STOCHASTIC CALCULUS FOR
FRACTIONAL BROWNIAN MOTION
I. THEORY

Tyrone E. DUNCAN, Yaozhong HU and Bozenna PASIK-DUNCAN
Department of Mathematics
University of Kansas
405 Snow Hall
Lawrence, KS 66045-2142

1 Introduction

Since the pioneering work of Hurst [14], [15], and Mandelbrot, [18], the fractional
Brownian motions have played an increasingly important role in many fields of application
such as hydrology, economics and telecommunications.

Let 0 < H < 1. Tt is well known that there is a Gaussian stochastic process (B ;t > 0)
such that

E (Bf)=0, E(BIBI)= %{WH + s — [t — s} (1.1)
for all s,¢ € Ry. This process is called a (standard) fractional Brownian motion with Hurst
parameter H. To simplify the presentation, it is always assumed that the fractional Brownian
motion is 0 at ¢ = 0.

If H = 1/2, then the corresponding fractional Brownian motion is the usual standard
Brownian motion. If H > 1/2, then the process (B ,t > 0) exhibits a long-range depen-
dence, that is, if r(n) = E [(B{ (B}, — B})], then Y22, r(n) = co. A fractional Brownian
motion is also self-similar, that is, (B, ¢ > 0) has the same probability law as (o B, ¢t > 0).

A process satisfying this property is called a self-similar process with the Hurst parameter
H.
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Since in many problems related to network traffic analysis, mathematical finance and
many other fields, the processes under study seem empirically to exhibit the self-similar prop-
erties and the long-range dependent properties and since the fractional Brownian motions
are the simplest processes of this kind, it is important to have a systematic study of these
processes and to use them to construct other stochastic processes. One way to approach this
study is to follow, by analogy, the methods for Brownian motion. In the stochastic anal-
ysis, a Brownian motion can be used as the input (white) noise and many other processes
(e.g. general diffusion processes) can be constructed as solutions of stochastic differential
equations. One powerful tool for determining these solutions is the It6 formula.

However, it is also known that if a stochastic process (m;,t > 0) for which the stochastic
integral [ Fydm is well defined for a large class of integrands (F;,¢ > 0), then this process
(m,t > 0) must be a semimartingale e.g. [20]. It is known that the fractional Brownian mo-
tions are not semimartingales. Therefore the beautiful classical theory of stochastic analysis
[4] is not applicable to fractional Brownian motions for H # 1/2. It is a significant and chal-
lenging problem to extend the results in the classical stochastic analysis to these fractional
Brownian motions. There have been a few papers in this direction: Lin [17] and Dai and
Heyde [2] introduced stochastic integrals and extended the Ité formula to fractional Brown-
ian motions. Their definitions of stochastic integral give a stochastic integral of Stratonovich
type, which is explained further in Section 3. Their It6 formula is the usual chain rule for
differentiation.

The stochastic integral fj f,0 BY with respect to the fractional Brownian motions, in-
troduced by Lin, Dai and Heyde, does not satisfy the following property, E [ f,6 B = 0.
A new type of stochastic integral fj f,dB¥ is introduced satisfying E [J f,dB¥ = 0. This
property seems to be important in the modeling problem by stochastic differential equations
with fractional Gaussian noise as the driving random process. Consider the following type
of differential equation

dX; = b(Xy)dt + o(X,)dB; . (1.2)

It is natural to consider that b(X;) is the mean rate of change of the system state X, at time
t and o(X;)dB} is the random perturbation. So the term o(X;)dBf should not contribute
to the mean rate of change. The term b(X;) is used to represent the average or deterministic
part of the problem and o(X}) is used to represent the intensity of the random part of the
problem. Therefore it is important to extend the classical interpretation of b and o to the
differential equation (1.2).

To introduce the new integral [ fdB*, the Wick product or Wick calculus is used. The
use of Wick product is not anomalous because in white noise analysis the usual product
has been associated with integrals of Stratonovich type and the Wick product has been
associated with integrals of It6 type (e.g. [8], [12]).

A brief outline of the paper is given now. In Section 2, some description and termi-
nology for the fractional Brownian motions are given. In Section 3, a derivative in special
directions is defined and a stochastic integral of It6 type is defined using the Wick prod-
uct. Furthermore, a stochastic integral of Stratonovich type is defined and the two types
of stochastic integrals are related. In Section 4, some change of variables formulas (It6 for-



mulas) are given for the two types of stochastic integrals. In Section 5, two applications
of the Ito formula are given. In Section 6, multiple integrals of It6 type and Stratonovich
type for a fractional Brownian motion are defined and the Hu-Meyer formula is extended to
these multiple integrals. The relation between these two types of multiple integrals is given.
A square integrable functional of a fractional Brownian motion is represented as an infinite
sum of orthogonal terms.

If the integral of a stochastic integral of Stratonovich type for a fractional Brownian
motion with H € (1/2,1) has continuous sample paths, then the integral can be defined as
a limit of a sequence of Riemann sums, where the integrand can be evaluated at any point
between each pair of partition points. It is well known that this choice of evaluation of the
integrand is not valid if the the integrator is Brownian motion, that is, H = 1/2. If f is
smooth, then an application of an Ito formula is

t t
f(BI) =)+ [ f(BIdBE +H [ 55" (BE)ds,
0 0

where prime denotes differentiation and H € (1/2,1). It is interesting to note that if H = 1/2
is formally substituted in the equation, then the well known It6 formula for Brownian motion
is obtained.

2 Fractional Brownian Motion

Let Q = Cy(R;,R) be the space of real-valued continuous functions on R, with the
initial value zero and the topology of local uniform convergence. There is a probability
measure P? on (Q, F), where F is the Borel o-algebra such that on the probability space
(9, F, PH) the coordinate process BY : Q) — R defined as

Bl (w)=w(t), we

is a Gaussian process satisfying (1.1). The process (Bf, t > 0) is called the canonical
(standard) fractional Brownian motion with Hurst parameter H. In this paper only this
canonical process and its associated probability space are used. Throughout this paper it is
assumed that H € (3, 1) is arbitrary but fixed. Clearly if H = 1/2, the fractional Brownian
motion is the standard Brownian motion.

It is elementary to verify that a fractional Brownian motion for H # 1/2 is not a
semimartingale. It is known [20] that if the (usual) stochastic integral [’ f,dX, is well
defined for a large family of integrands with respect to a process (X, ¢ > 0), then this process
(X, t > 0) is a semimartingale. Thus the well developed classical theory for semimartingales
cannot be applied here, and the stochastic integral with respect to fractional Brownian
motions needs to be developed.

Let ¢ : Ry X Ry — R, be given by
¢(s,t) = H(2H — 1)|s — t[*" 2. (2.1)



Many results of this paper can be extended to a more general ¢(s,t) that is symmetric and
positive definite, so ¢ in (2.1) is given as a function of two variables and not their difference.
Let f : Ry — R be a Borel measurable (deterministic) function. The function f € L(R;) if

2= /0 °°/0°° F(8)F()d(s, t)dsdt < oo. (2.2)

The inner product on the Hilbert space L3 is denoted by (-, ).
The stochastic (Wiener) integral with respect to fractional Brownian motions for deter-
ministic kernels is easily defined.

Lemma 2.1 If f,g € L5(Ry), then [;° f{dBf and [;° g, dBE are well defined zero mean,
Gaussian random variables with variances |f|7 and |g|} respectively and

B ([ faB! [~ gaBl) = [ f&9o(s,0dsdt = (f.g)e. 23

This lemma is verified in [7]. It can be proved directly by verifying it for simple functions
D1 GiX(t t:4q](s) and then proceeding with a passage to the limit.

3 Stochastic Integration for Fractional Brownian Mo-
tions

Let (Q,F, PH) be the probability space from Section 2 where a fractional Brownian
motion with Hurst parameter H is well defined. The probability measure P depends on
H. Throughout this paper the Hurst parameter H is fixed such that 1/2 < H < 1. Since H
is fixed, the probability measure is denoted by P.

