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Abstract

Cyber-physical systems (CPS) are expected to revolutionize the world through a myr-

iad of applications in health-care, disaster event applications, environmental manage-

ment, vehicular networks, industrial automation, and so on. The continuous explosive

increase in wireless data traffic, driven by the global rise of smartphones, tablets, video

streaming, and online social networking applications along with the anticipated wide

massive sensors deployments, will create a set of challenges to network providers,

especially that future fifth generation (5G) cellular networks will help facilitate the

enabling of CPS communications over current network infrastructure.

In this dissertation, we first provide an overview of CPS taxonomy along with its

challenges from energy efficiency, security, and reliability. Then we present different

tractable analytical solutions through different 5G technologies, such as device-to-

device (D2D) communications, cell shrinking and offloading, in order to enable CPS

traffic over cellular networks. These technologies also provide CPS with several bene-

fits such as ubiquitous coverage, global connectivity, reliability and security. By tuning

specific network parameters, the proposed solutions allow the achievement of balance

and fairness in spectral efficiency and minimum achievable throughout among cellular

users and CPS devices. To conclude, we present a CPS mobile-health application as

a case study where security of the medical health cyber-physical space is discussed in

details.
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Chapter 1

Introduction

1.1 Motivation

Cyber-physical communications (CPS) has been under the spotlight of attention in the last decade

by the research community and the industry. CPS allows physical objects to tightly interact and

coordinate together to provide ubiquitous services in a myriad of applications including but not

limited to health-care, public safety, environmental management, vehicular networks, industrial

automation, and so on. A CPS is defined as a system with integrated communication and computa-

tional capabilities with tight interactions with the physical world [4]. It mainly consists of physical

components and a cyber twin interconnected together, where a cyber twin is a simulation model

representative of the physical things such as a computer program [5]. Internet of Things (IoT), on

the other hand, allows different CPS to be connected together for information transfer. This means

that IoT acts as a connection bridge to network different cyber-physical things. The global ex-

pansion of interconnected CPS is facilitated by standardization efforts. For instance, the standard-

ization activities of IoT are being led by the industry (AllSeen Alliance, Open Interconnect Con-

sortium, Industrial Interconnect Consortium) and IEEE P2413 project on standards specifications

of IoT architecural framework [6]. The ”things” such as users, sensors, Radio-Frequency Iden-

tification (RFID), devices and applications, are interconnected together either directly or through
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a gateway device, providing seamless connectivity to objects located in different locations of the

world [7]. Machine Type Communications (MTC), Low power Wireless Personal Area Networks

(LoWPAN), wireless sensor networks (WSN) and RFID are some of the concepts related to CPS.

These different networks are characterized by large amount of traffic with smart decision making

with little or no human interaction. For instance, the number of MTC devices is in continuous

growth, with an estimation of 50 billion devices to be connected by the year 2020 [8, 9]. This

expected massive growth of machine devices will bring revenues of more than 300 billion dollars

in the next 5 years [10], with a share of 3.1 % of the total mobile subscriptions [8].

Figure 1.1: CPS cycle to automation.

When CPS is combined with artificial intelligence, machine learning, and neuromorphic com-

puting techniques, it is envisioned that new applications will be developed with automated deci-

sion making, which would revolutionize the field of smart cities, industrial plants, environmental

monitoring and others (see Fig. 1.1). Examples of such applications include but not limited to

healthcare, where patients’ information can be accessed using a cloudlets-based infrastructure [11].

Cloudlets are clouds that are closer to users to help overcome the high latency and power con-

sumption of distant clouds [12]. Other cloud application examples include vehicles traffic control

system [13], genome analysis [14], earth surface analysis [15] and many others.
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With CPS creating a tsunami of new information, also known as big data, the revenues of many

businesses can be boosted by identifying customer needs and providing them with superior ser-

vices. However, this enormous amount of data is so large in size and complex in real-time that

it exceeds the processing capacities of conventional systems. That is why, cloud computing tech-

niques along with machine learning tools, data mining, artificial intelligence, and fog computing

can help the sensed data be easily stored, processed, and analyzed to uncover hidden patterns, un-

known correlations and other useful information [16]. That is why big data is referred to as “the

21st century new oil”.

On the other hand, interests and technical discussions about emerging technologies for the fifth

generation (5G) cellular network have evolved into a full-fledged conversation capturing attention

from researchers across the world [17]. It is envisioned that 5G technologies will be able to expand

and support diverse usage scenarios and applications. To be specific, the usage low latency com-

munications (URLLC), and massive machine-type communications (mMTC) [18]. For URLLC,

the use case has stringent requirements for capabilities such as throughput, latency, and availabil-

ity. Some examples include wireless control of industrial manufacturing or production processes,

remote medical surgery, distribution automation in a smart grid, transportation safety, and so on.

For mMTC, the use case is characterized by a very large number of connected devices typically

transmitting a relatively low volume of non-delay-sensitive data. Devices are required to be low

cost, and have a very long battery life requiring energy-efficient communication and computing.

For the communication side, it is shown that local/short-range communication could significantly

improve both the energy efficiency and spectral efficiency of a wireless system when circuit en-

ergy consumption is considered [19, 20]. For the computing side, the recent developed concept of

neuromorphic computing/ reservoir computing can be a great candidate to significantly reduce the

energy consumption [21, 22].

It is clear that the URLLC and mMTC aspects of 5G are clearly related to CPS and 5G cellular

network may provide an ideal platform for CPS communications. On the other hand, enabling CPS

communication in 5G cellular networks is far from being straightforward. For example, supporting

3



coexistence between cellular users (CUs) and CPS links requires many new functionalities and

control overhead which significantly complicates the network design.

First, current cellular networks are not designed to handle large volume of traffic, as CPS de-

vices will rapidly cause congestion in the network from excess signaling overhead, leading to a

failure of many of these communications. Second, the number of radio resources is already scarce

and limited for traditional human communications; how about the anticipated massive number of

devices? This means packet scheduling problems will occur and the network capacity and spec-

tral efficiency will significantly degrade [23]. Third, there is a concern of excessive interference

generated from the massive number of devices, add to that the multipath fading, which all lead

to a performance degradation due to wireless channels becoming unreliable. So it is evident that

we are facing several challenges when it comes to enabling CPS communications over current

cellular networks; however many of these challenges can be addressed by the specifications and

technologies of future 5G networks, as was discussed in [24].

For instance, to support massive machine type devices (MTDs) is one of the main driving force

of 5G networks. In most of the current MTC systems, MTDs communicates directly with the

eNodeB in one cell. This single-hop paradigm may not be able to support massive MTD where

hundreds or thousands of MTDs attempt to set up communications. Furthermore, MTDs located

at the boundary of a cell suffer from a high outage probability due to the interference from other

MTDs. A costly solution is to deploy more eNodeBs and split the cell into multiple small cells.

Instead of investing a huge amount of money on deploying extra eNodeBs or relays, cooperative

communication has been demonstrated as an efficient and effective way to extend the coverage

region and improve the throughput of cellular networks [25] [26] [27].

Conventionally, if an eNodeB fails to decode the packet, the MTD will retransmit the packet

in the following available slot. However, it is with a high probability that the retransmission will

fail again due to the correlated interference. In paper [28], the authors designed and analyzed a

location-based cooperative strategy to improve the performance of massive MTC networks. One of

the main idea of this paper is to select an inactive MTD acting as a relay for outage MTDs. Unlike
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the work in [29] and [30] where the authors assumed the packet was known at the relay (base

station) in prior, [28] considered the case where the relay has no prior information about the packet.

To be specific, an inactive MTD is selected as a relay if it has successfully decoded the packet and

if it is located within a circular area around the eNodeB. Otherwise, if there is no inactive MTD

that can decode the packet, the source MTD will retransmit the packet. Both the simulation and

numerical results demonstrate that spatiotemporal correlation of interference significantly affects

the performance analysis of cooperative massive MTC networks and the designed cooperative

strategy can significantly reduce the outage probability compared to conventional retransmission.

1.2 Proposed Research

Many of the CPS devices are expected to be in close proximity to each others. To provide a

potential solution to the challenges mentioned in Section 1.1, D2D communication can allow CPS

devices in close proximity to communicate directly with each other. For faster data collection,

research efforts need to focus on preconfiguring the network faster using dynamic on-the-fly D2D

connectivity and without the need for controllers or infrastructure deployment.

Relay-assisted D2D communications can help extend the limited communication range be-

tween CPS subnetworks [31], which in turn allows for a more efficient data collection. Therefore,

in Chapter 3, we will analyze the spectral efficiency of the whole network if we offload machine-

type communications (MTC) traffic on D2D links, where D2D relays will be equipped with RF

energy harvesting to compensate for the need to use their own limited energy reserves to forward

data for MTC devices. We will show that by doing so, we not only increase MTC spectral effi-

ciency, but also we are able to achieve a balance and fairness in the weighted spectral efficiency

among D2D and cellular users that are sharing the spectrum when there are enough number of

available channels in the network and the D2D offloading factor is not set too high.

Moreover, in Chapter 4, we discuss about how to ease the spectrum access of CPS devices

through D2D spatial spectrum sensing. Furthermore, we discuss about protecting these D2D links
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from eavesdropping, since security is becoming a critical aspect in the cyber-physical space, espe-

cially with the large amount of traffic that is constantly flowing through the network.

Then, in Chapter 5, we investigate another potential solution for enabling CPS communications

on cellular networks. To help relieve network congestion from CPS communications, we offload

the latter from macrocells to small cells [32]. On the other hand, creating energy efficient solutions

for the massive number of devices has always been a primary research focus by both academia and

industry [33, 34, 35]. For instance, in [34], Wang et al. proposed an energy-efficient industrial IoT

architecture consisting of sense entities (sensor nodes, smart devices) , RESTful service hosted

networks to easily integrate heterogeneous devices, a cloud server and user applications. The pro-

posed green architecture is carefully designed to extend network lifetime by reducing the energy

consumption of sensing, processing and communication of the sense entities. Similar to Chapter 3,

we take advantage of the advancements in renewable sources such as solar panels and wind tur-

bines1 i) to somehow offset the costs of SCBSs to serve offloaded CPS devices, and ii) to reduce

carbon emissions for a greener environment. This would not be feasible to apply with macrocell

BSs (MBSs) due to their larger energy consumption. Moreover, with extreme densification that is

foreseen in future 5G networks [32], SCBSs will be irregularly located, with some being in remote

areas where power grid is not feasible [36]. For these reasons, it makes sense to power SCBSs with

energy harvesting.

Finally, in Chapter 6, we present a mobile-health CPS application as a case study, where we

highlight the security aspect of the medical cyber-space. While cryptography can guarantee to

some extent the data confidentiality, integrity and authentication [37], implementing it in CPS

applications can be time consuming and costly in terms of computational overhead, high power

consumption as well as the complexity of key management [38, 39]. For these reasons, we turn

towards a lightweight low-complexity approach to protect the legitimate data from malicious attack

by exploiting the physical characteristics of the wireless channels. This idea is not new as it dates

back several centuries, where intentional echoes were generated by the circular shape of the Hall

1A solar panel of size 121 cm×53.6 cm or a wind turbine with a rotor of 1 m in diameter under an 8 m/s wind
speed can generate 100 W of electric power [36].
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Pompeiana of Massimo in Italy in order to make its center indecipherable [40].

