HYDRODYNAMICS OF FLUVIAL STRATA WITHIN THE WILLIAMS FORK
FORMATION
BY

BENJAMIN PAUL CAMPANARO

Submitted to the graduate degree program in Geology and the Graduate Faculty of the University
of Kansas in partial fulfillment of the requirements for the degree of Master of Science.

Chairperson Diane Kamola

Michael Blum

Andreas Moller

Date Defended: July 3, 2017



The Thesis Committee for BENJAMIN PAUL CAMPANARO
certifies that this is the approved version of the following thesis:

HYDRODYNAMICS OF FLUVIAL STRATA WITHIN THE WILLIAMS FORK
FORMATION

Chairperson Diane Kamola

Date approved: July 3, 2017



HYDRODYNAMICS OF FLUVIAL STRATA WITHIN THE WILLIAMS FORK FORMATION
ABSTRACT
Fluvial sandstones within the middle part of the Late Cretaceous Williams Fork Formation

were interpreted to gain insights to hydrodynamics of the ancient fluvial system. Emphasis is
placed on a thick (~75 m), laterally extensive (up to 10 km) amalgamated fluvial sandstone. An
empirical approach is used to allow comparison of interpreted data with data from modern
systems collected from the literature. Hydrodynamic data is then applied to interpretations of
the Williams Fork Formation fluvial systems to determine planform morphologies (e.g. braided
vs. meandering), morphological styles (e.g. contributive vs. distributive), size (flow depth and
drainage area) and characteristics (slope). Individual channel-belts within an amalgamated
sandstone are interpreted to represent a ~7 m bankfull flow depth, low gradient (~10#) and low
sinuosity fluvial system with an average grain size of medium lower sand. By comparison to
modern fluvial systems within a compiled database (n>430), planform morphology is
interpreted as either irregularly sinuous, irregularly sinuous with meandering floodplain
topography or split with bars. These findings challenge previous interpretations of fluvial
planform morphology in the Williams Fork Formation. Interpretations from this study based on
a paleo-hydrodynamic approach favor deposition from fluvial systems in a low gradient coastal
plain that had more meandering-like qualities than braided. Fluvial scaling relationships of
modern systems assist in development of improved analogs for the stratigraphic record.
Features such as channel depth are used to propose slope, and in turn, interpretations of fluvial
planform morphology. Based on the analysis of the compiled modern fluvial database, planform
morphologies of rivers are characterized by certain values and ranges of bankfull flow depth,
slope and average bed sediment grain size. Detrital zircon U-Pb dating of the Williams Fork
Formation provides maximum depositional ages for the top and bottom of the formation, 70.1
+ 1.8 Ma and 74.09 + 0.48 Ma, respectively.
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INTRODUCTION

Sheet sandstones form an important component of the upper Cretaceous Williams Fork
Formation exposed in western Colorado. These fluvial sandstones form the lowest unit of
repetitive stratal packages which occur throughout the middle and upper section of this
formation (Fig. 1). Sandstones were studied through detailed fieldwork, supplemented with
data acquired for paleo-hydrodynamic analysis. Data was collected to develop a comprehensive
analysis of the fluvial systems that compose the sheet sandstones.

Quantitative analysis of fluvial strata can give insights to characteristics such as flow depth,
drainage area and discharge (Bhattacharya and Tye, 2004; Davidson and North, 2009; Semme
et al., 2009; Holbrook and Wanas, 2014). Quantification of how fluvial systems change vertically
in a stratigraphic section can be used to interpret fluvial architecture. These analyses can assist
in determining more accurate modern analogs for interpreting fluvial systems in the
stratigraphic record.

Fluvial sandstones within the middle part of the Williams Fork Formation are often
multistory, and are vertically and laterally amalgamated to form sheet sandstones. Fluvial strata
in one well-exposed sheet sandstone are interpreted to help quantify paleo-hydrodynamics (i.e.
flow depth, slope) and planform morphology (i.e. meandering vs. braided; contributive vs.
distributive). These interpreted results are compared with a database of fluvial characteristics
from modern systems compiled from the literature (n>430). This database assists in displaying
relationships between bankfull flow depth, slope and average bed sediment grain size. These
are compared with modern planform morphologies and used to interpret planform
morphologies of the studied interval.

Because the age of this formation is not well constrained, detrital zircons were analyzed
from the top and base of the formation to determine a maximum depositional age. In addition,
detrital zircons were used for provenance and drainage area reconstruction.

GEOLOGIC SETTING
The study area is located in the Piceance Basin, to the east of Grand Junction, Colorado and

is exposed along the drainage of the Colorado River, see Figure 2. Excellent exposures and
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abundant subsurface data is available along the Colorado River. Exposures studied are along
Route 65 in Plateau Creek Canyon, one of the drainages to the Colorado River. Outcrops are

vertical cliffs separated by small reentrants, which produce exposures that are oriented both
parallel and perpendicular to paleo-flow direction.

Deposition of the Williams Fork Formation occurred within the foredeep of the Sevier
Foreland Basin, approximately 200 km east of the leading edge of the Sevier Fold and Thrust
Belt (DeCelles and Coogan, 2006). During this time the foredeep was dominated by fluvial
deposits. Time-equivalent marine strata of this formation are not preserved in the foreland
basin, however, two thin marine sandstones in northwestern Colorado are proposed to
correlate to the upper part of the Williams Fork Formation (Hancock and Eby, 1930; Zapp and
Cobban, 1960; Murray, 1966; Roehler, 1990; Brownfield et al., 2000). The Williams Fork
Formation contains the deposits of eastward draining fluvial systems, which carried sediment
from the thrust belt (Johnson, 1987). In general, the Williams Fork Formation in the study area
shows little structural deformation. It was deposited during a global highstand in sea-level
(Cooper, 1977; Miller et al., 2005). The paleo-climate was warm and humid, with the average
temperature estimated at 19°C (Sellwood and Valdes, 2006; Dennis et al., 2013; Upchurch et
al., 2015).

The Williams Fork Formation overlies marginal marine and shoreface strata of the lles
Formation (Mt. Garfield Formation) and is overlain by the fluvial and lacustrine strata of the
Wasatch Formation, see Figure 1. The Williams Fork Formation is known as the Hunter Canyon
Formation in outcrop expression in the Book Cliffs region of the Piceance Basin and is
dominantly composed of fluvial and overbank deposits (Hettinger and Kirschbaum, 2002). The
age of the uppermost Williams Fork Formation is contested. In general, ages from palynologic
and ammonite zones based on biostratigraphy and/or calibration by volcaniclastics suggest a
Maastrichtian age of deposition, however, ages proposed for the youngest deposits range from
Maastrichtian to upper Paleocene (Johnson and May, 1980; Patterson et al., 2003; Laskowski et
al., 2013).

The lower third of the Williams Fork Formation is composed mainly of floodplain deposits
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with discontinuous fluvial sandstones (e.g. Cole and Cumella, 2003, 2005; Pranter et al., 2007).
The middle and upper intervals of the Williams Fork Formation contain significantly less
overbank deposits than the lower interval of this formation. Stratal packages of fluvial deposits
are defined in the middle and upper intervals and are expressed as repetitive vertical
successions (Ost, 2010). In general, a stratal package shows an upward vertical trend from high
to low net-to-gross fluvial strata, see Figure 1. The pattern is tripartite and discussed in detail by
Ost (2010). At the base, it begins with vertically and laterally amalgamated fluvial sheet
sandstones, which are typically 8-20 m thick. The amalgamated fluvial sandstones are overlain
by an interval with thick (~8 m) laterally-amalgamated fluvial sandstones encased in overbank
mudstones and siltstones. This interval is overlain by a mud/siltstone dominated interval
(overbank deposits) with isolated, thin (~1 m thick) channelized sandstones. The stratal pattern
is significant because it dominates the stratigraphic expression of the middle and upper section
of the formation (Ost, 2010). The stratal pattern repeats sixteen times in the middle section of
the formation, and three times in the upper section. This study will focus on the intervals of
amalgamated fluvial sandstones that occur at the base of the stratal package.
STUDY AREA AND METHODOLOGY

The study area was chosen because of quality and lateral extent of the outcrop. The field
area is the location of previous research projects: a Light Detection and Ranging (LiDAR) study
(German, 2006), and an outcrop study paired with subsurface data from a well in Parachute
Field, see Figure 2 (Keeton, 2012, 2015). Data from these studies are used to cross-check flow
depth calculations or determine width to thickness ratios of fluvial systems in the Williams Fork
Formation. The sandstone of interest is one of the sheet sandstones, which forms the basal unit
in one of the stratal packages defined by Ost (2010), and has been the focus of previous studies.
It has been informally named the upper Williams Fork Formation Sandstone (Leibovitz, 2010), a
sandstone within the upper Williams Fork Formation (German, 2006), a sandstone within the
middle Williams Fork Formation (Keeton, 2015), the middle Williams Fork Formation 2 (Foster,
2010) and the Big Kahuna sandstone (informally named by Rex Cole at Mesa State University

e.g. Foster, 2010). For simplicity and ease of discussion, the amalgamated sandstone of this
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study will be informally referred to as the Big Kahuna sandstone.

Two sections, on outcrops number two and three, see Figure 3a,b, were measured in detail
at the decimeter scale for facies descriptions, using a Jacob Staff and Brunton compass. Data
was collected using Miall’s (1996) facies classification, but are presented here in a descriptive
manner. In addition, dimensions of channel-fills, channel-belts, lateral accretion deposits and
scour surfaces were collected on multiple vertical outcrop exposures. Data from vertical cliff
exposures were collected using a laser range finder (TruPulse® 200X) and transferred to
photomosaics of the outcrops (Fig. 3a,b and 4 and Appendix Fig. A1-A15). Stratigraphic sections
and their locations are in Appendix Figures A1-A15. Based on completeness of exposure and
accessibility, the data used in hydrodynamic calculations is limited to and collected from eight
of ten successions interpreted as amalgamated channel-fills and channel-belts. Channel-belt is
used here as the deposit which records the path that a channel migrates over time, similar to
the term channel bodies of Gibling (2006). This is in contrast to channel-fill, which is defined as
a fill of a channel form (Gibling, 2006). The amalgamated sandstone of this study, the Big
Kahuna sandstone, is characterized by a maximum thickness of ~75 m in the study area, has a
maximum lateral extent of 10 km in outcrop expression as traced by Ost (2010) and contains
many internal scour surfaces. In general, the Big Kahuna sandstone forms massive cliff
exposures. Lateral accretion deposits are observed, but are uncommon features within the Big
Kahuna sandstone. Thin, isolated intervals of interbedded sandstone, siltstone and mudstone
occur twice in the studied interval, within the upper 15 m of the Big Kahuna sandstone seen in
Figure 3a,b and 4. Descriptions of these interbedded intervals are limited to these exposures.

These intervals are laterally discontinuous and transition into scour surfaces within 900 m.
FACIES DESCRIPTIONS OF THE BIG KAHUNA SANDSTONE
Description: Cross-bedded facies
Cross-bedded sandstone facies have two end members: wedge and festoon cross-bedded
sandstone, and planar tabular cross-bedded sandstone, see Figure 5a,b. Wedge and festoon
cross-bedded sandstones are the dominant facie in the study area and comprise approximately

85% of the measured sections (Appendix Fig. A3 and A4). Cross-bed thickness ranges from 10 to
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55 cm and the average cross-bed thickness is 29 cm (n=87). In general, cross-bed extent is less
than 5 m and cross beds are observed to stack vertically. In general, no vertical trend in cross-
bed thickness is observed, however, in places, a vertical decrease in cross-bed thickness or
grain size is noted. Sandstones are light brown and are moderately sorted with fine to medium
grain-size sand. Foresets are inclined at 5-25° with an average apparent dip of 17°, n=72
(Appendix Fig. A3 and A4). Cross-bedded sandstones commonly contain rip-up clasts, which are
concentrated on the tangential base or along foreset surfaces, and soft sediment deformation
is rare. These sandstones are equivalent to Miall’s (1996) St facies. For simplicity, in the
remainder of the text the term St facies is used for wedge and festoon cross-bedded sandstone.

Planar tabular cross-bedded sandstone comprises approximately 5% of the measured
sections (Appendix Fig. A3 and A4) and range from 45 to 140 cm in thickness with an average of
76 cm (n=23). Planar tabular cross-stratified beds typically overlie low-relief scour surfaces. In
general, cross-bed extent is greater than 5 m and cross-beds are not observed to stack
vertically. Sandstones are light brown and are poorly to moderately sorted with fine to medium
grain size sand. Foresets are inclined at 15-25° with an average apparent dip of 21°, n=8
(Appendix Fig. A3 and A4). Low angle dips are interpreted as apparent dips from oblique
exposures. Cross-bedded sandstones commonly contain rip-up clasts of siltstone and
mudstone, which are concentrated on the tangential base. Casts of wood are found within the
planar tabular cross-beds and range from 20-40 cm in diameter. These sandstones are
equivalent to Miall’s (1996) Sp facies. For simplicity, in the remainder of the text the term Sp
facies is used for planar tabular cross-bedded sandstone.

Interpretation: Cross-bedded facies

The majority of cross-beds in the St facies are interpreted as deposits of sinuous crested (3-
D) dunes, formed from unidirectional currents in a river. Most dunes in the St facies are
interpreted to have formed in equilibrium with bankfull flow. This is supported by a unimodal
distribution in cross-strata thickness, see Figure 6, and the lack of unit bar features in the
majority of the cross-beds (Smith, 1978; Bridge, 2003). In modern studies of rivers in bankfull

stage, dune height, and therefore cross-bed thickness, have a unimodal distribution when
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deposited from a single event during bankfull flow (Levey, 1978; Bridge, 2003). Because these
cross-beds are interpreted to be in equilibrium with bankfull conditions, they are used in
hydrodynamic calculations.

Some cross-beds of the St facies are interpreted as unit bars (Fig. 6). Smith (1978) and
Sambrook-Smith et al. (2006) define a unit bar as a simple form with large-scale inclined strata
that is unmodified from migration. These typically contain a slip-face near the angle of repose
and are not superimposed onto other bar forms. The dimensions of a unit bar scale to flow
width and height (Kelly, 2006). In this study, isolated cross-beds measuring over 40 cm in
thickness which contain foresets that are near the angle of repose are interpreted as unit bars.
This cross-bed thickness is significantly larger than the average thickness (29 cm) of the St facies
cross-beds. Rip-up clasts and imprints from large wooden debris (logs) are associated with
cross-beds interpreted as unit bars. In modern fluvial systems, large wooden debris is often
found in bar deposits (Gurnell et al., 2001; Lassettre et al., 2007).

