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ABSTRACT 

The use of high-strength steel bars in reinforced concrete coupling beams is expected to 

reduce reinforcement congestion. A series of tests was conducted to investigate the effects of high-

strength reinforcement on coupling beam behavior. This report summarizes the test program and 

test results.  

Eleven large-scale coupling beam specimens were tested under fully reversed cyclic 

displacements of increasing magnitude. The main variables of the test program included: yield 

stress of the primary longitudinal reinforcement (Grade 80, Grade 100, and Grade 120 [550, 690, 

and 830]), span-to-depth (aspect) ratio (1.5, 2.5, and 3.5), and layout of the primary longitudinal 

reinforcement (diagonal [D] and parallel [P]). All beams had the same nominal concrete 

compressive strength (8,000 psi [55 MPa]) and cross-sectional dimensions (12 by 18 in. [305 by 

457 mm]). Beams were designed for target shear strength of 8√𝑓𝑐
′ psi 𝑏𝑤ℎ (0.67√𝑓𝑐

′ MPa 𝑏𝑤ℎ) 

for D-type beams and 6√𝑓𝑐
′ psi 𝑏𝑤𝑑 (0.5√𝑓𝑐

′ MPa 𝑏𝑤𝑑) for P-type beams. All transverse 

reinforcement was Grade 80 (550), except one specimen that had Grade 120 (830) transverse 

reinforcement. 

The test program is documented by presenting the details of specimen construction, test 

setup, instrumentation, and loading protocol. Documentation of test results include material 

properties and cyclic force-deformation response. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

Reinforced concrete structural walls are a common lateral force resisting system used in 

medium to high-rise construction. Structural walls resist lateral forces and limit building drift 

during earthquakes or high wind events. Perforations of a structural wall to accommodate 

windows, doors, and other building components reduce the stiffness and strength of the lateral 

force resisting system and may lead to the structural wall acting as a series of independent, smaller 

structural walls. Coupling beams are used to couple the actions of structural walls, restoring much 

of the lost stiffness and strength while retaining the openings necessary for building use. Coupling 

beams transfer shear between structural walls that results in wall axial tension and compression 

forces that form a couple in response to overturning loads. When deformed, the geometry of the 

system amplifies interstory wall drifts into higher coupling beam chord rotation demands. Chord 

rotation refers to in-plane relative deflection of a coupling beam divided by clear span. The high 

shear and deformation demands placed on reinforced concrete coupling beams require special 

reinforcement detailing. This detailing is aimed at preventing shear strength and stiffness 

reductions that would compromise the lateral strength and stiffness of the reinforced concrete 

coupled wall system. 

The amount and detailing of reinforcement required in concrete coupling beams causes 

reinforcement congestion that increases construction costs. Reducing the quantity or size of the 

diagonal reinforcement by using high-strength reinforcement is one way to reduce reinforcement 

congestion. The ACI Building Code (ACI 318-14)[1] limits the nominal yield stress of primary 

longitudinal reinforcement in special seismic systems to 60 ksi (420 MPa) and confining 
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reinforcement to 100 ksi (690 MPa) because of limited experimental data from test of specimens 

constructed with high-strength reinforcement. There is reason to believe high-strength steel 

reinforcement can function as diagonal reinforcement in coupling beams. Typical problems 

associated with the use of high-strength steel, such as strain compatibility between concrete and 

steel reinforcement and crack width control, are not a concern in members primarily designed to 

resist high cyclic deformations.  

The ACI Building Code[1] requires diagonal reinforcement in coupling beams with aspect 

ratios less than 2 and nominal shear stresses higher than 4√𝑓𝑐
′ psi (0.33√𝑓𝑐

′ MPa). Coupling beams 

with aspect ratios (ℓ𝑛 ℎ⁄ ) not less than 4 are required to be designed as a beam of a special moment 

frame. The Code permits coupling beams with aspect ratios between two to four to be designed as 

diagonally-reinforced or as a special moment frame beam. Diagonal reinforcement in beams with 

higher aspect ratios have a smaller angle relative to the horizontal, resulting in a need for high 

amounts of diagonal reinforcement to resist the shear demand. Slender coupling beams  

(ℓ𝑛 ℎ⁄ ≥ 2) may therefore greatly benefit from use of high-strength reinforcement. The effect of 

using high-strength steel on the behavior of coupling beams with a representative range of aspect 

ratios needs to be evaluated. 

1.2 Research Objectives 

This study was undertaken to investigate the use of high-strength steel as reinforcement in 

diagonally-reinforced and special moment frame coupling beams. The expected impact of this 

work is reduced reinforcement congestion and, as a result, lower costs for construction of robust 

reinforced concrete buildings.  
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The test results presented in this report may be useful as a basis for comparisons between 

coupling beams reinforced with Grade 80, 100, and 120 (550, 690, and 830) steel bars. They may 

be useful for developing and calibrating models for use in design of systems with high-strength 

reinforcement. 
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CHAPTER 2: EXPERIMENTAL PROGRAM 

2.1 Specimens 

2.1.1 Design and Detailing 

Eleven coupling beam specimens were tested under reversed cyclic loading. There were 

specimens with three different clear span lengths (resulting in different aspect ratios), diagonal or 

parallel primary longitudinal reinforcement, and three grades of steel reinforcement (Grades 80, 

100, and 120 [550, 690, and 830]). The coupling beams were tested rotated 90 degrees from 

horizontal for convenience. Each specimen consisted of a coupling beam that framed into top and 

bottom blocks. The end blocks had dense Grade 60 (420) reinforcement cages near the connection 

with the coupling beam to emulate structural wall boundary elements. 

Specimens, such as D120-3.5 or P80-2.5, were named using the following rules: the first 

letter indicates whether it has diagonal (D) or parallel (P) primary longitudinal reinforcement (an 

example of which is shown in Figure 1), followed by a number that represents the reinforcement 

grade (in ksi), and the last number (separated by a dash) indicates the coupling beam aspect ratio 

(clear span to overall height, ℓ𝑛 ℎ⁄ ). Details of the specimens are listed in Table 1 and shown in 

Figures 2 through 23. Notation is defined in Appendix A. 

 The beams had clear span lengths of 27, 45, and 63 in. (686, 1140, and 1600 mm), a height 

of 18 in. (457 mm), and a width of 12 in. (305 mm), resulting in aspect ratios (ℓ𝑛 ℎ⁄ ) of 1.5, 2.5, 

and 3.5. The ACI Building Code[1] requires coupling beams with aspect ratios less than 2 to be 

reinforced diagonally when the shear stress demand is higher than 4√𝑓𝑐
′ psi (0.33√𝑓𝑐

′ MPa). The 
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ACI Building Code permits coupling beams with aspect ratios between 2 and 4 to be reinforced 

with diagonal or special moment frame detailing.  

Nine of the eleven coupling beams had primary longitudinal reinforcement arranged in two 

intersecting groups of diagonally-placed bars (D-type beams) with full-section confinement (rather 

than confinement of each group of diagonals). The remaining two coupling beams had primary 

longitudinal reinforcement arranged parallel (P-type beams) to the beam longitudinal axis similar 

to reinforcement in beams of special moment frames. Beams with the D-type reinforcement layout 

were designed to have a nominal shear strength of approximately 8√𝑓𝑐
′ psi 𝑏𝑤ℎ 

(0.67√𝑓𝑐
′ MPa 𝑏𝑤ℎ) based on specified fy, in accordance with 𝑉𝑛 calculated using ACI 318-14 

Section 18.10.7.4.a[1] (Equation 2.1):  

 𝑉𝑛 =  2𝐴𝑣𝑑  𝑓𝑦  sin 𝛼 Equation 2.1 

 

Beams with the P-type reinforcement layout were designed to have a nominal shear demand 

of approximately 6√𝑓𝑐
′ psi 𝑏𝑤𝑑 (0.5√𝑓𝑐

′ MPa 𝑏𝑤𝑑) based on 𝑀𝑝𝑟 with specified fy. These values 

are near the maximum design stresses permitted by ACI 318-14[1] of 8. 5√𝑓𝑐
′ psi (0.71√𝑓𝑐

′ MPa) 

for diagonally-reinforced coupling beams and 6√𝑓𝑐
′ psi (0.5√𝑓𝑐

′ MPa) for beams of special 

moment frames. Design shear stresses for D-type beams in this study were 10 to 70% higher than 

the design shear stresses used by Naish et al.[14] in their tests of diagonally-reinforced beams using 

Grade 60 (420) reinforcement with full-section confinement. Naish et al.[14] had nominal shear 

stresses of 7.3√𝑓𝑐
′ psi (0.61√𝑓𝑐

′ MPa) and 4.8√𝑓𝑐
′ psi (0.40√𝑓𝑐

′ MPa) for diagonally-reinforced 

beams with aspect ratios of 2.4 and 3.3, respectively. In addition, the volumetric ratios of transverse 
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reinforcement for D-type beams in this study were approximately 16% less than those used by 

Naish et al.[14] 

Beams had No. 6 (19) or No. 7 (22) Grade 80, 100, or 120 (550, 690, or 830) steel bars as 

primary longitudinal reinforcement. P-type beams were constructed with six parallel reinforcing 

bars, three near the top and three near the bottom of the cross-section. D-type beams were 

constructed with two bundles of diagonal reinforcing bars that intersected at the midpoint of the 

coupling beam with an angle of inclination between 10 and 23 degrees. All beams, except D120-

2.5, had No. 3 (10) Grade 80 (550) steel for all non-primary reinforcement. Beam D120-2.5 was 

constructed using Grade 120 (830) steel. Except for P80-2.5, transverse reinforcement was 

provided at a 3-in. (76-mm) spacing, which corresponds to 4db for No. 6 (19) reinforcing bars and 

3.4db for No. 7 (22) reinforcing bars. Beam P80-2.5 had transverse reinforcement spaced at 3.5 in. 

(89 mm) or 4.6 times the longitudinal bar diameter. Each layer of transverse reinforcement 

consisted of a hoop with seismic hooks (135 degrees) and one crosstie with 135 and 90-degree 

hooks in the beam strong axis. D-type beams also had two similar crossties in the beam weak axis. 

See beam cross-sections in Figures 2 through 23. 

