. Animals 

were given ad libitum access to food and water and held under an artificial 12/12 h light/dark cycle, 

with lights off from 10:00 a.m. to 10:00 p.m. In order to reduce stress during the experiment, each 

rat was handled gently for 5 min each day of the week preceding the behavioral testing. Each 

animal was used only once throughout the study and all efforts were made to minimize animal 

suffering. PPI and microdialysis studies occurred between 11:00 AM and 5:00 PM. Care was taken 

in ascertaining the uniformity of all husbandry conditions across the two facilities where the 

experiments were performed (University of Kansas, USA and University of Cagliari, Italy). All 

experimental procedures were in compliance with the National Institute of Health guidelines and 

approved by the Institutional Animal Use Committees of the University of Kansas and Cagliari. 
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Drugs. The following drugs were used in the present study: finasteride, (R)-(−)-

apomorphine hydrochloride, SKF 82958 hydrobromide, (−)-quinpirole hydrochloride, sumanirole 

maleate, (+)-PD 128907 hydrochloride, SCH 23390 and GR 103691 (Sigma Aldrich, Milan, Italy). 

Finasteride was suspended in a vehicle solution containing 5% Tween 80 and 95% saline, while 

the other drugs were dissolved in saline solution. Drug doses are based on mg/kg of salts. All 

solutions were freshly prepared on the day of testing and administered subcutaneously (s.c.) and 

intraperitoneally (i.p.) in an injection volume of 1 and 2 ml/kg body weight, respectively. The 

doses and the latency time of the drugs used in these experiments were determined by our previous 

studies and in accordance with those commonly used in PPI studies on rats [181, 320, 422, 499]. 

Acoustic Startle Reflex and PPI. Startle and PPI testing were performed as previously 

described [500]. The apparatus used for detection of startle reflexes (Med Associates, St Albans, 

VT, USA) consisted of six standard cages placed in sound-attenuated chambers with fan 

ventilation. Each cage consisted of a Plexiglas cylinder of 9 cm diameter, mounted on a 

piezoelectric accelerometric platform connected to an analogue-digital converter. Two separate 

speakers conveyed background noise and acoustic bursts, each one properly placed so as to 

produce a variation of sound within 1 dB across the startle cage. Both speakers and startle cages 

were connected to a main PC, which detected and analyzed all chamber variables with specific 

software. Before each testing session, acoustic stimuli and mechanical responses were calibrated 

via specific devices supplied by Med Associates. Rats were first subjected to a pre-test session, 

during which they were exposed to a sequence of seventeen trials, consisting of 40-ms, 115-dB 

burst, with a 70-dB background white noise. Experimental groups were defined based on the 

average startle amplitude of the rats, so as to maintain comparable values of average startle 

response across all groups. Three days after the pre-test session, rats were treated and underwent 
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a test session. This session featured a 5-min acclimatization period, with a 70-dB background white 

noise, which continued for the remainder of the session. The acclimatization period was followed 

by three blocks, each consisting of a sequence of trials: the first and the third block consisted of 

five pulse-alone trials of 115 dB (identical to those used in the pre-test session). The second block 

consisted of a pseudorandom sequence of 50 trials, including 12 pulse-alone trials, 30 trials of 

pulse preceded by 74, 78, or 82 dB pre-pulses (10 for each level of pre-pulse loudness), and 8 no-

pulse trials, where only the background noise was delivered. Inter-trial intervals (i.e, the time 

between two consecutive trials) were selected randomly between 10 and 15 s. 

The % PPI was calculated only on the values relative to the second period, as well, using 

the following formula:  

100 −
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

× 100 

For both the pre-test and the test session, the interstimulus interval (i.e., the duration 

between the prepulse and the pulse in each trial) was kept at 100 ms. The selection of this 

interstimulus interval was based on previously published experiments from our group (Mosher et 

al., 2015), which showed this parameter to be optimally suited to reveal PPI deficits in response to 

selective dopamine receptor agonists in LE and SD rats. 

A major caveat in %PPI computation is that increases or reductions in startle magnitude 

can respectively lead to artifacts, due to “ceiling” or “floor” effects [501]. 

In consideration of finasteride’s ability to reduce startle magnitude [422], whenever 

finasteride was found to produce significant effects on both startle magnitude and %PPI, we 

performed confirmatory analyses of ΔPPI values. This parameter was calculated as the absolute 

differences between startle magnitudes on pulse-alone and prepulse+pulse trials [502]. 
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Microdialysis. Microdialysis experiments were performed as previously described in 

Devoto et al. [423]. SD rats were deeply anesthetized with Equithesin (containing, per 100 ml, 

0.97 g pentobarbital, 2.1 g MgSO4, 4.25 g chloral hydrate, 42.8 ml propylene glycol, 11.5 ml 90% 

ethanol; 5 ml/kg, i.p.) and placed in a Kopf stereotaxic apparatus. The skull was exposed and a 

hole was drilled for the implant of vertical microdialysis probes (membrane AN 69-HF, Hospal-

Dasco, Bologna, Italy; cut-off 40,000 Daltons, 2 mm active membrane length), in the nucleus 

accumbens shell [AP +1.7, L ± 0.8, V −7.8 from the bregma, according to the coordinates of 

Paxinos and Watson [503]]. The probes were secured to the scull by means of two screw and 

cranioplastic cement. The day after probe implantation, artificial cerebrospinal fluid (147 mM 

NaCl, 4 mM KCl, 1.5 mM CaCl2, 1 mM MgCl2, pH 6–6.5) was pumped through the dialysis 

probes at a constant rate of 1.1 μl/min via a CMA/100 microinjection pump (Carnegie Medicine, 

Stockholm, Sweden) in freely moving animals, and dialysate samples were collected every 20 min. 

Dopamine and DOPAC were immediately analyzed by HPLC with electrochemical detection, by 

HPLC systems equipped with 3.0 × 150 mm C18 (3.5 μ) Symmetry columns (Waters, Milan, Italy), 

maintained at 40°C by Series 1100 thermostats (Agilent Technologies, Waldbronn, Germany), and 

ESA Coulochem II detectors (Chelmford, MA, USA). The mobile phase consisted of 80 mM 

Na2HPO4, 0.27 mM EDTA, 0.6 mM sodium octyl sulfate, 8% methanol, 3% acetonitrile, pH 2.8 

with H3PO4, delivered at 0.3 ml/min; the Coulochem analytical cell first electrode was set at +200 

mV, the second one at −200 mV. Quantification was performed recording the second electrode 

signal. Under these conditions, dopamine detection limit (signal to noise ratio 3:1) was 0.3 pg per 

injection on column. On completion of testing, rats were sacrificed by Pentothal overdose, the 

brains removed and sectioned by a cryostat (Leica CM3050 S) in 40 μm thick coronal slices to 

verify locations of dialysis probes. No animal was found with errant location of the device. 
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Data analysis. Normality and homoscedasticity of data distribution were verified by using 

the Kolmogorov-Smirnov and Bartlett’s tests. Analyses were performed by multiple-way 

ANOVAs, as appropriate, followed by Student-Newman-Keuls’ test for post hoc comparisons of 

the means. For %PPI analyses, main effects for prepulse levels were consistently found throughout 

all the analyses, showing loudness-dependent effects; since no interactions between prepulse levels 

and other factors were found, data relative to different prepulse levels were collapsed. Significance 

threshold was set at 0.05. 

Results 

Assessment of effects of D1 receptor agonists in SD and LE rats.  We first investigated 

the responses of SD rats (n = 9 per group) to the full D1 agonist SKF 82958. This drug did not 

significantly modify startle amplitude; however, in conformity with previously published data 

[499], its highest dose (5 mg/kg, s.c.) produced a marked reduction of PPI in comparison with 

saline (data not shown) [F(2,24) = 8.71, P < 0.05]. To determine the specificity of this deficit we 

pretreated the rats (n = 10 per group) with the D1 receptor antagonist SCH 23390. SCH 23390 

produced a significant reduction in startle amplitude [main effect: F(1,36) = 5.28, P < 0.05]; 

conversely, this parameter was not affected by either SKF 82958 (5 mg/kg, s.c.) treatment or its 

interaction with SCH 23390 (Fig. 8.1A). In the same strain, SKF 82958 significantly reduced PPI 

[main effect: F(1,36) = 35.30, P < 0.05]; however, in confirmation of previous data [477], this 

effect was not countered by the D1 receptor antagonist (Fig. 8.1B), confirming that, in SD rats, the 

PPI-disrupting effects of SKF 82958 are not mediated by D1 receptors.  

In contrast to the albino SD rats, the lowest dose of SKF 82958 (1mg/kg, s.c.) was sufficient 

to reduce PPI in LE rats (data not shown; n = 9 per group) [F(1,16) = 29.38, P < 0.05}, without 

altering startle amplitude. Furthermore, SCH 23390 pretreatment in LE rats (n = 8-10 per group) 
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produced a significant enhancement in startle amplitude [main effect: F(1,34) = 10.75, P < 0.05]; 

conversely, ANOVA failed to detect a significant main effects for SKF 82958 or interactions 

between the two treatments (Fig. 8.1C). The analysis of PPI confirmed that SKF 82958 

significantly reduced this index [F(1,34) = 26.84, P < 0.05]; however, in contrast with the SD rats, 

this effect was prevented by SCH 23390 [pretreatment × treatment interaction: F(1,34) = 6.76, P 

< 0.05], suggesting that the PPI-disrupting effects of SKF 82958 were mediated by D1 receptors 

in this strain (Fig. 8.1 D).  

We then examined whether the PPI deficits induced by SKF 82958 may be countered by 

the selective D2 receptor antagonist L 741626. The combination of L 741626 (1 mg/kg, s.c.) and 

SKF 82958 (5 mg/kg, s.c.) failed to induce significant alterations in startle magnitude in both SD 

(Fig. 8.2A; n = 10 per group) and LE rats (Fig. 8.2C; n = 8 per group). Conversely, the PPI deficits 

Figure 8.1 Different responses of SD and LE rats to D1 receptor agonists in PPI. SKF82958 (SKF; 5 mg/kg, s.c.) in 
SD rats and LE rats (1 mg/kg, s.c.) was tested in combination with the selective D1 receptor antagonist SCH23390 
(SCH; 0.1 mg/kg, IP). Values represent mean ± SEM for each experimental group. Doses of SKF are indicated in 
mg/kg. *P < 0.05, significantly different as indicated. For more details, see text. 
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induced by SKF 82958 were significantly prevented by L 741626 in SD [F(1,36) = 17.29, P < 

0.05] (Fig. 8.2B), but not LE rats (Fig 8.2D).  

Assessment of effects of D2 receptor activation in SD and LE rats. In SD rats (n=10 per 

group), quinpirole treatment decreased the mean startle amplitude [F(1,36) = 48.51, P < 0.05], but 

this effect was not modified by the D2 antagonist L 741626 (Fig. 8.3A). Both L 741626 [main 

effect; F(1,36) = 10.12, P < 0.05] and quinpirole [main effect; F(1,36) = 14.88, P < 0.05] 

significantly modified PPI, but no significant interaction of their effects was found (Figure 8.3B). 

In LE rats (n = 8 per group), startle analyses showed a significant interaction between quinpirole 

and L 741626 [F(1,28) = 6.8, P < 0.05]; post hoc analyses revealed that L 741626 increased startle 

response, while quinpirole significantly decreased it both in the vehicle for L 741626 and L 

741626-pretreated animals (Figure 8.3C). The analysis of PPI in LE rats detected a significant 

Figure 8.2 The D2 receptor mediates the effects of SKF 82958 in SD rats. The involvement of D2 receptors in the 
effects of SKF82958 (SKF) on the regulation of startle reflex and PPI in different rat strains, as tested through the 
combined treatment with the selective D2 receptor antagonist L741,626 (L; 1 mg/kg, s.c.). Values represent mean ± 
SEM for each experimental group. PPI values are represented as the means of all prepulse‐loudness values. Doses of 
SKF are indicated in mg/kg. VEHL, vehicle for L 741626; *P < 0.05, significantly different as indicated. For more 
details, see text. 
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interaction between quinpirole and L 741626 [F(1,28) = 8.07, P < 0.05]. Post hoc analyses revealed 

that quinpirole led to a significant PPI deficit, which was fully countered by L 741626 (Figure 6D). 

Assessment of effects of apomorphine in SD and LE rats. In SD rats (n = 10 per group), 

apomorphine failed to affect startle magnitude (data not shown), but reduced PPI [F(2,27) = 5.09, 

P < 0.05]. Post hoc analyses showed that the reduction in PPI was produced by the dose of 0.25 

mg/kg (data not shown). In LE rats (n = 10-12 per group), apomorphine did not significantly affect 

startle amplitude, but produced a robust PPI disruption [F(2,32) = 13.27, P < 0.05]. Significant 

differences were found for both the doses of 0.25 and 0.5 in comparison with the vehicle for 

apomorphine (data not shown). 

In LE rats, finasteride counters the PPI deficits induced by D1-like, but not D2-like 

receptor agonists. We investigated the effects of finasteride on startle response and PPI in LE 

Figure 8.3 Quinpirole induces PPI deficits in SD but not LE rats. Involvement of D2 receptors in the effects of 
quinpirole (QUI) on the regulation of startle reflex and PPI in different rat strains, as tested through the combined 
treatment with the selective D2 receptor antagonist L741,626 (L; 1 mg/kg, s.c.). Values represent mean ± SEM for 
each experimental group. PPI values are represented as the means of all prepulse‐loudness values. VEHL, vehicle 
for L741,626; *P < 0.05, significantly different as indicated. For more details, see text. 
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rats. Our first experiment was aimed at testing whether finasteride may counter apomorphine-

induced PPI deficits (n=8– 9/treatment group) (Figs. 8.4A–B). In agreement with our previous 

results ([320]; summarized above), apomorphine (0.5 mg/kg, s.c.) reduced startle amplitude 

[(Main effect: F(1, 29)=4.63, P < 0.05]. Conversely, finasteride (100 mg/kg, i.p.) did not 

significantly affect this parameter [Main effect: F(1,29)=1.83, NS]. Furthermore, we found no 

significant interactions between the two drugs [F(1, 29)=0.79, NS] (Fig. 8.4A). %PPI analyses 

indicated that, while apomorphine significantly reduced %PPI in LE rats [Main effect: F(1, 

29)=48.47, P < 0.001], finasteride surprisingly failed to counter this effect [Interaction: F(1, 

29)=0.08, NS] (Fig. 8.4B). We then examined the effects of finasteride on the disruption of PPI 

induced by the full D1-like receptor agonist SKF 82958 (1 mg/kg, s.c.; n=8/treatment group), 

which we recently documented in LE rats ([320]; summarized above). Neither SKF 82958 nor 

finasteride produced significant effects on startle amplitude [Main SKF 82958 effect: F(1, 

28)=1.08, NS; Main finasteride effect: F(1, 28)=0.03, NS]. Furthermore, no significant interaction 

between the two factors was detected [F(1, 28)=1.0, NS] (Fig. 8.4C). The analysis of %PPI in LE 

rats revealed that SKF 82958 significantly reduced %PPI [Main effect: F(1, 28)=52.01, P < 0.001], 

but this effect was significantly prevented by finasteride [F(1, 28)=15.39, P < 0.001; Ps<0.001 for 

comparisons between vehicle-saline vs vehicle-SKF 82958 and vehicle-SKF 82958 and 

Finasteride-SKF 82958]. (Fig. 8.4D). 

Finally, we tested whether finasteride may oppose the effects of the D2-like receptor 

agonist quinpirole (0.6 mg/kg, s.c.) on PPI (n=9–10/treatment group). As shown in Fig. 8.4E, 

quinpirole markedly reduced startle amplitude [Main effect: F(1,33)=11.27; P < 0.01], while 

finasteride did not change this parameter [Main effect: F(1,33)=1.71; NS] and failed to reverse the 

effects of quinpirole [Interaction: F(1,33)=0.01; NS] (Fig. 8.4E). Notably, quinpirole disrupted 



103 
 

%PPI [Main effect: F(1,33)=48.47; P < 0.001]; conversely, finasteride failed to either affect %PPI 

[Main effect: F(1,33)=0.34; NS] or counter the effect of quinpirole [Interaction: F(1,33)=0.90; NS] 

(Fig. 8.4F).  

In SD rats, finasteride counters the PPI deficits induced by apomorphine, but not D2 

receptor agonists. In line with our prior results in SD rats [422], startle magnitude was 

significantly reduced by finasteride [Main effect: F(1, 35)=32.85, P < 0.001], and increased by 

Figure 8.4 Finasteride counters the effects of D1 receptor agonists in PPI. Effects of finasteride (FIN, 100 mg/kg, IP) 
on the changes in acoustic startle and prepulse inhibition (PPI) induced by (A–B) the non-selective D1–D2 receptor 
agonist apomorphine (APO, 0.5 mg/kg, SC), (C–D) the D1 receptor agonist SKF 82958 (SKF, 1 mg/kg, SC), (E–F) 
the D2-like receptor agonist quinpirole (QUI, 0.6 mg/kg, SC) in male Long-Evans rats. Values represent mean ± 
SEM for each experimental group. N = 8–10/group. SAL, saline; VEH, vehicle of finasteride; *, P<0.05; **, 
P<0.01; ***, P<0.001 for comparisons indicated by dotted lines. Curvy brackets are used to indicate main effects. 
For more details, see text. 
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apomorphine [Main effect: F(1, 35)=6.91, P < 0.05] (n=9–10/treatment group); however, ANOVA 

failed to identify any significant interaction between these two effects [Interaction: F(1, 35)=1.03, 

NS] (Fig. 8.5A). %PPI analyses revealed significant main effects for both finasteride pretreatment 

[F(1, 35)=10.93, P < 0.01] and apomorphine treatment [F(1, 35)=15.62, P < 0.001]. In addition, a 

significant interaction between these effects was found [F(1, 35)=4.33, P < 0.05]; post-hoc 

analyses revealed that, while apomorphine significantly reduced %PPI (P < 0.05), this effect was 

significantly prevented by finasteride pre-treatment (P < 0.05) (Fig. 8.5B). The same effects were 

detected through the analysis of corresponding ΔPPI values [finasteride x apomorphine 

interaction: F(1,31)=4.55, P<0.05; Ps<0.05 for post-hoc comparisons between vehicle + saline and 

vehicle + apomorphine as well as vehicle + apomorphine and finasteride + apomorphine] (data not 

shown). 

Next, we tested whether the PPI-disrupting effect of the D2-like receptor agonist quinpirole 

was reversed by finasteride (n=10–11/treatment group) (Fig. 8.5C–D). Both quinpirole and 

finasteride significantly reduced startle amplitude [Main quinpirole effect: F(1,37)=46.68, P < 

0.001; Main finasteride effect: F(1,37)=13.50, P < 0.001], yet no significant interaction between 

the two drugs was found [F(1,37)=2.80, NS]. %PPI analysis detected that this parameter was 

significantly decreased by quinpirole [F(1,37)=16.76; P < 0.001], and increased by finasteride 

[F(1,37)=8.64; P < 0.01]; however, no significant finasteride x quinpirole interaction was detected 

[F(1,37)=0.81; NS] (Fig. 8.5D).  

Since both D2 and D3 receptor agonists reduce PPI in SD rats, we verified whether the 

specific contribution of each receptor may be countered by finasteride. Thus, we tested whether 

finasteride may counter the effect of the selective D2 receptor agonist sumanirole (3 mg/kg, s.c.) 

(n=8–9/treatment group). In contrast with quinpirole, sumanirole did not affect startle magnitude 
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[F(1,31)=1.16; NS] (Fig. 8.5E), while finasteride significantly reduced this response 

[F(1,31)=20.50; P < 0.001]; however, no significant interaction between these two drugs was 

detected [F(1,31)=0.81; NS]. Analyses of PPI showed that sumanirole disrupted PPI 

[F(1,31)=8.64; P < 0.001], but finasteride pretreatment failed to prevent this effect [F(1,31)=0.09; 

NS]. (Fig. 8.5F).  

 
Figure 8.5 Finasteride ablates the effects of apomorphine in SD rats. Effects of finasteride (FIN, 100 mg/kg, IP) on 
the changes in acoustic startle and prepulse inhibition (PPI) induced by (A–B) the non-selective D1–D2 receptor 
agonist apomorphine (APO, 0.25 mg/kg, SC), (C–D) the D2-like receptor agonist quinpirole (QUI, 0.6 mg/kg, SC), 
(E–F) the D2 selective agonist sumanirole (SUM, 3 mg/kg, SC) in male Sprague-Dawley rats. Values represent 
mean ± SEM for each experimental group. N = 8–10/group. SAL, saline; VEH, vehicle of finasteride; *, P<0.05; **, 
P<0.01; ***, P<0.001 for comparisons indicated by dotted lines. Curvy brackets are used to indicate main effects. 
For more details, see text. 
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  In SD rats, finasteride counters the %PPI deficits induced by D3 receptor activation. 

We then tested the effects of finasteride on the %PPI reduction induced by D3 receptor agonist PD 

128907 (n=10–12/treatment group). While finasteride reduced acoustic startle amplitude 

[F(1,40)=19.35; P < 0.001], PD 128907(0.1 mg/kg, i.p.) [F(1,40)=1.83; NS] failed to affect this 

parameter. In addition, a significant interaction of these two treatments was found [F(1,40)=7.57; 

P < 0.01]; post-hoc analyses revealed that the group treated with vehicle and saline exhibited a 

significantly higher startle magnitude than those treated with vehicle and PD 128907 (P<0.05) as 

well as finasteride and saline (P < 0.001) (Fig. 8.6A). Two-way ANOVA analyses of %PPI 

parameters showed significant main effects of finasteride [F(1,40)=15.86; P < 0.001] and PD 

128907 [F(1,40)=4.38; P < 0.05]. Interestingly, finasteride countered the reduction in %PPI 

induced by PD 128907 [Interaction:F(1,40)=4.38; P < 0.001; Ps<0.001 for comparisons between 

vehicle + saline and vehicle + PD 128907 as well as vehicle + PD 128907 and finasteride + PD 

128907] (Fig. 8.6B). In contrast with these findings, the analysis of ΔPPI values indicated a 

significant interaction between finasteride and PD 128907 [F(1,40)=12.92; P < 0.001]; however, 

post-hoc comparisons found a significant difference between vehicle + saline and vehicle + PD 

128907 (P < 0.001) as well as between vehicle + saline and finasteride + saline (P < 0.01), but not 

between vehicle + PD 128907 and finasteride + PD 128907 (Fig. 8.6C). 

To confirm that the observed effects by PD 128907 were mediated by D3 receptors, we 

tested the effects of the D3 receptor antagonist GR 103691 (n=8–9/treatment group). GR 103691 

(0.2 mg/kg, s.c.) countered both the reduction of startle amplitude [Interaction: F(1,30)=4.24, P < 

0.05; Ps < 0.05 for comparisons between vehicle + saline and vehicle + PD 128907 as well as 

vehicle + PD 128907 and GR 103691 + PD 128907] (Fig. 8.6A) and %PPI caused by PD 128907 

[Interaction: F(1,30)=6.23; P<0.05; Ps<0.001 for comparisons between vehicle + saline and 
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vehicle + PD 128907 as well as vehicle + PD 128907 and GR 103691+PD 128907] (Fig. 8.6B). 

These results were fully confirmed by ΔPPI analyses, which found main effects for both [GR 

103691 F(1,28)=7.66; P < 0.01] and PD 128907 [F(1,28)=9.51; P < 0.01]. Furthermore, a 

significant interaction between the two treatments [F(1,28)=6.87; P < 0.05] was found to reflect 

significant differences between vehicle + saline and vehicle + PD 128907 (P < 0.01) as well as 

between vehicle + PD 128907 and GR 103691 + PD 128907 (P<0.01)] (Fig. 8.6C).  

