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Abstract Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil
conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed
hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by
sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches
provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical
framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical
mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction
surveys with empirical orthogonal functions provides additional environmental covariates related to soil
properties and states at high spatial resolutions (~5 m). A cross-validation experiment using eight different
spatial interpolation methods versus 120 in situ soil cores indicated an ~30% reduction in root-mean-square
error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical
derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived
environmental covariates were found to be good predictors of soil states (soil temperature, soil water
content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data
sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the
framework, with its flexible temporal and spatial monitoring options, will be useful in designing future
monitoring networks as well as support the next generation of hyper-resolution hydrologic and
biogeochemical models.

Plain Language Summary Understanding greenhouse gas emissions from landscapes with
variable saturated soil conditions is challenging given the highly dynamic nature of greenhouse gases
(GHGs) in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly
monitor these processes is limited by sparse in situ and surface observational networks. On the other hand,
proximal and remote sensing approaches provide spatial data sets but are limited by indirect observations
and infrequent mapping. In this work, we use a statistical framework to merge sparse sensor network
observations with reconnaissance mapping. The framework addresses a critical gap that exists in many
long-term monitoring networks, specifically how to combine sparse in situ monitoring networks with
proximal sensing. We found that combining time-lapse electromagnetic induction surveys with landscape
features was able to generate statistical models of (1) soil inventories (i.e. clay percent, total soil carbon, and
soil nitrogen) across the study site and (2) spatiotemporal models of key abiotic factors (i.e. soil temperature,
soil water content, and soil oxygen) that may affect GHGs. The developed framework allows for temporal
gap filling of individual sensors as well provides flexible geometric interpolation making it well suited for the
use in the next generation of hydrologic and biogeochemical models.

1. Introduction

Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions (e.g.,
aquatic terrestrial interfaces (ATI)) is challenging given the highly variable nature of GHG fluxes in both space
and time, dubbed hot spots, and hot moments [McClain et al., 2003]. A fundamental challenge for monitoring,
predicting, and mitigating landscape scale GHG fluxes is (1) where to place a finite number of soil sensors or
surface flux chambers? and (2) how to upscale those observations to the landscape scale where stakeholder
decisions are made? Recent work has addressed these two key questions with respect to total soil carbon
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stocks across Alaska using existing soil sample locations and readily available environmental covariates
[Mishra and Riley, 2015] as well as under various climate change scenarios [Vitharana et al., 2017]. However,
a robust statistical framework remains elusive for scales less than ~50 m due to the scale limitation of existing
environmental covariates, missing critical environmental covariates on vegetation and hydrologic processes,
and/or computationally resources [Mishra et al., 2010; Mishra and Riley, 2015; and Hengl et al., 2017]. In the
absence of effective monitoring strategies, proper inventory calculations remain challenging and thus limits
the effectiveness of establishing and regulating future carbon markets.

GHG fluxes involve complex abiotic and biotic processes and feedback operating at different scales [Hillel,
1998; Blagodatsky and Smith, 2012; Rubol et al., 2013; Mishra and Riley, 2015]. With respect to abiotic pro-
cesses, the flow of heat, vapor, and liquids are represented by several key state variables, soil temperature,
soil water content, and soil oxygen [Hillel, 1998]. The spatiotemporal dynamics of each state variable within
an ATI are controlled by both soil hydraulic/thermal properties and boundary conditions governing the
fluxes [Hillel, 1998]. Often landscape position (i.e., elevation and surface flow convergence), soil textural
class, and land use are used as criteria to select an experimental monitoring design as well as upscale
point scale properties or states to the landscape. Crow et al. [2012] discuss the challenges of soil water
content organization across scales being influenced by scale-dependent environmental covariates. With
respect to biotic processes, soil inventories (i.e., total soil carbon and total nitrogen) are used as criteria
to select representative sampling and monitoring locations [see, e.g., Mishra et al., 2010; Mishra and
Riley, 2012; and Hengl et al., 2017].

As discussed above selecting appropriate monitoring locations requires an understanding of both surface
and subsurface features and processes. Given the time, labor, and cost for collecting detailed soil cores to
estimate landscape patterns of soil hydraulic/thermal properties and soil inventories, monitoring networks
are often designed in the absence of such information or assessed after the installation of themonitoring net-
work (as is the case with the current study). The challenge of effective GHG sampling design, monitoring state
variables, upscaling state variables/fluxes, and understanding soil-atmosphere interactions is ubiquitous
across national and global monitoring efforts (e.g., Ameriflux, OzFlux, Carboafrican, South African
Ecological Observation Network, Fluxnet, National Ecological Observation Network, Long Term Ecological
Research network, Long Term Agricultural Research network, and Critical Zone Observatory). Here we inves-
tigate if hydrogeophysical mapping can provide critical missing environmental information related to subsur-
face hydraulic/thermal properties and soil inventories at scales less than 50 m at an existing long-term ATI
monitoring study site in Ohio, United States [Jarecke et al., 2016].

