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Abstract 
 

Electrocatalysis represents an attractive route to coupling renewable energy sources 

such as wind or solar power with sustainable generation of chemicals. An attractive target 

chemical would be hydrogen gas because it can be used as a fuel that does not emit 

pollution (CO2). Progress toward this goal is hampered by a poor mechanistic 

understanding of how the electrocatalysts couple electrons with substrates to generate 

products. This problem is especially serious in the case of highly active catalysts that 

involve redox-active or proton-responsive ligands. Rhodium compounds featuring 

pentamethylcyclopentadienyl (Cp*) and diimine-type ligands are especially complex 

because they involve both of these modes of non-innocence. Changes in ligand 

substitution patterns are often used to improve the activity and stability of catalysts, but 

the consequences of such modifications are unknown in this class of catalysts. This limits 

the usefulness of these compounds and their incorporation into more elaborate energy-

conversion systems. Here, we will discuss two specific cases that involve use of electron-

donating and electron-withdrawing bipyridine variants.  

Specifically, this thesis describes the synthesis and electrochemical properties of two 

novel rhodium compounds featuring pentamethylcyclopentadienyl (Cp*) and 4,4′-

disubstituted 2,2¢-bipyridine (bpy) ligands. The compounds were prepared with two 

disubstituted bipyridine derivatives, 4,4¢-bis(tert-butyl)-2,2¢-bipyridine (tBu-bpy) and 

4,4¢-bis(trifluoromethyl)-2,2¢-bipyridine (CF3-bpy); these ligands are more electron-

donating and electron-withdrawing, respectively, than the parent underivatized bpy 

system. Once synthesized these compounds were characterized using 1H, 13C{1H}, and 
31P{1H} nuclear magnetic resonance, mass spectrometry, UV-visible spectroscopy and 

single-crystal X-ray diffraction.  

Electrochemical studies with these complexes revealed that they are catalysts for 

hydrogen production. The catalytic activity is modulated by the choice of ligand. 

Compared to the parent bpy complex, the overpotential for hydrogen evolution is shifted 

to a smaller value for the [Cp*Rh(CF3-bpy)Cl]+(PF6)– complex, but shifted to a larger 

value for [Cp*Rh(tBu-bpy)Cl]+(PF6)–. Bulk electrolyses carried out with these complexes 

confirmed catalytic turnover and a high faradaic efficiency for hydrogen evolution in all 



	

viii 

cases. Notably, [(Cp*H)Rh(CF3-bpy)NCMe]+, a putative intermediate in the process of 

hydrogen evolution, was detected by 1H NMR following electrocatalytic H2 generation 

with [Cp*Rh(CF3-bpy)Cl]+(PF6)–. Few such [(Cp*H)Rh] complexes have been observed 

or reported in past work, and the observation of a species of this type therefore suggests a 

general role for such intermediates in hydrogen evolution with this class of catalysts. 
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C h a p t e r 1 

SYNTHESIS AND CHARACTERIZATION OF NOVEL RHODIUM COMPOUNDS 
FEATURING NON-INNOCENT LIGANDS 

 
Introduction 
 

Society’s rapid consumption of available fuel sources will eventually leave those who 

inhabit the Earth starved for easily accessible energy and fuel. Although wind, 

geothermal, and hydroelectric power systems are beneficial, they do not represent a way 

to effectively produce energy for long-term use. The sunlight that hits the Earth everyday 

provides more energy in one hour than humans could use in an entire year.1  However, 

due to the inhomogeneous nature of solar illumination, storage and transport of captured 

energy would be necessary for adequate supply at the point of use. One possible solution 

to this problem is the storage of energy produced from renewable resources (e.g. solar) 

into chemical bonds. Electrons can be harvested and replenished, using renewable 

energy, in a catalytic cycle capable of producing useful chemicals and fuels. This would 

provide an on-demand supply of energy, with accessibility that would support human 

consumption well into the future.  An attractive route to producing clean and renewable 

energy would be to use a catalyst to split water (producing dioxygen, O2) and couple the 

resulting protons and electrons to produce hydrogen gas (H2), resulting in an energy 

source with little environmental impact.  
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Water splitting is composed of two half reactions, as shown in the above equations (1.1-

1.3).2 Hydrogen evolution catalysis represents a reaction pathway where we can take 

these protons and electrons from this water splitting reaction and turn them into H2 as a 

sustainable fuel.  

A catalyst previously reported by Grätzel and co-workers bears an h5-

pentamethylcyclopentadienyl (Cp*) ligand, a chelating κ2- 2,2′-bipyridine (bpy), and a 

proposed hydride attached to a rhodium metal-center (see Figure 1.1).3 

 

Figure 1.1: Hydrogen evolution pathway by Grätzel and co-workers; describing the route 
to hydrogen evolution with rhodium complexes of this type. 
 

The starting 18e–, six-coordinate [RhIII] complex, is reduced by 2e– to obtain the 18e–, 

five-coordinate, [RhI] complex. Addition of an acid source then forms a purported [RhIII] 
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hydride. This metal hydride is believed to be the reactive intermediate, highlighting a step 

in the mechanism for hydrogen evolution for this class of catalysts.3  

In 1993, Chardon-Noblat et al. studied the electrochemical properties of 2a. They 

reconfirmed Grätzel’s results and were able to identify 2b via electrochemical methods. 

They then immobilized 2a using a covalent-polymeric film and were able to demonstrate 

the electrocatalytic ability of these [Rh] complexes for hydrogen evolution.4   

In 2005, the Pandey group also synthesized 2a in order to understand the role of 

solvent in ligand substitution reactions. Different solvent polarities (benzene to methanol) 

were used to demonstrate that substitution patterns around the metal center could be 

controlled and result in a complex with the desired substituted ligand.5 

In 2013, the Gray group was able to non-covalently immobilize a [Rh] catalyst, similar 

to 2a, using a pyrene appended 4,4′-disubstituted bipyridine. The pi stacking from the 

pyrene groups allowed for the catalyst to be attached to the surface of a carbon electrode. 

X-ray photoelectron spectroscopy of an electrode soaked in a solution of the pyrene 

appended [Rh] complex confirmed the immobilization of the catalyst. After soaking and 

rinsing the electrode, a bulk electrolysis was performed and the resulting head space of 

the electrolysis cell was sampled and analyzed by gas chromatography, which confirmed 

catalytic hydrogen evolution.6  

In 2014, Blakemore et al. reported the synthesis of a variety of 

pentamethylcyclopentadienyl complexes bearing bipyridine (2a) and 1,10-phenanthroline 

ligands in RhIII and RhI oxidation states.  A crystal of 2b was obtained–the first time a 

crystal structure of 2b had been obtained. This study was used to better understand the 
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electronic structure of these [Rh] complexes and to synthesize a variety of useful 

analogues of the parent catalyst described by Grätzel.7 

Recently, Blakemore and co-workers reported that addition of weak acid to compound 

2b above does not result in formation of a detectable hydride species, by 1H NMR, but 

rather identified formation of another rhodium species, bearing an h4-

pentamethylcyclopentadiene (Cp*H) ligand. Addition of stronger acid to this [(Cp*H)Rh] 

compound results in formation of hydrogen gas with unity yield. Thus, this unusual 

compound is an active intermediate en route to hydrogen evolution (see Figure 1.2).8  

 

Figure 1.2: Hydrogen evolution pathway by Blakemore and co-workers; highlighting the 
formation of Cp*H as a pathway to hydrogen evolution. 
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The Cp* ring, initially a pi donor, becomes a pi-acceptor upon protonation. The 

protonation of the L2X-type, h5–Cp*, to form the L2-type, diolefin h4-Cp*H, leads to a 

change in coordination environment of the [Rh] center. Further addition of a H+ source, 

such as protonated dimethylformamide ([DMF·H]+[OTf]−), leads to hydrogen evolution 

and to the reformation  of the starting complex. Additionally, Miller and co-workers have 

reported a similar [Rh] complex containing the h4-Cp*H and bpy ligands (see Figure 

1.3).9 

 

 

Figure 1.3: The proton-responsive Cp*H intermediates synthesized by Blakemore and 
Miller, intermediates in the pathway to hydrogen evolution.   
 