Figure 8.6  Finasteride ameliorates the PPI deficits induced by D3 agonists in SD rats. Effects of finasteride (FIN, 100 
mg/kg, IP) and the D3 receptor antagonist GR103691 (0.2 mg/kg, SC) on the changes in (A) acoustic startle and (B) 
prepulse inhibition (PPI) induced by the D3 receptor agonist PD 128907 (PD, 0.1 mg/kg, IP) in male Sprague-Dawley 
rats. Values represent mean ± SEM for each experimental group. N = 8–10/group. SAL, saline; VEH, vehicle; *, 
P<0.05; **, P<0.01; ***, P<0.001 for comparisons indicated by dotted lines. For more details, see text. 
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Given that our results qualified the %PPI-ameliorating properties of finasteride in relation 

to the mechanisms of D1 and D3 receptors, we further tested whether apomorphine-induced PPI 

disruption in SD rats could be countered by D1 and D3 receptor antagonists (Fig. 8.7). Both the 

D1 receptor antagonist SCH 23390 (0.1 mg/kg, s.c.) [F(1,36)=6.61; P < 0.05] and apomorphine 

[F(1,36)=12.30; P < 0.01] reduced acoustic startle amplitude (Fig. 8.7A) (n=10/treatment group). 

However, no significant interaction between these two treatments was found. PPI analyses 

revealed a significant interaction between SCH 23390 and apomorphine [F(1,36)=5.96; P < 0.05]. 

Post-hoc analyses revealed that, while apomorphine caused a significant PPI disruption (P < 0.05 

for comparison between vehicle + saline and vehicle + apomorphine), SCH 23390 reversed this 

phenomenon (P < 0.05 for comparison between vehicle + apomorphine vs vehicle + SCH 23390) 

Figure 8.7 D1 but not D3 antagonists counter apomorphine induced PPI deficits in SD rats. Effects of the D1 receptor 
antagonist SCH 23390 (SCH, 0.1 mg/kg, SC) and the D3 receptor antagonist GR103691 (GR, 0.2 mg/kg, SC) on the 
changes in (A–C) acoustic startle and (B–D) prepulse inhibition (PPI) induced by the D1–D2 receptor agonist 
apomorphine (APO, 0.25 mg/kg, SC) in male Sprague-Dawley rats. Values represent mean ± SEM for each 
experimental group. N = 8–10/group. SAL, saline; VEH, vehicle; *, P<0.05; **, P<0.01; ***, P<0.001 for 
comparisons indicated by dotted lines. Curvy brackets are used to indicate main effects. For more details, see text. 
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(Fig. 8.7B), in agreement with previous findings [499]. We then tested the effects of the D3 

receptor antagonist GR 103691 on the changes in startle and PPI produced by apomorphine (Fig. 

8.7C– D) (n=8/treatment group). The analysis of acoustic startle response revealed a main effect 

for apomorphine (Fig. 8.7C) [F(1,28) = 4.20; P = 0.05], but not for GR103691 [F(1,28) = 2.14; 

NS]; furthermore, no significant interaction between these two treatments was found 

[F(1,28)=0.16; NS]. Finally, PPI analyses confirmed that apomorphine disrupted PPI 

[F(1,28)=42.86; P<0.0001; Main effect for apomorphine] (Fig. 8.7D), while GR 103691 did not 

affect PPI [F(1,28)=0.11; NS; Main effect for GR 103691]. ANOVA also detected a significant 

interaction between GR 103691 and apomorpine [F(1,28)= 4.72; P<0.05]; post-hoc comparisons 

revealed significant differences between vehicle + saline and vehicle + apomorphine (P<0.05) and 

between GR 103691+saline and GR 103691+apomorphine (P<0.001). 

Finasteride counters the changes in dopamine levels in Nucleus Accumbens shell 

induced by D3 receptor activation. To verify whether the effects of finasteride on PPI may be 

reflective of changes in extracellular dopamine levels in the nucleus accumbens, we tested the 

effects of selective dopaminergic agonist on levels of the dopamine and DOPAC levels in the 

nucleus accumbens shell by means of microdialysis in freely moving SD rats (n=7–8/group). 

Extracellular basal values (mean ± SEM) were: dopamine=2.7±0.2 pg, DOPAC = 1.7±0.1 ng per 

sample (20 μl dialysate). Confirming our previous study [423], finasteride (100 mg/kg, i.p.) 

significantly increased extracellular dopamine [F(6,42)=6.05; P<0.0001] and DOPAC 

[F(6,42)=2.53; P<0.05] above the baseline, starting at 60 and 80 min after finasteride injection 

(100 mg/kg, i.p.), respectively. Vehicle plus saline administration did not affect dopamine and 

DOPAC levels (Fig. 8.8). Dopamine levels were significantly increased by the selective D1 agonist 

SKF 82958 (1 mg/kg, s.c.) [F(6,18)=4.09, P<0.01]; however, no interactions between finasteride 
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and SKF 82958 were detected [F(1,19)= 0.78, NS; 2-way ANOVA]. The D2 agonist sumanirole 

(3 mg/kg, s.c.) significantly decreased extracellular dopamine levels [F(6,24)= 11.9, P< 0.0001; 

however, this effect also failed to significantly interact with the effects of finasteride on PPI 

[F(1,24)= 0.38, NS). Conversely, the D3 receptor agonist PD 128907 (0.1 mg/kg, i.p.) significantly 

reduced extracellular dopamine levels [F(6,42)=6.05, P< 0.001], but this effect was significantly 

reversed by finasteride [F(1,20)=11.0, P<0.01] (Fig. 8.8). Temporal analysis showed that this 

effect was significant at 80 min after PD 128907 injection (Fig. 8.8E). 
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Figure 8.8 Finasteride counters the changes in dopamine levels in Nucleus Accumbens shell induced by D3 receptor 
activation. Time-related effects of systemic finasteride (FIN, 100 mg/kg, IP) on extracellular concentrations of 
dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell of Sprague-Dawley 
rats. FIN (shaded symbols) or vehicle (white symbols) was tested in combination with (A–B) D1 agonist SKF 82958 
(1 mg/kg, SC, triangles); (C–D) D2 agonist sumanirole (SUM, 3 mg/kg, SC, upside down triangles); (E–F) D3 
agonist PD 128907 (0.1 mg/kg, IP, circles) or saline (diamonds). Arrows represent injection time of FIN or its 
vehicle (VEH) and the dopaminergic agonist or saline (SAL). The interval corresponding to PPI testing is indicated 
by a dotted bar alongside the time axis. Values are expressed as mean percent of the baseline (average values of the 
three first samples) ± S.E.M for each time point. N = 7–8/group. *, P<0.05 compared with baseline values; °°°, 
P<0.001 in comparison with VEH+PD 128907. Significant within-group (time-dependent) effects are not indicated. 
For further details, see text. 
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Discussion 

 In the present study, we first demonstrated that in contrast to SD albino rats, hooded LE 

rats display a significant impairment in sensorimotor gating in response to selective, full 

stimulation of D1 dopamine receptors. Specifically, under our experimental settings, the full D1 

agonist SKF 82958, but not the partial D1 agonist SKF 38393 produced a significant PPI reduction, 

which was not paralleled by variations in startle amplitude, and was countered by D1, but not D2 

receptor antagonism.  

Following the establishment of dopamine receptor responses in SD versus LE rats we 

showed that the 5αR inhibitor finasteride prevented the PPI deficits induced by the activation of 

D1-like, but not D2 receptor agonists, across these different rat strains (Table 8.1). Specifically, in 

LE rats, finasteride effectively countered the PPI impairment induced by the potent D1 receptor 

agonist SKF 82958, but failed to significantly prevent the deficits mediated by the D2-like receptor 

agonist quinpirole or the non-selective D1–D2 receptor agonist apomorphine. Conversely, in SD 

rats, finasteride countered the PPI-disrupting effects of apomorphine, but not the D2 receptor 

Effects of finasteride (FIN; 100 mg/kg, IP) in PPI 

Apomorphine; D1-D2 receptor agonist FIN opposes % PPI and ΔPPI deficits in SD rats 

FIN does not oppose %PPI deficits in LE rats 

SKF 82958; D1 receptor agonist FIN opposes %PPI and ΔPPI deficits in LE rats 

Quinpirole; D2–D3 receptor agonist FIN does not oppose %PPI deficits in SD rats 

FIN does not oppose %PPI deficits in LE rats 

Sumanirole; D2 receptor agonist  FIN does not oppose %PPI deficits in SD rats 

PD 128907; D3 receptor agonist FIN opposes %PPI, but not ΔPPI, deficits in SD rats 

Table 8.1 Synoptic table of the combined effects of finasteride and dopaminergic agonists on the prepulse inhibition 
(PPI) of the startle in Long-Evans (LE) and Sprague-Dawley (SD) rats. 
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agonists quinpirole and sumanirole. Furthermore, our analyses revealed that, in SD rats, finasteride 

opposed the reduction of %PPI, but not ΔPPI, values induced by the D3 receptor agonist PD 

128907. In parallel with these effects on sensorimotor gating, finasteride reversed the reduction in 

extracellular dopamine levels caused by D3, but not D2 receptor activation in the nucleus 

accumbens of SD rats. The identification of the selective involvement of D1 receptors in 

finasteride’s effects across different rat strains extends and complements our previous reports on 

the antipsychotic-like properties of 5αR inhibitors [277, 422, 423, 504], and points to a specific 

mechanism of action for the emerging therapeutic potential of 5αR inhibitors in neuropsychiatric 

disorders [374]. 

The implication of D1-like receptors in finasteride-induced PPI amelioration was 

documented both directly in LE rats and indirectly in SD rats. The latter strain does not exhibit 

PPI impairments in response to administration of D1-like receptor agonists [499, 505]; however, 

finasteride countered the gating deficits induced by the D1–D2 receptor agonist apomorphine, but 

not the D2 activators quinpirole and sumanirole; furthermore, the actions of finasteride mirrored 

those of the D1 receptor antagonist SCH 23390. The implication of D1 receptor in the 

antipsychotic-like mechanisms of finasteride is in agreement with our previous results on C57BL/6 

mice [277]. Although these animals do not exhibit PPI deficits in response to D2-like receptor 

agonists [300], finasteride fully prevented the PPI deficits induced by SKF 82958 and 

paradoxically led to PPI deficits following treatment with the D2 receptor agonist quinpirole [277]. 

Interestingly, key neurosteroids, such as AP and DHEAS, modulate the behavioral effects of D1 

receptor activation [506, 507]; furthermore, progesterone and AP affect the phosphorylation of 

DARPP-32 [508, 509], a key molecule in D1 receptor signaling cascade [510]. 
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We previously documented that the mechanism of action of finasteride in reversing 

apomorphine-induced gating deficits is likely reflective of changes in neurosteroid profiles in the 

nucleus accumbens [423]. Interestingly, the intra-accumbal effects of finasteride were not 

accompanied by any significant variations in dopamine extracellular levels, suggesting that the 

effects are not mediated by changes in dopamine release [423]. Those results, together with the 

lack of significant interactions between finasteride and SKF 82958 on dopamine levels in the 

nucleus accumbens documented in this study, strongly suggest that presynaptic D1 receptors are 

not directly involved in the modulatory role of 5αR on gating. Accordingly, the effects of 

apomorphine on PPI are regarded as primarily due to the activation of postsynaptic receptors [184]. 

Striatal D1 receptors are predominantly located in extrasynaptic locations of GABAergic medium-

spiny neurons [511]. This particular localization is posited to enable D1 receptors to be 

preferentially activated by transient elevations of dopamine levels due to phasic bursts of 

dopaminergic neuron activity [512, 513]. Building on this perspective, the modulation of 

neurosteroidogenesis in the nucleus accumbens may affect sensorimotor gating by altering the 

response to different dynamics of dopamine neurotransmission. Notably, neurosteroids influence 

tonic and phasic GABA activity [514], whose cross-talk plays a fundamental role in PPI regulation 

[515]. Further studies are necessary to understand whether changes in tonic and phasic activity in 

GABAergic activity may be directly related to dynamic alterations in accumbal dopamine activity. 

A second potentially important finding of this study was that finasteride countered the 

%PPI deficits induced by the D3 receptor agonist PD 128907. However, these results were not 

validated by parallel ΔPPI analyses, raising the possibility that the observed effects may be due to 

computational artefacts. Nevertheless, it is worth mentioning that the effects of finasteride on PPI 

were time-locked with a reversal of the PD 128907-mediated reduction in extracellular dopamine 
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levels, which has been linked to the stimulation of presynaptic D3 autoreceptors [516]. The results 

of these microdialysis studies (and, to a more limited extent, those on %PPI values) suggest that 

5αR regulates D3 receptor signaling. Given that finasteride does not bind to D3 receptors (S. Ruiu, 

personal communication), our data suggest that 5αR may regulate their signaling by interfering 

with the function of one of their downstream effectors, which include Gi /Go proteins and inward 

rectifying potassium channels [517, 518]. Irrespective of the mechanisms, further studies with 

different testing protocols will be necessary to verify whether the interaction between 5αR and D3 

receptors is actually relevant to PPI regulation.  

Although finasteride opposed the %PPI disruption induced by both apomorphine and PD 

128907, the lack of effects of the D3 receptor antagonist GR 103691 on apomorphine-mediated 

effects suggest that these two effects were likely underpinned by distinct processes, namely the 

actions of finasteride on D1-like and D3 receptors. This difference is in line with the strikingly 

different properties of these two receptor subtypes: on one hand, D1-like receptors are conducive 

to excitatory effects, through the concatenated activation of Gαs and Gαolf proteins and their 

downstream effectors [519]; on the other hand, D3 receptor function appears to be primarily 

inhibitory [520, 521]. Despite this phenomenological dichotomy, some of the actions of 5αR on 

D1 and D3 receptor signaling may affect common intracellular substrates. Indeed, these receptor 

types are highly colocalized in extrasynaptic compartments of the nucleus accumbens [522], and 

have been found to interact at multiple levels [523], including the formation of heteromers [524]. 

With respect to this issue, it should be noted that the implication of D1 receptors in the formation 

of dimers often requires σ1 receptors, which are targeted by several neurosteroids [525]. Future 

studies will be needed to verify the implication of σ1 receptors in the actions of finasteride.  
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In keeping with previous evidence [422], we found that the dose of finasteride used in these 

studies (100 mg/kg, i.p.) reduced startle amplitude in SD rats; however, this drug had surprisingly 

no such effect on LE rats. The difference in the effects of finasteride on startle amplitude across 

these two strains may reflect the diverse properties of this drug with respect to locomotor activity: 

in fact, the same dose of finasteride used in this study produced a generalized decrease in 

locomotor activity in SD rats [422]; conversely, ongoing studies in our lab are indicating that LE 

rats exhibit a greater resistance to the locomotor depression induced by high doses of finasteride 

(data not shown). Future studies are warranted to elucidate the neurobiological bases of the 

different reactivity of SD and LE rats to finasteride with respect to startle and locomotor activity. 

The marked differences between the effects of finasteride in SD and LE rats are in line 

with previous evidence on the distinct PPI responses in these two strains [526]. Although the 

molecular underpinnings of these differences remain unclear, our data suggest a potential role of 

neurosteroids in these changes. Previous studies have documented that LE rats exhibit higher 

dopamine turnover in comparison with SD rats [527], possibly due to changes in the dopamine-

metabolic enzyme catechol-O-methyl transferase (COMT) [528]. Notably, this enzyme has been 

shown to be affected by neuroactive steroids; for example, COMT expression is enhanced by 

testosterone and dihydrotestosterone (DHT) [529] and reduced by estrogens [530]. These premises 

suggest that differences in 5αR or other neurosteroids may contribute to the differences in gating 

regulation between SD and LE rats. 

Several limitations of the present study should be acknowledged. First, our analyses did 

not include analyses of neurosteroid profiles to evaluate the mechanisms underpinning the 

observed interstrain differences with respect to the role of finasteride on the effects of 

dopaminergic agonists in both strains. Nevertheless, in preliminary studies, we have verified that 
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the analysis of neurosteroid profile in the nucleus accumbens alone is not currently feasible, given 

the limited size of this region and the detection limits of available systems.  

Secondly, our data cannot rule out that the observed effects of finasteride may be partially 

mediated by peripheral effects; in particular, finasteride inhibits the conversion of testosterone into 

the potent androgen hormone DHT [374]. However, this possibility is tempered by our prior 

finding that the effects of finasteride on sensorimotor gating are not affected by gonadectomy 

[423]; in addition, the involvement of testosterone in these effects is unlikely, given that, in 

separate studies performed on the neurosteroid profile of the combination of striatum and nucleus 

accumbens, the same dose of finasteride used in this study (100 mg/kg, i.p.) failed to modify the 

levels of this steroid [504].  

Thirdly, given the broad scope of our studies, behavioral and microdialysis experiments 

were restricted to the analysis of the effects of optimal doses of finasteride and dopaminergic 

agonists, based on our prior research and other relevant scientific literature. The lack of dose-

response curves, however, limits a comprehensive assessment of the interstrain differences in the 

dopaminergic regulation of rat PPI, and leaves open the possibility that the actions of different 

finasteride concentrations may result in different effects on PPI regulation in combination with 

different dopaminergic drugs. In a similar way, PPI was consistently tested with 100-ms 

interstimulus intervals, as this particular setting allowed us to reveal PPI disrupting effects of D1 

and D2 receptor agonists in LE rats [320], as well as D2 and D3 receptor agonists in SD rats. 

Different testing conditions and protocols, however, may reveal different effects of finasteride with 

respect to the dopaminergic modulation of PPI.  

Finally, although our experiments were performed on equivalent experimental protocols 

and apparatuses, it is worth noting that the experiments were performed in two different 
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laboratories (SD at the University of Cagliari, and LE at the University of Kansas). Thus, we 

cannot completely exclude divergences in the colonies from the suppliers. Indeed, differences in 

PPI can reflect sub-strain variations based on the specific location of the supplier [501]. 

Nevertheless, these potential concerns are tempered by the similarity of results obtained in both 

laboratories on the effects of finasteride in modifying PPI preventing, in co-treatment with both 

APO and QUI in SD rats (data not shown).  

These limitations notwithstanding, our results highlight a neurobiological link between 

5αR, neurosteroids and dopamine receptors, which may be particularly important in the 

pathophysiology of neuropsychiatric disorders characterized by gating deficits, including 

schizophrenia and TS. In preliminary clinical observations, we documented that finasteride elicits 

potential therapeutic effects in these disorders [416, 417, 531, 532]. Furthermore, emerging data 

indicate the potential of D1 and D3 receptor blockers in the treatment of TS and schizophrenia, 

respectively [56, 533]. The selective action of finasteride on these receptors, rather than D2, may 

help explain the lack of extrapyramidal symptoms associated with 5αR inhibitors [422].  

Whereas further research is needed to address these limitations, our findings highlight the 

critical role of 5αR in the pathophysiology of gating deficits, and point to an important functional 

link between neurosteroids and D1 and D3 receptors, which may be implicated in the 

pathophysiology of schizophrenia, TS and other related disorders.  
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9. 5α-reductase type 1 mediates the PPI ameliorating effects of finasteride against 

dopamine D1 receptor agonists 

Introduction 

 The research presented up to this point in this dissertation has emphasized the role of 

neurosteroids in the mediation of stress-induced fluctuations of TS-related symptoms and 

highlighted a therapeutic option for blocking steroidogenesis with the 5αR inhibitor finasteride. 

However, as presented in chapter 5, there are side effects of finasteride that make it a less desirable 

treatment option, which include demasculinizing effects for children. To address this issue, we 

have further explored the contributions of the two isoforms of 5αR that finasteride inhibits. As 

discussed previously, 5αR2 is the primary mediator of androgen synthesis; therefore, targeting 

5αR1 specifically would result in a safer option for children if 5αR1 proves to be a therapeutic 

option for TS. To explore this possibility we used mice deficient of either 5αR1 or 5αR2 and 

studied the response of these mice to dopamine receptor agonists in the PPI paradigm. 

Materials and Methods 

Animals. The experiments included in this study were performed on adult (3-5-month old), 

experimentally naïve male 5αR1KO and 5αR2KO mice along with the HZ and WT littermates 

(strain: C57BL/6), obtained from breeding colonies at the Universities of Kansas and Utah. All 

mice were generated from HZ x HZ crosses. Progenitors were obtained by Dr. Mala Mahendroo 

(Southwestern University). Unless stated otherwise for specific experimental purposes, all mice 

were housed in groups of 4-5/cage, with at least 1 mouse/genotype, and had ad libitum access to 

food and water. Housing facilities were maintained at 22ºC with a reverse light/dark cycle (lights 

off at 08:00 AM hours and on at 08:00 PM). Whenever the same mice were used for multiple 

behavioral paradigms, the order of animals in each test was counterbalanced throughout the study. 
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Tests were arranged from least to most stressful (separated by at least one week) to minimize carry-

over stress. Experimental manipulations were carried out in the animals’ dark cycle between 10:00 

AM and 6:00 PM. All handling and experimental procedures were performed in compliance with 

the National Institute of Health guidelines and approved by the local Institutional Animal Care and 

Use Committees.  

Genotyping. Mouse genotyping was performed by PCR as described in chapter 7.  

Locomotor Activity. Locomotor behaviors were measured in a square force-plate 

actometer as previously described in chapter 3. Mice (n=8/genotype) were placed in the center and 

their behavior was monitored for 20 min for the baseline locomotor activity studies. In a 

subsequent study 5αR1 KO, HZ, and WT mice (n=8/genotype) were placed in the center and their 

behavior was monitored for 60 min before they were removed, treated with SKF 82958, quinpirole 

or vehicle and placed back into the actometer for an additional 120 min.  

Acoustic Startle Reflex and Prepulse Inhibition (PPI) of the Startle. Acoustic startle 

reflex and PPI were tested as previously described in chapter 3. 

Western blot. Prefrontal cortices and ventral nucleus accumbens were harvested and 

homogenized on ice in homogenization buffer containing 1% SDS, protease and phosphatase 

inhibitor cocktail. Small aliquots of the homogenate were used for protein determination by a 

modified Lowry protein assay method (DC protein assay, Bio-Rad Laboratories, Hercules, CA, 

USA). Immunoblotting was performed as previously described with slight modifications [534, 

535].  Equal amounts of proteins were separated on a 4–15% Criterion TGX stain free Precast Gel 

(Bio-Rad Laboratories, Hercules, CA, USA) by electrophoresis and transferred to a polyvinylidene 

difluoride membrane. Membranes were then blocked with 3% bovine serum albumin in TRIS-

buffered saline supplemented with 0.1% Tween 20 for 2 h at room temperature and then incubated 
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overnight with primary antibodies at 4 °C. Primary antibodies used in this study include the 

following: ERK (Cell-Signaling, Danvers, MA, USA); Phospho-ERK (Cell-Signaling, Danvers, 

MA, USA); DARPP-32 (Cell-Signaling, Danvers, MA, USA); Phospho-THR75-DARPP-32 

(PhosphoSolutions, Aurora, CO, USA); Phospho-THR34-DARPP-32 (PhosphoSolutions, Aurora, 

CO, USA) antibodies. After washing, membranes were incubated with secondary horseradish 

peroxidase antibodies and developed with Clarity Western chemiluminescence blotting substrate 

(Bio-Rad Laboratories, Hercules, CA, USA). Stain-free gels were analyzed on a ChemiDoc Touch 

Imaging System (Bio-Rad Laboratories, Hercules, CA, USA) and bands were normalized to total 

protein per lane [536].Samples containing the same amount of total proteins from mice in each 

experimental group were run on the same immunoblots. 

Statistical Analyses.  Data were tested for normality and homoscedasticity by the 

Kolmogorov-Smirnov and Bartlett’s test. Based on these results, parametric and non-parametric 

statistical analyses were performed by a one-way ANOVA and Kruskal-Wallis test, followed by 

Tukey’s or Nemenyi’s tests for post-hoc comparisons, respectively. Significance was set at P = 

0.05.  