1.3 Research Impact and Contributions

By completing the above research tasks, the proposed research will be of value for the design

and analysis of the current and emerging CPS communications. The proposed solutions will help

facilitate the enabling and coexistence of CPS communications with current cellular networks.

• The novelty of this research lies in the ability to develop different solutions, schemes and

systems of future 5G networks to help support the anticipated massive number of things.

We expect that this research would provide great benefits to CPS by solving many of its

challenges from connectivity to reliability to security.

• Furthermore, fundamental relationships between network performance and network param-

eters will be revealed, which will facilitate new systems design. What is more interesting is

the possibility of applying many of these research results in various CPS applications.

• Tractable analytical solutions using stochastic geometry tools along with simulations using

MATLAB software will allow the demonstration of the network performance, as well as the

verification of the analysis for realistic network scenarios.
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Chapter 2

Cyber-Physical Systems Meet Big Data: A

Panoramic Overview

2.1 Introduction

In this chapter, we present CPS taxonomy. CPS requires cybersecurity to protect it against mali-

cious attacks and unauthorized intrusion, which becomes a challenge with the enormous amount

of data that is constantly flowing through the network. We provide an overview of the different

security solutions proposed for CPS big data storage, access and analytics. Finally, we address

CPS sustainability by surveying the different green solutions proposed in literature.

Before any processing or analysis, data needs to be acquired. The technological advancements

in sensors have led to smarter, more efficient and low-cost sensors; the fact that facilitated their

wide deployment. Two main sources to sense the data from: i) context-aware computing, and ii)

social computing. With context-aware computing, data is sensed from physical sensors; virtual

sensors which retrieve data using web services technology; logical sensors which combines both

virtual and physical sensors such as gathering weather information; global sensors which collect

data from middleware infrastructure; and remote sensors for earth sciences applications [41, 42].

As for social computing, participatory sensing and mobile crowd-sensing have led to shaping the
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structure of social networks, in which users collect and share sensed data using their own smart-

phones rather than relying on sensors [43, 44, 45].

Cloud computing facilitates big data storage, processing and management in CPS, by breaking

them down into workflows, which are then distributed over multiple dedicated servers. This allows

CPS to provide pervasive sensing services beyond the capacities of individual things, in addition

to lower latency and power consumption and larger scalability.

Once the data has been collected, making sense of it becomes one the most important aspects

of CPS. However, it is important first to eliminate redundant information and reduce data com-

plexity so useful information extraction can be efficiently performed. In this chapter, we will

discuss about different tools to assist with the data mining process, mainly, feature selection, di-

mensionality reduction, knowledge discovery in databases, information visualization, computer

vision, classification/clustering techniques, and real-time analysis.

After the data is transformed into manageable size, data mining tools (HDFS [46], MapRe-

duce [47], R [48], S), real-time big data analytic tools (Storm [48, 49], Splunk [50]), and cloud-

based big data analytic tools (GFS [51], BigTable [52], MapReduce) can be used to extract useful

information and make sense of data, which would revolutionize the field of smart cities, environ-

mental monitoring and others.

The ubiquitous cyber-physical world is susceptible to security threats to a large degree. These

security vulnerabilities are made easier with the inability to effectively handle the large amount

of data that is constantly flowing through the network; that, in addition to the lack of qualified

security experts. Sensitive data stored in the cloud can be accessed or altered by unauthorized users.

Cyber-security attacks on the computations, such as false data injection, can affect the integrity

and accuracy of extracted results. For all these reasons, research efforts have been shifting towards

proposing robust security solutions for big data CPS. In this chapter, we provide an overview of

these proposed solutions.

In recent years, there has been a growing interest in green communications. Addressing green

issues for CPS allows for a more sustainable and energy efficient system. Green solutions are
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proposed for many aspects of CPS, mainly for i) data collection/storage such as minimizing the

number of relay transmissions, removing redundant transmission links, and the use of data com-

pression techniques; ii) CPS computing such as dynamic voltage and frequency scaling and traf-

fic engineering techniques; iii) CPS processing such as designing energy-efficient orchestrators,

checkpointing aided parallel execution (CAPE), reducing the amount of exchanged data between

clouds, the use of cloudlets which are closer to users than distant clouds, among other solutions.

This chapter is organized into sections as follows: Section 2.2 describes the different sources

and types of big data CPS, mainly context-aware computing and social computing, along with

CPS-related big data applications. In Section 2.3, an overview of big data analytics techniques is

provided. Section 2.4 provides a summary of the different security solutions proposed for CPS,

mainly in storage, access and analysis. Section 2.5 addresses the sustainability and environmental

concerns of CPS applications and the different green solutions proposed for CPS big data collec-

tion/storage, computing and processing. Finally, Section2.6 identifies CPS big data challenges and

open issues. Conclusion remarks are presented in Section 2.7.

2.2 Sources and Types of Big Data for CPS

Several factors have driven the expansive use of sensors, mainly advancements in micro-electromechanical

systems (MEMS) such as accessible design boards (Raspberry pi, Onion, Arduino) [53], and the

new efficient hardware architectures and components, which made sensors more robust to hardware

wearing from harsh environments. Moreover, many of these sensors incorporate accelerometers

that are 1000x more powerful in terms of sensitivity than those used in a Nintendo Wii [54]. In this

section, we discuss the different sensed big data sources and types by grouping them into social

computing and context-aware computing. An illustration is provided in Fig 2.1.
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Figure 2.1: An illustration of the different CPS big data sources and types.

2.2.1 Context Aware Computing and Communications

The data that sensors collect for its specific application purposes is considered raw data, that is

data that has been directly collected from the environment without further processing. With raw

data alone, it becomes challenging to analyze and interpret it, let alone the big data generated by

the large scale deployment of sensors. For data to provide relevant information that has mean-

ingful value and easily interpretable, sensors need to engage in context-aware computing; that is,

sensors need to store processed meaningful information, also known as “context information”, that

is easily understandable [55, 56]. An example to highlight the difference between raw sensor data

and context information would be the blood sugar readings collected by bio-medical sensors on

patient’s body, which are considered raw data. When these readings are processed and represented

as patient’s average glucose level in the blood, they are referred to as context information. The

quality of context (QoC) metric is used to assess the quality, validity, precision and up-to-dateness

of context information [57]. Context-aware computing from acquisition, processing, storing and
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reasoning, can be performed by the applications themselves, or by using libraries and toolkits, or

even by using a middleware platform [41].

As for sources of context information, they can be retrieved directly from physical sensors,

from virtual sensors (they collect data from different sources by using web services technology and

represent it as sensor data), from logical sensors ( a combination of physical and virtual sensors),

from a middleware infrastructure (global sensor networks), from context servers (databases, web

services), or even manually provided such as retrieving users’ preferences.

The context information can be further classified into primary context and secondary context,

which provides information on how the data was obtained. For example, reading RFID tags directly

from different production parts in industrial plants is considered primary context, while obtaining

the same information from the plant’s database is referred to as secondary context [41, 58].

Remote sensing

Collecting sensor data of objects from a distance is referred to as remote sensing (RS) [59]. RS is an

integral part of earth sciences. For instance, space-borne and airborne sensors collect multi-spatial

and multi-temporal RS big data from the global atmosphere for purposes of earth observation and

climate monitoring [60]. Other remote sensing applications include Google Earth that provides

pictures of the earth’s surface, weather reporting, traffic monitoring, hydrology and oceanogra-

phy [61].

In [62], the authors proposed a big data analytical architecture for real-time RS data processing

using earth observatory system. The real-time processing includes filtration, load balancing and

parallel processing of the useful RS data. The RS datasets are normally geographically distributed

across several data centers, leading to difficulties in loading, scheduling and transmission of data.

That in addition to the high dimensionality of the RS data which makes their storage and data

access rather complicated [60]. That is why in [63], Wang et al. proposed a wavelet transform to

represent RS big data by decomposing the datasets into multiscale detail coefficients, which are

estimated using expectation-maximization likelihood. In [64], the authors evaluate the quality of
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RS data using statistical inference by using the prior knowledge of the dataset to get an unbiased

estimator for the quality.

2.2.2 Social Computing

With the explosive increase in smartphones usage, mobile data has witnessed an unprecedented

growth, carrying enormous amount of information on user applications, network performance data,

service characteristics, geographic information, subscriber’s profile, and so on [65]. This has led to

shaping the notion of “mobile big data”, which, unlike traditional big data in computer networks,

has its own unique characteristics. One of these characteristics is the ability to partition mobile

data in time and space domains, such as in minutes, hours, days, location, and so on. Furthermore,

due to the features of smartphones’ usage, the same traffic, on one hand, can be highly likely re-

quested by a group of subscribers in certain time and location; and on the other hand, subscribers in

close proximity may exhibit similar behavior and mobility patterns, all of which can help optimize

network performance [66].

Social computing allows the integration of these social behaviors and contexts into web tech-

nologies to assist with predicting social dynamics, which can render the operation, planning and

maintenance of social wireless networks easier than ever [67, 68]. For instance, due to high social

correlations and relationships among subscribers, a user social network can be formed, in which

the habit, interests, mobility, and sharing patterns can be used to construct social community struc-

tures and analyze communication behaviors. One such an example of user social application is

the popular Pokemon Go game, where users in close proximity share real-time maps to hunt for

Pokemon characters [66]. Another example where social computing can be beneficial is in emer-

gency situations, such as the spread of infectious diseases, where taking the appropriate policies

by analyzing human interactions and predicting the emergency’s evolution can help protect the

public health [67]. Next, we list two different social computing tools for data collection, mainly,

participatory sensing and crowd-sensing.
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2.2.2.1 Participatory sensing

Participatory sensing or community sensing allows users to collect and share information either

within social groups (social sensing) or with everyone (public sensing) using their own smart de-

vices [43, 44]. This means that sensors can be substituted by users for purpose of data collection,

which can significantly reduce the monetary costs of deploying physical sensors. However, with

participatory sensing comes several challenges such as the quality and trustworthiness of collected

data, the willingness of participants to engage in the sensing tasks and protecting participants’

personal information.

In [43], the authors proposed a participant coordination architecture that selects the most effi-

cient participants without exposing participants’ personal information to the application server. To

protect participants’ privacy, in [69], Chang et al. proposed a secure scheme called PURE which

allows participants to reach the global model estimate via peer reviewing the local regression mod-

els. This enables participants to only report intermediate results back to the server without the need

of sharing local private data with the server. In [70], Messaoud et al. proposed a mobile sensing

scheme that reduces the sensing time required by participants, and increases the fairness of sensing

tasks assignment to ensure participants’ commitment to sensing while maintaining same data qual-

ity as in non-fair schemes. In an attempt to maximize the overall data quality, in [71], Wang et al.

proposed a multi-task allocation framework (MTPS) which pays participants a compensation from

a shared budget for each sensing task, with additional compensation if a participant is assigned

more than one task. This greedy framework allows the allocation of multiple tasks to participants.