Here, the Miller group initially wanted to explore the selective transfer of a hydride from 

the [Rh] complex to the enzyme cofactor nicotinamide adenine dinucleotide (NAD+) to 

form 1,4-NADH, extending a bridge between transition metal catalysis and enzymatic 
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catalysis. However, they instead discovered additional evidence for Cp*H as an 

intermediate form of the compound that could be involved in NAD+ reduction. 

This class of catalysts are distinctive because they utilize both a redox active bpy 

ligand and a proton responsive Cp* ligand attached to the [Rh] center. Catalytic 

properties of the metal center are modulated upon protonation and deprotonation. Though 

[Rh] is an expensive metal, the work presented by Blakemore and Miller presents a rare 

opportunity to study in depth the fundamental reaction mechanism of coupling protons 

and electrons via this well-defined molecular catalyst. To improve upon the current 

catalyst design, certain changes need to be made to perturb the system, but not so 

drastically that we lose insight into the possible mechanism(s) of hydrogen evolution.  

An attractive change would be the derivatization of the redox active bpy ligand. 

Specifically, changing the substituents at the 4,4′-position of the bpy ligand to make 4,4′-

tert-butyl-2,2′-bipyridine (tBu-bpy) or 4,4′-trifluoromethyl-2,2′-bipyridine (CF3-bpy), 

would provide more electron rich and electron poor ligands, respectively compared to the 

parent bpy ligand. By coordinating these different ligands to [Cp*Rh(L)Cl] we should be 

able to modulate the catalysts propensity toward H2 evolution by making the Rh-center 

more basic (tBu-bpy) or acidic (CF3-bpy). By making these substitutions to the bpy 

ligand, this will allow for a series of compounds to be studied, and for a structure-

function relationship to be determined.  

Here we report the synthesis and characterization of two novel [Rh] complexes based 

upon the parent proton-reduction catalyst [Cp*Rh(bpy)Cl] first described by Grätzel. 

These new compounds are then further evaluated using electrochemical techniques to 
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analyze their disposition toward hydrogen evolution catalysis, their Faradaic efficiency, 

and their turnover number.  

 
Synthesis of Ligands and Complexes 
 

All solvents were of commercial grade and dried over activated alumina using a 

Grubbs-type solvent purification system prior to use.10 Rhodium chloride hydrate 

(Pressure Chemical Co.), 1,2,3,4,5-pentamethylcyclopentadiene (94%; Alfa Aesar), 2,2′-

bipyrdiyl (99%; Oakwood) 4-tert-butyl-pyridine (96%; Aldrich), and 2-chloro-4-

trifluoromethyl-pyridine (98%; Oakwood) were used as received. [Cp*RhCl2]2, tert-

butyl-bipyridine (tBu-bpy), and trifluoromethyl-bipyridine (CF3-bpy) were prepared 

according to literature methods.11,12,13 The commercial rhodium chloride hydrate and 

1,2,3,4,5-pentamethlcyclopentadiene were used to synthesize [Cp*RhCl2]2 (see Scheme 

1.1).11  

 

 

Scheme 1.1: Synthesis of [Cp*RhCl2]2. 

 

The commercial 4-tert-butylpyridine was used to synthesize 4-tert-butylpyridine-N-

oxide, followed by the chlorination of this material to give 2-chloro-4-tert-butyl-pyridine. 

The chlorinated material was then used in an Ullmann-like coupling to afford the desired 
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tBu-bpy ligand.12 Similarly, 2-chloro-4-trifluoromethyl-pyridine was used in an Ullmann-

like coupling to prepare the CF3-bpy ligand.13 The tBu-bpy and CF3-bpy ligands were 

purified via sublimation, 100°C at 1 mTorr and 70°C at 1 mTorr, respectively to obtain 

analytically pure material by 1H NMR (see Scheme 1.2). 

 

 

 

Scheme 1.2: Synthesis of the CF3-bpy and tBu-bpy ligands. 

 

These compounds were then dried and brought into an inert atmosphere glovebox before 

synthesizing complexes 1, 2, and 3 (See Scheme 1.3, below).  

 Complexes 1, 2, and 3 were prepared according to literature procedures of similar 

complexes, and in an inert atmosphere glovebox.3 To a 20 mL scintillation vial equipped 

with a Teflon stir bar, [Cp*RhCl2]2 (1 equiv.) was dissolved in MeCN (ca. 4mL) to give a 

deep red solution. To this solution, AgPF6 (2 equiv.) in MeCN (ca. 2mL) was added, 

resulting in an orange solution with AgCl as a white precipitate. The solution was 

allowed to stir for 10 min. Then the appropriate bipyridine-based ligand (2 equiv.) was 

dissolved in, MeCN (ca. 2mL) for 2 and 3 and THF (ca. 2 mL) for 1, and was added to 

the orange solution. Upon addition, the solution lightens to a yellow-orange color and is 

allowed to stir for 15 min. The AgCl precipitate was then filtered off and the resulting 

yellow solution in the filter flask was placed in a scintillation vial. Diethyl ether was then 
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added to the solution in the scintillation vial to precipitate the desired product. The 

yellow solid was then filtered through fritted glass to afford, 1, 2, and 3, in 94%, 60%, 

and 59% yield, respectively. Complexes 1 and 3 were fully characterized using 1H NMR, 

13C NMR, 31P NMR, ESI mass spectrometry, UV-vis, and single crystal X-ray diffraction 

(XRD).  

 

 
Scheme 1.3: Synthetic scheme of the synthesized [Rh] complexes bearing the substituted 
bpy ligands.  
 

NMR Spectroscopic Studies  
 
 

Nuclear magnetic resonance (NMR) spectroscopic studies of 1 confirmed the structure 

and purity of the sample. The 1H-NMR spectrum shows two singlets in the aliphatic 

region. The singlet at 1.45 ppm corresponds to the two tBu-groups (s, 18H). The singlet 

at 1.66 ppm corresponds to the freely-rotating Cp*-ring, making the methyl groups 

equivalent (s, 15H). The peaks in the aromatic region correspond to the bipyridine 

moiety. A doublet is observed at 8.75 ppm (d, 3JH-H = 6.0 Hz, 2H) corresponding to H-
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atom type 1 (see Figure). The doublet at 8.36 ppm (dH-H, 3JH-H = 2.0 Hz, 2H) corresponds 

to H-atom type 2. The doublet of doublets at 7.78 ppm (dd, 3JH-H = 6.0Hz, 4JH-H = 2.1 Hz, 

2H) corresponds to H-atom type 3. This molecule behaves with C2v symmetry in solution 

and thus has a mirror plane bisecting the bipyridine, giving rise to only three distinct 

peaks for the six protons in the aromatic ring and one peak for the fifteen protons of the 

Cp* ring (see Figure 1.4). 

 

Figure 1.4: 1H-NMR (400 MHz, CD3CN) spectrum of  [Cp*Rh(tBu-bpy)Cl]+(PF6)–. 

 

Additionally, we can confirm that the tBu-bpy ligand has coordinated to the [Rh] 

metal center due to an observed change in chemical shift between free-ligand and the 

complex (see Figure 1.5).  
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Figure 1.5: 1H-NMR  (400 MHz, CD3CN) spectrum of [Cp*Rh(tBu-bpy)Cl]+(PF6)– and 
the free ligand, tBu-bpy. 
 

The chemical shift for the peaks of the tBu-ligand, once coordinated to the metal center, 

move downfield in the spectrum. Notably, not only did the aromatic peaks shift but the 

singlet corresponding to the tert-butyl groups on the ligand has also shifted. This is 

because the Lewis acidic RhIII center is electron deficient and upon binding the ligand 

donates electron density to the metal center, contributing to a deshielding effect, 

consistent with what is observed in the 1H-NMR spectrum.   
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The 13C-NMR spectrum shows nine distinct peaks as expected, with two peaks from 

the Cp* ring, five peaks from the bipyridine-moiety, and two peaks from the tert-butyl 

groups. Since [Rh] has a nuclear spin of !
"
 there is an observable doublet at 97.5 ppm (d, 

3JC-Rh = 8.0 Hz) due to C-Rh coupling (see Figure 1.6). 

 

 

Figure 1.6: 13C{1H}-NMR (126 MHz, CD3CN) spectrum of [Cp*Rh(tBu-bpy)Cl]+(PF6)–. 
 