Results 

Sensorimotor gating and locomotor activity in mice deficient of 5αR type 1 or type 2. 

We first analyzed the sensorimotor gating capabilities and locomotor activity in mice with a 

genetic knockout of 5αR1 or 5αR2. As described in figure 9.1, 5αR1 KO mice did not display 

differences for WT or HZ littermates in mean startle amplitude (Fig 9.1A), average % PPI (Fig 

9.1C), or total distance moved in the force plate actometer (Fig 9.1C). Similarly, 5αR2 KO mice 

also did exhibit any marked alterations in these paradigms (Fig 9.1D-E). 



123 
 

D1 agonists do not induce PPI deficits in 5αR1 knockout mice. We next performed 

experiments to determine the responses of 5αR1 KO mice to D1 and D2 receptor agonists. We 

found that the D1 agonist, SKF 82958, did not alter mean startle amplitude in 5αR1 KO mice or 

the WT and HZ littermates (Fig 9.2A), although there was a trend toward a significant decrease in 

startle in the 5αR1 KO mice (main effect of genotype: F(2,42) = 5.57, P = 0.07). However, we did 

find genotype differences in the PPI response following SKF 82958 treatment (Fig 9.2B; 

significant interaction: F(2,42) = 4.38, P < 0.05). Post hoc analysis revealed that the WT mice 

displayed the expected PPI deficit induced by SKF 82958 (WT: vehicle vs SKF 82958: P < 0.01). 

Figure 9.1 Mice deficient of either 5αR1 or 5αR2 do not display alterations in sensorimotor gating capabilities or 
locomotor behavior. The mean startle response recorded during the prepulse inhibition (PPI) of the startle response 
was analyzed in 5αR1 KO (A) or 5αR2 KO (D) mice along with their WT and HZ littermates. The average inhibition 
of the startle by a 3, 6, or 12 dB prepulse was calculated in 5αR1 KO (B) or 5αR2 KO (E) mice along with control 
littermates. Locomotor activity was tested in the force plate actometer. The distance moved (5 min bins) is represented 
for 5αR1 KO (C) and 5αR2 KO (D) mice. Data are shown as mean ± SEM. N=8-9/genotype. WT, wildtype; HZ, 
heterozygous; KO, knockout, 5αR1 5α-Reductase type 1; 5αR2 5α-Reductase type 2 
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However, SKF 82958 did not induce a significant decrease in PPI in either HZ or KO mice; 

furthermore, both HZ and KO mice had higher PPI compared to WT treated with SKF 82958 (all 

treated with SKF: WT vs HZ, p<0.05; WT vs KO, P < 0.01). In a separate cohort of mice, we 

investigated the response to the D2 agonist, quinpirole in PPI. In this experiment there a significant 

effect of genotype on startle responses (F(2,53) = 37.57, P < 0.001) and a trend toward an effect 

from quinpirole treatment (F(1,53) = 3.52, P = 0.08). In addition, we also found a significant effect 

of both genotype (F(2,53) = 10.29, P<0.05) and quinpirole on PPI responses (F(1,53) = 7.50, 

P<0.05). These data mirror our previous findings of WT mice treated with finasteride [277], in 

Figure 9.2 5αR1 KO mice are insensitive to PPI disrupting effects from D1 receptor agonists. Mice were treated with 
SKF 82958 (0.3m/kg, IP) and tested in the PPI paradigm. The mean startle amplitude (A) and the average % PPI (B) 
were recorded. A second cohort of mice was treated with Quinpirole (0.5mg/kg, IP) and also tested in the PPI 
paradigm. The mean startle amplitude (C) and average % PPI (D) are reported. Data are shown as mean ± SEM. 
N=8/genotype.*P<0.05, **P<0.01, ***P<0.001 for comparisons indicated. Main effects are described in graph. WT, 
wildtype; HZ, heterozygous; KO, knockout, 5αR1 5α-Reductase type 1; VEH, vehicle; SKF, SKF 82958; QUIN, 
quinpirole. 
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which we demonstrated that finasteride ablated the effect of SKF 82958 to induce PPI deficits but 

synergized with quinpirole to induce deficits. 

The effects of D1 and D2 agonists on PPI in 5αR2 knockout mice. To determine if 5αR1 

and 5αR2 serve the same function in PPI regulation we next tested 5αR2 KO in the PPI following 

treatment with either the D1 agonist SKF 82958 or the D2 agonist quinpirole. Similar to the studies 

in 5αR1 KO mice we did not observe any alteration in mean startle amplitude as a result of SKF 

82958 treatment (Fig 9.3A). However, unlike 5αR1 KO and HZ littermates, the 5αR2 KO and HZ 

mice were sensitive to the PPI disrupting effects of SKF 82958 (Fig 9.3B; main effect of treatment: 

F(1,41) = 38.19, P < 0.001). We also analyzed the PPI response of the 5αR2 KO mice to the D2 

receptor agonist, quinpirole. We found that quinpirole significantly decreased the mean startle 

Figure 9.3 5αR2 KO mice do not display altered PPI responses to dopamine agonists. Mice (n=7-9/genotype) were 
treated with SKF 82958 (0.3m/kg, IP) and tested in the PPI paradigm. The mean startle amplitude (A) and the average 
% PPI (B) were recorded. A second cohort of mice (n=8/genotype) was treated with Quinpirole (0.5mg/kg, IP) and 
also tested in the PPI paradigm. The mean startle amplitude (C) and average % PPI (D) are reported. Data are shown 
as mean ± SEM. Significant main effects are described in graph. Abbreviations: WT, wildtype; HZ, heterozygous; 
KO, knockout, 5αR1 5α-Reductase type 2; VEH, vehicle; SKF, SKF 82958; QUIN, quinpirole 
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amplitude in all genotypes (Fig 9.3C; main effect of treatment F(1,42) = 6.97, P < 0.05). In 

addition, quinpirole did not elicit any significant alterations in average % PPI (Fig 9.3D). Due to 

the decrease in startle we also analyzed the delta PPI to account for an exaggerated PPI response; 

however, analysis of delta PPI did not reveal any deficits induced by quinpirole (data not shown). 

Finasteride does not counter D1 agonist SKF 82958 in 5αR2 knockout mice. We have 

previously described [277] that the 5αR inhibitor finasteride attenuated the PPI disrupting effects 

of SKF 82958 in WT C57 mice. To verify if 5αR2 KO mice also responded to finasteride in this 

manner we pretreated the mice with finasteride prior to SKF 82958 treatment. Since the HZ mice 

did not display any alterations compared to WT or KO littermates we limited these studies to WT 

mice and KO littermates. In WT mice we found significant alterations in the startle response due 

to SKF 82958 treatment (Fig 9.4A; F(1,36) = 6.93, P < 0.05). We also confirmed the data 

previously published in WT mice the finasteride treatment counted the PPI disrupting effects of 

SKF 82958 (Fig 9.4B; pretreatment*treatment interaction F(1,36) = 5.2, P < 0.05; relevant post 

hoc comparisons: vehicle + vehicle vs vehicle + SKF 82958, P < 0.05; vehicle + SKF 82958 vs 

finasteride + SKF 82958, P < 0.01). In the 5αR2 KO mice we found a significant interaction for 

the mean startle amplitude analysis (Fig 9.4C; F(1,44) = 5.58, P < 0.05); however, no significant 

comparisons were revealed in post hoc analysis. Interestingly, we did not find an interaction in the 

PPI responses of the 5αR2 KO mice (Fig 9.4D). Instead we observed only a main effect of SKF 

82958 treatment (F(1,44) = 33.69, P < 0.001), indicating that finasteride does not ablate SKF 

82958 induced deficits in the 5αR2 KO mice and that 5αR2 may be required for the therapeutic 

effect of finasteride.   
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The effects of D1 and D2 agonists on locomotor activity in 5αR1 knockout mice. Due 

to the alterations found in PPI regulation from D1 and D2 receptors in the 5αR1 KO mice, we next 

performed experiments on the effects of the agonists on locomotor activity. We did not include 

HZ littermates since there were no significant alterations between the HZ mice and their 

littermates. We found that 5αR1 KO mice behaved equivalently to WT littermates following 

treatment with SKF 82958 (Fig 9.5A) and quinpirole (Fig 9.5B). As expected, SKF 82958 induced 

a significant hyperlocomotion in the mice following the 60 minute habituation to the arena (Fig 

9.5A) in both WT and KO mice (significant time*treatment interaction (F(17,594) = 12.9, P < 

Figure 9.4 Finasteride does not counter PPI deficits induced by SKF 82958 in 5αR2 KO mice. Mice (10/WT group, 
12/KO group) were pretreated with finasteride (50 mg/kg, IP) 30 minutes prior to treatment with SKF 82958 
(0.3mg/kg, IP). The mean startle amplitude was recorded for both WT (A) and KO (C) mice. The average % PPI was 
also analyzed for WT (B) and KO (D) mice. Data are shown as mean ± SEM. *P<0.05, **P<0.01 for comparisons 
indicated. Main effects are described in graph. Abbreviations: WT, wildtype; KO, knockout, 5αR2 5α-Reductase type 
2; VEH, vehicle; SKF, SKF 82958; FIN, finasteride 
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0.001; significant points compared to the 60 minute baseline are marked in graph). In addition, 

quinpirole induced hypolocomotion in the mice (Fig 9.5B) however post hoc analysis only 

identified significant points in the WT mice (time*treatment interaction: F(17,522) =  2.8; P < 

0.001; significant points compared to the 60 minute baseline are marked in graph). 

Allopregnanolone restores the PPI disrupting effect of D1 agonists. Given the results 

concerning AP in other animal models of TS, we designed experiments to determine if low levels 

of endogenous AP is protective against PPI deficits induced by D1 agonists. To this end, we 

Figure 9.5 Locomotor responses to dopamine D1 and D2 agonists in 5αR1 KO mice. Mice (7-10/group) were allowed 
to habituate to the force plate actometer for 60 minutes. At 60 minutes the mice were briefly removed and injected 
with VEH, SKF 82958 (0.3mg/kg, IP) or Quinpirole (0.5mg/kg, IP) and returned to the actometer. The responses of 
WT mice (A) and 5αR1 KO littermates (B) are described. Data are shown as mean ± SEM. **P<0.01, ***P<0.001 
for comparisons between baseline values at 60 minutes and SKF treatment at time indicated; ^^P<0.01, ^^^P<0.001 
for comparisons between baseline values at 60 minutes and QUIN treatment at time indicated. Abbreviations: WT, 
wildtype; KO, knockout, 5αR1 5α-Reductase type 1; VEH, vehicle; SKF, SKF 82958; QUIN, quinpirole 
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pretreated 5αR1 KO mice with a low dose of AP prior to SKF 82958 treatment. We observed a 

trend toward an effect of AP on mean startle amplitude (Fig 9.6A; F(1,27) = 3.67, P = 0.07). We 

also found a significant interaction on average %PPI (Fig 9.6B; F(1,27) = 4.90, P < 0.05). This 

interaction revealed that AP pretreatment synergized with SKF 82958 to induce PPI deficits 

(vehicle + SKF 82958 vs AP + SKF 82958: P < 0.01; AP + vehicle vs AP + SKF 82958: P < 0.01).  

Allopregnanolone in the PFC reveals PPI deficits following treatment with D1 

agonists in SD rats. To further characterize the actions of AP and pinpoint a region of action we 

performed AP infusions into the PFC of SD rats prior to SKF 82958 treatment. As presented in 

Figure 9.6 Allopregnanolone synergizes with SKF 82958 to induce PPI deficits in the 5αR1 KO mice and SD rats. 
5αR1 KO mice were pretreated with AP (3mg/kg, IP) shortly before SKF 82958 (0.3mg/kg, IP) treatment and then 
tested in the PPI paradigm. (A) The mean startle response and (B) the average % PPI of the 5αR1 KO mice were 
recorded. AP (1ug/0.5ul/side) was infused directly into the PFC of SD rats shortly before SKF 82958 systemic 
injection (0.05mg/kg, IP). (C) The mean startle amplitude and (D) average % PPI were subsequently recorded. Data 
are shown as mean ± SEM. **P<0.01 for comparisons indicated. Abbreviations: KO, knockout, 5αR1 5α-Reductase 
type 1; VEH, vehicle; SKF, SKF 82958; AP, allopregnanolone; SD, Sprague-Dawley 
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chapter 8, SD rats are not inherently sensitive to SKF 82958, much like the 5αR1 KO mice. In this 

analysis we found a main effect of SKF 82958 to increase the startle of the rats (Fig 9.6C; 

F(1,36)=4.58, P < 0.05) but no interaction between AP and SKF 82958. However, we did find an 

interaction between AP infusion into the PFC and SKF 82958 treatment on PPI in SD rats (Fig 

9.6D; F(1,36) = 5.70, P < 0.05). Specifically, these results showed that the combination of AP + 

SKF 82958 induced PPI deficits that were significantly lower than the vehicle + vehicle (P < 0.05), 

vehicle + SKF 82958 (P < 0.05), or the AP + vehicle (P < 0.01) treatment groups.   

Dopamine signaling in 5αR1 knockout mice. To determine if dopamine signaling was 

altered in the 5αR1 KO mice we treated mice with SKF 82958 prior to dissecting out the brain 

regions of importance to PPI regulation. We started our analysis in the PFC since that was the 

brain region identified in the rat studies to be involved in the synergism between D1 and AP. 

However, we did not reveal any effect from genotype or SKF 82958 on ERK phosphorylation (Fig. 

9.7A). Therefore, we extended our analysis to the ventral striatum, which has previously been 

demonstrated to be a key region for the effects of finasteride on PPI [423]. We found that in the 

ventral striatum there was a significant increase in the phosphorylation of the dopamine signaling 

molecule ERK1/2 (Fig 9.7B; main effect of treatment F(1,19) = 0.23, P <  0.05). Additionally, 

there was a trend toward an increase in the phosphorylation of DARPP-32 at THR75 (Fig 9.7C; 

main effect of treatment F(1,20) = 13.3, P = 0.095). Analysis of the phosphorylation of DARPP-

32 at THR34 revealed a significant main effect of SKF 82958 treatment (Fig 9.7D; main effect of 

treatment F(1,21) = 5.24, P < 0.05). There was also a trend toward a main effect of genotype 
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(F(1,21) = 3.09, P = 0.09) and a trend toward a genotype x treatment interaction (F(1,21) = 3.15, 

P = 0.09).  

  

Figure 9.7 Dopamine D1 receptor signaling in 5αR1 KO mice. The PFC and ventral striatum were extracted and 
analyzed for the D1 signaling molecules P-ERK (A, D), Phospho Thr75 DARPP-32 (B) and Phospho Thr34 (C) 
following treatment with SKF 82958 (0.3mg/kg, IP). Data are shown as mean ± SEM. Main effects are indicated in 
graphs. Abbreviations: PFC, prefrontal cortex; V. STR, ventral striatum; WT, wildtype; KO, knockout, 5αR1 5α-
Reductase type 1; VEH, vehicle; SKF, SKF 82958 
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Discussion 

 The results presented in this chapter demonstrate that AP synergizes with D1 receptor 

agonists to induce PPI deficits in both mouse and rat models. This was presented through several 

different animal models and pharmacological manipulations.  

 First we demonstrated that despite similar baseline responses (Fig 9.1) 5αR1 KO mice were 

not sensitive to the PPI disrupting effects of SKF 82958 in the same manner as their WT littermates 

(Fig 9.2B). In contrast, the 5αR2 KO mice responded in an identical manner to their WT littermates 

following treatment (Fig 9.3B). Several possible conclusions can be drawn from this data. First, 

the results from the 5αR1 KO mice mirror the results obtained in WT C57Bl/6 mice where 

finasteride ablated the PPI deficits induced by SKF 82958 [277]. Hence, it could be assumed that 

the primary mechanism of finasteride in this ameliorating SKF 82958 induced PPI deficits is 

through the inhibition of 5αR1. This is confirmed by the 5αR2 KO data which demonstrates that 

these mice retain the sensitivity to SKF 82958.  

Alternatively, these data could point to the importance of homeostatic AP (and other 

neurosteroid) levels. The characteristics of 5αR1 suggest that this isoenzyme regulates tonic 

neurosteroid levels: it is widespread throughout the brain, the pH optima is at a neutral pH of 6-

8.5, and it has a relatively low substrate affinity [383, 385-391]. These characteristics point to a 

looser regulation of 5αR1 activity which would allow it to function in normal physiological 

environments. In contrast, 5αR2 is more heterogeneously expressed in the brain, has a narrow and 

more acidic pH optima of 5-5.5 and has a higher affinity for substrates than 5αR1 [372, 374, 392, 

394]. Hence, a tighter regulation on 5αR2 activity and high substrate affinity suggest a more 

specific function that must be turned on and off quickly. Therefore, due to the tonic nature of 5αR1, 

the levels of the 5α-reduced steroids would be decreased in the mice lacking 5αR1; whereas, loss 
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of 5αR2 would not as drastically effect tonic steroid levels since the characteristics of this enzyme 

suggest a more phasic nature. Hence, it is possible that the 5αR1 KO mice are resistant to SKF 

82958 due to low levels of AP. This hypothesis is supported by two key experiments performed in 

the 5αR1 KO and 5αR2 KO mice. First, we found that finasteride does not attenuate PPI deficits 

induced by D1 receptor stimulation in the 5αR2 KO mice (Fig 9.4). This surprising finding 

indicates that while there are sufficient levels of neurosteroids to allow SKF 82958 to produce PPI 

deficits, finasteride requires 5αR2 to be effective. Secondly, we found that low doses of AP 

synergized with SKF 82958 treatment to induce PPI deficits in both 5αR1 KO mice and SD rats, 

which are inherently resistant to D1 receptor-induced PPI deficits (Fig 9.6). Taken together these 

data indicate that the primary mechanism of resistance in 5αR1 KO mice and SD rats is likely due 

to low levels of AP; however, further experiments are needed to determine the molecular 

underpinnings of these observations. In addition, the finding that the 5αR2 KO mice do not respond 

to the therapeutic effects of finasteride indicates that the primary mechanism of action of 

finasteride in through inhibition of 5αR2 not 5αR1. 

 Finasteride is primarily an inhibitor of 5αR2 in humans, although due to the chronic nature 

of therapy it is likely that 5αR1 is inhibited to a significant extent as well. However, the inhibitor 

sensitivity of the isoenzymes differs between rodents and humans. Indeed, it has been reported that 

in rats, finasteride displays a 4-13 selectivity for 5αR2 over 5αR1, while in humans there is >100-

fold selectivity [537]. The results from the studies presented here and clinical data on finasteride 

indicate that in the case of finasteride’s effects against D1 agonists in PPI, 5αR2 is the primary 

enzyme to focus on. Yet, further research must be conducted on specific 5αR1 inhibitors before 

this conclusion is drawn. For one, finasteride appears to inhibit rodent 5αR1 differently from 

rodent 5αR2 or human 5αR1 and 2. Inhibition studies have indicated that while the reaction to 
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inhibit rodent 5αR2, human 5αR1, and human 5αR2 produces an enzyme-bound NADP-

dihydrofinasteride adduct [397], the dissociation constant of this adduct for 5αR results in a very 

slow turnover of the complex, creating a practically irreversible inhibition [383]. However, this is 

not the case for rat 5αR1. The inhibition of 5αR1 by finasteride in rats is not time-dependent, like 

it is for rodent 5αR2 and human 5αR1 and 2, and this inhibition of rat 5αR1 is fully reversible by 

washout. In addition, no detection of dihydrofinasteride is found in inhibition studies of rat 5αR1 

but is in the study of the other enzymes [537]. Mouse 5αR1 might differ from rat 5αR1; however, 

these data indicate that we cannot yet determine that 5αR1 is not a viable option for countering D1 

agonist induced deficits, especially since the mice deficient of this enzyme are not responsive to 

SKF 82958. Due to the differences between rodent 5αR1 and human 5αR1, the specific 5αR1 

inhibitors that have been manufactured for human studies are not valid options for preclinical 

studies. However, future studies employing humanized 5αR1 mice may shed light on the potential 

of targeting 5αR1 therapeutically.   

 We have previously shown that finasteride treatment is an effective therapy for adult male 

patients with refractory TS [416, 417]. However, since finasteride cannot be used in children due 

to the high inhibition of 5αR2, determining the mechanism of action of finasteride will be crucial 

to developing novel therapies for TS patients. If 5αR1 inhibition proves to be a beneficial therapy 

this would bypass the issue of demasculinzation.   

 Another interesting finding of this research was the response of 5αR1 KO and 5αR2 KO 

mice to the D2 receptor agonist quinpirole. The PPI response of C57Bl/6 is not altered by 

quinpirole [300]. However, we previously reported that pretreatment with finasteride combined 

with quinpirole, induced PPI deficits in these mice [277], indicating that the steroidal milieu may 

be modulating the contributions of different dopamine receptors in the modulation of sensorimotor 
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gating mechanisms. In line with these findings we found that quinpirole induced PPI deficits in 

5αR1 KO mice, but not 5αR2 KO mice (Fig 9.2D and Fig 9.3D). To determine if this is truly due 

to lower levels of AP in the 5αR1 KO mice compared to the 5αR2 KO mice, further studies must 

be completed. First, determining if finasteride pretreatment allows for quinpirole induced PPI 

deficits in the 5αR2 KO mice will provide insight on the necessity of 5αR2 in the mechanism of 

finasteride in this pathway. Second, experiments on the 5αR1 KO, in which AP is administered 

prior to quinpirole, would determine if AP could abolish this effect of quinpirole. This would be 

instrumental in determining both if low levels of AP is allowing the D2 receptor agonist to induce 

PPI deficit, as well as demonstrate if AP is essential in orchestrating the switch between D1 and 

D2 mechanisms of PPI regulation.  

 The molecular pathways through which 5α-reduced steroids alter PPI mechanisms is 

unknown and will be the topic for the next chapter. However, several hypotheses are viable. The 

3α, 5α-steroids such as AP are potent positive allosteric regulators of the GABAA receptor. 

Research on the effects of GABAA receptor agonists or positive allosteric regulators on PPI is 

scant; however, altering the balance between GABA and glutamate in any fashion could produce 

an imbalance between brain regions (such as the prefrontal cortex and nucleus accumbens) that 

would lead to PPI deficits. For example, extensive research has found that inhibitors of the GABAA 

receptor, such as picrotoxin, reduce PPI. Interestingly, this has been observed when picrotoxin was 

infused directly in the medial prefrontal cortex, and pretreatment with systemic haloperidol ablated 

these effects [538]. On the other hand, dizocilpin, an NMDA antagonist has been demonstrated to 

induce PPI deficits when infused into the amygdala or dorsal hippocampus but not the nucleus 

accumbens, ventral hippocampus, or dorsomedial thalamus [539]. A trend toward a significant 

reduction was also seen when dizocilpin was infused into the medial prefrontal cortex in the same 
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study and further research has demonstrated that excitotoxic lesions of the medial prefrontal cortex 

prevent the PPI deficit induced from systemic administration of dizocilpin [540]. In contrast, 

dopamine agonists primarily induce PPI deficits via subcortical brain regions [184]. The results 

from our studies also suggest that alterations in the 5αR1 KO mice are not affecting dopamine 

neurotransmission in the dorsal striatum since SKF 82958 is still capable of producing 

hyperlocomotion in these mice (Fig 5B). Although quinpirole does not induce hypolocomotion in 

these mice, it is possible that this is due to floor effect after the long habituation. However, should 

AP and finasteride be inducing these effects in the medial prefrontal cortex, as is suggested by the 

results of chapter 6, or through the nucleus accumbens, as demonstrated in previously published 

data on rats [423] there are several possibilities to be considered. 

First, AP could be inducing these deficits through modulation of the GABAA receptor. An 

increased inhibitory tone from GABAA in the prefrontal cortex would produce excessive inhibition 

of glutamatergic neurons and lead to activation of the subcortical brain regions that regulate PPI. 