Let LP(Q2, F, P) = L? be the space of all random variables F' : Q — R such that

1|, = (B [F7)"? < oo

and let L2(R,) = {f|f : Ry > &, |f[2:= [5°f° fufsd(s, t)dsdt < co}. Often for notational
simplicity L3 (Ry ) is denoted by L3. For any f € L3, define ¢ : L — L'(Q, F, P) as

e(f) = exp {/Ooo fdBY — %/OOO/OOO fsft¢(s,t)dsdt}
— exp [/Ow fdBY — %\f@] | (3.1)

If f € L7, then £(f) € LP(Q, F, P) for each p > 1 and £(f) is called an exponential function
(e.g. [21]). The Hilbert space L is naturally associated with the Gaussian process, fractional
Brownian motion, by the approach using an abstract Wiener space. The Hilbert space plays
a basic role for questions of absolute continuity [6] and the exponential function (3.1) is a
Radon-Nikodym derivative for a translate of the fractional Brownian motion.
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Let &€ be the linear span of the exponentials, that is,

€= {iaks(fk), n€N, a €R, fi EL;(&)forkE{l,---,n} } : (3.2)
k=1

Theorem 3.1 & is a dense set of LP(Q2, F, P) for each p > 1. In particular, £ is a dense
set of L*(Q, F, P).

Proof A functional F': ) — R is said to be a polynomial of the fractional Brownian motion
if there is a polynomial p(z1,xe, -, z,) such that
F=p®B! B - B

for some 0 < t; < ty < -++ < t,. Since (Bf ,t > 0) is a Gaussian process it is well known
that the set of all polynomial fractional Brownian functionals is dense in LP(Q, F, P) for
p > 1. In this case, the denseness of the polynomials follows from the continuity of the
process and the Stone-Weierstrass theorem. To prove the theorem it is only necessary to
prove that any polynomial can be approximated by the elements in £. Since the Wick
product of exponentials is still an exponential it is easy to see that it is only necessary to
show that for any ¢ > 0, BF can be approximated by elements in &.

Let f5(s) = xjo,q(s) 0. It is clear that for § > 0, f5 is in L. Then (fs) = c(6)e®B for
some positive constant ¢(J). It is easy to see that

_e(fs) —c(s) _ P -1
5= c0)s 6

isin £. If § — 0, then F5 — B in LP(Q), F, P) for each p > 1. This completes the proof. O

Theorem 3.2 If fi, fo, -+, fu are elements in L} such that |f; — f;|s # O for i # j, then
e(f1), e(fa), -+, e(fa) are linearly independent in L.

Proof This theorem is known to be true if the fractional Brownian motion is replaced by a
standard Brownian motion, (e.g. [21]).

Let fi, fo, -, fr be distinct elements in Li. Let A1, Ao, ,---, Ax be real numbers such
that

(Me(f1) + Ao (fo) +- -+ Me(fi)p = 0.
Thus for any g € L2,

E [{Aie(f1) + Xoe(fa) +- -+ Mee(fi) b e(g)] = 0.

By an elementary computation for Gaussian random variables it follows that

/\1€(f1 29 + )\26<f2 29 et )\ke<fk 9 — ()



Replace g by dg for § € R to obtain

Expand the above identity in the powers of § and compare the coefficients of P, for p €
{0,1,---,k — 1} to obtain the family of equations

AM(frs @)+ Aalfa, @)+ + Ml fr s 9)5 =0

for p =0,1,---,k — 1. This is a linear system of k£ equations and k£ unknowns. By the
Vandermonde formula, the determinant of this linear system is

det ((fi,9)5) = [I(fi — i, 9)%-

i<j

For every pair (i,7) with ¢ # j, the set {g €Ly :{fi—fi,9)¢# 0} is the complement of a

hyperplane in L3. Since the intersection of finitely many complements of hyperplanes in L}

is not empty, there is a g € L} such that (f; — f;,g)s # 0 for all pairs ¢ and j such that

1 # 7. Thus Ay = Ag--- = Ay = 0. This proves the theorem . O
The above two theorems reduce many verifications for functions in L?*(Q, F, P) to veri-

fications of exponentials in £.

The following result is an absolute continuity of measures for some translates of fractional
Brownian motion.

Theorem 3.3 If F : Q — R is a random variable such that F € LP(Q), F, P) for somep > 1,
then

E {F(B_H—i— / '(cpg)(s)ds)} _E {F(B_H)efooogsdBf_%fooofooo¢(“’“)g“g”d“d”} (3.3)
0
where ® s given by
(@9)(1) = [~ ot wgudu
and g € L.
Proof The term F(BM) denotes F(w). Let k € L} and
F(BI) = e(k) = elo b8 =3 i)y dluwnhukedude
Then _ -
F(BE + / (®g),ds) = F(BH) elo k(@9udu
0

E {F(B_H + /()'(@g)sds)} _ oI ku(@g)udu



Furthermore it follows that

efo"" ku(®g)udu

Thus the theorem is true if F' is an exponential function (f) € £. A limiting argument
completes the proof. i O
Let a Radon-Nikodym derivative Z—II; on (2, F, P) be given by

dp _ efooo gsdBf—% fooofooo ¢(u,v) gy gvdudv

dpP

and denote the expectation with respect to P by E , then (3.3) is given by
E F(BE + / (®g),ds) = & (F(BY)).
0

For a functional F'in L?(Q, F, P) (p > 1) and a function g € L3, F(BY + [;(®g)(v)dv)
is well defined. An analogue of the Malliavin derivative [23] is introduced.

Definition 3.1 The ¢-deriwative of a random wvariable F' € IP in the direction of ®g is
defined as

Doy F(w) = ym% {F(w +6 [ (®g)(u)du) - F(w)} (3.4)

—0

if the limit exists in LP(), F, P). Furthermore if there is a process (D?Fy, s > 0) such that
Da,F = / D*F,g.ds a.s.
0

forall g € Lé then F' is said to be ¢-differentiable.
The higher order derivatives can be defined in a similar manner.

Definition 3.2 Let F : [0,T] x Q — R be a stochastic process. The process F' is said to be
o-differentiable if for eacht € [0,T)], F(t,-) is ¢-differentiable and D?F; is jointly measurable.

It is easy to verify an elementary version of a chain rule, that is, if f : R — R is a smooth
function and F : Q2 — R is ¢-differentiable then f(F') is also ¢-differentiable and

D@gf(F) = f,(F)Dcng

and
DEF(F) = f/(F)D?F



and the iterated directional derivatives
D’I‘ng@gnf(F) = fI(F)D’I)mD@ng + f”(F)Dq’glFD‘I’ng .

The following rules for differentiation which can be verified as in the proof of Proposition
3.4 are useful later

Da, / f.dBH = / / (1, v) fugodudv = (f, g)o; (3.5)
D¢ [* fudBY = [ ou,s) fudu = (©£)(5); (3.6)
Dage(f) = £(f) [ 6w, ) fugududv = (£)(f, 9)o (3.7)
De(f) = e(f) || élu,)fudu = e(N(@F)(s), (338)

where f,g € L.

Now the Wick product ¢ of two functionals is introduced. To extend the theory of
stochastic calculus for Brownian motions to the fractional Brownian motions, the Wick
calculus for Gaussian processes (or Gaussian measures) is used. The Wick product of two
exponentials £(f) and £(g) is defined as

e(f)oelg) =e(f+9). (3.9)

Since for distinct fi, fa, -+, fu in L3, (f1), €(f2), - -+, €(fn) are linearly independent, this
definition can be extended to define the Wick product F ¢ G of two functionals F' and G in
E.

Note that [;° g,dBY is not an element in £. The Wick product is extended to more
general functionals, including the functionals of the form [° g,dBY, where g € Lé.