The 31P-NMR spectrum exhibits a distinct septet at -144.6 ppm (m, 1JP-F = 699.7 Hz) 

arising from the PF6
– counteranion. The septet occurs due to fluorine, which has a nuclear 

spin of !
"
, coupling with phosphorus. Since there are six fluorine atoms attached to 

phosphorus this is observed as a septet in the spectrum (see Figure 1.7). 
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Figure 1.7: 31P{1H}-NMR (162 MHz, CD3CN) spectrum of [Cp*Rh(tBu-bpy)Cl]+(PF6). 

 

The observed signals for the 1H, 13C, and 31P- NMR spectra confirm the structure, purity, 

and existence of 1.  

NMR spectroscopic studies of 3 also confirmed the structure and purity of the sample. 

Like molecule 1, this molecule also has C2v symmetry in solution and thus has a mirror 

plane bisecting the bipyridine, giving rise to only three distinct peaks for the six protons 

in the aromatic ring and one peak for the fifteen protons of the Cp* ring (see Figure 1.8). 

The 1H-NMR shows one singlet in the aliphatic region at 1.69 ppm, which corresponds to 

the freely-rotating Cp*-ring, resulting in the methyl groups being equivalent (s, 15H). The 

peaks in the aromatic region correspond to the bipyridine moiety. A doublet is observed 

at 9.11 ppm (d, 3JH-H = 5.8 Hz, 2H) corresponding to H-atom type 1 (see below). The 
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doublet at 8.83 ppm (d, 3JH-H = 1.8 Hz, 2H) corresponds to H-atom type 2. The doublet of 

doublets at 8.14 ppm (dd, 3JH-H = 5.8 Hz, 4JH-H = 1.8 Hz, 2H) corresponds to H-atom type 

3.  

 

Figure 1.8: 1H-NMR (400 MHz, CD3CN) spectrum  of [Cp*Rh(CF3-bpy)Cl]+(PF6)–. 
 

Additionally, we can confirm that the CF3-bpy ligand has coordinated to the Rh metal 

center due to an observed change in chemical shift between the free ligand and the 

complex (see Figure 1.9).  

 

1 
2 

3 
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Figure 1.9: 1H-NMR (400 MHz, CD3CN) spectrum of [Cp*Rh(CF3-bpy)Cl]+(PF6)– and 
the free ligand, CF3-bpy. 
 

The chemical shift for the peaks of the CF3-ligand, once coordinated to the metal center, 

move downfield in the spectrum.  As in the case for 1, this is also because the Lewis 

acidic RhIII center is electron deficient and upon binding the ligand donates electron 

density to the metal center, contributing to a deshielding effect, consistent with what is 

observed in the 1H-NMR spectrum. 

The 13C-NMR shows eight distinct peaks as expected, with two peaks from the Cp*-

ring, five peaks from the bipyridine-moiety, and one peak from the trifluoromethyl 

groups. Since [Rh] has a spin of !
"
 there is an observable doublet at 98.8 ppm (d, 3JRh-C = 

8.2 Hz) due to C-Rh coupling. Since fluorine has a spin of !
"
, there is observable carbon-
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fluorine coupling. As a result there are also three individual quartets at 121.6 ppm (q, 3JC-

F = 3.5 Hz) 125.3 ppm (q, 3JC-F = 3.4 Hz) and 141.5 ppm (q, 1JC-F = 35.9 Hz) (see Figure 

1.10). 

 

Figure 1.10: 13C{1H}-NMR (126 MHz, CD3CN) spectrum of [Cp*Rh(CF3-
bpy)Cl]+(PF6)–. 
 

The peak splitting here makes the assignment for the 13C-NMR more difficult and 

ambiguous. In order to make a clear assignment for each of the carbons on [Cp*Rh(CF3-

bpy)Cl]+PF6
– a 2D-NMR experiment was conducted. 

Heteronuclear single quantum coherence (HSQC) spectroscopy is a 2D NMR 

technique that can be used to analyze molecules with multiple nuclei that exhibit 

complicated spectral splitting patterns.14 The HSQC performed here was 1H-13C HSQC, 
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which provides correlation between carbon nuclei and its corresponding attached proton. 

The x-axis consists of a 1H-NMR with units of chemical shift and the y-axis has a 13C-

NMR with units of chemical shift. The resulting spectrum displays signals where 

coupling between 13C and 1H nuclei occurs; these signals show the connectivity of the 

protons and carbons. Furthermore, the phasing of the cross-peaks indicates whether the 

peaks correspond to a methyl (–CH3) or methine (–CH) group (positive, red in Figure 

1.11) or to a methylene (–CH2; negative, blue). This technique was used to elucidate the 

assignment of the 1H-NMR and 13C-NMR resonances for the [Cp*Rh(CF3-bpy)Cl]+(PF6)– 

complex due to the intricate splitting of the 13C-NMR spectrum. Since the proton NMR 

has distinct splitting in the aromatic region, the resulting points of intersection are used to 

correctly assign the 13C-NMR spectrum (see Figures 1.11-1.12). 

 

Figure 1.11: 1H-13C HSQC for [Cp*Rh(CF3-bpy)Cl]+(PF6)– with solvent CD3CN. 
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Figure 1.12: Assignment of the 13C{1H}-NMR (126MHz, CD3CN) spectrum of 
[Cp*Rh(CF3-bpy)Cl]+(PF6)– . 
 

The 19F-NMR shows two distinct peaks as expected, with one peak from the CF3-bpy 

moiety of the [Rh] complex, and one from the PF6
– counteranion.  The symmetry and free 

rotation of the trifluoromethyl fluorines on 3 result in the singlet at -65.4 ppm (s). The 

PF6
– counteranion has six equivalent fluorines attached to phosphorus, which has a 

nuclear spin of  !
"
 , resulting in a doublet at -72.9 ppm (d, 1JF-P = 706.6 Hz) (see Figure 

1.13)  
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Figure 1.13: 19F-NMR (376MHz, CD3CN) spectrum of [Cp*Rh(CF3-bpy)Cl]+(PF6)– . 
 

The 31P-NMR shows one distinct septet as expected. This is due to the PF6
– 

counteranion and because six fluorines are bound to the phosphorus, each having a 

nuclear spin of  !
"
 , this results in the observable septet at -144.7 ppm (m, 1JP-F = 700.2 

Hz) (see Figure 1.14). 
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Figure 1.14: 31P{1H}-NMR (162MHz, CD3CN) spectrum of [Cp*Rh(tBu-bpy)Cl]+(PF6)–. 
 

The observed signals for the 1H, 13C, 19F, 31P, and HSQC-NMR spectra confirm the 

structure, purity, and existence of compound 3.  

 

Mass Spectrometry Studies  
 

The mass spectrum of 1 revealed four prominent fragments, including the molecular 

ion (M+) peak at 541.18 m/z. The experimental mass spectrum shows excellent 

agreement with the predicted mass spectrum. The mass spectrum of 3 also revealed four 

prominent fragments, including the M+ peak at 565.03 m/z. The experimental spectrum 

also shows exceptional agreement with the predicted spectrum. Since 13C has a 1.1% 
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natural abundance, a fragment corresponding to the molecular ion peak plus 1 m/z is 

observed. Notice, both complexes contain a chloride attached to [Rh] resulting in an 

observable fragmentation pattern for 35Cl and 37Cl isotopes, which are naturally present at 

75% and 25% abundance, respectively (see Figures 1.15-1.16).15  

 
 

	

 
Figure 1.15: The predicted and experimental mass spectrum fragmentation of 
[Cp*Rh(tBu-bpy)Cl]+(PF6)– (1), predicted (red) and experimental (black). 
 

 
Figure 1.16: The predicted and experimental mass spectrum fragmentation of 
[Cp*Rh(CF3-bpy)Cl]+(PF6)– (3), predicted (red) and experimental (black). 

Electronic Absorption Spectroscopic Studies 
 

The UV-vis spectrum of 1 in MeCN reveals four distinct peaks in the UV-region and 

one peak that has a shoulder that trails off into the visible region. This shoulder in the 
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visible region is responsible for this compound’s bright-yellow color (λ = 348.1nm, ε = 

3800 mol L-1 cm-1). The UV-visible spectrum of 3 also shows four distinct peaks in the 

UV-region and one peak that has a shoulder that tracts into the visible region. This 

shoulder in the visible region is responsible for the bright-yellow color observed (λ = 

374.7 nm, ε = 2900 mol L-1 cm-1) (see Figure 1.17).     