Alternatively, the effects of AP could be mediated by AP sulfate, which has been demonstrated to 

negatively modulate the NMDA receptor [492]. Alternatively pregnenolone sulfate potentiates the 

NMDA receptor containing GluN1/GluN2A, B while at the same time inhibits AMPA, kainite, 

NMDA receptors containing GluN1/Gul N2C, D and GABAA receptors [541-543]. Finasteride 

treatment would increase levels of the precursors to AP and hence would increase pregnenolone 

sulfate. An increase in the positive modulation of NMDA would decrease dopamine release in the 

nucleus accumbens which could reduce the effectiveness of SKF 82958. The possibility of an 

involvement of NMDA in very interesting in light of previous publications from our lab. We found 

that the partial D1 agonist SKF 38393 potentiated the PPI disrupting effects of the NMDA 

antagonist dizocilpine in SD rats [505]. These data indicate that there are D1-NMDA interactions 
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in the mediation of PPI mechanisms. Furthermore, there is research that NMDA activation might 

alter D2 signaling mechanism in the PFC from inhibitory Gi signaling pathways to excitatory Gs 

signaling pathways to enhance the excitability of the prefrontal neurons [544].   

Other possible mechanisms involve lesser well known and studied receptors for AP, PXR 

and P2X4R. While both of these receptors have been studied in the periphery, relatively little is 

known about how they may mediate the effects of AP in the brain, although both receptors have 

been demonstrated to be involved in dopamine mediated behaviors [453, 454, 456-460, 468, 469, 

473]. Further research into these roles is warranted to determine if they are involved in the 

regulation of PPI processes as well.  

Besides the additional experiments outlined above, there are several limitations to this 

study. First, we did not test female mice. Preliminary studies indicate that the alterations in 

behavior observed in 5αR1 are not present in the female mice; however, these studies need to be 

expanded on. Still, these findings are most relevant to disorders characterized by a pronounced 

male predominance, so the results presented here are the most salient. In addition, we did not find 

any alterations in dopamine signaling due to 5αR1 knockout. We found the expected increase in 

the phosphorylation of ERK in the ventral striatum but there was no effect from genotype. No 

alterations were seen in the phosphorylation of DARPP-32, a dopamine signaling molecular shown 

to be differentially regulated by D1 and D2 receptors. Finally, we also did not see any differences 

in the prefrontal cortex. These results suggest that the actions of AP are likely not mediated by 

dopamine D1 receptors; however, more extensive analyses need to be completed. Despite these 

limitations, the results of these studies strongly support a role for AP in the mediation of dopamine 

induced PPI deficits and raise important questions for future research on the balance between D1 

and D2 receptors in the regulation of sensorimotor gating mechanisms.  
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10. Allopregnanolone mediates stress-induce PPI deficits 

Introduction 

 The results of the previous chapters highlight a key role for the steroid AP. This 

neurosteroid has numerous actions in the brain, including mediating dopamine motivated 

behaviors (such as mating) [545-547] and as a negative modulator of the stress response through 

the GABAA receptor [349, 437]. To further research the role of AP in stress-exacerbation of TS 

symptoms we performed a series of experiments in WT mice to determine if AP alone could induce 

PPI deficits and further explore the molecular pathways that induce these alterations. We 

demonstrated in chapter 6 that AP is sufficient to induce an increase in tics and PPI deficits in the 

TS animal model, the D1CT-7 mouse line; however, we chose to translate these findings into 

another animal model to strengthen the findings from the D1CT-7 experiments.  

 Based on the research up to this point, we hypothesize that AP is sufficient to induce TS-

like symptoms (PPI deficits) in WT mice; however, research completed in the D1CT7 mouse line 

suggest that these responses are not solely due to the GABAA receptor. Therefore, we also utilized 

knockout mice of other receptor targets of AP, PXR and P2X4 to investigate other mechanisms of 

action. Finally, we further investigated the hypothesis that stress induced TS-like symptoms are 

contributed to by increased AP synthesis through experiments exposing WT mice to stress 

paradigms prior to PPI testing.   

Methods 

Animals. The experiments included in this study were performed on adult (3-5-month old), 

experimentally naïve male WT C57BL/6 mice obtained from Jackson Laboratories (Bar Harbor, 

ME). Experiments were performed on PXR KO mice along with their WT littermates obtained 

from breeding colonies at the Universities of Kansas and Utah. All mice were generated from HZ 
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x HZ crosses. Progenitors were obtained by Dr. Jeffrey Staudinger (University of Kansas). P2X4 

KO mice were obtained from breeding colonies at the University of Southern California (USC) 

[548]. All mice were housed in groups of 4-5 and had ad libitum access to food and water. Housing 

facilities were maintained at 22ºC with on 12 hour light/dark cycle (06:00 AM hours and on at 

06:00 PM).  Experimental manipulations were carried out in the animals’ light cycle between 8:00 

AM and 4:00 PM. All handling and experimental procedures were performed in compliance with 

the National Institute of Health guidelines and approved by the local Institutional Animal Care and 

Use Committees.  

Genotyping. Animal genotyping was performed by PCR. Samples of genomic DNA were 

extracted from tail biopsies acquired from mice at weaning (postnatal day 21). For the P2X4R KO 

mice, primers were used to identify LacZ (5′-GCGAACGCGAATGGTGCAGC-3′) and P2X4R 

(5′-TCGCTCTCTGGGTCTGGGGC-3′). Reaction conditions were 5 min at 95 °C, followed by 32 

cycles of 15 s at 95 °C, 15 s at 60 °C, and 15 s at 72 °C. For the PXR KO mice, the following 

primers were used: 1) CTG GTC ATC ACT GTT GCT GTA CCA; 2) GCA GCA TAG GAC 

AAG TTA TTC TAG AG; 3) CTA AAG CGC ATG CTC CAG ACT GC. Reaction conditions 

were 3 min at 95 °C, followed by 35 cycles of 45 s at 95 °C, 30 s at 60 °C, and 60 s at 72 °C, and 

then a final elongation of 6 min at 72 °C. 

Experimental Compounds. The following drugs were used in this study: SCH 23390 

(1mg/kg), haloperidol (0.3 mg/kg), ganaxolone (15 mg/kg), obtained from Tocris Bioscience 

(Bristol, UK) and Sigma-Aldrich (Saint Louis, MO); AP (1-15mg/kg, synthesized by the 

laboratory of Jeff Aubé at the University of Kansas) and isopregnanolone (15mg/kg, Steraloids, 

Newport RI). SCH 23390 was dissolved in distilled water. Haloperidol was dissolved in 10% 
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acetic acid buffered with sodium hydroxide and diluted with saline. Ganaxolone, AP and 

isopregnanolone were dissolved in 5% Tween 80 and diluted with saline. 

Acoustic Startle Reflex and Prepulse Inhibition (PPI) of the Startle. Acoustic startle 

reflex and PPI were tested as previously described in chapter 3.  

Statistical Analyses. Parametric and non-parametric statistical analyses on behavioral 

parameters were performed by a one-way ANOVA or Kruskal-Wallis test, followed by Tukey’s 

HSD or Nemenyi’s test for post-hoc comparisons, respectively. Normality and homoscedasticity 

of data were verified by the Kolmogorov-Smirnov and Bartlett’s test. Significance was set at P = 

0.05.   

Results 

AP induces PPI deficits in WT mice. The first experiment was conducted to determine 

the effects of AP on sensorimotor gating. WT C57/BL mice were treated with AP (1-15mg/kg). 

AP did not significantly alter the mean startle amplitude (Fig 10.1A) but did induce PPI deficits at 

the highest dose tested (Fig 10.1B; F(1,43) = 5.13, P < 0.001; post hoc comparisons: vehicle vs 

15mg/kg AP, P < 0.01).  

Dopamine D1 or D2 receptors do not mediate the effects of AP. We next tested the 

effects of dopamine receptor antagonists on the PPI disrupting effect of 15mg/kg AP. Dopamine 

has been well documented to mediate sensorimotor processes. Indeed, dopamine antagonists are 

used clinically to treat patients with TS and dopamine agonists are commonly used to model TS 

in animals. We first tested the dopamine D1 receptor antagonist SCH 23390. In this experiment 

we found that AP increased the startle amplitude of the test mice (Fig 10.1C; main effect of AP: 

F(1,32) = 7.24, P < 0.05), but there was no effect of SCH 23390 on the startle amplitude. In 

addition, while AP induced PPI deficits in the test mice, SCH 23390 did not restore PPI levels (Fig 
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10.1D; main effect of AP: F(1,32) = 8.56, P < 0.05). We also tested the D2 receptor antagonist 

haloperidol. There was no effect of either drug on mean startle amplitude (Fig 10.1E) in this 

experiment, but AP treatment did result in PPI deficits that were not ablated by haloperidol 

treatment (Fig 10.1F; main effect of AP: F(1,28) = 14.49, P < 0.001).  

 

Figure 10.1 Allopregnanolone induces PPI deficits in WT C57 mice. Mice were pretreated with AP (1-15 mg/kg) prior 
to PPI testing. (A) Mean startle amplitude and (B) % Average PPI were recorded. (C-D) The D1 antagonist SCH 
23390 (1mg/kg) was tested against AP in PPI. (E-F) The D2 antagonist haloperidol (0.3mg/kg) was tested against AP 
in PPI. (G-H) The selective GABAA positive modulator ganoxolone (15mg/kg) was tested in PPI. (I-J) The negative 
GABAA receptor modulator isopregnanolone (15 mg/kg) was tested against AP in PPI. Data are shown as mean ± 
SEM. **P<0.01 compared to VEH treated mice. All main effects are represented in the corresponding graphs. 
Abbreviations: VEH, vehicle; AP, allopregnanolone; SCH, SCH 23390; HAL, haloperidol; GAN, ganaxolone; ISO, 
isopregnanolone. 
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GABAA receptors are not involved in the mechanism of AP. To determine if AP was 

inducing PPI deficits by acting at the GABAA receptor we next treated with the GABAA receptor 

specific synthetic analog of AP, ganaxolone. We did not find any effect of ganaxolone on startle 

amplitude or PPI levels in WT mice (Fig 10.1G). In addition, we pretreated mice with 

isopreganolone, which has been shown to be a negative modulator of the GABAA receptor at the 

same site of action as AP [549]. In confirmation of the ganaxolone results, isopregnanolone did 

not alter startle amplitude (Fig 10.1I) or attenuate the PPI deficit from AP (Fig 10.1J; main effect 

of AP: F(1,28) = 5.39, P < 0.05).  

Alternative receptors: PXR and P2X4. Research has shown that besides the GABAA 

receptor, AP can also exert effects through the purinergic receptor, P2X4R, and the PXR, both of 

which have been demonstrated to be expressed in the brain. To study the contributions of these 

receptors we performed experiments in mice deficient of either P2X4R or PXR. We found that the 

P2X4R KO mice were resistant to the effect of AP on PPI (performed by Sheraz Khoja and Dr. 

Daryl Davies, University of Southern California; data not included). In addition, AP also did not 

Figure 10.2 Pregnane xenobiotic receptor (PXR) is involved in AP induced PPI deficits. PXR KO mice were treated 
with AP (15 mg/kg,) and tested in the startle reflex paradigm. (A) Mean startle amplitude and (B) average % PPI were 
recorded. Data are shown as mean ± SEM. **P<0.01 and ***P<0.001 for comparisons indicated. Abbreviations: VEH, 
vehicle; AP, allopregnanolone. 
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induce PPI deficits in the PXR KO mice (Fig 2B, genotype x treatment interaction: F(2,54) = 6.30, 

P < 0.01; post hoc comparisons: WT + vehicle vs WT + AP, P < 0.001; WT + AP vs KO + AP, P 

< 0.01). These data indicate that both the P2X4R and PXR contribute to the role of AP in 

sensorimotor gating regulation. 

Restraint stress induces PPI deficits. To translate these findings to a physiological 

situation we exposed mice to restraint stress to induce an increase in stress hormones, such as AP. 

We found that similar to AP, restraint stress did not affect mean startle amplitude (Fig 3A) but did 

induce PPI deficits in a time dependent fashion (Fig 3B; F(1,44) = 3.39, P < 0.017; post hoc 

Figure 10.3 Restraint stress induces PPI deficits that are ablated by finasteride. (A-B) WT C57 mice were exposed to 
restraint stress (0-8hr) and testing for sensorimotor responses, mean startle amplitude and average % PPI. In a 
subsequent experiment, mice were exposed to 4hr restraint stress and treated with finasteride (50mg/kg) prior to PPI 
testing. (C) Mean startle amplitude, (D) average % PPI, and (E) plasma corticosterone levels were measured in this 
second cohort of mice. Data are shown as mean ± SEM. *P<0.05, ***P<0.001 for the comparisons indicated. Main 
effects are indicated in the corresponding graph. Abbreviations: HR, hour; FIN, finasteride.  



144 
 

comparisons: no stress vs 4hr restraint stress, P < 0.05; no stress vs 8hr restraint stress, P < 0.05). 

To confirm that these observations were due to an increase in AP we blocked the synthesis of AP 

with the 5α-reductase inhibitor finasteride. We found that a main effect of the 4hr restraint stress 

on mean startle amplitude (Fig 3C; F(1,36) = 4.14, P < 0.05). In addition, finasteride treatment 

before PPI testing ablated the effect of restraint stress on PPI (Fig 3D; condition x treatment 

interaction: F(1,36) = 13.57, P < 0.001; post hoc comparisons: no stress + vehicle vs 4hr restraint 

+ vehicle, P < 0.05; 4hr restraint + vehicle vs 4hr restraint + finasteride, P < 0.001). We also 

analyzed corticosterone levels following restrain stress. We found a significant main effect of both 

stress to increase corticosterone (Fig 3E; F(1,18) = 17.42, P < 0.05) and of finasteride treatment to 

decrease corticosterone levels (F(1,18) = 19.09, P < 0.05).   

Discussion 

 The results of these studies confirm previously published data from our group that 

demonstrates that the neurosteroid AP mediates important behaviors related to TS symptom 

fluctuations. Here we find that AP is sufficient to induce PPI deficits in WT C57BL/6 mice through 

the receptors P2X4 and PXR. Furthermore we report that stress induced PPI deficits in the WT 

C57BL/6 mice are ablated by treatment with the 5αR inhibitor finasteride. 

 Our initial studies expanded on previously published data that highlighted a key role for 

AP in the exacerbation of TS-like symptoms in the D1CT-7 mouse model ([550], chapter 6). We 

repeated aspects of this study in the WT C57BL/6 mice and found that systemic AP was sufficient 

to induce PPI deficits in a dose dependent fashion (Fig 10.1). This is in contrast to the WT Balb/c 

mice tested in our previous publication. In those studies the same dose of AP did not induce PPI 

deficits in the WT BALB/c littermates of the D1CT-7 mice but did in the D1CT-7 mice. These 

opposing findings are likely the result of strain differences. It has been published repeatedly by 
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our group and others that albino strains display altered PPI responses to dopamine agonists in 

comparison to non-albino strains ([267, 320, 489] also see chapter 8); therefore, the albino Balb/c 

strain may not be as susceptible to the AP induced PPI deficits without the D1 mutation, as 

observed in the D1CT-7 mutants.  

 We next investigated the contributions of various receptors to the effects of AP. We found 

that neither antagonists for the dopamine D1 receptor, not the dopamine D2 receptor blocked the 

effects of AP on PPI (Fig 10.1). This suggests that there are either two converging mechanisms 

from AP and dopamine or AP is exerting its effects downstream of the dopamine receptors. We 

previously reported that AP did synergize with D1 agonists to induce PPI deficits (see chapter 9), 

indicating that the two pathways do interact. However, in the same studies (chapter 9) we also 

observed no alteration in dopamine signaling molecules 5αR1 KO mice indicating that AP may 

not interact with dopamine at the level of receptor or signaling cascade.  

 Following these studies we focused on the GABAA receptor, which is the most studied 

receptor for AP (Fig 10.1). AP acts as a positive allosteric modulator of GABAA so we attempted 

to replicate the results of AP treatment using a synthetic analog of AP, ganaxolone. Ganaxolone 

has been demonstrated to be specific for the GABAA receptor and induce effects within the same 

time course and dose as AP [551]. However, ganaxolone was not sufficient to induce PPI deficits 

in the WT C57Bl/6 mice. We further confirmed that there was not a primary mechanism involving 

the GABAA receptor by pretreating mice with the 3β, 5α- isomer of AP, isopregnanolone. Contrary 

to AP, isopregnanolone acts as a negative modulator of the GABAA receptor and has been 

demonstrated to block the GABAA-potentiating effect of AP [549]. In this study isopregnanolone 

was not effective at blocking the results of AP on PPI. Together these results suggest that the 

influence from GABAA receptors is not a primary mechanism through which AP induces PPI 
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deficits. This does not rule out the possibility that GABAA is working in concert with other 

mechanisms in this pathway such as the dopamine receptors or P2X4R.   

 We next turned to other possible receptors for AP. The first we investigated was the PXR 

receptor [455]. We found that the PXR KO mice were resistant to PPI deficits induced by AP (Fig 

10.2). PXR has been primarily studied for its role in drug clearance in the liver [442]. However, 

research surrounding the role of PXR in the brain has recently become more prominent. PXR has 

been found in several brain regions [452-455, 552]. In addition, researchers have demonstrated 

that PXR knockdown results in a decreased level of AP in the midbrain, striatum and hippocampus. 

These same studies also identified PXR as a key mediator of dopamine motivated behaviors such 

as mating; however these results are likely due to the observed decrease in AP levels [453, 454, 

456-460]. One possible explanation for these results is that PXR is both a receptor for AP and is 

also involved in the transcriptional regulation of steroidogenic enzymes to act as part of a 

feedforward mechanism to upregulate AP. The finding that PXR knockdown decreases AP levels 

implies that the PXR KO mice are resistant to PPI disrupting effects of AP because the critical 

level of AP in the brain has not been reached. Furthermore, since PXR is a nuclear receptor that 

mediates transcription it is not feasible for AP to exert the effects seen on PPI in the time frame 

observed, which further supports the hypothesis that PXR mice are resistant to AP induced PPI 

deficits due to low baseline levels of the neurosteroid.   

The other receptor we investigated was the P2X4R, which has also been demonstrated to 

bind to AP [461]. We found that these mice were also protected from PPI deficits induced by AP. 

Since this receptor is a membrane bound cation channel, the possibility that this receptor directly 

mediates the effects of AP in PPI is greater than for PXR. The research on P2X4R in the brain has 

focused largely on the role of this receptor in inflammation and microglia. This is especially 
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interesting in the context of TS because multiple lines of study have suggested inflammation or 

infection may predispose individuals to developing TS and clinical studies indicate that TS patients 

have altered immune responses [102, 553, 554]. While further research is needed to determine the 

connection between P2X4R, inflammation/immune responses and TS, this could prove to be a 

fruitful line of inquiry. Interestingly P2X4Rs modulate N-methyl-D-aspartate (NMDA) glutamate 

receptors [470] which could provide a direct mechanism through which AP affects sensorimotor 

processes. NMDA receptor antagonists, such as MK-801, have been shown to induce PPI deficits 

in rodent models [505, 539, 540]. P2X4R has been implicated in PPI regulation previously. 

Ivermectin, which potentiates P2X receptors, and genetic knockout of P2X4R both induce PPI 

deficits [468, 469]. Of note, P2X4Rs have also been shown to regulate striatal dopamine 

homeostasis which would also contribute to sensorimotor gating functions [473]. Taken together 

the data presented here and the previous research conducted indicate that P2X4 may directly 

mediate the effects of AP in PPI processes through modulation of the NMDA receptor, likely in 

the prefrontal cortex, or dopamine neurotransmission in the striatum.  

 Finally we performed experiments to induce an increase in AP physiologically. This was 

accomplished through restraint stress of up to eight hours. We found that restraint stress between 

4-8 hours induced significant PPI deficits in mice, which were ablated by treatment with the 5αR 

inhibitor finasteride (Fig 10.3). These data indicate that the PPI deficits induced by stress are 

mediated by an increase in 5α-reduced neurosteroids. In addition, we confirmed the stressfulness 

of the paradigm by measuring corticosterone levels in mice following a 4 hour restraint with or 

without finasteride treatment. As expected, stress increased corticosterone levels in the restrained 

mice. Surprisingly, finasteride decreased corticosterone levels both in mice not exposed to stress 

and those that underwent restraint stress. This was unexpected because corticosterone is a substrate 
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of 5αR so inhibition of this enzyme should increase, not decrease corticosterone levels. This 

suggests that finasteride is inhibiting the cascade at a level before corticosterone synthesis is 

triggered in the adrenal gland. These data are in partial agreement with published data 

demonstrating that restraint stress induces PPI deficits; however, the restraint stress required to 

induce a significant PPI deficit was markedly shorter than we found in our study [555]. 

Interestingly, the researchers also found that D-serine, an agonist of NMDA receptors ablated these 

stress induced deficits.   

 In conclusion, the results presented here further characterize the mechanism through which 

AP exacerbates TS-like behaviors in rodents. Of note, these studies are limited by the exclusion of 

females and the lack of molecular data. Even though TS is far more prevalent in males the 

contribution of AP to stress-exacerbated behaviors is highly relevant to females as well, and so 

should be the topic of future research. Furthermore, exploration of signaling pathways altered by 

AP will be valuable to determine the mechanisms involved. Finally, we did not pinpoint a region 

through which AP is exerting these effects. Previous data strongly suggests the prefrontal cortex 

is the key region involved but this has not been confirmed here. In spite of these limitations, this 

research extends the current knowledge concerning the role of AP in the brain and provides novel 

targets for future research and therapies.   
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11. Finasteride inhibits 5α-Reductase Type 2 to induce depressive-like behaviors 

Introduction 

 There are two critical issues that prevent finasteride from being an ideal candidate for TS 

therapy. The first, the demasculinizing side effects may be circumvented by employing 5αR1 

specific inhibitors [556], since 5αR2 rather than 5αR1 is the primary mediator of androgen 

synthesis and puberty. The second issue, however, also warrants significant research and 

consideration. As mentioned above, a subset of patients prescribed finasteride to treat alopecia 

have developed a severe, untreatable depression [403-405]. Therefore, before committing to a 

course of suggesting 5αR1 as a suitable treatment option for TS patients, the mechanisms 

underpinning this side effect must be evaluated.   

 To investigate the roles of 5αR1 and 5αR2 in the development of depressive behaviors we 

tested WT mice and rats treated with finasteride in the forced swim test, a well-validated measure 

of depressive behaviors. To parse out the contributions of 5αR1 versus 5αR2 we studied the 

knockout mice for each enzyme in the forced swim test to determine if finasteride was exerting its 

actions through one of them.  

Materials and Methods 

Animals. The experiments included in this study were performed on adult (3-5 month old), 

WT C57 mice (Jackson Laboratories, Bar Harbor, ME, USA), LE rats (Charles River Laboratories, 

Raleigh, NC, USA) and experimentally naïve male 5αR1KO and 5αR2KO mice along with the 

HZ and WT littermates (strain: C57BL/6), obtained from breeding colonies at the Universities of 

Kansas and Utah. All mutant mice were generated from HZ x HZ crosses. Progenitors were 

obtained by Dr. Mala Mahendroo (Southwestern University). Unless stated otherwise for specific 

experimental purposes, all mice were housed in groups of 4-5/cage, with at least 1 
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mouse/genotype, and had ad libitum access to food and water. Housing facilities were maintained 

at 22ºC with a reverse light/dark cycle (lights off at 08:00 AM hours and on at 08:00 PM). 

Whenever the same mice were used for multiple behavioral paradigms, the order of animals in 

each test was counterbalanced throughout the study. Tests were arranged from least to most 

stressful (separated by at least one week) to minimize carry-over stress. Experimental 

manipulations were carried out in the animals’ dark cycle between 10:00 AM and 6:00 PM. All 

handling and experimental procedures were performed in compliance with the National Institute 

of Health guidelines and approved by the local Institutional Animal Care and Use Committees.  