While hydrogeophysical methods have a long history of use in geologic and hydrologic studies [Jakosky,
1950], their widespread use in disciplines such as soil biogeochemistry [Binley et al., 2015] has been limited
due to the “soft” data that is inherently generated. For example, in this study we used electromagnetic induc-
tion (EMI) mapping which measures the bulk electrical conductivity (ECa) of soil in the near surface [McNeill,
1980; Abdu et al., 2008]. It is well known that ECa varies with soil temperature, soil water content, and soil
cation-exchange capacity [Friedman, 2005], thus obfuscating which soil property or state is being measured
[Altdorff et al., 2017]. In order to better isolate soil properties and states from ECa, previous work has devel-
oped correction factors for changes in soil temperature [Friedman, 2005] and used time-lapse differencing
to isolate time-varying components, such as subsurface water flow pathways [Robinson et al., 2009; Franz
et al., 2011]. As an extension of time-lapse ECa differencing, here we will further deconstruct the variability
in the images using the technique of empirical orthogonal functions (EOF) [Perry and Niemann, 2007] in order
to better predict spatial soil properties [Pedrera-Parrilla et al., 2016]. We will then investigate whether the
deconstructed hydrogeophysical maps and landscape position (specifically elevation and topographic wet-
ness index (TWI), as defined by Sorensen et al. [2006]) are good environmental covariates to predict soil prop-
erties and states across space and through time.

The primary objective of this work is to use a robust statistical framework to merge sparse sensor network
observations with reconnaissance style hydrogeophysical mapping at a well-studied site in Ohio. Themerged
data sets will provide critical spatiotemporal monitoring of key abiotic state variables and properties that
potentially influence surface GHG emissions (see Graf et al. [2012] and Fóti et al. [2016] for spatial soil respira-
tion studies). Specifically, we will use time-lapse EMI imagery with other common environmental covariates
to generate (1) spatial interpolation of clay percent, total soil carbon, and total nitrogen across the study site
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at high spatial resolutions (5 m) and (2) spatiotemporal models of soil temperature, soil water content, and
soil oxygen. Given the universal challenge of scaling sparse monitoring networks to the landscape scale,
we envision the identified hydrogeophysical mapping techniques, statistical framework, and upscaling
procedure to be of widespread interest to both the hydrological and biogeochemical communities.

2. Materials and Methods
2.1. Site Description

The study site is located in the Great Miami Wetland Mitigation Bank, a 46 ha restored wetland in Trotwood,
Montgomery County, Ohio, United States (39.7808°N, �84.3350°W; Figure 1) [Jarecke et al., 2016]. The study
site serves as a wetland mitigation bank to provide compensatory mitigation for impacted waters of the
United States as authorized under the Clean Water Act. The project is funded and managed by the Five
Rivers Metro Parks of Dayton, OH. The restoration involved extensive Earth moving during 2011 to create
Earth dams around the study site boundary and planting native wetland and upland vegetation during
2012 (a mix of perennial and annual grasses and forbes). An earthen wall encompasses the northern and

Figure 1. (top) Location of study site in western Ohio. (bottom) Layout of sensor network (red stars) and location of
extracted soil cores (black dots). The site shows moderate changes in elevation (0.5 m contours included) and distinct
surface convergence zones (shown by topographic wetness index and background surface). The site is bounded by a built
up levee (north and east sides) that creates a permanent wetland feature. The site will then fill with water during periods of
seasonal rainfall.
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eastern boundaries creating a seasonal wetland following rainy periods. Previously to 2010, the site was pas-
sively drained (via subterranean tile networks) for row crop production for over 100 years.

Average annual precipitation is 1005 mm, and average annual daily temperature is 10.8°C. The soils at the
study site are characterized as poorly drained silty clay loam (Brookston, fine-loamy, mixed, active, and mesic
Aeric Endoaqualfs). In November 2011, 120 soil cores uniformly distributed around the study site were col-
lected and analyzed for soil texture, total soil carbon, and total nitrogen in four layers down to ~1 m depth
(see Table S1 in the supporting information). The site contains moderate topographic relief (maximum slope
of 2.75%; Figure 1) and defined drainage patterns (as reflected by the TWI; Figure 1).

2.2. In Situ Sensor Network

In April 2012, an in situ sensor network was installed at 24 locations (red stars in Figure 1) to record soil water
content, soil temperature (SDI-12 hydra probes, Stevens Water, Portland, Oregon), and soil oxygen (SO-110
soil O2 sensors, Apogee Instruments, Logan, Utah) at 30min intervals and a depth of 10 cm. The soil O2 sensor
has internal temperature composition circuitry, and the data are expressed as relative concentration, i.e., the
mixing ratio as a percentage with a maximum reading equal to atmospheric O2 concentration of 20.9%. The
O2 sensors used the sensor mV output in open air at 100% humidity to calibrate individual O2 sensors relative
to the atmosphere [Jarecke et al., 2016]. The soil O2 sensors were installed horizontally at 10 cm of depth into
the wall of a 20 cm deep pit by removing the shape and volume of soil to be occupied by the sensor and
inserting the sensor into this void before back-filling the pit with soil. All sensor observations are transmitted
through a cellular network to an offsite server. Due to sensor errors and power failures gaps exist in the
measurement record for individual sensors and the entire network. For the work presented here we will
analyze data over the first 19 months of the experiment, 1 May 2012 through 31 December 2013, and the
10 cm soil depth (see Table S2 for daily average values and Table S3 for location and corresponding
environmental covariates).