D-type beams had ten longitudinal No. 3 (10) bars distributed around the perimeter of the 

beam such that each bar was supported by either a crosstie or a corner of a hoop. This secondary 

longitudinal reinforcement was terminated 2 in. (51 mm) into the top and bottom blocks for all 

specimens aside from D120-2.5, consistent with the detailing recommended in the ACI Building 

Code[1] commentary. The No. 3 (10) longitudinal bars in D120-2.5 were developed into the end 

blocks to limit concentration of damage at the block-beam interfaces. The design data in Table 1 

include the minimum embedment length (ℓ𝑒) of the primary longitudinal reinforcement of the 
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coupling beams into the top and bottom blocks. The as-built dimensions of the specimens are 

shown in Figures 2 through 23.  

2.1.2 Materials  

2.1.2.1 Concrete 

Ready-mix concrete with a maximum aggregate size of 0.5 in. (13 mm), provided by a local 

supplier, was used to cast the specimens. The target compressive strength (f’c) was 8,000 psi (55 

MPa). The measured concrete compressive and tensile strengths (Table 2) were obtained from tests 

of 6 by 12 in. (152 by 305 mm) standard concrete cylinders following ASTM standards C39[9] and 

C496[10].  

2.1.2.2 Reinforcing Steel 

Deformed steel reinforcing bars were used for all reinforcement. Mill certifications for 

reinforcing bars used as Grade 80 (550) showed compliance with ASTM A615[6] Grade 80 (550). 

Mill certifications for reinforcing bars used as Grade 100 (690) showed compliance with ASTM 

A615[6] Grade 100 (690). Mill certifications for reinforcing bars used as Grade 120 (830) showed 

compliance with ASTM A1035[8] Grade120 (830). Mechanical properties of reinforcing bars 

(Table 3) that were used in the beams were obtained from tensile tests in accordance with ASTM 

A370[5]. Figure 24 shows sample tensile test results.  

All reinforcement outside the coupling beams (e.g., top and bottom blocks) was Grade 60 

(420) in compliance with ASTM A615[6] Grade 60 (420). 
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2.1.3 Construction 

Photos showing various stages of specimen construction are presented in Appendix B. The 

specimens were cast monolithically with the top and bottom block formwork lying flat on the 

laboratory floor. The coupling beam concrete was supported with elevated wood formwork 

because it was less wide than the end blocks. Construction of each specimen included the assembly 

of reinforcing bar cages, installation of strain gauges to the relevant reinforcing bars, construction 

of wooden formwork, and placement of the concrete. After casting, specimens and cylinders were 

covered with wet burlap and plastic sheets until formwork removal three to five days after casting. 

Specimens were kept in a climate controlled laboratory from casting to testing. 

2.2 Test Setup 

The test setup is shown in Figures 25 through 27. For testing, the bottom block of each 

specimen was bolted to the laboratory strong floor with two unbonded 2.5-in. (63.5-mm) diameter 

high-strength threaded rods passing through the bottom block and strong floor. To distribute the 

hold-down forces, each of the threaded rods was connected to a steel spreader beam under the 

strong floor and a steel plate washer on the top surface of the bottom block. Two hydraulic 

actuators acting in parallel were used to load the specimens. The actuators each have a stroke 

length of 40 in. (1020 mm) and a force capacity of 220 kips (980 kN). The two actuators were 

connected to the strong wall and the specimen by means of vertically oriented HP steel sections. 

Actuator elevations are shown in Table 4 and Figures 28 through 30. The HP section was 

connected to the top block of a specimen with a series of hollow structural steel (HSS) sections for 

transmitting compression and six unbonded 2.25-in. (57-mm) diameter high-strength threaded rods 

for transmitting tension. Additional steel fixtures were used to brace the HP section against out-



 

9 

of-plane motion. Mirrored steel (attached to the HP section), nylon pads (attached to the external 

bracing system), and white lithium grease were used to minimize friction between the HP section 

and the external bracing. 

2.3 Instrumentation 

Several instruments were used to record specimen behavior during the tests; an infrared non-

contact position measurement system, two linear variable differential transformers (LVDTs) 

attached to the top block, one LVDT and load cell integral to each actuator, and strain gauges 

attached to reinforcing bars. Most collected data are not included or discussed in this report. 

2.3.1 Infrared Non-Contact Position Measurement System 

The motion capture system served to measure the positions of 66 to 97 optical markers 

attached to the surface of the specimen including three fixed positions attached to a rigid stand on 

the laboratory floor. The markers emit infrared light pulses that are detected by the infrared camera 

system. The spatial coordinates of the markers were triangulated and recorded throughout the tests. 

The markers were arranged in a 4-in. (102-mm) square grid over one face of the coupling beam 

and part of the top and bottom blocks, as shown in Figure 31.  

2.3.2 Linear Variable Differential Transformers (LVDTs) 

In addition to the infrared markers, redundant measurements of the top block displacement 

were recorded by two independent LVDTs (Figure 32). These LVDTs were attached to the face of 

the top block on the opposite side of the actuators, horizontally centered on the face with respect 

to the width of the top block and supported by an instrument stand.  
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2.3.3 Strain Gauges 

Several 120-ohm electrical resistance strain gauges were applied to selected reinforcing 

bars prior to casting. D-type specimens were instrumented with at least 31 strain gauges and P-

type specimens with at least 22. The different possible locations of strain gauges are shown in 

Figures 33 and 34 with Tables 5 and 6 identifying the strain gauges that were used in each 

specimen. Tables 5 and 6 also identify the strain gauges that malfunctioned. Strain gauges on 

primary longitudinal reinforcement were rated for 15% strain, whereas strain gauges on secondary 

longitudinal reinforcement and transverse reinforcement were rated for 5% strain. 

2.4 Loading Protocol 

Specimens were subjected to double curvature through a series of reversed cyclic 

displacements following the protocol in Table 7 and shown in Figure 35, patterned after the 

protocol recommended in FEMA 461[12]. Force-based control was used prior to yielding of the 

reinforcement (at approximately 0.5% chord rotation for aspect ratios of 1.5 and 2.5 and 0.75% 

chord rotation for an aspect ratio of 3.5. Subsequent cycles used displacement control. Applied 

forces or displacements were selected to minimize the rotation of the top block relative to the 

rotation of the bottom block. 

Several small cycles were imposed prior to testing (with forces below the cracking point) 

to facilitate tightening of the threaded rods connecting the bottom block to the strong floor and the 

top block to the actuators. Testing was typically terminated when the cycle peak shear force was 

less than 20% of the maximum applied shear or when specimen stability became a concern. 
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The weight of all fixtures (including HP sections, spacer sections, steel plates, and 

actuators) hanging on one side of the specimen (Figure 25) caused a permanent moment of about 

42 ft-kips (57 m-kN) prior to loading. An equal and opposite moment was applied using the 

actuators at the start of the test. The weight of the fixtures was supported by a stack of steel plates 

prior to testing. 

The loading rate is given in Table 7 for coupling beams with 1.5 and 2.5 aspect ratios as 

multiples of 0.01 in./sec that increased in steps with an increase in chord rotation. Coupling beams 

with 3.5 aspect ratio were tested at twice the rate of the smaller aspect ratios. 

Relative rotation of the end blocks is defined as the difference between the top block 

rotation and the bottom block rotation. Relative rotation was minimized by pausing periodically 

and, while holding actuator displacements constant, adjusting the ratio of actuator displacements 

before continuing the test.  

  



 

12 

CHAPTER 3: EXPERIMENTAL RESULTS 

3.1 Shear-Chord Rotation Relationship 

Chord rotation of the coupling beam, 𝐶𝑅, is defined as the displacement of the top block 

relative to the bottom block divided by the length of the beam clear span and corrected for rotation 

of the top and bottom blocks: 

 𝐶𝑅 =  
𝛿𝑡𝑜𝑝 − 𝛿𝑏𝑜𝑡

ℓ𝑛
−  

𝜃𝑡𝑜𝑝 + 𝜃𝑏𝑜𝑡

2
 Equation 3.1 

 

Figure 36 shows a schematic of a general deformed shape of a coupling beam with 

displacement and rotational components identified. In this figure, top block rotation (𝜃𝑡𝑜𝑝) and 

bottom block displacement (𝛿𝑏𝑜𝑡) are positive while bottom block rotation (𝜃𝑏𝑜𝑡) and top block 

displacement (𝛿𝑡𝑜𝑝) are negative. 

Displacement and rotation were calculated from measurements obtained with the infrared 

non-contact position measuring system (Section 2.3.1) and checked with data from the redundant 

LVDTs. The infrared markers were offset from the edges of the top and bottom blocks by 

approximately 2.5 in. (64 mm) to reduce the probability of the marker being on concrete that would 

spall during the test. 

3.2 Specimen Response and Observations 

The eleven specimens described in Chapter 3 were subjected to the loading protocol 

discussed in Section 2.4. The measured force-deformation relationships for each specimen are 

plotted in Figures 37 through 47 in terms of shear versus chord rotation and discussed in the 

following sections. Table 8 lists the maximum shear stress and deformation capacities of each 
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beam. Maximum shear stress is normalized by the square root of the concrete compressive strength 

at the time of testing (𝑓𝑐𝑚 in Table 2). 

 Two different definitions were used for deformation capacity or chord rotation capacity in 

Table 8. The first, called Deformation Capacity A, was defined as the average of the maximum 

chord rotation reached in each loading direction before a 20% loss of strength in that loading 

direction. The second, called Deformation Capacity B, was defined as the average of the chord 

rotations in each loading direction where the envelope of the shear versus chord rotation curve 

formed by connecting the maximum chord rotation of the first cycle of each loading step intersects 

with 80% of the maximum applied shear. Both definitions of chord rotation capacity are provided 

because the distinctions may appeal to designers and researchers differently. Deformation 

Capacity A is the more stringent measure as it corresponds to the chord rotation that the coupling 

beam actually was subjected to. Deformation Capacity B is the idealized performance of the 

coupling beam and is less sensitive to unique occurrences within the tests. Deformation Capacity 

B is always higher than or equal to Deformation Capacity A. Deformation capacity in this report 

refers to Deformation Capacity B unless otherwise noted. 