When unit bars amalgamate, they form compound bars (Bridge, 2003). Compound bars
form from several erosional and depositional events to produce a more complicated internal
stratigraphy. Compound bars are not recognized in the study area. This suggests that the unit
bars were buried quickly by 3-D dunes of the St facies, preventing compound bars from
forming. Cross-beds interpreted as unit bar deposits were not included in hydrodynamic
calculations because bars scale differently to flow depth and sufficient information was not
collected to determine flow depth. In general, bars are used to predict channel width (e.g. Lunt
et al., 2004), which was not calculated in this study.

Planar tabular cross-beds of the Sp facies are interpreted as relatively straight crested (2-D)
unit bars accreting dominantly in the downstream direction, and migrating across the floor of a
channel, over a basal lag. Because all cross-bed thicknesses exceed 40 cm and do not stack
vertically, these are interpreted as unit bars, see Figure 6. Similar deposits have been labeled as
deposits of cross-bar channels (Bridge, 2003; Lunt et al., 2004). These deposits are interpreted
to be a progradational feature that is not in equilibrium with bankfull flow. All cross-beds

interpreted as unit bar deposits were not used in hydrodynamic calculations.
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Description: Interbedded sandstone, siltstone and mudstone facies

Interbedded deposits of very fine-grained sandstone, siltstone, and mudstone comprise
approximately 10% of the measured sections (Appendix Fig. A3 and A4). Fine-grained facies are
limited in extent and exposed in only a few locations because of their susceptibility to
weathering and erosion. Interbedded interval thickness range from 1.6-4.7 m, can contain up to
55% sandstone and typically overlie the St facies. In localized areas, the interbedded deposits
show soft sediment deformation when overlain by either the Sp or St facies. Sandstones are
current-rippled or contain climbing ripple cross-beds, and individual bed thicknesses range from
2-6 cm. The maximum bedset thickness is 60 cm. Sandstones are typically separated by 20 cm
of siltstone or mudstone. Sandstones are light brown and are moderately sorted with very fine
to fine grain-size sand.

Burrowing is observed sparsely in sandstones of the interbedded facies, see Figure 5c, but
when present, can homogenize the contact between the strata. Although most burrowing is
nondescript, Planolites and Naktodemasis bowni are identified. Planolites burrows are 1-3 cm in
diameter and have an active backfill of mudstone and very fine sandstone. These burrows are
unbranched, cylindrical and oblique to bedding. Naktodemasis bowni are 2-3 cm in diameter,
oblique to bedding, and actively filled with a meniscate backfill of very fine sandstone.
Naktodemasis bowni is found in continental settings and has been interpreted to occur in well-
drained floodplains (Smith et al., 2008).

Massive and bioturbated siltstones to mudstones have individual bed thickness ranging
from 5 to 35 cm. They are either teal/grey or maroon, composed of angular to subangular
blocky peds and commonly contain orthogonal slickenside surfaces. In the fine-grained beds,
passively-filled structures ranging from 1-16 cm in diameter with a downward taper are
identified as rhizoliths. Orientations are vertical to horizontal in sandstone, and oblique to
horizontal in mudstone/siltstone and in places show bark-like textures. Thicker rhizoliths,
ranging up to 16 cm in thickness and up to 40 cm long, extend vertically from these facies
through underlying beds.

Interpretation: Interbedded sandstone, siltstone and mudstone facies
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In this study, interbedded sandstones, siltstones and mudstones are interpreted to have
been deposited from overbank flooding. The sandstone and siltstone deposits are interpreted
to represent stacked and sometimes vertically amalgamated crevasse splay deposits.
Interbedded deposits with sedimentary structures associated with rapid deposition rates
(climbing ripples) or massive texture are characteristic of deposition from overbank flow. Farrell
(1987) and Smith et al., (1989) have interpreted similar interbedded fine sands and muds as
overbank facies. Although individual burrows are not recognized in the mudstone and siltstones
in this study, the massive texture may be due to bioturbation. The interbedded strata is
equivalent to Miall’s (1996) Fsm facies. For simplicity, in the remainder of the text, the term
Fsm facies is used for interbedded sandstone, massive siltstone and mudstone facies.

Mudstone features with subangular blocky peds and slickenslide surfaces are also
described in soil horizons of the Willwood Formation (Kraus and Brown, 1988). The teal/gray
color of the mudstones and siltstones can be formed in a reducing environment and the
maroon color can be formed in an oxidizing environment (Wright, 1992). Alternations of colors

are attributed to variations in water saturation in the floodplain (Lehman, 1989; Wright, 1992).

VERTICAL SUCCESSIONS AND ARCHITECTURAL ELEMENTS OF THE BIG
KAHUNA SANDSTONE

Three vertical successions of facies arrangements are observed in the two measured
sections: (1) Sp-St, (2) St-Stand (3) Sp-Fsm. Figure 7 displays schematic profiles of these
successions in the study area. The first succession consists of Sp facies overlain by St facies. The
Sp-St vertical succession has a thickness range of 1.1-3.8 m. At the base, planar tabular cross-
beds of the Sp facies overlie a sharp, low relief, erosional surface with large lateral extent that is
traced across the outcrop. The Sp facies in this vertical succession are overlain by St facies and
in some places the St facies vertically decrease in cross-bed thickness and grain size. The top of
the Sp-St vertical succession is overlain by an erosional surface.

The second vertical succession, the St-St succession, has a thickness range of 0.9-4.5 m. The

St-St succession is identified where cross-beds of successive St facies are separated by a major



scour surface. The erosional surface typically expresses more relief than the erosional surface
that underlies the Sp-St succession. There is up to 6 m of relief along the basal scour surface,
which is in many places accentuated by rip-up clasts. In general, there are few vertical trends in
cross-bed thickness or grain size in the St-St succession.

The least common facies succession, the Sp-Fsm succession, is an upward fining succession,
see Figure 5d. This succession is only observed in one locality (38.9 m on Appendix Fig. A3 and
Ab). It has limited exposure with a maximum thickness of 2.6 m, and only ~20 m of lateral
extent before it is truncated by an overlying surface. The vertical succession begins with an Sp
facie overlain by St facies that have a medium lower grain-size. Overlying the St facies are beds
of very fine sandstone. The very fine sandstone nodular beds are elongated in the horizontal
direction, however, internal laminations are not observed due to weathering. The very fine
sandstone vertically becomes light brown to grey with the incorporation of fine-grained
sediment. There is also a vertical transition in texture from platy to blocky peds. The very fine
sandstone interval is sharply overlain by a 15 cm thick massive mudstone. This results in an
overall upward fining succession of sandstone vertically into mudstone. There are no trace
fossils observed in this facies.

The facies of the upward fining succession from sandstone to mudstone, Sp-Fsm, is
interpreted as channel abandonment followed by a passive fill. The contact between the
medium lower and very fine sandstone is interpreted to represent the time of abandonment
due to the shift in deposition and preservation of finer-grained sediments. Abandonment could
have been caused by avulsion or a meander cut-off. This would allow an increase in mud
deposition and preservation due to a lower energy setting. Farrell (1987) and Bridge (2006)
have described and interpreted similar deposits of fluvial successions with fine-grained
sediment overlying coarser-grained bar deposits as passive channel-fills. Channel-fill thickness
can be used as a proxy for paleo-flow depth (Mohrig et al., 2000). The interpreted channel-fill is
not fully exposed; therefore, the thickness represents a minimum value.

Sp-St and St-St arrangements are separated by scour surfaces or less commonly, the Fsm

facies. Neither the Sp-St or St-St vertical successions contain surfaces of subaerial exposure or
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rooted horizons. The vertical successions of (1) Sp-St facies and (2) St-St facies are interpreted
as partially preserved bar deposits. Both successions are observed to stack vertically. The St-St
succession is the most common in occurrence. The Sp-St facies are interpreted to represent
thalweg, basal bar and unit bar deposits. The St-St facies are interpreted to represent
components of compound bar deposits. The interpreted depositional process that would result
in these two successions would be produced by migrating bars and channels. Erosion by
overlying Sp-St or St-St successions are interpreted to cause the partial preservation. The
successions’ erosional surface likely represents the scour that occurs with channel
reoccupation. Both Sp-St and St-St represent portions of channel-fill deposits. McLauren and
Steel (2007) interpret a similar process for the fluvial sheet sandstones within the upper
Cretaceous Castlegate Formation of Utah. Upward fining successions within these vertical
arrangements are interpreted to represent the complete preservation of migrating bars. The
lack of subaerial exposure surfaces or bioturbated horizons suggest that the fluvial system was
not ephemeral, or these features were not preserved due to erosion from migrating bars and
channels.

Paleo-current data was not collected in this study, but was obtained from previous studies
by German (2006) and Keeton (2015). Published data was collected from the field area of this
study, from the Big Kahuna sandstone in adjacent outcrops nearby and from subsurface
borehole images from Parachute Field (German, 2006; Keeton, 2015). Measurements from
cross-beds indicate east to northeast flow directions, see Figure 8. A sinuosity of 1.1 was
calculated from cross-beds using borehole imagery from Keeton’s (2012, 2015) study of the
middle Williams Fork Formation, which includes the Big Kahuna sandstone. This is interpreted

to represent a low sinuosity fluvial system.

Major erosional and depositional surfaces within the Big Kahuna sandstone
A hierarchy of bedding surfaces is observed within the study area, which are subdivided by
extent and/or relief: (1) surfaces with large extent with low relief, (2) surfaces with small extent
with high relief and (3) surfaces with small extent that show a consistent orientation. Surfaces

with large lateral extent are the most prominent feature within the Big Kahuna sandstone in
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the study area. These surfaces have low relief and typically occur at 8-13 m intervals when
observed where the sections were measured, however, along the inaccessible cliff exposures,
surface relief ranges from 4.5-25 m. These are distinct surfaces that typically extend across the
entire outcrop expression and are labeled as type 1 surfaces in Figure 3a. Some segments of the
outcrop are highly weathered, and are cavernous in expression (with numerous tafoni
features). Bed surfaces cannot be correlated across this weathering pattern. A few of these
surfaces extend short distances across the outcrop and are truncated by another surface. These
surfaces are interpreted as a common surface of channel-belt migration. The stratigraphic
sections bracketed by these intervals are used in hydrodynamic analysis of the outcrops (Fig. 3).
The second type of surface (type 2 surface) shows higher relief (<6 m), but has significantly less
lateral extent than the first surface type (expression is less than outcrop length). The more
limited lateral extent is due to truncation by another surface or loss of expression from
weathering where outcrop exposures contain a tafoni or massive texture. Surfaces cannot be
correlated or identified in outcrops with these textures. These type 2 surfaces are not as
prominent as the first type of surface and are not as easily distinguished in outcrop. Type 2
surfaces are interpreted as internal scours, but some could be poorly or partially expressed type
1 surfaces.

The third surface type has limited extent and occurs as clusters of surfaces that display a
consistent orientation. These surfaces (type 3 surfaces) are bounded by the type 1 surfaces. The
surface clusters are usually truncated by the overlying surfaces (type 1 surface) and in places
have a tangential base and display downlap with respect to the underlying surfaces. Vertical
relief of the surfaces ranges from 4.5 — 10.6 m with an average of 6.7 m (n=10). Erosion by an
overlying surface results in the wide range of relief observed for these surfaces. Surfaces that
occur in clusters are characterized by a dip of 5-10°. As seen in Figure 4, the type 3 surfaces
(shown in green) have a consistent dip, vertical relief and orientation. When the outcrop face
changes orientation, the angle of dip is observed to decrease as seen in Figure 4. A laser range
finder was used to measure vertical relief on these inaccessible cliff exposures. Therefore, if

thickness between type 1 surfaces are representative of paleo-flow depth then all measured
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values are likely minimum values. The deposits bracketed by the collection of surfaces are
interpreted to be sandstone dominated. Type 3 surfaces display a consistent orientation and
are interpreted as lateral accretion surfaces. Lateral accretion surfaces are formed as a result of
channel migration, which deposits sediment on the inner bank of a bend. Observations in this
study are similar to the descriptions of lateral accretion of Miall (1985) and point-bar deposits
of Pranter et al. (2007). Lateral accretion surfaces are most prevalent in outcrop number 5 and
outcrop number 4. Lateral accretion surfaces are relatively less common within the outcrops to
the west, outcrop number 1 and 2, where cliff exposures contain less fine grained deposits. The
thickest intervals between type 1 surfaces occur in the western, sand-dominated outcrops.
These exposures are weathered and have a massive texture, which is non-conducive for
interpretation of internal deposits and surfaces.

Lateral accretion surfaces are commonly used for determining paleo-flow depth in the
stratigraphic record (Mohrig et al., 2000; Pranter et al., 2007; Wu et al., 2015). In the study
area, vertical relief of lateral accretion surfaces do not represent the complete channel depth
because of truncation from overlying erosional surfaces. Ethridge and Schumm (1977)
determined an empirical relationship for flow depth between the straight and curved sections
of a channel from experimental and modern fluvial systems. They determined that the depth of
the straight reach of a channel is approximately equal to 0.585 multiplied by the depth of the
meandering reach of a channel. If the 10.6 m relief of the lateral accretion surface represents
the entire depth of the meandering section, then the minimum depth of the equivalent straight

reach would be 6.2 m.

Interpretation of channel-belts
Type 1 surfaces (low-relief erosional surfaces with large lateral extent) are the most
prominent features within the Big Kahuna sandstone and are interpreted to be a common
surface feature of channel-belt migration. The thickness of a channel belt is the distance
between the deepest scour to the uppermost deposits of the highest bankfull flow conditions,
provided the entire section is preserved (Salter, 1993). Sandstone thicknesses between

consecutive low-relief surfaces range from 4.5-25 m. This thickness would represent paleo-flow
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depth, if the interpreted interval is the deposit of one channel-belt. However, these intervals
are not interpreted to represent paleo-flow depth, because it is interpreted that the large range
in interval thicknesses is caused by erosion from overlying channels. This results in an interval
thickness that is less than paleo-flow depth. Weathering of cliff exposures masks type 1
surfaces, which could result in the overestimation of channel-belt thickness. This could then
result in an interpreted interval thickness that is much larger than paleo-flow depth. These
compiled observations indicate that the thicknesses between low-relief surfaces are not an
accurate reflection of paleo-flow depth, although this thickness may be a proxy for a minimum
value of paleo-flow depth.