2.3. Electromagnetic Induction (EMI) Surveys

Between 1 September 2015 and 22 November 2015 we collected seven EMI surveys at the study site using a
Dualem-21S (Dualem Inc., Ontario, Canada) over a range of dry and wet soil conditions. Using an all-terrain
vehicle, we pulled the EMI instrument with a plastic sled recording electrical conductivity measurements
every second and integrating the GPS locations with an Archer Field computer (Juniper Systems, Logan,
UT). The ~16 ha surveys took approximately 3 h to complete using 10 m transect spacing and driving at
speeds of 8 kph or less in a boustrophendonic pattern (~11,000 data point per survey). The EMI works by
transmitting a knownmagnetic field, which induces an electric field in the soil and thus a secondary magnetic
response, which is then measured by the sensor [McNeill, 1980]. The ratio of the magnitude of the primary
and secondary magnetic field is proportional to the apparent soil bulk electrical conductivity (ECa,
mS m�1) [McNeill, 1980]. Measurements of ECa have been used to quantify soil structure [Hendrickx et al.,
2002; Hendrickx and Kachanoski, 2002], clay content [Triantafilis and Lesch, 2005], and subsurface water flow
paths [Robinson et al., 2009; Franz et al., 2011] by measuring the electromagnetic properties of the combined
soil water matrix [Friedman, 2005]. We note that the EMI surveys (2015) were collected after the soil core
extraction (2011) and period of in situ observations from the sensor network (2012 to 2013). Design of future
sensor networks in combination with hydrogeophysical surveys will be discussed in section 4.1.

2.4. Empirical Orthogonal Function (EOF) Analysis

The purpose of EOF analysis is to decompose variability in observed data into a set of time-invariant ortho-
gonal spatial patterns (EOFs) and a set of time series called expansion coefficients (ECs). Based on EOFs,
the original coordinate system is rotated into a new system aligned along perpendicular axes. By retaining
only significant EOFs, EOF analysis can effectively reduce the dimensionality of the data set while preserve
most of the variability in the data. Detailed procedures for performing EOF analysis can be found elsewhere
[Perry and Niemann, 2007; Korres et al., 2010], and only a brief discussion is offered here. In this work we will
perform EOF analysis on both time series sensor observations as well as repeated imagery from the EMI time-
lapse mapping.

With respect to sensor time series EOF analysis, we take a data set with n locations and m observations at
each location, where the spatial anomalies of the sensor observations can be computed as
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ai tð Þ ¼ si tð Þ � 1
n
∑
n

j¼1
sj tð Þ (1)

where ai(t) and si(t) are the sensor observation spatial anomaly and sensor observation at location i and time t,
respectively. A matrix of sensor observation spatial anomalies, A (capital letters in bold denote matrices), can
be constructed as

A ¼
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

2
64

3
75 (2)

Then, an empirical covariance matrix V can be calculated as

V ¼ 1
m� 1

ATA (3)

where the superscript T indicates the matrix transpose.

To perform EOF analysis, we find eigenvectors and eigenvalues for V, which satisfy the following equation.

V�E ¼ E�L (4)

where E contains eigenvectors (i.e., EOFs) in columns

E ¼
e11 ⋯ e1n

⋮ ⋱ ⋮

en1 ⋯ enn

2
64

3
75 (5)

and L contains eigenvalues along the diagonal

L ¼
l11 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ lnn

2
64

3
75 (6)

The above procedure rotates the original coordinate axes with each axis indicating a sampling time into a
new set of orthogonal coordinate axes with each eigenvector representing a new axis. The eigenvalues
explain the variance in the data along the direction of each corresponding new axis, and the portion of
the explained variance (EVk) by the kth new axis in the total variance can be computed as

EVk ¼ lkk
∑np¼1lpp

(7)

The eigenvectors are then arranged according to eigenvalues: the first axis explains the largest variance in the
data, while each following axis explains the largest remaining variance and is orthogonal to other axes. The
ECs are then found by projecting A onto E.

F¼A�E (8)

where F contains each ECs in columns. Based on the explained variance only significant EOF/EC pairs are
retained for the remaining analysis (here defined as a threshold of greater than ~8% explained variance;
see Peres-Neto et al. [2005] for a complete discussion).

