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Abstract

This study focuses on water exchange, and associated processes, at the groundwater-

surface water interface (GWSWI). The contributions of the study, as a whole, can be

divided into two groups: scientific contributions and technical contributions. Scien-

tifically, there are three main contributions. Firstly, the data presented below map a

stream reach to show separate the effects of water flow and contaminant concentra-

tions on contaminant mass discharge. The field demonstration of this concept, at the

sub-meter scale, is novel. Secondly, the data included in the comparison of methods

suggest the variability of flow across the GWSWI is large when compared with the

differences related to replication of measurements. This suggests the importance of

mapping in detail to ensure that all the controlling points of discharge are included.

Thirdly, SBPVP measurements made a field-based mass loading calculation for a ver-

tical flow bioreactor possible. It was found that the attenuation capacity of this system

was about three orders of magnitude greater than the theoretical attentuation capac-

ity suggested. Technically, there are five main contributions. Firstly, the design and

validation of a new measurement tool to quantify flow across the groundwater-surface

water interface (the streambed point velocity probe, or SBPVP). Secondly, a demon-

stration and comparison of the SBPVP in the field with three other, more commonly

used methods. Thirdly, the development of a new method to quantify contaminant

discharge into a stream using the SBPVP. Fourthly, a demonstration that the new ap-

proach can provide highly detailed information about the distribution of contaminant

mass discharge, which could be of value to risk assessment and remediation design.

Fifthly, the application of the SBPVP to the characterization of a vertical flow bioreac-
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tor for the purpose of assessing its performance. Given these contributions, the study

presents a new tool for investigating the groundwater-surface water interface and de-

scribes various applications (and their associated scientific advances) in detail.
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Chapter 1

Introduction

1.1 Importance of groundwater-surface water exchange

Though groundwater is the largest source of liquid, potable drinking water on Earth (Shiklomanov,

1993), this reservoir has suffered from notable contamination from anthropogenic waste sources

(Fetter, 2000). Anthropogenic waste includes, but is not limited to, industrial solvents (such as

trichloroethylene and benzene) (Fusillo et al., 1985), fertilizers (nitrates and synthetic organic agri-

cultural chemicals) (Flipse et al., 1984; Rothschild et al., 1982; Oliveira and Sitar, 1985), landfill

leachate (McLeod, 1984), and, of course, emerging contaminants (such as crotamiton and carba-

mazepine) (Barnes et al., 2002; Lapworth et al., 2012; Richardson and Ternes, 2018). Because

water can be exchanged between groundwater and surface water, waterborne contamination can

travel between the two across the groundwater-surface water interface (GWSWI) (Winter et al.,

1998). Therefore, understanding the details of groundwater-surface water interactions is central to

understanding the fate and transport of contaminants in the overall environment (Cey et al., 1998;

Winter et al., 2003; Kalbus et al., 2006; Derx et al., 2010; Anibas et al., 2012; Freitas et al., 2015).

Further, characterizing the chemical interdependence of groundwater and surface water, which de-

pends on water flux across the GWSWI, is crucial to the estimation of contaminant mass discharges

for risk assessment and contaminated site monitoring (Harvey and Bencala, 1993; Conant, 2004;

Weatherill et al., 2014).
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Currently, groundwater (and, by extension, surface water) is legally protected by a variety of legis-

lation. For example, the European Union passed Water Framework Directive (Directive 2006/118/EC

of the European Parliament and Council) on December 12, 2006 and, to keep up with emerging

contaminants, modified the original with Commission Directive 2014/80/EU in 2014. The equiva-

lent legislation in the United States is the Safe Drinking Water Act (1974), which gives the Envi-

ronmental Protection Agency authority to establish maximum contaminant level goals and maxi-

mum contaminant levels. The Safe Drinking Water Act is complemented by legislation such as the

Resource Conservation and Recovery Act (RCRA) (1976) and the Comprehensive Environmental

Response, Conservation, and Recovery Act (CERCLA or Superfund) (1980), which regulate haz-

ardous waste site clean-up. As noted by Winter et al. (1998), the connection between groundwater

and surface can lead to groundwater as a significant (and potentially long term) contributor to sur-

face water contamination. With approximately 75% of RCRA and CERCLA sites located within a

half mile of a surface water body (Tomassoni, 2000; Biksey and Gross, 2001), fully understanding

that connection could be vital to remediation efforts.

Flow at the GWSWI is governed by a variety of factors including, but not limited to, hydraulic

gradient (i), stream geometry, and hydraulic conductivity (K) distributions within the aquifer and

streambed (Larkin and Sharp, 1992; Cey et al., 1998; Huggenberger et al., 1998; Woessner, 2000;

Sophocleous, 2002; Fleckenstein et al., 2006; Kalbus et al., 2006; Allen et al., 2010; Binley et al.,

2013; Flipo et al., 2014; Balbarini et al., 2017). These factors commonly have complex distribu-

tions at groundwater-surface water interfaces (e.g. a stream or lake beds). Therefore, distributions

of flow across the groundwater-surface water interface should be expected to have an equally com-

plex distribution. Nevertheless, exchange interfaces are often treated as uniform boundaries, for

reasons of convenience, lack of data, limits on computing power, or numerical instability in models

(Balbarini et al., 2017). The first step to improving the description of a streambed and its associated

discharge zones, is to conduct measurements of flow across the GWSWI, to localize and quantify
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the discharge zones in the greatest detail that can practically be achieved. Therefore, methods to

quantify groundwater-surface water exchange quickly and accurately, and at an appropriately small

scale, are desirable.

1.2 Methods of measuring flow across the GWSWI

1.2.1 Review of methods

A variety of methods have been developed to measure flow across the GWSWI. These methods

include tools such as mini-piezometers, seepage meters, tracers, and temperature profilers, all of

which have demonstrated cases of successful application. However, none of the existing technolo-

gies has proven universally applicable, with limitations arising from device design, or cost and

time requirements as well as measurement sensitivity to physical and chemical conditions on the

streambed (Dakin et al., 1985; Baxter and Hauer, 2000; Baxter et al., 2003; Rosenberry and Morin,

2004; Zamora, 2006; Schmidt et al., 2006, 2007; Rosenberry et al., 2008; Tyler et al., 2009; Vogt

et al., 2010; Briggs et al., 2012; Matheswaran et al., 2014).

Darcy calculations, a relatively common method of quantifying discharge (Baxter and Hauer,

2000; Baxter et al., 2003; Rosenberry and LaBaugh, 2008), rely on accurate knowledge of hy-

draulic conductivity (K) and hydraulic gradient (i). K can be conveniently obtained in situ from

slug tests using mini-piezometers to access the sediments (various methods of sediment testing

in the laboratory are also commonly used, e.g., grain size analysis and permeametry). i must be

measured in the field. Further details regarding Darcy calculations, and the associated methods,

are given in Chapters 3 and 4.

Seepage meters are another commonly used, inexpensive tool to measure water flux across the

GWSWI. This tool provides a "direct" measurement of flux across the GWSWI, which sets it apart

from most other methods (i.e. a seepage meter takes a direct measurement of the volume of water
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that crosses a known area of the streambed over time). Unfortunately, seepage meters cannot be

easily installed in hard sediments or in deep water. Additionally, several design-related sources

of error have been shown to sometimes lead to significant negative biases in the measurements

(Murdoch and Kelly, 2003; Rosenberry, 2008). In some cases, these design-related biases have

been overcome with adequate modifications (for example, Solder et al. (2016)).

Another approach to quantifying flow is to measure the progress of tracers. Originally, tracer

tests were conducted in aquifers and several tracers have proven useful in this regard. For exam-

ple, environmental tracers (such as 3H, 2H, 18O) and injected tracers, have been used to estimate

groundwater velocities in aquifers at a variety of scales since the late 1800s (Thiem, 1887; Slichter,

1902, 1905; Robertson and Cherry, 1989; de Souza et al., 2015). Most tests tend to focus on a

scale of less than a few hundred meters, though spills have also been opportunistically exploited

for larger scale investigations (Mackay et al., 1986; van der Kamp et al., 1994). As interest in

groundwater-surface water exchange grew, tracer-based methods were adapted for GWSWI inves-

tigations. These methods include tracers that can be injected into the stream or streambed (lake or

lakebed, etc.), and tracers such as ambient heat (which can vary with depth) (Harvey et al., 1996;

Anderson, 2005). While tracer tests are expected to provide more velocity data that approach a

‘direct’ measurement than methods that depend on indirect metrics such as hydraulic head or heat

gradients, they tend to be relatively time-intensive and cost-prohibitive for many projects.

To reduce the cost and time requirements of tracer tests, technologies were developed that focused

on smaller scale measurements, in particular, those conducted from a single well. Interest in single-

well groundwater velocity measurements began with the borehole dilution method, which equates

the ambient groundwater velocity to the flushing time of a tracer from a borehole (or well) (Drost

et al., 1968; Bernstein et al., 2007; Halevy et al., 1967). Other in-well techniques use proprietary

commercial devices, and include the Geoflo R© meter, the colloidal borescope, and the VECTOR R©

Groundwater Flowsensor (also known as the In Situ Permeable Flow Sensor or ISPFS) (Kerfoot
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and Massard, 1985; Kearl, 1997; Su et al., 2006).

These tools have many advantages, relative to tracer tests, including generally being faster and

less cost prohibitive. However, they also have some disadvantages, particularly notable error re-

lated to flow deviations associated with well screens and filter packs (Johnson, 1963; Kerfoot and

Massard, 1985). While potentially useful for aquifer testing, these methods are not designed for

use in stream and lake environments (i.e. installing multiple wells in streams or lakes would be

costly and time intensive). Moreover, in-well methods utilize wells that extend vertically over

some distance (commonly on the order of a meter). This scale of measurement could be too large

to catch the details of flow in stream or lake bed, where patterns of discharge can be heterogeneous

on a sub-meter scale. Because of these limitations, and the fact the in-well methods can only mea-

sure velocities in the vicinity of streams (not in streams themselves), the convenience of in-well

devices is often offset by the potential measurement errors and the differences in flow between

stream banks and stream beds.

Efforts to gain a multifaceted understanding of groundwater-surface water exchange have com-

bined methods for a more complete characterization of groundwater discharge at a boundary. For

example, in Becker et al. (2004), current meter measurements and temperature surveys were com-

bined within a model to provide a detailed quantification of heterogeneous groundwater flow that

was regarded as an enhancement to the individual methods. In another example, Ivkovic (2009)

combined data from multiple scales, using five separate sources of data (groundwater and river

channel base elevations from GIS databases, flow duration data, stream hydrograph data, vertical

aquifer connectivity data from nested piezometers, and paired stream and groundwater hydro-

graphs). Though these investigations, and others, represented advances in the field by improving

data effectiveness, none of the studies resulted in datasets with the detail necessary to describe any

single exchange zone (Conant, 2004; Freitas et al., 2015).
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1.2.2 The streambed point velocity probe

The streambed point velocity probe (SBPVP), developed over the course of this dissertation, is

designed to circumvent case-specific limitations of the above methods, or to serve as a comple-

mentary, independent source of flow information in cases where the other methods perform well

(Cremeans and Devlin, 2017). Measurements with the SBPVP are not reliant on the estimated

parameters required for Darcy’s Law calculations (n and K), nor do they rely on the measurement

of i. The device measures seepage velocity by timing the movement of a tracer across the probe

surface, on the scale of about a centimeter. An advantage of such a small-scale test is that the time

to complete a measurement is generally quite small – under two hours for seepage velocities of 0.5

m/d or greater. The slowest field measurement so far encountered was approximately 3.5 hours,

corresponding to a seepage velocity of 18 cm/day. Another advantage of the tool is that it makes

possible a high density of measurements in a relatively short period of time. Its primary limita-

tion is that it is only tested for operation in sediments that are unconsolidated and soft enough for

installation by hand. Thus far, this includes sandy stream bottoms (Grindsted, Denmark), inter-

faces made of primarily organic material (Commerce, Oklahoma). Preliminary testing has begun

in mixed sediment settings (see Raadvad Preliminary Data, in the appendices) but further work is

needed to determine the SBPVP’s suitability for that setting.

1.3 The field sites as representative case studies

Over the course of this thesis, two field sites are the subjects of study. The main site is a reach

of the Grindsted Å which flows from west to east through Grindsted, Denmark. The stream is

naturally meandering (with few modifications) and groundwater-fed (median flow of 2000 L/s),

ranging from 1 to 2.5 m deep and 8 to 12 m wide (Nielsen et al., 2014; Sonne et al., 2017). The up-

per aquifer includes 10 to 15 m of Quarternary sand underlain by 65 to 70 m of Tertiary sand which

is hydrologically connected to the stream (Heron et al., 1998). A thick clay layer is beneath the

Tertiary sand at approximately 80 meters below ground surface (Sonne et al., 2017). The stream is
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contaminated by a complex mixture of compounds including chlorinated solvents, sulfonamides,

barbituates, and BTEX (benzene, toluene, ethylbenzene, and xylene) (Holm et al., 1995; Kjeld-

sen et al., 1998; Hunkeler et al., 2011; Petersen, 2012). This study only considers the discharge

of chlorinated solvents into the Grindsted Å (i.e. tetrachloroethene (PCE), trichloroethene (TCE),

dichloroethene (DCE), and vinyl chloride (VC)). These compounds are expected to originate at a

pharmaceutical factory site (in operation from 1914 to 1999) approximately 1.5 km north of the

stream (Nielsen et al., 2014; Rasmussen et al., 2016; Balbarini et al., 2017; Sonne et al., 2017).

When contaminant plumes, such as the mass of chlorinated solvents in Grindsted, interact with

surface water bodies, contaminants necessarily pass through groundwater-surface water interfaces

(Kim and Hemond, 1998; Lorah and Olsen, 1999a,b; Yamamoto et al., 2001; Chapman et al.,

2007; Ellis and Rivett, 2007; LaSage et al., 2008; McKnight et al., 2010; Rivett et al., 2012). As

discussed earlier, flow across the GWSWI is likely a common occurrence at contaminated sites.

Several factors, including notable heterogeneity, may affect the location and magnitude of inputs

from the plume. Therefore, information regarding the influence of that heterogeneity on flow (and,

by extension, mass discharge) could be useful for the design of remediation and monitoring plans

(Balbarini et al., 2017). Chapter 4 of provides a case study demonstrating the potential usefulness

of the SBPVP at sites where contamination is discharging into a stream.

As mentioned above approximately 75% of hazardous waste sites regulated by CERCLA, or Su-

perfund, have the potential for exchange of contaminants across the groundwater-surface water in-

terface. In Commerce, Oklahoma, spring water originating in the Tri-State Superfund area (south-

eastern Kansas) rises to the surface under artesian flow conditions and is collected in a manmade

passive treatment system (described in more detail in Chapter 5). The pond evaluated in this study

was designed to serve as a vertical flow bioreactor (VFBR). As such, its performance was expected

to depend on loading rates and residence times of the water in the reactive pond bed material (pri-

marily organic matter, underlain by a geotextile liner). This site is a case study representative of
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engineered systems, and the application of the novel methods developed here to study them.

In summary, both of the study sites that were visited in this work fall within the range of typi-

cal geological (and geo-engineered) settings, and therefore provide data that can be used to infer

general conclusions that may apply to other sites.

1.4 Outline of the study

1.4.1 Statement of goals and objectives

This study expands the knowledge of water exchange across the GWSWI by using high-density

datasets (from measurements in the GWSWI itself) to evaluate these flows. This study focuses, in

part, on characterizing a contaminated field site where natural groundwater-surface water exchange

involves measurable levels of contaminants. To broaden the settings examined, a geo-engineered

system is also included.

To accomplish this task, a new tool was needed to effectively and rapidly characterize fluxes at the

groundwater-surface water interface. Therefore, the first objective of this study is to develop and

laboratory validate a new device capable of generating high-density datasets at the groundwater-

surface water interface in a time-efficient and cost-effective way, while also minimizing potential

sources of error. This tool is called the streambed point velocity probe (SBPVP).

The second objective of this study is to apply the fully developed and laboratory validated SBPVP

to the Grindsted Å field site, to determine if the device worked in field settings. Data from the

SBPVP will be gathered alongside data from conventionally used methods, such as Darcian cal-

culations and temperature profiling to make this assessment in a preliminary fashion while also

addressing the third and fourth objectives, below.
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The third objective of this study is to fully evaluate the SBPVP against established tools for mea-

suring flow across the GWSWI. For comparative purposes, co-located measurements using mini-

piezometers, streambed point velocity probes, temperature profilers, and seepage meters will be

directly compared to determine the technologies that provide the most accurate and precise esti-

mations of flow across the GWSWI. Furthermore, this assessment will address the range of seepage

velocity estimates that the various technologies can handle.

The fourth objective of this study is to apply the high-density datasets to field problems to gain

further insight into patterns of groundwater-surface water exchange and their influence on con-

taminant mass discharges. These applications occurred at the Grindsted site and a second site at

Commerce, Oklahoma. At Grindsted, datasets from SBPVPs, mini-piezometers, and temperature

profilers were used in concert with pore water concentration data to describe the spatial distribu-

tion of contaminant mass discharge. At the Commerce site, data from the SBPVP will be used to

calculate a theoretical contaminant removal rate in a vertical flow bioreactor.

1.4.2 Overview of the dissertation

This dissertation is presented in six chapters.

Chapter 1, as presented above, contains a literature review of relevant technologies, advances,

and importance of the groundwater-surface water interface. Additionally, chapter 1 outlines the

objectives of this study and introduces the topic of this dissertation by presenting the structure of

the remaining chapters below.

Chapter 2 addresses the first objective of this dissertation: to develop and laboratory validate the

SBPVP. This chapter describes the design and preliminary testing of the streambed point velocity

probe (SBPVP) in a Nested Storage Tank (NeST). Comparison of theoretical and measured veloc-

ities, injection styles, injection depth, variable pumping velocity, and variable installation depths
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will be included in the discussion of the suitability of the SBPVP for measuring centimeter-scale

groundwater velocities at simulated groundwater-surface water interfaces.

Chapter 3 compares the SBPVP with other tools applied at the Grindsted Å along a transect run-

ning parallel to the north shore of the stream. The methods discussed include mini-piezometers,

SBPVPs, temperature profilers, and seepage meters. Aside from discussing the differences be-

tween each of the estimates of seepage velocity, the advantages and disadvantages of using each

method are discussed as they are compared with each other.

Chapter 4 discusses the field application of the SBPVP in the Grindsted Å. In this chapter, high-

density datasets from three tools (mini-piezometers, temperature spears, and the SBPVP) are pre-

sented and mapped to show the spatial distribution of discharge into the stream. This data is then

paired with pore water concentration data to map the spatial distribution of contaminant mass dis-

charge of chlorinated ethenes (PCE, TCE, cDCE, and VC), lending insight to the areas of high

and low contaminant discharge within the streambed. Such information could be important to the

design of monitoring and remediation programs at this site.

Chapter 5 discusses the use of the SBPVP in a new environment, a vertical flow bioreactor (VFBR)

in Commerce, Oklahoma. The substrate in the VFBR is largely composed of organic material,

which is a departure from the sandy streambed of the Grindsted Å. A preliminary study was con-

ducted and the data was used to calculate a water balance as well as a removal rate of harmful

constituents in the minewater passing through the VFBR.

Chapter 6 is discusses the general conclusions of the work in the preceding chapters, as well as

future directions and recommendation for the continuation of this line of research.
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Chapter 2

Validation of a new device to quantify

groundwater-surface water exchange

As published in the Journal of Contaminant Hydrology, 2017

2.1 Abstract

Distributions of flow across the groundwater-surface water interface should be expected to be as

complex as the geologic deposits associated with stream or lake beds and their underlying aquifers.

In these environments, the conventional Darcy-based method of characterizing flow systems (near

streams) has significant limitations, including reliance on parameters with high uncertainties (e.g.,

hydraulic conductivity), the common use of drilled wells in the case of streambank investigations,

and potentially lengthy measurement times for aquifer characterization and water level measure-

ments. Less logistically demanding tools for quantifying exchanges across streambeds have been

developed and include drive-point mini-piezometers, seepage meters, and temperature profiling

tools. This project adds to that toolbox by introducing the streambed point velocity probe (SBPVP),

a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the in-

terface with high density sampling, which can effectively, rapidly, and accurately complement

conventional methods. The SBPVP is a direct push device that measures in situ water velocities at
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the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic

conductivity or gradient information, nor do they require long equilibration times. Laboratory test-

ing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%.

Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising

agreement between groundwater fluxes determined by conventional methods and those estimated

from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool

to quantify groundwater-surface water interactions in high definition in sandy streambeds.

Keywords: groundwater-surface water; exchange; technology; tracer test

Highlights:

-A new point measurement tool, the streambed point velocity probe (SBPVP) is presented.

-The tool quantifies groundwater-surface water exchanges on the basis of a tracer test.

-The SBPVP measures with an accuracy of ± 3% and a precision of ± 2% in the lab.