A shear-chord rotation envelope for each specimen was developed in accordance with 

ASCE 41-17 Section 7.6.3[4] by connecting the maximum displacement of the first cycle of each 

loading step. The envelopes thus generated were superimposed on the measured shear-chord 

rotation curves in Figures 48 through 58. Comparisons between envelopes are presented in Figures 

59 through 62 for groups of beams based on their aspect ratio. Coordinates of the breakpoints for 

the envelopes are listed in Tables 9 through 12. 
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Figures 59 through 62 include the generalized force-deformation curve for coupling beams 

in accordance with ASCE 41-17 Table 10-19[4], where the coordinates of points A through E are 

specified. The force assigned to point C represents the probable strength of the member and the 

deformation assigned to point E represents the chord rotation capacity. In Figures 59 through 61, 

the target design shear force of 8√𝑓𝑐
′ psi 𝑏𝑤ℎ (0.67√𝑓𝑐

′ MPa 𝑏𝑤ℎ) was used to define the ordinate 

of point B in D-type beams, whereas in Figure 62 the target design shear force of 6√𝑓𝑐
′ psi 𝑏𝑤𝑑 

(0.5√𝑓𝑐
′ MPa 𝑏𝑤𝑑) was used to define the ordinate of point C in P-type beams. These target design 

shear forces are near the maximum allowed by ACI 318-14. They correspond to the beam strength 

calculated based on a stress of 𝑓𝑦 in the diagonal reinforcement of D-type beams and on a stress of 

1.25 𝑓𝑦 in the longitudinal reinforcement of P-type beams. Figures 59 through 62 show that all 

envelopes from the measured test data exceeded the chord rotation capacity that ASCE 41-17[4] 

assigns to coupling beams compliant with ACI 318-14[1]. 

Maximum shear among D-type beams with the same aspect ratios were very similar with 

the exception of D120-2.5 due to the contributions of the developed No. 3 (10) reinforcement. The 

chord rotation associated with maximum shear was proportional to aspect ratio. Table 13 shows 

measured and calculated strengths, including the measured-to-calculated ratio for each beam. The 

measured-to-calculated ratios averaged 1.43 for D-type beams (excluding D120-2.5) and 1.15 for 

P-type beams. The higher ratios for D-type beams may be because the calculated strength 𝑉𝑛𝑚 

depends only on the diagonal reinforcement and neglects the contribution of concrete and 

transverse reinforcement. These results are consistent with those from other studies [3, 13, 14]. 

Test results are summarized in Table 14 in terms of key design and response parameters. 

General observations during testing of each specimen are summarized in Sections 3.2.1 through 
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3.2.11. Photos showing the condition of the beams during the last cycle to target chord rotations 

of 2, 4, 6, 8, and 10% are shown in Appendix C. The observed locations of fractured bars are 

shown in Figures 63 through 73. Bar fractures were not observed in P-type beams. 

3.2.1 D80-1.5 

Measured shear force is plotted versus chord rotation in Figure 37 for D80-1.5. The 

coupling beam completed both cycles to 6% chord rotation (Step 10 of the loading protocol in 

Table 7) before strength notably diminished. The second excursion to -6% reached a shear of 

approximately 80% of the strength after at least one bar fractured. This resulted in a deformation 

capacity of 6.9% (as reported in Table 8). One cycle to 8% chord rotation (Step 11 in Table 7) was 

completed before the test was terminated. Strength loss was initiated by buckling of the diagonal 

bars that was followed by bar fractures after reversing the loading direction. 

3.2.2 D100-1.5 

Measured shear force is plotted versus chord rotation in Figure 38 for D100-1.5. The 

coupling beam completed both cycles to 4% chord rotation (Step 9) before bar fractures occurred 

during the first cycle to 6% and strength diminished rapidly. This resulted in a deformation 

capacity of 5.3% (as reported in Table 8). One excursion to +8% chord rotation (Step 11) was 

attempted but aborted at approximately +6.1% due to stability concerns from the numerous bar 

fractures during the previous loading cycle (Step 10B). Strength loss was initiated by buckling of 

the diagonal bars followed by bar fractures in subsequent cycles. 

3.2.3 D120-1.5 

Measured shear force is plotted versus chord rotation in Figure 39 for D120-1.5. The 

coupling beam completed both cycles to 3% chord rotation (Step 8) and the first excursion to 4%. 
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However, an exception to the testing protocol occurred during the first excursion to -4% (Step 9). 

The coupling beam displaced through -5% before fracturing all reinforcing bars in one group of 

diagonals near the top end of the beam. The sudden bar fractures caused a high increase in top 

block rotation, resulting in a high increase in chord rotation to 8.1%. There was no prior evidence 

of bar buckling or fracture. The test resumed with cycles to 4% and 6% chord rotations (Steps 9 

and 10). The deformation capacity was 5.2% (as reported in Table 8) based on the definition of 

Deformation Capacity B. Reinforcing bar fractures near -5% indicate that the beam would not have 

completed Step 10, failure was imminent despite the deviation from the testing protocol. 

Investigation after testing revealed that all four reinforcing bars in one of the diagonal bundles and 

two bars in the other diagonal bundle had fractured. 

3.2.4 D80-2.5 

Measured shear force is plotted versus chord rotation in Figure 40 for D80-2.5. The 

coupling beam completed two cycles to 6% chord rotation (Step 10) and half of a cycle to 8% 

chord rotation before strength diminished by more than 20%. This resulted in a deformation 

capacity of 7.6% (as reported in Table 8). One cycle to 10% chord rotation (Step 12) was 

completed before the test was terminated. Strength loss was due to fracture of diagonal bars near 

the ends of the coupling beam after they were observed to have buckled in a prior cycle. 

3.2.5 D100-2.5 

Measured shear force is plotted versus chord rotation for D100-2.5 in Figure 41. The 

coupling beam reached chord rotations of -4.7%a and +6% in each loading direction before a 20% 

loss of strength, resulting in a deformation capacity of 6% (as reported in Table 8). Loading 

                                                 
a A chord rotation of 4% was targeted. 
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continued until nearly two cycles at 8% chord rotation (Step 11) were completed. Strength loss 

was caused by fracture of one set of diagonal bars near the top end of the coupling beam after they 

were observed to have buckled in a prior cycle. 

3.2.6 D120-2.5 

Measured shear force is plotted versus chord rotation for D120-2.5 in Figure 42. The 

deformation capacity of the coupling beam was 6.9% (as reported in Table 8). Beam strength began 

to diminish in the first cycle to 6% with bar fractures occurring during the second excursion to 

+6%. Loading continued until completion of two cycles to 8% (Step 11). Strength loss was 

associated with hoop opening and bar buckling followed by bar fracture in both diagonal bundles 

near the bottom end of the coupling beam. Several longitudinal No. 3 bars also fractured. D120-

2.5 had longitudinal No. 3 bars extended into the end blocks for a length sufficient to develop 1.25 

times the specified yield strength of the bar at the face of the end blocks. This may have contributed 

to achieving a maximum shear stress of 15√𝑓𝑐
′ psi (1.25√𝑓𝑐

′ MPa).  

3.2.7 D80-3.5 

Measured shear force is plotted versus chord rotation in Figure 43 for D80-3.5. The 

coupling beam completed one cycle to 8% chord rotation (Step 11) before bar fractures occurred 

during the second excursion to +8% with a strength loss of approximately 30%. This resulted in a 

deformation capacity of 8.6% (as reported in Table 8). Testing continued through one cycle of 

10% (Step 12). A second excursion to +10% chord rotation was attempted but aborted due to 

numerous bar fractures at approximately +3%. Strength loss was due to buckling followed by 

fracture of diagonal bars near the ends of the coupling beam. 



 

18 

3.2.8 D100-3.5 

Measured shear force is plotted versus chord rotation in Figure 44 for D100-3.5. The 

coupling beam completed one cycle to 6% chord rotation (Step 10) before bar fractures occurred 

during the second excursion to +6% with a strength loss of nearly 20%. This resulted in a 

deformation capacity of 6.8% (as reported in Table 8). Testing continued through one cycle of 

10% (Step 12). Strength loss was due to fractures of diagonal bars near the ends of the coupling 

beam after they were observed to have buckled in previous cycles. Out-of-plane deformations as 

high as 2.7% of the beam length occurred during the second cycle to +6%chord rotation. 

3.2.9 D120-3.5 

Measured shear force is plotted versus chord rotation in Figure 45 for D120-3.5. The 

coupling beam completed one cycle to 6% chord rotation (Step 10) before bar fractures occurred 

during the second excursion to +6% with a strength loss of nearly 80%. This resulted in a 

deformation capacity of 6.7% (as reported in Table 8). Testing continued through two cycles of 

8% (Step 11). Strength loss was due to buckling followed by fracture of diagonal bars near the 

ends of the coupling beam.  

Continuous data from the position tracking marker system are unavailable after the second 

2% cycle (Step 7) due to a recording error of the primary data acquisition system. However, shear-

chord rotation coordinates were also recorded each time the test was paused with independent 

software that used optical character recognition to capture in real-time the display of the primary 

data acquisition system. These discrete data are plotted in Figure 45 as hollow points connected 

with dotted lines. 
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3.2.10 P80-2.5 

Test results are plotted for P80-2.5 in terms of measured shear force versus chord rotation 

in Figure 46. The chord rotation capacity of the coupling beam was 3.9% (as reported in Table 8). 

Although strength began to diminish in the second excursion to a chord rotation of -3%, the first 

excursion to +4% reached a shear that was higher than 80% of the strength in the positive loading 

direction. Loading continued until two cycles to 6% chord rotation (Step 10) had been completed. 

No bar fracture was observed during the test. Strength loss was due to shear strength decay, with 

damage concentrated near the ends of the coupling beam. 

3.2.11 P100-2.5 

Results are plotted for P100-2.5 in terms of measured shear force versus chord rotation in 

Figure 47. The deformation capacity of the coupling beam was 4.1% (as reported in Table 8). The 

first cycle to +3% was the last cycle to exceed 80% of the strength in the positive loading direction. 

The second excursion to a chord rotation of -3% reached a shear nearly equal to 80% of the strength 

in the negative loading direction, while the first excursion to -4% exceeded the 80% threshold. 