Genotyping. Mouse genotyping was performed by PCR as described in chapter 9.  

Locomotor Activity. Locomotor behaviors were measured in a square force-plate 

actometer as previously described in chapter 3 for mice. Rats were placed in a larger actometer 

(side: 42 cm; height 30 cm) [557] and the data analyzed as described in chapter 3. 5αR1KO and 

5αR2KO mice were tested in an open field for analysis of locomotor activity following finasteride 

treatment. The open field consisted of a square arena (40 cm x 40 cm) surrounded by black 

Plexiglas walls. The locomotor activity in the open field was analyzed using Ethovision (Noldus, 

Leesburg, VA).  

 Forced Swim Test. Mice were placed in a clear Plexiglas cylinder (10 cm in diameter × 

30 cm in height) filled to 15 cm with water (25°C) for 10 minutes before removed. The first five 

minutes were scored for immobility. Rats were similarly tested in a larger cylinder (29.21 cm in 

diameter x 44.45 cm in height) [558].  

 Statistical Analyses.  Data distributed binomially (such as the results of the tube test) were 

analyzed by a binomial test. Continuously distributed data were tested for normality and 

homoscedasticity by the Kolmogorov-Smirnov and Bartlett’s test. Based on these results, 
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parametric and non-parametric statistical analyses were performed by a one-way ANOVA and 

Kruskal-Wallis test, followed by Tukey’s or Nemenyi’s tests for post-hoc comparisons, 

respectively. Significance was set at P = 0.05.  

Results 

Finasteride increases immobility in the forced swim test. We tested both Long-Evans 

rats and C57bl/6 mice in the force swim test following treatment with finasteride. In rats we found 

that a dose of 50 mg/kg significantly increased immobility in this test, while the other doses tested 

did not exert a significant effect (F(3,32) = 4.46, P < 0.05; post hoc comparisons: vehicle vs 

finasteride 50, P < 0.01). The same was observed in the latency to immobility (F(3,32) = 5.113, P 

< 0.01; post hoc comparisons: vehicle vs finasteride 50, P < 0.05; finasteride 10 vs finasteride 50, 

P < 0.05) In mice we observed a similar behavioral response to finasteride treatment; however, the 

mice were more sensitive to lower doses of finasteride (F(3,28) = 12.83, P < 0.001; post hoc 

comparisons: vehicle vs finasteride 25, P < 0.01; vehicle vs finasteride 50, P < 0.001; finasteride 

12.5 vs finasteride 50 P < 0.01). In addition, the latency to immobility was decreased due to 

finasteride treatment (H(3) = 16.15, P < 0.01; post hoc comparisons: vehicle vs finasteride 50 P < 

0.01, finasteride 12.5 vs finasteride 50 P < 0.05). Since drugs that induce hypolocomotion or 

sedation can produce increases in immobility in the forced swim test that do not correlate with a 

depressed mental state we also tested the animals in the open field actometer to confirm that 

finasteride did not decrease locomotion. In rats we found that the range of doses tested in the forced 

swim test did not alter total distance moved. In contrast, the mice treated with finasteride exhibited 

a severe decrease in total distance moved at the highest dose of 50 mg/kg compared to all other 

doses (F(3,27) = 6.66, P < 0.01; post hoc comparisons: vehicle vs finasteride 50, P < 0.01; 

finasteride 10 vs finasteride 50, P < 0.01; finasteride 25 vs finasteride 50, P < 0.05). Importantly, 
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the finasteride treatment of 25 mg/kg did not induce hypolocomotion but did produce a significant 

increase in immobility in the forced swim test. 

Finasteride induces depressive-like behaviors by blocking 5αR type 2. To determine 

which isoform of 5αR contributes to the depressive behaviors observed following finasteride 

treatment we conducted tests on mice deficient of either 5αR1 or 5αR2. Previous observations 

have indicated no overt behavioral alterations of these mice in the forced swim test compared to 

wildtype littermates; therefore, we only conducted analyses on the knockout mice to reduce the 

number of animals needed. In the 5αR1 KO mice we found that finasteride treatment at 25mg/kg 

and 50mg/kg induced a decrease in the latency to immobility (F(2,21) = 23.20, P < 0.001; post 

hoc comparisons: vehicle vs finasteride 25, p < 0.001; vehicle vs finasteride 50, p < 0.001). 

However, only the highest dose at 50mg/kg increased immobility (F(2,21) = 6.17, p < 0.01; post 

Figure 11.1 Finasteride induces increased immobility in the forced swim test. Rats (A-C) and mice (D-F) were treated 
with finasteride (0-50 mg/kg) and tested in the forced swim test and open field. The duration of immobility (A,D) and 
latency to immobility (B,E) was analyzed in the forced swim test. Total distance moved (C,F) was recorded in the 
open field paradigm. Data are shown as mean ± SEM. *P<0.05, **P<0.01; ***P<0.001 for the comparisons indicated. 
Abbreviations: VEH, vehicle FIN, finasteride. 
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hoc comparisons: vehicle vs finasteride 50, P < 0.01). Finasteride treatment also induced a 

significant hypolocomotion in the 5αR1 KO mice at 50mg/kg (P < 0.05). In contrast the 5αR2 KO 

mice were not affected by finasteride at either dose in the latency to immobility or duration of 

immobility. Finasteride at 50mg/kg induced a significant decrease in locomotion (P < 0.001). 

 

  

Figure 11.2 5αR2 KO mice are resistant to FIN-induced depressive-like behaviors. 5αR1 and 5αR2 KO mice were 
tested in the forced swim test following treatment with finasteride (0-50mg/kg) and in the open field following 
treatment with finasteride at 50 mg/kg. (A, D) The latency to immobility in the forced swim test. (B,E) The total 
duration of immobility during the forced swim test. (C,F) the total distance moved during the open field test. Data are 
shown as mean ± SEM. *P<0.05, ***P<0.001 for the comparisons indicated. Abbreviations: VEH, vehicle FIN, 
finasteride; 5αR1KO, 5α-Reductase type 1 knockout; 5αR2KO, 5α-Reductase type 2 knockout. 
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Discussion 

 The results of these studies demonstrate that finasteride induces depressive-like behaviors 

in both mice and rats. Importantly, we also demonstrate that these behaviors are mediated by 5αR2 

rather than 5αR1.  

 Our initial characterization of finasteride in a well validated paradigm aimed at measuring 

depressive-like behaviors, the forced swim test, found that acute doses of finasteride produced a 

robust increase in immobility. These findings are in agreement with clinical data indicating that 

finasteride can induce depression in patients [403-406]. While not a common side effect of 

finasteride, this is nevertheless an important consideration since the depression appears to be 

untreatable and does not remit with termination of finasteride treatment.  

To determine if the depressive-like behaviors induced by finasteride were mediated by the 

5αR1 or 5αR2 we conducted similar experiments in mice with genetic inactivation of these 

isoenzymes. We found that the immobility of the 5αR1 KO mice was not altered by the 

intermediate dose of finasteride but highest dose did induce an increase in immobility. In contrast 

the 5αR2 KO mice were not affected by either dose of finasteride.  

Several limitations to these studies exist. This preliminary analysis of the effects of 

finasteride on depressive-like behaviors is far from complete. First, these studies only focus on 

one behavior related to depression. Ongoing research is analyzing the effects of finasteride on 

anhedonia and risk taking behaviors before definitive conclusions are drawn. In addition, it will 

be important to investigate the effect finasteride has on molecules in the stress signaling cascade 

such as CRH, ACTH and corticosterone. Preliminary data indicates that finasteride is drastically 

inhibiting CRH in the PVN and inducing a mild reduction on ACTH; however, further analyses 

are warranted to determine the effect of finasteride on corticosterone in this paradigm. Finally, the 
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inclusion of females in this study would be a valuable addition. Depression greatly affects women 

so even though post finasteride syndrome does not directly relate to women, insights into the 

contributions of neurosteroids to depression would be valuable for studies on women as well.  

Despite these limitations, these studies indicate that 5αR1 inhibition could a safe alternative 

to 5αR2 inhibition for the treatment of TS. However, further studies on 5αR1 inhibitors will be 

necessary before this is concluded and clinical trials are initiated. As mentioned above, rodent 

5αR1 is not inhibited by finasteride in the same manner as rodent 5αR2 so these results may be 

influenced by these differences. Further research on humanized 5αR1 mice treated with specific 

5αR1 inhibitors will be valuable to determine the true translational and therapeutic potential of 

5αR1 inhibition.  
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12. Final Discussion and Future Directions 

The critical findings of this dissertation 

The research presented in this dissertation extends the currently available range of animal 

models for the study of TS and provides valuable insights into the mechanisms of stress-induced 

fluctuations of TS symptoms. Furthermore, the findings of these studies can greatly inform the 

direction of future clinical studies and determine the direction for pursuing novel therapeutic 

options for TS patients. 

Stress exacerbates tics in mouse models through AP. Stress has a very clear 

exacerbating effect on symptoms in TS patients; however, the mechanism of this exacerbation has 

remained unclear. To provide further insight into these mechanism, the studies outlined in this 

dissertation have been designed to delve into the role of stress and stress neurosteroids on TS 

symptoms. We started our research using the D1CT-7 mouse model of TS. This model is extremely 

useful in the study of TS-like behaviors and is the only model currently available to display 

spontaneous tics (face validity), PPI deficits (construct validity) and responds to common TS 

therapeutics (predictive validity). Our studies confirmed the validity of this model (Chapter 3) and 

further explored the impact of stress on these behaviors. Importantly, we found that all the TS-like 

behaviors observed in these mice were exacerbated by acute stress. In addition, we have taken the 

critical next step in this line of research by demonstrating that this exacerbation of TS-like 

symptoms are induced by an increase in the neurosteroid AP (Chapter 6). While the role of AP in 

stress regulation has been well characterized (Chapter 5), this is the first report of AP mediating 

TS symptoms. These results also provide valuable insight into the mechanism of action of 

finasteride in TS patients. Based on these studies, the reduction of AP induced by finasteride’s 
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inhibition of 5αR is a key mechanism through which this compound exerts its therapeutic effects 

in clinical patients.  

We further confirmed these findings in WT C57BL/6 mice. First, we studied eye blinks in 

these mice to study a behavior in these animals that mimics a common tic in TS patients. In these 

studies we found that both D1 receptor activation and stress (restraint) increased eye blink 

frequency (Chapter 4). We also demonstrated predictive validity by demonstrating that common 

TS therapies reduced the eye blink responses that were increased following D1 receptor activation 

or stress. To determine the role of neurosteroids in this model we pretreated the mice with 

finasteride before either D1 agonist treatment or restraint stress. Surprisingly, we found that 

finasteride ablated stress- but not the D1 agonist-induced enhancement of eye blink frequency. 

This was surprising considering the anti-dopaminergic effects of finasteride that was observed in 

the D1CT-7 mice and other models of this dissertation, as well as previously published data from 

our lab [277, 422, 423, 489]. However, the anti-stress effects of finasteride were in agreement with 

our other presented data. We also showed that these effects are contributed by both isoenzymes of 

5αR indicating that an overall reduction in neurosteroids, regardless of the isoenzyme targeted, is 

sufficient to attenuate stress-induced eye blink responses. 

AP and dopamine interactions in the regulation of PPI. We next moved our studies to 

focus on perceptual alterations associated with TS, specifically PPI. Previous data from our lab 

and the results of the D1CT-7 series of experiments indicates that neurosteroids support 

dopaminergic mechanisms of PPI regulation [277, 422, 423, 489]. However, the translational 

impact of these findings was previously challenged due to strain differences observed between rats 

and mice; PPI deficits were only induced by D1 agonists in mice but D2 agonists in rats. This was 

a concerning state of the field because it raised questions on the validity of animal research to 
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study PPI deficits in a translational manner. Further research by Ralph and Caine [267] 

demonstrated that these assumptions were not entirely correct in mice but rather the result of the 

strain of mouse used. We expanded on this research by demonstrating that the same is true for rat 

strains. While this is still concerning and should be taken into account when translating findings 

from animal studies to the clinic these findings expand the number of appropriate animal models 

and highlight that vast heterogeneity that can occur within species.   

Following the identification of appropriate and varied models to use in these studies we 

confirmed previously published data from our lab [277] indicating that finasteride ablates PPI 

deficits induced by D1, but not D2 agonists, and actually exacerbates D2 receptor deficits in mice. 

These data on D1 mechanisms were repeated in rats and expanded on in mice to determine the role 

of the 5αR isoenzymes (Chapters 8 and 9). Interestingly, we found that 5αR1 but not 5αR2 genetic 

knockout provided protection from the PPI disrupting effects of D1 agonists. Furthermore, 5αR1 

but not 5αR2 KO mice were sensitive to PPI deficits induced by D2 agonists. These data indicate 

that low levels of neurosteroids alter the dopaminergic regulation from a system that is disrupted 

by D1 agonists to one that is disrupted by D2 agonists. Surprisingly, our data also indicates that 

finasteride requires 5αR2 to exert its anti-dopaminergic effect in PPI. These data indicate that low 

tonic levels of neurosteroids is protective; however, targeting 5αR2 acutely to inhibit phasic 

increases in neurosteroids has therapeutic potential as well and is the primary mechanism of 

finasteride. We further identified that AP was mediating these observations by demonstrating that 

AP synergized with D1 agonists to induce PPI deficits in both 5αR1 KO mice and albino SD rats, 

which belong to a strain of rat not susceptible to D1 agonist-induced PPI deficits.  

Molecular mechanisms of AP. The mechanism through which AP mediates these 

behaviors was our next avenue of study (Chapter 10). Surprisingly we found that AP was not 
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working directly through the GABAA receptor but through either the PXR or P2X4R. Based on 

the specific characteristics of each receptor, either might contribute to TS pathogenesis. PXR is a 

nuclear receptor and regulates the transcription of various genes. This is unlikely to be involved in 

acute effects of AP but it has been demonstrated that PXR is involved in the regulation of AP 

synthesis [454]; therefore, increased activation of this receptor in TS could lead to a higher 

production of AP and the deleterious effects observed in this research. On the other hand, the 

P2X4R is a cation channel that would exert effects quickly, on the timescale through which AP is 

observed to begin inducing tic-like behaviors and PPI deficits (10 minutes). P2X4R is on neurons 

and glia cells throughout the brain, but of special interest to TS has been found on GABAergic 

interneurons and spiny neurons in the striatum [559]. Furthermore Jo et al [560] demonstrated that 

cross-talk between P2X4R and GABAA receptors exists. Of note these studies showed that P2X4 

expression reduces GABAergic currents in the same neurons and provided evidence for a physical 

coupling between P2X4R and GABAA.  P2X4R has also been found co-localized with NMDA 

receptor in excitatory synapses and is involved in the ATP-mediated down-regulation of NMDA 

receptors [561]. Therefore, P2X4R is posed to act as a key regulator in the GABA-glutamate 

balance in signaling pathways of the brain. NMDA receptors have been demonstrated to interact 

with D1 receptors to produce PPI deficits and have also been shown to regulate D2 signaling [505, 

544]. These data indicate that NMDA antagonists, such as dizocilpine, induce PPI deficits through 

the same pathway as D1 agonists: increased dopamine release in the nucleus accumbens, triggered 

either indirectly via NMDA antagonists in the PFC or increased dopamine receptor activation 

directly from the D1 agonist in the nucleus accumbens.  Alternatively, D2 receptor stimulation in 

the PFC leads to decreased dopamine release in the nucleus accumbens; however, when NMDA 

is stimulated directly before the D2 receptor it has been demonstrated that this is capable of 
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inducing a switch in D2 to an excitatory signaling pathway. This could explain the ability of 

quinpirole to induce PPI deficits in mice pretreated with finasteride or in the 5αR1 KO mice. 

Further research is required to determine the validity of this hypothesis but the following scenarios 

are hypothesized to mediate these effects  

1) AP has been demonstrated to act in the PFC to exacerbate D1-mediated TS-like 

symptoms as shown indirectly in the D1CT-7 mice (chapter 6) and directly in the SD 

rats (chapter 9). Therefore we hypothesize that AP is modulating the P2X4R to 

potentiate the ATP-mediated down regulation of NMDA receptors which in turn would 

increase dopamine release in the nucleus accumbens and exacerbate the TS symptoms. 

Finasteride would reduce the down regulation of NMDA receptors and therefore ablate 

this response. 

2) Following finasteride treatment or genetic knockout of 5αR1 there is a decrease in AP 

but not in the precursors. An increase in pregnenolone sulfate would potentiate the 

NMDA receptors [562] and could facilitate a switch from an inhibitory D2 receptor to 

an excitatory pathway. This could lead to an increase in dopamine release in the nucleus 

accumbens when quinpirole in administered. Alternatively, if a similar mechanism is 

observed in the nucleus accumbens (so far NMDA mediated alterations in D2 signaling 

has only been observed in the prefrontal cortex) quinpirole could be acting directly 

there to induce PPI deficits in a similar manner as the D1 agonist.  

 

5αR isoenzymes in depression. Finally, we investigated the role of 5αR in the mediation 

of depression-like behaviors. This line of inquiry resulted from the rare side effect of finasteride 

treatment to induce post finasteride syndrome, a state of anhedonia and depression [403-406]. 
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Furthermore, there have been reports of decreased 5αR1 in depressed patients [563] which we 

have confirmed for both 5αR1 and 5αR2 in unpublished data. Here we have identified 5αR2 to be 

the primary regulator of post finasteride syndrome in preclinical animal models. This is important 

for the research on TS because it identifies 5αR2 as the isoenzyme to be avoided in developing 

novel therapeutics due its role in masculinization and post finasteride syndrome. However, before 

5αR1 inhibition is the chosen as the therapy of choice more research must be conducted. Targeting 

an enzyme that regulates such broad physiological processes that are central to regulating 

homeostasis and behavior, such as 5αR1, should not be undertaken lightly and so further research 

to determine the level of inhibition that is therapeutic and/or more specific targets would be 

beneficial. 

Future studies and limitation 

 D1 vs D2 induced PPI deficits. First, further research on the molecular mechanisms of 

neurosteroid regulation of dopamine receptor signaling will be instrumental in understanding the 

complete picture of TS. Our research has only just initiated these studies and further investigation 

into the pathways that mediate the role of both dopamine D1 and D2 receptors in the regulation of 

sensorimotor gating will be valuable. This can be accomplished first by performing additional 

experiments on the 5αR1 and 5αR2 KO mice. We have demonstrated that 5αR1 KO are protected 

from PPI deficits induced by D1 agonists but these mechanisms also induce susceptibility to D2 

agonist initiated PPI deficits (Chapter 9). However, we do not know if this entirely mediated by 

AP. Therefore, conducting experiments in which the 5αR1 KO mice are pretreated with AP prior 

to D2 agonist treatment would answer these question. In addition, to determine if 5αR2 is involved 

in acute processes of D1 and D2 sensorimotor regulation, the experiment conducted in Frau et al., 

2013 [277] should be replicated in the 5αR2 KO mice (finasteride + the D2 agonist quinpirole) to 
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parallel our finding that finasteride does not ablate D1 induced PPI deficits in the 5αR2 KO mice. 

In this experiment, the 5αR2 KO mice would be pretreated with finasteride before D2 agonist 

treatment and PPI testing. The results of these experiments would support the hypothesis that 5αR2 

inhibition is the primary mechanism of finasteride in mice and that this inhibition drives acute 

alterations in neurosteroid levels to induce the switch between D1 induced PPI deficits and D2 

induced deficits. Determining the neurosteroid that is driving this switch is also an important future 

direction. We have highlighted a key role for AP; however, the role of the other 3α, 5α-

neurosteroids and the precursors to AP should be investigated as well. It is possible that finasteride 

is exerting its therapeutic effects through increasing the levels of precursors, such as pregnenolone 

sulfate, so further research should focus on determining if this neurosteroid is beneficial in our TS 

animal models. Since sulfated compounds cannot cross the blood brain barrier these studies would 

have to conducted through ICV infusions or directly into the brain regions of interest, such as the 

PFC. 

 Our research strongly suggests that the neurosteroid regulation of NMDA or GABAA in 

the PFC is critical for regulation of subcortical brain regions such as the nucleus accumbens. 

Therefore, further experiments verifying that AP is directly acting in the PFC will be critical to 

understanding these pathways in more detail. This can be accomplished through direct infusion of 

AP into the PFC. Alternatively, finasteride infusion into the PFC, to determine if decreasing AP 

there would ablate D1 agonist induced PPI deficits, would indirectly support this hypothesis. We 

have previously demonstrated that finasteride was attenuating PPI deficits through actions in the 

nucleus accumbens; however, these experiments were completed in SD rats rather than mice or 

LE rats (D2 driven sensorimotor processes versus D1 driven). Therefore, the regulation from the 

PFC might be different in C57Bl/6 mice or LE rats. Once this is confirmed it will be interesting to 
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explore the contribution of the P2X4R in the mediation of these processes. As stated above, the 

P2X4R is well situated to be involved in modulating the balance between GABAergic 

neurotransmission vs glutamatergic neurotransmission.  

 5αR1 and 5αR2 in the regulation of mood and emotion. We have recently published 

that 5αR2 KO mice display alterations in dominance behaviors ([564], full text in appendix). While 

outside the direct scope of this dissertation, this paper highlights the role 5αR2 plays in mediating 

dominance and impulse-control disorders but did not reveal any overt alteration in depression-like 

behaviors or anxiety. However, the preliminary research presented in chapter 11 indicates that 

finasteride is inducing depression-like behaviors through inhibition of 5αR2. The fact that we did 

not see any such behaviors in the 5αR2 mice might indicate that there are compensatory effects 

taking place in the constitutive KO mice. Therefore, it will be important to also study the effect of 

condition KO in adulthood, rather than chronic deficiency. Finally, the results presented in chapter 

11 do not completely rule out 5αR1 in the production of depression-like behaviors. As stated 

above, finasteride does not inhibit 5αR1 in rodents in the same manner as 5αR2 [537]. 

Furthermore, 5αR1 specific inhibitors developed for use in humans are not effective on the rodent  

5αR1 [565]. Experiments using humanized 5αR1 mice, which are currently being developed in 

our lab, will provide insight into the therapeutic potential of these specific 5αR1 inhibitors and 

possible adverse side effects associated with this inhibition.  

 In conclusion, this research will be instrumental in developing novel therapeutics for TS 

patients. It also points to actions of AP and neurosteroid-AP interactions that were previously 

unknown. Despite the limitations of not also testing female rats and the experiments outlined above 

that would add further depth to this presentation, this research will be highly valuable in furthering 

the field of TS research and the physiological response to stress. 
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Appendix 

A.1 List of Abbreviations 

Abbreviation Full Name 
ACTH Adrenocorticotropic hormone 
ADHD Attention Deficit Hyperactivity Disorder 
ANOVA Analysis of Variance 
AP Allopregnanolone 
APO Apomorphine 
CLON Clonidine 
CRH Corticotrophin-releasing hormone 
CSTC Cortico-Striato-Thalamo-Cortio 
DAT Dopamine Transporter 
DHP Dihydroprogesterone 
FIN Finasteride 
HAL Haloperidol 
HPA Hypothalamic-Pituitary-Adrenal Axis 
HZ Heterozygous 
i.p. Interperitoneal 
KO Knockout 
LE Long Evans 
OCD Obsessive Compulsive Disorder 
PFC Prefrontal Cortex 
PPI Prepulse Inhibition 
PROG Progesterone 
QUI(N) Quinpirole 
SCH SCH 23390 
SC Space Confinement 
s.c. Subcutaneous 
SD Sprague Dawley 
SKF SKF 82958 
TS Tourette Syndrome 
WT Wildtype 

Table A.1 List of abbreviations used in this dissertation 
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A.4 Selective Activation of D1 Dopamine Receptors Impairs Sensorimotor Gating in 

Long-Evans Rats 

Mosher, L.J., Frau, R., Pardu, A., Pes, R., Devoto, P., Bortolato, M., Selective activation of D1 

dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol, 2016. 