 

Figure 1.17: UV-visible spectrum of 1 (red line) and 2 (black line). 
 

X-ray Crystallography  
 
 

Crystals of 1 and 3, suitable for X-ray diffraction, were obtained by vapor diffusion of 

diethyl ether into acetonitrile. Crystals of 1 were red plates of rectangular morphology 

contained within a tetrahedral crystal system. The [Rh] center is coordinated by tBu-bpy, 
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Cp*, and chloride ligands in a tetrahedral-like geometry (see Figure 1.18). The complex 

crystallized in the I4/m space group. In the solid state, the complex possesses Cs 

symmetry, which is consistent with its solution behavior as observed by NMR 

spectroscopy. The Rh–N1 and Rh–N2 bond distances are identical, 2.102(5) Å, due to a 

crystallographic mirror plane bisecting the Cp* ring, the chloride, and the tBu-bipyridine 

ligand. The distance between [Rh] and the centroid of Cp* is 1.79 Å. The observed Rh-Cl 

distance is 2.380(2) Å, which is comparable to a similar [Cp*RhCl] bipyridine-based 

complex reported by Scharwitz and co-workers.16 An outer-sphere hexafluorophosphate 

counteranion was also observed, which balances the +1 charge of 1. 

Crystals of 3 were also red plates. However, this structure has not yet been refined, so 

only preliminary bond lengths will be reported (see Figure 1.18). The point group of this 

molecule is pseudo-Cs, in the solid state because a crystallographic plane of symmetry 

does not bisect the CF3-bpy ligand. The Rh-N1 and Rh-N2 are 2.091 Å and 2.135 Å, 

respectively. The distance between [Rh] and the centroid of the Cp* ring is also 1.79 Å. 

The observed Rh-Cl distance is 2.371 Å. The preliminary crystal structure also shows an 

outer-sphere hexafluorophosphate counteranion to balance the +1 charge of 3. 

Comparisons can be better made between the two complexes, and previously made 

complexes, once the structure is fully refined. 
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Figure 1.18: Crystal structures of (1), [Cp*Rh(tbu-bpy)Cl]+ (PF6)−  (left) and (3), 
[Cp*Rh(CF3-bpy)Cl]+ (PF6)−  (right) obtained from X-ray diffraction. Displacement 
ellipsoids shown at 50% probability. 
 
 

Electrochemical Studies: Cyclic Voltammetry  
 

Cyclic voltammograms (CVs) of 1 and 3 were performed in an inert atmosphere 

glovebox using a Gamry Reference 600+ potentiostat. A three-electrode system was 

utilized, which consisted of a basal plane graphite (BPG) working electrode, platinum 

wire counter electrode, and silver quasi-reference electrode. The electrolyte used was 0.1 

M electrochemistry-grade nBu4N+PF6
– in MeCN. Previously, Grätzel et al. reported the 

electrochemistry of 2.3 They observed a single, reversible reduction event, which was 

assigned as a 2e– reduction of the six coordinate, 18e–, [Cp*RhIII(bpy)Cl]+PF6
–, resulting 

in a five-coordinate, 18e–, Cp*RhI(bpy) complex. The five-coordinate 18e– complex was 
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also prepared chemically, and has since been confirmed as an intermediate in the catalytic 

cycle for hydrogen evolution.8  

We were able to successfully reproduce the electrochemical results of Grätzel et al. for 

complex 2, which demonstrated the known 2e– redox couple, E1/2 = –1.21 V vs. Fc+/0, 

which is assigned as a reversible RhIII/I couple.3  For the newly synthesized [Rh] 

complexes, a 2e– virtually reversible reduction event is observed for 1 at E1/2 = –1.25 V 

vs. Fc+/0. Based on the charge passed in voltammetry in comparison to a solution of 

ferrocene of known concentration, we estimate two electrons transferred per rhodium 

complex in the observed reduction wave. In analogy to the known behavior of 2, we 

assign the observed reduction of 1 to a RhIII/I couple. This E1/2 is more negative than that 

observed for the parent complex 2, as expected due to the presence of the electron-

donating tert-butyl substituents on the bpy ligand. By introducing these tert-butyl groups 

we have effectively made the [Rh] center more electron-rich and as a result, more 

difficult to reduce. A 2e– redox couple is also observed for 3, E1/2 = –0.97 V vs. Fc+/0, 

which is also assigned to a reversible RhIII/I couple. This E1/2 is more positive than that 

observed for the parent complex, 2, which is expected, due to the electron-withdrawing 

trifluoromethyl substituents on the bipyridine ligand. By introducing these functional 

groups we have modified the [Rh] center to be more electron-poor and concurrently, 

more easy to reduce, compared to the parent complex, 2. The electrochemical behavior of 

the new complexes resembles the previously reported parent complex. The reduction 

event appears to be more reversible for the electron donating ligands, which is expected 

because the metal center is more electron rich and is thus easier to oxidize. The converse 

is true for electron withdrawing ligands, where the metal center is more electron deficient 
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and consequently more difficult to oxidize. This is apparent when we compare the peak 

to peak separation (DEp), showing that 1 is the most reversible (see Figure 1.19). 

 
 
 
Figure 1.19: CVs of complexes (a) [Cp*Rh(tBu-bpy)Cl]+PF6

– (DEp = 105.8 mV , (b) 
[Cp*Rh(bpy)Cl]+PF6

– (DEp = 244.9 mV, and (c) [Cp*Rh(CF3bpy)Cl]+PF6
– (DEp = 413.8 

mV), directly comparing there standard reduction potentials vs. Fc+/0.  
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Since both processes are reversible we can easily carry out a scan rate dependence 

study to determine if the new complexes are freely diffusing in solution in both their 

oxidized and reduced forms. This is important because we are showing that the complex 

does not become permanently attached to the working electrode surface, but is rather 

actively diffusing to and from the surface of the electrode. The complex is termed 

diffusional if the peak currents of the anodic and cathodic waves of the CV are linear, 

compared to the square root of the scan rate; this relationship is based on the Randles-

Sevčik equation.17 In the equation below, ip is the peak current, n is the number of 

electrons transferred in the redox event, F is Faraday’s constant, A is the area of the 

electrode, C is the concentration of analyte, D is the diffusion coefficient, v is the scan 

rate, R is the ideal gas constant, and T is the temperature (see equation 1.4). Both the new 

complexes were determined to be diffusional in this way (see Figures 1.20-1.21).  

 

𝑖$ = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑛𝐹𝐴𝐶( 0123
45

)     (1.4) 
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Figure 1.20: Scan rate dependence of 1, illustrating a diffusional process. 

 
 

 
Figure 1.21: Scan rate dependence of 3, illustrating a diffusional process. 
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With these electrochemical studies complete, we were interested in rationalizing the 

observed reduction potentials with the structures of the complexes. Such trends can be 

analyzed by considering the Hammett parameter. The Hammett parameter is generally 

utilized to explain the linear-free energy relationships for transformations involving 

substituted aromatic compounds; Hammett parameters have been tabulated based on the 

acid-base ionization of benzoic acids substituted by a given functional group or 

moiety.18,19 The Hammett parameter, based on this experimental data, can be effectively 

used to describe the electron donating or electron withdrawing behaviors of a functional 

group, whether it be in the ortho-, meta-, or para-position, on benzoic acid. Although 

these parameters were originally developed for transformations involving benzoic acids, 

their usefulness extends to other molecules and other transformations involving 

substituted arenes. Here, we have adopted the Hammett parameter to gauge the relative 

electron donating and electron withdrawing properties of para-substituted bipyridine 

ligands, a similar conjugated, aromatic system. When we plot the reversible RhIII/I 

couples (E1/2) for 1, 2, and 3 vs. the corresponding Hammett parameter we find a linear 

dependence (see Figure 1.22).  
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Figure 1.22: The standard reduction potential as a function of the Hammett parameter for 
(blue) [Cp*Rh(tBu-bpy)Cl]+(PF6)–, (black) [Cp*Rh(bpy)Cl]+(PF6)–, and (green) 
[Cp*Rh(CF3-bpy)Cl]+(PF6)–.  
 