The type 1 surfaces (intervals between the large, low-relief erosional surfaces) are
interpreted as vertically and laterally amalgamated channel-belt and channel-fill deposits due
to the complexity or absence of internal surfaces. For further discussion and calculations, the
sections between the type 1 surfaces are referred to as intervals. Intervals are coded differently
on outcrops due to difficulty correlating from one outcrop face to the next. Outcrop number 2
is numerically (1-6) coded and outcrop number 3 is alphabetically (A-D) coded for the measured
sections, see Figure 3a, b. Different codes were applied to each outcrop due to loss of type 1
surfaces between outcrop expressions. Because the intervals may represent amalgamated
channel-belts and channel-fills, the gross thickness does not necessarily represent the thickness
of a single channel-belt or channel-fill. Amalgamation of channel-belt and channel-fill deposits
in an interval would result in a complicated, stacked fluvial architecture that consists of

multistory sandbodies.

HYDRODYNAMICS OF THE BIG KAHUNA SANDSTONE
Paleo-flow depth
Fluvial scaling relationships are predictive in that most features (e.g. depth, slope, drainage
area) are dependent on grain size and discharge (i.e. grain size is directly related to slope and
discharge is directly related to flow depth and drainage area). A scaling relationship is when
measurements of a river’s feature is comparable to the same feature of other rivers, regardless

of the order of magnitude. Through scaling relationships, parameters such as flow depth,
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discharge and drainage area can be compared between fluvial systems and therefore are
predictive (Lee and Julien, 2006; Blum et al., 2013). Flow depth is important because it can be
used to gain estimations of slope and backwater length in the stratigraphic record.

There are three major approaches in the literature for determining paleo-flow depth:
measuring channel-fill height, measuring point-bar height, and empirical relations with cross-
bed thickness (Fig. 9a) (Mohrig et al., 2000; Leclair and Bridge, 2001; McLaurin and Steel, 2007;
Pranter et al., 2007). Cross-bed thickness is used to determine paleo-flow depth in this study
because of incomplete or poor preservation of channel-fill deposits. Point bar thickness is not
used as a flow depth indicator because lateral accretion deposits are not commonly observed in
the study area. Cross-bed thickness is used to determine paleo-flow depth in this study because
of excellent preservation in outcrop exposures. Leclair and Bridge (2001) experimentally
determined that dune height and cross-bed thickness are directly related to the flow depth that
formed them. Dune height and flow depth are calculated from cross-bed thicknesses via the
methods of Leclair and Bridge (2001) and are discussed in full in Appendix 2bi. Based on this
model, paleo-flow depth estimations from the stratigraphic record encompass a range of
possible values because velocity cannot be directly measured from the rock record. This range
is also calculated because bedform stability occurs over a range of velocities. It is unknown if
the studied cross-beds formed from dunes near the edge or center of its stability field, which
could affect dune height. The methods used in this study account for any dune within the
stability field, therefore, they provide a range of plausible flow depths.

The method of using cross-beds to determine flow depth has been tested in several
modern rivers (Gabel, 1993; Leclair and Bridge, 2001; Lunt et al., 2004). Studies of the
stratigraphic record have calculated similar paleo-flow depths from cross-beds to depths
estimated from channel-fill thicknesses (Adams and Bhattacharya, 2005; Holbrook et al., 2006;
McLaurin and Steel, 2007). These studies further validate the use of empirical relations of cross-
bed thickness to determine paleo-flow depth. Use of this method has been gaining momentum
in the literature (e.g. Li et al., 2010; Chen et al., 2014; lelpi et al., 2014; Bhattacharya et al.,

2016). Compaction of the subarkose sandstone in the field area is interpreted to have negligible
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effects on cross-bed thickness.

Leclair and Bridge’s (2001) model used data from their experimental findings and published
data on modern fluvial systems. Paleo-flow depth calculated from cross-bed thickness contains
uncertainties due to assumptions within the model. There are two assumptions within Leclair
and Bridge’s (2001) model. The first assumption is that variation in cross-bed thickness is mostly
attributed to variations in dune height. The second assumption is that the dunes of interest did
not change drastically over time or space. Scatter in the model results can be attributed to
incorrect collection of data from modern systems. A possible source of error leading to data
scatter is that dune height and flow conditions (e.g. velocity) collected from modern fluvial
systems may not have been in equilibrium at the time of data collection. This could potentially
produce incorrect results from using two unrelated features. There are also potential errors
with the application of Leclair and Bridge’s (2001) model. Collection of cross-bed thicknesses is
limited to fluvial channel bar deposits. Other unidirectional processes that form dunes were not
incorporated into the model. Another source of error in the application of the model could be
from the number of measured cross-beds. If the collected dataset is too small to define a
probability density function (pdf) then a constant (beta, related to variations in trough scour
depth) in the model is estimated from data collected by Leclair and Bridge (2001).

Paleo-flow depth is calculated from cross-beds interpreted as dune deposits. Based on 87
field measurements, the average thickness of cross-beds interpreted as dunes is 29 cm.
Thickness was plotted against count to display the range and distribution of all cross-bed
deposits, see Figure 6. Cross-beds interpreted as either dunes (blue) or unit bars (yellow) show
a bimodal distribution in thickness and are easy to distinguish from each other in outcrop
expression. Unit bar cross-beds are distinguished from dunes by having a simple form with
steep foreset angles that does not stack vertically (Smith, 1978; Sambrook-Smith et al., 2006).
Unit bars in this study commonly occur with rip-up clasts, wooden debris and large, low-relief
scour surfaces. Bimodal distributions of dunes and unit bars are also seen in data from modern
fluvial systems (Levey, 1978). Bar dimensions relate to channel width and are not included in

hydrodynamic calculations. The unimodal peak in thickness of cross-beds interpreted as dune
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deposits can reflect preservation of similar flow conditions. This study interprets that dune
deposits were formed in bankfull conditions. Bankfull flow depth will have the largest dunes
due to the deepest flow depth. The largest dunes have the deepest scour depth, therefore, the
largest dunes will be preferentially preserved relative to smaller dunes that formed during
shallower baseflow flow depths (Leclair et al., 1997).

Dune height and cross-bed thickness are directly related to flow depth (Leclair and Bridge,
2001). As a simplification, channel forms are concave up, and dune deposits are interpreted to
record multiple flow depths, with the thickest cross-beds corresponding to bankfull flow.
Because there is a distribution of flow depths recorded by dune deposits, the 90t percentile
(P90) is interpreted to be a close approximation to bankfull flow depth. The P90 is interpreted
to incorporate the range of cross-beds observed and allows for fluctuation in the maximum and
minimum flow depth. Fluctuations in the maximum flow depth are likely to be related to deep
scours that are spatially discontinuous and do not reflect bankfull depth. The P50 of calculated
flow depths would represent a depth between day to day and bankfull flow. Bankfull flow
depth is important because channels form during bankfull flow stages (Williams, 1978; Church,
2006).

A flow depth for the fluvial system was estimated from the P90 of each interval (Table 1).
P90 flow depths from seven intervals are in close agreement, and data from eight intervals are
used to calculate flow depth. Two intervals (4 & 6) are in disagreement with the other
intervals, it is interpreted that the data is reflecting poor exposures or outcrop inaccessibility.
Data from those outlier intervals were not included when calculating flow depth. Table 1
contains the calculated interval P90 flow depth and the corresponding grain sizes (minimum,
maximum and average). The bankfull paleo-flow depth for the median P90 ranges from 4.0 - 7.2
Figure 9b is a histogram of all calculated flow depths. The P90 of all interpreted dunes is 6.9 m.
Previous studies of the Big Kahuna sandstone have estimated similar flow depths. Flow depths
determined from Keeton’s (2012) average calculated dune height in the middle Williams Fork

Formation provide a depth of 5.1 m. This is within the median P90 range calculated from
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deposits grouped by interval (table 1) of this study and is similar to the P50 flow depth of all
dune cross-beds (4.9 m). The P90 of this study is also in close agreement with the average
thickness (7.8 m) of channel-belts and channel-fills measured with LiDAR (German, 2006).
Based on the P90 of this study, the calculated bankfull paleo-flow depth of individual channels
within the Big Kahuna sandstone was approximately 7 m. Differences between flow depth
calculated from cross-bed thickness and thickness between type 1 surfaces (interval thickness)
could be due to a bias from the location of the measurements. Cross-bed thickness was
collected at weathered reentrants while measurements using a laser range finder are from
vertical cliffs. Differences in weathering could be related to grain size, therefore, it could
represent differences in the depositional process or different fluvial systems.

Width-thickness ratio of channel-belt deposits

Fluvial systems go through downstream transformations after entering the backwater
zone. The backwater zone is defined by the distance between the river mouth and the location
upstream where the channel base is the same elevation as base-level (Paola and Mohrig, 1996).
Within the backwater zone, channel forms are narrower, deeper and migrate less compared to
the channels upstream of this zone (Hudson and Kesel, 2000; Nittrouer et al., 2012). Changes in
channel migration inside the backwater zone cause width to thickness ratios of channel-belt
deposits to be distinctly different from the upstream ratio (Blum et al., 2013). Because width to
thickness ratios of channel-belts change predictively downstream, they can be used as a
locational tool for gross depositional environment for studies in the stratigraphic record.

Using LiDAR, German (2006) measured width and thickness dimensions of 113 fluvial
sandbodies, which are reinterpreted in this study as channel-belt and channel-fill sandstones.
Data was collected from six outcrops of the Big Kahuna Sandstone in Plateau Creek Canyon,
including the one from this study (see inset map of Figure 10). German (2006) used width to
thickness ratios (W:T), defined by Friend et al. (1979), to identify ribbon (W:T < 15:1) or sheet
(W:T > 15:1) sandstone geometries. German’s (2006) W:T ratios are used in this study to
determine the backwater influence in the study area. Backwater influence can be determined

by W:T ratios of channel-belt deposits (Blum et al., 2013). Ranges of W:T ratios from within and
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outside the backwater reach were collected from the stratigraphic record and modern systems
(Gibling, 2006; Blum et al., 2013) and plotted in Figure 10. W:T ratios of 30-70:1 are
representative of channel-belts within the backwater reach, and highlighted in light green in
Figure 10. Ratios of 70-300:1 are representative of channel-belts upstream of the backwater
effects, and highlighted in dark green in Figure 10. The average W:T ratio of channel-belts
upstream of the backwater effects is approximately 200:1. Ratios of 6-30:1 are representative
of channel-fills, as opposed to channel-belt deposits, and will not be used to determine the
backwater zone. This study uses Gibling’s (2006) definition of channel-belts, which are the
deposits that record the migration of a channel over time, as opposed to channel-fill, which
records the fill of an individual channel form.

Width to thickness ratios from German (2006) are grouped by orientation: perpendicular
(prp) and oblique (obl) to paleo-flow on Figure 10. Exposures that were interpreted as parallel
to paleo-flow were not used to determine backwater effect because they do not provide a
representative width of the fluvial deposits. They do, however, help establish channel
thickness, and so are included in Figure 10. Deposits within the channel-belt domain that are
perpendicular (prp), oblique (obl) and perpendicular to oblique (prp/obl) have an average W:T
ratio of 46:1 (n=41) (Fig. 10). Symbol color used in Figure 10 represents W:T ratios plotted by
orientation to paleo-flow. Symbol shape represents W:T ratios plotted by complete versus
incomplete (e.g. truncated) exposure. Ranges of ratios are highlighted according to the
definitions of Gibling (2006) and Blum et al. (2013). The schematic map, upper right, displays by
color, where these processes occur in map view. The calculated W:T ratio of 46:1 from the Big
Kahuna sandstone, is interpreted to represent deposition within the backwater zone.

Width to thickness ratios of the channel-belt sandstones plot within the backwater effects.
Width to thickness ratios from German (2006) are interpreted here as a minimum value
because the maximum outcrop exposure is approximately 900 m. Widths of complete
exposures of channel-fills and channel-belts are well within the extent of the outcrop and
complete exposures of channel-belts are clustered around 39-55:1. These observations indicate

that the W:T of 46:1 is likely close to its actual value. Modern channel-belts within the
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backwater effects are approaching the end of the fluvial system and typically fall within the

coastal plain environment.

Paleo-slope

Slope is a unitless measure of elevation gain or loss over distance. It is related to river
morphology such as braided and meandering (e.g. Leopold and Wolman, 1957; Schumm and
Khan, 1972). Application of slope estimations in the stratigraphic record is important for
insights in supporting an interpretation on river morphology.

There are two primary methods to estimate slope from the stratigraphic record. Slope is
most commonly estimated by multiplying grain size by constants and dividing by flow depth.
The constants are Shields number and submerged specific gravity of the sediment. These
constants have been adjusted in different investigations for various grain sizes or compositions
(e.g. Paola and Mohrig, 1996; Holbrook and Wanas, 2014; Lynds et al., 2014). This is considered
a simplistic approach and a rough estimate because Shields number is held constant.

Another method of slope calculation allows Shields number to change with grain size. By
setting two equations with two unknown variables (slope and Shields number) equal to each
other, the common variable (Shields number) can be left unknown and the second variable
(slope) can be determined. This method involves using a modified river slope equation from
Parker (1978) and an equation that relates the minimum threshold of incipient suspension to
Shields number from Wilkerson and Parker (2011). This approach was developed by Lynds et al.
(2014) and is discussed in further detail in Appendix 2c. This study calculates slope using this
method with application of the Julien assessment. The Julien assessment holds the minimum
threshold of incipient suspension (u”st /ws) constant so that it does not change with grain size.
As discussed in Lynds et al. (2014), this modification was justified from experimental studies,
when several grain sizes reached a constant value of incipient suspension (Laursen, 1958; Nifio
et al., 2003).

The Lynds et al. (2014) Method Number Two was established for fluvial systems composed
of very fine- to medium-grained size sand. This method was selected because the average grain

size of the Big Kahuna sandstone is lower medium, and because it allows for fluctuations in
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Shields number and has a known error range (factor of 2) from testing on modern fluvial data
(n>1200).