In [72], participatory sensing for environmental data collection is used, where the urban resolution

metric is used to measure the quality of urban sensing. In [73], participatory sensing is applied to

vehicular networks, where location, speed, and fuel consumption of vehicles can be communicated

to the server through phones aboard via a WiFi interface to reduce data transfer delay time.
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2.2.2.2 Mobile crowd-sensing

Mobile crowd-sensing (MCS) can be considered as an extension to participatory sensing. In ad-

dition to collecting data from mobile devices (mobile sensing), MCS uses social sensing by inte-

grating and fusing the contributed data from mobile devices with that of the mobile social network

services in order to provide solutions to more complex queries [45]. In vehicular networks, with

participatory sensing we can collect warning messages from vehicles to determine the traffic sta-

tus. However, if in addition, a driver needs to know whether the route is safe to drive on based on

authorities’ recommendations, residents’ preferences, etc., then MCS can be useful (see Fig. 2.1).

In [74], Xiang et al. uses MCS to construct accurate outdoor received signal strength (RSS)

maps using error-prone smartphones. In [75], Wang et al. propose an energy-efficient cost-

effective data uploading in MCS by providing incentives to participants to use the appropriate

timing and network to upload the data. Data was offloaded to Bluetooth/WiFi gateways by using

predictions on users’ calls and mobility. To maintain relatively good performance of MCS appli-

cations, sufficient number of participants need to contribute to sensing. In [76], the authors discuss

about the different incentives for MCS from entertainment, service and monetary incentives, in

which participants can be recruited in multiple sensing tasks.

2.2.3 CPS Big Data Applications

We now present some of the main CPS big data applications in different fields: energy utilization,

city management, and disaster events applications, along with a public safety case study model.

2.2.3.1 Smart Grids

Smart grids constitute an important aspect of sustainable energy utilization and are becoming more

popular, especially with the advances in sensing and signal processing technologies. Automated

smart decisions based on millions of data and control points play an important role in managing

the energy usage patterns, understanding users’ behaviors, reducing the need to build power plants,
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and addressing supply fluctuations by using renewable resources [77]. That is why big data tools

from cloud computing [77], mining and analytics [78, 79], performance optimization [80] and oth-

ers have been dedicated for smart grids applications. Moreover, for reliable power grid, smart grids

highly depend on cyber infrastructure. This poses several challenges such as exposing the phys-

ical operations of smart grid systems to cyber security attacks [81]. Furthermore, the collection

of users’ energy usage information such as the types of appliances they use, the eating/sleeping

patterns, etc. can be very beneficial in optimizing smart grids’ performance; however users’ pri-

vacy can also be affected. In [82], Yassine et al. proposed a game theoretic mechanism to balance

between users’ private information and the beneficial uses of data.

2.2.3.2 Military Applications

Big data can also be exploited to improve experience, services, and training of military. Real-time

authentication of command and control messages in cyber-physical infrastructures is of high im-

portance for military services to ensure security. In [83], the authors develop a novel broadcast

authentication scheme using special digital signatures for faster signature generation and verifi-

cation, and packet loss tolerance. This can be useful to efficiently and rapidly secure military

communications. In [84], the authors used Markov decision process to propose an approach to

identify and reduce attacks’ cost in military operations in order to protect important information

through obtaining attack policies. Military satellite communications require to be resilient to en-

sure missions’ success. This can be achieved using matrix-based protection assessment approach

based on traditional risk analysis, where an attack can be assessed in terms of both ease of attack

and impact of attack [85]. Mitigating the following five core threats allows the satellite communi-

cations to be free from weak vulnerabilities that can be easily exploited by attackers: waveform,

RF access to enemy, foreign presence, physical access, and traffic concentration [85].
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2.2.3.3 City Management

Big data can facilitate daily activities by using smart infrastructures and services. For instance, traf-

fic patterns can be analyzed and routes can be computed to allow people to reach their destinations

faster. In [86], the authors proposed to deploy road sensors to obtain information on the overall

traffic, such as speed and location of individual vehicles. This information is then processed using

graph algorithms by taking advantage of big data tools such as Giraph, Spark and Hadoop. This

helps provide real-time intelligent decisions for smart efficient transportation. Safety systems, such

as deploying surveillance systems, are another city management big data applications. A computer

vision deep learning algorithm for human activity recognition was proposed in [87]. The model is

capable of recognizing twelve types of human activities with high accuracy and without the need of

prior knowledge, which makes it useful for security monitoring applications. Crowd detection and

surveillance is another safety system big data application. A target individual needs to be easily

inferred from visual information. In [88], the authors proposed such a framework that can easily

detect target location and update the motion information to improve the detection.

2.2.3.4 Medical Applications

CPS health systems are foreseen to shape the future of tele-medicine in different areas such as

cardiology, surgery, patients’ health monitoring, which will significantly enhance the healthcare

system by providing timely, efficient and effective medical decisions for a myriad of health appli-

cations such as diabetes management, blood pressure and heart rhythm monitoring, elderly support

and so on [89]. With 774 million connected health-related devices [90] by 2020, a large volume

of data from small-scale networks, such as e-health systems or mobile-health systems, needs to be

stored, processed and analyzed to enable timely intervention and better management of patients’

health.

With e-health systems becoming widely deployed in hospitals and health centers, research has

been focused on efficiently deploying medical body area networks (MBANs) to reduce interfer-

ence on medical bands from other devices [91]. In MBANs, biomedical sensors are placed in the
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vicinity of patient’s body or even inside her to sense health-related vital signals using short-range

wireless technologies. The collected data is then multi-hopped to remote stations, so that med-

ical staff can efficiently monitor patients’ physiological conditions and disease progression [91].

For instance, in [92], elderly patients’ health tracking application was proposed, where a mixed

positioning algorithm allows for 24-hour monitoring of patients’ activities and transmits an alarm

to medical staff through SMS, e-mail or telephone in case of an abnormal event or emergency.

However, transmitting this health information in a timely and energy-efficient manner is of utmost

importance for e-health systems. In [93], a micro Subscription Management System (µSMS) mid-

dleware for e-health systems was presented. The µSMS platform allows sensor nodes to exchange

information to provide event-driven services with dynamic memory and variable payload such as

GPS coordinates, Home Context and so on. The designed architecture achieves lower memory

overhead, lower software components load time and lower event propagation time than other simi-

lar proposals, which are all critical requirements for energy efficiency, reliability and scalability of

e-health systems.

2.2.3.5 Disaster Events Applications

Network resilience and survivability are the utmost requirements for public safety networks. In

case of a disaster or emergency event, the people who are first on scene are referred to as first

responders, and they include law enforcement, firefighters, medical personnel and others [94].

Some of the major public safety requirements relate to the necessity of first responders to exchange

information (voice and/or data) in a timely manner [94]. The big data can be used to support

disaster events, such as analyzing big data from high resolution maps, floor plans and on-field video

transmissions to transmit warning messages to authorities [95]. The remote sensing big data can be

analyzed using a scalable hybrid parallelism approach to reduce the analytics execution time [96].

The large amount of data collected from previous earthquakes can be used to predict the future

service availability areas, which can improve preparedness and response to such events [97]. A

disaster domain-specific search engine can be constructed using big data to make the understanding
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and preparedness of disaster attacks easier and faster for authorities [98].

2.3 Big Data Analytics

Big data analytics constitute one of the most important arenas in big data systems, as it allows to

uncover hidden patterns, unknown correlations and other useful information, which in turn assist

in boosting the revenues for many businesses. In this section, we present an overview of big data

analytics tools and techniques.

2.3.1 Data Mining

One of the interesting features of CPS is the automated decision making. This means that CPS

objects are supposed to be smart in sensing, identifying events and interacting with others [99].

The massive data collected by CPS needs to be converted into useful knowledge to uncover hidden

patterns to find solutions, enhance system performance and quality of services. The process of

extracting this useful information is referred to as data mining. One solution to facilitate the data

mining process is to reduce data complexity by allowing objects to capture only the interesting

data rather than all of it. Before data mining can be applied to the data, some processing steps

need to be completed such as key features selection, preprocessing and transformation of data. Di-

mensionality reduction is one potential method to reduce the number of features of the data [100].

For instance, in [101], Chen et al. used neural network with k-means clustering via principal com-

ponent analysis (PCA) to reduce the complexity and number of dimensions of gene expression

data to extract disease-related information from gene expression profiles. Knowledge discovery

in databases (KDD) is also used in different CPS scenarios to find hidden patterns and unknown

correlations in data so that useful information can be converted into knowledge [102]. One such

use of KDD is in smart infrastructures systems, where these systems need to answer queries and

make recommendations about the system operation to the facility manager [103].

Tsai et al. [16] broke down the core operations of data mining into three main operations: data
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scanning, rules construction and rules update. Data scanning is selecting the needed data by the

operator. Rules construction includes creating candidate rules by using selection, construction and

perturbation. Finally, candidate rules are checked by the operator, then evaluated to determine

which ones will be kept for the next iteration. The process of scanning, construction and update

operations is repeated until the termination criteria is met. This data mining framework works

for deterministic mining algorithms such as k-means, and the metaheuristic algorithms such as

simulated annealing and genetic algorithm.

Clustering, classification and frequent pattern are different mining techniques that can be used

to make CPS smarter. Tsai et al. [16] discussed about two different purposes for clustering: i) clus-

tering for infrastructure of IoT, and ii) clustering for services of IoT. Clustering for infrastructure

of IoT helps enhance system performance in terms of identification, sensing and actuation, such

as in [104], where nodes can exchange information between each other to identify whether they

can be grouped together depending on the needs of the IoT applications. As for services of IoT,

clustering can help provide higher quality services such as in smart homes [105]. On the other

hand, classification does not require prior knowledge to complete the partitioning of objects into

clusters, also known as unsupervised learning. Classification tools include decision trees, k-nearest

neighbor, naive Bayesian classification, adaboost and support vector machines. Classification can

also be done to improve infrastructure as well as services of IoT. Finally, frequent pattern min-

ing is about uncovering interesting patterns such as which items will be purchased together with

previously purchased items, or suggest items for customers to purchase based on customer’s char-

acteristics, behavior, purchase history, etc. Fig. 2.2 illustrates the CPS big data mining process for

useful information extraction.

2.3.2 Real-time Analytics

Real-time analysis is another approach to produce useful information from massive raw data. Real-

time streams data is first converted to a structured form before being analyzed by big data analysis

tools such as Hadoop and MapReduce. Many application domains such as healthcare, transporta-
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Figure 2.2: CPB big data mining process.

tion systems, environmental monitoring, and smart cities will require real-time decision making

and control [44]. For example, Twitter data can be real-time analyzed to enhance the prediction

process and to provide useful recommendations to users [106]; terrorist incidents data can be real-

time analyzed to predict future incidents [107]; big data stream in healthcare can be analyzed to

help medical staff make decisions in real-time, which can help save patients’ lives and improve the

healthcare services provided, while reducing medical costs [108]. Near real-time big data analysis

architecture for vehicular networks was proposed in [109], which consists of a centralized data

storage for data processing and a distributed data storage for streaming processed data in real-time

analysis.

Arranging the data in a representative form can provide information visualization, which makes

the information extraction and understanding of complex large-scale systems much easier [110].