With respect to the EOF analysis of the EMI time-lapse imagery, the procedure is identical as above save the
initial construction of spatial anomaly matrix A. Here we computed the spatial anomalies for each EMI grid
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location on the same sampling date. The resultant V is 7 × 7 resulting in seven EOF/EC pairs from the seven
EMI images collected. With respect to the sensor observations they resulted in up to 24 EOF/EC pairs based on
the number of sampling locations. Note that some sensor locations were not included in the analysis due to
sparse records due to sensor failure. Following the EOF analysis the time series or spatial image can be recon-
structed using only the retained EOF/EC pairs. We note that while a single set of EOFs are used the EC values
are found at each time step using the sensor observations and equation (7). For missing individual sensor
observations the spatial mean is used to gap fill the observation record. This procedure is a slight modifica-
tion to other work [cf. Perry and Niemann, 2007], where previous work used only the spatial network mean
and a seasonality function to estimate the time varying EC values. See R code in the supporting information
for full methodological details.

2.5. Spatio-Temporal Statistical Analysis

The EOF/EC pairs from the time series analysis were combined with landscape environmental covariates (ele-
vation, TWI, and ECa EOFs) to scale the observations across the study site for each day. We used multivariate
linear regression to explore different statistical models for the analyses. Final model selection was based on
the prediction sum of squares (PRESS), see attached R code in the supporting information. In addition, a cross-
validation experiment was performed for all statistical models where appropriate. With respect to the spatial
analysis we considered eight different interpolation methods: linear (V4 method in MATLAB in R2015b),
inverse distance weighted with fixed radius (here 50 m), inverse distance weighted with fixed number of
points (here 10), ordinary kriging, and regression kriging with elevation, TWI, ECa EOF1, and ECa EOF2. All spa-
tial analyses were conducted in MATLAB R2015b using standard and user community libraries. A summary of
all raw data and cross-validation experiments are provided in the supporting information. With respect to the
time series analysis and cross-validation results, R code is provided in the supporting information. With
respect to the spatial analyses and cross-validation results, MATLAB code can be requested from the corre-
sponding author. Finally, a summary of each data set, statistical analyses, resulting products, and information
is provided as a flowchart in Figure 2 to help orient the reader for the remainder of the manuscript. The flow-
chart also serves as a general framework for merging sparse observational networks with hydrogeophysical
data and environmental covariates.

3. Results
3.1. Spatial Models of Landscape Soil Properties

Spatially distributed estimates of soil properties over the landscape are often estimated from spatial interpo-
lation of core samples collected from a grid or from available data sets like Soil Survey Geographic Database
(SSURGO) [Soil Survey Staff, Natural Resources Conservation Service, 2016, http://websoilsurvey.nrcs.usda.gov/].
For fine-scale information and detailed analyses the SSURGO data sets are often too coarse. On the other
hand, grid samples of soil cores are time and labor-intensive. Moreover, the spatial correlation length from
grid sample soil properties is often short leading to problematic spatial interpolation from techniques like kri-
ging without dense observations. As an alternative strategy, here we investigate the correlation between the
EMI survey results with the 2011 soil core data set. While this strategy is not new [Pedrera-Parrilla et al., 2016],
here we argue that the EOF/EC pairs from the time-lapse imagery will be better environmental covariates
with soil properties as individual EMI surveys are known to be affected by soil temperature, soil water content,
pore water pH, etc. [Friedman, 2005].

Seven EMI surveys were conducted between September and November 2015 with two relatively dry sur-
veys, two wet surveys, and three extremely wet surveys following seasonal rainfall (Figures 3a–3g). The
ECa values were corrected for soil temperature changes, and erroneous readings were removed following
the same procedures detailed in Franz et al. [2011]. Following quality assurance/quality control the
temperature-corrected ECa values for each survey were interpolated to a 5 m grid using ordinary kriging
(see Table S4 for processed data and corresponding environmental covariates). Next, the interpolated ECa
values were analyzed with EOF to generate seven EOF/EC pairs (Figure 3h and Tables 1 and S4). EOF analysis
indicated that the first EOF/EC pair explained 82.4% of the spatial variability followed by pair two which
explained 6.7% of the variability. The other five EOF/EC pairs contributed less than 6% explained variance
and were discarded. A leave one-leave-out cross-validation analysis of the seven images indicated that four
surveys (ideally two wet and two dry) were sufficient to estimate the first two EOF/EC pairs, with less than
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5% changes in EOF coefficients. The reduction in required EMI surveys will streamline this method for other
applications in the future.

The two selected EMI EC/EOF pairs (ECa EOF1 and ECa EOF2) were then used as environmental covariates to
investigate different statistical models using laboratory-derived properties obtained from the 120 soil cores
extracted from the site in 2011 (Table S1). Each core was analyzed for sand, silt, clay weight percent, total
soil carbon, and total nitrogen in four layers every 25 cm. The vertically averaged values from each core
were then regressed against the corresponding 5 m grid site elevation, TWI, ECa EOF1, and ECa EOF2
(Table S1 and Figure 4). Figure 4 illustrates that clay weight percent, total soil carbon, and total nitrogen
are strongly linear correlated to elevation, TWI, and ECa EOF1, albeit with significant scatter. Computing
the semivariogram [Goovaerts, 1997] from all 120 cores resulted in correlation lengths of 120 m for clay,
35 m for total soil carbon, and 95 m for total nitrogen, thus requiring fairly dense grid sampling for
spatial interpolation.