All combinations of calculated P90 flow depths (lower limit, upper limit, and median) and
measured average grain sizes were used to calculate the full range of possible paleo-slope, (see
table 1). The average paleo-slope calculated for all of the intervals is 7.6*10 with an
uncertainty range of 3.8*%10° to 1.5*10%. The calculated minimum and maximum paleo-slope is
4.7*10° - 1.3*10%, respectively, with an uncertainty of 2.4*10° to 2.6*10*. All paleo-slope
calculations are located in table 2. Paleo-slope calculations indicate a low gradient river (~107#).
Higher gradient rivers (>1073) are not within the uncertainty of the paleo-slope calculations.

Backwater length

The backwater length is the distance from the shoreline to a point upstream where the
river is affected by base-level (Blum et al., 2013). Backwater length can be used as a predictive
measure to help estimate distance from a paleo-shoreline and to estimate total dimensions of
delta plain environments (Blum et al., 2013; Bhattacharya et al., 2016). Backwater length is
defined by flow depth divided by slope; in this study, a range is estimated using the array of
calculated values for flow depth and slope for each interval (Paola and Mohrig, 1996). Values
estimated for the backwater length are a first order approximation due to the propagated error
of the large ranges of flow depths and slopes. Calculations are most sensitive to changes in
slope (the denominator) because it is several orders of magnitude smaller than flow depth (the
numerator). This is further complicated in application to the stratigraphic record when paleo-
slope is estimated by paleo-flow depth which is also empirically derived.

First order estimates of the backwater length for the study area are approximately 100 km
(see table 3). This would indicate that a paleo-shoreline should be located within approximately
100 km of the study area. There are no known coeval marine deposits to the Big Kahuna
sandstone in Colorado. There are limited exposures of time equivalent marine strata within a
100 km radius of the study area. The Big Kahuna sandstone has been correlated approximately
60 km from the study area in the subsurface (Leibovitz, 2010; Keeton, 2012). The location of

potential paleo-shorelines are further explored in the discussion section.
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COMPARISON TO MODERN FLUVIAL SYSTEMS
Slope of modern rivers

Quantitative studies of fluvial systems in the stratigraphic record are significant because
they allow for direct comparison of these systems with modern systems, which assists in
determining the best modern analog. The range of calculated paleo-slopes from the intervals
within the Big Kahuna sandstone were compared to elevation profiles of modern rivers.
Elevation profiles of eleven modern rivers were collected from Digital Elevation Models (DEM).
These eleven rivers were chosen because they discharge into a large body of water and
therefore have a theoretical backwater length. Rivers selected have a range of slopes, climatic
conditions, planform morphologies and occur considered by some in various tectonic settings.
Data used from these rivers is limited to 100 km from the mouth to compare their slopes to the
estimates of the Williams Fork Formation.

DEMs are collected from the United States Geological Survey (USGS) and the literature.
Both Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) data is used with 1/3 to 1 arc second resolution. ASTER
Global Digital Elevation Map (GDEM) data is used and is a product of The Ministry of Economy,
Trade, and Industry (METI) and the National Aeronautics and Space Administration (NASA).
DEMs of Italy are collected from the literature (Tarquini et al., 2007, 2012). Environmental
Systems Research Institute (ESRI) mapping software, ArcMap 10.2, is used to trace channels
and extract elevation data.

Figure 11 displays river elevation profiles and illustrates the relationship between slope
and planform morphology. The x and y axis are in distance, while the top and right sides of the
graph indicate points of constant slope. River elevation profiles are shown in different patterns
which represent planform morphology: braided rivers are dashed lines, transitional rivers are
dashed-dotted lines and meandering rivers are solid lines. Williams Fork Formation paleo-slope
estimates are shown by shaded regions: green represents the average slope, red is the
associated uncertainty (factor of 2) and yellow represents the uncertainty of the calculated

range of slope estimates. Fading of slope estimations in the down dip direction is to emphasize
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that the backwater length calculations are approximately, but not limited to, 100 km from the
river mouth. The faded range of slope estimates are shown because the actual distance from
the paleo-shoreline to the study area is unknown due to the limited outcrop exposure and
preserved rock record.

Slope estimates of the studied interval (~10#) plot closest to the modern Adgie, Ili and
Trinity Rivers (Fig. 11). These rivers have meandering and transitional (transitional to braided)
planform morphologies. Elevation profiles of braided rivers have slopes greater than 103,
Maximum uncertainty of slope calculations would be similar to slope of the Trinity River and
the Adige River. The metrics of paleo-slope estimations place the deposits of study outside of
the slopes of modern braided rivers.

Parameter space of fluvial planform morphologies

The transition from meandering to braided planform morphologies have been quantified
through empirical relationships involving flow depth, grain size, discharge and flow width (e.g.
Leopold and Wolman, 1957; Parker, 1976; Kleinhans and Van den Berg, 2011). The majority of
these studies involve comparing two or more of the above variables, and are based on modern
fluvial systems. Discharge can be measured in modern fluvial systems, but is difficult to
determine from the rock record. Flow depth, however, as discussed earlier, is more easily
estimated, although there are uncertainties in estimating this value as well.

This study presents a semi-quantitative relationship between slope, bankfull flow depth
and average bed sediment grain size with planform morphology. This study uses the term
parameter space because these variables occur in certain ranges for planform morphologies.
These three variables can be used to better interpret planform morphology from the
stratigraphic record.

Data of modern fluvial systems was compiled from the literature (Schumm, 1968;
Osterkamp et al., 1982; Church and Rood, 1983; Trampush, 2014). Values of river slope,
bankfull flow depth and average bed sediment grain size of modern rivers are cross-plotted and
are then compared to their planform morphology. Flow depth used refers to bankfull flow

depth or channel dimensions of the two-year flood or the five-year flood. Grain size refers to
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the average or 50" percentile grain size of the bed sediment and slope refers to river channel
slope. See Appendix 3 for all data (over 430 points) on rivers mostly in North America.

Terminology of planform morphology used in this study is modified and paraphrased from
Church and Rood (1983), see Table 4. Most definitions from Church and Rood (1983) remain
unchanged, but the data has been reinterpreted due to modification of definitions and addition
of definitions. Church and Rood (1983) have defined categories for anastomosed and
braided/anastomosed planform morphologies. Upon evaluation of their raw database, systems
that were originally classified with anastomosed are reclassified as braided or split with bars
because anastomosed morphologies were not recognized (Makaske, 2001). The category of
irregularly sinuous has been expanded into three categories: irregularly sinuous, irregular
sinuous with meandering topography in floodplain and irregular sinuous with rapids. Due to
strict criteria of classification, many rivers within the categories of irregularly sinuous and
irregular sinuous with meandering topography in floodplain would be considered as a
meandering planform morphology to most geologists. This classification was kept from Church
and Rood (1983) to illustrate the differences in endmember planform morphologies (braided
and meandering).

Cross-plots of slope, grain size and flow depth colored by planform morphology, are shown
in Figure 12. Figures 12a,b display the gravel-sand transition by the gap in grain size data. Rivers
tend to be gravel or sand dominated because granule gravel (2-4 mm) rivers are typically not
observed (Parker and Cui, 1998; Cui and Parker, 1998). This gap is also a transition of slope,
flow depth and planform morphology in the database. The modern Allt Dubhaig River contains
a gravel-sand transition which is also a transition in slope and planform morphology (Ferguson
and Ashworth, 1991). Figure 12a shows that increase in slope associates with an increase in
grain size which has been previously established by the work of Schumm (1981). Figure 12c
displays that an increase in slope relates to a decrease in flow depth. It is known that flow
depth has a direct relationship with discharge and drainage area (Blum et al., 2013). It is also
known that slope is indirectly related to discharge and drainage area (Wolman, 1955; Flint,

1974). Figure 12d shows the direct relationship between flow depth and drainage area. The
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relationship is similar to previously published results (Blum et al., 2013).

Figure 13 is a 3D scatter plot of slope, average bed sediment grain size and bankfull flow
depth. The colors represent the same planform morphologies as Figure 12 with the addition of
grey shadows used strictly to illustrate data position. These graphs further display that certain
planform morphologies are observed in ranges of slope, grain size and flow depth, see Figures
12a,b,c and 13. The results of this analysis are as follows.

1) Braided rivers typically have slopes greater than 103, Braided rivers with slopes less than
1073 in this database have glaciated headlands.

2) Fluvial systems characterized by chute channels and other minor secondary channels are
dominantly observed in sediment >10 mm and slopes above 103,

3) Rivers in the categories of meandering and irregular sinuous with meandering floodplain
topography are dominantly observed in slopes less than 1073,

4) Rivers split with bars are typically observed with grain sizes >10 mm and in slopes
>3.0x10%.

5) Rivers classified as irregular sinuous with rapids are observed in flow depths less than 1
m, steep slopes around 102 and grain sizes above 10 mm.

6) Rivers classified as irregularly sinuous are seen across all ranges of slope, grain size and
flow depth. This wide spectrum illustrates that either this definition is too broad and
requires further quantification of channel features for classification, or this is an easily
obtainable equilibrium state for rivers in all types of systems. This wide range would raise
the notion that this planform morphology is the most common type of river; not perfectly
symmetrical in sinuosity and containing few to no sub-aerially exposed detached bars.

The trends discussed above are recorded in Table 5 and contains the range and 50t
percentile for a planform morphology’s slope, grain size and flow depth organized by grain sizes
less than and greater than 2 mm. Modern rivers with approximately 7 m flow depth, 10 slope
and an average grain size of medium sand are typically irregularly sinuous, irregular sinuous
with meandering floodplain topography or split with bars in planform morphology. Rivers with

braided morphologies close to these calculated characteristics have glaciated headlands. End
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member planform morphologies, such as braided, meandering and minor secondary channels,

are observed in certain ranges of slope, grain size and flow depth. This is significant because all

three of these parameters can be measured or estimated in the stratigraphic record. Slope,

grain size and flow depth can provide quantitative guidance in stratigraphic interpretations of

fluvial planform morphology through direct comparison to modern systems.
GEOCHRONOLOGY

Depositional ages of the non-marine Williams Fork Formation are hard to constrain
because of the absence of ash beds and index fossils. Proposed ages involve correlations across
substantial distances and biozones that allow for interpretation. Pollen stratigraphy analyses
place the depositional age of the lowermost part of the formation near the Campanian-
Maastrichtian boundary (Johnson and May, 1980; Patterson et al., 2003). However, there is
little agreement on the age of the uppermost deposits of the formation using pollen
stratigraphy and detrital zircon analyses (Johnson and May, 1980; Patterson et al., 2003;
Laskowski et al., 2013). To improve age constraints detrital zircons were collected near the
lower and upper contacts, (Fig. 2). A maximum depositional age (MDA) can be estimated from
the youngest population of detrital zircon grains in a sample, and may not represent the
absolute age of the formation.

Pollen stratigraphy analyses of mudstones from the Williams Fork Formation yield
conflicting ages for this formation, with a 5-10 Ma difference on the age of the upper contact.
Based on palynologic samples collected from the southwestern Piceance Basin, Johnson and
May (1980) propose that deposition of the Williams Fork Formation began in the late
Campanian to early Maastrichtian and ended at the Maastrichtian — Paleocene boundary.
Patterson et al. (2003) used palynologic samples from well cuttings from the north central part
of the Piceance Basin, and interpreted the upper formation boundary of the Williams Fork to
occur in the middle to upper Paleocene. Their samples, however, contained both Cretaceous
and Paleocene palynomorphs, and the Cretaceous palynomorphs were interpreted as reworked
(Patterson et al., 2003).

Ammonite zones have been used to date strata underlying the Williams Fork Formation.

25



Marine strata of the Pierre Shale underlying the Trout Creek Sandstone Member of the lles
Formation, in Kremmling, CO, contain the ammonite zone Didymoceras cheyennense (lzett et
al., 1971). The Trout Creek Sandstone Member is time equivalent to the Rollins Sandstone
Member (lles Fm.), which underlies the Williams Fork Formation in the study area (Fisher et al.,
1960; Johnson and May 1980; Madden, 1989). The ammonite zone D. cheyennense yields Ar-Ar
dates from sanidine of 73.8 + 0.1 Ma (lzett et al., 1998).

Ammonite zones are dated using volcaniclastic beds from marine strata equivalent to the
Twentymile and Lion Canyon Sandstone Members of the Williams Fork Formation, which are
exposed in the northeast Piceance and southern Sand Wash Basins, (Fig. 14) (Roehler, 1990;
Franczyk et al., 1992; Brownfield et al., 2000). These two marine sandstones are the only
marine sandstones within the Williams Fork Formation. Zapp and Cobban (1960) and Roehler
(1990) correlated the Twentymile sandstone to the middle Williams Fork Formation in the
northeast Piceance and southern Sand Wash Basin, based on ammonite biozones. The
Twentymile Sandstone Member contains the ammonite zone Baculites reesidei, and yields Ar-
Ar dates from sanidine of 72.94 + 0.45 Ma (Baadsgaard, 1993; Cobban et al., 2006). The Lion
Canyon Sandstone Member is stratigraphically beneath the Price Coal, above the Goff Coal and
is approximately equivalent to the middle to upper Williams Fork Formation in the Danforth
Hills Coal Field, (Fig. 14) (Hancock and Eby, 1930; Murray, 1966; Brownfield et al., 2000;
Leibovitz, 2010). Several studies have correlated the Lion Canyon Sandstone Member to
intervals outside of the Piceance Basin; it is proposed to be equivalent to the Fox Hills
Sandstone and/or an isolated marine sandstone within the Lewis Shale in the Sand Wash and
Washakie Basins, in Colorado and Wyoming, based on marker beds (Zapp and Cobban, 1960;
Brownfield et al., 2000). The Lewis Shale overlies the Williams Fork Formation in the Sand Wash
Basin (Roehler, 1990). The Lion Canyon Sandstone Member contains the ammonite zone
Baculites clinolobatus (Franczyk et al., 1992), which is associated with a bentonite dated at
69.59 + 0.36 Ma, using Ar-Ar of sanidine (Obradovich, 1993; Cobban et al., 2006). In the
northeast Piceance Basin, both sandstone members have been interpreted to have a

depositional strike of northwest to southeast (Zapp and Cobban, 1960; Franczyk et al., 1992;
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Leibovitz, 2010).