2.2 Introduction

For decades, it has been recognized that humans create more waste than the environment can ab-

sorb (Freeze and Cherry, 1979; Hiscock and Bense, 2014). Unfortunately, groundwater is often

the receptacle for anthropogenic waste, in spite of its importance as the largest source of acces-

sible, potable water on Earth. Because surface water and groundwater are connected systems,

understanding solute exchange at the groundwater-surface water interface (GWSWI) is important

in contaminant transport studies. In hydrogeologic investigations, Darcy calculations are com-

monly used to quantify discharge rates between groundwater and surface water. However, these

calculations are subject to errors from uncertainties in hydraulic conductivity (K) and other scale-

related aspects of the analysis, e.g., difficulties may exist obtaining accurate hydraulic gradients

in streambeds, where physical and chemical changes can occur over very short distances (Harvey

et al., 2013; Post and von Asmuth, 2013; Devlin and McElwee, 2007; Butler et al., 2002; Zemansky
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and McElwee, 2005; Molz et al., 1989). Alternative technologies have been developed to supple-

ment Darcy calculations and circumvent these problems. For example, seepage meters measure

specific discharges across the groundwater-surface water interface (GWSWI) without reference to

K or hydraulic gradient (Lee, 1977; Solder et al., 2016). However, they are not easily installed in

deep streams, or in streambeds with complex topography. Additionally, they are subject to biases

if the devices do not seal well with the streambeds or if streambed permeability is susceptible to

alteration during installation. In addition, seepage meters are subject to head losses associated with

the various parts of the apparatus, which may cause underestimations of seepage flux (Rosenberry,

2008; Rosenberry and LaBaugh, 2008; Murdoch and Kelly, 2003).

An alternative method that has gained recent popularity is temperature profiling (Keery et al.,

2007). While temperature-based water flux estimations have been gaining acceptance for over a

decade, they are subject to possible biases in some cases. For example, vertical temperature gra-

dient measurements may be affected by horizontal hyporheic flow, which can vary in magnitude

and depth on a site-specific basis (Schmidt et al., 2007; Bhaskar et al., 2012; Irvine et al., 2016).

However, errors associated with heat-flux analytical solutions are typically equal to, or less than,

those associated with Darcy-flux (Lautz, 2010).

Point velocity probes (PVPs) were developed to provide direct, centimeter-scale measurements

of groundwater velocity without the sources of error associated with wells, or other pre-existing

tools and methods. Based on previous experiences measuring groundwater velocities in a variety

of aquifer settings, the PVP was considered suitable, with modifications, for use measuring flow

across the GWSWI (Labaky et al., 2007, 2009; Berg and Gillham, 2010; Schillig et al., 2011;

Kempf et al., 2013; Devlin et al., 2012). The aim of this work was to adapt the PVP probe design

for rapid deployments in stream settings, for the purpose of measuring water exchanges across the

GWSWI. As a first step toward this goal, the new tool was validated in a laboratory setting and

then deployed for preliminary comparative tests against conventional methods, in a natural stream.
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2.3 Methods

2.3.1 Probe design

The streambed point velocity probe (SBPVP), an adaptation of the original PVP, is designed to

measure vertical flow through a streambed. To effectively work in a streambed environment, the

SBPVP is a smaller diameter tool than the PVP, with only vertical detectors (as opposed to horizon-

tal and vertical detectors), and is a re-deployable tool (as opposed to a tool installed in a dedicated

borehole) (Labaky et al., 2007; Walter and Devlin, 2017). The SBPVP was designed as a small-

diameter direct-push device to facilitate the deployment of the probe in the top few centimeters

of the streambed sediments (Figure 2.1). Measurements are made by performing a mini-tracer

test, in situ, on the probe surface. To prevent horizontal hyporheic flow from flushing the tracer

away from the probe (preventing breakthrough at the detectors), a shield was designed to surround

the probe and effectively isolate the vertical component of flow in the streambed for the SBPVP to

measure (Figure 2.1B). The injected tracer is transported to detectors by ambient groundwater flow

producing breakthrough curves (BTCs) from which seepage velocities can be estimated. Model-

ing and experimental field trials suggest that the transition from ambient flow to purely vertical

flow inside the cylinder occurs over a relatively short distance compared to the probe placement in

Figure 2.1A. Flow direction (upward or downward) is indicated by the location of the detector that

registers the response to the tracer. In the current design, the detectors are sensitive to contrasts

in electrical conductance, as described by Labaky et al. (2007). Therefore, in freshwater systems,

a chloride salt tracer is typically used (up to 1 g/L). For each test, only a small volume of tracer

solution is injected (0.05 mL to 0.5 mL).
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Figure 2.1: (A) A schematic view of the streambed point velocity probe (SBPVP). The measuring
component of the SBPVP is a drive point with two detector pairs (four metal rings) separated by
ABS plastic rings and an injection port. The SBPVP has a 3.6 cm outer diameter. A 12-strand
copper core cable and an injection line connect the device to a datalogger and carry tracer to the
surface of the probe, respectively. (B) A schematic of the SBPVP with the shield (outer diameter
22 cm), as installed in a streambed. The shield separates the potentially non-vertical flow (an-
gled arrows) into horizontal and vertical vectors (horizontal and vertical arrows) for measurement
purposes.
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In this study, the progress of the tracer was recorded with a Campbell Scientific CR1000 dat-

alogger programmed to collect data points at 1 s intervals. The BTCs generated by each tracer

test were processed with the free software, VelProbePE (Schillig, 2012). The software gener-

ates an estimate of the velocity by fitting the BTCs with either a one-dimensional solution to

the advection-dispersion equation (fit on velocity and dispersivity) or by the method of moments

(Freyberg, 1986).

2.3.2 NeST streambed simulator

The SBPVP was tested in laboratory tanks that were constructed using the Nested Storage Tank

(NeST) design described by Bowen et al. (2012). The NeST comprised a water-filled compart-

ment that served as the source reservoir, a saturated sand compartment, and an outer housing tank

that served as a precaution against leakage. To adapt the NeST to mimic vertical flow through a

streambed, water was directed from the source tank through a customized flow distribution box in

the bottom of the saturated sand tank, through the sand medium to an overlying pond of water (Fig-

ure 2.2). The flow distribution box was constructed of ABS plastic that was printed with a U-Print

3D printer by Dimensions. The floor comprised 16 interlocking pieces, which were printed at the

maximum size allowed by the 3D printer (17 cm by 14.5 cm). The connected segments established

a near-uniform constant head boundary on the floor of the sand-filled tank. The interlocking seg-

ments comprising the top of the flow distribution floor were fabricated with 70 perforations each.

The purpose of these perforations was to direct flow upward into the sand. All seams between seg-

ments were sealed with waterproof epoxy to ensure flow out of the floor only occurred through the

perforations. The water flowed upward through the sand into a standing pool of water, simulating

groundwater discharge through a streambed (with no horizontal hyporheic flow) into a channel. A

peristaltic pump recirculated the water from the pool back into the reservoir compartment to main-

tain a constant hydraulic gradient across the sand (Figure 2.2). Pumping rate was measured before

and after each test period to verify constant flow rates and provide the data needed to calculate an

‘expected’ velocity through the tank.
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Figure 2.2: The schematic of the NeST, showing water flowing from the high head reservoir tank
into flow distribution floor, which directed the water upward into the saturated sand tank and even-
tually into the ponded water. A peristaltic pump operating at a constant pumping rate serves to
maintain the head difference between the sand tank and the reservoir tank.

Flow rates through the sand could be adjusted by varying the pumping rate. Quantitative esti-

mates of seepage velocity in the sand were obtained from:

vexpected =
Q
nA

(2.1)

where vexpected is the expected seepage velocity of the water in the sand, Q is the pumping rate

– which is also the total discharge rate of water through the sand, n is the effective porosity of the

sand, and A is the horizontal cross-sectional area of the sand-filled tank. The probe was assessed for

accuracy and precision over a range of groundwater velocities between about 50 and 450 cm/day,

selected based on both equipment limitations and range of expected flow rates at a field site selected

for later testing of the device (see the Preliminary Field Assessment section). However, based on

the measurement range of the original PVP, it is expected that the SBPVP should have a lower limit

on the order of a few centimeters per day. Field testing has shown the instrument can also measure

velocities in excess of 10 m per day (Figure 2.7A). Therefore, the full range of measurement for this

device is yet to be determined and should be addressed in future work. Total porosity was assumed
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equal to the effective porosity and was estimated gravimetrically from a core of the saturated sand

collected at the end of the testing. An estimation of porosity (specific to the tank) was derived

from:

n =

Mwetsed−Mdrysed
pw

Vcore
(2.2)

where n is porosity, Mwetsed is the mass of saturated core sediment (M), Mdrysed is the mass of

dry core sediment (M), pw is the density of water (M/L3), and Vcore is the volume of the saturated

core (L3). In all tests, tracer injections were conducted manually using 1.0 mL syringes. The best

results were obtained when the tracer injections were 0.3 mL in volume, delivered over 15 to 25 s

with a tracer concentration of 0.5 g/L NaCl.

2.3.3 Modeling

The design of the experimental apparatus lent itself well to the use of simple models to simulate

the flow through the sand. Some complexity was introduced by the presence of seams between

the floor panels, which created non-uniformities in flow at the bottom of the sand. To gain insight

into the extent of vertical influence the seams had on flow in the tank, a two-dimensional (2D)

steady-state flow simulation was executed. The model was constrained with no-flow boundaries

on the left and right sides, a constant head boundary on the top, and a repeating series of constant

flux nodes (representing the floor perforations), separated by no flow nodes (the seams), along the

bottom. Homogeneous, isotropic, steady-state conditions were assumed throughout the sand. The

model grid was 21 nodes vertically by 36 nodes horizontally, with ∆x = ∆y = 1 cm. The results of

the modeling assessment were subsequently compared to experimental measurements of vertical

flow with the SBPVP in the NeST, at vertical distances of 1.5 cm, 3.0 cm, 7.5 cm, 9.5 cm, 11.5

cm, and 13 cm above the tank floor, directly above a seam. Further details about this model can be

found in the appendices.
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2.4 Results and discussion

2.4.1 Determination of best deployment depth

To facilitate the visualization of locations where flow was most affected by the floor seams in the

tank, the calculated vertical gradients from the model were normalized to the gradients calculated

at the top of the sand, i.e., the furthest distance from the tank floor. The normalized gradients

(gradnormalized) took values > 1 where flow entered the sand – over the floor perforations – and < 1

in the no-flow zones above the seams (Figure 2.3A). The modeling indicated that at 8 cm above the

bottom of the tank, the gradient was 99% of that at the top, suggesting that SBPVP measurements

made above this position would be unaffected by non-idealities at the lower boundary. Since the

tank was generally packed to a total depth of about 20 cm, the critical depth was predicted to

be 12 cm. Additional modeling conducted to determine the influence of the SBPVP shield on

measurement quality suggested no biases would result from its use.
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Figure 2.3: (A) Cross-section of the modeled relative to hydraulic gradient (across the NeST,
with the depths of SBPVP measurements superimposed. The white dotted line shows the depth
below which measurements underestimated seepage velocities compared to the expected seepage
velocities. All SBPVP tests were conducted directly over a floor seam (indicated by low relative
gradients); the offsets in the SBPVP placements are shown for clarity of presentation only. (B)
Normalized velocities as a function of installation depth, as determined experimentally. The total
sand depth in the tank is 20 cm. Measured velocities were biased low at depths > 13 cm.
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2.4.2 Variable depth tests

To discern if installation depth has an effect on measurement accuracy in the tank experimentally,

a series of tests were conducted to determine the depth range over which the SBPVP could be

installed without introducing biases to the velocity measurements. As discussed above, the nu-

merical simulations suggested that boundary effects would not measurably influence upward flow

in the tank at depths less than about 12 cm (measured downward from the GWSWI). In practice,

negative biases up to 20% from expected velocities occurred when the probe was pushed to depths

> 11 cm, exceeding the biases predicted by the modeling (Figure 2.3B). This result indicated that

experimental artifacts not related to the floor seams were present. The source of the artifacts is not

known for certain, but it is likely that they are a result of changes to the porous medium induced

by pushing the probe into place. Labaky et al. (2009) observed biases of a similar nature when

direct push techniques were used to install a PVP in the C.F.B. Borden aquifer. On this basis, all

subsequent testing was limited to depths < 9 cm from the GWSWI, where biases were apparently

less than the resolution of the probe.

2.4.3 Variable velocity tests

In total, ninety tests were conducted (in 10 sets of 9 replicates) to assess the SBPVP’s performance

over a range of velocities (50 to 450 cm/day) at installation depths between 7 and 9 cm from the

top of the sand (11 to 13 cm from the bottom of the tank). The tests lasted between 7 and 40 min

for this velocity range. The conditions of the NeST testing were such that flow was expected to

be entirely vertical. Therefore, the shield apparatus was not expected to be necessary to ensure

the integrity of SBPVP measurements. This expectation was verified in tests conducted with and

without the shield (from 50 to 300 cm/day). Excellent agreement was observed between these two

conditions (Figure 2.4). All subsequent testing was conducted with the shield in place.
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Figure 2.4: (A) The results of the variable velocity tests with an unshielded SBPVP. Test velocities
ranged from 50 cm/day to 300 cm/day. (B) The results of the variable velocity tests with a shielded
SBPVP. Test velocities ranged from 50 cm/day to 300 cm/day. The near identical outcomes of
these experiments indicate the shield exerted no effect on the measurements.

The overall accuracy of the SBPVP measurements in the laboratory setting was generally

within ± 8% of expected values, with an average accuracy of ± 3%. The overall precision of

the SBPVP measurements in the laboratory setting did not exceed ± 4% with an average precision

of ± 2%. These results showed that the probe performs satisfactorily over the range of velocities

tested under the laboratory conditions of these tests.

2.4.4 Tracer injection

In most tests, a slight shoulder on the early-time side of the tracer BTCs was noted. The effect of

the shoulder was to shift the fitted curve, from which the velocity parameter was estimated, slightly

to earlier times, causing a small overestimation of the velocity. To evaluate the possibility that the

shoulder was due to injection factors, tests with a typical tracer volume (0.3 mL) were performed

with fast (< 10 s), medium (10–25 s), and slow (> 25 s) injections for comparison. Fast injections

were found to result in repeatable, distinct, early-time “peaks” that preceded the main portion of

the BTCs. These were thought to be caused by a thin plume of tracer that was forced along the

probe surface during the injection phase (Figure 2.5). Slow- and medium-injection rates resulted

in BTCs with weak or absent early-time shoulders. All injections maintained well-formed BTCs

that could be fitted easily with the analytical solution in VelProbePE (Figure 2.5). The data quality
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Figure 2.5: A comparison of tests at three different injection speeds, fast (< 10 s), medium (10–25
s), and slow (> 25 s). As shown above, the curves from all three injections at this velocity are
very similar, yielding velocities that are within a reasonable span of error. The only significant
difference is in the fast injection, where an early time peak appears because tracer is pushed onto
the detectors by the injection (instead of being carried there by ambient flow). This early time peak
becomes an early time slight injection shoulder in the mid and slow injection speeds.

of injections was found to be generally good as long as the signal strength was strong. On the basis

of these findings, all subsequent tests were conducted with injection times between 10 s and 25 s,

with a tracer solution of 0.5 g/L, and a tracer solution volume of 0.3 mL per injection. The resulting

velocity estimates were in excellent agreement with the expected tank velocities estimated from

pumping rates (Figure 2.4A and B).

2.4.5 Preliminary field assessment

Given the promising results of the SBPVP assessment in the laboratory, preliminary field testing

was conducted in the field. The site selected was located in Grindsted, Denmark, on a meander of

the Grindsted Å (Figure 2.6). The SBPVP was first tested in the streambed without the shield. In

these tests, no signals were recorded at the probe detectors, suggesting horizontal flow was carry-
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Figure 2.6: The location of the field testing in Grindsted, Denmark. The site was a specific meander
of Grindsted Å. The transect presented in this preliminary study is marked in red. This transect is
of interest because it assesses an area where a contaminant plume (orange) enters the stream. High
concentrations, relative to other parts of the stream, were noted in this location.

ing the tracer off the probe before it could reach the detectors. The shield was then mounted on the

probe and tracer BTCs were recorded normally.

The SBPVP was subsequently deployed in the stream, with the shield, and compared with mea-

surements from mini-piezometers and temperature profiling spears taken in the same locations.

The total time required to complete the SBPVP measurements across the transect was 1.5 h. The

temperature measurements were completed in 0.5 h. The deployment, equilibration and head level

measurements of the piezometers took 26 h. It should be noted that of the three methods utilized

here, only the piezometers were suitable for repeated monitoring in time, which is an advantage

over the other methods that may offset the installation time in some cases. At the Grindsted site,

the piezometer transects could not be left in place for much longer than a day, due to boat traffic

on the water. The three methods agreed well in identifying the locations of high and low fluxes

(Figure 2.7B).

However, the magnitudes of the fluxes described by the temperature data were an order of

magnitude lower (or more) than those described by the other two methods (Figure 2.7A). This

disagreement in measured values is potentially explainable as the effect of horizontal hyporheic
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flow on the temperature data, as reported by others and discussed in the Introduction section above.

In this case, the effect may have been to bias temperature gradients low as channel water passed

through the top 0.5 m of the streambed (the maximum depth that channel water may have reached

in the streambed is not known). The Grindsted Å is known to be affected by a discharging plume

of chlorinated solvents. The notable variability of the measured velocities across the streambed

strongly suggests the need for a detailed characterization of the flow through the streambed at site,

to achieve the best mass flux estimates for risk assessment purposes.
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Figure 2.7: (A) Transect 10, with velocity measurements normalized to the total of velocity val-
ued measured across the transect, shows good relative agreement between SBPVP measurements,
mini-piezometer measurements, and temperature measurements. (B) Transect 10, displaying ab-
solute velocity values, shows good absolute agreement between the SBPVP and mini-piezometer
measurements and poor agreement with temperature measurements, which are biased low by an
order of magnitude or more.
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2.5 Conclusions

To complement existing tools and methods for assessing GWSW interactions, there is a need for a

device that can rapidly and accurately estimate groundwater-surface water exchange rates. Labora-

tory testing with a NeST-based physical model of a streambed suggests that the SBPVP is a viable

device for quantifying these exchange rates. Accurate measurements of water exchange across the

GWSWI were found to be possible experimentally when the probe was deployed between 9 and 11

cm depth from the sediment-water interface. Comparisons of experimental data with a numerical

model simulations suggested that artifacts related to sediment compaction might become important

when the probe is pushed to greater measurement depths.

In these tests, the SBPVP was able to measure vertical fluxes with an accuracy within ± 3%, and

a precision of ± 2%, on average, over a groundwater velocity range of 50 to 450 cm/day, without

the need for calibration. The performance of the probe was such that its anticipated full range of

measurement is greater than this, and further work is required to fully assess that range. To accom-

modate for natural conditions of streambeds, a hyporheic-flow shield was designed to isolate the

vertical component of flow for the SBPVP measurements. The shield was found to exert no effect

on the quality of the SBPVP measurements in the laboratory tests, and was found to be essential to

obtain data in the field tests. A limited field trial of the SBPVP indicated that it performed as well

as the Darcy-based method, using closely spaced mini-piezometers in the shallow streambed. K

values for the piezometer calculations were estimated from slug tests performed in the streambed

across a representative sample of the stream bottom sediments. Results from temperature profiles

collected in the top 20 cm of the streambed, and taken in the same locations as the mini-piezometer

measurements, did not compare as well possibly due to the effects of horizontal hyporheic flow in

the streambed.

The work presented here shows that the SBPVP has the potential to provide a means of acquir-

ing high density flux data from streambeds with less labor and time than is required for similarly
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scaled Darcy methods. In addition, SBPVP measurements are based on tracer movement, which

is a more direct indication of groundwater flow rates than methods based on hydraulic or tem-

perature gradients. Given the results of this study, the SBPVP shows promise as an independent,

complementary tool for quantifying groundwater-surface water exchange.
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Chapter 3

A comparison of tools for estimating

groundwater-surface water exchange

Prepared for submission to Groundwater Monitoring & Remediation

3.1 Abstract

A comparison of tools for measuring discharge rates from groundwater to the Grindsted Å (stream)

was conducted along a transect near the north bank of the stream. Four tools were evaluated at six

locations spaced 3 m apart along an east-west transect near the north bank of the stream: mini-

piezometers, streambed point velocity probes (SBPVPs), temperature profilers, and seepage me-

ters. When data from the four methods are compared, it is found that all methods show a similar

trend of low to high discharges westward along the transect. However, the magnitudes of estimated

discharge did not fully agree. It was found that discharges estimated from mini-piezometer data

were statistically the same, at the 90% confidence level, as those determined from seepage velocity

measurements using the stream bed point velocity probe (SBPVP) at all locations tested. The same

was true at four of the six locations for the seepage meter discharges. SBPVP data were, on aver-

age, within 29 cm/day and seepage meter data are, on average, within 45 cm/day of the seepage

velocities predicted by mini-piezometer data. In contrast, discharges estimated from temperature
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profiling to a depth of 40 cm into the streambed were found to be an order of magnitude, or more,

less than those determined with the other methods. Where the methods produced statistically dif-

ferent discharge estimations at the same location, it is hypothesized that the differences arose from

method specific sources of bias. That such biases were not of equal magnitude at all locations

suggests that comparable measurements are possible by all methods under appropriate conditions.

Thus, any of these tools could be used in a complementary fashion, on a site specific basis, to take

advantage of their relative strengths.