Next we performed a cross-validation experiment for eight different spatial interpolationmethods for each of
the three properties. Here we randomly selected 12, 30, 60, 90, and 108 soil cores to perform the spatial inter-
polation and compared the results against the remaining validation cores. We repeated this analysis 10 times
and reported the average root-mean-square error (RMSE) for the validation cores (see Figure 5 for average
results, Table S5 for all cross-validation simulation results, and Figure 6 for best fit results). With respect to clay
weight percent we found the average cross-validation RMSE decreased from 4.57 to 3.18 (a 30.5% error
reduction) using regression kriging with ECa EOF1 versus linear interpolation. Similarly, for total soil carbon
we found an RMSE reduction from 0.776 to 0.555 (a 29.5% error reduction) using regression kriging with
ECa EOF1 versus linear interpolation. With respect to total nitrogen we found an RMSE reduction from
0.1187 to 0.1165 (1.5% error reduction) using regression kriging with TWI versus linear interpolation. We note
that several methods produced similar results for total nitrogen. Most importantly, the cross-validation results
clearly illustrate greater RMSE error reduction in clay weight percent and total soil carbon weight percent

Figure 2. Flow diagram summarizing the available spatial and temporal data sets (blue box), statistical analyses (yellow
box), generated products (purple box), and information (green box). The remaining figures, tables, videos, and support-
ing information summarize results of each box.
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using regression kriging with ECa EOF1 versus linear interpolation or other regression kriging with
environmental covariates. Furthermore, we note that the use of regression kriging with ECa EOF1 will
require fewer sampling locations for spatial interpolation as compared to linear interpolation or inverse
distance weighted methods which are subject to “bulleyes” and/or smoothing local features. Consideration
of soil environmental covariates, like ECa EOF1, may be beneficial for resampling efforts of existing sites or
designing future sampling strategies to optimize the number and location of in situ samples.

Figure 3. Maps of temperature corrected bulk electrical conductivity (ECa) from (a–g) seven survey dates and (h) first
empirical orthogonal function (EOF) of ECa surveys.
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3.2. Temporal Reconstruction and Gap Filling of In Situ Sensor Data Using EOF Analysis

Using up to 24 in situ sensor locations we used EOF to analyze daily soil water content, soil temperature, and
soil oxygen at 10 cm depth between 1 May 2012 and 31 December 2013 (Figures 7a, 8a, and 9a and Tables S2
and S3). The EOF analysis indicated that the first EOF/EC pair (of the 24) were above the 8% threshold for soil
temperature (88.9% explained variance), three EOF/EC pairs for soil water content (38.7%, 25.5%, and 12.4%),
and four pairs for soil oxygen (40.3%, 16.9%, 9.2%, and 8.3%) (Table 1). Using the selected EOF/EC pairs, the
reconstructed and gap-filled time series of the in situ data are illustrated in Figures 7b, 8b, and 9b. We note
that ~200 observations were needed to estimate the time-invariant EOF coefficient for soil temperature and
first two soil water content EOFs, while ~390 observations were needed to estimate the first two soil oxygen
EOFs. All data were needed to estimate the third soil water content EOF and third and fourth soil oxygen
EOFs. See R code in the supporting information for details on EOF estimation and gap filling procedure.
Table 3 summarizes the individual sensor daily RMSE during calibration and reconstruction gap
filling periods.

With respect to goodness of fit we find that 19 of the 24 soil temperature sensors have RMSE <1°C for the
calibration period and 18 of 24 have RMSE<1 °C for the reconstruction period. Sensor T3J2 behaves the poor-
est (RMSE = 2.04°C). With respect to soil water content we find that 19 of the 20 sensors have RMSE<0.04 m3/
m3 for the calibration period (threshold defined for validation of remote sensing products [Entekhabi et al.,
2010]) and 17 of the 20 have RMSE <0.04 m3/m3 for the reconstruction period. Sensor U2J2 behaves the
poorest (RMSE = 0.120 m3/m3). With respect to soil oxygen we find that 10 of 22 sensors have RMSE <2%
for the calibration period and 7 of 22 have RMSE <2% for the reconstruction period. Sensor U3J2
(RMSE = 6.67%) behaved the poorest. It is unclear if the larger reconstruction sensor errors are due to either
failure of the individual sensor or the inability of EOF method to perform proper reconstruction (i.e., need
higher-order EOF/EC pairs for reconstruction). In summary, soil temperature behaved the best and required
only a single EOF/EC pair for reconstruction. Soil water content also behaved well (in comparison to remote
sensing validation criterion) but required three EOF/EC pairs. Estimation of soil oxygen was the most challen-
ging requiring four EOF/EC pairs and had the largest relative uncertainty compared to the expected range
of measurement.