Proposition 3.4 Ifg € L2, F € L*(Q, F, P) and Dg,F € L*(Q, F, P), then
F<>/ g,dBH = F/ 9,dBY — Dy F (3.10)
0 0

Proof By the definition (3.9),

£(f) 0 (0g) = e(f + bg) . (3.11)
Differentiate the above identity with respect to 6 and evaluate at § = 0, to obtain
o/oogsstH = e(f [/ 9sdBY — (f,9)s
0
= <() [ 9B ~ (S 0)e (3.12)



By (3.7) it follows that the last term of the above expression is Dgge(f). Thus the following
equality is satisfied

e(f)o [ 9B =e() [ g.dB — Doge(f). (3.13)
If FF € £ is a finite linear combination of £(f1), e(f2), -+, €(fn), then extend (3.13) by
linearity
Fo/ooogsdBf - F/OoogsdBf — DayF
- F/Ooo g,dBY — /0°° D?Fg,ds. (3.14)
The proof of the proposition is completed by Theorem 3.1. O

Now the second moment of (3.10) is computed. Note that by a simple computation for
Gaussian random variables, it follows that

E (e(f)e(g)) = exp{(f )¢} -
Thus

E {(e(f)oe(vg)) (e(h) 0e(dg))} = E {e(f+vg9)e(h+dg)}
= exp{(f+79,h+dg)s}

Both sides of this equality are functions of v and §. Taking the partial derivative %{2%
evaluated at v = 6 = 0, it follows that

E {(g(f)o/ooogsdBf) (s(h)o/ooo gsdBfI)}

= €xp (<fa h>¢) {<fa g>¢<h” g>¢ + <g: g)¢}
= E {Dq>g€(f)D<I>g5(h) + ‘S(f)g(h’) <ga g>¢}

Thus

E {(5( o /O gsdBf> (5(h)<> /O gsstH>} — E (Daye(f) Dage(h)
+e(f)e(h)(g, 9)9) -
By bilinearity, for any F' and G in &, the following equality is satisfied

E { (F o /Ooo gsdBf) (G o /0°° gsdBf> } —E {Do,FDo,G + FGg,9)s} -
Let F be equal to G. Then
E (Fo/ooo gsstH)2 = E |(DagF)* + F?|g[}] .
This result is stated in the following theorem.
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Theorem 3.5 Let g € Li and let £, be the completion of £ under the norm
IFIl; =& {(DagF)* + F*} ,

where F is a random variable. Then for any element F € &, F ¢ [° gsdBE is well defined
and

00 2
E (Fo/o gsdBf> = B {(DegF)? + F*|g[2)} . (3.15)

By the polarization technique [21], there is the following corollary.

Corollary 3.6 Let g,h € L} and F,G € £. Then
E (F<> /°° 9.dBY G o /°° hsdBf) —E [DoyFDonG + FG{g, h)s] -
0 0

This equality is the starting point for the definition of the stochastic integral with respect
to the fractional Brownian motions. Let F' € £. The stochastic integral fOT F,dBY is defined
and some properties associated with this stochastic integral are studied.

Consider an arbitrary partition of [0,T], 7 : 0 =1y < t; <t} < --- <t, =T. First the
following Riemann sum is given using the Wick product introduced above

n—1
S(F,m) =Y. F, o (B! —Bl).
i=0
From (3.9), it easily follows that that for any F and G in £, E (F o G) =E (F)E (G). This
identity extends to more general F' and G such that F o G is well defined (e.g. [8], p.83).
Thus for any partition 7,

n—1 n—1
E (Z th © (Bgﬂ - Blf)> = E (Fti © (Bgﬂ - Bg))
n—1

= Y E (R)E (B, -B/)=0

ti+1

~
I
<)

To compute the L? norm of S(F,n), denote

0ij =E {(F, o (Bf, - B!N) (F, o (B!, - B))} .

By Corollary 3.6, it follows that

tit1 s ti41 é tivi [ti+a
oij = E / DsFtids/ Dtthdt—i—FtiEj/ / é(u, v)dudv
t; tj ti tj
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Thus

n—1 t; t; t; t;
ES(Fr)?=Y E { [ " D;ﬁFtids/t”l D{F, dt + F,,F), /t " /t+ gb(u,v)dudv}
03 ] g ]

,j=0

Denote |7| := max;(t;41 —t;) and Ff = Fy, if t; < t < t;41. Assume that as |7| — 0,
E |F™— F|; — 0 and

n—1 tiv1 2
SE {/ ID?F,, — Dst|ds}
i=0 ti

converges to 0. Then from the above it is easy to see that if (m,,n € N) is a sequence of
partitions such that |m,| — 0 as n — oo, then (S(F,m,),n € N) is a Cauchy sequence in
L2(Q, F, P). The limit of this sequence in L*(Q, F, P) is defined as fj F,dB!: that is, define

tit1

T n—1
/ F,dB" = lim Y Fro (B — B (3.16)
0 ml=0:= ¢

so that

T T 2
]E|/ FdBE? =E (/ Dstds) +|FR2Y .
0 0

Let £(0,T) be the family of stochastic processes on [0,7] such that F € £(0,T) if
E \F|i < oo, F is ¢-differentiable, the trace of (Dth,O <s<T,0<t< T) exists and

E Ji (D?F,)%ds < oo and for each sequence of partitions (m,,n € N) such that |r,| — 0 as

n— oo

2
n—1
i+l -
SE {/tw DYF] - D‘st|ds}
=0 i '

and
E |F" — F|§,

tend to 0 as n — oo, Wherewn:(]:t(()") <t§") < ---<tn@1 <t =T,
The following result summarizes the above construction of a stochastic integral.

Theorem 3.7 Let (F;,t € [0,T]) be a stochastic process such that F € L£(0,T). The
limit (3.16) exists and this limit is defined as fOT FydBE. Moreover, this integral satisfies
E [ F,dBF =0 and

T T 2
E \/0 F,dB"|’ = E {(/0 Dstds> +|1[0,T]F|;} . (3.17)

The following properties follow directly from the above theorem.
1)If F,G € £(0,T), then

t t t
/(an +bG,)dBH = a/ FsdBf+b/ G, dBY  as.
0 0 0
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for any constants a and b.

2)If F € £(0,T), E[supe,<r Fi]? < 00 and supge,cr B [DZF,|? < 0o, then (f§ F.dBH 0 <t <T)
has a continuous version. o

Property 1) is obvious. To show 2) let Y; = [{ F,dBf 0 < t < T. By the equality
(3.17), it follows that

t
EY;— Y, = ]E|/FudBf|2

t 2 t gt
< E {( / D;fFudu) + / / Fquqb(u,U)dudv}
t t ot
< (t—s)/ E |D?F,|*du + E [ sup FS]Q/ / & (u, v)dudv
$ 0<s<T s Js

< (t—s)+C@t—s)".

By the Kolmogorov lemma [22], the property 2) is satisfied.
In the Theorem 3.7, it is not assumed that the stochastic process (Fs,s € [0,7]) is
adapted to the fractional Brownian motion. Now assume that D¢F, = 0 for s € [0,7]. Thus

in this case,
T T T
E \/ F,dB"? =E {/ / FquqS(u,v)dudv} .
0 0 0

This fact is stated in the following theorem.

Theorem 3.8 If F € £(0,T) and if F satisfies E [ |D¢Fy|ds = 0, then
T H2 2
E|[ FdBIP =5 {l0nFl} .

An analogue of the stochastic integral of Stratonovich type [ F,6 B! is also introduced.
This type of integral is related to the integrals introduced by Lin [17] and Dai and Heyde

2].

Definition 3.3 Let (m,,n € N) be a sequence of partitions of [0,t] such that |m,| — 0 as
n— oo. If Yo F(E™) (B (87)) — B (™)) converges in L2(Q), F, P) to the same limit for
all such sequences (m,,n € N), then this limit is called the stochastic integral of Stratonovich
type and the limit is denoted by [§ f(s)0B (s).

Theorem 3.9 If F € £(0,T), then the stochastic integral of Stratonovich type [} F,6 B
exists and the following equality is satisfied

t i t
/ F,6B" = / F,dBY + / D?Fds a.s.
0 0 0

12



Proof By Proposition 3.4,

n—1 n—1
Z Fyo(B"(63) = BY(E")) = 3 Fyw o (B () = BY(K™)) + X Dox 1 Fio
n-l Ei)l
= X |Fewo (B (}) =B (") + [ DiFmds
=0 ¢
This equality easily proves the Theorem. O

These two types of stochastic integrals are both interesting.

1) The expectation of [ F,dB! is 0 but the chain rule for this type of integral is more
complicated than for the integral of Stratonovich type.