173(13): p. 2122-34. 

Introduction  

The enactment of adaptive behavioural responses to salient environmental cues is 

contingent on the ability to filter out irrelevant or redundant sensory information [1].  Deficits in 

this function, termed sensorimotor gating, have been documented in numerous neuropsychiatric 

disorders characterized by information-processing deficits, including schizophrenia and Tourette 

syndrome [2].  

One of the best-validated operational indices to measure gating integrity is the prepulse 

inhibition (PPI) of the acoustic startle reflex. This endophenotype consists of the reduction of 

startle response triggered by a dim pre-stimulus immediately preceding the response-eliciting burst 

[3]. Over the past two decades, PPI has attracted substantial interest in neuroscience and 

psychiatric research, in view of its well-consolidated relevance to psychopathology as well as a 

number of operational advantages, including its validity as a cross-species testing paradigm for 

humans and experimental animals, which makes it particularly appealing in the context of 

translational studies [4, 5]. 

In line with the pivotal function of dopamine in information-processing functions, several 

studies have shown that this neurotransmitter plays a major role in the orchestration of PPI in 

humans [6], as well as rodents [7-10] and other vertebrates [11]. In rats and mice, agonists of 

dopamine receptors have been shown to produce robust PPI deficits [7, 8, 12]. These impairments 
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have been likened to the sensorimotor gating deficits observed in neuropsychiatric patients, by 

virtue of their sensitivity to antipsychotic agents [8, 12-14].  

Numerous studies have shown that the role of dopamine in PPI is mediated by both D1- 

and D2-like receptors; nevertheless, the specific contributions of these receptors to sensorimotor 

gating vary across different rodent models. While PPI deficits are elicited by D2 dopamine receptor 

agonists in Sprague-Dawley (SD) and Wistar (WIS) albino outbred rats [15, 16], these drugs fail 

to disrupt PPI in most mouse strains commonly used in behavioural research [17, 18]. Conversely, 

D1-like receptor agonists produce robust PPI deficits in most mouse strains, but are inherently 

unable to reduce PPI in SD rats. However, these drugs potentiate the effects of D2 receptor agonists 

and other key PPI disruptors, such as NMDA glutamate receptor antagonists [19, 20]. It should be 

noted that high doses of the full D1 receptor agonist SKF82958 were shown to induce PPI deficits 

in SD rats but these changes were found to be mediated by D2, rather than D1 receptors [20]. 

The dichotomy between mice and rats with respect to their different sensitivity to dopamine 

receptor agonists was originally posited to reflect interspecies differences. More recently this 

interpretation has been challenged by Ralph and Caine [21], who identified PPI deficits also in 

response to D2 receptor agonists in less commonly used mouse strains. Although few studies have 

documented the occurrence of PPI deficits in rats following administration of D1 receptor agonists 

[17], the lack of concomitant experiments on D1 receptor antagonists in those studies leaves the 

question open as to whether some rat strains may 

exhibit independent D1-mediated PPI deficits in a fashion similar to that observed in most mouse 

strains.  

To address this issue, we have studied the effects of different D1 receptor agonists and 

antagonists in SD, WIS and Long–Evans (LE) hooded rats. Our data indicate that, under specific 
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protocol settings, LE rats (but not albino strains) showed a specific reduction of PPI in response to 

a moderate, D1-selective dose of SKF82958 and that this effect was sensitive to D1 receptor 

antagonism. 

Materials and Methods.  

Animals. All animal care and experimental procedures were in compliance with the 

National Institute of Health guidelines and approved by the Institutional Animal Use Committees 

of the University of Kansas and Cagliari. All studies involving animals are reported in accordance 

with the ARRIVE guidelines for reporting experiments involving animals [22, 23]. The present 

study was conducted on 207 male SD, 106 WIS (Harlan, Italy) and 174 LE rats (Charles River 

Laboratories, Raleigh, NC, USA). Rats (3–4 months old; 300–350 g of body weight) were housed 

3–4 per cage in rooms maintained at a temperature of 22 ± 2°C and a humidity of 60%. Animals 

were given ad libitum access to food and water and held under an artificial 12/12 h light/dark cycle, 

with lights off from 10:00 a.m. to 10:00 p.m. In order to reduce stress during the experiment, each 

rat was handled gently for 5 min each day of the week preceding the behavioural testing. Care was 

taken in ascertaining the uniformity of all husbandry conditions across the two facilities where the 

experiments were performed (University of Kansas and University of Cagliari, Italy). 

Apparatus and Experimental Procedure. Startle and PPI were tested as previously 

described [24]. The apparatus used for detection of startle reflexes (Med Associates, St Albans, 

VT, USA) consisted of six standard cages placed in sound-attenuated chambers with fan 

ventilation. Each cage consisted of a Plexiglas cylinder of 9 cm diameter, mounted on a 

piezoelectric accelerometric platform connected to an analogue-digital converter. Two separate 

speakers conveyed background noise and acoustic bursts, each one properly placed so as to 

produce a variation of sound within 1 dB across the startle cage. Both speakers and startle cages 
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were connected to a main PC, which detected and analysed all chamber variables with specific 

software. Before each testing session, acoustic stimuli and mechanical responses were calibrated 

via specific devices supplied by Med Associates. 

Rats were first subjected to a pre-test session, during which they were exposed to a 

sequence of seventeen trials, consisting of 40 ms, 115 dB burst, with a 70 dB background white 

noise. Experimental groups were defined based on the average startle amplitude of the rats, so as 

to maintain comparable values of average startle response across all groups. 

Three days after the pre-test session, rats were treated and were exposed to a test session 

(Figure A4.1). This session featured a 5 min acclimatization period, with a 70 dB background 

white noise, which continued for the remainder of the session. The acclimatization period was 

followed by three blocks, each consisting of a sequence of trials: the first and the third block 

consisted of five pulse-alone trials of 115 dB (identical to those used in the pre-test session). The 

second block consisted of a pseudorandom sequence of 50 trials, including 12 pulse-alone trials, 

30 trials of pulse preceded by 74, 78 or 82 dB pre-pulses (10 for each level of pre-pulse loudness), 

and eight no-pulse trials, where only the background noise was delivered. Inter-trial intervals (i.e. 

the time between two consecutive trials) were selected randomly between 10 and 15 s.  

The % PPI was calculated only on the values relative to the second period, as well, using 

the following formula:  

100 −
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

× 100 

For both the pre-test and the test session, the interstimulus interval (i.e. the duration between the 

prepulse and the pulse in each trial) was kept at 100 ms. The selection of this interstimulus interval 

was based on pilot data and previously published experiments from our group [19], which showed 
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this parameter to be optimally suited to reveal PPI deficits in response to indirect and direct DA 

receptor agonists in rats under our experimental settings. 

Experimental Procedure. This study encompassed six experiments, each involving 8–13 

rats per group. The first experiment was aimed at assessing what doses of the full D1 receptor 

agonist SKF82958 (1–5 mg/ml, s.c., in comparison with saline, 10 min before behavioural testing) 

may produce alterations in PPI in SD, WIS and LE rats under our experimental conditions. 

Although SKF82958 is one of the most potent D1 receptor agonists, its D1:D2 selectivity 

ratio (10:1) has been shown to be relatively modest in comparison with other benzazepine D1 

receptor agonists [25]. Indeed, previous reports showed that, in SD rats, its PPI-disrupting effects 

were primarily mediated by D2, rather than D1 receptors [20]. To assess whether the effects of 

this agent on other rat strains may be ascribed to similar phenomena, in the second experiment, we 

tested whether the PPI disrupting effects of SKF82958 across different strains may be prevented 

by the selective D1 receptor antagonist SCH23390 (0.1 mg/ml, s.c.). Rats from each strain were 

therefore pretreated with either saline or the potent D1 receptor antagonist, SCH23390; 10 min 

later, rats were injected with either saline or a dose of SKF82958 that induced PPI deficits (based 

on the results of the first experiment). Testing occurred 10 min after SKF82958 injection. The third 

experiment mirrored the design of the second, and assessed the highly selective D2 receptor 

antagonist L741626 (1 mg/ml, s.c.) in SD and LE rats. Rats were pretreated with either the D2 

receptor antagonist L741626 or VEHL; 20 min later, animals were injected with either saline or 

SKF82958. Testing occurred 10 min after SKF82958 administration. 

The fourth experiment was conducted to determine the effects of the partial D1 receptor 

agonist SKF38393 (5–10 mg/ml, s.c.) on PPI in SD, WIS and LE rats. Animals were treated with 

SKF38393 or saline, 10 min prior to being placed in the startle apparatuses for testing.  
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In the fifth experiment, we evaluated the effects of the prototypical D2 receptor agonist 

quinpirole (0.6 mg/ml, s.c., 5 min prior to testing) in SD and LE rats. Furthermore, to assess the 

specificity of this effect, we assessed whether the PPI deficits induced by quinpirole may be 

prevented by L741626 (1 mg/ml, s.c., 25 min prior to quinpirole injection). 

In the sixth and final experiment, we tested the effects of the D1/D2 receptor agonist 

apomorphine (0.25–0.5 mg/ml, s.c.) on sensorimotor gating in SD, WIS and LE rats. Apomorphine 

was injected immediately before placing the animals in the startle apparatuses for testing.  

Materials. The following drugs were used: SKF 82958 hydrobromide, SKF 38393, 

SCH23390, L741626, apomorphine hydrochloride and quinpirole (Sigma Aldrich, St. Louis, MO, 

USA). SKF 82958, SKF 38393, SCH 23390 and quinpirole were dissolved in 0.9% saline solution. 

L741626 was dissolved in a vehicle (VEHL) of 1 mg/ml lactic acid and 0.9% saline. Apomorphine 

was dissolved in a vehicle (VEHA) of 0.9% saline and 1 mg/ml ascorbic acid to prevent oxidation. 

All drugs were administered via either s.c. or i.p injection, in 1 mL·kg−1 injection volume. 

Data analysis. Normality and homoscedasticity of data were verified by Kolmogorov–

Smirnov and Bartlett’s tests. Data were compared across groups by one-way or two-way 

ANOVAs, as appropriate. As no interaction between prepulse levels and treatment were found in 

the statistical analysis, %PPI values were collapsed across prepulse intensity to represent average 

%PPI. Post hoc analyses were performed using Tukey’s test with Spjøtvoll Stoline correction. 

Significance threshold was set at 0.05. 

Results 

Assessment of effects of D1 receptor agonists in SD, WIS and LE rats. In the first series 

of experiments (Figure A4.2), we tested the effects of the full D1 receptor agonist SKF82958 (1–

5 mg/ml, SC) on the startle responses and PPI of SD, WIS and LE rats. In SD rats (Figure A4.2A–
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B; n = 9 per group), this drug did not significantly modify startle amplitude; however, in 

conformity with previously published data [20], its highest dose (5 mg/ml, s.c.) produced a marked 

reduction of PPI in comparison with saline [F(2,24) = 8.71, P < 0.05]. Conversely, the dose of 1 

mg/ml of SKF82958 was sufficient to reduce PPI in both WIS (Figure A4.2C–D) and LE rats 

(Figure A4.2E–F; n = 9 per group for each strain) (WIS: [F(1,16) = 4.69]; LE: [F(1,16) = 29.38], 

Ps < 0.05) , without altering startle amplitude.  

In SD rats (n = 10 per group), SCH23390 produced a significant reduction in startle 

amplitude [main effect: F(1,36) = 5.28, P < 0.05]; conversely, this parameter was not affected by 

either SKF82958 (5 mg/ml, s.c.) treatment or its interaction with SCH23390 (Figure A4.3A). In 

the same strain, SKF82958 significantly reduced PPI [main effect: F(1,36) = 35.30, P < 0.05]; 

however, in confirmation of previous data [20], this effect was not countered by the D1 receptor 

(Figure A4.3B), confirming that, in SD rats, the PPI-disrupting effects of SKF82958 are not 

mediated by D1 receptors. These results were mirrored by our findings in WIS rats (n = 9 per 

group). Indeed, in this strain, SCH23390 produced a significant reduction of startle amplitude 

[main effect: F(1,32) = 19.09, P < 0.05] (Figure A4.3C); furthermore, while SKF82958 (1 mg/ml, 

s.c.) reduced PPI levels in this strain [F(1,32) = 15.82, P < 0.05], this effect was not prevented by 

SCH23390 (Figure A4.3D). 

In contrast with albino strains, in LE rats (n = 8–10 rats per group), SCH23390 pretreatment 

produced a significant enhancement in startle amplitude [main effect: F(1,34) = 10.75, P < 0.05]; 

conversely, ANOVA failed to detect a significant main effects for SKF82958 or interactions 

between the two treatments (Figure A4.3E). The analysis of PPI confirmed that SKF82958 

significantly reduced this index [F(1,34) = 26.84, P < 0.05]; however, in contrast with the other rat 

strains, this effect was prevented by SCH23390 [pretreatment × treatment interaction: F(1,34) = 
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6.76, P < 0.05], suggesting that the PPI-disrupting effects of SKF82958 were mediated by D1 

receptors in this strain (Figure A4.3F).  

We then examined whether the PPI deficits induced by SKF82958 may be countered by 

the selective D2 receptor antagonist L741626. The combination of L741,626 (1 mg/ml, s.c.) and 

SKF82958 (5 mg/ml, s.c.) failed to induce significant alterations in startle magnitude in both SD 

(n = 10 per group; Figure A4.4A) and LE rats (n = 8 per group; Figure A4.4C). Conversely, the 

PPI deficits induced by SKF82958 were significantly prevented by L741,626 in SD [F(1,36) = 

17.29, P < 0.05] (Figure A4.4B), but not LE rats (Figure A4.4D).  

Finally, we studied the effects of the partial D1 receptor agonist SKF38393 (5–10 mg/ml, 

s.c.) on the startle reflex and PPI of SD, WIS and LE rats. Notably, this drug failed to affect either 

parameter in any strain (Figure A4.5).  

Assessment of effects of D2 receptor activation in SD and LE rats. In SD rats, 

quinpirole treatment decreased the mean startle amplitude [F(1,36) = 48.51, P < 0.05], but this 

effect was not modified by the D2 antagonist L741626 (Figure A4.6A). Both L741626 [main 

effect; F(1,36) = 10.12, P < 0.05] and quinpirole [main effect; F(1,36) = 14.88, P < 0.05] 

significantly modified PPI, but no significant interaction of their effects was found (Figure A4.6B). 

In LE rats, startle analyses showed a significant interaction between quinpirole and L741626 

[F(1,28) = 6.8, P < 0.05]; post hoc analyses revealed that L741626 increased startle response, while 

quinpirole significantly decreased it both in VEHL- and L741626-pretreated animals (Figure 

A4.6C). The analysis of PPI in LE rats detected a significant interaction between quinpirole and 

L741626 [F(1,28) = 8.07, P < 0.05]. Post hoc analyses revealed that quinpirole led to a significant 

PPI deficit, which was fully countered by L741626 (Figure A4.6D). 
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Assessment of effects of apomorphine in SD, WIS and LE rats. In SD rats (n = 10 per 

group), apomorphine failed to affect startle magnitude (Figure A4.7A), but reduced PPI [F(2,27) 

= 5.09, P < 0.05]. Post hoc analyses showed that the reduction in PPI was produced by the dose of 

0.25 mg/ml (Figure A4.7B). In WIS rats (n = 10 per group), apomorphine did not reduce startle 

amplitude (Figure A4.7C); the higher dose of apomorphine significantly decreased PPI [F(2,27) = 

4.25, P < 0.05]. In LE rats (n = 10–12 per group), apomorphine did not significantly affect startle 

amplitude, but produced a robust PPI disruption [F(2,32) = 13.27, P < 0.05]. Significant differences 

were found for both the doses of 0.25 and 0.5 in comparison with VEHA. 

Discussion 

The main result of this study show that, in contrast with SD and WIS albino rats, hooded 

LE animals display a significant impairment in sensorimotor gating in response to selective, full 

stimulation of D1 dopamine receptors. Specifically, under our experimental settings, the full D1 

agonist SKF82958, but not the partial D1 agonist SKF38393 produced a significant PPI reduction, 

which was not paralleled by variations in startle amplitude, and was countered by D1, but not D2 

receptor antagonism.  

To the best of our knowledge, this is one of the first reports demonstrating PPI deficits 

following the selective and independent activation of D1 receptors in rats. Numerous rat studies 

have shown the implication of both D1 and D2 receptors in the PPI-disrupting properties of non-

selective dopaminergic agonists in SD, WIS and LE rats [12, 20, 26, 27]. The general consensus, 

however, has pointed to an ancillary role of D1 dopamine receptors in the regulation of 

sensorimotor gating in rats. This assumption has been largely based on numerous experimental 

results on albino rat strains, which showed that D1 receptor agonists, albeit able to potentiate the 

PPI-disrupting properties of D2 receptor agonists or NMDA glutamate receptor blockers, failed to 
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intrinsically reduce PPI in a selective fashion [19, 20]. For example, while SD rats display PPI 

deficits in response to SKF82958 or related agents (such as R-6-Br-APB [R(+)-6-bromo-7,8-

dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine]; [9, 17, 20]), these impairments 

were found to reflect the activation of D2, rather than D1 receptors [20]. Accordingly, the present 

results showed that, in albino rats, the PPI disruption caused by SKF82958 was prevented by 

administration of L741626, but not SCH23390. In this perspective, our findings highlight an 

unequivocal link between D1 receptor activation and sensorimotor gating deficits, and provide an 

experimental model to elucidate the role of these receptors in the regulation of rat PPI. 

The mechanisms underpinning the role of D1 or D2 receptors in PPI regulation are 

incompletely understood. While several studies have identified that the PPI-disrupting properties 

of non-selective dopaminergic agonists are primarily contributed by the nucleus accumbens [28], 

the specific localization of each receptor subtype is not well understood. In particular, recent data 

have shown that D1 receptors in the prefrontal cortex may play an opposing role [29]. Thus, it is 

possible that the specific effects of D1 receptor agonists may result from the sum of opposing 

contributions of this receptor across different brain areas. Further studies will be needed to 

ascertain this possibility. Interestingly, previous studies have shown that the differences between 

LE and SD rats on the role of dopamine receptors in PPI regulation depends on mechanisms of 

dopamine receptor signalling in the nucleus accumbens [30-33]. From this perspective, it is worth 

noting that these results provide a first experimental platform to study the mechanism supporting 

the independent contributions of D1 and D2 receptor activation to dopaminergic PPI deficits in 

different rat strains. 

In contrast with the effects of SKF82958, SKF38393 failed to impair PPI in any strain. The 

inability of the latter drug to produce PPI deficits confirms previous data from our group and others 
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[19], and is likely to result from its partial efficacy in activating the adenyl cyclase coupled to D1 

receptors, which corresponds approximately to 50–70% of that of dopamine [34-36] and is 

markedly lower than that of SKF82958, a full D1 receptor agonist [34, 37]. Indeed, comparative 

analyses of these two benzazepine derivatives have shown that SKF82958 elicits a number of 

phenotypes not typically observed following administration of SKF38393, including activation of 

early-response genes [38-42], tyrosine phosphorylation of NMDA receptor subunits [43] and 

activation of vertical locomotor activity [44]. Thus, these data may signify that, in LE rats, PPI 

deficits may be triggered only by the full stimulation of D1 receptors and its downstream signalling 

machinery.  

Pharmacological and genetic studies have shown that D1 receptors play a predominant role 

in the dopaminergic modulation of dopamine in mice [18, 45]. While these findings initially 

suggested a potential dichotomy between mice and rats with respect to the regulation of 

sensorimotor gating, this conclusion was later challenged by further studies, which showed that 

D2 receptor activation could disrupt PPI in other mouse strains used less commonly in research 

[21]. The present results further expand on these observations, and indicate that, at least within 

specific setting conditions, PPI may be independently regulated by both D1 and D2 receptors in 

mice and rats, and that inter-strain variations may play a critical role in the relative importance of 

each target in sensorimotor gating. In line with this conclusion, previous studies have shown that 

the dopaminergic regulation of startle reactivity and PPI is strongly influenced by differences in 

strains and genetic background in rats [32, 46].  

We have shown here that, while SKF82958 failed to affect startle response across all rat 

strains, SCH23390 had apparently opposing intrinsic roles in affecting startle amplitude. Indeed, 

while this parameter was mildly, yet significantly reduced by D1 receptor blockade in SD and WIS 
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rats, it was modestly increased in LE animals. While this discrepancy cannot account for the 

observed differences in PPI responses across these strains, our data may suggest that the role of 

D1 receptors in LE rats may also diverge with respect to the regulation of startle reactivity. Our 

data are apparently in partial contrast with previous reports, which documented that D1 receptor 

activation enhances startle response in SD rats [47]. A likely explanation for this apparent 

divergence lies in the characteristics of our testing protocol, which was optimized for the 

assessment of dopaminergic effects on PPI, rather than startle reactivity. Irrespective of these 

considerations, future comparative studies are warranted to evaluate the specific impact of D1 

receptors in the modulation of acoustic startle amplitude across different rat strains. 

Although the present studies do not provide any direct mechanism to account for the 

differential responsiveness of LE rats to D1 receptor activation with respect to PPI, several data 

indicate that the dopaminergic system in this strain is distinctly different from that of albino rats. 

In rats, albinism is primarily due to a genetic defect in tyrosinase [48], leading to low melanin 

production. In the presence of tyrosinase, dopamine and its precursor l-DOPA inactivate the rate-

limiting enzyme for dopamine synthesis, tyrosine hydroxylase [49]. Accordingly, intracerebral 

infusion of tyrosinase leads to enhanced dopamine release [50]. Previous studies have documented 

that the tyrosinase levels in LE rats were associated with higher dopamine turnover in comparison 

with SD rats [51] and, indeed, LE rats display higher corticolimbic levels of the dopamine 

metabolic enzyme catechol-O-methyl transferase [31]. Furthermore, fur pigmentation in LE rats 

is negatively correlated with the effects of apomorphine on PPI [32], suggesting that the activity 

of dopamine receptors is also influenced by different levels of tyrosinase. Taken together, these 

data suggest that the differences in PPI regulation between albino and LE rats may be underpinned 

by changes in D1 receptor responsiveness. The possibility that albino rats may present alterations 



209 
 

in D1 response is also supported by evidence showing that the domestication process of rats has 

led to significant differences in dopaminergic responses [52], likely to be due to the active selection 

of tameness and exclusion of aggressive traits [53].  

Given that LE rats were originally obtained by crossing a WIS dam with a wild sire [54, 

55], our data raise the possibility that wild rats or other fully pigmented strains may exhibit an 

even greater responsiveness to D1 receptor agonists than that of LE animals. Although logistical 

and safety considerations pose important problems in behavioural testing of wild rats, further 

studies are warranted to analyse the differential impact of albino and pigmented strains with respect 

to the dopaminergic regulation of sensorimotor gating. As previously indicated, it should be 

emphasized that the PPI-disrupting effects of D1 receptor activation in LE rats were revealed under 

specific protocol settings. Different testing conditions and protocol indices can greatly influence 

PPI, such as the loudness of the startle-eliciting pulse and the prepulses (with respect to the 

background noise), the duration of the inter-stimulus and inter-trial intervals, as well as the 

resilience of the accelerometric platform [56]. In this respect, it is important to notice that our 

results were paralleled by Swerdlow and colleagues at the University of California San Diego (N. 