Keywords: groundwater-surface water, comparison, tools, technology

3.2 Introduction

3.2.1 Review of methods of estimating groundwater-surface water exchange

Interest in estimating flow across the groundwater-surface water interface (GWSWI) is important

for water resource management, including issues pertaining to water pollution and water supply

(Fleckenstein et al., 2010; Rønde et al., 2017). With the advent of legislation that protects ground-

water dependent ecosystems (such as the EU Water Framework Directive), interest in the GWSWI

has intensified (Fleckenstein et al., 2010). Though much effort has been expended to understand

groundwater-surface water interactions, the spatial patterns and temporal dynamics of hyporheic

flow processes are not adequately understood (Krause et al., 2014). In large part, gaps in under-

standing are due to the spatial and temporal heterogeneity of the sediments at the GWSWI, leading

to complexities in flow patterns that can be difficult to fully describe (Keery et al., 2007; Käser

et al., 2009; Hatch et al., 2006; Rosenberry et al., 2013). To satisfy the need for more detailed

information at the GWSWI, several tools have been developed to quantify and delineate water ex-

change zones. Unsurprisingly, few (if any) of these methods are universally suitable for use across

the wide range of conditions found in streambeds.
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The choice of method for characterizing flow at the GWSWI depends on the needs and chal-

lenges of the projects and sites. For example, in-well tools and methods (Halevy et al., 1967;

Ballard, 1996; Kearl, 1997; Su et al., 2006), tracer tests (McCallum et al., 2012; Haria et al.,

2013; de Souza et al., 2015), and synoptic flow gauging (Harte and Kiah, 2009) are among the

approaches used to investigate flow at the GWSWI. The goal of this work is to compare and con-

trast the performances of three well-established tools, and one relatively new tool, along a transect

in a stream. The methods used include mini-piezometers, temperature profilers, seepage meters,

and streambed point velocity probes (SBPVPs), respectively. Previously, these methods were com-

pared in a preliminary fashion to assist in the validation of PVP technology (Cremeans and Devlin,

2017; Cremeans et al., 2018). In this work, that comparative assessment was expanded to provide

a more detailed dataset from which to identify strengths and weaknesses of the various methods in

a sandy-bottomed stream.

One important outcome of this work is the extended field assessment of the SBPVP, relative to the

more established methods. The SBPVP is an adaptation of the point velocity probe (PVP) which

estimates groundwater velocity on the basis of a mini-tracer test on the probe surface (Labaky

et al., 2007). The technology, in its various forms, has been validated in laboratory studies as

well as several field settings (Devlin et al., 2009; Labaky et al., 2009; Berg and Gillham, 2010;

Schillig et al., 2011; Devlin et al., 2012). Preliminary testing provided encouraging evidence that

the SBPVP was a viable tool with potential advantages over alternative approaches (Cremeans and

Devlin, 2017; Cremeans et al., 2018). The advantages of the SBPVP include rapid, simple de-

ployment, the ability to quantify flow over wide range of magnitudes (at least 18 to 2700 cm/day),

and circumvention of Darcy’s Law and its associated sources of uncertainty, in particular hydraulic

conductivity K (Cremeans et al., 2018). The SBPVP is limited to use in unconsolidated material,

and is expected to be most effective in sandy sediments.

TThe technology assessment began with a side-by-side comparison of measured upward flows
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through the streambed at the Grindsted stream, in Jutland, Denmark, determined from Darcy’s

Law, using mini-piezometers (Baxter et al., 2003; Rosenberry and LaBaugh, 2008). This approach

has advantages including wide acceptance, relative simplicity, low materials cost, and the potential

for the measurement of time-series data. Mini-piezometer surveys can be conducted with a high

measurement density, allowing for high-resolution characterization of the GWSWI (as in Cremeans

et al. (2018)). However, the use of Darcy’s Law has some limitations, such as high potential error

related to uncertainties in hydraulic conductivity (K) and challenges related to obtaining accurate

hydraulic gradients over small distances, in some cases (Devlin and McElwee, 2007; Harvey et al.,

2013; Post and von Asmuth, 2013).

Another technology that has gained notable recognition over the past decade is the use of tem-

perature profiles in the streambed to delineate and quantify exchange rates (Krause et al., 2012).

Temperature-based methods are advantageous because they offer a fast and efficient way to delin-

eate and estimate water flux, as with the temperature spear tool (Schmidt et al., 2006, 2007; Lautz,

2010; Bhaskar et al., 2012; Irvine et al., 2017, 2016). They also offer the possibility of obtaining

high spatiotemporal resolution (as with fiber-optic distributed temperature sensing) (Selker et al.,

2006a,b; Tyler et al., 2009; Hausner et al., 2011; van de Giesen et al., 2012; Krause et al., 2012).

Although temperature-based methods rely on a contrast between the temperature of groundwater

and the temperature of surface water, which can vary seasonally (Krause and Blume, 2013; Rose

et al., 2013), they have been shown to effectively quantify and delineate exchange zones in field

studies (Westhoff et al., 2011; Lu et al., 2017).

Seepage meters have been in use for examining GWSW interactions since the late 1970s (Lee,

1977). Prior to that, they were developed to monitor water loss from irrigation canals (Israelsen

and Reeve, 1944). They operate by isolating a fixed area of the streambed, usually using the top

section of a steel barrel, and either collecting water that discharges upward across the GSWSI, or

delivering water for infiltration downward across the interface. The collected or delivered water is
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temporarily stored in a plastic bag connected to the barrel section via plastic tubing. The change

in water volume in the bag over time (per area) can be used to estimate a seepage flux. The design

of seepage meters inherently leads to time-averaged flow measurements. Like mini-piezometers,

seepage meters are inexpensive and relatively simple to construct. They have the added advantage

of measuring seepage rates directly, which has led to their common use (Murdoch and Kelly, 2003;

Rosenberry, 2005; Rosenberry and LaBaugh, 2008; Rosenberry, 2008; Kennedy et al., 2010; Sol-

der et al., 2016). Seepage meters have been employed to great advantage in field studies, but care

must be taken to avoid biases associated with early construction designs and their deployment in

deep or fast-moving water. Seepage meters are poorly suited for deployment in streambeds com-

posed of hard substrates (Erickson, 1981; Brock et al., 1982; Woessner and Sullivan, 1984; Shaw

and Prepas, 1990; Zamora, 2006; Blanchfield and Ridgway, 1996).

3.2.2 Field site

Groundwater-surface water exchange was investigated in the Grindsted Å (stream), Denmark, us-

ing mini-piezometers, temperature profilers, seepage meters and SBPVPs. All technologies were

deployed at six equidistant measurement locations, spaced 3 m apart, along the north shore of

the stream (Figure 3.1). The locations were selected based on the criterion that all instruments

could be deployed to full advantage. This limited the study to the relatively shallow portions of

the stream (<1.2 m deep) where the bed was essentially horizontal. Two sediment types were

found to be present along this transect, silty sand and sand, as determined by visual inspection.

The change from silty sand to sand occurred gradationally along the stream bottom, with the most

abrupt change occurring between the fourth and fifth sampling locations, counting northward along

the transect. Based on observations made during the equipment installation, and prior experience

at the site (Sonne et al., 2017), the sediments observed at the top of the bed generally prevailed to

a depth of 40 cm, leading to a relatively homogeneous shallow bed. Slug testing was conducted in

four locations across the stream to characterize three sediment types (Figure 3.1). For the purposes

of this study, locally isotropic conditions (regarding K) were assumed throughout this 40 cm zone.
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Figure 3.1: Map of the Grindsted Å streambottom. The distribution of three observed sediment
types, silty sand, sand, and gravelly sand, are shown. The 6 measurement locations in the where
mini-piezometers, the SBPVP, temperature spears, and seepage meters are shown as small solid
circles. Slug test locations are indicated with open circles. Location 1 (large solid circle) was
subjected to testing by the four methods and a slug test.

Based on prior investigations of this site, flow rates through the streambed were expected to be on

the order of 100 cm/day on average. In the streambank sediments, local variations between 4 and

200 cm/day were estimated (Rønde et al., 2017).

3.3 Methods

3.3.1 Mini-piezometers

Hydraulic head data were collected from the Grindsted Å streambed using mini-piezometers con-

structed from open-ended clear polyvinyl chloride pipes with 2 cm inner diameters. The piezome-

ters were installed with a drive-point to a depth of 40 cm (Figure 3.2) and allowed to equilibrate for

24 hours before data were collected with a Solinst Model 101 Water Level Meter. The water meter

allowed gradient measurements to be taken within ± 1 cm of actual values. Hydraulic gradients

across the GWSWI were calculated from the head data, using a stilling well to obtain the hydraulic

head of the stream channel water (Baxter and Hauer, 2000; Baxter et al., 2003).
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Hydraulic conductivity (K) values were obtained by slug testing based on the recommendations

of Butler Jr (1997) (including recommendations such as making sure wells are properly devel-

oped). Four locations were chosen to represent the two observed sediment types in the transect

examined: silty sand and sand. Two slug tests were conducted at each measurement location,

resulting in eight total tests (all in situ at 40 cm depth) (Figure 3.1, Table 3.1). Butler Jr (1997)

suggests three replications; only two replications were completed due to the similarity in slug

test results between all pairs of measurements (Table 3.1). A drive point piezometer, with a 10 cm

screen, was installed in each of the measurement locations with a pressure transducer (programmed

to gather data every 0.5 s). After the system had been left to equilibrate for 8 hours, 1 m water

slugs were introduced to the piezometer and the falling head response was recorded. Data from

these tests were processed in AQTESOLV, where the K for each sediment type was calculated with

the Hvorslev method (Hvorslev, 1951; Inc., 2016). Two slug tests were performed in each of the

sediment types identified within the study transect. All tests exhibited a straight line overdamped

response, and the reproducibility of responses within a given sediment type was good (see Results

and Discussion). Porosity (n) was taken from previous work at the site that suggested an effective

value of 0.3 (Rügge et al., 1999; Lønborg et al., 2006). Seepage velocities, v, in the streambed

were subsequently calculated from the following version of Darcy’s Law:

v =−Ki
n

(3.1)

where v is the seepage velocity (LT−1), K is the hydraulic conductivity (LT−1), i is the hydraulic

gradient (unitless), and n is the porosity (unitless).

3.3.2 Temperature gradient method

In this study, the temperature gradient method described in Schmidt et al. (2007) was applied using

an Ebro TFN-520 Type K handheld thermometer was deployed using a steel spear to measure the
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temperature gradients. Temperatures could be measured to two decimal places with the available

equipment. This approach relies on the one-dimensional analytical solution:

qz =−
k f s

p f c f z
ln
(TZ −TL)

(T0 −TL)
(3.2)

where qz is Darcy flux in the vertical direction (ms−1), k f s is the thermal conductivity of the

solid-fluid system (Js−1m−1K−1), p f c f is the volumetric heat capacity of the fluid (Jm−3K−1), z

is the depth of measurement (m), Tz is the temperature at depth z (oC), TL is the temperature of

the groundwater which is fixed for all calculations (oC), and T0 is the temperature at z = 0 (oC).

For the calculations in this study, z (depth of measurement) is 40 cm, k f s was assumed to be 2.2

Js−1m−1K−1 (Hopmans et al., 2002) and p f c f was 4.19 x 106 Jm−3K−1. TL, the temperature

of groundwater is 8.6 oC and was determined by averaging samples collected from streambank

wells. T0 is the temperature at the sediment-water interface. This value was measured along

with a surface water measurement (Tsw) and a measurement at depth z (Tz) at every measurement

location (Figure 3.2). Tz is the measurement of temperature at depth z, which was also taken at

each measurement location by inserting the temperature spear into the sediment at 40 cm depth,

the deepest a probe could be installed without damage. The 40 cm depth was selected in an effort

to reach a zone beneath active horizontal hyporheic flow. More detailed descriptions of the use of

temperature profilers and processing of temperature data in the Grindsted Å is given in Schmidt

et al. (2007) and in Cremeans and Devlin (2017), respectively.

3.3.3 Seepage meters

Seepage meters were constructed in accordance with recommendations from Murdoch and Kelly

(2003) and Rosenberry (2008). Briefly, the devices used in this study were fabricated from plastic

buckets with diameters of about 30 cm, and installed to a depth of about 12 cm (Figure 3.2). The

collection bag (with a maximum volume of 1 L) was connected to the bucket with 1.1 cm inner

diameter tubing. To avoid head losses at the bag due to the movement of water in the stream
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channel, the bag was placed inside a container where the water surrounding it was held stationary.

Each test began with 250 mL of water in the bag. Since water was discharging upward across

the GWSWI in this case, the bag gained water over the 30 to 90-minute period of a test. In each

case, the bag was filled to a total volume not exceeding 750 mL, to minimize head losses related

to resistance of bag inflation. The seepage meters were left to equilibrate for 24 hours prior to

conducting flux measurements. Measurements of volume were accurate to the ± 2 mL and times

were measured to the ± 1 s.

3.3.4 Streambed point velocity probes

In each of the six measurement locations, the SBPVP was installed 5-10 cm below the streambed

with a hyporheic shield in place to prevent any influence from horizontal flow on the upward

velocity measurements (Cremeans and Devlin, 2017) (Figure 3.2). Tests were conducted with

tracer injection volumes ranging from 0.1 mL to 0.4 mL and with tracer concentrations ranging

from either 1 g/L NaCl or 2 g/L NaCl, which have been shown to little or no effects of density

flow in PVP tests in sandy media (Schillig et al., 2014). The tests required between 30 minutes and

180 minutes to complete. Data collection was accomplished using a PC connected to a Campbell

Scientific CR1000 datalogger running LoggerNet R© software set up to collect data at 2 second

intervals. Data were processed using the software package VelProbePE (Schillig, 2012).
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Figure 3.2: Schematic representations of the four methods compared in this study. A. The mini-
piezometer. B. Temperature profiling. C. The SBPVP. D. Seepage meters. See text for details.

3.4 Results and discussion

Initially, data were examined to determine if the methods suggested similar trends in discharge.

This was done by plotting the 6 discharge estimates from each method on a line graph to observe

trends. At this time, it was noted that the methods used in this study did not always provide esti-

mates of discharge that were comparable in an absolute sense, meaning that, while the trends could

agree the magnitude of estimated discharge might not agree between the methods. The discrepan-

cies in absolute discharge were explored in scatterplots comparing the methods directly, including

plots with 1:1 and best fit lines. These plots include larger datasets from Cremeans et al. (2018) to

allow for a more in-depth discussion.

In these analyses, all four methods tested revealed a qualitatively consistent trend in which lower

seepage velocities were found at the eastern end (location 1) of the transect, and larger flow rates

at the western end (location 6) (Figure 3.3, Table 3.1). This trend is consistent with the sediment

types mapped on the streambed (Figure 3.1); the eastern end of the line was characterized by silty
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sand and the western end by sand. The difference in upward seepage velocities ranged more than

two orders of magnitude across the test zone, from a few centimeters per day at location 1 to 100

cm/day or more, depending on the method used, at locations 5 and 6.

Each of the techniques was implemented in duplicate (back to back measurements) at every loca-

tion to assess measurement reproducibility. With the exception of two pairs of seepage meter mea-

surements (±4.1% and ±9.8%), all replicate pairs (n = 34) agreed to within ±3% (see Table 3.1),

establishing that the observed differences in values of seepage velocities from one method to an-

other (visible in Figure 3.3) were due to either biases inherent to the methods, or variations arising

from slight differences in placement of the instruments on the streambed, i.e., differences arising

from sediment variability on the streambed. A standard deviation was calculated using four of the

six measurement locations (locations 5 and 6 were omitted due to the change in geology at these

locations) and plotted on Figure 3.3. These suggest similarity between the velocity estimations

of the SBPVP, mini-piezometers, and seepage meters. The temperate profiler estimated notably

smaller velocities and could not be compared in the same way.
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Briefly, the measurement standard deviation for the median SBPVP velocity (48.5 cm/day) was

±7.4% for the median mini-piezometer derived velocity (83 cm/day) was ±43%; for the median

seepage meter derived velocity (25.7 cm/day) the measurement standard deviation was ±15%;

for the median temperature gradient derived velocity (0.47 cm/day) the measurement standard

deviation was ±20%.

Figure 3.3: An absolute comparison of methods. As noted in the text, the temperature method
estimates notably lower velocities than the other three methods. The error bars shown are one
standard deviation, calculated from 4 of 6 locations (those with similar geology). For the SBPVP,
mini-piezometers, seepage meters, and temperature profilers, one standard deviation is 14.8 cm/-
day, 47.2 cm/day, 6.2 cm/day, and 0.23 cm/day, respectively.

The standard for comparison of flow estimations is, arguably, the method based on the mea-

surement of Darcy parameters (K, i) and a Darcy calculation (equation 3.1). Therefore, a further

assessment of the methods compared in this work was made by plotting seepage velocity estimates

against the associated Darcy values at the same locations (Figure 3.4). Good agreement is indi-

cated by a linear relationship between the measured values, with a slope of 1.0. The SBPVP data

from this study plot the same way (slope = 1.0 ± 0.4 with 90% confidence) (Figure 3.4A). This

finding also applies to the extended dataset collected over 92 locations within a 70 m reach of the

Grindsted Å, which included the transect studied in detail here (Figure 3.4B).
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In contrast, a weaker linear relationship was observed between the mini-piezometer data and the

temperature gradient data (slope = 0.007 ± 0.004 with 90% confidence) (Figure 3.4C). Inspection

of the extended dataset from Cremeans et al. (2018) suggests an improvement in the linearity of

the relationship (slope = 0.015 ± 0.003 with 90% confidence) (Figure 3.4D), but the negative bias

in the values discussed above persists. Finally, a linear relationship also appeared to exist between

the mini-piezometer data and the seepage meter data, though the slope was significantly below 1

(slope = 0.41 ± 0.1 with 90% confidence) (Figure 3.4E), suggesting a systematic bias possibly

related to the construction or deployment of the seepage meters used in the study.

This analysis supports two insights. First, the differences in bed conditioned-derived uncertain-

ties between the various methods suggests different inherent capabilities between the methods at

this site. In particular, the mini-piezometer method was characterized by a considerably higher

uncertainty in velocity estimates than the other methods (±43% vs. ±7 to ±15%), possibly re-

flecting the challenges of ascribing accurate Darcy parameters (K,n, i) to each monitoring location.

For example, measurement footprint sizes varied between the methods and could have contributed

to different effective values of K within the same sediment type – both for different methods at

the same location and the same method at different locations. Supporting this notion is the fact

that seepage meter measurements had the largest footprint (750 cm2) and exhibited the smoothest

transition from low v to high v along the tested transect (Figure 3.3). Second, both the temperature

gradient data and the seepage meter data produced velocity estimations that were consistently low

compared to the other methods. As suggested in Figure 3.4A, the SBPVP derived velocities com-

pared well with the mini-piezometer derived velocities. The systematic bias associated with the

temperature gradient measurements may be associated to the effects of horizontal hyporheic flow,

as discussed in Cremeans et al. (2018).

A further difference between the methods relates to the duration in time of each measurement.
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Figure 3.4: Comparisons of seepage velocities measured by each method with those estimated
from Darcy calculations. Comparisons of seepage velocities measured by each method with those
estimated from Darcy calculations Some plots also include a dotted 1:1 line. A) SBPVP within
the transect B) SBPVP and Darcy-estimated seepage velocities determined over a 70 m reach of
the stream, including zones of high velocity. Note near 1:1 correspondence between the SBPVP
velocities with the Darcy-estimates, C) temperature profiling within the transect D) temperature
and Darcy-estimated seepage velocities over the same 70 m reach, E) seepage meters along the
transect.
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For example, the mini-piezometer and temperature measurements presented in this study can offer

an estimate of discharge at a particular point in time while seepage meter and SBPVP measure-

ments offer average discharge estimates over discrete time periods (30 to 90 minutes or 30 to 180

minutes, respectively). In this study, steady state flow was assumed to permit direct comparisons.

There were no observable reasons to doubt the assumption, but if it were violated during testing,

the comparability of the methods could be compromised to some extent that was not quantified in

this work.

3.5 Conclusions

All four methods tested identified a general trend of increasing seepage velocities in the Grindsted

Å streambed, from the south end of the test transect to the north. However, of the methods tested,

only the seepage velocities derived from the mini-piezometer and SBPVP datasets were statisti-

cally the same. Using these values as the benchmark for comparison, seepage meter data tended

to underestimate the velocities by an average of about 40%, over a total measured range (by the

seepage meters) of about 12 to 60 cm/day. The apparent bias was not statistically significant from

the mini-piezometer-derived velocity estimates in 4 of the 6 locations tested. The differences are

thought to be related to several possible causes, including the effects of measurement footprint

size, and possibly issues related to the construction or deployment of the seepage meters.

The temperature data exhibited a strong negative bias of about an order of magnitude compared to

the piezometer and SBPVP datasets. This bias is thought to be due to the influence of horizontal

hyporheic flow in the streambed sediments at this site.

It is concluded from the above that for sandy bottom streams, like the Grindsted Å, the SBPVP

tool provided the seepage velocity estimates that were most reliable, making this the preferred

technology for quantifying flow across the GWSWI. In this study, mini-piezometer data contained

relatively high uncertainties, likely arising from Darcy parameter estimation, seepage meter data
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suffered from a slight negative bias, and temperature gradient data – collected as simple vertical

profiles of temperature – suffered from significant negative biases. In addition to the performance

issues above, the SBPVP was comparatively fast to deploy and the measurements fast to complete

– only the temperature gradient method was faster. Thus, if the purpose of a site characteriza-

tion is simply to identify the locations of prominent discharge zones, temperature profilers may be

the preferred technology. It should be noted that the mini-piezometers and seepage meters used

in this study were less expensive to fabricate, and produced data that were simpler to interpret.