This linear dependence suggests that the electronic properties of the ligand contribute to 

the electronic properties of the metal center. Complex 3, bearing the CF3-bpy ligand, has 

less reducing power for H2 production and 1 has more reducing power.  The possibility 

stands that during electrocatalysis the overpotential for these [Rh] complexes may be 

modulated based on how electron donating or electron withdrawing the bipyridine moiety 

is. These attractive findings present significant precedent to keep studying these model 

compounds, focusing primarily on electronic structure, to ultimately construct a better 

hydrogen evolution catalyst. 
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Electrochemistry: Cyclic Voltammetry with Acid Additions 
 
 

The newly synthesized compounds, 1 and 3, both exhibit a reversible 2e– couple, 

similar to the parent compound, 2, described by Grätzel. Given the observed similarities, 

acid addition experiments were performed to determine if the new complexes could also 

catalyze the input of protons and electrons to an output of hydrogen gas.3 These 

experiments were carried out in an inert atmosphere glovebox where an electrochemical 

cell was equipped with a BPG working electrode, platinum counter electrode, and silver 

quasi-reference electrode. For this experiment, the Nernst equation needs to be satisfied 

under our chosen conditions; for us, this means use of a 1:1 mixture of anilinium 

triflate:aniline as the proton source, a temperature of 298 K, and operation of the 

electrochemical cell under 1 atm of H2 gas (see equations 1.5-1.7). With these conditions 

established, we can directly calculate the reversible thermodynamic potential for proton-

dihydrogen interconversion.  

 

𝐸89 = 𝐸89
:  + 45

01
𝑙𝑛 [89]

>?@
     (1.5) 

𝐸89 = 𝐸89
: − 0.05916	𝑉	×	𝑝𝐻        (1.6) 

𝐸89 = 	−0.028	𝑉 − 0.05916	𝑉	×	𝑝𝐻               (1.7) 

 

In the above equations, EH
+ is the equilibrium potential for the reduction of protons, Eo

H
+ 

is the half-cell reduction potential, R is the ideal gas constant, T is the temperature in 

Kelvin, n is the number of electrons transferred in the reaction, F is Faraday’s constant, 

[H+] is the concentration of protons in the system, and PH2 is the pressure of hydrogen.20 
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Equation 1.6 results from rewriting equation 1.5 at standard temperature, 298 K, and one 

atmosphere of H2. Equation 1.6 further simplifies to 1.7 when the experiment is carried 

out in MeCN vs. Fc+/0.20 The pKa then varies based on the choice of organic acid. The 

organic acid used for additions is added as a 1:1 mixture of acid and conjugate base, to 

satisfy the Henderson-Hasselbach equation, and subsequently the Nernst equation. 

Specifically, for this series of experiments, a 1:1 solution of anilinium triflate (pKa = 10.6 

in MeCN) and aniline was used.21 Since the variables of the Nernst equation are satisfied, 

EH
+ can be estimated. The estimate of the reversible thermodynamic potential for the 

H+/H2 couple is determined to be –0.656 V vs. Fc+/0 under our chosen conditions. With 

this information in hand, acid additions were made to solutions of complexes 1-3 and 

catalytic cyclic voltammetry experiments undertaken for each case (see Figures 1.23-

1.25).  

 

Figure 1.23: [Cp*Rh(tBu-bpy)Cl]+(PF6)– with subsequent  addition of anilinium triflate. 
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Figure 1.24: [Cp*Rh(bpy)Cl]+(PF6)– with subsequent addition of anilinium triflate. 
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Figure 1.25: [Cp*Rh(CF3-bpy)Cl]+(PF6)–with subsequent addition of anilinium triflate. 

 

In each case, upon the addition of acid, we observe that the reversible behavior of the 

complex is lost, and a pseudocatalytic wave grows in. After one equivalent of acid is 

added to 3, there are two observable reductions, a profile which is different when 

compared to complexes 1 and 2. Both reductions show a gain in current density upon 

further addition of acid, suggesting that there are two species contributing to the 

evolution of hydrogen gas. 

As more equivalents of acid are added we see the current density for each of the 

complexes increases as well. This is indicative of the ability of the catalyst to turnover 

substrate. Eventually, once sufficient excess acid is added, the catalytic activity becomes 

saturated, resulting in a plateauing effect of icat/ip, where icat is the peak current for the 

irreversible catalytic wave observed in the presence of a given acid concentration and ip is 
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the peak cathodic current for the complex in the absence of acid. Plotting icat/ip as a 

function of proton concentration results in an observable plateau, suggesting a saturated 

kinetic regime has been reached (see Figures 1.26-1.28).   

 

 

Figure 1.26: icat/ip as a function of proton concentration for 1, illustrating a plateau in the 
current enhancement. 
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Figure 1.27: icat/ip as a function of proton concentration for 2, illustrating a plateau in the 
current enhancement. 
 

 

Figure 1.28: icat/ip as a function of proton concentration for 3, illustrating a plateau in the 
current enhancement. 
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Additionally, for each of the catalysts, we can estimate the potential for the onset of 

catalysis with 5 equiv. of anilinium triflate, under the above conditions.2 The onset of 

catalysis is defined as half of the peak current for the irreversible catalytic wave observed 

in the presence of a given acid concentration (Ecat/2).20 For 1, the onset of catalysis occurs 

at −1.23 V, onset of catalysis for 2 occurs at −1.18 V, and the onset of catalysis for 3 

occurs at −1.28 V. This corresponds to overpotentials of 569 mV, 519 mV, and 622 mV, 

respectively. Since enhancement occurred in the presence of acid, this suggests that 

hydrogen evolution is occurring and complexes 1-3 are candidate catalysts.  

 

Bulk Electrolysis: 
 
A bulk electrolysis was performed for complexes 1-3 to confirm their catalytic activity, 

and hydrogen (H2) production via gas chromatography (GC) quantification and analysis 

of headspace gas. The cell consists of two chambers separated by a fine frit (see Figure 

1.29). 

 
Figure 1.29: Cell used for electrolysis experiments; large chamber uses 38mL of 
electrolyte solution; small chamber uses 2o mL of electrolyte solution. 
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When the electrolysis cell is assembled, the cathodic (large) chamber consists of the 

catalyst, a proton source (anilinium triflate), a large BPG working electrode (10 cm2), and 

a silver quasi reference electrode, while the anodic (small) chamber consists of an 

electron source and a platinum counter electrode (see Figure 1.30). 

 
Figure 1.30: Carbon working electrode, silver reference electrode, catalyst, and 
anilinitum triflate (left). Platinum counter electrode and ferrocene (right). 
 

 
For each of these experiments, the chemicals added to the bulk electrolysis cell consisted 

of 1 mM of catalyst and 10 mM of anilinium triflate in the large chamber, and 10 mM 

ferrocene, as a sacrificial electron source, in the small chamber. The overall reaction for 

this hydrogen-evolving bulk electrolysis can be expressed as a balanced chemical 
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equation leading to generation of hydrogen, free base, and ferrocenium triflate (see 

Scheme 1.4).  

 

 

Scheme 1.4: Net reaction occurring during the bulk electrolysis of each [Rh] catalyst. 

 

Each of the experiments were run at a controlled potential of -1.36 V vs. Fc+/0 for 90 

minutes. For the first 30 minutes of the electrolysis each of the compounds exhibit similar 

behavior. However, the systems pass differing amounts of current, which is indicative of 

different rates of catalysis (see Figure 1.31).  

 
Figure 1.31: First 30 minutes of bulk electrolysis for each [Rh] complex. 
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In each of the electrolysis experiments, significantly more current is measured in the 

presence of the [Rh] catalyst compared to the bare BPG electrode (blank). Additionally, 

as the electrolysis experiments proceed through the 90-minute duration, the current 

observed for catalyst 2 begins to significantly decrease compared to the start of the 

experiment. This drop off can likely be attributed to the catalyst rapidly turning over 

protons and electrons to produce hydrogen. Since the substrate is being consumed more 

rapidly than in complexes 1 and 3, we see a drop off in current due to lack of available 

free protons (see Figure 1.32).  

 
Figure 1.32: Controlled potential electrolysis for each [Rh] catalyst after 90 minutes.  
 
 
We can also determine the amount of charge passed for each of the complexes during 

the electrolysis. The charge passed is used to calculate the theoretical amount of 

hydrogen that should have been produced at the end of the 90 minute experiment. 
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Following the 90 minute electrolysis, the headspace was immediately analyzed by GC. 