Loading continued until two cycles to 6% chord rotation (Step 10) had been completed. No bar 

fracture was observed after the test. Strength loss was due to shear strength decay resulting from 

damage near the ends of the coupling beam.  
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CHAPTER 4: CONCLUDING REMARKS 

Results were reported from tests of eleven large-scale reinforced concrete coupling beams 

subjected to reversed cyclic displacements. This research was undertaken to investigate the use of 

high-strength reinforcement in diagonally-reinforced (D-type) and moment frame (P-type) 

coupling beams. Variables included nominal yield stress of the primary longitudinal reinforcement 

(80, 100, and 120 ksi [550, 690, and 830 MPa]), span-to-depth (aspect) ratio (1.5, 2.5, and 3.5), 

and layout of primary longitudinal reinforcement (diagonal [D] and parallel [P]). All beams had 

the same nominal concrete compressive strength (8,000 psi [55 MPa]) and cross-sectional 

dimensions (12 by 18 in. [305 by 457 mm]). The D-type beams were designed for a target shear 

strength of 8√𝑓𝑐
′ psi 𝑏𝑤ℎ (0.67√𝑓𝑐

′ MPa 𝑏𝑤ℎ) and the P-type beams for 6√𝑓𝑐
′ psi 𝑏𝑤𝑑 

(0.5√𝑓𝑐
′ MPa 𝑏𝑤𝑑). All transverse reinforcement was Grade 80 (550) except one beam with Grade 

120 (830) transverse reinforcement (D120-2.5). The main findings and observations from this 

study are summarized as follows: 

(1) Chord rotation capacities of D-type beams with Grade 100 or Grade 120 (690 or 830) diagonal 

reinforcement were similar, with average deformation capacities of approximately 5, 6, and 

7% for beams with aspect ratios of 1.5, 2.5, and 3.5, respectively. Deformation capacity was 

based on the average chord rotation (for positive and negative loading directions) 

corresponding to 20% loss of strength. These deformation capacities exceeded the minimum 

chord rotation capacities in ASCE 41-17 [4] for diagonally-reinforced coupling beams. 

(2) D-type beams with Grade 80 (550) diagonal reinforcement exhibited approximately 25% 

higher chord rotation capacities, on average, than their Grade 100 or Grade 120 (690 or 830) 

counterparts. The increased rotation capacity of the beams with Grade 80 diagonal bars may 
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be attributed to their lower ratio of 𝑓𝑦 to 𝑠 𝑑𝑏⁄ , where 𝑓𝑦 is the yield stress of the diagonal bar, 

𝑑𝑏 is the diameter of the diagonal bar, and 𝑠 is the spacing of the hoops. 

(3) Chord rotation capacities of P-type beams with Grade 80 or Grade 100 (550 or 690) 

longitudinal reinforcement were similar, with an average chord rotation capacity of 

approximately 4% for beams with an aspect ratio of 2.5. 

(4) Measured strength of D-type beams, on average, was nearly 50% higher than the calculated 

nominal shear strength (𝑉𝑛𝑚 for a diagonally-reinforced coupling beam based on 𝑓𝑦𝑚). 

(5) Measured strength of P-type beams, on average, was approximately 15% higher than the 

calculated nominal flexural strength (𝑀𝑛𝑚 for a moment frame beam based on 𝑓𝑐𝑚 and 𝑓𝑦𝑚). 
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Table 1 – Design data for coupling beam specimens a 

(1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 

Coupling Beamb Primary Longitudinal Reinforcement Transverse Reinforcement 

Id. 𝑣𝑒 
ℓ𝑛

ℎ
 ℓ𝑛 𝑓𝑦 𝑛 𝑑𝑏 ℓ𝑒  c 𝐴𝑣𝑑 𝛼 𝐴𝑠 

Weak 

Axis
d
 

Strong 

Axis
e
 

𝑓𝑦𝑡 𝑠 

 √𝑓𝑐
′,  psi  in. ksi  in. in. in.2 degrees in.2 in.2 in.2 ksi in. 

D80-1.5 8.4 1.5 27 80 6 0.75 21 2.64 22.7 - 0.44 0.33 80 3 

D100-1.5 8.8 1.5 27 100 5 0.75 27 2.20 22.7 - 0.44 0.33 80 3 

D120-1.5 8.4 1.5 27 120 4 0.75 34 1.76 22.7 - 0.44 0.33 80 3 

D80-2.5 8.0 2.5 45 80 9 0.75 21 3.96 14.2 - 0.44 0.33 80 3 

D100-2.5 7.8 2.5 45 100 7 0.75 27 3.08 14.2 - 0.44 0.33 80 3 

D120-2.5 8.0 2.5 45 120 6 0.75 34 2.64 14.2 - 0.44 0.33 120 3 

D80-3.5 7.8 3.5 63 80 9 0.875 24 5.40 10.0 - 0.44 0.33 80 3 

D100-3.5 7.3 3.5 63 100 9 0.75 27 3.96 10.3 - 0.44 0.33 80 3 

D120-3.5 7.8 3.5 63 120 8 0.75 34 3.52 10.3 - 0.44 0.33 80 3 

P80-2.5 5.2 2.5 45 80 3 0.75 21 - - 1.32 0.22 0.33 80 3.5 

P100-2.5 6.4 2.5 45 100 3 0.75 27 - - 1.32 0.22 0.33 80 3 

a For notation and definitions, see APPENDIX A: NOTATION. 
b All specimens have 𝑓′𝑐  = 8,000 psi, ℎ = 18 in., 𝑏𝑤 = 12 in., and 𝑐𝑐 = 0.75 in. to No. 3 (10) transverse 

reinforcement. Specimen Id. starts with D for cases with diagonal reinforcement and P for cases with parallel 

reinforcement, see Figure 1. 
c Minimum straight embedment length based on ACI 408R-03 Eq. 4.11.a[2] using  =  =  =  =  = 1, 

(c + Ktr)/db = 4, 1.25𝑓𝑦 psi, and 𝑓𝑐
′ = 8,000 psi. Grade 80 (550) No. 3 (10) longitudinal reinforcing bars were 

terminated approximately 2 in. into the top and bottom blocks consistent with the detailing recommendations in 

the ACI Building Code[1] commentary, except for Grade 120 (830) No. 3 (10) longitudinal reinforcing bars in 

D120-2.5 with a minimum straight embedment length of 17 in. into the top and bottom blocks.  
d Transverse reinforcement along the 12-in. width of the coupling beam; 4 legs of No. 3 (10) bars at spacing s for 

D-type beams and 2 legs of No. 3 (10) bars for P-type beams. 
e Transverse reinforcement along the 18-in. depth of the coupling beam; 3 legs of No. 3 (10) bars at spacing s. 
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Table 2 – Measured compressive and tensile strengths of concretea (1,000 psi = 6.89 MPa) 

Coupling Beam 

Identification 
Cast Date Test Date Age (days) 𝑓𝑐𝑚 

b
 (psi) 𝑓𝑐𝑡

 c
 (psi) 

D80-1.5 3 Nov 17 1 May 18 179 7,600 710 

D100-1.5 3 Nov 17 9 Apr 18 157 8,200 720 

D120-1.5 3 Nov 17 31 May 18 209 7,600 610 

D80-2.5 16 Jun 17 3 Oct 17 109 8,400 620 

D100-2.5 30 Jun 17 29 Nov 17 152 8,000 790 

D120-2.5 18 Aug 17 6 Mar 18 200 7,800 760 

D80-3.5 26 Jul 17 19 Jun 18 328 7,800 660 

D100-3.5 26 Jul 17 6 Jul 18 345 7,900 650 

D120-3.5 18 Aug 17 25 Jul 18 341 8,200 660 

P80-2.5 16 Jun 17 10 Nov 17 147 8,300 790 

P100-2.5 30 Jun 17 12 Dec 17 165 7,500 790 

a
 For notation and definitions, see APPENDIX A: NOTATION. 

b
 Tested in accordance with ASTM C39[9], average of two tests of 6 by 12 in. (150 by 300 mm) cylinders 

 

c
 Tested in accordance with ASTM C496[10], average of two tests of 6 by 12 in. (150 by 300 mm) cylinders 
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Table 3 – Reinforcing steel properties a (1 in. = 25.4 mm, 1 ksi = 6.89 MPa) 

Coupling 

Beam 

Identification 

Bar 

Size 

Nominal 

Bar 

Diameter 

Yield Stress
b
 

Tensile 

Strength
b
 

Uniform 

Elongation
c
 

Fracture 

Elongation
d
 

  𝑑𝑏
 𝑓𝑦𝑚 𝑓𝑦𝑡𝑚

 𝑓𝑡 휀𝑠𝑢 휀𝑠𝑓 

 No.  in. ksi ksi ksi % % 

D80-1.5 

D80-2.5 

P80-2.5 

3 (10) 0.375  89 113 9.7 12.9 

6 (19) 0.75 83  110 9.2 13.3 

D80-3.5 

3 (10) 0.375  89 113 9.7 12.9 

7 (22) 0.875 84  114 10.0 16.4 

D100-1.5 

D100-2.5 

D100-3.5 
P100-2.5 

3 (10) 0.375  89 113 9.7 12.9 

6 (19) 0.75 108  125 6.8 9.8 

D120-1.5 

D120-3.5 

3 (10) 0.375  89 113 9.7 12.9 

6 (19) 0.75 116  163 5.2 9.9 

D120-2.5 

3 (10) 0.375  133 173 4.5 6.3 

6 (19) 0.75 116  163 5.2 9.9 

a
 For notation and definitions, see APPENDIX A: NOTATION. 

b
 Tested in accordance with ASTM A370[5] 

c
 Corresponds to strain at peak stress, in accordance with ASTM E8[11] 

d
 Calculated strain corresponding to zero stress on a line with slope equal to modulus of elasticity and passing 

through the fracture point. 

 

Table 4 – Specimen and actuators nominal elevations relative to strong floor (1 in. = 25.4 mm) 

𝑙𝑛

ℎ
 

Top of Bottom 

Block (in.) 

Bottom of Top 

Block (in.) 

Actuator A 

Centerline (in.) 

Actuator B 

Centerline (in.) 