In [111], the authors tackled the big data analytics in mobile cellular networks based on random

matrix theory, where big data is represented in matrix form of size n×N, where n is the number

of data samples of a random vector x, and N is the number of independent realizations of x. For
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cellular networks, big data manifests as big signaling data consisting of a large number of control

messages to ensure reliability, security and efficiency of communications; big traffic data which

require traffic monitoring and analysis to balance network load and optimize system performance;

big location data generated by GPS sensors, Bluetooth, WiFi and so on, to assist in different ar-

eas such as transportation systems, public safety, crime hot spots analysis and so on; big radio

waveforms data emanating from 5G massive MIMO systems to estimate users’ moving speed for

purposes of finding correlation among transmitted signals as well as assist in channel estimation;

and finally big heterogeneous data such as data rate, packet drop, mobility and so on that can be

analyzed to ensure cybersecurity.

Geographical information systems (GIS) is one important tool of visualization [112], as it can

help real-time analysis of many applications such as in healthcare, urban and regional planning,

transportation systems, emergency situations, public safety, and so on. In [112], the authors pro-

posed a large-scale system data visualization architecture called X-SimViz, which allows users for

real-time dynamic data analytics and visualization. Computer vision is another approach to detect-

ing security anomalies. Visualization can also be useful tool in predicting real-time cyber attacks.

For instance, in [113], the authors used computer vision to transform the network traffic data into

images using a multivariate correlation analysis approach based on a dissimilarity measure called

Earth Mover’s Distance to help detect denial-of-service attacks. A computer vision deep learning

algorithm for human activity recognition was proposed in [87]. The model is capable of recogniz-

ing twelve types of human activities with high accuracy and without the need of prior knowledge,

which makes it useful for security monitoring applications.

2.3.3 Cloud-Based Big Data Analytics

Cloud-based analysis in CPS constitutes a scalable and reliable architecture to perform analytics

operations on big data stream, such as extracting, aggregating and analyzing data of different gran-

ularities [114]. The massive amount of data is usually stored in spreadsheets or other applications,

and a cloud-based analytics service, using statistical analysis and machine learning, helps reduce
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the big data to a manageable size so information can be extracted, hypothesis can be tested, and

conclusions can be drawn from non-numerical data such as photos. Data can be imported from the

cloud and users are able to run cloud data analytics algorithms on big datasets, after which data

can be stored back to the cloud [115]. For instance, in [116], the authors used cloud computing

using MapReduce algorithm to conduct analysis on crime rates in the city of Austin using different

attributes like crime type and location to help build a design that prevents future crimes for public

safety.

Even though cloud computing is an attractive analytics tool for big data applications; however it

comes with several challenges, mainly concerning security, privacy and data ownership, which will

be discussed further in Section 2.4. In [11], the authors extended the use of clouds to mobile cloud

computing to help overcome the challenge of resources limitations such as memory, battery life

and CPU power. A mobile cloud computing architecture was suggested for healthcare applications

with discussion on various big data analytic tools available. In [117], the authors suggested using

a hybrid cloud computing consisting of public and private clouds to accelerate the analysis of

massive data workloads on MapReduce framework without requiring significant modifications to

the framework. In a private cloud, cloud services delivered over the physical infrastructure are

exclusively dedicated to the tenant. The hybrid cloud uses a set of virtual machines run on the

private cloud, which take advantage of data locality, and another set of virtual machines run on a

public cloud to run the analysis at a faster rate.

To optimize the utilization of cloud computing resources, predicting the expected workload

and the amount of resources needed becomes important to reduce waste. In [118], the authors de-

veloped a system that predicts the resources requirements of a MapReduce application to optimize

bandwidth allocation to the application; whereas in [119], the authors used linear networks along

with linear regression to predict the future need of new resources and VMs. When the system fails

short in predicting the right amount of resources needed, it becomes incapable of accommodat-

ing a high workload demand, leading to anomalies. Anomalies detection is an essential part of

big data analytics, as it helps improve the quality of service by checking if the measurements of
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the workload observed and the baseline workloads diverge by a specific margin, where the base-

line workloads provide a measure on how the demand changes during a period of time based on

historical records [120].

Figure 2.3: An illustration of CPS taxonomy.

2.4 Big Data Cybersecurity and Privacy

In the realm of cyber physical systems, the tight interaction among physical objects which collect

and transmit large volume of data place security threats under the spotlight of attention. With
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this enormous amount of data that is constantly flowing through the network, it becomes essential

to protect the system from cyber attacks. In this section, we provide an overview of the different

security solutions proposed for big data storage, access and analytics (see Table 2.1 for a summary).

2.4.1 Security in Big Data Storage and Access

While data storage in the cloud offers several advantages in terms of data storage, availability,

scalability and processing, it increases the chance of malicious attacks, that in addition to potential

privacy invasion by cloud operators who can have access to sensitive data. All this puts a question

mark whether cloud data storage is feasible, especially for governmental agencies and financial

industries. Several works have attempted to solve the security challenges of cloud storage. For

instance, Gai et al. proposed a method that splits files into encrypted parts and store them in dis-

tributed cloud servers without users’ data being directly reached by cloud service operators [121].

In [122], the authors optimized the data placement on cloud servers that minimizes retrieval time

of data files while guaranteeing their security based on the distance between nodes that store the

data chunks, such that the malicious attacker cannot guess the locations of all the data chunks.

In [123], the authors suggested that data to be encrypted and decrypted before sending it to clouds.

When data needs to be transferred from one cloud to another, data privacy and integrity become

important. In [124], Ni et al. proposed a secure data transfer scheme where users encrypt the data

blocks before uploading to the cloud. When transferring from one cloud to another, a security

protocol was described using secret keys and a signature checking with polynomial-based authen-

tication was performed without retrieving data from the source cloud. While the mentioned works

considered encryption as a way to protect the data from privacy violations, encryption introduces a

new challenge: cloud data deduplication, especially when data is shared among many users. Even

though deduplication can save up to 95% in terms of needed storage for backup applications [125],

and 68% for standard file systems [126]; however it wastes resources, consumes energy and makes

the data management very complicated. In [127], Yan et al. attempted to solve the deduplication

problems by proposing a scheme, where the users upload the encrypted data to the cloud along
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with a token for data duplication check, which is then used by the cloud service providers to check

whether the data has already been stored. A scheme to verify data ownership was presented to

ensure secure data management.

2.4.2 Security in Big Data Analytics

Enabling security and privacy aspects of big data analytics have attracted a great attention from the

scientific community, mainly due to different reasons. First, the data is more likely to be stored,

processed and analyzed in several cloud centers leading to security issues due to the random lo-

cation of data. Second, big data analytics treat sensitive data in similar way to other data without

taking security measures such as encryption or blind processing into consideration [128]. Third,

big data computations need to be protected from malicious attacks in order to preserve the integrity

of the extracted results. In the realm of CPS, the enormous amount of data makes the monitoring

of security-related information for anomaly detection a challenging task for analysts; that, in ad-

dition to the lack of qualified security experts. In healthcare, for instance, security of information

extraction from massive amount of data and accurate analytics are of high importance. Sensitive

data recorded in databases need to be protected by monitoring which applications and users get

access to the data [129]. In order to guarantee a strong secure big data analytics, the following

tasks can be performed [130]:

• Surveillance and monitoring of real-time data streams

• Implementation of advanced security controls such as additional authentication and blocking

suspicious transactions

• Anomaly detection in behavior, usage, access and network traffic

• Ability to defend the system against malicious attacks in real-time

• Adoption of visualization techniques that give a full overview of network problems and

progress in real-time.
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Machine learning, among other tools, offers a promising solution to automate many of the above

mentioned security-related tasks, especially with the continuous growth of the flowing data in

terms of scale and complexity. Through the process of training datasets, machine learning makes

possible the detection of future security anomalies by detecting unusual activities in the network

traffic. To achieve a higher accuracy, a large volume of training datasets are needed; however this

would be at the cost of added overhead and storage constraints. The process of training can be

supervised, unsupervised or semi-supervised, depending on whether the outcome of a particular

dataset is already known. In specific, the system starts by classifying similar datasets into clusters

to determine their anomaly. A human analyst can then explore and identify any unusual data. The

outcome found by the analyst can then be fed back to the training system in order to make it more

”supervised” [131]. This has the potential of helping the training system adapt to new forms of

threats without human intervention, so actions can be immediately taken before actual damages

occur. Different approaches for anomaly detection exist in literature such as discretizing the con-

tinuous domain into different dimensions such as in the surveillance system in [132], where the

author partitioned the surveillance area into a square grid where the positions and velocities of the

moving objects falling in each cell are modeled by a Poisson point process. Another approach

is the multivariate Gaussian analysis in which data is flagged as abnormal when it lies a number

of standard deviations away from the mean. For instance, in [133], the authors used multivariate

Gaussian analysis to detect internet attacks and intrusions by analyzing the statistical properties

of the IP traffic captured. In clustering methods such as k-means clustering, data points can be

grouped into clusters based on their distance to the center of the cluster. Then, if the data point lies

outside of the group cluster, it is considered as an anomaly. The authors in [134] used kernel k-

means clustering with local-neighborhood information to detect a change in an image by optimally

computing the kernel weights of the image features such as intensity and texture features. As for

the artificial neural network approach, one implementation of such a model is the autoencoder, also

known as replicator neural network, which flags anomalies based on calculations of the difference

between the test data and the reconstructed one. This means that if the error between test and
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reconstructed data exceeds a specified threshold, then it is considered far away from a healthy sys-

tem distribution [135]. An example of such approach is given in [136], where the authors used the

autoencoder as a high accurate low-latency model to detect anomalies in the energy consumption

and operation of smart meters.

Table 2.1: A summary table of security solutions proposed for CPS

Literature Security Solutions
[121], [122], [137] Secure data placement on cloud
[113], [131], [133], [134], [135],
[136], [138], [139], [140],
[141] , [142], [143]

Anomaly detection

[121], [123], [124], [127],
[144], [145]

Cryptographic solutions

[69], [129], [143],[146] Advanced security controls
[87], [88], [113], [132], [134], [147] Visualization techniques

2.5 Big Data Meet Green Challenges for CPS

Greening big data systems allows to address sustainable and environmental concerns. In this sec-

tion, we provide a panoramic discussion on the different green solutions for CPS big data collec-

tion/storage, computing and processing. Fig 2.4 shows different sustainable applications, along

with challenges and solutions for a greener CPS.

2.5.1 Energy-Efficient Data Collection

With massive number of interacting objects, gathering sensed data poses a challenge in terms of

energy consumption, mainly due to the limited communication range between subnetworks, neces-

sitating that objects act as relays for surrounding objects in order to extend their communications.

This affects the lifetime of objects since each object needs to relay large volume of data generated

by its neighbors [148]. In this context, different solutions have been proposed for different big

data applications. In [148], Takaishi et al. proposed energy efficient solutions for data collection

in densely distributed sensor networks. In an attempt to reduce the number of relay transmissions
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Figure 2.4: Sustainable CPS: applications, challenges and solutions.

needed, sensor nodes transmit their data to a data collector node, the sink node, when they be-

come close in proximity to it. Therefore, it becomes important to figure out the trajectory that the

sink node needs to follow based on nodes’ information such as location and residual energy, as

well as the cluster formation in order to reduce the energy consumption of data collection. Data

compression technology is another solution to help deal with challenges of data storage, collec-

tion, transmission, processing, and analysis. For instance, in [149], the authors proposed a highly

efficient lossy data compression based on smart meters’ load features, states and events with a

small reconstruction error. ZIP-IO compression technique was proposed in [150] using FPGA as a

potential implementation framework. Video compression is another important tool in big data for

surveillance applications. The authors in [151] proposed a background-based coding optimization

algorithm that uses the residual gradient and the block edge differences to improve picture quality

while achieving high level of compression.