2) The chain rule for the integral of Stratonovich type is simple but E f(f Fy6BE #£0 in
general.

An example is provided that shows that E { Jy F.oBH } is not 0.

It is well known that if X is a standard normal random variable, X ~ N(0, 1), then

EXn:{WEH/Q)' ifniseven
0 if n is odd

Let f(z) = 2™ If n is odd, then

s [ fBIsBI = & [ Dip(BM)as
= & [ F(BIDBIGs
- E /Otf'(Bf)/osqﬁ(u,s)duds
- H/Ot $2H-1g §'(BH)ds
= ol [ " ((BI)) ds

¢ BH n—1
= nH/ $?H-1g <—I‘;> stH—H g
0 s

n]Ht('rH-l)H

V2 (n+ D H (252!

which is not 0. If n is even, then by the same computation,

t
E / (BEYBE =0
0

Now another interesting phenomenon is shown. Let 7 be a partition of the interval [0, T']:
0=ty <t <ty <---<t,=T. Let (f(s),s > 0) be a stochastic process on the probability
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space (€2, F, P). For the Brownian motion (B;,t > 0), the It6 integral can be defined as the
limit of the Riemann sums 7= f;.(B;, .1 — By,) as the partition || — 0 for smooth f. The

Stratonovich integral is defined as the limit of the Riemann sums > 7~} M(Bti o — Bt)
as the partition |7| — 0. It may seem to be more natural to define the Stratonovich integral
for fractional Brownian motion (B ;¢ > 0) in a similar way. It is shown that the above two
limits are the same for a large class of stochastic processes.

Initially the following lemma is given.

Lemma 3.10 Let p be a positive even integer. Then

H H p! _ JpH
E (B -BI) = = S It — s|PH . (3.18)
Proof By (1.1) it follows that

E|B{ - B = E (B')’+E (B{')’ - 2E B{B]

t2H + 82H o (tQH +82H - ‘t o S|2H) — ‘t o 8|2H

BH _ BH
Thus W is a standard Gaussian random variable and
— 8
BH _ BH P
H Hip _ H t
E|By —B/[" = [t—s/""E (W)
p! H
= P
TR T
Corollary 3.11 For each o« > 1, there is a C,, < o0 such that
E |BF — BP|* < C,|t — s|*H. (3.19)

Definition 3.4 The process (fs,0 < s < T) is said to be a bounded quadratic variation
process if there are constants p > 1 and 0 < C,, < oo such that for any partition m: 0 =ty <
th<tg<---<t,=T,

n—1

Z (E |fti+1 - ft,'|2p)1/p S Cp .

=0
Example: Let f : R — R be continuously differentiable with bounded first derivative. Then
f(BH) is a bounded quadratic variation process. In fact, for any p > 1 and partition T,

"ZO {5 |£(BE) - (B}

n—1 1 2pY 1/p
= ZO{]E (/0 (B + 0B, - Bff)) do( t+1—B{f)) }
< CEE (1B, - BlP?)"

Il
=)

7

|
—

n
CY |ty — )" <CT

i

IA
I
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Theorem 3.12 Let (f(t),0 <t <T) be a bounded quadratic variation process. Let (m, ,n €
N) be a sequence of partitions of [0,T] such that |m,| — 0 as n — oo and

(Z P (BH D) — BEEY)) e N>

converges to a random variable G in L*(Q, F, P), where 7, = {t(()"), s t(”)}. Then

n

(5 76" e - B me w)

also converges to G in L*(Q, F, P).

Proof It suffices to show that >0 (fi.,, — f+;) (B i1 —B{l) converges to 0in L*(Q, F, P). Let
p be a number as indicated in the deﬁnltlon of bounded quadratic variation for (f;,0 <t <T)

(E {5 (s = 1 tﬁl—Bﬁ)F) "

1=0

|
—-

n

1/2
S (]E ft1+1 ft@ ( t¢+1_BtIi{)2)
=0
n—1
1/2p 1/2q
< Y (B (fun — £)7) 7 (B (BE, - BH)™)
1=0
n—1 Y\ 1/p /2 pq o 1/a 1/2
S ( (ftz-i-l - ftz) p) } {Z (]E |Bt i1 Btl | q) }
=0 1=0
n—1 1/2
< oS -]
=0
o1 n—1 %

< C\/Tom<ax (tizr —t)® 250 (as |w| —0),

<i<n

where 1/p+1/q = 1. O

It can also be shown with a slightly more lengthy argument that if (fs,s > 0) is a
process with bounded quadratic variation and &; is any point in [¢;,%;,1], then the limit of
the Riemann sums Y770 fe,(Bf!, | — B{!) converge in L*(Q, F, P) to J§ f,6B if it is true for
any particular choice of such a &;.

4 An Ito formula

Now an analogue of the It6 formula is established, that is, a chain rule for the integral
introduced in the last section. Let f : R — R be a twice continuously differentiable function

15



with bounded second derivative. Then for a partition {to,1,---,t,} of [0,T] it follows by
Taylor’s formula that

|
—_

n

FBH = f0) = Y [f(BE) - (B
=0
n—1 n—1
= Xl B, - Bl + 5 X e Bl - Bl
=0
n—1

= Y f(B" o[BI, - Bl +2/ D?f(BH)d

.
[«=]

+1 "Zlf,, (&) [BE, _Bg]

== Il+IQ+I3,

where & € (B[, B{!,). Since it is assumed that H > 1/2, it follows that Iy — 0 in
L*(Q2, F, P). By the definition of the stochastic integral introduced in the preceding section,
the first term I; converges to [y f'(BH)dBH in L?. By a version of the chain rule for the
¢-differentiation operator, it follows that for s € [t;, ;1)

D¢f(Bf) = f"(B{)D¢Bf
= "8 [ 6lus)du
= Hf"(B/) [82H_1 —(s— ti)ZH_l]
Thus the second sum in the three sums from Taylor’s formula converges to H [ s*#-1f"(BH)ds

in L2. The following chain rule formula is obtained.

Theorem 4.1 If f : R — R is a twice continuously differentiable function with bounded
derivatives to order two, then

T T
(B = f(BE) = [ f(BIABE + B [ 47" (BE)ds  as. (4.1)
0 0

It is interesting to note that this formula implies the usual It6 formula for Brownian
motion when H = 1/2 is formally substituted in (4.1).

The following theorem shows how to compute the ¢-derivative of a stochastic integral
of Ito type. It can be verified from the product rule and the Riemann sum approximations
to the stochastic integral.

Theorem 4.2 Let (F,t € [0,T]) be a stochastic process in £(0,T) and supyc,.rE |DPF|* <
oo and let n, = [ F,dBY fort € [0,T]. Then for s,t € [0,T]

¢ ¢
D?n, =/ DfFudBf—i—/ Fué(s,u)du, a.s.
0 0

16



Now a more general It6 formula is given.

Theorem 4.3 Let 1, = [} F,dBY, where (F,,0 < u < T) is a stochastic process in £(0,T).

u

Assume that there is an o > 1 — H such that
E |F, — F,]? < Clu—v*.
where |u —v| < § for some 6 > 0 and

lim E |D¢(F, — F,)*=0.