Mini-piezometers also offer the best chance to obtain time series data. Overall, these four tools all

provide useful and complementary information and the tool of choice largely depends on the needs

of a project.
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Chapter 4

Application of new point measurement

device to quantify groundwater-surface

water interactions

As published in the Journal of Contaminant Hydrology

4.1 Abstract

The streambed point velocity probe (SBPVP) measures in situ groundwater velocities at the groundwater-

surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient

information. The tool operates on the basis of a mini-tracer test that occurs on the probe sur-

face. The SBPVP was used in a meander of the Grindsted Å (stream), Denmark, to determine

the distribution of flow through the streambed. These data were used to calculate the contaminant

mass discharge of chlorinated ethenes into the stream. SBPVP data were compared with velocities

estimated from hydraulic head and temperature gradient data collected at similar scales. Spatial

relationships of water flow through the streambed were found to be similar by all three methods,

and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes

of estimated flow varied to a greater degree. It was found that pollutants enter the stream in lo-
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calized regions of high flow which do not always correspond to the locations of highest pollutant

concentration. The results show the combined influence of flow and concentration on contaminant

discharge and illustrate the advantages of adopting a flux-based approach to risk assessment at

the groundwater-surface water interface. Chlorinated ethene mass discharges, expressed in PCE

equivalents, were determined to be up to 444 kg/yr (with SBPVP data) which compared well with

independent estimates of mass discharge up to 438 kg/yr (with mini-piezometer data from the

streambed) and up to 372 kg/yr crossing a control plane on the streambank (as determined in a

previous, independent study).

Keywords: groundwater-surface water interactions; contaminant mass discharge; chlorinated ethenes;

groundwater velocity; site characterization; streambed

4.2 Introduction

4.2.1 Groundwater-surface water interactions and solute exchange

The importance of groundwater-surface water exchanges across the groundwater-surface water in-

terface (GWSWI) is well recognized for a variety of hydrological problems (Warnick, 1951; Lee,

1977; Winters and Lee, 1987; Winter et al., 2003; Kalbus et al., 2006; Krause et al., 2009, 2011,

2012). Even a small exchange between groundwater and surface water can deliver a noteworthy

contribution of solutes to a surface water body. For example, if a surface water body is gaining,

the contribution from groundwater can sometimes affect the flow and chemistry of surface water

strongly (Schwartz and Gallup, 1978; Hurley et al., 1985; LaBaugh et al., 1995; Moore, 1999;

Holmes, 2000). In principle, the converse can also be true, i.e., losing streams may exert notable

effects on groundwater flow and chemistry. Thus, the chemical and physical properties of surface

and groundwater are strongly interdependent.

Recently, contaminant mass discharges into a Danish stream, the Grindsted Å, estimated from
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the analysis of concentration data and groundwater velocities at the stream bank using point veloc-

ity probes (PVPs), was compared to mass fluxes in the stream channel water (Rønde et al., 2017).

Also, recently, a new method of measuring flow across the GWSWI was introduced and evalu-

ated in laboratory tests, based on PVP technology (Cremeans and Devlin, 2017). In this article,

the newly adapted PVP probes, temperature gradient measurements, and Darcy calculations are

used to conduct a detailed survey of contaminant mass fluxes into the Grindsted Å along a reach

receiving groundwater contaminated by chlorinated ethenes.

4.2.2 Methods of measuring flow across the GWSWI

In this work, a goal is to measure flow across the groundwater-surface water interface at the meter

scale or less. To achieve this objective, two general approaches have been adopted (1) measuring

indirect metrics that can be converted to discharge rates (e.g. hydraulic heads, temperature pro-

files, or salinity profiles) (Winter et al., 1988; Bartolino and Niswonger, 1999) and (2) measuring

water flux across the GWSWI directly (e.g. with seepage meters) (Lee, 1977; Solder et al., 2016).

These methods operate on a variety of scales. For example, seepage meters describe flux over the

area of a drum (which can be any size but is usually on the order of about a meter in diameter).

Mini-piezometers (often used in applications of Darcy’s Law) approach point measurements in

scale. Both of these methods focus on specific, small areas of the stream with each measurement.

Synoptic gauging (as in Harte and Kiah (2009)), which measures the total change in discharge

over a defined reach of a river or stream, gives a much larger scale view of discharge (one that

would require many measurements from seepage meters or mini-piezometers to make comparison

possible) but does not identify the locations of discrete discharge zones.

In general, the indirect methods, which can provide detailed spatial patterns of flow, are subject to

errors and biases related to the conversion of the measured quantities to flow rates. For example, to

obtain accurate estimates of discharge, Darcy calculations rely on accurate estimates of hydraulic

conductivity (K) and hydraulic gradient (i) values, both of which are associated with high potential
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error (Molz et al., 1989; Butler et al., 2002; Zemansky and McElwee, 2005; Devlin and McElwee,

2007; Post and von Asmuth, 2013). Several tools and methods for measuring water exchanges

across streambeds have been developed using temperature gradients. These commonly rely on an-

alytical solutions that assume one-dimensional flow (Bredehoeft and Papaopulos, 1965; Stallman,

1965) and, sometimes, are restricted to gaining streams (as in Schmidt et al. (2007)). Solutions

have also been developed to use temperature in two- and three-dimensions and in losing streams

(as discussed fully in Anderson (2005)).

The available direct methods of measuring flow across the GWSWI offer independent means of

estimating exchanges across the GWSWI, and circumvent many of the sources of error mentioned

above. In these cases, estimations of flux tend to depend on calculations involving easily measured

properties with comparatively low uncertainties. For example, seepage meters measure discharge

(Q) into a well-defined cross-sectional area (A) (usually, a steel drum) to permit the direct calcu-

lation of specific discharge (q = Q/A). Naturally, these methods come with their own sources of

uncertainty, which tend to arise from the measurements themselves, which can be affected by local

heterogeneity of the streambed material and biases introduced during equipment installation. For

example, some investigators have seen agreement between measurements made by seepage meters

and other methods in flowing streams (Rosenberry and Pitlick, 2009; Kennedy et al., 2010) while

others have reported large uncertainties for measurements made in streambeds, or were unable to

operate seepage meters at all in these settings (Cey et al., 1998; Zamora, 2006). The reasons for

these uncertainties have been attributed to design limitations of the devices (Isiorho and Meyer,

1999; Murdoch and Kelly, 2003; Simpkins, 2006; Rosenberry, 2008), disturbance of flow paths

due to instrument installation (Hutchinson and Webster, 1998), velocity heads imposed by waves

and moving water interfering with seepage meter operation (Shinn et al., 2002), gas release in bed

sediments (Kennedy et al., 2010), improper seals between the drums and the beds (Cey et al., 1998),

small-scale spatial heterogeneities (Robinson et al., 1998; Bokuniewicz et al., 2004), and the com-

bined effect of slow seepage rates with a moving streambed, causing scour or burial of the seepage
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meters (Zamora, 2006). Other methods, such as multiple tracer injections in streambeds (Zell-

weger, 1994) and the measurement of isotopic and temperature signatures to infer groundwater

inflows into streams (Cook et al., 2003) may be similarly influenced by streambed heterogeneity,

difficult installation, and the challenges of working in a continuously evolving system (due to the

transport of sediment, temporal variability of flow, etc.).

To gain a better picture of groundwater-surface water exchange, several studies have recommended

a combination of two or more methods and datasets to characterize the sediment water interface

(Becker et al., 2004; Verruijt, 2007; Ivkovic, 2009; De Smedt, 2014). Nevertheless, there are only

a few examples of datasets sufficiently detailed to properly establish the nature of any single ex-

change zone and to address hydrological and contaminant fate issues (e.g., Conant (2004); Freitas

et al. (2015)).

To help address the need for reliable, time-efficient, and cost-effective measurements of ground-

water velocity, point velocity probe (PVP) technology was developed. The original PVPs were

designed to measure centimeter-scale in situ groundwater velocities in aquifers. This technol-

ogy has been field validated in sand aquifers, a glacial outwash aquifer, and along a stream bank

(Labaky et al., 2007; Schillig et al., 2011; Devlin et al., 2012; Rønde et al., 2017). The goal of this

work was to adapt PVP technology to measure exchange at the GWSWI for the purpose of esti-

mating contaminant mass discharge. The tool created to meet this goal is referred to as the SBPVP

(Cremeans and Devlin, 2017). Previously, the SBPVP was validated in laboratory tests (Cremeans

and Devlin, 2017). In this study, the SBPVP was used for high-resolution characterization of flow

patterns at the GWSWI of a stream where physical documentation of the interface was necessary

to determine the mass discharge of chlorinated ethenes.
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4.2.3 Field site

The Grindsted Å (stream) is located in Jutland, Denmark, proximal to an industrial site from which

a plume of dissolved chlorinated solvents originates and subsequently discharges to the stream

(Figure 4.1). Further information about the site and the stream is reported in Rasmussen et al.

(2016), Balbarini et al. (2017), and Sonne et al. (2017). In this study, all measurements were

gathered in the streambed of the Grindsted Å, over a reach of the stream instrumented with 26

transects, situated approximately 3 m apart, and oriented perpendicular to the stream flow direc-

tion (Figure 4.1). The transects each comprised three to five evenly spaced measurement locations.

The stream bottom consisted of three observed sediment types: silty sand, sand, and gravelly sand,

as determined by visual inspection at each measurement location. Mini-piezometers, tempera-

ture spears, and the SBPVP were used to estimate groundwater velocity at the GWSWI, at each

location.
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Figure 4.1: Grindsted is located centrally in Jutland, Denmark. The field site was a single meander
of the Grindsted Å, a stream running through the town of Grindsted, was divided into 26 transects
(numbered 0 to 25). Each transect comprised 3 or 5 equally spaced measurements taken along a
line perpendicular to the flow direction. The black dots show each measurement location. Tem-
perature gradient and SBPVP measurements were taken on transects 0 to 25, while hydraulic head
measurements were limited to transects 0 to 21. Slug testing was conducted at the measurement
locations shown as open dots.
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4.3 Methods

4.3.1 Pore water sampling

Samples and replicates, for tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene

(cDCE), and vinyl chloride (VC), were collected over several field campaigns from mini-piezometers,

which were also used for hydraulic head measurements (Figure 4.2). Because the plume was pre-

viously characterized, and is considered to be in a near steady-state condition (Sonne et al., 2017;

Rønde et al., 2017), it was assumed that the plume remained unchanged between sampling efforts.

Therefore, this study uses concentration data from sampling campaigns conducted in Oct. 2014,

May 2015, June 2016, and September 2016. All velocity data were collected concurrently with the

June 2016 campaign. Each water sample was collected by first purging the mini-piezometer with

three well volumes and then collecting the samples in 20 to 40 mL glass vials with Teflon lined

lids, sealed without headspace. The samples were preserved with 4 M sulfuric acid, and stored at

10o C until analysis. Full analysis was completed within four weeks of collection. Analyses were

conducted at the Technical University of Denmark using an Agilent 7980 Gas Chromatograph with

an Agilent 5675 C mass-selective detector (GC-MS), following the procedure presented in McK-

night et al. (2012). The quantification limits for these analyses were 0.06 µg/L for PCE, 0.043

µg/L for TCE, 0.048 µg/L for cDCE, and 0.0500 µg/L for VC).
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Figure 4.2: Pore water samples were collected from mini-piezometers at various locations in the
stream and used to generate a map of contaminant concentrations near the interface of Grindsted
stream. All samples were collected from depths between 40 cm and 70 cm, and analyzed for the
presence of chlorinated ethenes.
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4.3.2 Sediment characterization

To discern streambed heterogeneity, and reduce the errors associated with estimating K for Darcy

calculations, the sediment at each measurement location was visually examined and documented.

Slug tests were subsequently conducted in the Grindsted Å stream bottom across a representative

sample of sediment types. Some recommendations were taken from Butler Jr (1997) (i.e. mak-

ing sure screen wasn’t clogged). One departure from Butler’s recommendations is that only two

tests, instead of three were completed at each location (locations shown in Figure 4.1). Only two

tests were conducted because the results were so similar between replicates, a third test was not

needed (see 3.1). K was measured in duplicate at 5 locations, for a total of 10 in situ tests (two

measurement locations for silty sand, two locations for sand, and one location for gravelly sand,

all at 40 cm depth). Sediment-type specific values for K were then applied to the location-specific

discharge calculations, assuming locally isotropic conditions (discussed in the Results and Discus-

sion section).

Slug tests were conducted using a drive-point piezometer with a 10 cm screen. A pressure trans-

ducer (programmed to gather data every 0.5 s) was placed in the piezometer and the system was

left to equilibrate. After equilibration, water slugs of 1 m height were introduced to the piezometer.

Data from the tests exhibited a straight line overdamped response. The data from these tests were

processed in AQTESOLV (Inc., 2016), where K for each sediment type was calculated with the

Hvorslev method (Hvorslev, 1951).

4.3.3 Temperature gradient measurements

Temperature surveys can offer a fast, inexpensive method of characterizing the GWSWI in detail.

In the Grindsted Å, an Ebro TFN-520 Type K handheld thermometer was deployed using a steel

spear to measure temperature gradients in 108 locations (Figure 4.1). In this study, the approach
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of Schmidt et al. (2007) was adopted, using the following one-dimensional analytical solution:

qz =−
k f s

p f c f z
ln
(TZ −TL)

(T0 −TL)
(4.1)

where qz is Darcy flux in the vertical direction (ms−1), k f s is the thermal conductivity of the solid-

fluid system (Js−1m−1K−1), p f c f is the volumetric heat capacity of the fluid (Jm−3K−1), z is

the depth of measurement (m), Tz is the temperature at depth z (oC), TL is the temperature of the

groundwater which is fixed for all calculations (oC), and T0 is the temperature at z = 0 (oC).

The assumptions of this solution, which are also described in Schmidt et al. (2007), are the follow-

ing: (1) one-dimensional flow in the vertical direction, (2) ascending flow (meaning, the solution

is not valid for downward flow (Turcotte and Schubert, 1982), (3) streambed temperatures are in

quasi-steady state during the period of measurement, and (4) the properties of the sediment and

fluid are assumed to be homogeneous over the entire temperature profile.

The known variables include z (depth of measurement), which was 40 cm (in this case), k f s was

assumed to be 2.2 Js−1m−1K−1 (Hopmans et al., 2002) and p f c f is 4.19 x 106 Jm−3K−1. This

leaves only the three temperature values unaccounted for in equation 4.1. TL, the temperature of

groundwater, was determined to be 8.6 oC by averaging samples collected from streambank wells.

T0 is the temperature at the sediment-water interface. This value was measured along with a surface

water measurement Tsw at every measurement location. Tz is the measurement of temperature at

depth z, which was also taken at each measurement location by inserting the temperature spear into

the sediment at 40 cm depth, the deepest a probe could be installed without damage (Figure 4.3).

The 40 cm depth was selected in an effort to reach a zone beneath active horizontal hyporheic flow.

The measurements were processed using the analytical solution presented above (Eq. 4.1) coded

into an Excel sheet to determine qz.
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Figure 4.3: Temperature surveys require three measurements at each location, plus a measurement
of the temperature of the groundwater (TL) (not shown above): one in the surface water (Tsw), one
at the sediment-water interface (T0), and one below the interface (40 cm below, in this study) (TZ).
All measurements, except TL, were taken over (or under) the same location on the streambed.
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4.3.4 Darcy calculations

Darcy calculations are commonly applied to the estimation of water flux across the GWSWI (for

example, Lee and Cherry (1979); Baxter et al. (2003); Rosenberry et al. (2008). To apply Darcy’s

Law to the Grindsted Å streambed, mini-piezometers were installed in 92 locations across 22 tran-

sects (Figure 4.1). The piezometers were constructed from clear polyvinyl chloride (PVC) pipes

(open ended with approximately 2 cm inner diameter). Each mini-piezometer was installed with

a drive-point to a depth of approximately 40 cm below the streambed, and the hydraulic gradi-

ent (i = ∆H/∆L) was measured between that depth and the stream channel water (therefore, ∆L =

40 cm). The water levels in the piezometers were and allowed to equilibrate for 24 hours before

measurements of hydraulic head (H ± 0.7 cm) were collected. A Solinst Model 101 Water Level

Meter was used to measure water levels inside the mini-piezometers and a stilling well was used

to determine the water level of the stream channel water (Baxter and Hauer, 2000; Baxter et al.,

2003) (Figure 4.4). In all measurement locations, the gradient either indicated upward flow or

was not possible to quantify because ∆H was less than 0.7 cm, the uncertainty of a head measure-

ment. The groundwater velocities from mini-piezometer data were calculated using the following

modification of Darcy’s law:

v =
Ki
n

(4.2)

Based on previous studies of the site, a uniform effective porosity (n) of 0.3 was assumed (Rügge

et al., 1999; Lønborg et al., 2006). Estimates of K were gathered from slug tests, as described

above in the Sediment Characterization section.
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Figure 4.4: The mini-piezometer set-up used in the field. This example shows upward flow, as
designated by the arrows and the difference in hydraulic head between the mini-piezometer and
the stilling well.
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4.3.5 Streambed point velocity probes

The streambed point velocity probe (SBPVP) was developed to provide high density datasets de-

scribing exchange across the GWSWI without reliance on gradient i or K information. The SBPVP

estimates velocity by conducting a mini-tracer test on the surface of a 1-inch diameter drive point

probe, which is inserted 7 to 10 centimeters into the streambed. The tracer is chosen on the ba-

sis of electrical conductivity contrast with the surrounding water. Further details can be obtained

from Cremeans and Devlin (2017). The SBPVP was installed at 108 measurement locations (Fig-

ures 4.1, 4.5), at depths of about 7 to 10 cm beneath the sediment water interface Cremeans and

Devlin (2017). To prevent horizontal hyporheic flow from influencing tests, a hyporheic shield

(22 cm outer diameter and 61 cm height) was attached to the instrument (3.6 cm outer diameter

and 4.5 cm height), isolating the vertical component of flow for measurement (Figure 4.5). All

tests were conducted with tracer injection volumes ranging from 0.1 mL to 1 mL, as determined

experimentally Cremeans and Devlin (2017) with tracer concentrations between 1 g/L NaCl and 2

g/L NaCl, as required. SBPVP tests lasted from 3 minutes to 3.5 hours. All data were processed

in VelProbePE (Schillig, 2012).
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Figure 4.5: The SBPVP is installed 7 to 10 cm below the GWSWI, with a hyporheic shield to
prevent the influence of non-vertical through-flow on measurements.
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4.3.6 Contaminant mass discharge calculations

Visual representations of the in-stream chlorinated ethene mass discharge zones, sediment types,

and measured velocity distributions were created with ArcGIS10 using the Inverse Distance Weight-

ing (IDW) interpolation method. IDW is considered a “conservative” interpolator in this case,

because low to moderate influence was assigned to empirical measurement points that were far

from the interpolated points (a power of 3 with 2 neighbors, and a power of 2 with 12 neighbors,

respectively). The application of IDW is described in full detail in the ArcGIS10 documentation

(ESRI, 2017). The effect of these choices is that relatively sharp and localized boundaries are de-

fined around the measured points that form localized extremes of the measurement range (high or

low). Given the relative sparseness of the pollutant concentration dataset (compared to the SBPVP

grid), the IDW scheme used here is expected to err on the side of underestimating pollutant masses,

because unsampled areas of high pollutant concentration would be overlooked in the interpolation

calculations. By comparison, the velocity data were collected on a denser grid than the water qual-

ity samples and, therefore, were less susceptible to interpolation-related errors. Velocity data (from

SBPVP, piezometer, and temperature methods) and chemical concentration data were interpolated

with IDW at the same cell size (0.171 m2). These interpolated datasets, plus an assumed uniform

porosity of 0.3, provide the necessary values to calculate a preliminary mass discharge:

Jtotal = n∗
m

∑
i=1

Ci ∗ vi ∗Ai (4.3)

where Jtotal is the total mass discharge (kg/yr), Ci is the concentration in each cell (kg/m3), vi is the

velocity in each cell (m/yr), n is the effective porosity (dimensionless) in each cell, and Ai is the

area of each cell (m2) (common cell size, given above), m is the number of cells in the IDW grid.

Mass discharges of chlorinated ethenes into the stream are presented in PCE equivalents with units

of kg/yr. Each compound was converted to a PCE equivalent using the following equation:

PCE Equivalent Mass = Compound Mass∗ PCE Molar Mass
Compound Molar Mass

(4.4)
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Table 4.1: Summary of K values measured in the Grindsted Å streambed

Location Test 1 Test 2
Transect 1 (gravelly sand) 2.448x10−4m/s 2.564x10−4m/s

Transect 3 (silty sand) 5.421x10−5m/s 4.938x10−5m/s
Transect 5 (sand) 1.075x10−4m/s 1.088x10−4m/s
Transect 7 (sand) 1.043x10−4m/s 9.821x10−5m/s

Transect 14 (silty sand) 4.722x10−5m/s 4.652x10−5m/s

Implicit in these calculations is the assumption that the pollutant concentrations and velocity mea-

surements represent the same location near the GWSWI. Given that all measurements were con-

ducted within the top 7 to 70 cm of the stream bottom, the assumption is consistent with obtaining

a useful approximation of the discharge patterns. It must be acknowledged, however, that the pos-

sibility of horizontal pollutant transport away from the sampling points before discharging to the

stream could have occurred in some locations. Also, the possibility of transformations occurring

at some locations within the top 70 cm of sediments, cannot be ruled out.

4.4 Results and discussion

Concentration data describing the plume of chlorinated ethenes suggested they were present in the

streambed throughout the study reach, but were most concentrated near the apex of the meander

and near transect 10, immediately upstream of the apex (Figure 4.6A). The streambed consisted

of three observable sediment types: silty sand, sand, and gravelly sand (Figure 4.6B). Slug tests

conducted in each sediment type indicated that the silty-sand sediments were characterized, on

average, by K = 4.92 ∗ 10−5m/s, the sandy sediments by K = 1.05 ∗ 10−4m/s, and the gravelly

sand sediments by K = 2.51 ∗ 10−4m/s (Table 4.1). The sediment types were mapped in detail,

based on the grid shown in Figure 4.1, and the range of K was found to be quite narrow for each

type. Therefore, the associated Darcy calculations depending on these data are thought to be quite

representative of the site. Nevertheless, the number of slug tests performed was small and could

contribute to uncertainty in the calculations in some cases.
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To begin the estimation of the groundwater-surface water exchange rate, the temperature gradi-

ent method was applied. The temperature-derived pattern of flow reveals relatively low discharges

upstream of the meander, with localized regions of higher flow through the meander and slightly

downstream (seepage velocities up to 129 m/yr) (Figure 4.7). The streambed was subsequently

surveyed using mini-piezometers to obtain hydraulic gradient data (on the same sampling grid).