Removing redundant transmission links can also reduce energy consumption while increasing
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network capacity. Topology control algorithms such as local minimum spanning tree (LMST) [152]

and Local Tree-based Reliable Topology (LTRT) [153] have low computational complexity and can

help obtain the best logical topology which can be beneficial for energy efficient data collection. In

addition to removing redundant transmission links, removing redundant data can help save energy,

such as in [154], where a compressive-sensing-based collection framework was proposed for re-

ducing data redundancy and saving energy. To implement this solution, an online learning module

predicts the amount of data (principal data) that needs to be collected for compressive sensing. This

means the principal data is supposed to represent the whole big data using the compressive sensing

technique. Then, each node can locally tweak the collection strategy dynamically depending on

neighbors status, residual energy, and link quality. Nodes’ clustering can also contribute to energy

saving by reducing the number of data collection and transmissions, such as fan-shaped clustering

proposed in [155] for large-scale networks with energy efficient selection of a cluster head and

relay node. Other clustering algorithms exist in literature, such as the well-known Low-Energy

Adaptive Clustering Hierarchy (LEACH) [156], which can be useful for big data wireless sensor

networks.

2.5.2 Green Computing

While cloud centers are becoming an important aspect of big data computing to process data

chunks in parallel, they contribute to a high energy expenditure, leading to increased costs and

maintenance [157]. Therefore, research efforts are shifting towards creating sustainable big data

computing techniques.

Shojafar et al. proposed a job scheduler between servers called MMGreen to reduce energy

consumption of computing in cloud data centers [158]. The MMGreen architecture is composed

of physical servers hosting VMs connected to a front-end component that manages the incoming

workload. Scheduler jobs that use dynamic voltage and frequency scaling (DVFS) technique for

energy efficient servers include static scheduler whose power consumption is independent of clock

rates and usage, and sequential schedulers which attempt to minimize reconfiguration costs by per-
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forming offline resource provisioning via predicting future workload information [159]. In [158],

the authors described different techniques to reduce energy consumption such as DVFS to reduce

VMs’ frequencies and real-time adjustment of VMs frequencies processing and switching while

maintaining quality of service to users. In [160, 161], M2M power savings were optimized by

reducing the execution frequency of some activities without negatively impacting the human-to-

human communications.

Besides targeting the energy efficiency of cloud servers, network devices also need energy ef-

ficient solutions since they also contribute to the total energy expenditure of the cloud data center.

Traffic engineering is one solution for this problem, which takes advantage of the traffic prediction

to turn off network devices such as switches during idle periods in order to reduce power consump-

tion [162, 163, 164, 165]. Traffic engineering techniques, such as the software defined networking

(SDN)-based traffic engineering [166], allow the network devices to dynamically adapt to current

workload. One problem with traffic engineering techniques is that the predicted traffic pattern

might not be accurate due to the variability of big data applications running in the data center. This

makes the network configuration suffer from frequent oscillations, since it needs to be updated

frequently leading to performance degradation [167]. To take into consideration this time-varying

aggregate traffic load, one proposed solution is to include flow deadlines to measure the speed

at which requests’ responses are delivered to users. This allows the design of energy-efficient

scheduling and routing for data center networks [167, 168, 169]. Another solution to enhance

the inaccurate traffic engineering techniques is to take into consideration the unique features of

data centers such as regularity of the topology, VM assignment, application characteristics. Such

a framework was proposed in [170], where the energy-saving problem was solved in two steps:

i) a VM assignment algorithm that integrates application characteristics and network topology to

better understand traffic patterns for energy efficient routing, and ii) an algorithm that minimizes

the number of switches and balances traffic flow among them. Experimental results showed a 50%

energy savings using the proposed framework.
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2.5.3 Green Processing

An energy-efficient orchestrator for smart grid applications was proposed in [171]. The green

orchestrator coordinates sustainability between smart grids and big data enterprises from green

infrastructure (data centers) to running green frameworks such as Hadoop MapReduce. The or-

chestrator’s main components are: i) a green lesser to establish a per-job service-level agreements

(SLA) that takes into account the available power, the power consumption statistics of jobs, the

network and server states; ii) a pre-execution analyzer that executes jobs based on their power con-

sumption statistics; iii) a network and server states predictors; iv) a network traffic analyzer which

helps eliminate redundant traffic using traffic engineering techniques; v) a VMizer that intelligently

places VMs such that some nodes are put to sleep; (vi) a pizer that schedules and places processes

to a subset of clusters such that system resources are efficiently utilized; and (vii) a post-execution

analyzer to analyze the energy profile of completed jobs.

Another green big data processing architecture is checkpointing aided parallel execution (CAPE),

which uses checkpoints that save the sates of processes to avoid restarting unnecessary executions

from beginning in case of hardware or software failures [172, 173, 174]. CAPE also allows threads

of a shared-memory program to be executed in parallel on a distributed memory architecture rather

than a shared memory architecture. The CAPE architecture can lead to energy saving since if

the execution period of processors is short, they can go to idle mode rather than staying active

for the whole execution of the program. This makes it beneficial in processing big data in CPS

applications [174, 175].

Another approach to green big data processing is the efficient utilization of network resources

by reducing the volume of communications that need to be exchanged in cloud data center net-

works. For instance, Asad et al. proposed spate coding for the purpose of reducing the amount of

exchanged data, but without compromising the rate of information exchange [176]. Spate coding

incorporates both index coding and network coding, and uses side information originating from

several processes sharing a physical node to encode packets. This coding technique was shown

to reduce the volume of communications by 62%, along with other advantages such as improv-
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ing the utilization of system resources from disk utilization, queue size, and the number of bits

transmitted during shuffle phase of Hadoop (200%) [176]. Other approaches to reduce the burden

on data centers from the information exchange include traffic flow prediction to reduce network

transfers [118, 177], and redundancy elimination scheme to remove redundant information data

exchange, among others [178, 179, 180].

2.5.4 CPS-based Green Big Data Toward Green Applications

CPS-based big data applications can contribute to greening different sectors: environment, eco-

nomic, and social/technical issues [35, 181, 33]. As for the environment, efforts are made to

reduce air/water pollution as well as the impact of climate changes. For instance, sensors can be

deployed to monitor air and water qualities. Using MapReduce or Spark programming frame-

works, the concentration of pollutants can be monitored and studied [182]; the air quality not

covered by monitoring stations can be estimated [183], and the causalities of air pollutants can

be identified using urban big data dynamics [184]. Pollution can also originate from oil spills.

Predicting such catastrophes very early can help save beaches, coastlines and waters [35, 181].

Marine oil spills can be detected using a large archive of remote sensing big data [42]; and a real-

time warning can be generated from a quantitative data analysis using supervised oil system [185].

Concerning water pollution, underwater sensors can be deployed to monitor water environment,

such as water level, water flow, temperature, and pressure. The sensor network can be connected

to a cloud platform via a wireless transceiver for analysis and visualization [186]. Noise pollution

in cities is another contributing factor to environmental pollution, which can have negative impact

on health, especially with the increasing number of circulating vehicles [35, 181]. Noise pollution

levels can be predicted by collecting four data sources: complaint data, social media, points of

interests, and road network data [187]. These data can be gathered by deploying static municipal

sensors, together with participatory sensing with smart phones in order to provide more accurate

noise maps [188].

As for green economics, CPS applications can be targeted for optimizing the energy use. One
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example is FirstFuel, which monitors temperature and lightnings inside buildings by checking the

running status of the equipments, such as fans, heating and cooling units [35]. Power management

can be realized using sensors monitoring the whole building, as well as using smart meters for

electricity consumption measurements. Energy efficient smart meters solution has been proposed

in [189] using coalition game that maximizes the pay-off values of smart meters. An approach to

predict daily electricity consumption inside buildings using data analysis was proposed in [190].

The authors used canonical variate analysis to group electricity consumption profiles into clusters

in order to identify abnormal energy usage. Energy efficiency can also be employed in trans-

portation systems to reduce fuel wastage. One example is [191], where the authors used electric

vehicles (EV) battery model to estimate the driver’s behaviors and driving range to improve energy

efficiency. Social media and participatory sensing can also be used toward greener environment.

For instance, in [192], the authors used social media to optimize smart grid management. In [193],

participatory sensing was used to implement a navigation service called GreenGPS to allow drivers

to obtain customized routes that are the most fuel-efficient.

2.6 Big Data Challenges and Open Issues for CPS

While ongoing research is focusing on CPS enterprise development and applications, effective so-

lutions to combat security flaws have not received the attention they deserve, which places question

marks on the foreseen integration of CPS in critical infrastructures. This matter is made worse with

CPS devices having i) limited computational capabilities to employ data confidentiality, privacy

preservation and authentication; ii) the semi- or fully-autonomous security management (mutual

authentication, key arrangement, etc.) [194]; and iii) the high computational overhead cost of cryp-

tographic solutions [195]. Low-complexity and lightweight ciphers such as PRESENT [196] have

been developed; however research efforts should go beyond cryptography, especially that such

solutions can be time consuming and costly in terms of high power consumption as well as the

complexity of key management [38, 39].
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Correctness of CPS is another research area under the spotlight of attention. Due to dynamic

nature of physical environment, CPS need to constantly adapt to new situations while operating

and functioning properly with little or no human supervision [197]. The use of models can allow

the early detection of failures by simulating different components of complex designs to verify

the integration of the whole system [198, 199]. CPS components verification to ensure they are

working properly or that they meet execution time requirements is another approach to ensure

correctness [200, 201, 202]. Future research shall focus on creating robust real-time anomaly

detection and correctness techniques that have low overhead and implementation costs.

For faster data collection, research efforts need to shift towards devices that do not need to

preconfigure to a network with dynamic on-the-fly D2D connectivity, and without the need of

controllers or infrastructure deployment. Furthermore, to extend the communication range among

devices, incentivized devices with tokens will replace dedicated relays. In terms of CPS computing,

research directions should shift towards faster data processing by moving data processing closer

to the sources and by speeding-up big data handling. For a faster and efficient CPS analysis,

research activities need to be further conducted on information fusion techniques, especially that

information originates from heterogeneous devices with varying capabilities. By perfecting the

fusion algorithms, related information can be aggregated for analysis leading to higher quality

information [203].

2.7 Conclusion

The emerging idea of CPS is made easier with the technological advancements in big data process-

ing and analysis. When combined with artificial intelligence, machine learning, and neuromorphic

computing techniques, CPS will bring about new applications, services and opportunities, all en-

visioned to be automated with little or no human intervention. This will help revolutionize the

“smart planet” concept, where smarter water management, smarter healthcare, smarter transporta-

tion, smarter energy, and smarter food will create a radical shift in our lives.
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Chapter 3

Energy Harvesting-Based D2D-Assisted

Machine-Type Communications

3.1 Introduction

Supporting massive numbers of machine-type communication (MTC) devices poses several chal-

lenges for future 5G networks including network control, scheduling, and powering these devices

as discussed in Chapter 1. A potential solution is to offload MTC traffic onto device-to-device

(D2D) communication links to better manage radio resources and reduce MTC devices’ energy

consumption. However, this approach requires D2D users to use their own limited energy to relay

MTC traffic, which may be undesirable.