0<u,w<t,Jlu—v|—0

Let f : Ry X R — R be a function having the first continuous derivative in its first variable
and the second continuous derivative in its second variable. Assume that these derivatives
are bounded. Moreover, it is assumed that & [ |F,D?%n,|ds < co and (f'(s,ns)Fy,s € [0,T))
is in L£(0,T). Then for 0 <t < T,

f&,m) = [f(0,0) +/ (3,75 ds+/ (s,ms)FydBH
+/ 922 (s,ms) FDZ’nsds. a.s. (4.2)

Proof Let m be a partition defined as above by replacing 7" by ¢. Then

n—1
f(ta 77t) - f(O’ 0) = Z [f(tk+11 ntk+1) - f(tka ntk)]
k=0
n—1 n—1
= 3 [Flrers ) = £ )] + 20 [ ms) — £t )]

to

by the mean value theorem. It is easy to see that the first sum converges to / 8_(8’ ns)ds
0o 0s

in L?. Now consider the second sum. Using Taylor’s formula, it follows that

of 18%f 2
f(tk’ ntk+1) - f(tk’ntk) = %(tka ﬂtk) (ntk+1 - ﬂtk) 2 912 (tkantk) (ntk+1 - ntk) ’

2
where 7, € (n, ,M,,,)- An upper bound is obtained for E (ﬂtk o ntk) as follows

2 tr41 # 2 th+1  [te+1
E (77tk+1—77tk) = E ( Dstd8> +E /tk F,F,¢(u,v)dudv

tr tg

trt1 te+1 tht1
< (tops — 1) /t E (DfF5)2d3+ . / UE F2)Y2(E F2)Y2h(u, v)dudy
k
t t
< C|(tgsr —tk)2+/tk+1/tk+1¢(u,v)dudv]
k k
< Cltper — tr)” + Cltegr — tr)*" < Cltgsr — tr)*"

17



where ¢;,7 —t; < 1 and C' is a constant independent of the partition 7, that may differ for
different applications.
Thus

n—1 82 n—1

ZJ 2 2
E Z J;‘(tlm ﬁtk) (ntk+1 - Thk) S C E E (ntk+1 — 77tk)
=0 07 k=0
n—1

< C) (teyr — t) 27

k=0
— 0 as 1| — 0

On the other hand

0 of
a_j;(tk’ ’r]tk) (’r]tk+1 - ntk) = %(tka Tltk) <Ftk < (Btlz_'_l - Btl;f))

of lpt1
o tem) ([ - 48!

The first term on the right hand side can be expressed as

of
o (tem) (Fi o (BiL, = By)

= %(tkantk) (Ftk (BtIZH - B;) - /:H DZ)Ftde)

- %(tk’ntk)Ftk(Bg+l ~By) - %(tk’ ) :H D7 ds

= [Eownon]owr, -0+ [ 0 (Hiwnn,) s
—%(tmﬂtk) /:H D Fy,ds

— :g_i(tk’”tk)ﬂk_ o (B[, — Bl +/:+1 FtkDf%(tkantk)dS

Thus

Lo Sa] P
Z g(tk’ntk) (ntkﬂ - ntk) = Z a_x(tk’ntk)Ftk © (Btk+1 B Btk)

k=0 k=0
n—1 that af
Fy, D? = (ty, my, )ds .
+kz::0/tk tk sax(k’ntk) S
As |7| — 0, the first term converges to
t Of
Fy—==(s,n,)dB]
/0 5 (5 11s)4B;

18



in L? and the second term converges to

t 52
. J;(S ns) D, Fyds

in L2, To prove the theorem it is only necessary to show that as 7| — 0,

tet1 "
Z]E | tk,ntk /t (F, — F,,)dB¥| = 0
k

Since f has a bounded second derivative, it follows that

of
o ( kantk)| < 0(1 + |77tk|)
Thus af
E | =~ <.
|a$ (tk”rltk)| =
Furthermore

n—1 a tk+1
S el tom) [ (0 - Fy)aB!|
k

1/2
< CZ{E\ (F, - Ftk)dBH\z}
th+1 2 th+1  [fle4 1/2
e {]E ([ (p2r = F)ds) +& [ [ (R = F)(F, — F,)(u, v)dudy
k=0 tk tg 173
n—1 tk+1 2
< CZ{(t,c+1 —tk)/ E (DI(F, - Fy)) ds
tk+1 tk+1 1/2 211/2 1/2
/ / (F, — F,)? } {E (Fy — Fy,) } é(u, v)dudv}
1/2
S C Z [ sup E |D?(F5 — Ftk)|2(tk+1 — tk)2 -+ (tk+1 — t}g)QH { sup E (Fs — Ftk)Q}‘|
k=0 Ltk <s<tp41 U <s<tp41
1/2
< c{ sup E |D?(F, — Ftk)|2} + C|m|Hret
tp <s<tg+1
— 0
as |m| — 0. This proves the theorem. O

The equality (4.2) can be formally expressed as

of 0*f

of
oL (t nt)FtdBH o )

8t( ) t)dt+

df(t,m) = ——=(t,m)F,Dfn,dt

If F(s) = a(s) is a deterministic function then (4.1) simplifies as follows.
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Corollary 4.4 Letn;, = [} a,dBY, where a € Ly and f : Ry xR — R satisfies the conditions

in Theorem 4.8. Let (%ﬁ(s,ns)as,s € [0,T]) be in L(0,T). Then
ft,m) = f(0,0) +/ (8,Ms) d8+/ £ (s,ns)a,dBH

+/ e (s,ms /S o(s,v)a,dvds  a.s.
or formally

of

ox
2f t
+8 5 (1 77,5)/ é(t, v)a,dvdt .

If a; = 1, then Theorem 4.1 is obtained.

In the classical stochastic analysis, the stochastic integral can be defined for general
semimartingales and an It6 formula can be given. By the Doob-Meyer decomposition [4], a
semimartingale can be expressed as the sum of a martingale and a bounded variation process.
A semimartingale (X;,¢ > 0) with respect to a Brownian motion can often be expressed as
X, = Xo—i-f(f fsst-i-fOt gsds. An It formula in the analogous form with respect to fractional
Brownian motions is given. This generalization of the It6 formula is useful in applications.

(t 7775) CLtdB

Theorem 4.5 Let (F,,u € [0,T]) satisfy the conditions of Theorem 4.3 and let E supyc,7 |Gs| <
oo. Denote n; = €+ [{ Gudu + [{ F,dBE, £ € R fort € [0,T)]. Let (aw(s ns)Fs, s €[0,T]) €
L(0,T). Then fort e [0,T]

flt,m) = f(0,8) +/ (s,ms ds—i—/ 8 (s,m5)Gsds

+/ e (s,ms)Fs dBH+/ 922 (5,m5)FsD%nyds  a.s

The proof is the same as for the above theorem.
Now the Ito6 formula for R"-valued processes is given.

Theorem 4.6 Let (F',i=1,---,n,s € [0,T]) satisfy the conditions of Theorem 4.3 for F.
Let & = [{ F*dBE, k = 1,2,-+-,n fort € [0,T]. Fork = 1,2,---n let (fs,(s,m5)F* s €
[0,T]) be in L(0,T). Let f be twice continuously differentiable with bounded derivatives to
second order. Then

f(t’ftl’ ’5?) = f(OaOa"'aO)+/0tfs(556;,"' ;fg)ds
+an/t fo (5,68, &M FFdBY

+ Z / fora (s 5 ,é“?)Ff Dfﬁids a.s.

k=1
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Proof The theorem is verified for n = 2. To simplify the notation, let F'' = F and F? = G.
Let m:0 =1ty <t <ty <---<t, =1 Dbe a partition of the interval [0,¢]. Then

n—1

f(ta gt: 77t) - f(07 O: 0) = Z (f(tk-i—la é-tk_,_l: 77tk+1) - f(tka ftk+1a77tk+1))
k=0
n—1
+ Z (f(tk’ 6tk+1777tk+1) - f(tlm é-tka ntk)) (43)
k=0

by the mean value theorem. It is easy to see that the first sum converges to f(f %ds in L? as
|| = 0. To determine the limit of the second sum, consider each term in the sum:

Sy &tprs Mtr) — J (ks &by ey )
= fo(tr s i) (ftkﬂ - ftk) + fy(te, & i) (Utk+1 - TItk)

+%fm(tk,§:tk; Tty ) (ftk+1 — ftk)Q + %fyy(tkagtka e, ) (ﬂtk+1 - ﬂtk)2
+f:cy(tkagtkaﬁtk) (ftHl - ftk) (ntk+1 - ntk) ;

where &, € (&,,&,,,) and 7y, € (T, M4y,,)- Thus

n—1

> (f(tk, Etprns M) — (s ftk,mk))

k=0

n—1 n—1
= > foltrs & mity) (ftkH — ftk) + 3 [yt Ebpr ) (mw - 77tk)
k=0 k=0

1 n—1

~ B 2
+§ Z fxm(tka gtka 77tk) (gtk_H - gtk)
k=0
1 n—1 B 9
+§ Z fyy(tka gtk, ntk) (ntk+1 - ntk)
k=0

n—1
+ Z fzy(tka gtka ﬁtk) (ft;H_l - gtk) (77tk+1 - ntk)
k=0
= T I+ I+ I+

In a similar way as the proof of Theorem 4.3, it can be shown that as || — 0, I} converges
to 0 in L? for k = 3,4, 5.