3.3. Spatial Estimates of In Situ Sensor Data Using EOF Analysis

Using the identified EOF/EC pairs, we investigated the association of the identified EOFs against the sensor’s
environmental covariates (elevation, TWI, ECa EOF1, and ECa EOF2; see Table S3 for raw data). Here we
investigated a few simple statistical models ranging from linear, multivariate linear, and nonlinear. Models
were selected based on PRESS values (see R code in the supporting information for full analysis and
cross-validation results). While more robust model fitting is possible, the main objective of this work was
to illustrate the correlation between environmental covariates and derived sensor time series EOFs, for
spatiotemporal interpolation across the landscape.

Figure 10 illustrates the soil temperature EOF scatterplot versus environmental covariates, Figure 11 illus-
trates the soil water content EOFs scatterplot, and Figure 12 illustrates the soil oxygen EOFs. Table 3
summarizes the regression analysis, selected model, selected model coefficients, statistical fit, and cross-
validation results. With respect to soil temperature, we find that the EOF is most correlated to TWI (R2 of

Table 1. Summary of Explained Variance for Ranked Empirical Orthogonal Function and Expansion Coefficient (EOF/EC)
Pairs for Soil Temperature, Soil Water Content and Soil Oxygen Sensors, and Bulk Electrical Conductivity (ECa) Imagerya

Explained Variance From Sensor/Chamber Time Series Explained Variance Spatial Mapping

Ranked EOF/EC Pair Soil Temperature Soil Water Content Soil Oxygen ECa

1 88.9% 38.7% 40.3% 82.4%
2 4.5% 25.5% 16.9% 6.7%
3 2.3% 12.4% 9.2% 2.5%
4 1.3% 7.8% 8.3% 2.4%
5 1.1% 5.4% 4.8% 2.2%

aThe bold italicized values represent the number of EOF/EC pairs used in subsequent statistical analyses.
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Figure 4. Scatterplots of clay weight percent, total soil carbon weight percent, and total nitrogen weight percent from 120 soil cores versus associated soil core ele-
vation, topographic wetness index (TWI), bulk electrical conductivity first empirical orthogonal function (ECa EOF1), and bulk electrical conductivity second empirical
orthogonal function EOF2 (5 m grid).
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0.607, validation R2 or 0.515). This
indicates high confidence in our spa-
tiotemporal predictions of soil tem-
perature across the landscape. With
respect to soil water content we find
that the EOFs are best correlated with
elevation, TWI, and ECa EOF2. The R2

for SWC EOF1 is high (R2 of 0.650,
validation R2 or 0.510), while SWC
EOF2 (R2 of 0.249, validation R2 or
0.061) and SWC EOF3 (R2 of 0.234,
validation R2 or 0.043) behave much
poorer. While we are confident in
the most important first SWC EOF
spatial predictor, the lower fits for
SWC EOF2 and EOF3 make our land-
scape predictions less certain. With
respect to soil oxygen we find that
elevation, TWI, ECa EOF1, and ECa
EOF2 are all correlated to the four
soil oxygen EOFs. The R2 for soil oxy-
gen EOF1 (R2 of 0.636, validation R2

or 0.524), EOF2 (R2 of 0.256, valida-
tion R2 or 0.105), and EOF4 (R2 of
0.469, validation R2 or 0.246) are
high, while soil oxygen EOF3 (R2 of
0.082, validation R2 or 0.000) is poor.
Our confidence in the landscape
prediction of soil oxygen will be less
certain than soil temperature and
soil water content. However, the
strong correlation with soil oxygen
EOF1 and EOF2 should provide rea-
sonable predictions across the
landscape.

Using the sensor network values and
gap filling missing data with the spa-
tial mean we are able to construct a

continuous time series of EC values for soil temperature, soil water content, and soil oxygen. In addition,
we created a 5 by 5 m grid for the study site environmental covariates including elevation, TWI, ECa EOF1,
and ECa EOF2 (Table S4). Using the model fits from Table 3 we are able to construct all the EOFs for the land-
scape. Multiplying the ECs and EOFs we are able to construct a continuous 5 by 5 m resolution daily soil tem-
perature, soil water content, and soil oxygen product for the study site (Movies S1–S3 in the supporting
information). We note that while daily data were used to estimate the ECs, the temporal resolution can be
used to the finest grain of the sensor network (here 30 min observations). Lastly, we note that the geometry
of the selected grid is also somewhat arbitrary and will be discussed more in section 4.2.

4. Discussion
4.1. Environmental Controls of Soil Properties

The design of landscape-scale GHG monitoring networks is very challenging in ATI with variably saturated
conditions and influences from both abiotic and biotic factors. The variable GHG fluxes are notoriously diffi-
cult to monitor in both time and space. Furthermore, the selection of representative sampling locations and

Figure 5. Cross validation results of (a) clay weight percent, (b) total soil car-
bon weight percent, and (c) total nitrogen weight percent for eight different
spatial interpolation methods: (1) linear (V4 method in MATLAB in R2015b),
(2) inverse distance weighted with fixed radius (here 50 m), (3) inverse dis-
tance weightedwith fixed number of points (here 10), (4) ordinary kriging, (5)
regression kriging with elevation, (6) regression kriging with topographic
wetness index, (7) regression kriging with bulk electrical conductivity first
empirical orthogonal function, and (8) regression kriging with bulk electrical
conductivity second empirical orthogonal function. See Table S5.
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number of sensors and soil cores are often based on readily available information and economic
considerations. We suspect that those decisions are made in the absence of high-quality information
about spatial soil properties in the near subsurface. In this work we have shown that EOF analysis of time-
lapse EMI provides a key and often missing soil covariate [Pedrera-Parrilla et al., 2016]. We found ECa EOF1
to be a good predictor of spatial soil inventories, reducing cross-validation RMSE by 30.5% in clay weight
percent, and 29.5% in total soil carbon weight percent (Figure 5 and Table S5) using regression kriging
versus linear interpolation. Only marginal benefits were found for total nitrogen using regression kriging,
perhaps related to the small range of observed values.