This motivates us to exploit recent advancements in RF energy harvesting for powering D2D

relay transmissions. In this chapter, we consider a D2D communication as an underlay to the cel-

lular network, where D2D users access a fraction of the spectrum occupied by cellular users. This

underlay model presents a fundamental trade-off: to protect cellular users, the spectrum available

to D2D users needs to be reduced, which limits the number of D2D transmissions, but increases

the amount of time that D2D users can spend harvesting energy to support MTC traffic. We first

introduce the concept of spatial RF energy harvesting, where D2D users harvest RF power from

36



uplink cellular transmissions, if it exceeds a predesigned threshold, in a spatial region. Using tools

from stochastic geometry, we obtain a closed form expression for the probability of activating RF

power conversion circuit by making full use of spatial locations of ambient RF signals. Subse-

quently, we study the impact of RF energy harvesting region radius to harvest sufficient power on

the signal-to-interference (SIR) ratio of D2D network. Simulation results provide insights for the

required advancements to design highly efficient RF harvesting circuits.

Then, we characterize the spectral efficiency of MTC, D2D and cellular users using stochastic

geometry in order to determine the optimal spectrum partition factor that achieves fairness and

balance in the network, while increasing the average MTC spectral efficiency.

Table 3.1: List of Key Notations

Notation Definition

Φk
PPP with k = {B,U,D,C,M} for macro BSs, UEs, D2D users, cellular users,
and MTC devices respectively.

λk
Intensity of PPP with k = {B,U,D,C,M} for macro BSs, UEs, D2D users,
cellular users, and MTC devices, respectively.

RB Radius of a macrocell.

Pk
Transmit power with k = {D,C,M} for D2D users, cellular users, and MTC devices
respectively.

θk
Signal-to-interference-plus-noise ratio (SINR) target threshold with k = {D,C,M}
for D2D users, cellular users, and MTC devices respectively.

|B| Total number of available channels.
κ The spectrum partitioning factor, i.e., the fraction of spectrum available to D2D users.
γi, j SINR between node i and node j.
Rr Radius of relay assist region.
Nr Number of relay users in the assist region.
α Path-loss exponent of cellular, D2D and MTC transmissions.
ρ Transmission probability of D2D users.
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3.2 Fundamentals of Spatial RF Energy Harvesting for D2D

Cellular Networks

3.2.1 Introduction

D2D communications have recently grown in popularity due to their powerful benefits, many of

which have been validated in scientific literature. D2D communication allows users in close prox-

imity to communicate directly with each other bypassing the base station (BS). This helps offload

part of the organic cellular traffic to D2D networks, thereby improving spectral utilization, in-

creasing capacity, decreasing delay, improving cellular coverage, and increasing energy efficiency.

All these benefits make D2D communications especially suitable for social networking applica-

tions such as wireless video streaming, media sharing, etc. However, D2D communication brings

with it several challenges such as cross-tier interference from D2D transmissions, power control,

spectrum sharing, peer discovery, and a myriad of other challenges that, fortunately, are being

addressed by the scientific community.

Energy efficiency is one of the many challenges that arises as the world prepares to move to-

wards 5G. With high data rates, which are expected to be 1000x more than 4G, energy efficiency

will need to improve by about the same amount [32]. Energy harvesting will be one of the im-

portant areas that will help increase energy efficiency to maintain the power consumption. More

specific, energy harvesting from ambient RF signals will be among the forefront technologies to

power small devices. As a matter of fact, 3.5 mW harvested power was achieved at a distance of

0.6 meters and 1 uW at a distance of 11 meters using Powercast RF energy-harvester operating at

915 MHz [204]. Future advancements in RF circuitry will bring about more harvested power for

small low-power devices.

RF energy harvesting was considered in [205] for cognitive radio networks. An RF power

conversion circuit extracts DC power from the received RF signals. This RF power conversion

circuit is activated only when the received RF power in the RF energy harvesting zone around an
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access point (AP) is greater than a predesigned threshold, which depends on circuit sensitivity.

However, the authors in [205] did not characterize the probability of harvesting RF energy in terms

of the spatial locations of ambient RF signals. In addition, the impact of RF energy harvesting on

the network’s performance was not analyzed.

Similar to [205], in [206], an energy harvesting region was considered for relay users, where

they harvest ambient RF energy from access points in order to improve the communication reli-

ability of D2D users. By considering energy harvesting, the authors derived the distribution of

relays that increase the D2D transmission opportunities. Unlike our work, they did not charac-

terize the spatial energy harvesting rate and they did not consider the effects of spatio-temporal

correlated interference. Finally, in [207], an energy harvesting model for IoT devices that does

not require battery storage nor voltage converter was proposed. A test-bed implementation of the

harvesting system showed an 8% increase in the amount of harvested power and 60% increase in

device lifetime.

It should be noted that we are only considering energy harvesting for D2D users rather than

cellular users, since the former require much less power to communicate over short distances, es-

pecially with the short payload of MTC traffic; hence the current advancements in RF energy har-

vesting technology [208] can be very useful for D2D users. Moreover, emerging D2D applications

are usually data-hungry social networking applications such as wireless video streaming, media

sharing, etc [209]. These applications generally consume more energy, where the RF harvested

energy can offset some of the additional energy consumption of these applications.

In this section, we obtain a closed form expression of the probability of activating RF power

conversion circuit, and then we analyze, through simulations, several parameters such as cellular

users’ intensity, which impact the amount of harvested power. The results will help advance the

design of efficient RF energy harvesting circuits.

We assume that users cannot use the same channels for harvesting ambient RF energy and

transmitting information simultaneously, a valid assumption for small low-complex devices. Fur-

thermore, we only consider energy harvesting for D2D users, especially with the increasing energy
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demands of D2D social networking applications. We summarize the contributions of this section

as follows:

• First, to the best of our knowledge, this is the first work to analyze the impact of RF energy

harvesting region on the D2D network performance. Using tools from stochastic geometry,

we analytically characterize the probability of activating RF power conversion circuit by

making full use of spatial locations of cellular RF signals.

• Second, we carry out simulations to study the impact of RF energy harvesting zone radius,

the spectrum partition factor, the total number of channels, and the intensity of cellular users

on the D2D network performance.

• Third, our simulation results provide insights on the required RF harvesting radius to harvest

minimum required power for transmission. This provides the required advancements to

design highly efficient RF harvesting circuits.

The remainder of this Section is organized as follows. In Section 3.2.2, a system model for

D2D network underlaid with cellular network is presented. Section 3.2.4 introduces the RF energy

harvesting technology and model, while Section 3.2.5 presents the performance analysis of spatial

RF energy harvesting technique. Section 3.2.6 presents the simulations and analytical results.

Finally, conclusions are drawn in Section 3.2.7.

3.2.2 System Model

3.2.3 D2D Network Model

Fig. 3.1 shows an example of a hybrid network that consists of D2D and cellular user equipments

(UEs) with spatial RF energy harvesting. We consider an uplink cellular network, where D2D

users and cellular users (CU) share the licensed spectrum. By using an uplink channel, the D2D

transmitters experience less interference when compared to using the downlink, due to the lower
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Figure 3.1: A realization of a hybrid network consisting of D2D and cellular links with spatial RF
energy harvesting with the circles representing the RF energy harvesting zones.

transmit power of cellular users when compared to that of the BS. Considering the in-band un-

derlay system model, D2D transmitters randomly access the spectrum that may be occupied by

cellular users. Compared to overlay model where D2D users and cellular users use orthogonal

in-band spectrum, the underlay model can achieve higher throughput since the spectrum is more

efficiently reused [1] (see Fig. 3.2). The locations of the macro BSs are modeled by a homogeneous

Poisson point process (PPP), ΦB with intensity λB. Let Ac(k,RB) denotes the coverage region of

a macrocell, approximated by a disk with radius RB = (πλB)
−1/2 centered at a generic BS k. The

circle approximation can help simplify the problem formulation by reducing the number of vari-

ables that are needed to represent the system while having a comparable performance to the spatial

locations in the entire plane [210]. UEs are uniformly distributed in the coverage region of the

corresponding BS and form a homogeneous PPP, ΦU with intensity λU [211].

Types of Nodes: We differentiate between two different types of nodes δi with i = D,C, for

D2D user and cellular user, respectively.

• D2D user: Here, a D2D user can either be a D2D transmitter or a D2D receiver. The UEs in
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Figure 3.2: Different D2D spectrum sharing scenarios [1].

D2D mode form a thinning PPP ΦD from ΦU , with intensity λD = P (δi = δD)λU . A UE

i is in D2D mode if the end-to-end signal-to-interference-plus-noise (SINR) ratio between

transmitter and receiver is greater than θD.

• Cellular user: The UEs in cellular mode form a thinning PPP ΦC from ΦU , with intensity

λC = P (δi = δC)λU . Note that ΦU = ΦC∪ΦD, and ΦD∩ΦC = /0.

We assume that each D2D receiver is uniformly distributed with probability density function

(PDF) [212]:

fD(r) =
2r
µ2 , 0≤ r ≤ µ, (3.1)

where µ is the maximum allowable distance between a D2D pair. In this chapter, we assume that all

users use constant transmit powers, and we leave channel inversion power control for Chapter 4.

Denoting by |B|1 the number of channels; D2D transmitters can access κ|B| of them randomly,

where κ ∈ [0,1] measures the fraction of spectrum available to D2D users [1]. The D2D transmit

power PD is split among the κ|B| subchannels as P̂D = (1/(κ|B|))PD.

Let us denote the channel SINR between nodes i and j by γi, j. Accordingly, the probability

that a source node s is in D2D mode is given by: P(δs = δD) = P
(
γs,d ≥ θD

)
, with γs,d denoting

the channel SINR between source node s and destination node d. If a source node s cannot be in

D2D mode, then it becomes a cellular node, such that P (δs = δC) = 1−P (δs = δD).
1|.| denotes the set cardinality.
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The distance between any two nodes i and j is denoted by ‖i− j‖. We assume that the power of

the signal transmitted by UEs decays at a rate of l(i, j) = ‖i− j‖−α , where α > 2 is the path-loss

exponent of both cellular and D2D transmitters. Rayleigh fading with mean one is used to model

the small-scale fading over each channel, with hi, j denoting the channel coefficient between nodes

i and j.

Let ρ be the probability that a BS assigns any κ|B| channels to serve its users. Then ρ is given

by [213]:

ρ = 1−
(1−κ)|B|

∑
n=0

P(Nu = n), (3.2)

where Nu is the number of users associated to a BS, and P(Nu = n) is given in [Eq. (6) in [213]].

Then, Φ̃C is a point process representing the set of CUs not using κ|B| subchannels with intensity

λ̃C = (1−ρ)λC. Note that Φ̃C is not a PPP due to the correlation among uplink CUs, where each

CU is assigned a unique channel by the BS. However this dependency is weak and can be ignored

as shown in [214, 211] in order to provide a tractable analysis.