An altered ash deposit near Craig, CO, known as the Yampa Bed, is located within the C-D
coal bed of the Williams Fork Formation, (Fig. 14), and is proposed to be equivalent to the
Fairfield Coal Group, which includes the Cameo Coal Seam, at the base of the Williams Fork
Formation (Brownfield and Johnson, 1986; Johnson and Brownfield, 1988; Brownfield et al.,
2000; Johnson et al., 2000). The altered ash bed is dated at 72.5 + 5.1 Ma, using K-Ar dating of
andesine (Brownfield and Johnson, 2008).

Detrital zircon samples of the Williams Fork Formation were collected by Laskowski et al.
(2013) from drill cuttings and core from the middle and upper portion of the Williams Fork
Formation from wells in the Piceance Creek and Love Ranch fields. Laskowski et al. (2013)
interpreted maximum depositional ages from the middle and upper sections of the formation
to be Maastrichtian to Selandian in age. The youngest grain ages used for maximum
depositional ages in the middle section yielded 71.7 + 2.0 Ma, 64.7 £ 0.4 Ma and 61.6 + 0.8 Ma.
The youngest grain ages used for maximum depositional ages in the upper section yielded 67.3
+5.9 Ma and 63.9 + 3.8 Ma.

In this study, samples were collected for detrital zircon analysis from fluvial sandstones at
the base and top of the Williams Fork Formation, from outcrops near the study area in Coal
Canyon and near Mesa, CO (see Fig. 2). The sample from the base of the formation (sample WF-
04) is from a current-rippled, fine-grained sandstone, interpreted as a fluvial channel-fill
sandstone. The fluvial sandstone is within the Cameo Coal seam located in Coal Canyon, and
sampled at ~5 m above the Rollins Sandstone Member — Williams Fork Formation contact. The
sample from the top of the formation (sample WF-01) was taken from a wedge-shaped cross-
bedded medium-grained sandstone, interpreted as part of an amalgamated channel-belt
sandstone. The outcrop is approximately 10 m below the Williams Fork Formation — Wasatch
Formation contact and located near Mesa, CO.

Methods for zircon extraction are paraphrased from Lippert (2014). U-Pb analyses of
detrital zircon grains from the two samples collected were obtained by laser ablation

inductively coupled mass spectrometry (LA-ICP-MS). Zircon grains were separated using
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standard mineral separation techniques. At least 300 grains per sample were handpicked under
a binocular microscope and mounted in an epoxy disc that was polished to expose the grains’
internal structures. Appendix 4a lists the complete methods of mineral separation and sample
preparation.

Two samples (WF-01 & WF-04) were analyzed at the IGL (Isotope Geochemistry Lab),
Department of Geology, The University of Kansas, using a Thermo Scientific Element2 ICP-MS,
attached to a Photon Machines Analyte.G2 193 nm ArF excimer laser ablation system (Appendix
4b). Circular spots of 20 um diameter were ablated with the laser at 2.0 J cm2fluency and 10 Hz
repetition rate. A carrier gas of He transported the ablated material to the ICP. Elemental
fractionation, downhole fractionation and calibration drift were corrected by bracketing
measurements of unknowns with GJ1 zircon reference material (Jackson et al., 2004) and data
reduction using the VizualAge data reduction scheme (Petrus and Kamber, 2012) for the IOLITE
software package (Paton et al., 2010; 2011). Results for the zircon reference material GJ1 and
secondary zircon reference material PleSovice and Fish Canyon Tuff are shown in Appendix 4c.

Concordia plots, concordia ages and weighted mean U-Pb ages were prepared and
calculated using the ISOPLOT software (Ludwig, 2008). The results of the U-Pb analyses are
shown in Appendix 4d for the detrital zircons. Grains determined to be in the youngest
populations are in bold font and shaded rows. The youngest population of grains is determined
by the mean age of a group of at least 3 grains whose ages overlap within 2 standard deviations
(o) following the rationale of Dickinson and Gehrels (2009).

Zircons analyses were inspected for reliability. They were not used for calculations or plots
if they were more than 5% discordant, less than 8 seconds in duration, or had abnormally high
uncertainties. Discordance criteria for exclusion from calculations were uncertainty weighted
age differences greater than 1.2 for 2°6Pb /238U grains younger than 1000 Ma, or the 297Pb/?3°U
versus 2%°Pb/238U discordance greater than 5% for 2°’Pb/2%Pb dates of grains older than 1000
Ma.

LA-ICP-MS yielded 507 acceptable detrital zircon analyses. Figure 15 are Tera-Wasserburg

concordia diagrams of the youngest detrital zircon populations. The plotted line is the
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calculated age in millions of years. The interpreted youngest zircon results for each sample are
plotted in black for the error ellipses of single grain measurements (20), the error ellipses for
the estimated MDA are shown in blue (20).

The MDA for the base of the formation (WF-04) yielded 74.09 + 0.48 Ma (n=9;
MSWD=1.14; probability=0.31). Therefore, the base of the formation is likely to not be older
than this age. The sample from near the top of the formation (WF-01) yielded a MDA of 70.1
1.8 Ma (n=3; MSWD=1.11; probability=0.35). Consequently, the top of the formation is likely to
not be older than this age. Detrital zircon analyses are within the same range of the previous
palynomorphic dates, Campanian-Maastrichtian to late Maastrichtian-Paleocene (Johnson and
May, 1980; Patterson et al., 2003). This reinforces previously published palynomorph ages
based on biozone stratigraphy.

Detrital zircons were also used for provenance analysis by plotting age versus normalized
frequency for the entire samples in a kernel density plot, see Figure 16. Highlighted regions are
typical sources for detrital zircons in North America based on age and peak height correlates to
abundance. Major peaks are observed around 73 and 165 Ma, which are interpreted to be
western Cordilleran signals. Another major peak is observed around 1640 and 1700 Ma, which
is interpreted to be a Yavapai/Mazatzal signal. It is interpreted that detrital zircons were
derived from the Sevier Fold and Thrust Belt, and the youngest zircons were sourced from
Cretaceous arc magmatism of the Cordillera. These findings are in agreement with a larger
study using detrital zircons from the Colorado Plateau and Wyoming (Laskowski et al., 2013).

Potential source terrains for sediment within the Williams Fork Formation were
determined by comparison of detrital zircon ages to igneous deposits of similar age and close
proximity. Locations and ages of igneous bodies were collected from the western North
American Volcanic and intrusive rock Database (NAVDAT). Values used were within the range of
the youngest detrital zircon population samples collected in this study. Potential source areas
were limited to 1,000 km of the study area. Figure 17a shows the location of intermediate to
felsic volcanic rocks that have been radiometrically dated to between 75-69 Ma. This range

represents the oldest and youngest ages in the youngest detrital zircon populations of the two
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samples from this study, shown in Figure 17b. The closest potential source areas are near the
Nevada — Utah border and in central Nevada. In the middle to early Cenozoic, basin and range
extension increased the area of Nevada and western Utah. Palinspastic reconstruction of that
region by McQuarrie and Wernicke (2005), place dated igneous bodies at the time of deposition
of the Williams Fork Formation near the Nevada-Utah border or inside western Utah (Fig. 17a).

It is possible to reconstruct the drainage area by knowing the source terrain and
hydrodynamics of the ancient fluvial system. Bankfull flow depths of 7 m calculated in this study
suggest that the fluvial system was comparable in size to modern fluvial systems with drainage
areas on the order of 10,000’s of km?, likely around 60,000 km?. This is calculated from the
regression of modern river data in Figure 12d. This regression is similar to other published
relationships relating flow depth or discharge to drainage area (Syvitski and Milliman, 2007;
Sgmme et al., 2009; Blum et al., 2013). A potential paleo-drainage reconstruction for the
Williams Fork Formation is shown in Figure 17a.

DISCUSSION

Fluvial deposits within the amalgamated sandstone have the following characteristics:
average grain size of medium lower sand, interpreted bankfull flow depth of ~7 m, average
channel-belt W:T ratios within the backwater reach (46:1), interpreted low gradient system
(~104), interpreted backwater length on the order of 100 km and an interpreted drainage area
approximately 60,000 km?. Based on these estimates individual channel-belts within the Big
Kahuna sandstone would represent a low sinuosity and low gradient fluvial system within the
backwater zone. Modern fluvial systems with similar grain size, flow depth and slope have
planform morphologies that are irregularly sinuous, irregular sinuous with meandering
floodplain topography or split with bars (terminology of Table 4). Analysis of the modern fluvial
dataset shows that slope and grain size have the most influence on determining the type of
planform morphology. This hydrodynamic analysis contrasts with previous interpretations of
the Big Kahuna sandstone as deposits of a high gradient system with a braided planform
morphology (Cole and Cumella, 2005; German, 2006; Foster, 2010; Ost, 2010; Keeton, 2015).

Based on facies models, previous studies have labeled the Big Kahuna sandstone as a result
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of braided planform morphology. Evidence is based on physical observations such as lateral
continuous extent of the sandstone, discontinuous and rare mudstone intervals, many internal
scours, wedge and planar tabular cross-bed dominated sandstones, low sinuosity calculations
from cross-beds and low abundance of lateral accretion deposits. These features are the
standard for braided river deposits in facies models (e.g. Rust, 1977; Walker and Cant, 1984).
Meandering fluvial deposits, based on facies models, have nearly opposite physical
observations relative to braided systems. Evidence includes ribbon (W:T < 15) type sandstones,
abundance of mudstone intervals, high sinuosity calculations from cross-beds and abundance
of lateral accretion deposits (e.g. Bernard et al., 1962; Allen, 1963; Ore, 1964; Walker and Cant,
1984; Collinson, 2009). Physical observations of the Big Kahuna sandstone fit the facies model
for braided planform morphologies. The features listed for the two facies models are
considered by some to be non-unique to individual fluvial planform morphologies (Bluck, 1971;
Jackson, 1976, 1978; Collinson, 1978; Harvey et al., 1985; Miall, 1985; Bristow, 1987; Shukla et
al., 1999; Bridge, 2006; Ruben et al., 2006; Paola et al., 2009; Ethridge, 2010; Hartley et al.,
2015). These features (i.e. sandstone geometry, abundance of mudstone intervals, sinuosity)
are critical to understanding the fluvial systems’ autogenic signals and response to allogenic
forcings. These features, however, do not provide information on drivers that determine the
size of the system. Grain size and discharge determine many features in fluvial systems such as
flow depth and slope, and therefore also planform morphology (e.g. Leopold and Wolman,
1957; Parker, 1976; Williams, 1978; Schumm, 1981; Osterkamp et al., 1983; Church, 2006;
Kleinhans and Van den Berg, 2011; Blum et al., 2013; Trampush et al., 2014).

Hydrodynamic calculations of the Big Kahuna sandstone calculated in this study are similar
to flow depths estimated in previous studies (German, 2006; Keeton, 2012). A reproducible
flow depth makes predictions of dependent features more reliable, such as slope or drainage
area. As discussed earlier, calculations of paleo-flow depth include a range of values and all
uncertainties included in the model of calculating flow depth are further propagated in
dependent calculations (e.g. slope and backwater). Paleo-slope was estimated within a factor of

2 from published empirical relations involving grain size and flow depth. Estimates of grain size,
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flow depth and slope in the stratigraphic record allow a direct comparison with over 430
modern rivers. Provided the paleo-hydrodynamic calculations are correct, they suggest that the
outcrops in the study area represent a fluvial system that had more meandering-like qualities
than braided in planform morphology.

Channel-belt width to thickness ratios and sinuosity calculations indicate that there was
limited lateral migration of the channels. Reduction of channel-belt migration is observed
within the backwater reach of modern fluvial systems, which is independent of planform
morphology. Within the channels, bars migrated by both downstream and lateral accretion. The
presence of isolated unit bars and lack of compound bars indicates a system with high
deposition rates with a lack of multiple erosional and depositional events. This led to a simpler
stratigraphic pattern where unit bars were quickly buried from the migration of smaller bed
forms. Channel-belts with limited lateral migration seem juxtaposed with the observation of the
large sheet sandstone. It is interpreted that low rates of accommodation encouraged
cannibalization of older deposits, which over time amalgamated the channel-belt sandstones.

Channel-belt width to thickness ratios indicate that the fluvial system at the study area was
within the backwater reach. Backwater length calculations provide a first order estimate of 100
km during the time of fluvial deposition. Time equivalent shorelines for the Big Kahuna
sandstone have not been identified to the east of the study area. The only marine sandstones
proposed as equivalent to the Williams Fork Formation occur in the northeast Piceance Basin
and southern Sand Wash Basin of northwest Colorado: The Twentymile and Lion Canyon
Sandstone Members of the Williams Fork Formation. The Twentymile Sandstone Member is
~140 km from the study area (Roehler, 1990; Brownfield and Johnson, 2008) and the Lion
Canyon Sandstone is ~85 km from the study area (Leibovitz, 2010).

A basinwide subsurface study of the Williams Fork Formation in the Piceance Basin
identified a large linear northeast trending sandstone, up to 120 m in thickness and ~30 km in
width (Leibovitz, 2010). Determined from previous outcrop and paired outcrop and subsurface
studies, this sandstone is in a similar stratigraphic position to the Big Kahuna sandstone (Ost,

2010; Keeton, 2015) and has been informally named the Upper Williams Fork (UWF) Sandstone
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(Leibovitz, 2010). The UWF sandstone is approximately 340 m above the base of the formation
in the southern Piceance Basin. The UWF sandstone is similar to the Big Kahuna sandstone; a
thick laterally continuous sandstone trending northeast, containing few upward fining
successions (Leibovitz, 2010).

If the trend of the UWF sandstone is projected approximately 6 km to the southeast, the
study area would fall within its path and the observed outcrop thickness (~75 m) would be
similar to the subsurface thickness, see Figure 18. The subsurface isopach by Leibovitz (2010) is
a map of the same sandstone discussed in this study. Previous studies interpreted that the
abnormal thickness and large lateral extent of the Big Kahuna sandstone was initiated from a
large drop in base-level (Leibovitz, 2010; Ost, 2010). The Big Kahuna sandstone is interpreted to
be part of the deposits of an incised valley fill with the gross dimensions of approximately 120
m thickness and 30 km width (Leibovitz, 2010).