1.5 39.5 66.5 21 87 

2.5 36.5 81.5 45 87 

3.5 36.5 99.5 51 130 
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Table 5 – List of strain gauges on primary and secondary longitudinal reinforcement 

Coupling Beam Identification 

 D80-1.5 D100-1.5 D120-1.5 D80-2.5 D100-2.5 D120-2.5 D80-3.5 D100-3.5 D120-3.5 P80-2.5 P100-2.5 

P
ri

m
ar

y
 R

ei
n

fo
rc

em
en

t 

D
ia

g
o

n
al

 

D1 X X X X X X X O X   

D2 X O X O X X X X X   

D3 X X X X X X X O X   

D4 X X X X X X X X X   

D5 X X X X O X X X X   

D6 X X X X X X X X X   

D7 X X X X X X X X X   

D8 X X X X X X O X X   

D9 O X X O X O X X X   

D10 X X X X X X X X X   

D11 X X X X O X X X X   

D12 X X X X O X X X X   

D13 X X O O X X X X X   

D14 X X X X X X X X X   

P
ar

al
le

la  

P1          X X 

P2          X O 

P3          X X 

P4          X X 

P5          X X 

P6          X O 

P7          X X 

P8          X O 

P9          X X 

P10          X X 

P11          X X 

P12          X X 

S
ec

o
n

d
ar

y
 R

ei
n

fo
rc

em
en

t 

P
ar

al
le

lb
 

H1 X O O X X X X X X   

H2 X O X X O X O X X   

H3 X X X X O X O X X   

H4 X X X X X X X O X   

H5 X X O X X O X O X   

H6 X X X   X O X X     

H7   X O       O X     

H8   O X       X       

H9 X X X               

H10   X X               

H11 X O X               

H12 X X                 

H13 X                   

H14 X                   

“X” indicates strain gauge is present. 

“O” indicates strain gauge is present but data not available due to instrument malfunction. 

 

a No. 6 (19) reinforcement placed parallel to the longitudinal axis of the P-type beams. 
 

b No. 3 (10) reinforcement placed parallel to the longitudinal axis of the D-type beams. 
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Table 6 – List of strain gauges on transverse reinforcement 

Coupling Beam Identification 

   D80-1.5 D100-1.5 D120-1.5 D80-2.5 D100-2.5 D120-2.5 D80-3.5 D100-3.5 D120-3.5 P80-2.5 P100-2.5 

T
ra

n
sv

er
se

 R
ei

n
fo

rc
em

en
t 

C
lo

se
d

 S
ti

rr
u

p
s 

S1 O O X O X O O O O X X 

S2 X X X X X X X X X X X 

S3 X X X X X X X X X O X 

S4 X X X X X X X X X O X 

S5 X X X X O X X X X X X 

S6 X O X X X X X X X X X 

S7 X X X X X X X X X X X 

S8 X X X X X X X X X X X 

S9 X X X X X X X O X X X 

S10           X           

S11           X           

S12           X           

S13           X           

S14           X           

S15           X           

S16           X           

S17           X           

S18           O           

C
ro

ss
ti

e
s 

T1 X X O X X X X X X X X 

T2 X X O X X X X X X     

T3 X X X O X X X X X     

T4 X X X                 

T5   X X                 

T6     X                 

“X” indicates strain gauge is present. 

“O” indicates strain gauge is present but data not available due to instrument malfunction. 
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Table 7 – Loading protocol (1 in. = 25.4 mm) 

Step
a 

 

Chord Rotation
b 

% 

Loading Rate 

in./s 
c
 

1 0.20 0.01 

2 0.30 0.01 

3 0.50 0.01 

4 0.75 0.01 

5 1.00 0.02 

6 1.50 0.02 

7 2.00 0.02 

8 3.00 0.03 

9 4.00 0.03 

10 6.00 0.04 

11 8.00 0.04 

12 10.00 0.04 

a Two cycles of loading in each step, following recommendations in 

FEMA 461[12], see Figure 35. 
 

b Based on the relative lateral displacement between end blocks divided by 

the beam clear span (excluding contributions due to sliding of the 

specimen and rotation of the end blocks). 
 

c
 Loading rate of coupling beams with aspect ratios of 1.5 and 2.5. Coupling 

beams with an aspect ratio of 3.5 were tested at twice these rates. 
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Table 8 – Coupling beam maximum shear stress and deformation capacitya 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

Coupling 

Beam 

Id. 

Maximum Applied 

Shear 

𝑉𝑚𝑎𝑥 

Maximum Applied 

Shear Stress
 

𝑣𝑚𝑎𝑥  

Deformation 

Capacity 

A b 

Deformation 

Capacity 

B c 

kips √𝑓𝑐𝑚, psi % % 

D80-1.5 254 13.5 6.1 6.9 

D100-1.5 257 13.1 4.9 5.3 

D120-1.5 264 14.0 4.6 5.2 

D80-2.5 220 11.1 7.1 7.6 

D100-2.5 220 11.4 5.3 6.0 

D120-2.5 286 15.0 6.6 6.9 

D80-3.5 219 11.5 8.3 8.6 

D100-3.5 196 10.2 6.3 6.8 

D120-3.5 216 11.0 6.5 6.7 

P80-2.5 91 5.0 3.6 3.9 

P100-2.5 110 6.4 3.6 4.1 

a
 For notation and definitions, see APPENDIX A: NOTATION. 

b
 The average of the highest chord rotations reached in each loading direction before strength 

diminished to less than 80% of the maximum applied shear. 
 

c
 The average of the chord rotations in each loading direction where the envelope curve formed 

by connecting the maximum chord rotation of the first cycle of each loading step intersects 

with 80% of the maximum applied shear. 
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Table 9 – Force-deformation envelope for D-type coupling beams 

with aspect ratio of 1.5 (1 kip = 4.45 kN) 

 D80-1.5 D100-1.5 D120-1.5 

Target 
Chord Rot. 

Actual 
Chord Rot. 

Shear  
Actual 

Chord Rot. 
Shear  

Actual 
Chord Rot. 

Shear  

𝐶𝑅 𝐶𝑅
a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 

% % kips  % kips  % kips  
-10          
-8 -8.23 -31.75 0.13    -8.56 -31.43 0.12 

-6 -6.07 -226.30 0.95 -6.61 -151.45 0.59    

-4 -4.09 -235.70 0.99 -4.24 -216.96 0.84 -4.88 -237.76 0.91 

-3 -3.01 -235.67 0.99 -3.08 -241.74 0.94 -3.20 -261.53 1.00 

-2 -1.90 -229.89 0.96 -2.05 -246.26 0.96 -2.06 -254.64 0.97 

-1.5 -1.54 -223.37 0.93 -1.74 -257.10 1.00 -1.60 -246.66 0.94 

 -1.44 -228.92 0.96       

-1 -1.12 -238.91 1.00 -1.04 -238.81 0.93 -1.05 -209.23 0.80 

-.75 -0.78 -221.76 0.93 -0.78 -202.63 0.79 -0.77 -177.18 0.68 

-.5 -0.51 -171.53 0.72 -0.52 -168.44 0.66 -0.52 -138.50 0.53 

-.3 -0.31 -124.27 0.52 -0.32 -123.83 0.48 -0.31 -92.79 0.35 

-.2 -0.21 -96.21 0.40 -0.22 -103.48 0.40 -0.20 -68.89 0.26 

0 0.00 1.37 0.01 0.00 3.83 0.02 0.00 2.37 0.01 

.2 0.20 80.68 0.32 0.22 82.98 0.33 0.21 71.26 0.27 

.3 0.30 103.95 0.41 0.31 99.00 0.39 0.31 91.17 0.35 

.5 0.50 150.30 0.59 0.51 142.57 0.57 0.52 120.71 0.46 

.75 0.75 197.28 0.78 0.77 185.55 0.74 0.76 157.36 0.60 

1 0.99 229.39 0.90 1.01 223.96 0.89 1.02 189.37 0.72 

1.5 1.48 248.17 0.98 1.47 251.72 1.00 1.52 231.26 0.88 

2 2.12 254.24 1.00 2.03 240.36 0.95 2.08 254.60 0.96 

 2.69 252.05 0.99       

3 2.98 251.50 0.99 2.95 241.39 0.96 2.99 264.11 1.00 

4 3.87 248.72 0.98 3.99 229.06 0.91 4.16 243.43 0.92 

    5.60 218.95 0.87 5.44 192.14 0.73 

6 6.11 246.22 0.97 6.04 185.41 0.74 6.09 141.53 0.54 

8 8.22 170.00 0.67 8.30 20.79 0.08    

10          

a
 The actual chord rotation, CR, associated with the peak force for each loading step. CR is the measured displacement of 

the top block relative to the bottom block divided by the coupling beam clear span, ℓ𝑛, and correcting for relative rotation 

of the end blocks. 
 

b
 𝑉𝑚𝑎𝑥  is the maximum measured shear force in the respective loading direction. 
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Table 10 – Force-deformation envelope for D-type coupling beams 

with aspect ratio of 2.5 (1 kip = 4.45 kN) 

 D80-2.5 D100-2.5 D120-2.5 

Target 
Chord Rot. 

Actual 
Chord Rot. 

Shear  
Actual 

Chord Rot. 
Shear  

Actual 
Chord Rot. 

Shear  

𝐶𝑅 𝐶𝑅
a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 

% % kips  % kips  % kips  
-10 -10.01 -20.96 0.10       
-8 -7.91 -131.70 0.60 -7.99 -46.15 0.21 -8.35 -119.57 0.42 

-6 -5.91 -216.84 0.99 -6.04 -127.65 0.58 -6.42 -243.63 0.86 

-4 -3.85 -215.74 0.98 -4.67 -216.89 0.99 -4.30 -283.46 1.00 

-3 -3.11 -220.13 1.00    -3.15 -272.27 0.96 

-2 -2.03 -213.19 0.97 -2.48 -220.12 1.00 -2.04 -241.03 0.85 

-1.5 -1.51 -201.65 0.92 -1.50 -207.61 0.94 -1.56 -217.28 0.77 

-1 -0.99 -170.95 0.78 -0.98 -167.82 0.76 -1.00 -162.48 0.57 

-.75 -0.70 -144.26 0.66 -0.75 -138.02 0.63 -0.74 -134.47 0.47 

-.5 -0.47 -108.58 0.49 -0.50 -101.22 0.46 -0.53 -105.53 0.37 

-.3 -0.28 -80.44 0.37 -0.29 -73.03 0.33 -0.31 -65.09 0.23 

-.2 -0.23 -72.21 0.33 -0.19 -60.27 0.27 -0.20 -40.35 0.14 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 2.10 0.01 

.2 0.23 63.45 0.29 0.20 58.02 0.27 0.20 40.13 0.14 

.3 0.38 92.87 0.43 0.33 76.62 0.36 0.31 64.96 0.23 

.5 0.48 106.54 0.49 0.54 102.19 0.48 0.61 116.76 0.41 

.75 0.76 142.91 0.66 0.81 144.25 0.67 0.77 138.26 0.48 

1 0.98 166.18 0.76 1.04 170.74 0.80 1.01 168.12 0.59 

1.5 1.89 212.34 0.97 1.45 203.97 0.95 1.50 216.83 0.76 

2 2.06 193.89 0.89 2.16 214.25 1.00 2.10 251.95 0.88 

3 2.92 209.56 0.96 3.06 210.68 0.98 3.15 277.43 0.97 

4 3.94 207.45 0.95 4.02 194.51 0.91 4.29 285.94 1.00 

       5.80 271.60 0.95 

6 6.00 217.95 1.00 6.01 191.05 0.89 6.68 251.57 0.88 

8 8.17 180.68 0.83 8.12 124.04 0.58 9.11 94.56 0.33 

10          

a
 The actual chord rotation, CR, associated with the peak force for each loading step. CR is the measured displacement of 

the top block relative to the bottom block divided by the coupling beam clear span, ℓ𝑛, and correcting for relative rotation 

of the end blocks. 
 

b
 𝑉𝑚𝑎𝑥  is the maximum measured shear force in the respective loading direction. 
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Table 11 – Force-deformation envelope for D-type coupling beams 

with aspect ratio of 3.5 (1 kip = 4.45 kN) 

 D80-3.5 D100-3.5 D120-3.5 

Target 
Chord Rot. 