Due to time constraints associated with installation and equilibration of the mini-piezometers, four

fewer transects were examined by this method (Figure 4.8A). The estimated groundwater dis-

charges from the mini-piezometer data (expressed here as velocities for consistency) suggested a

pattern of heterogeneous flow that was spatially similar to the temperature data discussed above;

the upstream region of the study reach was associated with relatively low discharges and the dis-

charges at the meander apex and downgradient segment were characterized by localized regions of

relatively high velocities (Figure 4.8A).

Comparison of the Darcy-derived velocities and the temperature-derived velocities showed major

differences (on the order of a factor of 10) in velocity magnitudes (Figures 4.7, 4.8A). The veloci-

ties were calculated with values of K from slug tests performed in the streambed, which assumed

locally isotropic conditions in the sediments. This assumption may have resulted in conservatively

large estimates of v, since vertical anisotropy was ignored. However, because the sediments were

generally sandy, and testing was conducted in a single sediment stratum at each location, factors of

anisotropy can reasonably be expected to be low, between 1.3 and 1.6 (Burger and Belitz, 1997),

justifying our approximation of isotropic conditions in the streambed. Regardless, anisotropy of

the bed sediments does not seem to fully account for the differences in flow magnitudes between

the Darcy calculations and the temperature gradient calculations.

The anomalously low flux estimates from the temperature gradient method are explainable by po-

tentially significant horizontal flow in the Grindsted Å streambed, associated with the penetration

of stream water into the bed to a depth of at least 40 cm, as discussed in the Introduction (Lautz,
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Figure 4.7: Temperature gradient measurements were the basis for a preliminary assessment of
discharge patterns at the GWSW interface. The temperature measurements were made in the
stream water column, at the sediment-water interface, and at 40 cm depth below the interface to
support the calculations. Note that the scale of groundwater velocity from the temperature data
is over an order of magnitude smaller than the scales determined by the other velocity estimation
methods.

2010; Irvine et al., 2016; Munz et al., 2016). Assuming the Darcy-derived fluxes are representative

of the actual vertical flows, this finding is illustrative of a potential limitation of temperature data

to calculate groundwater fluxes in streambeds. Other limitations have been documented, such as

the seasonal dependence of temperature gradients that limits the times of year when the method

is applicable (Irvine et al., 2016). Despite the issues encountered in this work, it is noted that

the temperature-based methods represent a fast and useful approach to streambed characterization,

complimentary to the other methods used here, and they have been successfully applied in a variety

of cases (Lautz, 2010; Lewandowski et al., 2011; Bhaskar et al., 2012; Lu et al., 2017).
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The velocities measured using the SBPVP revealed very similar spatial patterns of flow com-

pared to those found by the two preceding methods (Figure 4.8B). This result verifies the prelim-

inary findings of Cremeans and Devlin (2017) with a more extensive dataset from the same site.

Moreover, the velocity magnitudes suggested by the SBPVP data compared very well with those

from the Darcy calculations. A linear correlation was found to exist between the two methods’ es-

timated velocities; the values fell along a line with a slope of 1.08 with a 95% confidence envelope

of ±150 m/yr over a velocity range of 0 to approximately 500 m/yr, and ±550 m/yr for velocities

up to 5500 m/yr (Figure 4.9). The dataset contains one significant outlier which was not included

in the 95% confidence interval calculations (shown in Figure 4.9 as an open circle). The anoma-

lous point occurred at a location where the SBPVP measured a velocity of approximately 4,500

m/yr while the Darcy calculations led to an estimate of approximately 6,500 m/yr. In this case, it

is thought that a change in the prevailing sediment type at 40 cm depth (noted during piezometer

installation) led to the use of an unrepresentative hydraulic conductivity value in the Darcy calcula-

tion. This sediment change is local to this measurement location likely due to construction related

to the installation of adjacent culverts, which may have disturbed the sediment at 40 cm depth.

The highest velocity value from the entire data set, measured by the SBPVP, is 9851 m/yr (27

m/day), which seems high but may result from a high convergence of streamlines from the bank to

the streambed. The piezometer at this location behaved like a flowing artesian well, and the total

hydraulic head there could not be measured. The corresponding point was omitted from Figure 4.9.

The point was, however, included in the mass discharge calculations by using the measured SBPVP

velocity value as measured, but assuming total hydraulic head there was at the elevation of the top

of the piezometer casing. It is recognized that this approximation caused an underestimation of the

Darcy-derived mass discharge at this point.

The Darcy-derived mass discharges were calculated to be within 435.2 to 438.2 kg/yr. Using

the SBPVP data, the total chlorinated compound mass discharge (in PCE equivalents) was calcu-
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lated to be between 437.9 and 444.1 kg/yr. In both cases, the lower estimate was calculated with

a restrictive Inverse Distance Weighting (IDW in ArcGIS) interpolation of the concentration data

(i.e., low influence was assigned to interpolated points far from the empirical points). In this in-

terpolation, an exponent of 3 was assigned and the number of neighbors used was 2. The higher

estimate was calculated with a more inclusive IDW interpolation of the chemical data (moderate

influence assigned to interpolated points far from the empirical data points) (Figure 4.10). In this

interpolation, the exponent was set at a value of 2 and the number of neighbors used was 12.

The streambed determinations of chlorinated mass discharge – from Darcy calculations and SBPVP

measurements – compared well with similar estimations conducted using data from the northern

streambank, as reported by Rønde et al. (2017). Based on Darcy calculations and PVP measure-

ments along a control plane (defined as a plane “oriented perpendicular to the groundwater flow

direction and that extends over the entire width and depth of the plume”), they estimated the total

chlorinated compound discharge to be between 204 kg/yr and 372 kg/yr. The low value of this

range was obtained using PVP data averaged over the control plane (Rønde et al. (2017), pg. 43),

raising the possibility that some zones of coincident contamination and high flow rates were not

sampled on the control plane. Note that the challenge of sampling the entire plume section is fa-

cilitated in the streambed, where flowlines converge. The highest estimate of mass discharge at

the stream bank reported by Rønde et al. (2017) was associated with Darcy calculations, which

used a geometric mean value of K (1.8 10−4 x m/s) from slug tests in streambank wells and a

hydraulic gradient normal to the control plane from piezometers installed on the streambank and

in the streambed (0.034).
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Figure 4.9: A plot of SBPVP velocities compared with Darcy-derived velocities from the Grindsted
Å. A single outlier is shown as an open circle. The black dots represent the experimental data, the
dot-dash lines represent the error envelope with 95% confidence, based on the measured velocity
range of 0 to about 5000 m/yr.

As expected from the water flux calculations, the total contaminant mass discharge calculated

with the temperature data yielded a much lower range of total chlorinated ethene discharge than

both the Darcy and SBPVP datasets (4.7 kg/yr to 5.1 kg/yr). For reasons previously discussed,

and because the mass discharges from the other methods substantially exceeded these values, the

temperature-derived estimations are thought to be erroneously low.

With detailed knowledge of the distributions of water discharge and chlorinated ethene occur-

rence in the streambed, it is possible to calculate mass discharge rates using equations 4.3 and 4.4.

Most importantly, the resulting pattern of total equivalent PCE mass discharges is not exactly rep-

resented by either the water velocity or pollutant concentration patterns in the streambed (compare

Figures 4.6, 4.7, 4.8, and 4.10). This divergence could occur as a result of either physical or chem-

ical/microbial processes. For example, where the highest flow zones do not coincide with the high-

est concentration zones, the less aggressively flushed sediments are able to retain the highest levels

of contamination for a longer period of time. Alternatively, the divergence could be the result of

differential transformation (or biotransformation) rates; sediments with slightly greater water resi-
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Figure 4.10: Contaminant mass discharge (J) was calculated using equation 4.3 based on concen-
trations from Figure 4.6A, and SBPVP data (vi) shown in Figure 4.8B.

dence times may have maintained the redox conditions necessary for dechlorination reactions that

produce cDCE and VC, hence these compounds – which make up the majority of the chlorinated

ethene loading at the Grindsted Å – would be associated with the lower seepage velocity zones.

Note also that the locations where transformations took place could have been some distance up-

gradient of the streambed. Regardless of the reasons for the divergence, this phenomenon implies

that concentration distributions do on their own reflect the risk associated with mass discharges

across the GWSWI. The same implication applies to flow measurements: high groundwater flux

estimates do not necessarily correspond to high contaminant mass discharges. Therefore, the re-

sults of this study suggest that detailed characterization of both the flow and concentrations may be

needed to properly assess risk. Moreover, knowledge of the locations of highest contaminant mass

discharges can be used to identify zones of greatest concern and guide highly focused remediation

plans, with associated cost and treatment efficiencies.

4.5 Conclusions

Field validation of the SBPVP suggests that it is a useful tool for high resolution monitoring and

identification of localized regions of high flow. Spatial patterns of flow distribution (i.e., loca-
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tion of high flow and low flow) tended to be similarly identified from temperature spears, mini-

piezometers and the SBPVP suggesting that the patterns of flow are well-delineated by all methods.

However, considering the magnitude of a previously reported total mass discharge (across a control

plane on an adjoining bank of the stream, 204 to 372 kg/yr), only the SBPVP and mini-piezometer

data reflect reasonable mass discharge values, 437.9 to 444.1 kg/yr and 435.2 to 438.2 kg/yr, re-

spectively.

While the Darcy and SBPVP methods were similarly viable in determining mass discharge (and

complementary in the type of data they provided), the SBPVP survey was conducted more quickly

and with less manpower than the mini-piezometer survey. This outcome presents clear potential

advantages for the use of the SBPVP in future investigations at the GWSWI of shallow streams.

While the SBPVP can efficiently provide detailed spatial information about flow distribution and

magnitude, the results from this work suggest that the temperature gradient method, which is fastest

to implement, could be used to great advantage in combination with the SBPVP by identifying or

verifying locations of the greatest water fluxes across the GSWSI.
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Chapter 5

Evaluation of flow patterns in a vertical flow

bioreactor in Commerce, Oklahoma

Prepared for submission to Groundwater Monitoring & Remediation

5.1 Abstract

In this study, the streambed point velocity probe (SBPVP) was used to characterize flow through

the bed of a passive Vertical Flow Bioreactor (VFBR) pond at the Mayer Ranch passive treat-

ment system (PTS) in Commerce, Oklahoma. The VFBR was constructed to remove metals from

groundwater originating from the Tri-State Superfund site to the north, and discharging naturally

from springs at the site. The velocity data were validated with a water balance and metals loading

rates in the VFBR bed were estimated for comparison with a previously reported treatability test.

The outflow calculated from SBPVP data came within 30% of the value suggested by measured

inflow rates. Water flow rates through the reactive bed were found to be an order of magnitude

greater than those employed in prior column testing. However, the resulting low residence times

were offset by apparently rapid chemical reactions and observed loading rates (42 mg/m3/d) con-

siderably below the capacities demonstrated in the laboratory tests (80 to 90 mg/m3/d). As a result,

the treatment system achieves its design objectives.
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5.2 Introduction

The Tar Creek Superfund site is located on approximately 40 square miles of northeast Oklahoma

in the abandoned Picher Mining Field. To treat metals-contaminated water from historic mining

activities, a passive treatment system (PTS) was designed and constructed by the University of

Oklahoma in Commerce, Oklahoma (Figure 5.1). The PTS design was motivated by the release of

regulated chemical constituents in the mine water over a period of 25 years, and construction was

completed in the 29th year of mine water discharge from springs in Commerce. Geochemical sam-

pling has shown that when the contaminated mine water arrives at the surface, it contains notable

concentrations of iron (192 mg/L), cadmium (0.015 mg/L), lead (0.067 mg/L), nickel (0.91 mg/L),

arsenic (0.064 mg/L) and zinc (8.24 mg/L). Aluminum, cobalt and manganese are also present in

trace amounts (Nairn et al., 2010).

Contaminated mine water reaches the PTS as artesian flow and, once in the PTS, water flows

through a series of processing units. The initial unit (C1) is an oxidation pond, which drains

through a branching outlet to two parallel series of ponds constructed as replicate treatment trains.

The treatment process comprises the following: surface-flow aerobic wetlands/ponds (C2N and

C2S), vertical flow bioreactors (C3N and C3S), reaeration ponds (C4N and C4S), and horizontal

flow limestone beds (no surface flow in these units, C5N and C5S). The branched flow is then

recombined into a final polishing pond (C6). The system has been in operation since 2008 and has

regularly met its treatment objectives, based on chemical analysis of the PTS outflow (Nairn et al.,

2011).

The purpose of this field study was to characterize the flow through one of the VFBR units, C3S,

to assess possible heterogeneity of flow through the reactive bed material, and to estimate metal
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removal rates for comparisons with the treatability work done during the design phase of the PTS

project (LaBar and Nairn, 2016).

5.2.1 Treatment pond C3S

The VFBR C3S occupies area of 774 m2. It was constructed with a 0.46 m thick layer of organic

substrate (45% spent mushroom compost, 45% hardwood chips, and 10% manufactured limestone

sand, hereafter referred to as SMS) underlain by a layer of limestone gravel containing perforated

pipe networks to collect the treated water and deliver it to the next pond in the treatment system

(Nairn et al., 2009). The gravel is underlain by a low permeability geotextile liner. The overall PTS

was designed to accommodate flows of up to 1000 L/minute (Nairn et al., 2010), corresponding

to a maximum flow capacity of 500 L/minute in C3S (with the remaining 500 L/minute passing

through C3N). Prior to this study, the pond had been in operation about nine years and there were

indications that the bed had become compacted. Permeability testing of the bed was subsequently

undertaken and the hydraulic conductivity (K) was estimated with four methods: (1) field falling

head tests (K = 29 cm/day), (2) slug testing using the Bower and Rice method (K = 17 cm/day),

and (3) laboratory falling head tests on cores collected in the field (K = 43 cm/day) (Page, 2016).

To address concerns regarding compaction and low K in the substrate, University of Oklahoma

personnel conditioned the bed by draining the pond and physically loosening the bed material in

2016. After reconditioning, the bed was tested again for its permeability, this time by slug tests in

selected locations (Dr. Bob Nairn, Pers. Comm.). The reconditioned bed was estimated to have

a hydraulic conductivity (K) of approximately 259 cm/day (Dr. Bob Nairn, Pers. Comm.). Note

that all velocity measurements described in this study occurred through the higher K reconditioned

bed.
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5.3 Methods

To determine patterns of flow through the bed of the VFBR, the streambed point velocity probe

(SBPVP) was used to make nine measurements across three transects. The transects were spaced

equally from the edges of the unit (Figure 5.2). Measurement locations along each transect were

selected to provide as even a sampling of the pond bed as possible, with some consideration given

to installation ease (in some locations the probe could not be satisfactorily advanced, possibly due

to blockage by large wood chips) and limitations arising from the length of the SBPVP electrical

cabling. No measurements were at the pond edges, where the bed was subhorizontal and the reac-

tive bed medium pinched out to be replaced by low permeability geotextile. The area of the pond

underlain by these sloped sides were omitted from the area estimated for the pond (774 m2).

Because the site water has high total dissolved solids (TDS), a saline tracer provided insufficient

electrical conductivity contrast to support SBPVP testing. To overcome this problem, deionized

water was used in all tests. The tracer was manually introduced in 1-mL injections performed

over 27 s to 36 s. Tracer breakthrough curves were analyzed with VelprobePE (Schillig, 2012),

modified to include analysis by the method of moments (!!!!!Devlin, 2017), which was used in

all cases. The probe was seated between 5 and 8 cm beneath the SMS surface. The probe was

installed with a horizontal hyporheic shield, as previously described (Cremeans and Devlin, 2017),

modified with saw teeth to facilitate cutting through the plant mats found growing on the SMS bed.

Eight installations were performed accessing the measurement site by wading into the pond, and

one additional location was instrumented from a canoe, due to low bed competence. The SBPVP

was further modified with the addition of a piece of sponge in the injection port, to prevent the fine

material in SMS from invading the line and causing a clog.

The inflow rate to the pond was measured in triplicate with a calibrated collection container and

a stopwatch on the day the SBPVP measurements were completed. The outflow rate could not be

directly measured because the drainage pipes to the next pond were below surface. Since the pond
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was not noticeably filling or draining, the outflow rate was assumed to equal the inflow rate in the

following calculations. To calculate a pond-wide retention time in the VFBR bed (equation 5.1),

the volume of pore water in the compost layer was estimated with equation 5.2. The bed was

assumed to be fully saturated.

tr =
Vpw

Qss
(5.1)

Vpw = n∗VSMStot = n∗ASMStot ∗d (5.2)

where, tr is the retention time of water in the SMS bed material (T), Vpw is the volume of pore water

in the saturated SMS material, (L3), Qss is the steady state flow rate through the pond (L3T−1), n

is porosity (dimensionless), d is the thickness of the SMS bed (L), VSMStot is the saturated volume

of the SMS bed material (L3), and ASMStot is the area of the pond underlain by SMS (L2). Here

units are presented in generalized form, with L equal to length, and T equal to time.

An estimate of Qss derived from the SBPVP measurements, QSBPV P, assuming a uniform bed

porosity, n,

Qss ∼= QSBPV P = n∑
i

viAi (5.3)

where n is porosity, and Ai is the area of pond represented by the SBPVP measurement at location

i. Combining equations 1, 2, and 3, and assuming the SBPVP measurements areas (Ai) are equal it

can be shown that

tr =
md
∑i vi

(5.4)

where m is the number of measurement areas. This shows that residence time can be determined

without reference to the porosity or the specific size of the measurement areas (as long as the as-

sumptions of area and porosity equalities are reasonable). This is a useful result, since porosity can

be a parameter with notable uncertainty attached to it, as discussed in the Water Balance section,

below.

78



The values of QSBPV P can be used to estimate metal loadings to the SMS (Watzlaf et al., 2004),

MLi j = ∑
i

CiQSBPV P (5.5)

where MLi j is the mass loading of contaminant j at location i (M T−1) and M is the generalized

unit for mass. For consistency with previously reported laboratory values and for the purposes of

this report, mass loadings are reported on a per volume of SMS basis, for which equation 5 can

modified as follows,

MLi j = ∑
i

CiQSBPV Pi

VSMSi
(5.6)

where MLVi j is the volume-based mass loading and VSMSi is the volume of saturated SMS associated

with sampling location i.

5.4 Results

The SBPVP velocity survey revealed a fairly uniform pattern of infiltration rates through the SMS

in pond C3S. Measured velocities ranged from 106 cm/day to 186 cm/day, except near the inlet

pipe (P3 in Figure 5.2) where a value of 54 cm/day was determined. Darcy calculations, using the

post-reconditioning K value of 3.00 ∗ 10−5 m/s, a total flow rate of 2.79 ∗ 10−3m3/s (Table 5.1),

and assuming n = 0.33, led to estimated seepage velocities in the bed of 0.94 m/day, within the

range of the measured values. The anomalously low seepage velocity at P3 is hypothesized to

be the result of selective degradation of the substrate near the inlet, resulting in relatively rapid

accumulation of muck. The inlet area was also the location where SBPVP deployment from a

canoe was necessary, due to the softness of the bed, which is consistent with the hypothesis. The

variability in sediment texture, between the inlet area and the rest of the pond, was noted during

the re-conditioning of the pond bed, indicating that seepage velocities were probably low at that

location before the re-conditioning took place in 2016 (Dr. R. Nairn, pers. comm).
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5.4.1 Water balance

To assess the accuracy of the SBPVP velocity estimations, a water balance calculation was per-

formed. Measurements of the inflow rates to C3S (Qss) were in the range of 2.70 ∗ 10−3m3/s to

2.80∗10−3m3/s on the day of testing (Table 5.1). If this was also the flow through the pond bed,

then the seepage velocity can be estimated from

v =
Qss

An
(5.7)

where A is the total area of the pond. Assuming Qss = 2.79∗10−3m3/s, n = 0.33, and A = 774 m2,

this calculation leads to v = 0.94 m/day, in agreement with the previous Darcy calculation.

Each of the SBPVP measured velocities may be assumed to represent an equal area of the VFBR

(about 86 m2). When these values are used in Eq 5.3, and the porosity is again assumed to be

homogeneously 0.33, the total SBPVP-derived flow rate overestimates the average measured in-

flow rate by about 30%, with a value of 3.59x10−3m3/s (Table 5.2). This level of agreement is

considered quite good and is probably attributable to the limited range of seepage velocities found

to exist in the bed. The consistency of flow rates from the Darcy calculation and the independent

water balance calculations provide strong corroborative evidence that the SBPVP measurements

are representative of seepage velocities in the pond bed.

The 30% discrepancy in the water balance is easily accounted for in the assumed porosity term;

for example, if the porosity is assumed 0.26 instead of 0.33, the water balance produces nearly

exact agreement between the measured inflow rate and QSBPV P. However, the porosity of SMS

was reported to be in the range of 0.42 to 0.87 in laboratory experiments LaBar and Nairn (2016)

and further work by Page (2016) suggests a range of 0.487 to 0.888, so the empirically derived

value of 0.26 appears to be low. Nevertheless, compaction of the pond bed could have contributed

to a porosity below that observed in laboratory testing, and 0.26 is within the range of effective
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porosities in field studies involving porous media (Freeze and Cherry, 1979; Wiedemeier, 1999),

so a lower than expected porosity cannot be entirely ruled out.