fw(tkaftka ntk) (Stlﬁ—l - gtk) = fz(tkaftkantk) (Ftk © (Bg_,_l - BtIZ))_*"fw(tk’ &k’ ntk) (‘/t:k-i_1 (FS - Ftk)dBf) :

In a similar way to the proof of Theorem 4.3 the second sum does not contribute as |7| — 0.
By the definition of the Wick product it follows that

fw(tkaftk7ntk) (Ftk o (BtI;f_H - Bt}kI))
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te+1
= fw(tkagtkantk) (Ftk(Bg+1 _BtI;cI)_/tk DZSFtde)
tt1
= fiﬂ(tkﬂ é-tk’ ﬂtk)Ftk (BtI;{_H - Bg) - fw(tkaftkantk) /t D?Ftkds
k
tet1
= (fw(thé-tk’ntk)Ftk) (Btl;i_l - Bg) +/t D? (fz(tkaftkantk)Ftk) ds
k
L
_fz(tkagtkantk)/t DsFtkds
te+1
= ot &oorm) Fo) © (BYL, = BE) & [ aalti, G m) D6 s
173 k+1
+/ Jay(tes s Mt ) D ﬂthtde'i‘/ tk,ftkaﬂtk)D F, ds
_fw(tkagtk,ntk)‘/t Dthde
lpt1
= (fm(tk’gtk’ntk)Ftk) (Bfkl 1 Bg) +/t fm(tkagtkantk)ngthtde
k
tht+1 "
+L fzy(tkagtk7ntk)DsntkEkd$
k

In a similar way to the proof of Theorem 4.3, it can be shown that as |7| — 0,

H ¢
- [A o s&omBaB! + [ 0L 6. n)piepds

f

D%, F,
8 a (8 587778) 775 dS

and

/ a 5,65,m,)G dBH+/ (5, €5, 75) D1 Gods

0*f

D¢
0 axay (85657 TIS) sé-SGSdS

in L? proving the theorem.
The Ito formula for the Stratonovich type integrals is simpler.

Theorem 4.7 Let (F;,t € [0,T]) be a process such that the assumptions of Theorem 4.3
are satisfied. Let & = f(f F, 6B, Let g: Ry x R — R be a a twice continuously differentiable
function with bounded derivatives to second order. Let (32(s, &) Fy, s € [0,T]) be in £(0,T).

Then for t € [0,T]

(tft)—gOO-l—/ s{fsds—i-/ (5,£)Fs6BY .
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Proof Note that & = fy FydB! also exists and
. t
& =&+ / D?Fds .
0

Using the 1t6 formula (4.2)

~ t
9t,6) = glt.&+ [ DIFds)
- 00+/ sfsds-l—/ (5,£,)D? Fyds
+/ s.gchugHJr/(,j2 L£)DYEFyds (4.5)

Now

t t t
[ 05, e)PoBE = [ gu(s,)PaBE — [ Df (gu(s,E)F) ds
0 Xr 0 0
i i
= /gx(sags)Fs(SBf_/ gm(Safs)DZ)stst
0 0
t
_/ gw(S,fs)D?Fst (46)
0

Combining the above two equalities, it follows that

(tft)—g(]()—f—/ s{fsds—i—/ (5,£,)F,6 B!

proving the theorem. a
Remark 1 The equation (4.4) can be expressed formally as
6g(t,&) = 94(t, &) dt + g2 (t, )& -

or more generally

0 dg
5g(t7§7517§75277§?) = a_‘i(t,gtl,ffa é-t)dt—}— (t 575:5757"'76?)55?51

dg ny 5 en
+...+8_%(@5},53,...,@)5& i

5 Two Applications of the It6 Formula

Two applications are given now of the It6 formula for fractional Brownian motion. First,
the so-called homogeneous chaos is extended to a fractional Brownian motion. Second, an
L? estimate of the (It6 type) stochastic integral for a fractional Brownian motion is given.

23



Let H,(x) be the Hermite polynomial of degree n, that is,

t:vf—tQ Zth
bt t it 1/2
floe={ [ ow0)fufududo} ™.
Define
15: [ g.amt
and
H;f’f(t) = |f z,tHn (ft)

Theorem 5.1 If flpq) € Li, then the following equality is satisfied
dHPI (t) = nHP, (1) fidBY!
where d is the Ito type differential given in Theorem 4.8 and t € [0,T].

Proof Fix n and denote X; = H%/(t) for t € [0,T]. Using the Itd formula (Theorem 4.3)
and prime for differentiation it follows that

X, = n|f|g;2ft/t (u, t) fuduH, () dt

1 115ube [ S t)fudury, (7) 11153 ([ £oaBE)
+| £l Hy, (f2) 1155 frd B

[ 8t t) (7)1, 301

= nlf5;*Huo (£) frdB!!

P2 [ 6 0)

AnHa(fe) = FHL(f) + H(f) | dt

It is well known that for each n € N the Hermite polynomial satisfies

nH,(z) —zH, (z) + H,(x) =0
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for each x € R. Thus the sum of the terms in the above { } equals 0. The first term is
nH!\ (1) fld B .
Thus
dHP (t) = nHy'\ (1) fid B!

proving the theorem. O
The following estimate for the LP norm is useful in some applications.

Theorem 5.2 Let (g5,s € [0,t]) be a stochastic process satisfying the assumptions of The-
orem 4.8 for F. Let F, := [} g, dBY. IfE [}|g,|Pds < oo, [{E |D?F,|Pds < oo and
FP=1lg € £(0,t), then

» t s /2\2/P p/2
E FP <pP / (B lg.D¢F ) ds L (5.1)
0

Proof Applying the Ité formula (Theorem 4.3) to F} (by the assumption that FP~lg €
L(0,t), the restriction on the boundedness of f to its second derivatives in Theorem 4.3 can
be removed), it follows that

t t
FP=p / FPlg,dBH + p(p — 1) / FP=2g,D¢F,ds.
0 0

Thus .
EFP =p(p—1) / E (Fr2g,DYF,) ds.
0

t
BEF < plp—1) [ E|F7 29, DIF|ds
0

-2

t p—2 p 2
p2/ (& F?)'5 (E |9, D¢F,[8)” ds
0

IN

By an inequality of Langenhop, (e.g. [1]), there is the inequality

t o 2 £
E FP < pP {/ (E 9. D¢F,[%)" ds}
0
This completes the proof of the theorem. O

Corollary 5.3 Let the conditions of Theorem 5.2 be satisfied and let p > 2. Then

i 2 t 2 2
s FP<p{ [ (elgr)ids+ [ (& IDIFP) ds) .
0 0
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Proof From |ab| < a® + b?, it follows that
E |g5D?F8|§ <E ‘gs|p +E |Dst|p'
Thus

(& |93D2F5‘%)% < (e Igs\p+E|Dstlp)%

SIS

IN

(E |g;")7 + (& |DEP)" .

This verifies the corollary. O

6 Iterated Integrals and Multiple Integrals

Let f € L3(R,) be such that | f|, = 1. Similar to [8] define (f3° f,dB)™" as the n-th
Wick power of [° f,dB, that is, denote formally

o a2\ oo " o(n—1) 00 H
(/ fodB! ) — (/ f.dB! ) <>/ fdBE, n=23,--.
0 0 0

exp® (/Ooo fsdBfI) = g% (/000 fsdBfI)m ;
tog® (1+ [~ fudB) = 3 % (" )"

n=1

Lemma 6.1 If | f|; =1, then (J5° f,dBE )" is well defined for each n € N and

(/OoofsdBf>on:Hn (/OoofsdBf) ; (6.1)

where H, denotes the Hermite polynomial of degree n.