Actual 
Chord Rot. 

Shear  
Actual 

Chord Rot. 
Shear  

Actual 
Chord Rot. 

Shear  

𝐶𝑅 𝐶𝑅
a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 

% % kips  % kips  % kips  
-10 -10.29 -53.91 0.25 -10.25 -38.06 0.20    
-8 -8.24 -182.26 0.84 -8.09 -102.84 0.54 -7.91 -93.00 0.43 

-6 -6.04 -217.50 1.00 -6.35 -180.91 0.94 -6.38 -184.10 0.85 

-4 -4.13 -209.83 0.96 -4.12 -186.92 0.97 -4.08 -215.70 1.00 

-3 -3.09 -207.46 0.95 -3.10 -191.73 1.00 -3.01 -214.54 0.99 

-2 -2.16 -204.24 0.94 -2.11 -189.19 0.99 -1.97 -191.87 0.89 

-1.5 -1.56 -195.04 0.90 -1.58 -175.56 0.92 -1.58 -172.44 0.80 

-1 -1.08 -164.62 0.76 -1.05 -134.79 0.70 -1.03 -129.45 0.60 

-.75 -0.77 -125.98 0.58 -0.76 -106.16 0.55 -0.77 -105.13 0.49 

-.5 -0.51 -95.35 0.44 -0.51 -77.91 0.41 -0.51 -78.48 0.36 

-.3 -0.30 -66.42 0.31 -0.31 -55.74 0.29 -0.31 -55.70 0.26 

-.2 -0.22 -46.14 0.21 -0.22 -45.86 0.24 -0.20 -40.57 0.19 

0 0.00 -0.16 0.00 0.00 1.63 0.01 0.00 0.06 0.00 

.2 0.22 49.87 0.23 0.26 52.65 0.27 0.23 43.16 0.20 

.3 0.34 71.92 0.33 0.31 57.99 0.30 0.33 57.05 0.27 

.5 0.51 95.47 0.44 0.53 86.95 0.44 0.53 79.80 0.38 

.75 0.78 130.92 0.60 0.77 114.71 0.59 0.78 104.60 0.49 

1 1.08 166.34 0.76 1.02 139.32 0.71 1.02 126.60 0.60 

1.5 1.55 196.19 0.90 1.57 177.08 0.90 1.55 161.65 0.76 

2 2.03 206.40 0.95 2.02 187.53 0.96 2.07 182.77 0.86 

3 3.13 212.97 0.98 3.16 195.99 1.00 3.04 211.46 1.00 

4 4.16 211.81 0.97 4.36 189.27 0.97 4.14 212.40 1.00 

6 5.96 219.40 1.00 6.20 184.12 0.94 6.53 191.10 0.90 

8 8.28 211.74 0.97 8.11 94.05 0.48 8.48 62.12 0.29 

10 10.20 84.96 0.39 10.25 34.29 0.17    

a
 The actual chord rotation, CR, associated with the peak force for each loading step. CR is the measured displacement of 

the top block relative to the bottom block divided by the coupling beam clear span, ℓ𝑛, and correcting for relative rotation 

of the end blocks. 
 

b
 𝑉𝑚𝑎𝑥  is the maximum measured shear force in the respective loading direction. 

 
 

 

 

  



 

34 

Table 12 – Force-deformation envelope for P-type coupling beams 

with aspect ratio of 2.5 (1 kip = 4.45 kN) 

 P80-2.5 P100-2.5 

Target 
Chord Rot. 

Actual 
Chord Rot. 

Shear  
Actual 

Chord Rot. 
Shear  

𝐶𝑅 𝐶𝑅
a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 𝐶𝑅

a
 𝑉 𝑉 / 𝑉𝑚𝑎𝑥

b
 

% % kips  % kips  
-10       
-8       

-6 -6.03 -16.81 0.19 -6.53 -29.39 0.27 

-4 -4.06 -39.15 0.44 -4.02 -96.44 0.89 

-3 -3.04 -77.09 0.86 -3.23 -106.60 0.98 

-2 -1.98 -89.56 1.00 -2.05 -108.48 1.00 

-1.5 -1.50 -87.17 0.97 -1.46 -104.53 0.96 

-1 -1.01 -82.07 0.92 -0.99 -95.65 0.88 

-.75 -0.84 -80.11 0.89 -0.73 -82.75 0.76 

-.5 -0.47 -66.10 0.74 -0.50 -67.15 0.62 

-.3 -0.35 -58.97 0.66 -0.29 -50.74 0.47 

-.2 -0.19 -42.31 0.47 -0.23 -44.38 0.41 

0 0.00 0.00 0.00 0.00 0.00 0.00 

.2 0.18 42.34 0.47 0.23 41.34 0.38 

.3 0.31 52.68 0.58 0.35 51.10 0.47 

.5 0.55 73.64 0.81 0.58 63.98 0.58 

.75 0.82 84.79 0.94 0.77 83.49 0.76 

1 1.00 84.80 0.94 1.09 98.78 0.90 

1.5 1.58 88.92 0.98 1.76 109.85 1.00 

2 1.93 88.61 0.98 2.11 107.52 0.98 

3 2.86 90.58 1.00 3.18 106.76 0.97 

4 4.09 80.15 0.88 4.10 76.02 0.69 

6 7.09 30.53 0.34 6.15 48.95 0.45 

8       

10       
a The actual chord rotation, CR, associated with the peak force for each loading step. 

CR is the measured displacement of the top block relative to the bottom block 

divided by the coupling beam clear span, ℓ𝑛, and correcting for relative rotation of 

the end blocks. 
b 𝑉𝑚𝑎𝑥  is the maximum measured shear force in the respective loading direction. 
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Table 13 – Coupling beam measured and calculated strengthsa 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

Coupling 

Beam 

Id. 

Measured Calculated 

Measured-to-

Calculated 

Ratio
b
 

 𝑉𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑉𝑛𝑚 2𝑀𝑛𝑚 ℓ𝑛⁄  𝑣𝑛𝑚  

 kips √𝑓𝑐𝑚, psi kips kips √𝑓𝑐𝑚, psi  

D80-1.5 254 13.5 169 - 9.0 1.50 

D100-1.5 257 13.1 183 - 9.4 1.40 

D120-1.5 264 14.0 158 - 8.4 1.68 

D80-2.5 220 11.1 161 - 8.1 1.36 

D100-2.5 220 11.4 163 - 8.4 1.35 

D120-2.5 286 15.0 150 - 7.9 1.90 

D80-3.5 219 11.5 158 - 8.3 1.39 

D100-3.5 196 10.2 153 - 8.0 1.28 

D120-3.5 216 11.0 146 - 7.5 1.48 

P80-2.5 91 5.0 - 77 4.3 1.18 

P100-2.5 110 6.4 - 99 5.8 1.11 

a
 For notation and definitions, see APPENDIX A: NOTATION.

 

b
 The average of measured-to-calculated ratios is 1.43 for D-type beams (excluding D120-

2.5) and 1.15 for P-type beams. 
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Table 14 – Summary of test dataa 

(1 ksi = 1000 psi = 6.89 MPa) 

Coupling 

Beam 

Id. 

Reinforcement 

Type 

ℓ𝑛

ℎ
 𝑓𝑐𝑚 𝑓𝑦𝑚 𝑓𝑦𝑡𝑚 𝑣𝑚𝑎𝑥

 b
 𝑣𝑛𝑚

 c
 

Measured 

Chord Rotation 

Capacityd 

ASCE 41-17 

Chord Rotation 

Capacitye 

   psi ksi ksi √𝑓𝑐𝑚, psi √𝑓𝑐𝑚, psi % % 

D80-1.5 Diagonal 1.5 7,600 83 89 13.5 9.0 6.9 5.0 

D100-1.5 Diagonal 1.5 8,200 108 89 13.1 9.4 5.3 5.0 

D120-1.5 Diagonal 1.5 7,600 116 89 14.0 8.4 5.2 5.0 

D80-2.5 Diagonal 2.5 8,400 83 89 11.1 8.1 7.6 5.0 

D100-2.5 Diagonal 2.5 8,000 108 89 11.4 8.4 6.0 5.0 

D120-2.5 Diagonal 2.5 7,800 116 133 15.0 7.9 6.9 5.0 

D80-3.5 Diagonal 3.5 7,800 84 89 11.5 8.3 8.6 5.0 

D100-3.5 Diagonal 3.5 7,900 108 89 10.2 8.0 6.8 5.0 

D120-3.5 Diagonal 3.5 8,200 116 89 11.0 7.5 6.7 5.0 

P80-2.5 Parallel 2.5 8,300 83 89 5.0 4.3 3.9 4.0f 

P100-2.5 Parallel 2.5 7,500 108 89 6.4 5.8 4.1 4.0f 

a
 For notation and definitions, see APPENDIX A: NOTATION.

 

b
 Shear stress associated with maximum applied shear 𝑉𝑚𝑎𝑥.  

For D-type beams, 𝑣𝑚𝑎𝑥 =  𝑉𝑚𝑎𝑥 (𝑏𝑤ℎ)⁄ . 