3.2.4 Spatial RF Energy Harvesting

3.2.4.1 RF Energy Harvesting Technology

In RF energy harvesting, radio signals with frequencies ranging from 3 kHz to 300 GHz can be

used as a medium to carry energy in the form of electromagnetic radiation. The received signal

strength of an RF transmission decays at a rate that is inversely proportional to the distance between

the transmitter and receiver, specifically at 20 dB per decade of the distance [215]. Thus, RF energy

harvesting depends on three main factors: the transmit power of the energy source, the distance

between the RF energy source and the harvesting node, and the wavelength of the RF signals [216].

In the context of energy harvesting, RF sources can be classified into two categories: dedicated

RF sources and ambient RF sources. Dedicated RF sources use license-free ISM frequency bands

to provide energy to nodes when a more predictable energy supply is needed. The downside of

dedicated RF sources is that they can incur a high cost for deployment in the network, and their
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power can be limited by federal regulations due to health and safety concerns about RF radiation.

For example, in the 900 MHz frequency band, the maximum allowable transmission power is 4 W,

which gets attenuated to 10 uW at a moderate distance of 20 m [215].

On the other hand, ambient RF sources provide “free” energy because they are not intended

specifically for RF energy transfer. The transmit power can vary from 106 W for TV towers to

around 0.1 W for mobile communication devices and WiFi systems [215]. As a matter of fact,

an antenna of 300 mm × 300 mm was used to power embedded sensors from ambient digital

TV signals, where the net harvested RF energy reached 126.2 uW [217]. Furthermore, in a re-

cent breakthrough, Drayson Technologies has developed a new RF energy harvesting technology

called “Freevolt” which harvests energy from wireless data and broadcast networks. The expected

harvested RF power achieved was 100 uW at an RF power density of 40 uW/cm2 using a patch

antenna. This would be very useful for D2D users and MTC devices since they operate at lower

power than cellular users. More details on this technology can be found in [208].

Although RF energy harvesting has the least energy intensity compared to other energy har-

vesting sources, it has several desirable properties. In particular, it does not depend on the weather

or geographical region (unlike solar and wind energy); it can be used in any location that has a high

incidence of strong ambient RF waves; and it can drive more than one device at the same time. In

this paper, we assume that D2D transmitters harvest energy from ambient interference caused by

uplink cellular transmissions.

3.2.4.2 Spatial RF Energy Harvesting Model

Each D2D UE is equipped with an RF power conversion circuit that extracts DC power from

the received electromagnetic waves [218]. Because the RF circuit has sensitivity requirements, it

requires an input power larger than a predesigned threshold in order to activate it [205]. Thus, we

define an RF energy harvesting zone as a disk with radius Rh centered at each D2D user x ∈ ΦD,

denoted as Ah(xi,Rh) as shown in Fig. 3.1, where xi is the spatial location of D2D user i. The

amount of harvested RF power depends greatly on the number of cellular interferers inside the RF
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harvesting zone, and thus on the harvesting radius Rh. Due to their low transmit power, we neglect

the power harvested from other D2D transmitters. This motivates us to introduce the concept

of Spatial RF Energy Harvesting for D2D cellular networks, where the received power inside the

spatial region Ah allows the D2D user to harvest RF power. In what follows, We characterize the

probability of activating RF circuit.

Assume the D2D transmitter is located at the origin, we are interested in a state S , where there

is at least one cellular transmitter inside Ah in order to harvest RF power from. It is important

to note that we are only interested in cellular transmitters that are not using κ|B| subchannels,

since D2D users cannot use κ|B| subchannels for harvesting energy and transmitting information

simultaneously to simplify the system operation and analysis. That is, when a cellular transmitter

and a D2D transmitter are using the same channel, the latter cannot harvest energy. We define state

S as:

S : y[n] = ∑
i∈φ̃C∩Ah

Φ̃C∩Ah 6= /0

(PChi,0l(i,0)) [n]+ z[n],
(3.3)

where n= 0,1, ...,N−1 is the sample index with N being the total number of samples; (PChi,0l(i,0)) [n]

is the nth sample of the received signal from cellular transmitter i by a typical D2D user; z[n] is

the Gaussian noise (z[n] ∼N (0,σ2
n )); and φ̃C is a realization of Φ̃C denoting the set of cellular

transmitters’ locations. Each D2D user tests the average received power using the test statistics ξ ,

which is expressed as ξ = 1/N ∑
N−1
n=0 y[n]. Let ε denotes the energy harvesting threshold to activate

the RF power conversion circuit. Denote the probability of activating RF power conversion circuit

as pt =P {ξ > ε|S }. When N is large, by central limit theorem, the distribution of ξ approaches

Gaussian distribution. Thus, we can characterize the mean and variance of ξ under S as [219]:

E(ξ ) = ∑
i∈φ̃C,|Ah|>0

PChi,0l(i,0) = IRF,

Var(ξ ) =
1

N2

(
IRF +σ

2
n
)
,

(3.4)
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where |Ah| denotes the number of cellular transmitters inside the RF harvesting zone. As can be

seen in Eq. (3.4), the random variable IRF depends on the spatial distribution of cellular users.

Because the amount of harvested RF power in the harvesting zone depends heavily on IRF (and

thus on state S ), we can express the probability of activating RF power conversion circuit pt as:

pt =

ˆ
∞

0
fIRF(x)P (ξ > ε|S , IRF)dx, (3.5)

where fIRF(x) is the PDF of IRF; and P (ξ > ε|S , IRF) = Q
(

N(ε−x)√
x+σ2

n

)
, where Q-function is the

tail probability of the standard normal distribution.

3.2.5 Performance of Spatial RF Energy Harvesting

In this section, we obtain an expression for fIRF(x) in order to characterize pt . The following lemma

provides an expression of the Laplace transform of IRF using stochastic geometry tools.

Lemma 1.

LIRF(s) =
exp
(
−2λ̃Cπ2(s)2/α P2/α

C
α sin(2π/α)

)
−LI0(s)e

−λ̃CπR2
h

1− e−λ̃CπR2
h

,
(3.6)

where LI0(s) = exp
(
− 2πλBPCs

(α−2)Rα−2
h

2F1

(
1,1− 2

α
;2− 2

α
;− sPC

Rα
h

))
;

2F1 (a,b;c,z) = Γ(c)
Γ(b)Γ(c−b)

´ 1
0 tb−1(1− t)c−b−1(1− tz)−adt is the hypergeometric function.

Proof : See Appendix 8.1.

As can be seen from Lemma 1, the distribution of IRF depends on RF energy harvesting zone

radius Rh. For the special case of α = 4, the Laplace transforms of IRF becomes:

LIRF(s) =
exp
(
− λ̃Cπ2√sPC

2

)
−LI0(s)e

−λ̃CπR2
h

1− e−λ̃CπR2
h

, (3.7)
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with

LI0(s) = exp
(
−R−2

B

√
sPC arctan

(√
sPC

R2
h

))
. (3.8)

The following lemma provides an expression for the PDF of IRF for α = 4 using the inverse

Laplace transform.

Lemma 2.

fIRF(x) =
L −1

(
e−

π2λ̃C
2
√

sPC

)
− e−λ̃CπR2

hL −1 (LI0(s))

1− e−λ̃CπR2
h

=
π3/2√PCλ̃C

4
(

1− e−λ̃CπR2
h

)x−3/2 exp

(
−

π4λ̃ 2
CPC

16x

)
− e−λ̃CπR2

h

1− e−λ̃CπR2
h

fI0(x),

(3.9)

with the PDF of I0 can be accurately approximated as an inverse Gaussian distribution [220] as:

fI0(x)≈
√

ϑ

2πx3 exp
(
−ϑ(x−υ)2

2υ2x

)
, where ϑ = (3PC)/(2R2

BP2
C) and υ = PC/(R2

hR2
B).

Theorem 1. The probability of activating the RF power conversion circuit, when the path loss

exponent α = 4:

pt =
π3/2√PCλ̃C

4
(

1− e−λ̃CπR2
h

) ˆ ∞

0
Q

(
N(ε− x)√

x+σ2
n

)
x−3/2e−

π4λ̃2
CPC

16x dx

− e−λ̃CπR2
h

1− e−λ̃CπR2
h

ˆ
∞

0
Q

(
N(ε− x)√

x+σ2
n

)
fI0(x)dx.

(3.10)

Proof : The result is obtained by substituting (3.9) into (3.5).

Remarks: It is interesting to note that the expression of pt takes into account not only the

energy harvesting threshold ε , but also the network density, noise power and the RF harvesting

zone radius Rh. In what follows we demonstrate the impact of the RF harvesting radius Rh on the

amount of harvested RF power. Remember that Rh is determined by the energy harvesting circuit

sensitivity for a given received power. When the RF harvesting zone is small (Rh → 0) due to
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low energy harvesting circuit sensitivity, pt → 1 (remember that pt is conditioned on having at

least one cellular transmitter inside Ah). This is explained by the fact that if there is at least one

cellular transmitter inside a very small Ah, then the received interference power from the cellular

transmitter to D2D user will be large enough to activate the RF power conversion circuit. However,

as Rh→ ∞, we can express p∞
t as:

p∞
t =

π3/2√PCλ̃C

4

ˆ
∞

0
Q

(
N(ε− x)√

x+σ2
n

)
x−3/2e−

π4λ̃2
CPC

16x dx. (3.11)

Let Preq = P̂D denotes the minimum required transmit power for D2D users. Then, the probability

ph of harvesting at least Preq is given by Eq. (3.10) with ε = Preq.

3.2.6 Simulation Results and Analysis

In this section, we present Monte Carlo simulation and analytical results to analyze the spatial RF

energy harvesting model for D2D cellular networks. Unless otherwise stated, we set the following

system parameters: RB = 788 m (which corresponds of an inter-BS distance of 1500 meters), N =
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5000, PC = 200 mW, P̂D = 2 mW, µ = 90 m, α = 4, λB = 1/
(
πR2

B
)
, λU = 10λB and |B| = 10.

Fig. 3.3 shows the probability of activating RF power conversion circuit, pt , in terms of the

energy harvesting zone, Rh, for several values of the spectrum partition factor, κ , for comparison.

First, as Rh increases, pt decreases as explained by the remarks of Theorem 1. What is inter-

esting to see is that as κ increases, more D2D transmitters are accessing the spectrum, which in

turn decreases the intensity of cellular users not using κ|B| subchannels, λ̃C, thereby reducing the

probability of harvesting RF power.

Fig. 3.4 depicts the behavior of pt in terms of the total number of available channels |B|, for

several values of κ . As |B| increases, so does pt . This can be explained by the fact that with

more available channels, more cellular transmissions occur, which means D2D users can harvest

more RF energy. Furthermore, we note that beyond |B| = 15, not much improvement in terms of

pt is seen, and that is due to the increased interference from cellular users to D2D users which is

compensated by an increase in lifetime of D2D users. We can see that as κ increases, pt decreases.