Applying these results to equation 5.4, and again assuming d = 0.46 m, the retention time for

water in the SMS bed is calculated to be 3.27 x 103 s, or 9.08 hours (ranging from about 7 hours

to about 11 hours for specific measurement areas, and about 20 hrs near the inlet pipe (P3 in Fig-

ure 5.1). Therefore, the residence time in the pond bed is considerably shorter than that reported for

the treatability columns (72 hours) (LaBar and Nairn, 2016). However, given concentration data

from the pond outflow, the smaller residence time doesn’t appear to be a problem for the water

treatment processes.

Figure 5.2: Aerial map view of the C3S pond, with SBPVP sampling locations shown. The first
number displayed by the sampling locations is the velocity estimated by Method of Moments
calculations. The second number is an optimized velocity estimated by fitting a 1-D solution to the
advection dispersion equation to the tracer breakthrough curves.
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Time(s) Volume (L) Rate of water entering (m3/s)
3.89 11 0.002828
4.21 11.5 0.002732
4.08 11.5 0.002819

Table 5.1: Inflow Measurements (5/16/2017)

SBPVP (cm/day) SBPVP (m/s) Area of Cell (m2) n Qi (m3/s) n Qi (m3/s)
54.0 6.25E-06 86.0 0.33 1.77E-04 0.26 1.38E-04

160.0 1.85E-05 86.0 0.33 5.26E-04 0.26 4.09E-04
106.0 1.23E-05 86.0 0.33 3.48E-04 0.26 2.71E-04
116.0 1.34E-05 86.0 0.33 3.81E-04 0.26 2.96E-04
148.0 1.71E-05 86.0 0.33 4.86E-04 0.26 3.78E-04
101.0 1.17E-05 86.0 0.33 3.32E-04 0.26 2.58E-04
110.0 1.27E-05 86.0 0.33 3.61E-04 0.26 2.81E-04
161.0 1.86E-05 86.0 0.33 5.29E-04 0.26 4.11E-04
138.0 1.60E-05 86.03 0.33 4.53E-04 0.26 3.52E-04
Totals: 773.9 3.59E-03 2.79E-03

Table 5.2: Water balance assuming equal areas around sampling points and two porosities.

In addition to porosity uncertainty, another possible source of error in the water balance arises

from the assumption of equal representative areas for each measurement. A positive bias in the

total QSBPV P could arise if the anomalous area surrounding the inflow pipe is larger than assumed

in Table 5.2. To investigate the sensitivity of the calculations to this possibility, additional calcu-

lations were performed in which the areas proximal to the inlet were adjusted to allow the inlet

sampling area to grow in size. Four inlet area scenarios were considered: 86.0 m2, 129.0 m2, 172.0

m2, and 193.5 m2 (Figure 5.3). In each case, Eq. 5.3 was re-evaluated to obtain the associated

value of QSBPV Pi. The largest possible value for the inlet area was estimated to be 193.5 m2, if

the boundaries of the inlet area were not to cross a neighboring sampling location. Inspection of

Figure 5.3 shows that uncertainty in the size of the low velocity zone of near the inlet cannot fully

account for the difference between QSBPV P and Qss.

A third explanation for the discrepancy between Qss and QSBPV P could arise from the assump-

tion of steady state flow. While pond height did not look noticeably different, during the testing
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period, it was observed that the inflow varied between days with rain events occurring overnight. It

is possible that C3S was undergoing a net draining of water during the testing period, accounting

for flows out of the pond, through the bed material, exceeding flows into the pond.

Finally, the SBPVP sampling density was relatively sparse. Sampling density may not be a se-

vere problem in this case, given the observed similarity of infiltration rates across the pond, and

the insensitivity to moderate variations to that distribution shown in Figure 5.3. Nevertheless,

sparse sampling density by its very nature can miss local incidences of heterogeneity that may

affect overall flow rates in an important way. For example, Schillig et al. (2016) demonstrated the

effect of a thin, high permeability stratum on the rate of nitrate mass discharge toward municipal

wells in Ontario, Canada. The stratum was missed by early characterization work with relatively

low well density. Béland-Pelletier et al. (2011) showed that chemical monitoring point density

was the likely primary source of error in estimating contaminant mass fluxes through a fence of

multilevel monitors in the CFB Borden aquifer, Ontario, Canada, which is generally regarded as

nearly homogeneous (Mackay et al., 1986). In the current case, a higher sampling density would

be useful along the boundaries of the VFBR, and in the vicinities of the largest observed velocity

variations (particularly in the inlet area of C3S) to better determine the presence of preferential

flow paths or zones of excessive compaction and clogging.

5.4.2 Metals removal rates

LaBar and Nairn (2016), conducted laboratory column experiments in which simulated ground-

water containing 0.5 mg/L of each of (partial list) Cd, Ni, Pb, and Zn was passed through a SMS

medium consisting of a 2:1 by volume mixture of the SMS and river rock. The volume of reactive

medium was 19.3 L and the flow rate was maintained at 3 L/day, resulting in an expected residence

time in the medium of about 72 hrs, assuming a porosity of 0.5. The effluent concentrations of

each of the metals was on the order of 0.05 mg/L, leading to estimated removal rates of each metal

(Zn, Cd, Ni, Pb) being in the range of 85 to 93 mg/m3/d (LaBar and Nairn (2016) Table 3).
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Figure 5.3: The effect of enlarging the inlet sampling area in the water balance. The inlet area has
the lowest infiltration rate of the bed. Increasing the size of this area decreases the total infiltration
rate of the pond. As shown, the decrease of total infiltration is never sufficient to achieve a balance
with the influent.

The data from the laboratory investigation above can be used in conjunction with the C3S pond

investigation. As discussed in the Water Balance section, the measured velocities of water moving

through the SMS bed material correspond to residence times in the bed between about 7 and 11

hours everywhere except near the inlet pipe, where residence times approached 20 hours. These

times are 5 to 10 times less than those established in the treatability columns, raising concerns over

the long-term viability of the SMS treatment bed. Note that this comparison applies only to times

in the pond bed material, not to the overall residence time in the pond, which would be greater and

could affect metals removal from the water. Also, the treatability testing focused on the reactive

material capacity to remove metals from the water, not the kinetics of removal. LaBar and Nairn

(2016) showed that the majority of Zn, Cd, Pb, and Ni mass was removed from the synthetic water

by the processes of adsorption to organics substrate material and precipitation as sulfides. Since

both metals sorption by organic material, and the processes of sulfate reduction to sulfide, and sub-

sequent precipitation, are known to occur over the timeframe of minutes to hours (Richards and

Pallud, 2016; Arshadi et al., 2014), it is likely that in this case the low residence times in the C3S

pond bed pose no immediate threat to the system performance (Table 5.3). This is supported by
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the low metals concentrations in the effluent of C3S, as reported by LaBar and Nairn (2018).

The order of magnitude larger seepage velocity in the pond bed, compared to the treatability

columns, potentially contributed to relatively large loading rates in the field case. To gain in-

sight into the magnitude of the metals loading to C3S, data reported by LaBar and Nairn (2018)

were used in equations 5.5 and 5.6 (Table 5.3). These data, which were collected prior to the recon-

ditioning of the SMS, represent field conditions at a time when the seepage velocity in the pond

bed may have been relatively low. Therefore, the calculations that follow should be considered

speculative.

As before, assuming equal areas represented by each water velocity measurement, and assum-

ing a bed porosity of 0.33, the total loading of all metals (Zn, Cd, Ni, Pb) to C3S was calculated

to be 4.16 x 104 mg/m3/d (Table 5.3), approaching three orders of magnitude greater than the col-

umn loadings. Nevertheless, data collected from the pond effluent showed that metals effectively

removed from the influent water (80 to 90% removal for Zn and Ni, which had influent concen-

trations of 0.5 mg/L or greater) (LaBar and Nairn, 2018). Thus, the shorter residence times and

greater loadings did not appear to compromise the VFBR performance. This result demonstrates

that the VFBR system is very robust.
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5.5 Conclusions

Three independent methods were used to quantify seepage velocities in the C3S VFBR pond in

Commerce, Oklahoma: a water balance, a Darcy’s Law calculation, and direct velocity measure-

ments with a SBPVP. In all three cases the seepage velocity was found to be on the order of 1

m/d, on average. The SBPVP also permitted an assessment of the variability of flow in the pond

bed, which was found to be within a factor of 1.6 everywhere except near the inlet to the pond,

where the substrate material may have degraded most quickly and accumulated a fine-grained,

low-permeability sediment layer.

A water balance performed on C3S yielded inflows and SBPVP-derived outflows agreeing to

within 30%, using the generic assumptions of a 33% porosity and equal areas represented by each

velocity measurement. The discrepancy could be explained by uncertainty in the effective porosity

value (n = 0.26 produces a perfect balance), a velocity sampling grid that was insufficiently dense,

or that flow through the pond was not at steady state on the day the velocity measurements were

made.

The hydraulic data collected in this work indicated that the residence time of water in the reactive

SMS bed material was as much as an order of magnitude less than that in the pre-design treatability

testing. This potential problem appears to have been offset in part by fast mechanisms of removal

– further kinetic studies are required to verify this conclusion. Overall, the metals loading rates

and removal rates in C3S were almost three orders of magnitude higher than those established in

the treatability testing columns, suggesting that the system is highly robust.
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Chapter 6

Conclusions and recommendations

6.1 Statement of technical and scientific contributions

The objectives of this study, as stated in the Introduction, are the following: 1) to develop and labo-

ratory validate a new device capable of generating high-density datasets at the groundwater-surface

water interface in a time-efficient and cost-effective way, while also minimizing potential sources

of error; 2) to apply the fully developed and laboratory validated SBPVP to the Grindsted Å field

site, to determine if the device worked in field settings; 3) to fully evaluate the SBPVP against es-

tablished tools for measuring flow across the GWSWI; and 4) to apply the high-density datasets to

field problems to gain further insight into patterns of groundwater-surface water exchange and their

influence on contaminant mass discharges. In general, this study accomplishes these objectives by

expanding the knowledge of water exchange across the GWSWI using high-density datasets (from

measurements in the GWSWI itself) to evaluate these flows. This study focuses, in part, on char-

acterizing a contaminated field site where natural groundwater-surface water exchange involves

measurable levels of contaminants. To broaden the settings examined, a geo-engineered system is

also included.

This study focuses on water exchange, and associated processes, at the groundwater-surface wa-

ter interface (GWSWI). The primary technical outcomes of this research are: 1) the design, and
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testing of a new tool, the streambed PVP (SBPVP), for quantifying flow across the GWSWI (ob-

jective 1); 2) a demonstration and field assessment of the tool in a side-by-side assessment of four

of the currently and commonly used methods of measuring flow across the GWSWI (objectives

2, 3); 3) the introduction and validation of a new approach for quantifying contaminant mass flux

into a stream, based on the SBPVP (objective 4) and 4) a demonstration that the new approach

can provide uncommonly detailed flux distribution data of great value to risk assessment efforts

(objective 4) 5) the application of this method to the characterization and performance assessment

of a passive vertical flow bioreactor (VFBR) that was serving as part of a remediation system for

removing heavy metals from discharging spring water (objective 4). Detailed conclusions associ-

ated with these technical contributions are given below in the Conclusions section.

The primary scientific outcomes of this research are: 1) the mapping of a stream reach showing the

separate contributions to contaminant mass flux from water flow and contaminant concentrations.

This separation has been well known in a conceptual sense, but its demonstration with field data at

the sub-meter scale is novel (objectives 2 and 4); 2) this research has shown, with field measure-

ments using multiple methods, that the variability of flow across the GWSWI is large compared

to the reproducibility of flow measurements commonly used. This suggests the importance of

mapping discharge zones in the greatest detail possible to ensure that all important points of dis-

charge are found (objective 3); 3) through field-based mass loading calculations, made possible by

SBPVP measurements, the attenuation capacity of an engineered woodchip and compost substrate

was greater than design specifications by about three orders of magnitude (objective 4).

6.2 Conclusions

The dissertation aimed to develop and validate the SBPVP, and apply the tool to specific field prob-

lems. To this end, the SBPVP was tested in the laboratory, and then in the field. It was concluded

that the SBPVP could be installed in sandy sediments up to 11 cm deep without bias and a mea-

surement range of 50 cm/day to 450 cm/day was established. In the field, the SBPVP produced
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results comparable to mini-piezometer data and Darcy calculations. Further, use of a hyporheic

shield was found to be an effective way to isolate the vertical component of flow in the streambed

and measurements were made from 18 cm/day to 2700 cm/day. A full measurement range was not

determined. The SBPVP was successfully deployed on foot and from a boat, in depths up to 3 m.

A more thorough comparison of methods revealed that SBPVP and mini-piezometer data (sup-

ported with slug testing) provided similar estimates of vertical seepage velocity, though the vari-

ance of the mini-piezometers was higher (likely due to the challenges of assigning accurate location-

specific values of the Darcy parameters K, and i). Seepage meters produced velocity estimations

that were comparable to mini-piezometer derived velocities, but had a consistent negative bias. The

reasons for this bias are not known for certain but could be related to the relatively large footprint

of the seepage meter compared to the other methods, and/or unknown issues related to the con-

struction or deployment of the devices. Temperature gradient data led to large underestimations of

vertical seepage velocities, likely because of horizontal hyporheic flow. All methods tested were

consistent in their ability to detect a qualitative increase in seepage velocities from the south end

of the test transect to the north end.

Detailed mapping of the discharge through the Grindsted Å streambed using the SBPVP, and

mini-piezometers, led to contaminant mass discharge estimates that were in good agreement with

independently estimated mass loadings determined across a transect on the north streambank.

This finding increases confidence in the reliability of the SBPVP method. Temperature gradi-

ent data correctly identified the major discharge zones faster than the SBPVP and mini-piezometer

methods. However, the magnitudes of discharge estimated from temperature gradients were much

smaller than those estimated from any other method. Even so, rapid delineation of discharge zones

could be useful and, at sites where this bias doesn’t occur, the temperature gradient method is the

fastest way to determine discharge. The second fastest method was the SBPVP, which could be

rapidly deployed and then take subsequent measurements in times typically less than one to two
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hours (as opposed to 24+ hours with the mini-piezometers). This speed of execution, coupled with

the value of knowing both the location and the magnitude of discharge, suggests that the SBPVP

method is very competitive from the perspective of time, and associated cost, requirements. When

coupled with contaminant concentration data from the streambed, SBPVP estimates of seepage ve-

locity can be used to calculate contaminant mass discharges. This work showed that the locations

of such discharge zones did not exactly correspond to either the locations of highest discharge or

contaminant concentrations. Since site characterization programs may typically focus on either

discharge zone mapping or plume mapping, they may miss details related to the true source of

risk, the contaminant mass discharge zones.

The SBPVP was also applied to the assessment of a manmade vertical flow bioreactor (VFBR)

in Commerce, Oklahoma. Overall, SBPVP measurements of flow through the VFBR compared

well with water balance calculations and Darcy calculations for the system, providing confidence

in the accuracy of the measurements. Flow through the VFBR was found to be relatively uni-

form, except for a limited zone near the inlet, where substrate degradation rates may have been

accelerated and flow was much slower. Throughout the VFBR, mass loadings of metals to the

sediments were nearly three orders of magnitude greater than those considered in treatability tests.

Yet, outflow concentration measurements suggest the system performs satisfactorily despite the

high loadings, establishing the robustness of this remediation approach. The quantification of the

actual mass loadings to the VFBR advances the technology by providing a means of identifying

possible sources of future failures or for the purposes of updating lifetime estimates for the VFBR

bottom substrate.

6.3 Recommendations

Throughout the development and application of the SBPVP, a few design upgrades were made in-

cluding the addition of teeth to the hyporheic shield, removable brackets, and an updated injection

port. However, to increase the applicability of the SBPVP, there are a few additional modifica-
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tions that could be useful. For example, modifications allowing the measurement of horizontal

hyporheic flow rates and the addition of a sampling port (to gather co-located shallow streambed

water samples) would be useful. Additionally, future work should be done to develop the use of

variograms to define the variability of seepage velocities in duplicate measurements. The tests

reported here were based on a minimal number of separate tests (4) and future testing should look

at the same procedure applied to 10 to 20 points distributed on the same scale (5 m), assuming

conditions similar to those encountered at the Grindsted site. Further studies should be conducted

on the capacity of VFBR substrate mixture to better establish porosity, hydraulic conductivity, re-

action kinetics and maximum loading capacity. With these data more fully established, an SBPVP

survey would provide an accurate barometer on the current state of health of the VFBR, and its

remaining lifetime.
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Appendix A

Streambed point velocity probe schematics

A.1 Original design

The streambed point velocity probe schematics were created as a collaborative effort between Allen

Hase, and Mackenzie Cremeans. These schematics are the initial design and, therefore, do not

include design upgrades added after the initial build. Figures A.1 and A.2 show the metal pieces of

the probe, which were fabricated from stainless steel. Figure A.3 shows the plastic pieces, which

were 3D printed on a UPrint by Dimensions with acrylonitrile butadiene styrene (ABS) plastic.

Figure A.4 is a schematic of the assembled SBPVP, showing the probe on the left and the full

assemblage (with pipe lengths and hyporheic shield) on the right. Due to the variability in metal

fabrication and 3D printing, all of which was conducted in-house, each device has its own set of

measurements that may or may not line up perfectly with these schematics. Therefore, when you

are conducting your measurements, be sure to use the measurements from your specific device to

calculate velocities.

A.2 Design updates

Design updates include making a threaded center bracket to improve the ease of removal and

reattachment of the hyporheic shield, cutting a new slot in the side of the top pipe of the probe
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Figure A.1: SBPVP schematics, page 1
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Figure A.2: SBPVP schematics, page 2
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Figure A.3: SBPVP schematics, page 3
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(to allow for a more forceful direct-push installation into harder substrates), adding teeth to the

hyporheic shield (to allow for installation through plant mats), and an improved injection port,

for use in fine-grained materials (Figure A.5). Further design plans were made, but not executed.

These include creating an SBPVP with an adjustable probe angle as well as a multi-level SBPVP,

to measure exchange at multiple depths simultaneously.
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Appendix B

Streambed point velocity probe build and

wiring

B.1 Building a streambed point velocity probe

The streambed point velocity probe, itself, is made of 11 pieces, not including the wires and in-

jection line. The stainless steel probe shank and drive point make up the base of the probe (B.1).

There are four stainless steel washers that act as the detector pairs on this probe, with 3 ABS plastic

washers and one ABS plastic port (plus a tracer port cheerio) to separate the detector pairs. The

drive point is threaded to screw into the shank, holding the remaining pieces onto the shank com-

pressed together (Figure B.2). To fully assemble the probe for field work, the wiring and tracer

line must be installed during probe assembly and run through an appropriate length of pipe for the

depth of water. Then, the handle, centralizing brackets, and the hyporheic shield must be attached

(Figure B.3). For the probe depicted, all metal pieces were fabricated in the University of Kansas

Physics Shop, and all plastic pieces were 3D printed on uPrint by Dimensions 3D printer. Each

component was designed in Google SketchUp and dimensions are detailed in Appendix A.
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Figure B.1: Main body of the SBPVP (A) Probe shank, including wiring holes and a slot for the
tracer line, is inside threaded on both ends to be attached to pipe (on the top) and to the probe tip
(on the bottom). (B) Probe tip, with a hole included to allow for tightening with tools. This piece
is pointed to allow for easier installation at the groundwater-surface water interface. (C) The two
pieces, as they fit together.

Figure B.2: (A.) All the plastic and metal pieces, in order, which make up the rest of the probe (with
the main body shown on the left) (B.) An assembled probe (wiring and tracer line not included).
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Figure B.3: To finish probe assembly, (A.) lay out the probe (Figure B.2B) and remaining pieces
(probe handle pieces, centralizing brackets, hyporheic shield, and lengths of pipe) (B.) Place cen-
tralizing brackets on the pipe (threaded bracket nearest to the handle side). Put handle together
and attach to pipe. Screw the probe onto the pipe. (C.) Attach the piece described in (B.) to the
hyporheic shield using the threaded centralizing bracket (which should be on top).
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B.2 Wiring a streambed point velocity probe

The streambed point velocity probe (SBPVP) operates on the same electrical principles as the orig-

inal point velocity probe, just with fewer halfbridges. As shown in the diagrams below, the SBPVP

only has four halfbridges. Halfbridges 1 (up) and 3 (down) are duplicated by halfbridges 2 (up) and

4 (down), respectively. The duplication is merely a safeguard, should one set of wiring short cir-

cuit, break, or otherwise have bad contact with its detector pair mid-testing. Additionally, to have

a fully functioning probe, there must be a ground wire (attached to the pipe above the probe and to

a ground slot in the datalogger) and a spider (connected to the four halfbridge slots and the excita-

tion slot on the datalogger). Visual explanations of the SBPVP wiring are presented in Figures B.4.

In order to collect data, the datalogger must be attached to a battery and have a program down-

loaded onto it. An example of a datalogger program (specifically, the one used most often through-

out this study) can be found below in Appendix C. To view the data, the datalogger must be attached

to a computer with LoggerNet downloaded on it, via an RS-232 cable. Data can be viewed during

collection or afterward. The data are processed in VelProbePE fitting either with the Advection-

Dispersion Equation (ADE) or method of moments. These are described more thoroughly in the

preceding chapters.