Proof The equality (6.1) is verified by induction. a
It is easy to see that (6.1) is true for n = 1. Let (6.1) be true for 1,2,---,n — 1. Then

(["ramr)™ = Hoo [~ anfyo [7 panr
— Hn_l(/ooo fsstH)/Ooo £,dBY — Dy, {Hn_l(/ooo fsdBf)}
= Hool [ faB?) [7 gaBf —H,_ ([ fdB)I11
= Hool [ faB?) [" faB! —H,_ ([ fdB!)

= H([ faBl)
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by an identity for Hermite polynomials. This verifies the equation (6.1). O
For an arbitrary, nonzero f € L3(Ry ), the product defined in (6.1) is extended as

o0 on o (I fsdBH )" " ( e fsdBH>
dB7) = 0 JETTs H, .
(" pamr) =17 ( £ls 7y 1o
Lemma 6.2 If f € L3(Ry), then (f0°° fsstH)on is well defined for each n € N and

([ raBr)" = mgi).

Since [5° fsdBH is a Gaussian random variable, it is easy to estimate its moments and

to show that the series defining exp® ( I fsdBE ) is convergent in L?(Q, F, P). Moreover
there is the following corollary.

Corollary 6.3 If f € Li(R,), then

exp® (/OoofsstH> =¢e(f) = exp (/OoofsdBf - %\f@) .

Proof 1t follows that

ot ([ past) = 3o ([T rasr)”
00 H
- S (S7)
= e (7 )
= exp (/OoofsdBf—%lf\i)

This completes the proof of the lemma. O
The following lemma is also easy to prove.

Lemma 6.4 For any two functions f and g in Li(]&) with (f, g) = 0, the following equality
15 satisfied

([ ram) "o ([T gan)™ = ([ ran)" ([7 guaB) " = 0ot (00) HE2(00).

Since [5° fsdBE/|f|s and [5° gsdBY /|g|s are Gaussian random variables with mean 0
and variance 1, their covariance is

e {( [ £aBE/111s) ([ 9:dBE/19s) | = (/171os0/glo)o
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It follows that

() ([ o))
= 5 {UBlolg [ RaB 710 B[ 0,08 1g)s))
0 ifm#n
FI5lg15(f /| fles9/1gle)y Em=n
{ 0 ifm#n

(f,9) ifm=n

By a polarization technique [21] it is easy to verify the following lemma.

Lemma 6.5 Let f',---, f" g',---, g™ € Li(R;). The following equality is satisfied

E {(/OoofsldBfo...o/OoofgdBf> (/Ooog;dgfo...o/owg;nd35>}
0 ifn#m
N {%20<f1’90(1)>¢<f2’ga(2)>¢...<fn,ga(n)>¢ ifn=m"’

where Y, denotes the sum over all permutations o of {1,2,---,n}.

Let e, eq, --+, €,, --- be a complete orthonormal basis of Lé(]lh) Consider the n-th
symmetric tensor product of L3(Ry): Li(R}) := LE(R,) ®---® L3(Ry ). It is the completion
of all functions of the following form

fls1,---,8,) = DTy e knCh (51)€ry(52) - €k, (Sn) (6.2)
1<k, sk <k
where f is a symmetric function of its variables s, - - -, s, and k is a positive integer. The set

of all of the above finite sums is denoted L£,,. For an element of the form (6.2), its multiple
integral is defined by

L= Y an s /0 " e (5)dBY o /0 Y en(s)dB oo /0 Y er ()BT (6.3)

]-Skl:"';kngk

By Lemma 6.5, the norm of (6.3) is given by

BN = [, dun,v)o(u,va) - dlun, va) (s, un)

+

fv1,v9, -+, v,)durdus - - - dupdvidoy - - - duy, . (6.4)
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Thus for any element f in
Li(R’}r) = {f : R} — R; f is symmetric with respect to its arguments, |f|3) =(f, e < oo}
where

<f7 g>¢ = /RZn ¢(U1, U1)¢(U2, UQ) ot ¢(un, Un)f(ula Uy ==y un)
+
g(v1,v9, -+, vp)durdus - - - dupdvidus - - - doy, -

The multiple integral I,,(f) can be defined by a limit from elements in £,, and it follows that

E (|L(f)*) = [fI5
The following lemma can also be shown by the polarization technique.

Lemma 6.6 If f € L3(R}) and g € L;(RT), then

E (In(f)Im(g)) = { (6.5)
0 ifn#m

Let f € L2(R?). The iterated integral can be defined by the recursive formula
o\ Ry

HjpH H
/ f(s1,82,-+,8,)dB; dBy, ---dB,,
0<51<82< <8, <t

¢
- [ (] Flstys2, o+ 80 1, s0)dBIABI - dB_ ) dBE (66)
0 0<s1<82<<5p, " "
Theorem 6.7 If f € Li(RY), then the iterated integral (6.6) exists and

L(f) = n!/ (51, 89,7+, 50)dBYdBY ... dBT (6.7)

0<s1<82< <8, <t

Proof First let f have the special form f = ¢®", that is, f(s1, 2, , $n) = 9(81)g2(82) - - - 9(8n)-
Then
L(f) = HY*(t)

and

dI,(f) = dH(t)
= nHY (t)g(t)dBf
= nl,_1(¢®°"V)g(t)dBf

This verifies (6.7) for the case where f = ¢®". By the polarization technique [21], the
theorem follows easily. O
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Remark 2 For Brownian motion, a multiple integral was originally introduced by Wiener
[24]; Wiener’s original multiple integral is in fact a multiple integral of Stratonovich type.
The multiple integral of Ité type was introduced in [16].

For Brownian motion, the multiple Stratonovich integrals also have been widely used in
the applications. Since the work of [9] and [10], it is known that the definition of multiple
Stratonovich integrals is related to the definition of “trace”. There has been much work on
this topic. The reader is referred to [13] and the references therein.

A class of traces and multiple Stratonovich integrals are defined and the Hu-Meyer for-
mula is extended to the fractional Brownian motions.

As in [11], introduce the ¢-trace Try for simple functions. This new type of trace extends
the classical one and plays an important role in this section.

f Let fi,f2, -, fm € L3(Ry). Consider the simple functions in L} (R?) of the following
orm

fltnty, - sta) = 3 i fu(B) fin(B2) -+ fi (tn) - (6.8)

1<ty iz, in <m

If f is given by (6.8), then for k£ € {1,2,---,[3]}, define
Tel f(t1, -+ tnok) / / f(s1,82, ++, S2k-1, Sk, t1, 5 tnak)
B(51, 52) (53, 54) =+ - P(S2p—1, Sok)ds1 - - - dsgy .

To define the trace for general functions, as in [11], let 7.(s,?) be an approximation of
the Dirac function, that is,

hm/fyg s, t) f = f(t)

/OOO/OOO Ye(s,t)*dsdt < 0o .

For any function f € Li(R’jr), the following approximation

in some sense. Assume that

o o
fg(tlat%""tn) = /0 /0 f(817527"'asn)75(817t1)76(327t2)""Yg(Sn,tn)d$1d82'--dSn
is a simple function of type (6.8) and if f is symmetric, then f¢ is also symmetric. Let
o0
pols.t) = [ els, ) lt, w)du.
According to the definition of f¢,

Tl“g,ff(tl, n 2k / / 5‘1’ S9,° 0, Sn)p(sl’ 32) “ee p(SQk—la 82]9)
Ye(Sor41, 1) = = Ve(Sny tnook)dsidsy - - - dsp
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Definition 6.1 Let f € L2 (IR{?F) The k-th trace of f is said to exist szr fe(te, -yt ok)
converges to a function in LQ( 2k) as € — 0. The limiting function is called the k- th trace
of f, that 1s,

Tr’j,f(tl, sy tnoor) = lim Trl(;fs(tla ey tnoak) -

Now introduce the multiple Stratonovich integrals for fractional Brownian motions. De-
fine (BJ)* = J5° 7:(t, s)dB. Then (B/)® is differentiable. Let f € L;(R?). Consider

SZ(f) = /R” f(sla 52,1, Sn)(Bg)g(Bg)s st (Bfi)gd$1d$2 ce dSn
+

Definition 6.2 If S¢(f) converges in L?(Q2, F, P) as € — 0, then the multiple Stratonovich
integral is said to exist and is denoted by

Su(f) = /]R” f(sl,sg,---,sn)(SBg(SBg---(SBSHn.