Modern fluvial systems within the backwater zone are typically distributive in planform
morphology. The Big Kahuna sandstone was deposited within the backwater reach in the study
area, however, the planform morphology would likely be contributive because it was contained
by a valley. A subsurface study by Foster (2010) noted a sharp down-dip change in net-to-gross
(N:G) ratio of sandstone and fluvial architecture of the Big Kahuna sandstone. In the Parachute
Field (location on Fig. 2), the high N:G linear sandstone, as shown by Leibovitz (2010), becomes
less defined in its lateral extent and the N:G ratio drops. Foster (2010) interpreted this change
in fluvial deposition to a normal fault, with a hanging wall that hada shallower slope causing the
fluvial morphology to become distributive. While a fault could have changed the style of fluvial
deposition, this study interprets that the change to a distributive morphology reflects that the
fluvial system became unconfined within the backwater zone. The Nile, Orinoco and Rhone
Rivers are modern examples of fluvial systems within their backwater reach that become
distributive in planform morphology after leaving confinement of a valley (Hartley et al., 2017).
The Big Kahuna sandstone within the valley was likely contributive in planform morphology and
after leaving the confinement of the valley, in Parachute Field, the fluvial system became

distributive in planform morphology.
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Subsurface studies have shown that the Big Kahuna sandstone, near the study area, is
characterized by discrete lithological boundaries that have high erosional relief and large lateral
extent (Foster, 2010; Leibovitz, 2010). Previous studies have interpreted the Big Kahuna
sandstone as the fill of an incised valley (Leibovitz, 2010; Ost, 2010). Incised valleys form by a
lowering of base-level, resulting in fluvial incision and valley widening (Shanley and McCabe,
1994). During valley widening, older fluvial deposits within the valley are reworked and
removed (Posamentier and Vail, 1988; Van Wagoner et al., 1990; Strong and Paola, 2006).
Although the majority of fluvial incision occurs during the base-level fall, valley widening
continues to occur during the subsequent rise with continued removal of older deposits and
deposition of younger deposits within the valley. The incisional relief and erosional surface are
the sole record of the incisional phase of valley development. Younger deposits from the base-
level rise, including the Big Kahuna sandstone, compose the valley fill and overprint older
deposits within the valley.

Subsequent base-level rise is often episodic, resulting in a multistorey valley fill fluvial
sandstone (Shanley and McCabe, 1994; Amorosi et al., 2008). Rivers preferentially occupy low
lying topography in valleys and reoccupy older channel-belt positions (Posamentier and Vail,
1988; Shanley and McCabe, 1994; Hajek et al., 2010). Channel-belt migration results in
reworking of valley fill deposits during each base-level position. Experimental studies of fluvial
systems in rapidly subsiding valleys show that channel-belt position shifts laterally because of
the relief of previous deposits. Repetition of shifting channel-belt position produces a sheet-like
architecture (Sheets et al., 2002; Martin et al., 2011).

This sheet-forming process repeats with each base-level rise, which records the beginning
of each stratal package identified by Ost (2010). Within Ost’s (2010) unit 2 of the Williams Fork
Formation, sheet sandstones (Ost’s subunit 2a) occur repeatedly in the identified stratal pattern
(Fig. 1). Ost (2010) interpreted that the erosion associated with the base of each subunit 2a was
not significant enough to completely remove underlying stratal packages. Ost (2010)
interpreted the deposition of the Big Kahuna sandstone to represent the amalgamation of two

stratal packages. The base-level fall associated with the uppermost subunit 2a within the Big
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Kahuna sandstone exhibits a greater amount of downcutting than typically associated with the
basal erosion surface of subunit 2a. This is interpreted to result from a significantly larger
magnitude of base-level fall, one which removed the underlying subunits 2b and 2c and
resulting in the amalgamation of two subunits 2a. Leibovitz (2010) also interpreted the incised
valley fill in his study area as forming from a two-stage event.

If the Big Kahuna sandstone represents an incised valley fill resulting from base-level rise,
then the basal surface represents all that remains of the base-level fall. Fluvial deposits within
the valley fill correspond to a relative rise in base-level, and it is for this stage of valley fill that
backwater length is possible to be calculated. The backwater length estimated at 100 km
represents the approximate distance to the paleo-shoreline during the late lowstand to early
transgression. The lowstand shoreline associated with the erosional phase of valley
development was significantly further basinward of the transgressive paleo-shoreline. The
backwater length for this stage is indeterminable. The backwater length for the erosional phase
of incised valley development is indeterminable because all strata deposited during that time
were replaced by deposits during the subsequent base-level rise (Strong and Paola, 2006).
There is no stratigraphic record of the lowstand phase in the study area to calculate the
backwater length. Any estimate of backwater length for the lowstand phase of valley
development is therefore limited to a position relative to the transgressive shoreline, basinward
of the 100 km distance calculated in this study.

During the erosional stage of incised valley development, a significant amount of sediment
was transported basinward to the lowstand paleo-shoreline. Given the size of the incised valley
fill, the lowstand deposit should be substantial. Ost (2010) proposed approximately 19 episodes
of base-level fall within the middle and upper Williams Fork Formation. Each base-level fall
should have an associated lowstand shoreline. Ost (2010) identified 19 amalgamated
sandstones (subunit 2a) at the base of each of the 19 stratal packages. Each subunit 2a should
have a time equivalent marine lowstand deposit. The lowstand deposits should result in a thick
clastic succession basinward of the study area. These lowstand marine deposits have not been

identified. While lowstand shorelines should be well developed, typically, transgressive
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shoreline sandstones are poorly preserved in the clastic system because most of the sand in the
transgressive stage is stored updip in the continental realm. Transgressive shorelines are
typically sediment-starved and often preserved only by a ravinement surface (Posamentier and
Vail, 1988; Boyd et al., 1992; Cattaneo and Steel, 2003). Modern transgressive shorelines are
dominated by the rollover process and beach sand is constantly reworked as the shoreline
moves landward.

The Twentymile and the Lion Canyon Sandstone Members represent deposits of
transgressive shorelines of the Williams Fork Formation (Roehler, 1990; Franczyk et al., 1992;
Leibovitz, 2010). The Lion Canyon Sandstone Member falls within the estimated backwater
length for this study, but the coeval non-marine section for the Lion Canyon Sandstone is
unknown. The Lion Canyon Sandstone Member has been correlated to be approximately time
equivalent to the middle to upper section of the Williams Fork Formation (Brownfield et al.,
2000; Leibovitz, 2010). The Lion Canyon Sandstone Member has not been proposed to be time
equivalent to the Big Kahuna sandstone.

The Big Kahuna sandstone is overlain by an interval of fluvial sandstones encased in
overbank deposits. Fluvial sandstones within this overlying interval (Ost’s subunit 2b) are
characterized by a sharp base, contain upward fining grain size trends and have thicknesses
ranging from 8 — 16 m (Ost, 2010), see Figure 1. Fluvial sandstones within this interval are
laterally amalgamated, but show relatively less vertical amalgamation than the underlying
sandstone interval (Ost’s subunit 2a). Subunit 2c, overlying subunit 2b, composes thin (<1 m)
lenticular sandstones encased in mudstone. Subunit 2c is dominated by overbank deposits and
is the final subunit of the stratal package defined by Ost (2010) which shows an overall vertical
decrease in net to gross sandstone.

Compared to the amalgamated sandstone of subunit 2a, the overlying strata (subunit 2b)
have greater preservation of overbank deposits. In subunit 2a, channel-belt migration is
proposed to be constrained to a valley that caused reworking of floodplain deposits by
numerous avulsion events, resulting in a lateral and vertical amalgamation of fluvial

sandstones. Deposits vertically amalgamated due to low rates of accommodation. During
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deposition of subunit 2b, it is interpreted that the channel-belts were no longer restricted to a
valley, and the frequency of avulsions relatively decreased in the observed area. This process
paired with relatively larger rates of accommodation in subunit 2b resulted in less reworking of
overbank deposits and greater preservation of floodplain sediments. Avulsion paired with
vertical accommodation resulted in the vertical alternation of fluvial sands and overbank fines
which produced the multistorey architecture of subunit 2b. Chamberlin and Hajek (2015)
interpret a similar process to form comparable multistorey sandstones within the lower
Williams Fork Formation. Avulsions can cause channel-belt clustering, which can be coeval with
allogenic processes such as relative sea-level rise (Hajek et al., 2010; Chamberlin and Hajek,
2015; Heller et al., 2015; Hampson, 2016). Greater vertical accumulation of overbank deposits
within subunit 2b and 2c suggests a higher accommodation setting than subunit 2a. A trend is
defined whereby accommodation generally increases within the stratal packages identified by
Ost (2010). Higher accommodation is likely caused by increased tectonic subsidence or relative
sea-level rise. It is plausible that both factors were present in the foreland basin setting.

The fluvial architecture of the Williams Fork Formation is similar to the Late Quaternary
deposits of the Po River of the Po-Adriatic Basin, northeastern Italy. Fluvial deposits of the Po
River contain several records of base-level change and have been described in detail by
Amorosi et al. (2008). The following is paraphrased from their work.

The Po River incised multiple times during the Late Quaternary, and each incision event
was associated with a eustatic fall. Each incision event produced an incised valley, which was
later filled by amalgamated fluvial sandstones. Incised valleys are separated by organic-rich
overbank deposits with thin lenticular fluvial sandbodies. Base-level changes are recorded by
alternating deposits of amalgamated fluvial sandstones (base-level fall) and strata dominated
by organic-rich overbank deposits (base-level rise).

Amorosi et al. (2008) proposed that the amalgamated sandstones were deposited during
sea-level lowstand to early transgression and that the overbank dominated intervals were
deposited during times of transgression and sea-level highstand. This produced a vertical

succession of alternating amalgamated sandstones and overbank dominated strata, similar to
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what has been described in the middle part of the Williams Fork Formation.

CONCLUSIONS

In this paper, a 75 m thick, amalgamated, medium-lower grain-sized fluvial sandstone from
the Williams Fork Formation is described from outcrop. Facies descriptions and measurements
of internal geometries allow for a paleo-hydrodynamic analysis. This sandstone is within the
middle part of the Williams Fork Formation and is informally called the Big Kahuna sandstone.
Facies descriptions and paleo-hydrodynamics calculations from this study combined with
modern fluvial data allow a direct comparison between the stratigraphic record and modern
fluvial systems. Hydrodynamic calculations were applied to sandstone deposits within
interpreted channel-belts. Using paleo-flow depth and paleo-slope, values derived from grain
size and cross-bed thickness, a planform morphology was interpreted by comparison to data of
modern river’s flow depth, slope and grain size. The channel-belts of study are interpreted to
represent low sinuosity systems, that in planform morphology had no consistent meander
wavelength and few to no subaerially exposed bars. From this study, the channel-belts’
planform morphology is classified as either irregularly sinuous, irregular sinuous with
meandering floodplain topography or split with bars. The amalgamated sandstone occurs at the
base of a previously recognized stratal package within this formation and its analyses provides a
better understanding of the stratal pattern. The amalgamated sandstone is underlain by a
surface that represents base-level fall and forms a sheet geometry that fills an incised valley.
The amalgamated sandstone records deposition during base-level rise associated with late
lowstand to early transgressive events.

This study also provides data illustrating modern fluvial scaling relationships and how
different planform morphologies occur with certain ranges of grain size, slope and flow depth.
Geologists can use modern fluvial relationships to better interpret the stratigraphic record.
Important characteristics of modern systems, such as average bed sediment grain size and
bankfull flow depth can also be determined in the stratigraphic record, which aids in the direct
comparison of modern and ancient fluvial systems. Furthermore, grain size and flow depth are

related to most features within fluvial systems (i.e. channel slope), which allows further
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guantitative comparison and prediction. It is proposed that these variables (grain size, channel
slope and flow depth) can be used as a semi-quantitative method to predict planform
morphology in the stratigraphic record. The most important step in applying these relations to
the rock record is the ability to accurately identify paleo-flow depth and paleo-slope because

most fluvial features are closely related to flow depth.
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Table 1: 90th percentile flow depth calculations

Grain Size [mm]
Smallest Largest Flow depth
Interval Average
grainsize  grain size P90 [m]
6 0.363 0.250 0.500
5 0.268 0.177 0.350 65+14
4 0.300 0.250 0.350
3 0.242 0.177 0.350 56+1.1
2 0.257 0.177 0.350 6.9+15
1 0.278 0.177 0.500 6+12
D 0.300 0.250 0.350 72+15
C 0.254 0.177 0.350 71+15
B 0.273 0.177 0.350 6.8+1.4
A 0.257 0.177 0.350 4+0.8
Avg 1,235 0.273 0.177 0.500 6.3+1.3
Avg A-D 0.265 0.177 0.350 714
Avg 1,235 &
A-D 0.270 0.177 0.500 69+14

Note: Grain size average represents the average value within the interpreted interval. Minimum
and maximum grain sizes refer to the range of the sand classification. Avg = average, P90 = 90"

percentile
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Table 2: Paleo-slope calculations

Slope calculated using
Lower limit P90 flow | Upper limit P90 flow
P90 flow depth
Interval depth depth

6
5 7.0E-05 8.8E-05 5.8E-05

4
3 6.1E-05 7.7E-05 5.1E-05
2 5.9E-05 7.4E-05 4.9E-05
1 8.4E-05 1.1E-04 7.0E-05
D 8.6E-05 1.1E-04 7.2E-05
C 5.6E-05 7.0E-05 4.7E-05
B 7.1E-05 8.9E-05 5.9E-05
A 1.0E-04 1.3E-04 8.4E-05
Avg 1,235 7.6E-05 9.6E-05 6.4E-05
Avg A-D 6.3E-05 8.0E-05 5.3E-05
Avg 1235 & A-D 6.7E-05 8.4E-05 5.6E-05

Note: Slope was calculated using Lynds et al. (2014) method #2 with the Julien assumption. Avg

= average, P90 = 90'" percentile
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Table 3: Backwater length estimations

Backwater length [km] calculated using

Lower limit P90 flow

Upper limit P90 flow

P90 flow depth
Interval depth depth

6
5 93 58 133

4
3 91 57 132
2 117 73 168
1 72 45 103
D 84 53 121
C 127 80 182
B 97 61 139
A 40 25 57
Avg 1,235 93 59 134
Avg A-D 87 55 125

Avg

1,2,35&A-D 90 57 129

Note: Avg = average, P90 = 90" percentile
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Table 4: Planform morphology definitions
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Table 5: Charateristics of modern rivers
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Figure captions

Figure 1: Stratigraphic column of the Williams Fork Formation and bounding formations. The
expanded schematic of the Williams Fork Formation emphasizes the stratal pattern identified
by Ost (2010). The middle and upper section of the formation are composed of stacked stratal
packages of high-to-low net-to-gross fluvial deposits. Modified from Ost (2010).