This confirms the actual amount of H2 that is produced during the electrolysis. Here, we 

see that each complex has produced H2 reconfirming the catalytic ability of 2 and 

confirming the catalytic capabilities of the newly synthesized complexes, 1 and 3 (see 

Figures 1.33-1.34) 

 

 
Figure 1.33: Charge plotted as a function of time; total charge passed included. 
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Figure 1.34: GC results confirming the different amounts hydrogen gas evolved among 
the different complexes. 

 
 

The charge passed and catalytic evolution of hydrogen far exceed that of the bare carbon 

electrode (blank). From this data we can determine the turnover number and the Faradaic 

efficiency for each complex (see Table 1).  

 

 

Compound Amount of 
Hydrogen 

Detected (mL) 

Faradaic 
Efficiency 
(±10%) (%) 

Turn Over 
Number 
(TON) 

[Rh(bpy)] 3.46 93 4.39 
[Rh(CF3-bpy)] 1.55 67 2.72 
[Rh(tBu-bpy)] 2.58 90 3.36 

 
Table 1: Faradaic efficiency and turnover number results for each complex following a 
90 minute electrolysis in 0.1M TBAPF6 in MeCN, with anilinium triflate as the proton 
source and Fc as the sacrificial reductant. 
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Enough ferrocene and anilinium triflate was added for a maximum of 5 turnovers, and 

all three catalysts were observed to have a TON greater than one. The previously reported 

catalyst, 2, has a turnover number approaching the limit of five. This shows that the 

catalyst was indeed beginning to run out of substrate, likely attributing to the apparent 

current drop off during the electrolysis. Complexes 1 and 3 had lower turnover numbers, 

leading to the nearly steady current observed over the 90 minute electrolysis.  

Complexes 1 and 2 have excellent Faradaic efficiencies. The Faradaic efficiency of 3 

appears to be poor, but we suspected that this value was artificially low. We suspected 

formation of a secondary species, due to an obvious darkening of the electrolysis solution 

over the course of the experiment. This darkening occurred only in the case of 3. The low 

apparent faradaic efficiency of 3 for H2 production could be caused by misdirection of 

reducing equivalents from H2 production to formation of another reduced compound that 

remains in solution. Specifically, once the 18e– five-coordinate Cp*Rh(CF3-bpy) complex 

forms upon 2e– reduction. Because of the attenuated basicity of the reduced form of 3, as 

judged by the reversible electrochemical studies, we hypothesized that this reduced form 

might require a further 1e– reduction beyond the typical 2e– process to give rise to a 

compound that is suitably electron rich to evolve H2. This possibility would involve 

reduction of an intermediate [(Cp*H)Rh] compound; the starting material for such a 

reduction would be an 18e– complex similar to that observed by Blakemore and Miller, 

namely [(Cp*H)Rh(CF3-bpy)NCMe]+.  Specifically, Cp*Rh(CF3-bpy) could initially react 

with H+ to form [(Cp*H)Rh(CF3-bpy)NCMe]+; this process is implicated by the loss of 

reversibility in the cyclic voltammetry upon additions of even small quantities of acid. 

The voltammetry carried out in the presence of acid, however, also shows growth of a 
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second, more negative reduction event. We propose that this reduction event corresponds 

to formation of a triply reduced compound, and that this triply reduced compound gives 

rise to an unexpected, additional electrocatalytic pathway.  

To check this possibility, immediately following electrolysis, an aliquot of solution 

was examined from the cathodic chamber of the cell. The solvent from this sample was 

removed and a 1H-NMR spectrum was collected for the remaining material. The 1H-

NMR spectrum revealed a new set of bipyridine signals in the aromatic region with 

resonances at 9.26 ppm (d, 3JH-H = 5.4Hz, 2H), 8.80 ppm (s, 2H), and 8.03 ppm (d, 3JH-H 

= 5.7 Hz, 2H) as well as a new doublet at 0.58 ppm (see Figures 1.35-1.36). This 

spectrum is highly reminiscent of that of (Cp*H)Rh(bpy)Br as synthesized by 

Blakemore.8 

 

Figure 1.35: Comparison of starting material (bottom) to the isolated material (top) from 
the [Cp*Rh(CF3-bpy)Cl]+(PF6)– bulk electrolysis . 
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Figure 1.36: 1H-NMR spectrum of material isolated from the cathodic chamber of the 
electrolysis cell. Integration of the isolated material and the proposed complex that is 
formed during bulk electrolysis.    
 
 

Since a known concentration of 3 was put into the electrolysis cell and the isolated 

material is a representative sample, the available data can be used to calculate the amount 

of [(Cp*H)Rh(CF3-bpy)NCMe]+ produced in this experiment. A portion of the charge 

passed in the electrolysis is due to the production of this complex—this can be subtracted 

from the observed total charge passed to give the portion of charge passed that could 

have led to H2 evolution. This amount of charge is the actual charge passed to generate 

hydrogen. Taking the [(Cp*H)Rh(CF3-bpy)NCMe]+ complex into consideration, the 

Faradaic efficiency increases to a respectable and reasonable 93%. We note, however, 

that to fully confirm this proposal, the [(Cp*H)Rh(CF3-bpy)NCMe]+ complex must be 

prepared and then compared to the material observed in the electrolysis aliquot. This 

effort is currently underway. 
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The electrochemical response of 3 upon addition of acid was distinct from complexes 

1 and 2. When one equivalent of acid is added, we see current enhancement for two 

reductions, and both are irreversible waves. This suggests a different reaction pathway 

occurring, compared to 1 and 2. Notably, no [(Cp*H)Rh] complexes were observed 

following electrolyses of 1 or 2. To explain this in more detail, we will start with 

consideration of the two pathways of hydrogen evolution collectively proposed by 

Grätzel and Blakemore (see Schemes 1.5-1.6).  

 

 

Scheme 1.5: Hydrogen evolution pathway proposed by Grätzel. 

 

 

Scheme 1.6: Hydrogen evolution pathway proposed by Blakemore. 

 

Grätzel’s pathway favors formation of a rhodium hydride species upon reaction of the 

reduced complex with one equivalent of acid, and hydrogen evolution after reaction with 

a second equivalent of acid. In a somewhat similar sequence, Blakemore’s pathway 

suggests that when acid is added, a [(Cp*H)Rh] species is produced and upon further 

addition of acid the compound can evolve hydrogen. The observation of [(Cp*H)Rh(CF3-

bpy)NCMe]+ and the absence of the similar tBu-bpy and bpy analogues suggests that the 
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trifluoromethyl substituents make the Cp*H complex too stable, and the pathways to 

hydrogen evolution seem to have changed. A stronger acid or slightly more negative 

voltage may be needed to access further reduction.  In accord with these general 

consideration, we have isolated a significant amount of [(Cp*H)Rh(CF3-bpy)NCMe]+ 

from a post-electrolysis solution that contains excess acid. This isolation strongly 

suggests that the isolated [(Cp*H)Rh(CF3-bpy)NCMe]+ material is not sufficiently basic 

to take up a second equivalent of acid and evolve hydrogen. Thus, our experimental work 

implicates a new and previously unknown catalytic pathway that involves a further 

reduction of [(Cp*H)Rh(CF3-bpy)NCMe]+ to generate a compound that is sufficiently 

basic to react with acid (see Scheme 1.7). 

 

 

Scheme 1.7: Possible third catalytic pathway, mediated through Cp*H.  

 

Here, once the [(Cp*H)Rh(CF3-bpy)NCMe]+ complex is formed, a third electron can be 

introduced into the system. Indeed, this compound would be predicted to be susceptible 

to reduction at a fairly modest potential, as reduction could generate a metal-ligated, CF3-

bpy-centered anion radical. Such a species is attractive in that delocalization of the 

additional electron density around the bipyridine ring is possible, in addition to 

stabilization afforded by the presence of trifluoromethyl substituents on the bpy system. 

In the presence of acid, this complex would likely evolve hydrogen upon formation. 

Following H2 generation, the rhodium product would be a formally [RhII] species. Such a 
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[RhII] species is known to be unstable in this system—evidence for this is clear from the 

clean, 2e– electrochemistry in the absence of acid. Stated another way, the potential for 

reduction of RhIII to RhII in this system is more negative than for the reduction of RhII to 

RhI. Thus, generation of RhII would result in a disproportionation reaction that produces 

half an equivalent of [Cp*Rh(CF3-bpy)NCMe]2+ and [Cp*Rh(CF3-bpy)]. In accord with 

the involvement of such a reaction sequence here, we only detect [Cp*Rh(CF3-

bpy)NCMe]2+ and [(Cp*H)Rh(CF3-bpy)NCMe]+ following electrolysis. The amount of 

[Cp*Rh(CF3-bpy)] produced in the final disproportionation step would be rapidly 

consumed by protonation with remaining acid present in the system to generate 

[(Cp*H)Rh(CF3-bpy)NCMe]+ which is metastable under the conditions present in this 

electrocatalytic system.  