Figure 6. Spatial interpolation of (a) clay weight percent, (b) total soil carbon weight percent, and (c) total nitrogen weight
percent using regression kriging and environmental covariates. See Table S4.
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Figure 7. (a) Time series of observed soil temperature from 24 sensor locations and (b) time series of EOF reconstructed
values. See Table 2 for statistical metrics.

Table 2. Statistical Summary of Individual Sensor Locations for Empirical Orthogonal Function (EOF) Analysis During
Calibration and Reconstruction Periodsa

Time Series Analysis

Soil Temperature (°C) Soil Water Content (cm3/cm3) Soil Oxygen (%)

Sensor/Chamber
Location

Calibration
RMSE

Reconstruction
RMSE

Calibration
RMSE

Reconstruction
RMSE

Calibration
RMSE

Reconstruction
RMSE

S1J1 0.58 0.69 NA NA 1.34 1.49
S1J2 1.18 0.81 0.031 0.033 NA NA
T1J1 0.39 0.35 0.020 0.017 1.52 2.04
T1J2 0.41 0.39 0.020 0.017 2.52 2.71
T2J1 0.47 0.47 0.009 0.011 1.94 2.47
T2J2 0.70 0.83 0.009 0.011 2.35 5.43
T2J3 0.39 0.55 0.009 0.011 1.21 1.97
T3J1 0.48 0.49 0.007 0.005 1.82 1.93
T3J2 0.54 2.04 0.007 0.005 1.87 1.81
T3J3 0.83 0.69 0.007 0.005 2.03 1.87
T4J1 1.58 1.22 NA NA 1.92 3.41
T4J2 0.36 0.64 NA NA 1.82 4.20
T4J3 1.11 1.06 NA NA 2.33 4.48
T5J1 1.14 1.56 0.007 0.024 2.44 2.52
T5J2 0.64 0.74 0.007 0.024 2.14 2.64
T5J3 0.92 1.42 0.007 0.024 2.33 4.25
U1J1 1.74 1.61 0.014 0.110 NA NA
U1J2 0.80 0.40 0.019 0.023 1.45 2.49
U2J1 0.46 0.35 0.016 0.021 2.02 3.67
U2J2 0.38 0.47 0.022 0.120 2.68 1.82
U3J1 0.63 0.63 0.057 0.074 2.89 1.55
U3J2 0.62 0.87 0.034 0.037 2.75 6.67
U4J1 0.39 0.36 0.024 0.020 1.82 2.26
U4J2 0.58 0.42 0.023 0.018 2.30 2.12

aReconstruction periods contain incomplete records due to erroneous sensor readings of failures. NA stands for not
available as not enough data were available during this time period.
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Elevation and TWI were, not surprisingly, the primary controlling factors of soil temperature, soil water
content [Western and Bloschl, 1999], and soil oxygen. The ECa EOFs were also found to be good secondary
covariates for soil water content and soil oxygen (Table 3). Given the rapid collection time of EMI imagery
at this scale (~3 h to collect a 16 ha survey at a 5 m spatial resolution), noncontact data collection method,
and required number of surveys to estimate the EOF coefficients (here four surveys, two wet and two dry),
we anticipate that hydrogeophysical surveys [cf. Binley et al., 2015] could provide critical a priori informa-
tion used in future network design. Moreover, the surveys could be made after sensor placement to assess

Figure 9. (a) Time series of observed soil oxygen from 22 sensor locations and (b) time series of EOF reconstructed values.
See Table 2 for statistical metrics.

Figure 8. (a) Time series of observed soil water content from 20 sensor locations and (b) time series of EOF reconstructed
values. See Table 2 for statistical metrics.
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the spatial representativity of exist-
ing networks (cf. Werbylo and
Niemann [2014] for statistical design
information). With respect to this
work, Figure 13 illustrates scatter-
plots of elevation, TWI, and ECa
EOF1 versus existing sensor place-
ment. While the two interquartiles
of each environmental covariate are
well represented the outer two quar-
tiles are poorly represented by the
sensor placement. This limited sam-
pling range might help explain the
one identified soil temperature out-
lier (Figure 10) and poor spatial
models for higher-order soil water
content and soil oxygen EOFs
(Figures 11 and 12). In addition, our
spatiotemporal predictions of soil
temperature, soil water content,
and soil oxygen are likely highly
uncertain in these under
sampled quartiles.