+

The remaining part of this section is devoted to giving conditions such that S&(f) is
convergent in L?(Q, F, P).

By the identity 2" = Y4z W’_%)!Hn_gk(x), it follows that

([ sy = g (5020

— n TL' fooo fsdBf

B |f|¢k<z[g] mﬂﬂ—% (W>

e
2 i = g (B

= . - o(n—2k)

= k§]2kk'( |f| (/ fsdB; )

= Z n—‘|f| 2k 1 2(f®(n Zk)
ko 26K (n — 2k 7T

_ n—' \ i

- lcgz[%] PRI(n — 2kl (mh(rem) .

where f®" is the symmetric tensor product of f, that is, f€"(s1, 89, «,8n) = f(51)f(s2) - f(Sn)-

Let fi,f2, -+, fo € L3(R;) and let f be the symmetrization of fify--- fn. Then by a
polarization technique,

[ 1aBY [~ pa@)dBl - [~ ()Y
n! .
= 2 g gy (T60)

k<[]
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Using this formula it follows that

. n!
Sn(f) = Z m /Rg;f(sl’ 82,0, Sn),Os(Sl, S2)Ps($3, 84) s 'ps(52k—1, 82k)

k<[3]
Ve(Sort1,t1) * * Ve (S, tnok)dsy - - - ds,dB/l - - - dB[!

tn—ok °

It is easy to verify the following result.

Theorem 6.8 Let f € Li(]Ri) be such that all of the traces exist in the following sense: For
1<k<[3],

/R" f(slv 82,7, Sn)pc”(slv 52),05(53; 54) T P5(32k—1, 52k)’)/5(52k+1, tl) ce ’Yg(Sn, tn_gk)d81 ---ds,
+
(6.9)
converges to a function Tr’(;f in L3(RT™*) as € — 0. Then the sequence (S5(f),n € N)
converges in L*(Q, F, P) and the limit is given by the extended Hu-Meyer formula

!
Su(f)= > mhzk(ﬁiﬁ- (6.10)
k<[3] ’ ’

Remark 3 [t should be noted that the analogue of this theorem and in particular the formula
(6.10) has been discussed extensively for the Brownian motion.

As a consequence of Theorem 6.8, Equation (6.10), a chaos expansion theorem is
described. It is well known that the family of all polynomials in the random variables
Bfl,---,BJl, for 0 < t; < --- <t and k € N is dense in L*(Q, F, P). Since each of these
polynomials is a finite sum of the monomials of the form [§° fi(s1)0BH - [ fo(sn)dBE,
where fi,---, fn € Li. This product of integrals of Wiener type can be expressed as a mul-
tiple Stratonovich integral [5°--- [7°(f1i ® - -+ ® fn)(s1,- -+, 5n)0B --- 6B . By the equality
(6.10), this multiple integral of Stratonovich type can be expressed as a finite, linear combi-
nation of multiple integrals of Itd type. Thus the family of all linear combinations of multiple
integrals of the form [{°- - [f°(f1®---® fn)(s1,- -, $p)dBL ---dBl is dense in L*(Q, F, P).
Thus

L*(Q, F,P) = {F:F:F0+Z/Oo'-./Oofn(sla'“’Sn)ng.-.ngL’
n=1"0 0

FyeR, fn€ L*(R}) and ) [fal5 < oo} (6.11)

n=1
The equality (6.11) is described in the following theorem.

Theorem 6.9 If F' € L*(), F, P), then there is a sequence (f, € L3(R}),n € N) such that
Yo | falf < 00 and

F==% (F)+z/ fals1, -+, 8,)dBE - dBH . (6.12)
n=1 R’i
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Remark 4 The ezpansion (6.12) is an analogue of the Ité- Wiener chaos expansion which
is extended to fractional Brownian motion. Replacing the multiple integrals by the iterated
multiple integrals and summing the infinite series gives a stochastic integral representation
for F —E F. Note that the terms on the right hand side of (6.12) are orthogonal.

Remark 5 An earlier version of this paper was given to G. Kallianpur and he subsequently
provided us with the preprint [8] where the multiple integrals of Stratonovich type are defined
and their first and second moments are computed.

Remark 6 After the submission of this paper, the authors became aware of [5] where some
related work on fractional Brownian motion is done.

References

[1] E.F. Beckenbach and R. Bellman Inequalities. Springer, 1965.

[2] W. Dai and C.C. Heyde, Ito formula with respect to fractional Brownian motion and
its application, J. Appl. Math. Stoch. Anal. 9 (1996), 439-448.

[3] A. Dasgupta and G. Kallianpur, Multiple fractional integrals, Preprint, 1998.
[4] C. Dellacherie and P. A. Meyer, Probability and Potentials B, North Holland, 1982.

[56] L. Decreusefond and A.S. Ustiinel, Stochastic analysis of the fractional Brownian mo-
tion, Potential Analysis, to appear.

[6] T.E. Duncan, Absolute continuity for abstract Wiener spaces, Pacific J. Math. 52 (1974),
359-367.

[7] G. Gripenberg and I. Norros, On the prediction of fractional Brownian motion, J. Appl.
Prob. 33 (1996), 400-410.

[8] H. Holden, B. @ksendal, J. Ubge and T.S. Zhang, Stochastic Partial Differential Equa-
tions, a Modeling, White Noise Functional Analysis, Birkhauser, 1996.

[9] Y.Z. Hu and P.A.Meyer, Chaos de Wiener et intégrales de Feynman, in Séminaire
de Probabilités XXII, ed. by J. Azema, P.A. Meyer and M. Yor, Lecture Notes in
Mathematics 1321, Springer-Verlag, 1988, 51-71.

[10] Y.Z. Hu and P.A.Meyer, Sur les intégrales multiples de Stratonovich, in Séminaire
de Probabilités XXVI, ed. by J. Azema, P.A. Meyer and M. Yor, Lecture Notes in
Mathematics 1321, Springer-Verlag, 1988, 72-81.

[11] Y.Z. Hu and P.A.Meyer, On the approximation of Stratonovich multiple integrals, in
Stochastic Processes, a festschrift in honor of G. Kallianpur, ed. by S. Cambanis, et al.
141-147, Springer, 1993.

33



[12] Y.Z. Hu and B. Qksendal, Wick approximation of anticipating linear stochastic differen-
tial equations, in Stochastic Analysis and Related Topics, Progr. Prob. 38, Birkhauser,
Boston, 1996, 203-231.

[13] C. Houdré; V. Pérez-Abreu and A. S. Ustiinel, Multiple Wiener-Ito integrals: an intro-
ductory survey. in Chaos expansions, multiple Wiener-Ito integrals and their applications
(ed. by C. Houdré et al), 1-33, Probab. Stochastics Ser., CRC, Boca Raton, FL, 1994.

[14] H.E. Hurst, Long-term storage capacity in reservoirs, Trans. Amer. Soc. Civil Eng. 116
(1951), 400-410.

[15] H.E. Hurst, Methods of using long-term storage in reservoirs, Proc. Inst. Civil Engineers
Part I, Chapter 5 (1956), 519-590.

[16] K. It6, Multiple Wiener integrals, J. Math. Soc. Japan, 3 (1951), 157-164.

[17] S. J. Lin, Stochastic analysis of fractional Brownian motions, Stochastics Stochastics
Rep. 55 (1995), 121-140.

(18] B.B. Mandelbrot, The Fractal Geometry of Nature. San Francisco, CA: Freeman, 1983.

[19] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises
and applications, STAM Rev. 10 (1968), 422-437.

[20] M. Métivier and J. Pellaumail, Stochastic Integration. Academic Press, New York-
London-Toronto, 1980.

[21] P.A. Meyer, Quantum probability for probabilists, Lect. Notes in Math. 1538, Springer,
1993.

[22] D. W. Stroock and S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer,
1979.

[23] S. Watanabe, Stochastic Differential Equation and Malliavin Calculus, Tata Institute
of Fundamental Research, Springer, 1984.

[24] N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1941), 897-936.

34