Conclusions 
	

This thesis describes the synthesis, characterization, and electrochemical studies of 

two new rhodium-based hydrogen evolution catalysts. We have confirmed catalytic 

activity of two new derivatives, 1 and 3, and compared them to the parent complex, 2. 

For both new catalysts, the overpotential is higher and the turnover number is lower, but 

the Faradaic efficiency remains high. Thus, our efforts have yielded active catalysts. 

Although they are not as efficient as the parent system, we have gained valuable insight 

into how ligand substitutions can modulate catalytic activity in this family of complexes. 

Generally, these studies reveal that the parent [Cp*Rh(bpy)] system displays ideal 

electronic coupling between the metal and its non-innocent ligands to afford a highly 

active catalyst. Complex 3 provides a crucial insight to a rarely observed intermediate 

and implicates the possibility of a third catalytic pathway in hydrogen evolution with 
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these complexes—this pathway involves [(Cp*H)Rh(CF3-bpy)NCMe]+. Future studies 

will focus on the goal of synthesizing, isolating, and characterizing this material for use 

in kinetic and mechanistic investigations.  
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A p p e n d i x  A 
 
 

CHAPTER 1 SUPPORTING INFORMATION 
 
Experimental Methods 
 
General. All solvents were of commercial grade and dried over activated alumina using a 

Grubbs-type solvent purification system prior to use.10 1H, 13C, 19F, 31P, and HSQC NMR 

spectra were collected on 400 and 500 MHz Bruker spectrometers and referenced to the 

residual protio-solvent signal in case of 1H and 13C or the deuterium lock signal in the 

case of 19F and 31P.22  Chemical shifts (δ) are reported in units of ppm and coupling 

constants (J) are reported in Hz.  Gas chromatography data was collected using a 

Shimadzu GC-2014 consisting of a thermal conductivity detector and dual flame-

ionization detectors. Mass spectrometry data was collected on an Electrospray Micromass 

LCT Premier mass spectrometer.  Single-crystal diffraction data were collected with a 

Bruker KAPPA APEX-II X-ray diffractometer. Electrochemical measurements were 

made in an inert atmosphere glovebox using a Gamry Reference 600+ potentiostat. The 

electrolyte for each experiment was 0.1 M electrochemical grade N-tetrabutylamonium 

hexafluorophosphate in MeCN. A three-electrode system is utilized, comprised of a basal 

plane of highly oriented pyrolytic graphite working electrode (surface area 0.09 cm2), a 

platinum counter electrode, and a Ag/Ag+ reference electrode along with a Fc+/0 as an 

external reference.  

 

[(η5-C5Me5)Rh(4,4′-di-tert-butyl-2,2′-bipyridine)Cl](PF6)  

To a 20mL scintillation vial equipped with a Teflon stir bar, [Cp*RhCl2]2 was dissolved 

in MeCN (ca. 4mL) to give a deep red solution. To this solution, AgPF6 in MeCN (ca. 
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2mL) was added resulting in a lightening of the red solution to orange with AgCl as a 

precipitate. The solution was allowed to stir for 10 min. Then the tBu-bpy ligand was 

dissolved in THF (ca. 2mL) and was added to the orange solution. Upon addition, the 

solution lightens to a sunny-yellow and is allowed to stir for 15 min. The AgCl was then 

filtered off and the resulting yellow solution in the filter flask was placed in a scintillation 

vial and solution diluted with diethyl ether to precipitate the desired product. The yellow 

solid was then filtered to afford [(η5-C5Me5)Rh(4,4′-di-tert-butyl-2,2′-

bipyridine)Cl](PF6). 1H NMR (400 MHz, CD3CN) δ 8.77 [d, 3JH-H = 6.0 Hz, 2H, 

(Me5C5)Rh(C18H24N2)], 8.39 [d, 4JH-H = 2.0 Hz, 2H, (Me5C5)Rh(C18H24N2)], 7.80 [dd, 

3JH-H = 6.0 Hz, 4JH-H = 2.1 Hz, 2H, (Me5C5)Rh(C18H24N2)], 1.68 [s, 15H, 

(Me5C5)Rh(C18H24N2)], 1.48 [s, 18H, (Me5C5)Rh(C18H24N2)] ppm. 13C{1H} NMR 

(126MHz, CD3CN) δ 165.6[ s, 2C, (Me5C5)Rh(C18H24N2)], 154.8 [s, 2C, 

(Me5C5)Rh(C18H24N2)], 152.0 [s, 2C, (Me5C5)Rh(C18H24N2)], 125.9 [s, 2C, 

(Me5C5)Rh(C18H24N2)], 121.6 [s, 2C, (Me5C5)Rh(C18H24N2)], 97.6 [d, 1JRh-C =8.2 Hz,  

5C, (Me5C5)Rh(C18H24N2)], 36.1 [s, 2C, (Me5C5)Rh(C18H24N2)], 30.0 [s, 6C, 

(Me5C5)Rh(C18H24N2)], 8.7 [s, 5C, (Me5C5)Rh(C18H24N2)] ppm. ESI-MS (positive) m/z: 

found 541.1 m/z (100%) (1-PF6
–), 542.1 m/z (31%), 543.1 (37%), 544.1 (11%).  

 

[(η5-C5Me5)Rh(4,4′-bis(trifluoromethyl) -2,2′-bipyridine)Cl](PF6)  

To a 20mL scintillation vial equipped with a Teflon stir bar, [Cp*RhCl2]2 was dissolved 

in MeCN (ca. 4mL) to give a deep red solution. To this solution, AgPF6 in MeCN (ca. 

2mL) was added resulting in a lightening of the red solution to orange with AgCl as a 

precipitate.  Then the CF3-bpy ligand was dissolved in MeCN (ca. 2mL) and was added 
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to the orange solution. Upon addition, the solution lightens to a sunny-yellow and is 

allowed to stir for 15 min. The AgCl was then filtered off and the resulting yellow 

solution in the filter flask was placed in a scintillation vial and solution diluted with 

diethyl ether to precipitate the desired product. The yellow solid was then filtered to 

afford [(η5-C5Me5)Rh(4,4′-bis-trifluoromethyl-2,2′-bipyridine)Cl](PF6) (). 1H NMR (400 

MHz, CD3CN) δ 9.14 (d, 3JH-H = 5.8 Hz, 2H, (Me5C5)Rh(C12H6 F6N2)], 8.86 [d, 4JH-H = 

1.7 Hz, 2H, (Me5C5)Rh(C12H6F6N2)], 8.14 (dd, 3JH-H = 5.8 Hz, 4JH-H = 1.3 Hz, 2H, 

(Me5C5)Rh(C12H6F6N2)], 1.71 (s, 15H, (Me5C5)Rh(C12H6F6N2)] ppm. 13C{1H} NMR 

(126MHz, CD3CN) δ 155.2 (s, 2C, (Me5C5)Rh(C12H6 F6N2)], 154.0 (s, 2C, 

(Me5C5)Rh(C12H6 F6N2)], 141.5 (q, 1JC-F = 35.6 Hz, 2C, (Me5C5)Rh(C12H6 F6N2)], 125.3 

(q, 4JC-F = 3.5 Hz, 2C, (Me5C5)Rh(C12H6 F6N2)], 123.8 (s, 2C, (Me5C5)Rh(C12H6 F6N2)], 

121.6 (q, 4JC-F = 3.5 Hz, 2C, (Me5C5)Rh(C12H6 F6N2)], 98.2 (d, 1JRh-C = 8.2 Hz, 5C, 

(Me5C5)Rh(C12H6 F6N2)], 8.8 (s, 5C, (Me5C5)Rh(C12H6 F6N2)] ppm. 19F NMR (376 MHz, 

CD3CN) δ -65.4 (s, 6F, (Me5C5)Rh(C18H24N2)] ppm. ESI-MS (positive) m/z: found 565.0 

m/z (100%) (1-PF6
–), 566.0 m/z (75%), 567.0 (95%), 568.0 (21%). 
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Acid-Only Electrochemistry Background Data 

 

 

Figure A1: Comparing the differences in current density between the bare electrode and 
when the catalyst is present at 5eq. of acid, for [Cp*Rh(tBu-bpy)Cl]+(PF6)–. 
 