Swerdlow, pers. comm.), who found that, when tested with inter-stimulus intervals of 120 ms, LE 

rats exhibited a %PPI baseline of approximately 80%, and responded to the full D1 receptor agonist 

SKF81927 with a significant reduction of PPI to about 60%. However, in the presence of shorter 

inter-stimulus intervals, the same D1 receptor agonist elicited either no significant effect or even 

enhancements of PPI (depending on the specific duration of the interval). It is also possible that 

the high baseline levels in our experiment may have facilitated the detection of D1-mediated PPI 

deficits. Accordingly, previous studies have shown that baseline PPI values play a fundamental 

role in influencing the susceptibility to the effects of pharmacological treatments on PPI 



210 
 

modulation. Indeed, similar conclusions were recently drawn in human studies [6]. In light of these 

considerations, it is possible that, while the conditions of our testing protocol may be optimal to 

capture the contribution of D1 receptors to PPI regulation, extreme caution should be advocated 

in the interpretation and generalization of these results, as they are likely to refer to a relatively 

narrow range of experimental conditions, whose biological significance remains to be determined. 

We also confirmed that, under the same settings, LE rats exhibited PPI deficits also in 

response to the D2 receptor agonist quinpirole (which were selectively reversed by the highly 

selective D2 receptor antagonist L741626) and the D1/D2 non-selective agonist apomorphine. 

Conversely, although the same startle protocol evoked PPI impairments in SD and WIS rats in 

response to quinpirole and apomorphine, no significant D1-dependent PPI deficits were identified 

in either strain. Indeed, while SKF82958 elicited PPI deficits in both strains, as previously 

published [20, 57], these impairments were prevented by the selective D2 receptor blocker 

L741626, rather than by the D1 receptor antagonist SCH23390. The sensitivity of all tested strains 

to quinpirole confirms that, in rats, D2 receptors serve a prominent role in the regulation of PPI. 

As mentioned in the Introduction, PPI has gained wide acceptance as the main operational 

paradigm for sensorimotor gating testing, because of its cross-species validity. Deficits in this 

index have been documented across several neuropsychiatric disorders, including schizophrenia 

and Tourette syndrome [2]. Building from this observation, it is interesting to observe that D1 

receptors have been implicated in the pathophysiology of both conditions. In schizophrenia, these 

targets have been widely implicated in the modulation of cognitive deficits and negative symptoms 

[58]. In particular, both overstimulation and suppression of D1 receptors may result in impairments 

of working memory [59], a core cognitive deficit of schizophrenia. Furthermore, while stimulation 

of D1 receptors has been largely advocated as a potential therapeutic strategy to reduce the severity 
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of negative and cognitive symptoms, preliminary studies provided anecdotal support for an 

efficacy of D1 receptor blockers in the reduction of negative symptoms ([60, 61]; but see also 

[62]for contrasting data). While the role of D1 receptors in the pathophysiology of Tourette 

syndrome is not as well established, emerging evidence has pointed to this receptor as a promising 

therapeutic target; indeed, the selective D1 receptor antagonist ecopipam has been recently shown 

to be effective in reducing tic severity [63]. 

The identification of a strain-specific role of D1 receptors in PPI and startle regulation 

suggests that the specific interactions between this receptor and genetic factors may be essential 

in influencing PPI and, potentially, the pathophysiology of schizophrenia and Tourette syndrome. 

This concept is in keeping with ample evidence emphasizing the genetic roots of both disorders 

[64-67]. 

Several limitations of our study should be acknowledged. First, our analyses did not include 

molecular studies to evaluate the mechanisms underpinning the observed interstrain differences 

with respect to the role of D1 receptor in startle and PPI regulation. Secondly, unlike the studies 

on D1 receptors, our experiments on the effects of quinpirole were only performed in animals 

subjected to a pretreatment; thus, we cannot rule out that some of the observed findings may be 

affected by the stress related to the pretreatment injection. Finally, although our experiments were 

performed on equivalent experimental protocols and apparatuses, it is worth noting that the 

experiments were performed in two different laboratories (SD and WIS at the University of 

Cagliari, and LE at the University of Kansas). Thus, we cannot completely exclude that these 

logistic differences, or divergences in the colonies from the suppliers. Accordingly, previous 

reports have shown that differences in PPI can reflect differences in substrains based on the 

specific location of the supplier [57]. Nevertheless, these potential concerns are tempered by 
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preliminary studies in both laboratories, which essentially confirmed our findings on the three rat 

strains irrespective of the locations and source of the animals. 

In summary, our study has identified a heuristic experimental platform to test the selective 

role of D1 receptors in producing gating deficits in rats. As stated above, PPI deficits are an 

endophenotypic feature of several neuropsychiatric disorders, including schizophrenia and 

Tourette syndrome. Thus, our results may prove valuable in the testing of specific hypotheses on 

the direct involvement of D1 receptors in rat models of these disorders. 
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Figures 

 

Figure A4.1 Scheme of the PPI paradigm. The green horizontal bar represents the 70 dB background noise; the blue 
vertical bars represent the 120 dB pulse trials; the red vertical bars represent the three prepulse levels of 74 dB, 
78 dB and 82 dB. The complete session is outlined at the top with a portion enlarged to detail a subset of the trials. 
The acclimatization represents 5 min of exposure to the background noise; block 1 represents five pulse‐alone trials; 
block 2 represents 50 trials containing a pseudorandom sequence of no stimulus trials, pulse alone trials and 
prepulse‐pulse trials; block 3 represents five pulse‐alone trials. 
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Figure A4.2 Effects of the D1 receptor full agonist SKF82958 or its vehicle, saline (SAL), on startle reflex and PPI 
of the startle in SD, WIS and LE rats. Values represent mean ± SEM for each experimental group. Doses of 
SKF82958 (1 or 5 mg/ml, s.c.) are indicated below the horizontal axis. *P < 0.05 in comparison with saline‐treated 
controls. For more details, see text. 
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Figure A4.3 Involvement of D1 receptors in the effects of SKF82958 (SKF; 5 mg/ml, s.c.) in SD rats and 1 mg/ml, 
s.c.) in WIS and LE rats) on the regulation of startle reflex and PPI in different rat strains, as tested through the 
combined treatment with the selective D1 receptor antagonist SCH23390 (SCH; 0.1 mg/ml, IP). Values represent 
mean ± SEM for each experimental group. Doses of SKF are indicated in mg/ml. *P < 0.05, significantly different 
as indicated. For more details, see text. 
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Figure A4.4 Involvement of D2 receptors in the effects of SKF82958 (SKF) on the regulation of startle reflex and 
PPI in different rat strains, as tested through the combined treatment with the selective D2 receptor antagonist 
L741,626 (L; 1 mg/ml, s.c.). Values represent mean ± SEM for each experimental group. PPI values are represented 
as the means of all prepulse‐loudness values. Doses of SKF are indicated in mg/ml. VEHL, vehicle for L741,626; 
*P < 0.05, significantly different as indicated. For more details, see text. 
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Figure A4.5 Effects of the D1 receptor partial agonist SKF38393 or its vehicle,saline (SAL), on startle reflex and PPI 
of the startle in SD, WIS and LE rats. Values represent mean ± SEM for each experimental group. Doses of 
SKF38393 (in mg/ml, s.c.) are indicated below the horizontal axis. For more details, see text. 
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Figure A4.6 Involvement of D2 receptors in the effects of quinpirole (QUI) on the regulation of startle reflex and PPI 
in different rat strains, as tested through the combined treatment with the selective D2 receptor antagonist L741,626 
(L; 1 mg/ml, s.c.). Values represent mean ± SEM for each experimental group. PPI values are represented as the 
means of all prepulse‐loudness values. VEHL, vehicle for L741,626; *P < 0.05, significantly different as indicated. 
For more details, see text. 
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Figure A4.7 Effects of the non‐selective dopaminergic agonist apomorphine or its vehicle (VEHA) on startle reflex 
and PPI of the startle in SD, WIS and LE rats. Values represent mean ± SEM for each experimental group. Doses of 
apomorphine (in mg/ml, s.c.) are indicated below the horizontal axis. *P < 0.05, in comparison to vehicle‐treated 
controls. For more details, see text. 
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A.5 Steroid 5α-reductase 2 deficiency leads to reduced dominance-related and impulse-

control behaviors 

Mosher, L.J., Godar, S.C., Morissette, M., McFarlin, K.M., Scheggi, S., Gambarana, C., Fowler, 

S.C., Di Paolo, T., Bortolato, M., Steroid 5α-reductase 2 deficiency leads to reduced dominance-

related and impulse-control behaviors. Psychoneuroendocrinology, 2018. 91: p. 95-104. 

 

Introduction  

The steroid 5α-reductase (5αR) family includes several enzymes catalyzing the saturation 

of the 4,5-double bond of the A ring of several 3-ketosteroids [1, 2]; in particular, 5αRs convert 

testosterone and progesterone into 5α-dihydroprogesterone (DHP) and 5α-dihydrotestosterone 

(DHT). These products are further metabolized into neuroactive steroids that play key roles in 

behavioral regulation, such as 3α,5α-tetrahydroprogesterone (allopregnanolone; AP) and 5α-

androstan-3α,17β-diol (3α-diol), respectively [3-5]. In addition, 5αRs serve the degradation of 

glucocorticoids, such as corticosterone and cortisol, into their 5α-reduced derivatives [6]. 

The two best-characterized members of the 5αR family, type 1 (5αR1) and 2 (5αR2), differ 

by anatomical distribution and substrate specificity. While 5αR1 is abundantly expressed in the 

CNS throughout all developmental stages, 5αR2 is the predominant type in the prostate and male 

accessory sex glands [1, 7]. In addition, 5αR2 plays a primary role in the conversion of testosterone 

into the potent androgen DHT [1]. The brain distribution of 5αR2 was initially reported to be 

mainly limited to perinatal periods [8]. Recent investigations, however, have shown that, in adult 

rats, 5αR2 is expressed in the output neurons of brain regions involved in emotional and 

sensorimotor regulation, including the prefrontal and somatosensory cortices, striatum, thalamus, 

amygdala, hippocampus and cerebellum [9]. Furthermore, unlike 5αR1, 5αR2 is not expressed in 
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small neurons and glial cells, pointing to cell-specific patterns in the expression of this enzyme 

throughout the brain [10, 11]. 

This neuroanatomical distribution raises critical questions about the role of 5αR2 in 

behavioral regulation. A useful experimental approach to grapple with this issue is afforded by the 

characterization of the neurobehavioral phenotypes associated with the congenital deficiency of 

this enzyme. In men, non-functional mutations of the gene encoding 5αR2 (SRD5A2) result in 

Imperato-McGinley syndrome, a rare disorder characterized by a dramatic reduction in DHT 

synthesis, which leads to ambiguous genitalia at birth [12]. The affected individuals are often 

raised as girls, but experience virilization at puberty, with testicular descent, hirsutism and 

enlargement of the clitoris [13]. In C57BL/6 mice, the lack of 5αR2 leads to a large reduction of 

plasma DHT levels, as well as a reduction in prostate size and mating efficiency; however, this 

mutation does not affect the formation of internal and external genitalia [14]. 

To the best of our knowledge, although 5αR2-deficient individuals do not exhibit any major 

psychiatric disturbance [12], the behavioral and brain-functional changes associated with this 

mutation have not been fully characterized. Thus, the present study aimed at the investigation of 

the behavioral repertoire of 5αR2 knockout (KO) mice – in comparison with their heterozygous 

(HZ) and wild-type (WT) littermates – as well as its neurochemical underpinnings. Given the role 

of 5αR2 in the conversion of testosterone into the more potent androgen agonist DHT, we 

speculated that the lack of DHT in 5αR2-deficient mice may compromise some of the behavioral 

paradigms affected by testosterone and DHT through the activation of androgen receptors. Our 

studies were particularly focused on behaviors that have been related to testosterone levels and 

androgen receptor activation, including aggression, dominance, sexual behavior and sensation-

seeking [15-19]. Furthermore, since previous work has shown that social dominance is associated 
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with increased D2-D3 receptor binding in the nucleus accumbens [20-22], we also analyzed the 

levels of dopamine and dopamine receptor binding in this region. 

Materials and methods  

Animals. The experiments included in this study were performed on adult (3–5-month 

old), experimentally naïve male 5αR2KO, HZ and WT mice (strain: C57BL/6), obtained from 

breeding colonies at the Universities of Kansas and Utah. All mice were generated from HZ x HZ 

crosses. Progenitors were obtained by Dr. Mala Mahendroo (Southwestern University). Unless 

stated otherwise for specific experimental purposes, all mice were housed in groups of 4–5/cage, 

with at least 1 mouse/ genotype, and had ad libitum access to food and water. Housing facilities 

were maintained at 22 °C with a reverse light/dark cycle (lights off at 08:00 AM hours and on at 

08:00 PM). Whenever the same mice were used for multiple behavioral paradigms, the order of 

animals in each test was counterbalanced throughout the study. Tests were arranged from least to 

most stressful (separated by at least one week) to minimize carry-over stress. Experimental 

manipulations were carried out in the animals’ dark cycle between 10:00 AM and 6:00 PM. All 

handling and experimental procedures were performed in compliance with the National Institute 

of Health guidelines and approved by the local Institutional Animal Care and Use Committees. 

Genotyping. Mouse genotyping was performed by PCR. Samples of genomic DNA were 

extracted from tail biopsies acquired from mice at weaning (postnatal day 21). The following 

primers were used to identify 5αR2 KO mice: 1) GAT GAC CTC TCC GGG CTT CC 2) GAA 

TGT TCC AAG TCA CAG GC 3) CGC TTC TGA GGA GAG AAC TGA CTG A. Reaction 

conditions were: 94 °C x 2 min, 94 °C x 40s, 55 °C x 40s, 72 °C x 5 min, 4 °C x ∞, as previously 

described [14].  
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Behavioral testing. Mice were tested in an extensive array of behavioral tasks, aimed at 

evaluating motoric, sensory, and anxiety-related responses. Except when specifically stated, all 

tests were performed in group-caged animals. All tests and analyses were consistently performed 

by personnel blinded to genotypes, using littermates from all three genotypes. Thus, none of the 

genotypes underwent more testing than the other groups. Furthermore, no animal was tested in 

more than 3 paradigms.  

Locomotor activity. Locomotor behaviors were measured in a square force-plate 

actometer as previously described [23]. The apparatus consisted of a white load plate (28 × 28 cm) 

surrounded on all four sides and covered by a clear Plexiglas box (30 cm tall). Four force 

transducers placed at the corners of each load plate were sampled 100 times s−1 , yielding a 0.01 

s temporal resolution, a 0.2-g force resolution and a 2-mm spatial resolution. Custom software 

directed the timing and data-logging processes via a LabMaster interface (Scientific Solutions Inc., 

Mentor, OH, USA). Additional algorithms were used to extract macrobehavioral variables, such 

as distance travelled. Overall distance was calculated as the sum of the distances between 

coordinates of the location of center of force recorded every 0.50 s over the recording session. 

Low-mobility bouts were defined as periods of 5 s during which mice confined their movements 

to a 15-mm radius virtual circle. Velocity was defined as the distance coved by a run divided by 

the duration of that run and expressed as mm/s (equivalent to the product of stride length and stride 

rate). Distance to the nearest wall was used as an index of thigmotaxis. Mice (n = 13/genotype) 

were placed in the center and their behavior was monitored for 30 min. 

Hot plate. Pain sensitivity was measured in the hot plate task, as previously described [24, 

25]. Mice (n = 12/genotype) were individually exposed to a hot plate (IITC Life Science, 
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Woodland Hills, CA) at 47.5 °C, 50 °C and 52.5 °C, and the latency to lick their paws was 

measured. The cut-off time was set at 40 s.  

Sticky tape removal test. Sensorimotor integration was tested using the sticky tape test as 

previously described elsewhere [24, 25]. Mice (n = 12/genotype) were briefly restrained and a 

circular piece of tape was placed on each forepaw. The latency to remove both pieces of tape was 

recorded. 

Olfactory discrimination. Olfactory discrimination was tested as previously described 

[26]. Mice (n = 13/genotype) underwent five training trials of 5-min exposure to two identical 

objects of the same scent. The objects were cylinders wrapped in tape and evenly scented with 

diluted almond or lemon oil. On the subsequent (sixth) test trial, one of the cylinders was replaced 

with an identical one, sprayed with a novel scent, in counterbalanced order. Testing was performed 

in dim light (5 lx) and the behavior was video-recorded and olfactory discrimination was measured 

as a novel exploration index (NEI), calculated as the ratio of the time spent sniffing the object 

imbued with the novel scent and the total time spent sniffing both the novel and the familiar scent.  

Acoustic startle reflex and prepulse inhibition (PPI) of the startle. Acoustic startle 

reflex and PPI were tested as previously described in chapter 3.  

Resident-Intruder aggression. Testing was conducted as previously described [27]. Two 

separate cohorts of mice (n = 9-12/genotype) were isolated for 4 and 8 weeks. After this period, 

they were exposed to age- and weight-matched WT males from different litters, for 10 min within 

the resident’s home cage. The test was performed with light levels maintained at 10 lx. Measures 

included the number and duration of fighting bouts. Other aggressive behaviors scored included 

biting, tail rattling, and chasing.  
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Tube dominance test. Testing was performed as previously described [28]. The apparatus 

consisted of clear PVS tubing (3 cm in diameter and 45 cm long), anchored to a solid base. All 

testing was performed at 30 lux. In the first experiment mice were consistently paired with cage 

mates carrying a different genotype. All tests within a social group were randomized across cage 

mates so that a given mouse did not encounter the same animal twice in succession. The submissive 

mouse was identified as that animal which first withdrew from the tube. If no animal exited the 

tube, the trial was coded as a tie. In a subsequent experiment with a new cohort of mice, males 

kept in isolation for 4 weeks (during adulthood) were tested against non-cage mates (n = 16-

19/genotype pairing).  

Mating responses. To analyze mating behaviors, males (n = 8/genotype) were isolated for 

24 h. WT female mice were placed in the male’s cage for 15 min and the behaviors were video-

recorded. All females were in estrus, as assessed by the cell morphology of vaginal smears [29]. 

Mounting responses were monitored as previously described [30].  

Novel-object exploration. Novel-object exploration was tested in an experiment modified 

from [31]. Mice (n = 12/genotype) were individually exposed to two identical novel objects, placed 

equidistant in their home cage after a 2-day isolation. Light was maintained at 10 lx. Mice were 

placed in the center of the cage between the two objects, facing away from the objects. The 

behavior of each mouse was recorded for 15 min to attenuate any potential confounds related to 

neophobia. Sniffing behavior was scored as number of approaches and duration of exploration 

with the novel object. Test sessions were also video recorded and the behavior scored as the novel 

object frequency and duration.  

Wire-beam bridge test. The wire-beam bridge test was conducted with slight modification 

as previously described [31]. The apparatus consisted of a 30-cm high Plexiglas platform and a 
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50-cm high Plexiglas wall, oppositely placed at 30 cm distance. The edge of the platform and the 

wall were connected by a horizontal, unrailed bridge (1.25 × 30 cm), made in black aluminum 

wire. The bridge consisted of 2 parallel beams (0.01 cm thick) perpendicularly connected by 24 

equally distanced cross-ties (1.25 cm long). It was modestly flexible, with a downward deflection 

of 1 cm per 100-g load at the center point. Mice (N = 8/genotype) were placed on the end of the 

wire-beam bridge by the Plexiglas wall and their behavior was recorded for 5 min. Behavioral 

measures included the latency for the mouse to cross the bridge to the safe platform. Testing was 

conducted in dim (10 lux) light conditions.  

Light-Dark box. Testing was performed as previously described [32]. The apparatus 

consisted of a Plexiglas cage (20 × 30 × 20 cm) comprising of a dark area (20 × 10 × 20 cm) and 

an adjacent brightly lit compartment (20 × 20 × 20 cm; illumination: 250 lx). The two 

compartments were separated by a Plexiglas divider, providing a 7 × 4 cm opening. Briefly, mice 

(N = 11/genotype) were individually placed in the corner of the light area, and allowed to freely 

explore either compartment for 10 min. Mice were video-recorded, and the latency to exit the light 

compartment as well as the number and total duration of light compartment-entries were scored.  

Marble burying. Marble burying was conducted as previously described [31]. Briefly, 

mice (N = 6-7/genotype) were individually placed in a dimly lit (10 lx) cage (35 × 28 cm), with 5 

cm of fine sawdust, for a 30-min acclimatization period. Subsequently, mice were briefly removed 

and 20 marbles (1 cm diameter) were placed in the cage, on top of the sawdust, arranged in 5 

equidistant rows (each consisting of 4 marbles). Mice were then returned to the cages, and their 

behavior was video recorded for the following 30 min. A marble was considered buried if at least 

two thirds of its surface area was covered in sawdust.  
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Saccharin consumption and preference. Mice (N = 12-13/genotype) were isolated for 2 

weeks, and given ad libitum access to food throughout the remainder of this test. They were then 

given free access to two water bottles, containing either water or saccharin (at one of the following 

concentrations: 0.025%; 0.05%, 0.1%) for 48 h, as described by Tordoff et al. [33]. The overall 

consumption and preference (calculated as the ratio of saccharin solution/ total liquid consumed 

by each mouse) were measured.  

Biochemical testing. Striatal biogenic amines determination. The left striata were 

dissected at coordinates anterior to Bregma −0.10 mm according to the mouse brain atlas of 

Franklin and Paxinos [34]. Tissues were homogenized at 4 °C in 250 μl of 0.1 N HClO4 and 

centrifuged at 13,200xg for 20 min to precipitate proteins. The supernatants were stored at −80 °C 

in small polyethylene tubes until they were assayed. The pellet was dissolved in 250 μl of 1 M 

NaOH for the determination of proteins content using a Micro BCA Protein Assay kit (Thermo 

Scientific, Rockford, IL). The content of dopamine (DA) and its metabolites 3,4-

dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) 

were measured by high performance liquid chromatography (HPLC) with electrochemical 

detection [35]. Supernatants of striatal tissue were directly injected into the chromatograph 

consisting of a Waters 717 plus autosampler automatic injector, a Waters 515 pump equipped with 

a C-18 column (Waters Nova-Pak C18, 3 μm, 3.9 mm × 150 cm), a BAS LC-4C electrochemical 

detector and a glassy carbon electrode. The mobile phase consisted of 0.025 M citric acid, 1.7 mM 

1-heptane-sulfonic acid, and 10% methanol, in filtered distilled water, delivered at a flow rate of 

0.8 ml/min. The final pH of 4.0 was obtained by addition of NaOH. The electrochemical potential 

was set at 0.8 V with respect to an Ag/AgCl reference electrode. Results were expressed in ng of 

amine per mg of protein.  
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[3 H] SCH 23390 and [3 H] spiperone autoradiography. Right hemispheres were 

immersed in ShandonTM M-1 embedding matrix (Thermo Scientific, Rockford, IL) at −20 °C, 

mounted on cryostat chucks and cut into 12-μm-thick coronal slices for autoradiography at three 

rostro-caudal levels (anterior: bregma 1.70 at 1.34 mm; medial: 0.98 at 0.38 mm; posterior: 0.02 

at −0.94 mm). Slices were thawmounted on superfrost pre-cleaned slides (Thermo Scientific). 

Slices and dissections were kept at −80 °C until use for assays. D1- and D2- like receptor 

antagonist sites were labeled using the radioligands [3 H] SCH 23390 (81.9 Ci/mmol; 

PerkinElmer, MA, USA) and [3 H]spiperone (81.2 Ci/mmol; PerkinElmer, MA, USA) 

respectively [36]. Two slides containing each 3–6 mounted coronal brain sections per animal for 

each level for D1 and D2 receptor binding were preincubated 15 min at room temperature in 

sodium phosphate buffer (PBS, 100 mM, pH 7.4) containing MgCl2 2 nM and in a 

Tris[hydroxymethyl]aminomethane (TRIS) buffer solution (Tris-HCl 50 mM containing KCl 5 

mM, CaCl2 2 mM, MgCl2 2 mM, pH 7.4) respectively. Sections were then incubated for 60 min 

at room temperature in their respective buffer containing either 1 nM of [3 H] SCH 23390 and 50 

nM ketanserin (to block 5-HT2A receptors) or 1 nM of [3 H] spiperone and 50 nM ketanserin. 