4.2. Spatio-Temporal Interpolation
of Soil Properties and States

Figure 2 presents a detailed flowchart
summarizing the data sets, statistical
analysis, products, and information.
The framework outlines a robust pro-
cedure for spatial interpolation of soil
inventories, temporal gap filling of
individual sensor data, and spatio-
temporal interpolation of sensor
data. The ECa EOFs provided critical
and often missing information about
spatial soil properties (clay and total
soil carbon weight percent). The ECa
EOFs were also shown to be corre-
lated to spatiotemporal patterns of
soil water content and likely to be
related to soil hydraulic parameters,
both of which are needed to define
hydraulic diffusivity [Hillel, 1998;
Moldrup et al., 2001]. We speculate
that combining spatial diffusivity
maps with soil inventories will be
critical to properly identify and
characterize GHG hot spots and
hot moments in future work.
Furthermore, the composition of
the GHG fluxes will be partly con-
trolled by soil temperature and other
biotic factors [Jarecke et al., 2016;Ta
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Figure 10. Scatterplots of soil temperature first empirical orthogonal function (soil temp. EOF1) versus associated sensor
location’s elevation, topographic wetness index (TWI), bulk electrical conductivity first empirical orthogonal function
(ECa EOF1), and bulk electrical conductivity second empirical orthogonal function (ECa EOF2). See Table 3 for selected
model and summary statistics.
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Figure 11. Scatterplots of soil water content first, second, and third empirical orthogonal functions (SWC EOF1, SWC EOF2, and SWC EOF3) versus associated sensor
location’s elevation, topographic wetness index (TWI), bulk electrical conductivity first empirical orthogonal function (ECa EOF1), and bulk electrical conductivity
second empirical orthogonal function (ECa EOF2). See Table 3 for selected model and summary statistics.
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Rubol et al., 2013]. A critical first step toward fully understanding hot spots, hot moments, and GHG
composition is providing the underlying abiotic state variables that affect the flow of heat, vapor,
and liquids in the subsurface. The framework presented here provides a path forward that will be
useful for many long-term monitoring networks that face similar challenges of merging spatial and
temporal data.

In the era of big data and ever increasing computation resources, the next generation of hydrological and
biogeochemical models will require better observational data [Peters-Lidard et al., 2017]. Observational data
are essential in calibrating, validating, and evaluating model predictions, thus justifying model predictions
and recommendations of resource allocation. Currently, continental-scale hydrologic models have reached

Figure 12. Scatterplots of soil oxygen first, second, third, and fourth empirical orthogonal functions (soil oxygen EOF1, SWC EOF2, and SWC EOF3) versus associated
sensor location’s elevation, topographic wetness index (TWI), bulk electrical conductivity first empirical orthogonal function (ECa EOF1), and bulk electrical con-
ductivity second empirical orthogonal function (ECa EOF2). See Table 3 for selected model and summary statistics.
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spatial resolutions of ~30 m [Chaney et al., 2016]. Unfortunately, remote sensing data sets at this spatial
resolution are often limited to infrequent overpasses (cf. Landsat with 16 day overpass and 30–50 m
spatial resolution). As the research community thinks about coupling of hyper-resolution hydrological
models with biogeochemical models [e.g., Rubol et al., 2013], robust monitoring networks are needed to
compliment and properly benchmark the model output to understand model behavior and information
content [Best et al., 2015; Nearing et al., 2016]. In addition, flexibility in both temporal and spatial
monitoring is critical given the various physical and biotic processes cooccurring in surface GHG fluxes. We
note that while we picked a 5 m grid for convenience in this work, the selected geometry is somewhat
arbitrary and can be used to match physically based numerical model’s meshes/volumes, further
maximizing the data sets use in evaluating model performance.

5. Summary and Conclusions

In this work we present a framework for merging sparse sensor observations with near-surface hydrogeo-
physical mapping to understand complex spatiotemporal abiotic properties and states in variably satu-
rated landscapes. The framework addresses a critical gap that exists in many long-term monitoring
networks, specifically how to combine sparse in situ monitoring networks with proximal sensing at high
spatial resolutions (~5 m). By using EOF analysis and regression kriging we are able to predict spatial soil
inventory assessments of total soil carbon and total nitrogen. Moreover, the environmental covariates
were combined with in situ sensor EOF/EC pairs to make spatiotemporal predictions of key abiotic state
variables, namely, soil temperature, soil water content, and soil oxygen at high spatial (5 m) and

Figure 13. Location of in situ sensors/surface chamber measurements versus elevation, topographic wetness index (TWI),
and bulk electrical conductivity first empirical orthogonal function (ECa EOF1).
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temporal resolutions (daily). The framework provides robust temporal gap filling of individual sensor data
as well as flexible geometric interpolation to complex shapes that are needed by physically based numer-
ical models. We anticipate that the framework, with its flexible temporal and spatial monitoring options,
will provide monitoring data that are well suited for the next generation of hyper-resolution hydrologic
and biogeochemical models.
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