 
 
 



	

56 

 

Figure A2: Comparing the differences in current density between the bare electrode and 
when the catalyst is present at 5eq. of acid, for [Cp*Rh(bpy)Cl]+(PF6)–. 

 

Figure A3: Comparing the differences in current density between the bare electrode and 
when the catalyst is present at 5eq. of acid, for [Cp*Rh(CF3-bpy)Cl]+(PF6)–. 
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1H-NMR Spectra of Isolated Material from Bulk Electrolysis 
 

 
Figure A4: Isolated material from the bulk electrolysis of 1 compared to the starting 
material. 
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Figure A5: Isolated material from the bulk electrolysis of 2 compared to the starting 
material.  
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X-ray Structural Data 
 
Table A1: Crystal data and structure refinement for [Cp*Rh(tBu-bpy)Cl]+PF6

–.  
Identification code  k51k  
Empirical formula  C29.01H39.48N2F6PCl3.02Rh  
Formula weight  771.37  
Temperature/K  225.15  
Crystal system  tetragonal  
Space group  I4/m  
a/Å  22.953(3)  
b/Å  22.953(3)  
c/Å  13.6618(16)  
α/°  90  
β/°  90  
γ/°  90  
Volume/Å3  7197.5(19)  
Z  8  
ρcalcg/cm3  1.424  
µ/mm-1  0.796  
F(000)  3144.0  
Crystal size/mm3  0.35 × 0.34 × 0.27  
Radiation  MoKα (λ = 0.71073)  
2Θ range for data collection/°  3.47 to 56.654  
Index ranges  -30 ≤ h ≤ 30, -30 ≤ k ≤ 30, -14 ≤ l ≤ 18  
Reflections collected  32828  
Independent reflections  4678 [Rint = 0.0608, Rsigma = 0.0372]  
Data/restraints/parameters  4678/0/212  
Goodness-of-fit on F2  1.110  
Final R indexes [I>=2σ (I)]  R1 = 0.0764, wR2 = 0.1947  
Final R indexes [all data]  R1 = 0.1151, wR2 = 0.2260  
Largest diff. peak/hole / e Å-3  1.51/-0.48  
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Table A2: Bond Lengths for [Cp*Rh(tBu-bpy)Cl]+PF6
–. 

Atom Atom Length/Å   Atom Atom Length/Å 
Rh Cl 2.380(2)   C8 C81 1.414(14) 
Rh N1 2.102(5)   C8 C5AA 1.517(11) 
Rh N11 2.102(5)   C5 C51 1.474(10) 
Rh C7 2.151(6)   C5 C4 1.385(8) 
Rh C71 2.151(6)   C4 C3 1.399(8) 
Rh C6 2.191(8)   C3 C2 1.383(8) 
Rh C8 2.146(6)   C3 C12 1.522(9) 
Rh C81 2.146(6)   C2 C1 1.363(8) 
P F1 1.508(7)   C12 C15 1.522(16) 
P F11 1.508(7)   C12 C14 1.532(14) 
P F2 1.573(7)   C12 C13 1.484(11) 
P F21 1.573(7)   Cl1S C1S 1.621(11) 
P F3 1.547(10)   C1S Cl1S1 1.621(11) 
P F4 1.529(9)   Cl2S Cl2S2 1.92(2) 
N1 C5 1.341(7)   Cl2S Cl2S3 1.92(2) 
N1 C1 1.341(7)   Cl2S C2S4 1.79(12) 
C7 C6 1.427(9)   Cl2S C2S 1.79(12) 
C7 C10 1.507(10)   C2S Cl2S4 1.79(12) 
C7 C8 1.425(10)   C2S Cl2S3 1.79(12) 
C6 C71 1.427(9)   C2S Cl2S2 1.79(12) 
C6 C9 1.470(15)         

1+X,+Y,-Z; 2+Y,-X,-Z; 3-Y,+X,+Z; 4-X,-Y,-Z 
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 Table A3: Bond Angles for [Cp*Rh(tBu-bpy)Cl]+PF6
– . 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
N1 Rh Cl 85.28(14)   C6 C7 Rh 72.3(4) 
N11 Rh Cl 85.28(14)   C6 C7 C10 123.9(7) 
N11 Rh N1 76.6(2)   C10 C7 Rh 128.2(5) 
N11 Rh C71 107.6(2)   C8 C7 Rh 70.4(4) 
N1 Rh C7 107.6(2)   C8 C7 C6 108.8(6) 
N1 Rh C71 164.1(2)   C8 C7 C10 127.0(8) 
N11 Rh C7 164.1(2)   C7 C6 Rh 69.3(4) 
N1 Rh C6 141.53(12)   C71 C6 Rh 69.3(4) 
N11 Rh C6 141.53(12)   C7 C6 C71 106.7(8) 
N11 Rh C8 126.0(2)   C7 C6 C9 126.6(4) 
N1 Rh C81 126.0(2)   C71 C6 C9 126.6(4) 
N1 Rh C8 100.4(2)   C9 C6 Rh 124.0(8) 
N11 Rh C81 100.4(2)   C7 C8 Rh 70.8(4) 
C7 Rh Cl 110.1(2)   C7 C8 C5AA 125.5(7) 
C71 Rh Cl 110.1(2)   C81 C8 Rh 70.77(19) 
C71 Rh C7 64.3(4)   C81 C8 C7 107.9(4) 
C71 Rh C6 38.4(2)   C81 C8 C5AA 126.6(5) 
C7 Rh C6 38.4(2)   C5AA C8 Rh 126.4(5) 
C6 Rh Cl 91.8(2)   N1 C5 C51 114.9(3) 
C81 Rh Cl 148.7(2)   N1 C5 C4 121.3(5) 
C8 Rh Cl 148.7(2)   C4 C5 C51 123.7(3) 
C81 Rh C71 38.7(3)   C5 C4 C3 120.6(5) 
C81 Rh C7 64.5(3)   C4 C3 C12 120.2(6) 
C8 Rh C71 64.5(3)   C2 C3 C4 116.3(6) 
C8 Rh C7 38.7(3)   C2 C3 C12 123.6(6) 
C81 Rh C6 64.6(3)   C1 C2 C3 120.7(5) 
C8 Rh C6 64.6(3)   N1 C1 C2 122.7(5) 
C81 Rh C8 38.5(4)   C3 C12 C14 109.7(7) 
F1 P F11 91.4(9)   C15 C12 C3 109.6(8) 
F11 P F2 177.5(7)   C15 C12 C14 107.2(9) 
F11 P F21 89.8(5)   C13 C12 C3 111.2(7) 
F1 P F2 89.8(5)   C13 C12 C15 108.2(11) 
F1 P F21 177.5(7)   C13 C12 C14 110.8(10) 
F11 P F3 95.4(5)   Cl1S C1S Cl1S1 118.4(13) 
F1 P F3 95.4(5)   Cl2S2 Cl2S Cl2S3 89.997(2) 
F11 P F4 88.7(6)   C2S4 Cl2S Cl2S3 58(2) 



	

62 

F1 P F4 88.7(6)   C2S4 Cl2S Cl2S2 58(2) 
F21 P F2 88.9(7)   C2S Cl2S Cl2S2 58(2) 
F3 P F2 86.7(4)   C2S Cl2S Cl2S3 58(2) 
F3 P F21 86.7(4)   C2S4 Cl2S C2S 82(9) 
F4 P F2 89.1(5)   Cl2S2 C2S Cl2S 65(5) 
F4 P F21 89.1(5)   Cl2S3 C2S Cl2S 65(5) 
F4 P F3 174.1(8)   Cl2S3 C2S Cl2S2 98(9) 
C5 N1 Rh 116.3(3)   Cl2S4 C2S Cl2S2 65(5) 
C5 N1 C1 118.4(5)   Cl2S3 C2S Cl2S4 65(5) 
C1 N1 Rh 124.9(4)   Cl2S4 C2S Cl2S 98(9) 

1+X,+Y,-Z; 2+Y,-X,-Z; 3-Y,+X,+Z; 4-X,-Y,-Z 
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