Figure 2: Location map of the Piceance Basin and generalized outcrop belt of the Mesaverde
Group, which contains the Williams Fork Formation. The study area is located in the Plateau
Creek Canyon, which is in the southwestern part of the Piceance Basin. Outcrops are outlined in
black. Outcrops from previous studies are 1, 2, 4 and 5. Hydrodynamic calculations of this study
are from outcrops two and three. Modified from Pranter et al. (2007).

Figure 3: Interpreted and non-interpreted outcrop photomosaics of outcrop two (A) and
outcrop three (B). Outcrop two is oblique to the viewer so a parallax is introduced which
complicates the interpretation. Black dotted lines show the location of a vertical section
(sections MK-01, MK-02, MK-03 and IC-02) measured with a Laser Range Finder. Black bars
below vertical sections serve as scales and are approximately 5x5 meters. Note the large, low-
relief scour surfaces (type 1 surface, yellow), surfaces that show greater relief (type 2 surface,
black), surfaces with similar dip and orientation (type 3 surface, green) and cross-beds (red).
Figure 4: Interpreted and non-interpreted photomosaic of outcrop 5. Outcrop is arcuate in
shape and turns toward the viewer on the right-hand side of the photo. Black dotted lines are
locations of vertical sections measured (sections LK-01, LK-02 and LK-03) with a Laser Range

Finder. Black bars below vertical sections serve as scales and are approximately 5x5 meters.
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Note the large, low-relief scour surfaces (type 1 surface, yellow) and surfaces that show internal
scours and changes in lithology (type 2 surface, black). Between the low-relief surfaces,
surfaces with the same dip, orientation and relief are highlighted in green (type 3 surface).
Green surfaces with a tangential base and alternating lithologies are interpreted as lateral
accretion deposits. Red surfaces represent cross-beds.

Figure 5: Sedimentary features within outcrop numbers 2 and 3: A) wedge-shaped cross-
bedded sandstone (cross-beds highlighted in white), B) planar tabular and wedge-shaped cross-
bedded sandstone (cross-beds highlighted in white), C) interval of burrowed sandstone within
interbedded lithofacies containing Planolites and Naktodemasis bowni burrows, D) very fine
sandstone fining upward to mudstone.

Figure 6: Histogram of cross-bed thickness from two measured sections of the amalgamated
sandstone in outcrop numbers 2 and 3. Blue bars are interpreted as dune deposits and yellow
bars are interpreted as unit bar deposits. Cross-beds less than 60 cm thick are in the St facies
and above 60 cm are in the Sp facies. Cross-beds interpreted as dune deposits display a
unimodal distribution and are used for hydrodynamic calculations. Cross-beds interpreted as
unit bar deposits have steep foresets, large lateral extent (>5 m) and do not stack vertically.
Figure 7: Schematic profiles of three vertical successions in outcrop numbers 2 and 3. Profiles
display generalized grain size trends and sedimentary structures associations. Two letter codes

refer to lithofacies classification of Miall (1996). The abbreviations are as follows: St is sand size
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grains and wedge and festoon cross-bedded, Sp is sand size grains and planar tabular cross-
bedded, Fsm is fine grained (silt to mud) and is massive in texture.

Figure 8: Paleo-flow direction rose diagrams from the amalgamated sandstone of interest
collected from cross-bed orientation. The left diagram (orange) was collected by German (2006)
from outcrop number 2. Outcrop measurements indicate an average azimuth of 92° with a
standard deviation of 13.82° (n=21). The right diagram (blue) was collected by Keeton (2015)
from equivalent strata in Parachute Field using subsurface borehole imaging. Subsurface
measurements indicate 63.5° vector average with a circular standard deviation of 37.5" (n=148).
The calculated sinuosity of the subsurface data is 1.1. Modified from German (2006) and

Keeton (2015).

Figure 9: A) Simplified cartoon illustrating the general relationship between flow depth and
cross-bed thickness. In this study, flow depth was estimated from cross-bed thickness of
interpreted dunes. Modified from Ethridge and Schumm (1978). B) Histogram of calculated
median flow depths against count of calculated flow depth. The right-hand axis is cumulative
percentage. P90 is the 90™ percentile. Plotted data are from intervals 1, 2, 3, 5 and A-D, which
Figure 10: Scatter plot of thickness versus width of channel-belt deposits. Dimensions were
collected from German (2006) using aerial LIDAR from the outcrops outlined in black in the
study area map. Width to thickness (W:T) ratios from German (2006) are grouped by
orientation: perpendicular (prp) and oblique (obl) to paleo-current direction. W:T ratios are also

grouped by completeness of exposure: complete versus incomplete (e.g. truncated, covered).
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Data is plotted on fields, which are ranges of width to thickness ratios that represent the
presence or absence of backwater effects, which is previously defined from measurements
made in the stratigraphic record and modern fluvial systems (Gibling, 2006; Blum et al., 2013).
Ratio ranges are emphasized by color. Fields defining channel-belt deposits within the
backwater reach are defined as 30-70:1 and are color coded light green. Fields defining
channel-belts upstream from the backwater effects are defined as 70-300:1 and are color
coded dark green. Channel-belts are highlighted in the same color in the schematic map of a
fluvial system which shows the extent of the backwater reach. Channel-fills are defined as 6-
30:1 and are not used to determine backwater effects. Dimensions of channel-belts and
channel-fills within the amalgamated sandstone, taken from German (2006), plot in all three
fields. The data plots primarily in the channel-belt field within the 30-70:1 domain. W:T ratios
within the channel-belt domain that are perpendicular, oblique and perpendicular to oblique
have an average W:T ratio of 46:1 (n=41). The average W:T ratio of channel-belts within the Big
Kahuna sandstone are interpreted to represent deposition within the backwater reach.

Figure 11: Modern river elevation profiles are shown by lines. Line pattern associates with
planform morphology (braided=dashed; transitional=dash-dot; meandering=solid). The right
and upper axes of the graph are labels of constant slope. The slope calculations of the Big
Kahuna sandstone are shown by the highlighted area. The fading of the highlighted area
represents the uncertainty in the paleo-slope calculations (~100 km from the river mouth to the

study area). First order estimations of slope are similar to that of the Adige, Ili and Trinity
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Rivers. Digital elevation models were collected from the USGS (SRTM and ASTER data) and
Tarquini et al. (2007, 2012).

Figure 12: Over 430 data points of modern rivers displaying relationships of slope, grain size
and flow depth with interpreted planform morphology. Figure D contains over 370 data points.
As defined in table 4, planform morphologies were categorized with strict criteria to help
illustrate any differences between meandering and braided. Many rivers within the category of
irregularly sinuous and irregularly sinuous with meandering floodplain topography would be
classically labeled as meandering. Data and sources are located in Appendix 3.

Figure 13: Three-dimensional scatter plot of slope, bankfull flow depth, average bed sediment
grain size and planform morphology from the same data in figure 12. Point locations are also
displayed as a grey shadow on the side axes strictly for illustrative purposes, which are also the
2D graphs of figure 12a,b,c. Data and sources are located in Appendix 3.

Figure 14: Schematic stratigraphic correlation chart from the northern Piceance Basin to the
southern Sand Wash Basin in northwestern Colorado. The Twentymile and Lion Canyon
Sandstone Members of the Williams Fork Formation are clastic shallow marine deposits which
record the last transgressions of the Cretaceous Western Interior Seaway. Modified from
Brownfield et al. (2000).

Figure 15: Tera-Wasserburg concordia diagram of the youngest detrital zircon populations for
the base and top of the Williams Fork Formation. Single grain analyses are shown by black
ellipses (20) and the concordia age of the youngest population is shown by blue ellipses (20).

Maximum depositional ages are interpreted for the base of the formation as 74.09 + 0.48 Ma
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(MSWD: 1.14, Probability: 0.31, n: 9) and the top as 70.1 + 1.8 Ma (MSWD: 1.11, Probability:
0.35, n: 3). ISOPLOT software was used to determine concordia ages (Ludwig, 2008).

Figure 16: Kernel density plots of the two detrital zircon samples from this study displays
normalized frequency of grain abundance against age. Interpreted source signal is labeled on
the upper x-axis. Youngest detrital zircons are interpreted to be sourced from cordilleran
magmatism. Kernel density plots were created with the application Densityplotter.jar and have
a bandwidth of 10 (Vermeesch, 2012).

Figure 17: A) Map of western USA with locations of radiometrically dated volcanic deposits.
Data was compiled from the western North American Volcanic and Intrusive Rock Database
(NAVDAT). Ages shown are within the range of the youngest and oldest detrital zircons of the
two youngest populations. Only data within 1000 km of the study area is shown. Arrows
represent approximate position of igneous deposits pre-Cenozoic extension (McQuarrie and
Wernicke, 2005). Reconstruction of the Williams Fork Formation paleo-drainage is shown from
the dashed line (~65,000 km?). Paleo-drainage area was estimated from the regression in figure
12d. B) Youngest detrital zircon populations from this study are plotted by stratigraphic position
against age. Grey bars represent the two sigma error from the weighted mean age calculated
from ISOPLOT (Ludwig, 2008).

Figure 18: Subsurface isopach map interpreted by Leibovitz (2010) of the Upper Williams Fork
(UWF) Sandstone. Well distribution has a large influence on predicted isopach thickness. NW
and SE sides are interpreted to be the edges of an incised valley fill. Subsurface data is

projected to the SW to incorporate the field area of this study. The yellow-green circle is the
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location and observed thickness (~75 m) at the outcrop of study. Thickness projections show
that the area of study would fall within the incised valley fill and projected valley fill thickness.

The grey shading represents the outcrop exposure of the Williams Fork Formation. Modified

from Leibovitz (2010).
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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Appendix 1.1 - Measured sections
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the outcrop and the numbers refer to the section within the outcrop. Two letter codes are as
follows:

Outcrop 1 = BK

Outcrop 2 = MK

Outcrop 3 =1C

Outcrop 4 = KR

Outcrop 5 = LK
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Figure A3) Outcrop 2 (MK) measured section
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Figure A4) Outcrop 3 (IC) measured section

92



Om

-Im

93

&
15°, T °
B N - (o) — ~ 10_)
B : 21°
+‘1 =
I + 1 . Q
({ \\ —* =4 —
- g
™ 140 T = . . .-' a ®
_+ Aq - E Internal scour QL)
Massive e T -IE
§ | — &144“ —
| \4// 12c¢
T : < €= T o
:‘ : o Sﬁlg
| . 4
B 90
° E 1 *— AN é
: M~
| o 1 ~ 13°
_. 1\:I;hca;lthered é
—e—
, e 8°
S | =T
)_'
e el
"l - = —9 &
- 60 E 91
&/
F+ d E AN
A1 O 41
)
| =7 C 1
23°. | 10°
+— N -y = —9 AN
- Grey, platy/ | = REl
: lumpy break] m
o] | = EEEE A
Q_ - 18° fU
4 S 4 N é E
@)
g O : 18° 40-':)
I =
E -
LV\; Lll_u L[\I/IU Léu q. Lv\lg | L||:U L|\I/]u L(l:U
Mud Sand Features IEOD Mud Sand Features IEOD



lI3-[suuey) S

O y ) c g

> ) £ ) ) > A :

DSR40 o B G ) ¢ s ! -= 2

e . MFS

. . T

. o

o =]

L —t—— =
we6T wgT w/T woT wsT W T
1nods |eudaju] | S

4 2 Z » A > A> > o | &
e

T2 ‘ =3

. E

n'l- M‘W

. 5

Pt e L e B e e =
W T weT weT WIT woT we

94



24m

23m

22m

21m

20m

19m

-
T —@ 18° AT
. &é o
19°
~=-3Af |
24° © T
o B E
cC N
| - 1
15°
ANNNN —
1 £l
=g It
Grey, platy/
lumpy break (—U T
Q.
A1 ‘8 4
O |
L
-
i o T
N
-
4 N +
N
20°
1 &q
: -
tlu|clulcelu|olu <l' L\U|Llu Llu|Llu
VF ' F M C N VF ' F M C
Mud Sand Features IEOD Mud Sand Features IEOD

95



Appendix 1.2 - Vertical sections
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Figure A5) Google Earth imagery displaying outcrop locations within the study area of Plateau
Creek Canyon. Outcrops 2 and 3 were the locations of measured sections. Outcrops 1-5 were
measured with a laser range finder. Vertical sections from the laser range finder are in appendix
1.2. Vertical sections are labeled with a two letter code followed by a number. The letters refer to
the outcrop and the numbers refer to the section within the outcrop. Two letter codes are as
follows:

Outcrop 1 = BK

Outcrop 2 = MK

Outcrop 3 =1C

Outcrop 4 = KR

Outcrop 5 = LK
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Figure A6 (previous page): Photomosaic of outcrop #2 non-interpreted (upper) and interpreted
(lower). Field of view is west to the southwest. Vertical dotted lines are the location of the
vertical sections completed with the laser range finder. The red dashed line in the lower
photomosaic is the path taken in for the measured section. Black bars below vertical sections are

5x5m scale bars. Key surfaces are labeled in meters that correlate to the measured section.

Figure A7 (next page): Vertical sections from outcrop #2
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Figure A7 (previous page): Photomosaic of outcrop #3 non-interpreted (upper) and interpreted
(lower). Field of view is north to the northwest. Vertical dotted lines are the location of the
vertical sections completed with the laser range finder. Black bars at base of photo are 5x5m
scale bars. The red dashed line in the lower photomosaic is the path taken in for the measured

section. Key surfaces are labeled in meters that correlate to the measured section.
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Figure A8 (previous page): Photomosaic of the outcrop #3 from the opposite side of the nose,
non-interpreted (upper) and interpreted (lower). Field of view is northwest to the west. Vertical
dotted lines are the location of the vertical sections completed with the laser range finder. Black

bars at base of photo are 5x5m scale bars.

Figure A9 (next page): Vertical sections from outcrop #3
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Figure A10 (previous page): Photomosaic of the outcrop #5 non-interpreted (upper) and
interpreted (lower). Field of view is northwest to west. Vertical dotted lines are the location of
the vertical sections completed with the laser range finder. Key surfaces are labeled in meters
that correlate to the measured section. Black bars below each vertical section are 5x5 m scale for
those sections of the mosaics. Changes in scale size are due to change in outcrop distance from

observer.