Non-specific binding was defined in the presence of SKF-38393 1 μM and (+)-butaclamol 1 μM 

for D1 and D2 receptors respectively. After two 5-min washes in respective buffer at room 

temperature, sections were then rinsed briefly (10 s) in ice-cold distilled water. Finally, the slide-

mounted tissue sections were exposed to BioMax MR films (Kodak, Rochester, NY) along with 

tritium standards [ 3 H]-microscales (Amersham, Arlington Heights, IL) for 16 and 29 days at 

room temperature for D1- and D2-like receptor binding experiments respectively. Films were 

developed and quantification of autoradiograms was performed on a Power Mac G4 computer 

connected to a video camera (XC-77, Sony, Tokyo, Japan) with a constant illumination light table 
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using computerized densitometry and the public domain Image J processing software from NIH 

(v. 1.63). Optical gray densities were transformed into nCi/mg of tissue equivalent by using a [3 

H] standard curve and then converted into fmol/mg of tissue using the specific activity of the 

radioligand. For densitometric measurements of striatal D1-like receptors, the optical density of 

the total area of the brain structure was measured since it was previously reported that specific 

binding was evenly distributed in the striatum [37]. For D2-like receptors, a striatal lateral/medial 

gradient was observed with higher specific binding in the lateral versus the medial part; hence, 

these subregions were quantified separately [37, 38]. The nucleus accumbens is differentiated into 

at least two anatomically and functionally distinct regions, the core and the shell [39]. Thus, 

densitometric measurements of D1- and D2- like receptors were measured separately in these two 

nucleus accumbens subregions. Analyses were conducted by personnel blinded to group 

genotypes. 

Statistical analyses. Data distributed binomially (such as the results of the tube test) were 

analyzed by a binomial test. Continuously distributed data were tested for normality and 

homoscedasticity by the Kolmogorov-Smirnov and Bartlett’s test. Based on these results, 

parametric and non-parametric statistical analyses were performed by a one-way ANOVA and 

Kruskal-Wallis test, followed by Neuman-Keuls’ or Nemenyi’s tests for post-hoc comparisons, 

respectively. Significance was set at P = .05.  

Results  

Behavioral characterization of 5αR2 mutant mice. Neither 5αR2 KO nor HZ mice 

exhibited any overt abnormality in physical appearance and body weight (both across development 

and in adulthood), as compared with WT littermates. Similarly, the analysis of locomotor activity 

did not point to differences in any index, including total distance travelled (Fig. A5.1A), number 
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of low-mobility bouts (Fig. A5.1B), maximum velocity (Fig. A5.1C), mean velocity of top ten 

runs (Fig. A5.1D), or average distance from the walls (Fig. A5.1E), an index of thigmotaxis. 5αR2 

KO mice failed to exhibit any deficit in thermic pain responsiveness and sensorimotor integration, 

as measured by the latencies to lick the paws in the hot-plate test (Fig. A5.1F) and to remove sticky 

tape from the paws (Fig. A5.1G). Finally, no alterations were found in olfactory discrimination 

(Fig. A5.1H), acoustic startle response (Fig. A5.1I), and PPI (Fig. A5.1J).  

We then proceeded to assess whether 5αR2 genotype may affect aggressive and 

dominance-related behaviors. Resident 5αR2 KO and HZ mice were less aggressive than WT 

littermates toward WT intruders after 4 weeks of social isolation (Fig. A5.2A–C). Indeed, both 

genotypes were found to engage in aggressive behavior for a significantly lower duration [Fig. 

A5.2A; H (2), = 14.09, P < 0.001; multiple comparisons: WT vs HZ, P < 0.01; WT vs KO, P < 

0.05]. Mutants also displayed a lower number of aggressive bouts [Fig. A5.2B; H (2) = 13.76, P < 

0.01; multiple comparisons: WT vs HZ, P < 0.01; WT vs KO, P < 0.05] and a greater latency to 

engage in aggression [Fig. A5.2C; H (2) = 14.50, P < 0.001; multiple comparisons: WT vs HZ, P 

< 0.01; WT vs KO, P < 0.05]. After 8 weeks of isolation, different cohorts of both HZ and KO 

mice showed significant reductions in the duration of aggressive behaviors [Fig. A5.2D; F(2,24) 

= 8.99, P < 0.01; post hoc comparisons: WT vs HZ, P < 0.01; WT vs KO, P < 0.01] as well as in 

the number of aggressive behaviors [Fig. A5.2E; F(2,24) = 11.55, P < 0.001; post hoc comparisons: 

WT vs HZ P < 0.01; WT vs KO P < 0.001]; furthermore, the latency to the first aggressive 

interaction was longer than those exhibited by WT [Fig. A5.2F; H(2) = 18.09, P < 0.001; multiple 

comparisons: WT vs HZ, P < 0.01; WT vs KO, P < 0.001]. Throughout both experiments, only a 

small percentage of KO mice (22.2% after 4 weeks of isolation and 33.3% after 8 weeks of 
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isolation) initiated occasional, brief attacks, which were not conducive to victories (i.e., the 

opponents did not assume a subordinate posture after fighting).  

Building on this finding, we tested 5αR2KO mice for potential changes in behavioral 

domains relevant to social dominance. First, we tested the behavior of 5αR2-deficient mice in the 

tube dominance test. 5αR2KO mice consistently retreated when confronted with WT cage mates 

(Fig. A5.2G; P < 0.001). To verify whether this behavior was indeed related to social ranking with 

respect to cage mates, we studied whether the tendency to retreat in the tube was ablated in 

confrontations among isolated mice. Indeed, KO mice did not exhibit any significant differences 

in tube dominance against non-littermates after a 4- week social isolation (Fig. 2H). We next 

measured the mounting behavior of 5αR2-deficient mice towards estrous WT females (Fig. 

A5.3A-B); in comparison with WT males, 5αR2 KO mice exhibited a trend toward a reduction in 

the frequency of mounting bouts [H(2) = 8.422, P < 0.05; multiple comparisons: WT vs KO = 

0.08, HZ vs KO < 0.05] and a significant overall duration of active mounting [H (2) = 8.67, P < 

0.05; multiple comparisons: WT vs KO < 0.05; HZ vs KO < 0.05]. Females were equally receptive 

to males of all genotypes.  

Given that androgens have been described to be associated with higher novelty-seeking 

and risk-taking proclivity [40], we verified whether 5αR2 deficiency could affect these impulsivity 

constructs using a novel-object exploration task and a wirebeam bridge paradigm, respectively. In 

comparison with WT mice, 5αR2 KO littermates explored novel objects for significantly less time 

[Fig. A5.3C; F(2,33) = 3.37, P < 0.05; post hoc comparisons: WT vs KO, P < 0.05], and with a 

reduced number of approaches [Fig. A5.3D; F (2,33) = 8.55, P < 0.01; post hoc comparisons: WT 

vs HZ, P < 0.05; WT vs KO, P < 0.001]. Finally, both 5αR2 KO and HZ mice crossed a wire-beam 
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suspended bridge with a significantly increased latency [Fig. A5.3E; F (2, 21) = 6.25, P < 0.01; 

post hoc comparisons: WT vs HZ, P < 0.01; WT vs KO, P < 0.05].  

To verify whether these changes were reflective of changes in anxiety- and reward-related 

responses we next assessed the reactivity of 5αR2-deficient mice to environmental stimuli. 

5αR2KO mice failed to exhibit anxiety-like behaviors in the light-dark box (Fig. A5.4A–C) and in 

the marble-burying task (Fig. A5.4D), Furthermore, 5αR2-deficient mice displayed no overt 

alterations in saccharin preference and consumption (irrespective of the concentration) over 48 h 

(Supplementary Fig. A5.S1).  

DAergic neurotransmission. Given that dominance is characterized by increased binding 

of D2- like receptors in the nucleus accumbens, we performed these analyses in 5αR2 mutant mice, 

as compared with WT littermates (Supplementary Fig. A5.S2). 5αR2 KO mice exhibited a 

significant reduction in the binding of D2-like receptors in the rostral shell of this region (between 

1.70 mm and 1.10 mm from the bregma) [Fig. A5.5A; F (2,15) = 4.53, P < 0.05; post hoc 

comparisons: WT vs KO, P < 0.01]. No significant difference was found in either the rostral shell 

or the core of the nucleus accumbens (Fig. A5.5B-D). Finally, no significant changes in D1-like 

receptor binding were identified (Fig. 5E-H), although a statistical trend toward a decrease in D1 

receptor binding in the 5αR2 HZ and KO mice was observed in the caudal portion of the core [Fig. 

A5.5H; F(2, 15) = 3.56; P = .051]. Finally, 5αR2 HZ, but not KO mice, exhibited decreased levels 

of DA in the striatum [Fig. A5.6A; F (2,21) = 6.11, P < 0.01; post hoc comparisons: WT vs HZ, P 

< 0.05; KO vs HZ, P < 0.01], DOPAC [Fig A5.6B; F(2,21) = 5.55, P < 0.05; post hoc comparisons: 

WT vs HZ, P < 0.05; KO vs HZ, P < 0.05], HVA [Fig A5.6C; F(2,21) = 5.73, P < 0.05; post hoc 

comparisons: WT vs HZ, P < 0.01; KO vs HZ, P < 0.05], and 3-MT [Fig. A5.6D; F(2,21) = 3.5, P 

< 0.05; post hoc comparisons: WT vs HZ, P < 0.05]. However, there were no alterations in DA 
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metabolism as evidenced by the ratios between DOPAC/DA (Fig. A5.6E), HVA/DA (Fig. A5.6F) 

or 3-MT/DA (Fig. A5.6G).  

Discussion  

The main results of this study show that 5αR2-deficient mice exhibit a reduction in 

dominance-related behavioral phenotypes, including aggression against intruders, tube-dominance 

and mating with receptive females. These changes are not accompanied by sensorimotor deficits 

or abnormalities in anxiety- or reward-related responses, pointing to a specific importance of 5αR2 

in dominance-related behaviors.  

Confrontations between WT and 5αR2 KO mice in the tube-dominance test resulted in the 

consistent predominance of the former. This paradigm [41, 42] is often used to study social 

dominance hierarchies and their genetic underpinnings [43], and has been recently validated as a 

reliable paradigm to investigate social dynamics [44]. Although the relation between social 

dominance and tube dominance is not linear [45, 46], the latter index has been shown to be 

consistently associated with multiple components of social dominance, including the Dalila 

barbering effect [47], urine marking [48] and emission of ultrasonic vocalizations during courtship 

[49]. Notably, the reduction in tube dominance in 5αR2 KO mice was only observed in group-

housed mutants, indicating that this phenotype is not intrinsically due to the genotype − as shown 

by the different results of the encounters after a 4-week isolation period − but rather to the effects 

of the genetic mutation on social interaction with cage mates. Extensive evidence has shown that, 

in mice, social isolation enhances aggression and other dominance-related behaviors [50, 51]. 

These results indicate that, while 5αR2 contributes to shaping social hierarchies, its influence on 

the escalation to dominance is mediated by interactions with environmental factors (such as the 

exposure to social interactions). From this perspective, it is likely that 5αR2-deficient mice may 
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exhibit alterations in dominance following social housing. Future studies will be necessary to 

examine the impact of these and other environmental variables (including stress and progressive 

habituation to social contexts) on 5αR2-deficient mice.  

Another key result of our study was that the reduction in dominance-related behaviors in 

5αR2-deficient mice was accompanied by lower impulsivity-related responses, such as novel-

object exploration and risk-taking (measured as the proclivity to cross a suspended wirebeam 

bridge). These behavioral domains are instrumental to the allocation of environmental resources 

and, ultimately, the development of social stratification [52, 53], and, thus, may be related to social 

dominance. Accordingly, previous work has shown that dominant rodents have higher risk-taking 

propensity [54]; furthermore, high novelty-seeking has been shown to serve as a robust predictor 

of aggression [55]. 

Rich evidence has shown that the activation of androgen receptors by testosterone 

influences the formation of hierarchical ranks, as well as the ontogeny of aggression, mating, risk-

taking, and novelty-seeking behaviors, in men and other animals [16, 56-62]. Given that 5αR2-

deficient males exhibit normal to high plasma testosterone [14, 63], our findings suggest that the 

conversion of testosterone into DHT is instrumental in the acquisition of dominance. In line with 

this notion, prior research has documented that the relationship between testosterone and 

dominance and aggression is not direct, but rather modulated by environmental factors, including 

the presence of social stressors or the uncertainty of resources [60]. Several findings suggest that 

5αR2 may mediate this environmental influence on the behavioral effects of testosterone on social 

dominance. First, 5αR2 synthesis in the brain is dependent on stress exposure; specifically, the 

brain expression of this enzyme is increased by acute or short-term stress [64, 65], and reduced by 

chronic, inescapable stress [32]. Second, the conversion of testosterone into DHT by 5αR2 
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amplifies androgen signaling, given that DHT activates androgen receptors more potently than its 

precursor [66, 67]. Third, DHT promotes the synthesis of 5αR2 by a unique feed-forward 

mechanism [68], which may be instrumental for the behavioral escalation to dominance. In fact, 

androgens have been posited to increase aggressive proclivity following a successful confrontation 

with a competitor, and this process is finalized to the acquisition of a higher status in social 

hierarchy [60, 69-71].  

In addition to the reduction in dominance-related and impulse control behaviors, 5αR2 KO 

mice displayed a significant reduction in D2/D3 DA receptor binding in the rostral shell of the 

nucleus accumbens. Reductions in D2/D3 receptor binding have been associated with social 

subordinate status in rats [20] and non-human primates [21, 22]. Furthermore, D2-like receptor 

availability has been associated with trait extraversion in humans [72] which is believed to reflect 

aspects of social dominance [73]. Accordingly, PET studies have shown lower uptake of D2/D3 

receptor ligands in the striatum of subordinate cynomolgus monkeys, as compared with dominant 

ones [21, 74]. These behavioral deficits were not accompanied by changes in the levels of DA or 

its receptors; however, 5αR2 KO mice showed a reduction in D2/D3 receptor binding in the rostral 

shell of the nucleus accumbens. Taken together, these results strongly suggest that 5αR2 is an 

important substrate for the regulation of dominance through the modulation of DAergic signaling 

in the mesolimbic system.  

Our studies did not include direct mechanistic experiments to probe the mechanisms 

underlying the reduction in D2-like receptor binding in the rostral shell of the nucleus accumbens; 

thus, it remains unclear whether this phenotype is a direct consequence of 5αR2 deficiency, or 

rather a mere epiphenomenon of reduced dominance. While further research is needed to explore 

this critical issue, it is worth noting that previous data from our group point to a link between the 
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functions of 5αR2 and the synthesis/regulation of DA receptors. For example, we found that, the 

5αR2 inhibitor finasteride curbed the risk-taking effects of pramipexole [75], a dopaminergic 

agonist with high affinity for D3 receptors [76]. Furthermore, we showed that finasteride 

suppresses behavioral responses mediated by D1 and D3 DA receptors [77, 78] through its effects 

in the nucleus accumbens [79].  

Although the involvement of DA in the behavioral profile of 5αR2- deficient mice remains 

unclear, it is tempting to speculate that changes in DA receptor binding in the nucleus accumbens 

may contribute to the reduced aggression, mating, sensation seeking and risk-taking observed in 

these mutants, in view of the well-documented role of dopamine in these behavioral domains [80-

83].  

The complexity of the relationship between DA receptor availability and these domains of 

behavioral disinhibition may be related to the balance between presynaptic and postsynaptic 

receptors. Overexpression of postsynaptic D2-like receptors, for example, increases motivation 

without altering consummatory behavior [84]. This connection may be mediated by the reduction 

in DHT synthesis. Indeed, DHT increases DA synthesis and stimulates the transcription of DA D2 

receptors, as well as molecules involved in the signaling pathway in the nigrostriatal pathway, 

including DA and vesicular monoamine transporter [85, 86]. The possibility that 5αR2 controls 

DAergic responses is also in line with our findings on the behavioral effects of finasteride. This 

drug is currently approved for the therapy of conditions linked to excess DHT, such as benign 

prostatic hyperplasia and androgenetic alopecia. In addition to these applications, finasteride may 

have therapeutic properties for several neuropsychiatric conditions characterized by poor impulse 

control and externalizing manifestations [1]. Studies in rat models suggest that these effects may 
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be underpinned by anti-DAergic properties [78, 87]. Taken together, these results suggest that 

5αR2 may play a key role in the organization of behavioral responses related to DA.  

In summary, the results of this study document that 5αR2 deficiency in mice results in 

reduced social dominance and related behavioral traits, ranging from aggression and mating to 

sensation seeking and risk taking. These results complement previous findings on the role of 

androgens and novelty-seeking personality, suggesting that the changes observed in 5αR2 KO 

mice are reflective of changes in androgen profile. Nevertheless, the interpretation that 5αR2 

deficiency may have similar effect in humans should be considered with caution, in view of 

potential differences in the role of this enzyme between mice and humans. Additional limitations 

should be acknowledged. First, we did not identify the steroid mechanisms responsible for these 

changes. Previous studies have documented that plasma of 5αR2 KO mice displays no detectable 

DHT levels, and slightly increased levels of testosterone. Understanding whether alterations of the 

brain steroid profile may contribute to the observed phenotypes is extremely important; 

unfortunately, previous analyses of brain-regional changes in DHT have proven unsatisfactory, 

given the detection limits posed by current techniques and the small size of mouse brain regions. 

To overcome this barrier, we are in the process of developing a novel line of 5αR2 KO rats. The 

analysis of steroid levels in these animals will also enable to confirm whether DHT replenishment 

(either in adulthood or in earlier developmental stages) may restore the ability to achieve a 

dominant status and normalize the related behavioral traits, including aggressiveness, mating 

efficiency, risk-taking and novelty seeking. Given that 5αR2 KO mice are characterized by low 

DHT levels, it is possible that DHT replenishment (either in adulthood or in earlier developmental 

stages) may restore the ability to achieve a dominant status and normalize the related behavioral 

traits, including aggressiveness, mating efficiency, risk-taking and novelty seeking. Second, our 
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studies were only limited to male rodents; it is possible that, in consideration of the contributions 

of androgens to the synthesis of 5αR2, there may be sex differences in the expression of these 

behaviors. Irrespective of these potential limitations, these findings suggest the role of 5αR2 in the 

achievement of social dominance, and in the regulation of impulse control, possibly through the 

modulation of dopaminergic mesolimbic signaling. These results warrant further ethological 

investigations on the function of this enzyme in social dominance and hierarchical ranking, as well 

as with endophenotypes related to sensation seeking and risk taking (such as delay and probability 

discounting). Finally, future studies will be needed to understand the mechanisms whereby steroids 

can influence dopaminergic signaling in the nucleus accumbens.  
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Figures 

 

Figure A5.1. 5αR2-deficient mice do not display deficits in motoric and sensory functions. Mice (n = 13/genotype) 
tested on a force-plate actometer revealed no differences among genotypes in (A) total distance travelled, (B) 
number of low-mobility episodes, (C) maximum velocity, (D) mean velocity of the fastest 10 runs, and (E) average 
distance to the nearest wall. Similarly, no differences were found in pain sensitivity and sensorimotor integration, as 
revealed by the latencies to (F) lick paws in the hot-plate test (n = 12/genotype) and (G) remove sticky tape from the 
forepaws (n = 12/genotype). No alterations were found in (H) odor discrimination, as measured by% novel 
exploration index (%NEI) (n = 13/genotype), (I) acoustic startle response, and (J) % prepulse inhibition (PPI) of the 
startle reflex (n = 8/genotype). Data are shown as mean ± SEM. 
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Figure A5.2. 5αR2 knockout mice display decreases in aggression and tube dominance. Aggressive behaviors were 
measured in the resident intruder paradigm following either a 4 week (A-C) or 8 week (D-F) isolation. The total 
time of aggressive behaviors (A,D), the number of aggressive bouts (B,E), and the latency to aggression (C,F) were 
evaluated. N = 9-12/group. Dominance behaviors were measured in the tube test while the mice were (G) socially 
caged or (H) socially isolated. N = 16-19/genotype. Data are shown as mean ± SEM. Abbreviations: WT, wildtype; 
HZ, 5αR2 heterozygous; KO, 5αR2 knockout. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to WT littermates. 

 

Figure A5.3. 5αR2 knockout mice display decreases in mating behaviors and exploration. (A) The total time 
engaged in mounting behaviors and (B) the number of encounters were measured when males were exposed to WT 
females in estrous. N = 8/genotype. (C) The duration of exploration of novel objects expressed as% of total time, 
and (I) the bouts of exploration were measured during the object exploration task. N = 12/genotype. (J) Risk-taking 
behaviors were measured as the latency to traverse a wire-beam bridge. N = 8/genotype. Data are shown as mean ± 
SEM. Abbreviations: WT, wildtype; HZ, 5αR2 heterozygous; KO, 5αR2 knockout. *P < 0.05, **P < 0.01, and ***P 
< 0.001 compared to WT littermates. #P < 0.05 compared to HZ mice. 
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Figure A5.4. 5αR2-deficient mice do not display anxiety-like manifestations. In the light-dark box (n = 
11/genotype), no differences were found in the (A) total duration of time (expressed as% of total time) spent by 
mice in the lit compartment, (B) number of transitions between the two compartments, and (C) latency to enter the 
dark compartment. Similarly, no differences among genotypes were detected in either the (D) number of marbles 
buried in a marble-burying task (n = 6-7 genotype). Data are shown as mean ± SEM. Abbreviations: WT, wildtype; 
HZ, 5αR2 heterozygous mice; KO, 5αR2 knockout mice 
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Figure A5.5. D1- and D2-like dopamine receptor binding in the nucleus accumbens of 5αR2-deficient mice. Binding 
was measured in (A; E) the rostral and (B; F) the caudal shell as well as in (C; G) the rostral and (D; H) caudal core 
of the nucleus accumbens. Data are shown as mean ± SEM. N = 5-8/genotype. Abbreviations: WT, wildtype; HZ, 
5αR2 heterozygous; KO, 5αR2 knockout. **P < 0.01 compared to WT littermates. 

 

Figure A5.6. (A) Dopamine, (B) DOPAC, (C) HVA, (D) 3-MT, (E) DOPAC/DA, (F) HVA/DA, (G) 3-MT/DA 
levels in the striatum. N = 8/genotype. Abbreviations: WT, wildtype; HZ, 5αR2 heterozygous; KO, 5αR2 knockout. 
*P < 0.05 and **P < 0.01 compared to WT littermates. #P < 0.05 and ##P < 0.01 compared to HZ mice. 
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Figure A5.S1. 5αR2 knockout mice do not display alterations in saccharin preference. % saccharin preference was 
measured at (A) 0.1% saccharin solution (B) 0.05% saccharin solution (C) 0.025% saccharin solution. The total 
consumption of both water and saccharin solution was measured at (D) 0.1% saccharin solution (E) 0.05% saccharin 
solution (F) 0.025% saccharin solution. N=12-13/genotype. Data are shown as mean ± SEM. Abbreviations: WT, 
wildtype; HZ, 5αR2 heterozygous; KO, 5αR2 knockout. 
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Figure A5.S2. Representative images of D1 and D2 binding in 5αR2 knockout mice and wildtype littermates. 
Images of D1 receptor binding in a representative WT mouse is described at (A) Bregma 1.70 mm, (B) Bregma 1.10 
mm and (C) Bregma 0.02 mm. (D) Contrasting images of D2 receptor binding in a WT vs a 5αR2 KO mouse at 
Bregma 1.70 mm. Representative images of D2 binding in a WT mouse is also included at (E) Bregma 1.10 mm and 
(F) Bregma 0.02.  
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