For P-type beams, 𝑣𝑚𝑎𝑥 =  𝑉𝑚𝑎𝑥 (𝑏𝑤𝑑)⁄ . 
c
 For D-type beams, 𝑣𝑛𝑚 = (2𝐴𝑣𝑑 𝑓𝑦𝑚 sin 𝛼) (𝑏𝑤ℎ)⁄ .  

For P-type beams, 𝑣𝑛𝑚 =  (2𝑀𝑛𝑚 ℓ𝑛⁄ ) (𝑏𝑤𝑑)⁄ . 
d
 The average of the chord rotations in each loading direction where the envelope curve formed by connecting the 

maximum chord rotation of the first cycle of each loading step intersects with 80% of the maximum applied shear.   

e
 Chord rotation capacity from ASCE 41-17[4] Table 10-19 corresponding to the maximum chord rotation associated 

with the residual strength defined by segment D-E in ASCE 41-17[4] Figure 10-1(b). It is important to note that the 

measured chord rotation capacity (see footnote d) corresponds to a higher residual strength than those used in 

ASCE 41-17[4], where the residual strength is defined as 80% of the strength at point B in Figure 10-1(b)[4]. 
f
 The reported ASCE 41-17[4] chord rotation capacity is taken from Table 10-19[4] and corresponds to a residual 

strength of 50% of the strength at point B in Figure 10-1(b)[4]. In contrast, the measured chord rotation capacity 

(see footnote d) corresponds to the chord rotation associated with a post-peak strength of 80% of the maximum 

applied shear. 
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FIGURES 
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(a) P-type beam (b) D-type beam 

Figure 1 – Reinforcement layout types, parallel (P) and diagonal (D)  
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Figure 2 – Elevation view of D80-1.5 (1 in. = 25.4 mm) 
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Figure 3 – Reinforcement details of D80-1.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 4 – Elevation view of D100-1.5 (1 in. = 25.4 mm) 
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Figure 5 – Reinforcement details of D100-1.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 6 – Elevation view of D120-1.5 (1 in. = 25.4 mm) 
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Figure 7 – Reinforcement details of D120-1.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 8 – Elevation view of D80-2.5 (1 in. = 25.4 mm) 
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Figure 9 – Reinforcement details of D80-2.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 10 – Elevation view of D100-2.5 (1 in. = 25.4 mm) 
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Figure 11 – Reinforcement details of D100-2.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 12 – Elevation view of D120-2.5 (1 in. = 25.4 mm) 
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Figure 13 – Reinforcement details of D120-2.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 14 – Elevation view of D80-3.5 (1 in. = 25.4 mm) 

2
"

E
M

B
E

D
.



 

52 

 

Figure 15 – Reinforcement details of D80-3.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 16 – Elevation view of D100-3.5 (1 in. = 25.4 mm) 
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Figure 17 – Reinforcement details of D100-3.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 18 – Elevation view of D120-3.5 (1 in. = 25.4 mm) 
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Figure 19 – Reinforcement details of D120-3.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 20 – Elevation view of P80-2.5 (1 in. = 25.4 mm) 
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Figure 21 – Reinforcement details of P80-2.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 22 – Elevation view of P100-2.5 (1 in. = 25.4 mm) 
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Figure 23 – Reinforcement details of P100-2.5 (1 in. = 25.4 mm, 1 ksi = 1,000 psi = 6.89 MPa) 
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Figure 24 – Measured stress versus strain for reinforcement 
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Figure 25 – Test setup, view from northeast 

 

 

Figure 26 – Test setup, view from northwest 

HP Section 
Top Block 

Bottom 
Block 

Infrared 
Markers 

Threaded 
Rods 

Spacer 

 External 
Bracing 

Actuators 

Mirror 
Plate 

Nylon 
Pad 

Mirror Plate 

Instrument 
Stand 

Nylon Pad 

Bottom 
Block 

HP 
Section 

Top 
Block 



 

63 

 

Figure 27 – Test setup, plan view 
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a External bracing omitted for clarity. Actuator and coupling beam elevations in Table 4. 

 

Figure 28 – Test setup for coupling beams with aspect ratio of 1.5a 

 

Figure 29 – Test setup for coupling beams with aspect ratio of 2.5a 
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a External bracing omitted for clarity. Actuator and coupling beam elevations in Table 4. 

 

Figure 30 – Test setup for coupling beams with aspect ratio of 3.5a 
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Figure 31 – Infrared marker positions (1 in. = 25.4 mm) 

 

Figure 32 – LVDT locations (1 in. = 25.4 mm) 
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Figure 33 – Strain gauge layout (view from north), D-type specimens 
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Figure 34 – Strain gauge layout (view from north), P-type specimens 

S1

S4

S7

S9

S8

S2

S5

P5

P3

P1

P7

P9

P11

P6

P4

P2

P8

P10

P12

Hoop 1

P1, P3, P5,

P7, P9, P11

P2, P4, P6,

P8, P10, P12

T1

S4

S6

S5

W
e

s
t S

id
e

S1

S3

S2

Hoop 2

South Side

North Side

S7, S8, S9



 

69 

-12

-9

-6

-3

0

3

6

9

12

C
h
o
rd

R
o
ta

ti
o
n
,
%

1 Cycle

1 Step

 

Figure 35 – Loading protocola 

 

                                                 
a Values listed in Table 7. 
b Positive displacement corresponds to actuator extension toward laboratory east. 

 

Figure 36 – General deformed shape of specimen, view from northb 
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Figure 37 – Shear versus chord rotation for D80-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 38 – Shear versus chord rotation for D100-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 39 – Shear versus chord rotation for D120-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 40 – Shear versus chord rotation for D80-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 41 – Shear versus chord rotation for D100-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 42 – Shear versus chord rotation for D120-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 43 – Shear versus chord rotation for D80-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 44 – Shear versus chord rotation for D100-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 45 – Shear versus chord rotation for D120-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 46 – Shear versus chord rotation for P80-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 47 – Shear versus chord rotation for P100-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 48 – Shear versus chord rotation envelope for D80-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 49 – Shear versus chord rotation envelope for D100-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 50 – Shear versus chord rotation envelope for D120-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 51 – Shear versus chord rotation envelope for D80-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 52 – Shear versus chord rotation envelope for D100-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 53 – Shear versus chord rotation envelope for D120-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 54 – Shear versus chord rotation envelope for D80-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 55 – Shear versus chord rotation envelope for D100-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 56 – Shear versus chord rotation envelope for D120-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 57 – Shear versus chord rotation envelope for P80-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 58 – Shear versus chord rotation envelope for P100-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 59 – Shear versus chord rotation envelopes for D80-1.5, D100-1.5, and D120-1.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 60 – Shear versus chord rotation envelopes for D80-2.5, D100-2.5, and D120-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 61 – Shear versus chord rotation envelopes for D80-3.5, D100-3.5, and D120-3.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 

 

 

 

 

Figure 62 – Shear versus chord rotation envelopes for P80-2.5 and P100-2.5 

(1,000 psi = 6.89 MPa, 1 kip = 4.45 kN) 
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Figure 63 – Reinforcing bar fracture locations, D80-1.5 

 

 

Figure 64 – Reinforcing bar fracture locations, D100-1.5 
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Figure 65 – Reinforcing bar fracture locations, D120-1.5 

 

 

Figure 66 – Reinforcing bar fracture locations, D80-2.5 
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Figure 67 – Reinforcing bar fracture locations, D100-2.5 

 

 

Figure 68 – Reinforcing bar fracture locations, D120-2.5 
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Figure 69 – Reinforcing bar fracture locations, D80-3.5 

 

 

Figure 70 – Reinforcing bar fracture locations, D100-3.5 
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Figure 71 – Reinforcing bar fracture locations, D120-3.5 
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Figure 72 – Reinforcing bar fracture locations, P80-2.5 

 

 

Figure 73 – Reinforcing bar fracture locations, P100-2.5 



 

A–1 

APPENDIX A: NOTATION 

  



 

A–2 

𝐴𝑠 = total area of primary longitudinal reinforcement along the top or bottom face of a 

coupling beam with parallel reinforcement layout, in.2 

𝐴𝑣𝑑 = total area of reinforcement in each group of diagonal bars in a diagonally-

reinforced coupling beam, in.2 

𝑏𝑤 = beam width, in. 

𝑐𝑐 = clear cover of reinforcement, in. 

𝐶𝑅 = chord rotation of the coupling beam, corrected for sliding and relative rotation 

between the top and bottom block, rad 

𝑑 = distance from extreme compression fiber to centroid of longitudinal tension 

reinforcement, in. 

𝑑𝑏 = nominal diameter of the primary longitudinal reinforcing bar, in. 

𝑓𝑐
′ = specified compressive strength of concrete, psi 

𝑓𝑐𝑚 = measured average compressive strength of concrete, psi 

𝑓𝑐𝑡 = measured average splitting tensile strength of concrete, psi 

𝑓𝑡 = measured peak stress or tensile strength of reinforcement, ksi 

𝑓𝑦 = specified yield stress of longitudinal reinforcement, ksi 

𝑓𝑦𝑚 = measured yield stress of longitudinal reinforcement, ksi 

𝑓𝑦𝑡 = specified yield stress of transverse reinforcement, ksi 

𝑓𝑦𝑡𝑚 = measured yield stress of transverse reinforcement, ksi 

ℎ = beam height, in. 

ℓ𝑒 = minimum straight embedment length to develop a tension stress of 1.25𝑓𝑦, in. 

ℓ𝑛 = length of clear span measured face-to-face of supports, in.  

𝑀𝑛𝑚 = calculated flexural strength corresponding to a stress of 𝑓𝑦𝑚 in the primary 

longitudinal reinforcement, in.-lb 

𝑀𝑝𝑟 = calculated flexural strength corresponding to a stress of 1.25𝑓𝑦 in the primary 

longitudinal reinforcement, in.-lb 

  



 

A–3 

𝑛 = total number of primary longitudinal reinforcing bars  

  For a D-type beam, number of bars in each group of diagonal bars 

  For a P-type beam, number of bars along the top or bottom face 

𝑠 = spacing of transverse reinforcement, center-to-center, in. 