104



Figure B.4: SBPVP wiring diagram, depicting the battery to datalogger to SBPVP connections,
and indicating which plug is the correct one for a laptop connection.
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Appendix C

Example datalogger program

This is an example of a datalogger program written in Cr Basic for use on CR1000 dataloggers to

collect SBPVP data. It instructs the datalogger how to collect data through the SBPVP halfbridges

by measuring electrical resistivity on a series of halfbridges.

’CR1000

’Created by SCWIN (2.3)

’Declare Variables and Units

Public Batt_Volt

Public HalfBR(16)

Units Batt_Volt=Volts

Units HalfBR=mV

’Define Data Tables

DataTable(Devlin,True,-1)

DataInterval(0,1,sec,10)

Minimum(1,Batt_Volt,FP2,False,False)

Sample(1,HalfBR(1),IEEE4)

Sample(1,HalfBR(2),IEEE4)

Sample(1,HalfBR(3),IEEE4)
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Sample(1,HalfBR(4),IEEE4)

Sample(1,HalfBR(5),IEEE4)

Sample(1,HalfBR(6),IEEE4)

Sample(1,HalfBR(7),IEEE4)

Sample(1,HalfBR(8),IEEE4)

’Sample(1,HalfBR(9),IEEE4)

’Sample(1,HalfBR(10),IEEE4)

’Sample(1,HalfBR(11),IEEE4)

’Sample(1,HalfBR(12),IEEE4)

’Sample(1,HalfBR(13),IEEE4)

’Sample(1,HalfBR(14),IEEE4)

’Sample(1,HalfBR(15),IEEE4)

’Sample(1,HalfBR(16),IEEE4)

EndTable

’Main Program

BeginProg

Scan(1,Sec,25,0)

’Default Datalogger Battery Voltage measurement Batt_Volt:

Battery(Batt_Volt)

’Generic Half Bridge measurements HalfBR(1):

BrHalf(HalfBR(1),1,mV2500,1,1,1,2500,True,0,_60Hz,1.0,0.0)

BrHalf(HalfBR(2),1,mV2500,2,1,1,2500,True,0,_60Hz,1.0,0.0)

BrHalf(HalfBR(3),1,mV2500,3,1,1,2500,True,0,_60Hz,1.0,0.0)

BrHalf(HalfBR(4),1,mV2500,4,1,1,2500,True,0,_60Hz,1.0,0.0)

BrHalf(HalfBR(5),1,mV2500,5,1,1,2500,True,0,_60Hz,1.0,0.0)

BrHalf(HalfBR(6),1,mV2500,6,1,1,2500,True,0,_60Hz,1.0,0.0)

BrHalf(HalfBR(7),1,mV2500,7,1,1,2500,True,0,_60Hz,1.0,0.0)
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BrHalf(HalfBR(8),1,mV2500,8,1,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(9),1,mV2500,9,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(10),1,mV2500,10,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(11),1,mV2500,11,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(12),1,mV2500,12,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(13),1,mV2500,13,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(14),1,mV2500,14,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(15),1,mV2500,15,2,1,2500,True,0,_60Hz,1.0,0.0)

’BrHalf(HalfBR(16),1,mV2500,16,2,1,2500,True,0,_60Hz,1.0,0.0)

CallTable(Devlin)

NextScan

EndProg
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Appendix D

Vertical flow NeST floor schematics

The Vertical Flow NeST was developed as an offshoot from the work in Bowen et al. (2012).

The NeST developed by Bowen et al. (2012) simulates horizontal flow, the magnitude of which

is controlled by pumping velocity. In order to test a device made to quantify groundwater-surface

water exchange, a NeST that simulates vertical flow had to be constructed. The nested tank design

remained very similar, with the exception of higher walled tanks and no holes in the tanks. To

create upward or downward flow, a floor was designed in Trimble SketchUp, and 3D printed with

a UPrint by Dimensions with acrylonitrile butadiene styrene (ABS) plastic. Due to limitations of

the 3D printer stage (which can print to a maximum of 17 cm by 14.5 cm), the floor was printed

into 16 interlocking pieces. The 8 pieces that comprised the top of the floor had 560 perforations,

which were filled with synthetic sponge to prevent sand from filling the box. Water velocity is

controlled by pumping rate, and thus, theoretical seepage velocity can be calculated.

Above the floor, medium sand is hand packed into the tank to a depth of 40 cm. Above the

sand, there was open water, which was pumped back into the high head tank to maintain the head

gradient. An "expected velocity" can be calculated with the following:

v =
Q

A∗n
(D.1)
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where v is the expected velocity (L/T), Q is the discharge from the pump (L3/T) (usually measured

with a graduated cylinder and a stopwatch), A is the area of the NeST floor where flow can be

directed upward (L2), and n is the porosity of the sediment in the tank (unitless). More details

about testing in the NeST can be found in Chapter 2 of this dissertation.
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Figure D.1: Vertical flow NeST, schematic of the top
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Figure D.2: Vertical flow NeST, schematic of the bottom
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Appendix E

A simple model of the NeST

As discussed in Chapter 2, the simplicity of the NeST experimental set-up lent itself well to a very

simple modeling approach to predict outcomes. The model results are presented briefly in Fig-

ure 2.3 and the building of the model is further clarified here. The extent of non-uniformities in the

NeST were assessed with a two-dimensional (2D) steady-state flow model executed in Excel. As

stated in Chapter 2, and repeated here for convenience, the model domain had no-flow boundaries

on the left and right sides, a constant head boundary on the top, and a repeating series of constant

flux nodes separated by no flow nodes along the bottom, to represent the alternating inflow perfo-

rations and ‘dead’ zones of the floor panel. Homogeneous, isotropic, steady state conditions were

assumed throughout the sand, leading to the following finite difference equation to describe flow:

∆
∆h
∆x

∆x
+

∆
∆h
∆y

∆y
= 0 (E.1)

where hi, j is the head at node (i,j) and ∆x, ∆y are the distances between nodes as represented in

the model. The model was prepared in Excel with ∆x = ∆y which permitted Equation E.1 to be

simplified to:

hi, j =
hi+1, j +hi−1, j +hi, j+1 +hi, j−1

4
(E.2)
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with the head at each node in the model calculated, the vertical hydraulic gradient (gradvertical)

between each node could be determined from:

gradvertical =
hi, j −hi, j+1

∆y
(E.3)

The model grid was 21 nodes vertically by 36 nodes horizontally, representing ∆x = ∆y = 1 cm.

Information regarding the accompanying laboratory testing can be found in Chapter 2.

114



Appendix F

Injection Testing

F.1 Injection length and style tests

To determine the effect of hand injections on measurements, a comparison between hand injections

(conducted by M. Cremeans) and mechanized injections (using a KD Scientific Multi-Syringe In-

fusion Pump, Model 220) was made at three different injection speeds and two different pumping

speeds (Figure F.1, F.2). A comparison of the three injection speeds, with the mechanized method,

at the same pumping speed is also made in Figure D.3. As shown by these results, injection style

and speed have very little effect on curve shape, from the start of the curve over the peak. The tails

of each curve varied, but this had little effect on the velocity calculations, as shown in tables D.1

and D.2. The variety in velocity values suits the variability inherent to peristaltic pumps, which is

reflected in the range given by the theoretical velocity calculations for these tests. The results of

this laboratory study suggest that the bulk movement of tracer is negligibly affected by the noise

introduced in hand injections (as compared with perfectly even mechanized injections) and by in-

jection speed over a range of 5-20 s.

Mechanized injections were completed over a larger range of injection times (5s – 60s). The

results (summarized in Figure F.4, F.5, and Tables F.3 and F.4) suggest that very long injection

times affect the velocity calculation by biasing the peak to arrive slower than expected (based on
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theoretical velocities). Injection lengths up to 30 s provided reasonable measurements at the fast

pumping speed (approximately 1550 cm/day) (Figure F.4). All injection lengths provided reason-

able measurements at the slow pumping speed (approximately 215 cm/day) (Figure F.5). This

suggests that if your injection speed is not markedly slower than the speed the water is moving,

your breakthrough curve can be reliably used to calculate a velocity. Additionally, the variability in

velocity values is much higher at high velocities, suggesting that the device becomes less reliable

when the water is moving quickly. However, this is unlikely to affect measurements in the field

because groundwater velocities tend to be slow (100 - 200 cm/day, on average).
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Figure F.1: The above graphs show a comparison of injections conducted by a machine and in-
jections conducted by hand at three different injection speeds at a fast rate of flow. Graph A is a
comparison of 5 s injections. Graph B is a comparison of 10 s injections. Graph C is a comparison
of 20 s injections. All curves have been normalized in the y-direction to allow analysis of curve
shape. In each graph, the black dots are the mechanized injection and the black x’s are the hand
injections. Overall, the fit is good in all three until the tail of the curve begins. In the graphs sum-
marizing the 5 and 10 s curves, the observed curve shapes remain nearly identical throughout. In
the graph of 20 s tests, the tails diverge after the majority of the mass of tracer has passed by the
detectors.
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Figure F.2: The above graphs show a comparison of injections conducted by a machine and in-
jections conducted by hand at three different injection speeds at a slow rate of flow. Graph A is a
comparison of 5 s injections. Graph B is a comparison of 10 s injections. Graph C is a comparison
of 20 s injections. All curves have been normalized in the y-direction to allow analysis of curve
shape. In each graph, the black dots are the mechanized injection and the black x’s are the hand
injections. Overall, the fit is good in all three until the tail of the curve begins. In the 5 s and 10 s
curves, the observed curve shape remains nearly identical throughout. In the 20 s graph, the tails
diverge after the majority of the mass of tracer has passed by the detectors.
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Figure F.3: (A) A comparison of three injection speeds (as conducted by the syringe pump) at the
slow pump speed. (B) A comparison of the three injection speeds (as conducted by the syringe
pump) at the fast pump speed.
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Figure F.4: An expanded view of injection speeds, as conducted by a syringe pump, from 5s to 60s
injections at the fast pumping rate

Figure F.5: An expanded view of injection speeds, as conducted by a syringe pump, from 5s to 60s
injections at the slow pumping rate
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F.2 Injection volume, length, and rate

Injection volume is an important consideration when conducting tests in the field. Therefore, a

laboratory study was designed to determine the effect of injection volume on signal strength to

suggest a field protocol. To determine best practice, injection volumes were varied during the slow

pumping speed from the study of injection style (approximately 215 cm/day). All injections were

completed by a syringe pump to remove any inconsistencies associated with hand injections.

To look at volume and injection rate, tests were completed at two injection lengths, 20 seconds

and 30 seconds, to add to the commentary of Appendix D. In the 30 s injection series, volumes

were varied from 0.1 mL to 1.0 mL in 0.1 mL intervals. In the 20 second injection series, due

to limitations of the syringe pump, volumes were varied from 0.1 mL to 0.6 mL in 0.1 mL inter-

vals. Injection rate ranged from 18 mL/hr to 120 mL/hr. In the 20 second injection length tests,

Test Number Velocity (cm/day) Dispersivity Pulse Width Injection Speed (s)
Test 21 196.4 0.17 0.0041 5
Test 22 200.4 0.13 0.0040 10
Test 23 198.1 0.12 0.0042 20
Test 28 233.5 0.12 0.0043 5
Test 29 230.0 0.07 0.0032 10
Test 30 230.0 0.07 0.0033 20

Table F.1: Slow pump speed tests – Method of Moments results
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Test Number Velocity (cm/day) Dispersivity Pulse Width Injection Speed (s)
Test 1 1631.5 0.13 0.0037 5
Test 4 1580.4 0.10 0.0039 10
Test 5 1405.0 0.08 0.0036 20

Test 16 1686.2 0.13 0.0050 5
Test 17 1575.4 0.11 0.0045 10
Test 19 1487.5 0.08 0.0040 20

Table F.2: Fast pump speed tests – Method of Moments results

Test Number Velocity (cm/day) Dispersivity Pulse Width Injection Speed (s)
Test 21 196.4 0.17 0.0041 5
Test 22 200.4 0.13 0.0040 10
Test 23 198.1 0.12 0.0042 20
Test 24 197.2 0.12 0.0036 30
Test 25 192.1 0.12 0.0037 40
Test 26 195.8 0.10 0.0035 50
Test 27 194.2 0.09 0.0035 60

Table F.3: Injection length comparison – slow pump speed

Test Number Velocity (cm/day) Dispersivity Pulse Width Injection Speed (s)
Test 1 1631.5 0.13 0.0037 5
Test 4 1580.4 0.10 0.0039 10
Test 5 1405.0 0.08 0.0036 20
Test 7 1395.8 0.08 0.0036 30

Test 10 1047.8 0.07 0.0032 40
Test 12 920.2 0.07 0.0024 50
Test 13 846.1 0.07 0.0027 60

Table F.4: Injection length comparison – fast pump speed
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the 0.1 mL, 0.2 mL, and 0.3 mL tests resulted in ideal curves which are easily fit in VelProbePE

(Figure F.6 A, B, C). The 0.4 mL, 0.5 mL, and 0.6 mL tests are increasingly less ideal (Fig-

ure F.6 D, E, F). Analysis of the curves suggests that tracer is pushed onto the detector pairs by

the speed of the injection (not the pumped water flow), which is the initial spike (first visible in

the 0.3 mL test, and progressively more pronounced with greater volumes injected over the same

time interval). The 0.4 mL and 0.5 mL tests feature a second “hump” which is likely the tracer

pushed onto the bottom detector pair being carried over the top detector pair (effectively acting as

a second “pulse”). Notably, the second pulse is absent from the 0.6 mL test, likely, this is due to

tracer being pushed off the surface of the probe, making it unable to pass over the bottom detector

pair and then the top detector pair (Figure F.6 F). The 30 s tests display similar curve types, with

ideality extending to 0.4 mL, likely due to the slower rate of injection (Figure F.6 A, B, C, D, E, F).

A comparison of the 20 second and 30 second injection tests, from 0.1 mL to 0.6 mL suggests

that the rate of injection, with larger volumes of tracer, causes non-ideal curve shapes. While the

shape is not the typical breakthrough curve, the bulk movement of the tracer still represents a close

match to the theoretical velocity when interpreted with the Method of Moments technique.

F.3 Injection concentration

When designing a field test, injection concentration should be considered as well. To conduct a

useful test, the contrast in electrical conductivity between the tracer and the surrounding aquifer

water should be high enough to produce a noticeable, clear signal. In a general sense, a deionized

water tracer should be used in aquifers with high conductivities, such as those with high salt con-

centrations, to provide enough contrast. Conversely, in aquifers that have low conductivities (that

is, freshwater aquifers with low salt concentrations) a saline tracer should be used. In practice, it

can sometimes be difficult to tell which tracer to use. To discern the effect of tracer concentrations,

a laboratory study was designed around the use of three different tracer concentrations: 0.25 g/L

NaCl, 0.5 g/L NaCl, and 1 g/L NaCl (Figure F.7). All tracers were tested in tap water from the
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Kansas Geological Survey with a background electrical conductivity of 0.5 to 0.6 mV.

As expected, it was found that the higher concentrations of NaCl tracer solutions produced more

notable signals in the freshwater laboratory system (Figure F.7). Interestingly, the 0.25 g/L NaCl

solution is less conductive that the water in the laboratory apparatus, and therefore, displays a curve

in the opposite direction (Figure F.7). As a result, this curve, when interpreted in VelProbe, does

not need to be inverted but can be interpreted “as is.”
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Figure F.7: In the four tests shown above, pumping velocity, injection length, and injection rate
were held constant while tracer concentration was changed. As expected, tracers with higher
contrasts resulted in BTCs with more notable signals. The test with 0.25 g/L solution shows the
result of using a tracer with less conductivity than the surrounding aquifer.
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Appendix G

Laboratory depth test data

The tables in this appendix detail the data collected during the laboratory depth testing sequence

described in Chapter 2. The table includes the depth of installation, the expected velocity, the

measured velocity, and the ratio of measured to expected velocity.
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Install Depth (cm) Expected v (cm/day) Measured v (cm/day) Measured/Expected
7 452.7 446 0.99
7 452.7 449 0.99
7 452.7 440 0.97
7 452.7 450 0.99
7 452.7 445 0.98
7 452.7 444 0.98
7 452.7 448 0.99
7 452.7 451 0.996
7 452.7 452 0.998
7 452.7 450 0.99
9 430.8 430 0.998
9 430.8 432 1.00
9 430.8 429 0.995
9 430.8 434 1.01
9 430.8 423 0.98
9 430.8 428 0.99
9 430.8 431 1.00
9 430.8 433 1.01
9 430.8 430 0.998
9 430.8 427 0.99

11 445.4 530 1.19
11 445.4 499 1.12
11 445.4 500 1.12
11 445.4 495 1.11
11 445.4 501 1.12
11 445.4 496 1.11
11 445.4 385 0.86
11 445.4 430 0.97
11 445.4 450 1.01
11 445.4 430 0.97
13 423.5 325 0.77
13 423.5 330 0.78
13 423.5 331 0.78
13 423.5 369 0.87
13 423.5 340 0.80
13 423.5 332 0.78
13 423.5 365 0.86
13 423.5 330 0.78
13 423.5 341 0.81
13 423.5 360 0.85
13 420.1 302 0.72
13 420.1 286 0.68
13 420.1 284 0.68

Table G.1: Laboratory SBPVP depth test summary, page 1
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Install Depth (cm) Expected v (cm/day) Measured v (cm/day) Measured/Expected
17 411.6 362 0.88
17 411.6 344 0.84
17 411.6 325 0.79
19 415.3 273 0.66
19 415.3 331 0.80
19 415.3 311 0.75

Table G.2: Laboratory SBPVP depth test summary, page 2
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Appendix H

Grindsted Å 2015 data summary

A preliminary study of the main field site, Grindsted, was conducted in the summer of 2015 with

the SBPVP and temperature gradient methods, as well as a single location of seepage meter mea-

surements (Figures H.1 and H.2). Fourteen transects with five measurement locations apiece, 70

measurement locations total, were completed with the temperature spear. Due to time constraints,

only 10 locations were measured with the SBPVP. However, this preliminary study suggested that

the streambed of the Grindsted Å was highly heterogeneous, with hot spots of high flow near the

meander and comparatively lower flow near the bridge. This result prompted the further, more

detailed study of this site in the summer of 2016.

Additionally, this field campaign highlighted the "order of magnitude" differences between the

velocities suggested by the temperature spear data and the other methods. Due to this difference in

measurements, the experimental design for 2016 was adapted to include an additional conventional

method and to explore potential causes for the difference in measurements. All data collected are

listed in Tables I.1, I.2, I.3, I.4, I.5, I.6, I.7, I.8, I.9, and I.10.
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Appendix I

Grindsted Å 2016 data summary

The data detailed below are those used to generate the figures presented in Chapter 3 of this dis-

sertation. There are three velocity datasets (SBPVP, mini-piezometer, and temperature gradient).

This campaign also included the collection of seepage meter data (presented in Chapter 3) and

streambed morphology data. These datasets are also included for completeness.

I.1 SBPVP data – Grindsted, summer 2016

Below is the summary of the SBPVP field data discussed in Chapters 3 and 4 of this dissertation.

All these data are used in Chapter 4, while only a small subset are used Chapter 3.