Figure A1l (next page): Vertical sections from outcrop #5
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Figure A12 (previous page): Photomosaic of outcrop #4 non-interpreted (upper) and interpreted
(lower). Field of view is southeast to the south. Vertical dotted lines are the location of the
vertical sections completed with the laser range finder. Key surfaces are labeled in meters that
correlate to the measured section. Black bars below each vertical section are 5x5 m scales for
those sections of the mosaics. Changes in scale size are due to change in outcrop distance from

observer.

Figure A13 (next page): Vertical sections from outcrop #4
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Figure Al4 (previous page): Photomosaic of outcrop #1 non-interpreted (two pages prior) and
interpreted (previous page). Field of view is north to east. Vertical dotted lines are the location of
the vertical sections completed with the laser range finder. Key surfaces are labeled in meters
that correlate to the measured section. Black bars below each vertical section are 5x5 m scales
for those sections of the mosaics. Changes in scale size are due to change in outcrop distance

from observer.

Figure A15 (next page): Vertical sections from outcrop #1
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2a) Table 6: Notation

1) Paleo-hydrodynamic calculations

Symbol Units Definition
d L Flow depth
Dsob L Particle diameter of average bed load
D* Dimensionless particle size
g LT2 Acceleration due to gravity
Nm L Mean bedform height
R Submerged specific gravity, (R=(ps/p)-1)
Rep Particle Reynolds number
S Slope
Sm L Mean cross-bed thickness
W* Dimensionless settling velocity
u_ﬁf Ratio of skin-friction shear velocity (u;,) to paticle settling velocity
Ws
(ws)
p ML3 | Fluid density (water)
Ps ML3 | Grain density (Quartz)
v L2T! Kinematic fluid viscosity of water at 20°C

Note: L = length, M = mass and T = time
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2b) Paleo-flow depth

2bi) Method of paleo-flow depth calculations
Paleo-flow depth was calculated via methods of Leclair and Bridge (2001). This method was
performed because a probability density function (PDF) was not defined for the dataset due to
the low count of cross-beds.
Mean bedform height (hm) was calculated using mean cross-bed thickness (sm) that was
measured in the field.

hy,, = 2.9 (£0.7) * s,,

Flow depth (d) was then calculated from mean bedform height from the empirical relation
provided by Allen (1970).

d=11.6+ h%8*
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2bii) Table 7: Middle Kahuna measured section cross-beds (base of section: 39.191405, -
108.245375)

Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]

6 35 0.425 muU 56+1.1
6 25 0.3 mL 42+0.8
5 40 0.3 mL 6.3+1.3
5 20 0.2135 fu 35+0.7
5 35 0.2135 fu 56 +1.1
5 35 0.3 mL 5611
5 20 0.3 mL 35+0.7
5 60 0.214 fu
5 45 0.2135 fu 69+14
5 30 0.3 mL 49+1
5 70 0.425 muU
5 30 0.3 mL 49+1
4 20 0.3 mL 35+0.7
4 65 0.300 mL
4 70 0.300 mL
4 60 0.214 fu
4 50 0.3 mL 76+1.6
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Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]

4 60 0.214 fu
3 20 0.2135 fu 35+0.7
3 25 0.2135 fu 42+0.8
3 15 0.2135 fu 28+0.6
3 40 0.2135 fu 6.3+1.3
3 30 0.3 mL 49+1
3 20 0.3 mL 35+0.7
3 100 0.300 mL
2 75 0.425 muU
2 65 0.214 fu
2 40 0.3 mL 6.3+1.3
2 30 0.3 mL 49+1
2 90 0.300 mL
2 20 0.3 mL 35+£0.7
2 65 0.300 mL
2 35 0.3 mL 56+1.1
2 130 0.300 mL
2 55 0.2135 fu 82+17
2 30 0.2135 fu 49+1
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Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]

2 20 0.2135 fu 35+0.7
2 20 0.2135 fu 35+0.7
2 60 0.300 mL
1 40 0.2135 fu 6.3+1.3
1 20 0.2135 fu 35+£0.7
1 30 0.2135 fu 49+1
1 25 0.2135 fu 42+0.8
1 15 0.2135 fu 28+0.6
1 35 0.2135 fu 56+1.1
1 30 0.3 mL 49+1
1 20 0.3 mL 35+£0.7
1 30 0.3 mL 49+1
1 10 0.2135 fu 2204
1 25 0.2135 fu 42+0.8
1 20 0.2135 fu 35+0.7
1 70 0.214 fu
1 95 0.214 fu
1 30 0.2135 fu 49+1
1 35 0.3 mL 56+1.1

129




Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]
1 50 0.2135 fu 76+1.6
1 50 0.2135 fu 76+1.6
1 15 0.3 mL 28+0.6
1 25 0.3 mL 42+0.8
1 25 0.3 mL 42+0.8
1 35 0.425 muU 56+1.1
1 45 0.425 muU 69+14
1 10 0.425 muU 2204
1 30 0.425 muU 49+1
1 25 0.3 mL 42+0.8
1 35 0.3 mL 56+1.1
1 34 0.425 muU 55+11

Note: Flow depth calculations were not included for cross-beds interpreted as unit bars. Table is

organized by stratigraphic order.
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2biii) Table 8: Inner Canyon measured section cross-beds (base: of section: 39.194697, -

108.244818)

131

Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]

D 25 0.3 mL 42+0.8
D 40 0.3 mL 6.3+1.3
D 40 0.3 mL 6.3+1.3
D 50 0.3 mL 76+1.6
D 60 0.300 mL

C 10 0.2135 fu 2+04
C 15 0.2135 fu 28+0.6
C 10 0.2135 fu 2+04
C 10 0.2135 fu 2+04
C 10 0.2135 fu 2+04
C 15 0.2135 fu 28+0.6
C 30 0.2135 fu 49+1
C 20 0.3 mL 35+0.7
C 25 0.3 mL 42+0.8
C 50 0.300 mL

C 80 0.425 mU

C 50 0.3 mL 76116




Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]

C 50 0.2135 fu 76116
C 140 0.300 mL
C 125 0.300 mL
C 40 0.3 mL 6.3+1.3
C 45 0.3 mL 69+14
C 35 0.2135 fu 56 +1.1
C 25 0.2135 fu 42+0.8
C 15 0.3 mL 28+0.6
C 45 0.3 mL 69+14
C 25 0.3 mL 42+0.8
C 30 0.3 mL 49+1
C 60 0.425 mL
B 50 0.3 mL 76+1.6
B 40 0.3 mL 6.3+1.3
B 25 0.3 mL 42+0.8
B 45 0.3 mL 69+14
B 40 0.3 mL 6.3+1.3
B 40 0.3 mL 6.3+1.3
B 30 0.2135 fu 49+1
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Interval Cross-bed Average Grain size | Flow depth
code thickness | grain size (d) [m]
[cm] [mm]

B 60 0.300 mL
B 15 0.3 mL 28+0.6
B 35 0.2135 fu 56+1.1
B 30 0.2135 fu 49+1
B 20 0.3 mL 35+0.7
B 30 0.2135 fu 49+1
B 20 0.3 mL 35+£0.7
A 15 0.2135 fu 28+0.6
A 20 0.2135 fu 35+£0.7
A 25 0.3 mL 42+0.8
A 20 0.3 mL 35+£0.7

Note: Flow depth calculations were not included for cross-beds interpreted as unit bars. Table is

organized by stratigraphic order.
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2¢) Method of paleo-slope calculations
Methods of Lynds et al. (2014)

Method #1
This simplistic approach for estimating a rough depositional slope keeps shields number constant
at 1 for very fine to medium sand systems. The submerged specific gravity of quartz is 1.65. This
IS equation #4 in Lynds et al. (2014).

_ R *Dsqp
- d

Method #2 with application of the Julien assumption
The approach used in this study allows shields number to change with grain size and
incorporates other dimensionless numbers.
The following equations are the presented order of use as in Lynds et al. (2014). The authors of
this study encourage the reader to review the methods, explanation, and limitations presented in

that article for a complete understanding of its applications.

— x g% D3
pr = Ps—P) : £0.7
p*V

logW* = —3.76715 + 1.92944(logD*) — 0.09815(logD*)? — 0.00575(logD*)*

+0.00056(logD*)* EQ.6

_ DSOb\/(DSOb *R* g)
v

Re

) EQ.1
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The Julien assumption sets the minimum threshold of incipient suspension (u”st /ws) constant.
This is justifiable due to experimental studies reaching a constant value (Laursen, 1958; Nifio et
al., 2003). The minimum threshold for incipient suspension was set to 2 from the Julien
assessment. This means that u”s; /ws will not change with grain size. More accurate calculations

would set the ratio to 3.1 for very fine to fine sand and 1.6 for medium sand systems.

2

1
B R * Dgqp . u_;f . K*(?)
s= (7| () (7)) Fero

3) Modern fluvial database
Table footnote:

ID/gauge with ‘(#)” at the end of the code is to differentiate from other data points from the same
stream gauge. If stream gauge identification codes or cumulative drainage area was not published
in the original study it was recorded from the USGS National Water Information System or the
Canadian Government Water Office webpage at: https://waterdata.usgs.gov/nwis/inventory and

https://wateroffice.ec.gc.ca/.
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4) Detrital zircon analyses
4a) Methods of mineral separation in detrital zircon samples

Step 1: Crushing

Machines used to bring samples under 1 mm in size include a bottle jack, chipmunk crusher and
disk mill. The disk mill was not set to less than ~0.5 mm to avoid breaking individual grains.
To prevent contamination between samples all surfaces were blown clean with pressurized air.
Crushing surfaces were cleaned with a steel wire brush before crushing, between samples, and
after crushing. Acetone was also used to clean the surfaces after all the samples were crushed.
Samples that passed through a 1 mm sieve were brought to the next stage of mineral separation.
Step 2: Water table separation

Density separation was completed with a Gemeni Table MK.2, model: GT60 2011. The table
was first rinsed and inspected for grains. Water mixed with soap was used on the table as a
lubricant for heavy minerals to travel on the table.

Samples were fed onto the table at approximately 1 g/s. The water table was run for about 5
minutes after the last sample fell to allow all grains to be collected. Lighter density sediment was
placed into storage. Denser sediment was filtered with isopropyl alcohol to remove any soap
attached to the grains and then placed in a drying oven. Between and after processing all
samples, everything was washed, rinsed and inspected for grains. After all samples were
processed, the table was washed and hand scrubbed with water and vinegar.

Step 3: Removal of magnetite

A hand magnet was placed over the samples to remove magnetite. Care was taken to not sift
through the samples to avoid build-up of static electricity. Grains removed by the hand magnet

were inspected by binocular microscope to assure that no zircon grains with inclusions of
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magnetic minerals were extracted. A Frantz™ isodynamic magnetic separator was not used due
to the abundance of zircon grains with magnetite inclusions.

Step 4: Heavy liquids separation

The samples were then placed in a separatory funnel filled with bromoform and methylene
iodide (MEI). MEI has a specific gravity of ~3.32 which allows for a second stage of density
separation. Sediment was agitated, not stirred, to assure the only separation process was density
driven. The denser and lighter sediment were extracted separately with filter papers. Samples
were rinsed with acetone and then left to dry under a fume hood for 24 hours.

Step 5: Mounting

The remaining sample was decreased in volume by a microsplitter. This was to assure unbiased
and representative splits of the sample. A binocular microscope (Nikon SMZ1000) was used to
visually separate zircon grains from other heavy minerals. Zircon grains were identified by
tetragonal habit, brittle break, and color. Grains that were rounded from fluvial transport were
also included to not bias the sample.

At least 300 zircon grains were collected and orderly placed on tape to hold their position. Epoxy
resin was then poured over the grains to create a mount for LA-ICP-MS. The epoxy disk was

then polished to expose the surface of as many grains as possible.

4b) Table 5: LA-ICP-MS metadata

Laboratory & Sample
Preparation

Laboratory name KU Geology Isotope Geochemistry Laboratories

Sample type/mineral Detrital Zircon
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Sample preparation

Epoxy disc

Laser ablation system

Make, Model & type

Arf excimer 193 nm, Photon Machines Analyte G2, ATLEX
300

Ablation cell & volume

Helex 2, two-volume cell

Laser wavelength (nm) 193

Pulse width (ns) 5

Fluence (J.cm™) 2
Repetition rate (Hz) 10

Spot size (um) 20
Sampling mode / pattern Single spot

Carrier gas

He, 1.01; Ar, 1.1

Ablation duration (secs)

13 (short method); 23 (long method)

Cell carrier gas flow (I/min)

1.1 I/min

ICP-MS Instrument

Make, Model & type

Thermo Element2 magnetic sector field ICP-MS

Sample introduction

Ablation aerosol

RF power (W) 1100
Make-up gas flow (I/min) Ar, 1.1 1/min
sampling depth (um) -3.6

Detection system

single detector, counting & analog

Masses measured

206Pb 207Pb ZOSPb 232Th 238U

Integration time per peak (ms)

1-8 (short); 1-5 (long)

Total integration time per
analysis (secs)

16 (short method); 23 (long method)

Total method time (secs)

25 (short); 39 (long)

IC Dead time (ns) 4
UO+/U+ (%) <0.2
2384 /232Th+ 0.7

Data Processing

Gas blank (s)

9 (short method, WF-01); 16 (long method, WF-04)

Calibration strategy

GJ-1 used as primary standard, PleSovice, and Fish Canyon Tuff
used as secondary standards

Reference Material info

NIST 612 (Jochum et al., 2011)
GJ-1 (Jackson et al., 2004)
Plesovice (Slama et al., 2008)
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Fish Canyon Tuff (Wotzlaw et al., 2013)

Data processing package used
/ Correction for LIEF

IGOR PRO, lolite 2.5

Mass discrimination

IGOR PRO, lolite 2.5

Common-Pb correction,
composition and uncertainty

No common-Pb correction was applied

Uncertainty level &
propagation

Age uncertainties are reported as +20 absolute

Reproducibility (%)

WEF-01: PleSovice= 2.1%, Fish Canyon Tuff= 1.3%;
WEF-04: PleSovice= 1.4%, Fish Canyon Tuff=0.9%

Quality control / Validation

PleSovice and Fish Canyon Tuff

4c) U-Pb analyses of detrital zircons and secondary standards

See following table.
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