𝑣𝑒 = calculated shear stress based on specified material properties, psi 

  for a D-type beam, 𝑣𝑒 = 2𝐴𝑣𝑑  𝑓𝑦 sin 𝛼 /(𝑏𝑤 ℎ), psi 

  for a P-type beam, 𝑣𝑒 = (2𝑀𝑝𝑟 ℓ𝑛)⁄ /(𝑏𝑤 𝑑), psi 

𝑣𝑚𝑎𝑥 = shear stress associated with 𝑉𝑚𝑎𝑥, psi 

  for a D-type beam, 𝑣𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥 /(𝑏𝑤 ℎ), psi 

  for a P-type beam, 𝑣𝑚𝑎𝑥 =  𝑉𝑚𝑎𝑥 /(𝑏𝑤 𝑑), psi 

𝑣𝑛𝑚 = shear stress associated with 𝑉𝑛𝑚, psi 

  for a D-type beam, 𝑣𝑛𝑚 = 𝑉𝑛𝑚/(𝑏𝑤 ℎ), psi 

  for a P-type beam, 𝑣𝑛𝑚 =  𝑉𝑛𝑚/(𝑏𝑤 𝑑), psi 

𝑉 = applied shear, kips 

𝑉𝑚𝑎𝑥 = maximum applied shear, kips 

𝑉𝑛𝑚 = calculated shear strength based on measured material properties, kips 

  for a D-type beam, 𝑉𝑛𝑚 = 2𝐴𝑣𝑑  𝑓𝑦𝑚 sin 𝛼 

  for a P-type beam, 𝑉𝑛𝑚 = 2𝑀𝑛𝑚 ℓ𝑛⁄   

𝛼 = angle of inclination of diagonal reinforcement relative to beam longitudinal axis, 

degrees 

𝛿𝑏𝑜𝑡 = displacement of the bottom block top surface, in. 

𝛿𝑡𝑜𝑝 = displacement of the top block bottom surface, in. 

휀𝑠𝑓 = fracture elongation of reinforcement, in./in. 

휀𝑠𝑢 = uniform elongation of reinforcement or strain corresponding to 𝑓𝑡, in./in. 

𝜃𝑏𝑜𝑡 = rotation of the bottom block (in the loading plane), rad 

𝜃𝑡𝑜𝑝 = rotation of the top block (in the loading plane), rad 
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APPENDIX B: SELECTED PHOTOS 

OF SPECIMENS DURING CONSTRUCTION 

  



 

B–2 

 

 

 

 

Figure B.2 – Coupling beam reinforcement, P100-2.5 

 

 

Figure B.1 – Coupling beam reinforcement, D120-2.5 
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Figure B.3 – Coupling beam reinforcement, D120-1.5 

 

 

 

Figure B.4 – Base block reinforcement, P80-2.5 
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Figure B.5 – Specimens prior to casting, D80-1.5, D100-1.5, and D120-1.5 (from left to right) 

 

 
Figure B.6 – Specimens after formwork removal, D100-3.5, D80-3.5, P100-2.5, 

P80-2.5, D100-2.5, and D80-2.5 (from left to right) 
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APPENDIX C: SELECTED PHOTOS 

OF SPECIMENS DURING TESTING 
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Figure C.1 – D80-1.5 at 

+2% chord rotation, second cycle 

 
Figure C.2 – D80-1.5 at 

–2% chord rotation, second cycle 

 
Figure C.3 – D80-1.5 at 

+4% chord rotation, second cycle 

 
Figure C.4 – D80-1.5 at 

–4% chord rotation, second cycle 
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Figure C.5 – D80-1.5 at 

+6% chord rotation, second cycle 

 
Figure C.6 – D80-1.5 at 

–6% chord rotation, second cycle 

 
Figure C.7 – D80-1.5 at 

+8% chord rotation, first cycle 

 
Figure C.8 – D80-1.5 at 

–8% chord rotation, first cycle 
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Figure C.9 – D100-1.5 at 

+2% chord rotation, second cycle 

 
Figure C.10 – D100-1.5 at 

–2% chord rotation, second cycle 

 
Figure C.11 – D100-1.5 at 

+4% chord rotation, second cycle 

 
Figure C.12 – D100-1.5 at 

–4% chord rotation, second cycle 
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Figure C.13 – D100-1.5 at 

+6% chord rotation, second cycle 

 
Figure C.14 – D100-1.5 at 

–6% chord rotation, second cycle 

 
Figure C.15 – D100-1.5 at 

+8% chord rotation, first cycle 
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Figure C.16 – D120-1.5 at 

+2% chord rotation, second cycle 

 
Figure C.17 – D120-1.5 at 

–2% chord rotation, second cycle 

 
Figure C.18 – D120-1.5 at 

+4% chord rotation, second cycle 

 
Figure C.19 – D120-1.5 at 

–4% chord rotation, second cycle 
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Figure C.20 – D120-1.5 at 

+6% chord rotation, first cycle 

 
Figure C.21 – D120-1.5 at 

–6% chord rotation, first cycle 
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Figure C.22 – D80-2.5 at 

+2% chord rotation, second cycle 

 
Figure C.23 – D80-2.5 at 

–2% chord rotation, second cycle 

 
Figure C.24 – D80-2.5 at 

+4% chord rotation, second cycle 

 
Figure C.25 – D80-2.5 at 

–4% chord rotation, second cycle 
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Figure C.26 – D80-2.5 at 

+6% chord rotation, second cycle 

 
Figure C.27 – D80-2.5 at 

–6% chord rotation, second cycle 

 
Figure C.28 – D80-2.5 at 

+8% chord rotation, second cycle 

 
Figure C.29 – D80-2.5 at 

–8% chord rotation, second cycle 
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Figure C.30 – D80-2.5 at 

+10% chord rotation, first cycle 

 
Figure C.31 – D80-2.5 at 

–10% chord rotation, first cycle 
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Figure C.32 – D100-2.5 

at +2% chord rotation, second cycle 

 
Figure C.33 – D100-2.5 at 

–2% chord rotation, second cycle 

 
Figure C.34 – D100-2.5 at 

+4% chord rotation, second cycle 

 
Figure C.35 – D100-2.5 at 

–4% chord rotation, second cycle 
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Figure C.36 – D100-2.5 at 

+6% chord rotation, second cycle 

 
Figure C.37 – D100-2.5 at 

–6% chord rotation, second cycle 

 
Figure C.38 – D100-2.5 at 

+8% chord rotation, first cycle 

 
Figure C.39 – D100-2.5 at 

–8% chord rotation, first cycle 
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Figure C.40 – D120-2.5 at 

+2% chord rotation, second cycle 

 
Figure C.41 – D120-2.5 at 

–2% chord rotation, second cycle 

 
Figure C.42 – D120-2.5 at 

+4% chord rotation, second cycle 

 
Figure C.43 – D120-2.5 at 

–4% chord rotation, second cycle 
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Figure C.44 – D120-2.5 at 

+6% chord rotation, second cycle 

 
Figure C.45 – D120-2.5 at 

–6% chord rotation, second cycle 

 
Figure C.46 – D120-2.5 at 

+8% chord rotation, second cycle 

 
Figure C.47 – D120-2.5 at 

–8% chord rotation, second cycle 
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Figure C.48 – D80-3.5 at 

+2% chord rotation, second cycle 

 
Figure C.49 – D80-3.5 at 

–2% chord rotation, second cycle 

 
Figure C.50 – D80-3.5 at 

+4% chord rotation, second cycle 

 
Figure C.51 – D80-3.5 at 

–4% chord rotation, second cycle 
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Figure C.52 – D80-3.5 at 

+6% chord rotation, second cycle 

 
Figure C.53 – D80-3.5 at 

–6% chord rotation, second cycle 

 
Figure C.54 – D80-3.5 at 

+8% chord rotation, second cycle 

 
Figure C.55 – D80-3.5 at 

–8% chord rotation, second cycle 
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Figure C.56 – D80-3.5 at 

+10% chord rotation, first cycle 

 
Figure C.57 – D80-3.5 at 

–10% chord rotation, first cycle 
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Figure C.58 – D100-3.5 at 

+2% chord rotation, second cycle 

 
Figure C.59 – D100-3.5 at 

–2% chord rotation, second cycle 

 
Figure C.60 – D100-3.5 at 

+4% chord rotation, second cycle 

 
Figure C.61 – D100-3.5 at 

–4% chord rotation, second cycle 



 

C–19 

 
Figure C.62 – D100-3.5 at 

+6% chord rotation, second cycle 

 
Figure C.63 – D100-3.5 at 

–6% chord rotation, second cycle 

 
Figure C.64 – D100-3.5 at 

+8% chord rotation, second cycle 

 
Figure C.65 – D100-3.5 at 

–8% chord rotation, second cycle 
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Figure C.66 – D100-3.5 at 

+10% chord rotation, first cycle 

 
Figure C.67 – D100-3.5 at 

–10% chord rotation, first cycle 
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Figure C.68 – D120-3.5 at 

+2% chord rotation, second cycle 

 
Figure C.69 – D120-3.5 at 

–2% chord rotation, second cycle 

 
Figure C.70 – D120-3.5 at 

+4% chord rotation, second cycle 

 
Figure C.71 – D120-3.5 at 

–4% chord rotation, second cycle 
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Figure C.72 – D120-3.5 at 

+6% chord rotation, second cycle 

 
Figure C.73 – D120-3.5 at 

–6% chord rotation, second cycle 

 
Figure C.74 – D120-3.5 at 

+8% chord rotation, second cycle 

 
Figure C.75 – D120-3.5 at 

–8% chord rotation, second cycle 
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Figure C.76 – P80-2.5 at 

+2% chord rotation, second cycle 

 
Figure C.77 – P80-2.5 at 

–2% chord rotation, second cycle 

 
Figure C.78 – P80-2.5 at 

+4% chord rotation, second cycle 

 
Figure C.79 – P80-2.5 at 

–4% chord rotation, second cycle 
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Figure C.80 – P80-2.5 at 

+6% chord rotation, second cycle 

 
Figure C.81 – P80-2.5 at 

–6% chord rotation, second cycle 
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Figure C.82 – P100-2.5 at 

+2% chord rotation, second cycle 

 
Figure C.83 – P100-2.5 at 

–2% chord rotation, second cycle 

 
Figure C.84 – P100-2.5 at 

+4% chord rotation, second cycle 

 
Figure C.85 – P100-2.5 at 

–4% chord rotation, second cycle 
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Figure C.86 – P100-2.5 at 

+6% chord rotation, second cycle 

 
Figure C.87 – P100-2.5 at 

–6% chord rotation, second cycle 



 

 

  



 

 

 