133



UTMx UTMy SBPVP Velocity (m/yr)
494600.6208 6179157.676 0.0
494593.7525 6179167.118 11.0
494600.8832 6179164.082 14.6
494614.439 6179134.648 20.1
494597.248 6179165.769 25.6

494589.2053 6179158.511 35.6
494585.664 6179151.501 69.4

494587.1083 6179164.575 109.5
494580.5865 6179150.438 116.8
494615.9315 6179131.987 127.8
494592.3123 6179160.312 149.7
494610.1698 6179142.575 166.1
494612.9415 6179137.242 171.6
494611.5963 6179139.915 182.5
494614.8828 6179142.018 189.8
494605.5565 6179150.249 215.4
494577.9383 6179145.102 215.4
494614.745 6179138.382 222.7
494616.237 6179135.777 244.6

494611.8475 6179143.639 244.6
494582.2088 6179143.273 244.6
494594.1055 6179160.592 251.9
494600.2973 6179162.903 255.5
494586.743 6179154.264 292.0

494575.7017 6179142.813 292.0
494618.035 6179136.905 328.5

494613.5253 6179144.704 328.5
494619.5065 6179134.17 438.0
494620.9005 6179131.535 456.3
494613.2395 6179140.967 456.3

Table I.1: SBPVP data – Grindsted, 2016 – page 1

134



UTMx UTMy SBPVP Velocity (m/yr)
494604.1442 6179161.934 473.8
494608.2568 6179155.664 474.5
494622.361 6179128.935 511.0

494607.4543 6179147.92 547.5
494588.0037 6179159.378 565.8
494603.2633 6179160.869 584.0
494603.765 6179156.253 598.6

494588.0467 6179163.389 616.9
494608.953 6179145.313 631.5
494610.472 6179146.301 657.0
494606.581 6179150.924 660.7
494611.991 6179147.288 693.5

494604.3122 6179152.996 693.5
494587.9755 6179156.958 784.8
494608.63 6179152.272 850.5

494586.679 6179157.443 850.5
494604.8005 6179156.948 912.5
494584.9045 6179148.611 923.5
494609.0405 6179148.956 927.1

494580.7 6179153.423 949.0
494598.5398 6179159.368 1003.8
494616.5485 6179139.521 1010.6
494584.3987 6179161.98 1043.9
494594.1055 6179163.855 1113.3
494593.929 6179165.487 1113.5
494617.719 6179133.078 1149.8

494617.4475 6179129.416 1168.0
494610.6268 6179149.992 1186.3
494589.4497 6179166.378 1186.3
494602.3825 6179159.805 1222.8
494585.6003 6179161.113 1259.3
494605.836 6179157.642 1277.5

494582.7895 6179158.899 1277.5
494607.6055 6179151.598 1295.8
494596.172 6179160.314 1368.8
494596.71 6179163.042 1368.8

494619.174 6179130.476 1387.0
494584.423 6179151.982 1405.3
494596.979 6179164.405 1507.5

Table I.2: SBPVP data – Grindsted, 2016 – page 2
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UTMx UTMy SBPVP Velocity (m/yr)
494590.8617 6179159.833 1587.8
494601.5017 6179158.74 1694.7
494583.825 6179149.068 1719.2
494583.182 6179152.462 1825.0
494581.335 6179156.312 1861.5

494581.6443 6179140.243 1861.5
494579.5565 6179147.58 1934.5
494589.9233 6179161.019 1971.0
494599.1257 6179160.547 2007.5
494590.1653 6179164.861 2080.5
494584.086 6179158.414 2109.7
494581.431 6179146.805 2171.8
494581.941 6179152.942 2190.0
494585.391 6179154.776 2233.8

494577.1873 6179142.17 2233.8
494607.2707 6179154.997 2241.1
494619.035 6179126.867 2281.3

494583.3055 6179146.029 2281.3
494620.698 6179127.901 2336.0

494585.3825 6179157.929 2416.3
494588.985 6179162.204 2420.0

494591.5967 6179161.829 2493.0
494582.687 6179155.8 2591.5

494580.1587 6179140.885 2591.5
494586.802 6179160.246 2774.0

494609.6545 6179152.947 2810.5
494582.7455 6179149.525 2912.7
494594.282 6179162.223 3285.0

494606.2845 6179154.33 3321.5
494580.0735 6179144.188 3376.3
494581.666 6179149.981 3478.5
494584.039 6179155.288 3985.8
494578.673 6179141.528 3985.8

494605.2983 6179153.663 4062.5
494590.881 6179163.345 4380.0

494599.7115 6179161.725 4562.5
494606.8715 6179158.336 5131.9
494602.7295 6179155.559 5420.3
494596.441 6179161.678 9876.9

Table I.3: SBPVP data – Grindsted, 2016, page 3
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I.2 Mini-piezometer data – Grindsted, 2016

Below is the summary of the mini-piezometer field data discussed in Chapters 3 and 4 of this

dissertation. All these data are used in Chapter 4, while only a small subset are used Chapter 3.
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UTMx UTMy Piezo-derived velocities (cm/day)
494622.361 6179128.935 111.0
494620.698 6179127.901 665.0
494619.035 6179126.867 609.0

494620.9005 6179131.535 55.4
494619.174 6179130.476 443.0

494617.4475 6179129.416 443.0
494619.5065 6179134.17 249.2
494617.719 6179133.078 359.9

494615.9315 6179131.987 110.8
494618.035 6179136.905 276.9
494616.237 6179135.777 83.1
494614.439 6179134.648 0.0

494616.5485 6179139.521 0.3
494614.745 6179138.382 221.5

494612.9415 6179137.242 110.8
494614.8828 6179142.018 166.1
494613.2395 6179140.967 249.2
494611.5963 6179139.915 27.7
494613.5253 6179144.704 193.8
494611.8475 6179143.639 55.4
494610.1698 6179142.575 55.4
494611.991 6179147.288 221.5
494610.472 6179146.301 138.4
494608.953 6179145.313 110.8

494610.6268 6179149.992 359.9
494609.0405 6179148.956 276.9
494607.4543 6179147.92 138.4
494609.6545 6179152.947 719.9
494608.63 6179152.272 221.5

494607.6055 6179151.598 332.3
494606.581 6179150.924 110.8

494605.5565 6179150.249 0.0
494608.2568 6179155.664 110.8
494607.2707 6179154.997 664.5
494606.2845 6179154.33 636.8
494605.2983 6179153.663 996.8

Table I.4: Piezometer – Grindsted, 2016 – page 1
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UTMx UTMy Piezo-derived velocities (cm/day)
494604.3122 6179152.996 166.1
494606.8715 6179158.336 1273.6
494605.836 6179157.642 443.0

494604.8005 6179156.948 221.5
494603.765 6179156.253 221.5

494602.7295 6179155.559 1329.0
494604.1442 6179161.934 99.7
494603.2633 6179160.869 166.1
494602.3825 6179159.805 387.6
494601.5017 6179158.74 498.4
494600.6208 6179157.676 664.5
494600.8832 6179164.082 0.0
494600.2973 6179162.903 55.4
494599.7115 6179161.725 1772.0
494599.1257 6179160.547 376.6
494598.5398 6179159.368 249.2
494597.248 6179165.769 0.0
494596.979 6179164.405 332.3
494596.71 6179163.042 304.6

494596.441 6179161.678 1495.1
494596.172 6179160.314 293.5

494593.7525 6179167.118 27.0
494593.929 6179165.487 305.0

494594.1055 6179163.855 305.0
494594.282 6179162.223 720.0

494594.1055 6179160.592 55.0
494589.4497 6179166.378 304.0
494590.1653 6179164.861 554.0
494590.881 6179163.345 1119.0

494591.5967 6179161.829 637.0
494592.3123 6179160.312 27.0
494590.8617 6179159.833 415.0
494589.9233 6179161.019 526.0
494588.985 6179162.204 609.0

494588.0467 6179163.389 122.0
494587.1083 6179164.575 28.0
494584.3987 6179161.98 221.0
494585.6003 6179161.113 332.0
494586.802 6179160.246 720.0

494588.0037 6179159.378 138.0
494589.2053 6179158.511 0.0
494582.7895 6179158.899 304.6

Table I.5: Piezometer data – Grindsted, 2016 – page 2
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UTMx UTMy Piezo-derived velocities (cm/day)
494584.086 6179158.414 526.1

494585.3825 6179157.929 775.3
494586.679 6179157.443 193.8

494587.9755 6179156.958 166.1
494581.335 6179156.312 498.0
494582.687 6179155.8 692.0
494584.039 6179155.288 941.0
494585.391 6179154.776 609.0
494586.743 6179154.264 83.0
494580.7 6179153.423 235.4

494581.941 6179152.942 545.1
494583.182 6179152.462 520.4
494584.423 6179151.982 396.5
494585.664 6179151.501 24.8

494584.9045 6179148.611 ND
494583.825 6179149.068 ND

494582.7455 6179149.525 ND
494581.666 6179149.981 ND

494580.5865 6179150.438 ND
494579.5565 6179147.58 ND
494581.431 6179146.805 ND

494583.3055 6179146.029 ND
494577.9383 6179145.102 ND
494580.0735 6179144.188 ND
494582.2088 6179143.273 ND
494575.7017 6179142.813 ND
494577.1873 6179142.17 ND
494578.673 6179141.528 ND

494580.1587 6179140.885 ND
494581.6443 6179140.243 ND

Table I.6: Piezometer data – Grindsted, 2016 – page 3
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I.3 Temperature data – Grindsted, summer 2016

Below is the summary of the temperature field data discussed in Chapters 3 and 4 of this disser-

tation. All these data are used in Chapter 4, while only a small subset are used Chapter 3.
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UTMx UTMy Temp-derived velocities (cm/day)
494622.361 6179128.935 0.15
494620.698 6179127.901 0.94
494619.035 6179126.867 1.04

494620.9005 6179131.535 0.50
494619.174 6179130.476 1.63

494617.4475 6179129.416 1.01
494619.5065 6179134.17 0.41
494617.719 6179133.078 0.92

494615.9315 6179131.987 0.16
494618.035 6179136.905 0.69
494616.237 6179135.777 0.67
494614.439 6179134.648 0.09

494616.5485 6179139.521 0.00
494614.745 6179138.382 0.15

494612.9415 6179137.242 0.08
494614.8828 6179142.018 0.32
494613.2395 6179140.967 1.22
494611.5963 6179139.915 0.46
494613.5253 6179144.704 1.63
494611.8475 6179143.639 0.52
494610.1698 6179142.575 0.53
494611.991 6179147.288 0.67
494610.472 6179146.301 0.69
494608.953 6179145.313 0.48

494610.6268 6179149.992 3.80
494609.0405 6179148.956 2.24
494607.4543 6179147.92 1.58
494609.6545 6179152.947 4.37
494608.63 6179152.272 1.80

494607.6055 6179151.598 2.00
494606.581 6179150.924 0.58

494605.5565 6179150.249 0.10
494608.2568 6179155.664 0.34
494607.2707 6179154.997 1.65
494606.2845 6179154.33 2.60
494605.2983 6179153.663 3.25

Table I.7: Temperature data – Grindsted, 2016 – page 1
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UTMx UTMy Temp-derived velocities (cm/day)
494604.3122 6179152.996 0.79
494606.8715 6179158.336 1.97
494605.836 6179157.642 0.63

494604.8005 6179156.948 0.69
494603.765 6179156.253 0.56

494602.7295 6179155.559 2.69
494604.1442 6179161.934 5.08
494603.2633 6179160.869 4.65
494602.3825 6179159.805 12.78
494601.5017 6179158.74 16.17
494600.6208 6179157.676 7.55
494600.8832 6179164.082 0.17
494600.2973 6179162.903 0.79
494599.7115 6179161.725 5.35
494599.1257 6179160.547 2.63
494598.5398 6179159.368 1.82
494597.248 6179165.769 0.00
494596.979 6179164.405 8.06
494596.71 6179163.042 6.93

494596.441 6179161.678 30.25
494596.172 6179160.314 6.93

494593.7525 6179167.118 5.16
494593.929 6179165.487 20.40

494594.1055 6179163.855 21.22
494594.282 6179162.223 35.52

494594.1055 6179160.592 6.93
494589.4497 6179166.378 2.90
494590.1653 6179164.861 5.90
494590.881 6179163.345 16.60

494591.5967 6179161.829 10.00
494592.3123 6179160.312 2.50
494590.8617 6179159.833 2.96
494589.9233 6179161.019 4.29
494588.985 6179162.204 4.85

494588.0467 6179163.389 1.09
494587.1083 6179164.575 0.61
494584.3987 6179161.98 16.93
494585.6003 6179161.113 19.86
494586.802 6179160.246 32.79

494588.0037 6179159.378 11.54
494589.2053 6179158.511 2.37
494582.7895 6179158.899 6.29

Table I.8: Temperature data – Grindsted, 2016 – page 2
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UTMx UTMy Temp-derived velocities (cm/day)
494584.086 6179158.414 16.93

494585.3825 6179157.929 14.21
494586.679 6179157.443 6.78

494587.9755 6179156.958 4.84
494581.335 6179156.312 15.50
494582.687 6179155.8 30.20
494584.039 6179155.288 35.50
494585.391 6179154.776 24.20
494586.743 6179154.264 2.10
494580.7 6179153.423 24.19

494581.941 6179152.942 26.78
494583.182 6179152.462 32.55
494584.423 6179151.982 14.54
494585.664 6179151.501 5.97

494584.9045 6179148.611 17.00
494583.825 6179149.068 25.00

494582.7455 6179149.525 35.50
494581.666 6179149.981 24.20

494580.5865 6179150.438 2.10
494579.5565 6179147.58 1.11
494581.431 6179146.805 1.07

494583.3055 6179146.029 0.97
494577.9383 6179145.102 0.55
494580.0735 6179144.188 8.09
494582.2088 6179143.273 0.17
494575.7017 6179142.813 0.73
494577.1873 6179142.17 1.66
494578.673 6179141.528 3.48

494580.1587 6179140.885 2.00
494581.6443 6179140.243 0.92

Table I.9: Temperature data – Grindsted, 2016 – page 3

145



I.4 Seepage meter data – Grindsted, summer 2016

Below is the summary of the seepage meter field data discussed in Chapter 3 of this dissertation.

UTMx UTMy Seepage meter velocities (cm/day)
494614.439 6179134.648 12.85

494612.9415 6179137.242 25.10
494611.5963 6179139.915 19.26
494610.1698 6179142.575 26.33
494608.953 6179145.313 55.79

494607.4543 6179147.92 61.82

Table I.10: Seepage meter data – Grindsted, 2016
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I.5 Stream bottom profiles – Grindsted, 2016
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Appendix J

A report on interpolation methods

J.1 Introduction

Over the last sixty-five years, the field of geostatistics has developed many useful tools and meth-

ods for spatial modeling and interpolation (Krige, 1951; Matheron, 1971, 1973). A well-known,

and often used, geostatistical interpolation technique is kriging. Despite its popularity, it has been

shown that kriging tends to produce overly smooth results and therefore, sometimes fails to ac-

curately represent non-smooth processes (Goovaerts, 1997; Journel, 1974). Like all interpolation

methods, kriging averages data points to interpolate the spaces between them. This causes kriging

(and all exact interpolation methods) to (almost always) place local extremes at data locations.

This can result in the underestimation of high values and the overestimation of low values, which

makes representation of highly structured phenomena difficult (Mahmud et al., 2014). Stochastic

simulation, by design, is more able to reproduce spatial patterns and roughness (as found in a vari-

ogram), but stochastic simulations are often more computationally expensive and require extensive

knowledge of the site to ensure accuracy.

For the purpose of this report, we will compare results from various kinds of kriging with the

inverse distance weighting method. Kriging is a stochastic method which can provide prediction,

prediction standard error, probability, and quantile surface outputs. If measurement error is as-
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sumed, kriging is an inexact interpolator, and if no measurement error is assumed it is an exact

interpolator, like Inverse Distance Weighting. The advantages of this method include flexibility,

an allowance for the assessment of spatial autocorrelation, the ability to obtain prediction standard

errors, and the ability to decide the values of most parameters. The main disadvantages are that

you have to make many decisions about transformations, trends, models, parameters, and neigh-

borhood (which can be time and labor intensive), and that kriging has a tendency to over-smooth

data surfaces, particularly when values in close proximity have large differences. The assumptions

inherent in this method include that data comes from a stationary stochastic process and, some

methods require that the data have a normal distribution (it’s important to note that, in general, all

interpolation schemes perform better under this condition).

Inverse Distance Weighting (IDW) is a deterministic, exact interpolation method that produces

prediction output surfaces. The advantages of this method are that it is a fast computing method,

with few parameter decisions, and no assumptions about the data. The disadvantages include that

there is no assessment of prediction errors and that it produces distinctive “bullseyes” around data

locations.

J.2 Data exploration

Prior to attempting to krige, the univariate distribution of the data was explored to determine the

best kriging methods to try. For example, it might be important to know the distribution of the data

because some kriging methods require a normal Gaussian distribution of data (Ordinary, Simple,

and Universal kriging). While other methods do not require normal distribution of data, interpola-

tion methods perform better (in general) when data is normally distributed, therefore, transforms

are often applied to datasets to gain a normal distribution. For a histogram, this means the mean

and median will be similar, the skewness will be near zero, and the kurtosis will be near 3. In

the Normal QQ plot, the data is normally distributed if the points fall close to the 45 degree ref-

erence line. In the case of our data, the untransformed distribution is not normal and therefore,
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transforming the data could be useful (Figure J.1). To attempt to organize the data in a normal

Figure J.1: Untransformed Data -– Preliminary exploration of distribution

distribution, several transform options are available (either by hand or within ArcMap), including:

Log, Box-Cox, and Arc-Sin transforms. Log transforming our dataset brings it closer to normal

distribution, where skewness should be near zero (goes from 2.3052 to -1.0633), kurtosis should

be near three (11.798 to 4.19), and mean and median should be similar (1459.5 and 1113.4 to

2.9129 and 3.0467, respectively) (Figures J.1 and J.2). As noted before, the Normal QQ plot is

another way to check if the data is normally distributed. Figure J.3 shows a comparison of the

non-transformed data with the log transformed data. The log transformed data falls closer to the

line, but has significant tailing on the low and high ends. Non-normal distribution is expected for

field data sets. The spatial distribution of the points in the high and low tails is shown in Figure J.4

(highlighted in aqua on the QQ plot and on the map of data points). As described earlier, these

points tend to be the highest and lowest in the dataset and, upon the inspection below, are also

surrounded by points that suggest much higher or much lower velocities. Therefore, in this case,

a normal score transform is advised to “force” the dataset to be normally distributed for kriging

(Figure J.5).
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Figure J.2: A log transform of the data, which makes it almost normally distributed.

Figure J.3: On the left, a normal QQ plot of the untransformed data. On the right, a normal QQ
plot of the log transformed data.
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Figure J.4: An exploration of which points fall most off the normal distribution line. The points
highlighted in aqua on each left image of the river meander points correspond to the points high-
lighted in aqua on the QQ plot directly to the right.

Figure J.5: In general, the normal score transform helps with the tails, but a slight low tail still
exists, and the data still has some irregularities.
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Figure J.6: Meanders are a non-ideal shape to krige because not all straightline distances are
relevant to the process. Red arrows show the non-relevant paths (across the ground) ArcMap
includes in the semi-variogram. Distances across ground surface are not relevant to semi-variogram
analysis, only distances within the stream polygon (not shown explicitly). Therefore, paths (like
those shown as green arrows) are the only distances that should be included in analysis.

J.3 Semi-variogram analysis

The next step in the kriging process is to examine the semi-variogram. The first attempt was made

with the original form of the river. However, this introduces non-relevant distances to the semi-

variogram, because the area cannot be restricted to the non-rectangular polygon of the meander

(Figure J.6). Therefore, in order to more effectively examine the semi-variogram (and potentially

reduce the error of the kriging), the river meander was “straightened” (maintaining the correct

distances between points and river width) (Figure J.7).
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Figure J.7: The data points, after transformation into a roughly rectangular polygon (while main-
taining appropriate distances between data points).

Figure J.8: Initial semi-variogram fit

J.4 Simple kriging

Initially, simple kriging was applied to the dataset, after normal-score transformation. Figure J.8

shows the initial semi-variogram model fit. The red dots show the binned points, while the blue

crosses show the averages (which makes the point cloud easier to fit). Various semi-variogram

models were tried to determine the best fit (Circular, Spherical, Tetraspherical, Pentaspherical,

Exponential, Gaussian, Rational Quadratic, Hole-Effect, K-Bessel, J-Bessel, and stable. In this

case, K-Bessel offered the most reasonable semi-variogram model fit. However, even when the

data is kriged with the most reasonable semivariogram fit, the results are unreasonable due to

oversmoothing. Therefore, after this analysis, inverse distance weighting was chosen as the inter-

polation method for data in this dissertation.
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Appendix K

T-test results – comparison of methods

These results are referenced in Chapter 3 and detailed fully here. For these tests, the null hypothesis

examined is that the two measurement results considered are statistically the same. For each t-test,

alpha is applied as 0.025. This specific correction was applied because the values are examined

in a familywise pattern, and thus, analysis errors introduced by autocorrelation must be accounted

for. The strictest measure was chosen. The tables present results from two kinds of t-tests: (1)

results assuming equal variance (AEV) and (2) results assuming unequal variance (AUV). P values

are reported for each result, EVP and UVP, respectively. The calculations with the assumption of

equal variance is preferred because the calculation has more degrees of freedom, which means the

result has more statistical power.
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Appendix L

Raadvad preliminary data

As a side project through the Technical University of Denmark, a preliminary study of Raadvad,

Denmark was conducted with the SBPVP. The primary objective of the study was to determine

whether or not the SBPVP would function in such a complex geologic environment. The site

features large engineered structures, directing the water, from its use as a factory site for manu-

facturing bread and cheese slicers. The manufacturing history of this site resulted in a significant

amount of heavy metal contamination (in the soil and the water) as well as the contribution of sev-

eral subsurface contaminant sources. This contamination affects the stream, which has a control

structure on the eastern side, one engineered channel, and one natural channel. The streambed is

affected significantly by debris (on the surface of the bed and beneath it). Therefore, the environ-

ment presents a new opportunity to try the SBPVP. The result is a preliminary report documented

in this appendix.

The SBPVP was preliminarily tested across one transect at the Raadvad site, where temperature

gradients (taken with temperature profiler made of an Ebro TFN-520 Type K handheld thermome-

ter and a steel spear) suggested exchange zones were present. Three locations in that transect were

measured and a soil core was also taken (Figure L.1). The soil core provides some insight into

the stream bottom sediment, which had a fair mixture of sediment sizes (Figure L.2). Potentially,
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this level of heterogeneity caused some issues for probe to sediment contact, resulting in non-ideal

breakthrough curves (Figure L.3). For consistency in the data interpretation, all curves were fit us-

ing Method of Moments, which accounts for the bulk movement of the tracer. Location 1 had the

highest velocity estimates, followed by location 3, and then location 2. Generally, while the curves

are not as ideal as those from the sandy and organic environments presented in Chapters 2-5, the

results seem preliminarily promising for the use of this device in complex sediment settings. The

non-ideal breakthrough curve shapes likely occurred because the heterogeneity of the sediments

was on a scale smaller than the SBPVP’s scale of measurement. More testing would be needed

to determine the utility of this tool in this setting, and this testing was undertaken by a master’s

student at the Technical University of Denmark starting in April 2017. The results from this study

are documented in Schulz (2017).
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Figure L.1: A rough approximation of the Raadvad site showing the transect of interest with three
SBPVP measurement locations and a soil core location.
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Figure L.2: The soil core taken at the Raadvad site at the same time SBPVP testing was conducted.
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Figure L.3: The preliminary results from each location. Tests 1-3 were done at location 1.
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Figure L.4: The preliminary results from each location. Test 4 was at location 2, and tests 5-6 were
at location 3.
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