3.2.7 Conclusions

In this section, we analytically characterized the probability of activating RF energy harvesting

circuit for D2D users by making full use of spatial locations of cellular transmitters. Results

have revealed insights on designing highly efficient RF energy harvesting circuits by analyzing

the impact of the RF harvesting zone radius, the spectrum partition factor, the total number of

channels, and the intensity of cellular users on the D2D network performance.

3.3 D2D-Assisted Machine-Type Communications

Now that we have derived and analyzed the spatial RF energy harvesting for D2D users, we will

use it to somehow offset the costs of D2D relays using their own limited energy to forward data

for MTC devices.

When combining the spectrum partition factor with D2D-assisted MTC communication based
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on RF energy harvesting, we face a fundamental trade-off: reducing the spectrum partition factor

to protect cellular users from underlaid D2D transmissions reduces the probability that UEs oper-

ate in D2D mode [1], but increases the amount of time that UEs can spend harvesting energy to

support relaying MTC traffic. Therefore, the spectrum partition factor should be set small enough

to simultaneously manage interference to cellular users and to ensure that UEs harvest sufficient

energy for relaying, but not so small that too few UEs operate in D2D mode to realize the ben-

efits of D2D-assisted MTC communication. The objective of this paper is to study this trade-off

analytically using tools from stochastic geometry.

We summarize the contributions of this section as follows:

• First, to the best of our knowledge, this is the first work to analyze the spectral efficiency

of energy-harvesting based D2D-assisted MTC communication by taking into consideration

the correlation in the interference at D2D relay and destination nodes. This provides a more

accurate characterization of system performance than existing work [221]. Furthermore, this

is the first work to analyze the impact of RF energy harvesting on the spectral efficiency

of MTC, D2D and cellular networks. Using tools from stochastic geometry, we obtain an

analytical expression of the expected RF energy harvesting rate by making full use of spa-

tial locations of cellular transmitters. Then, we obtain the average energy utilization rate by

defining a transmission region for a D2D user. Finally, we characterize the average trans-

mission probability of a D2D transmitter in terms of the expected energy harvesting rate and

the average energy utilization rate.

• Second, we provide a tractable analytical framework for statistical analysis of D2D-assisted

MTC communications underlaying cellular networks by characterizing the spectral effi-

ciency of MTC, D2D and cellular networks.

• Third, the analytical framework allows us to highlight the gains achieved by offloading MTC

traffic on D2D links, when compared to a system without any assistance from D2D commu-

nications. This would be extremely useful in future 5G networks where the support of mas-
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sive MTC devices is important. In addition, our simulation results provide insights on the

trade-off between increasing D2D transmission probability by harvesting more RF energy

and the cellular spectral efficiency.

The remainder of this section is organized as follows. In Section 3.3.1, a system model for a

D2D-assisted MTC network underlaid with a cellular network is presented. Section 3.3.2 charac-

terizes the expected RF energy harvesting rate, the energy utilization rate as well as the transmis-

sion probability of a D2D user. Section 3.3.3 presents the spectral efficiency analysis of cellular,

D2D and MTC networks. Section 3.3.4 presents the simulations and analytical results. Finally,

conclusions are drawn in Section 3.3.5.

3.3.1 D2D-Assisted MTC System Model

Figure 3.5: An example of a hybrid network with D2D-assisted MTC and cellular links with RF
energy harvesting.

Fig. 3.5 shows an example of a hybrid network that consists of cellular transmissions, D2D

transmissions, and D2D relaying with RF energy harvesting, along with MTC devices (smart sen-

sors, actuators, meters, etc.) grouped into clusters. Again, we consider D2D communication as
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an underlay to the uplink cellular network, such that D2D users and cellular users (CU) share the

licensed uplink spectrum, while MTC devices use orthogonal spectrum resources. In this section,

we consider both conventional D2D transmissions between two UEs and relaying D2D transmis-

sions for MTC traffic. Different MTC applications have different data traffic characteristics. For

instance, smart metering applications are characterized by low rate, infrequent and small data

transmission, whereas surveillance applications are characterized by high rate, frequent and large

blocks data transmission. This makes it essential to group MTC devices into clusters based on their

common features, functionality and applications to make their operation and management easier

for the operator. Cluster members send their data to a cluster head (CH), which collects all the data

in a single packet and transmits it to the BS either directly or through a nearby D2D user. Offload-

ing MTC on D2D links provides an efficient way to use radio resources, in addition to reducing the

transmission power due to using intra-cluster communications and short range D2D links [222].

We re-denote A (k,RB) as the coverage region of a macrocell, approximated by a disk with radius

RB centered at a generic BS k [211]. In what follows, we refer to cellular and D2D users as UEs.

UEs are modeled by an independent HPPP, ΦU, with intensity λU, while MTC devices are modeled

by an independent HPPP, ΦM, with intensity λM.

Mode selection: Two operational modes are suggested for UEs: 1) cellular mode and 2) poten-

tial D2D mode. A potential D2D user is a user with D2D traffic which can either use the cellular or

the D2D mode for communications based on one or a combination of different selection criteria.

This means that a potential D2D user can switch between D2D and conventional cellular com-

munications. In this paper, we use signal-to-interference-plus-noise ratio (SINR) threshold-based

mode selection and we conduct our analysis on a fixed topology that remains the same for long

period of time before changing (semi-static model), since the mode selection depends on the traffic

generated in the network, which is very challenging and costly to obtain [1]. In what follows, we

assume that mode selection has already been completed and thus we define the two different types

of UEs in the network. Furthermore, we assume that MTC clustering has already been performed
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and we proceed with the performance analysis2.

In this work, we assume that D2D users are willing to act as relays for MTC traffic as long

as they have harvested enough energy to cover the cost of relaying. Thus, relays rely on “free”

harvested energy when assisting MTC devices, rather than their own energy reserves. While this

effectively “compensates” users for serving as relays, it does not necessarily provide users incen-

tives to relay. For example, a selfish user would still prefer to keep the harvested energy for herself,

rather than use it to relay data for MTC. We note that providing incentives to prevent this type of

selfish behavior is out of the scope of this paper; however, in our prior work, we have investigated

this problem for relay-assisted base station-to-device (B2D) communication (see [224]). Further-

more, we assume that D2D users are trustworthy to relay MTC traffic; however in reality that

might not be true since D2D users can be malicious or dishonest. This means that D2D users

might attempt to modify MTC packets or decide not to transmit them for selfish purposes such

as conserving their battery energy. Note that in [225], the authors have investigated this topic by

proposing a secure multi-hop device-to-device communication protocol to transport IoT traffic to

the corresponding servers over the Internet where D2D users share secret keys to enable secure

data forwarding. Note that D2D links are not just used for relaying MTC traffic, but they are also

used in the conventional context to allow two UEs to communicate directly with each other.

In addition to D2D user and cellular user, we define an MTC device as follows:

MTC device: MTC CH (MTCCH) can use two different modes for transmission of the col-

lected packet from its cluster members as follows:

• D2D-assisted MTC mode: There is a D2D relay available in the vicinity of the MTCCH, and

the end-to-end SINR using a D2D relay is greater than a target threshold θM.

• Direct MTC mode: There is no available D2D relay to provide services to the MTCCH;

however the end-to-end SINR ratio of the direct link between MTCCH and the BS is greater

than θM. Note that if this condition holds and there are available D2D relays, then by default,

the CH will choose to go through the relay to save energy.
2Clustering schemes for MTC have been thoroughly studied in the literature such as [223].
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Fig. 3.6 shows the topology of a D2D-assisted MTC link. We assume that distance DY between

the MTCCH and the BS is uniformly distributed with probability density function (PDF):

fDY (dy) =
2dy

µ2
m
, 0≤ dy ≤ µm, (3.12)

where µm is the maximum allowable distance between an MTCCH and the BS. We define an assist

region for an MTCCH i located at xi as Ar(xi,Rr), which is a disk centered around the MTCCH i

with a radius Rr. The MTCCH selects the closest D2D relay in Ar(xi,Rr). Therefore, the relays

are randomly and independently located inside this disk with isotropic direction and Rayleigh

distributed distance with PDF:

fDX (dx) =
2πλD

1− e−πλDR2
r
dxe−λDπd2

x , 0≤ dx ≤ Rr. (3.13)

Figure 3.6: The topology of a D2D-assisted MTC link.

Furthermore, we assume that φ , the angle between the D2D relay, MTCCH, and the BS, is

uniformly distributed between [−π/2,π/2], ( fΦ(φ) = 1/π). By the law of cosines, we have:

DZ =
√

D2
X +D2

Y −2DX DY cosφ . The following lemma provides an expression for the distribution

function of DZ .

Lemma 3.

fDZ(dz) =
2dz

πµ2
m
, 0≤ dz ≤

√
πµm (3.14)

Proof : See Appendix 8.2.
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Let us denote the channel SINR between nodes i and j by γi, j. We define the number of all

D2D relay users located in the assist region of an MTCCH located at xi as Nr = |x j ∈ ΦD,x j 6=

xi| ∩Ar(xi,Rr). Nr is a Poisson random variable with mean πR2
r λD. It should be noted that Nr is

not a function of relay users’ locations x j. Thus, the probability that the MTCCH i cannot find

any potential D2D relay within the assist region can be obtained as [205]: P (Nr = 0) = e−πR2
r λD .

Consequently, the probability that the MTCCH i can find at least one potential D2D relay is ex-

pressed as P (Nr ≥ 1) = 1−P (Nr = 0) = 1− e−πR2
r λD . In this paper, we assume that one D2D

relay is able to support multiple MTCCHs, provided that it is within the assisting region of multi-

ple MTCCHs. Although it is possible that one MTCCH can use multiple relays, for simplicity, we

assume that each MTCCH can only have one D2D relay. This assumption reduces the overheads

associated with relay association.

The aggregate interference at a typical D2D user is the interference from cellular transmitters

and other D2D transmitters:

Itot,D = ∑
k∈ΦC

PChk0l(k,0)+ ∑
k∈Φ̃D\0

P̂Dhk0l(k,0), (3.15)

where Φ̃D is a PPP representing the set of effective D2D transmitters with intensity λ̃D = κρλD;

and ρ is the transmission probability of a D2D user derived in Section 3.3.2.

Lemma 4. The Laplace transform of Itot,D can be characterized as

LItot,D(s) = exp

(
−λCπP2/α

C − λ̃DπP̂2/α

D

sinc( 2
α
)

s2/α

)
. (3.16)

Theorem 2. In interference-limited network (σ2 = 0) and for a generic path-loss exponent α , the

probability that a typical UE i is in D2D mode can be expressed as

q = P (γi,0 ≥ θD) =
1− e−µ2

d (a2+a3)

(a2 +a3)µ2
d

(3.17)
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where a2 =

((
πλCθ

2
α

D

)
/
(
sinc( 2

α
)
))

P
2
α

C P̂
− 2

α

D ; a3 = (πλ̃Dθ
2
α

D )/(sinc( 2
α
)); and µd is the maximum

allowable distance between a D2D pair3.

Proof. Since h0 ∼ exp(1), then P (h0 ≥ x) = e−x, then we can write the following:

P (γi,0 ≥ θD) = P
(
h0 ≥ θDl(s,0)−1P̂−1

D (Itot,D +σ
2)
)

= E
[
exp
(
−θDl(s,0)−1P̂−1

D (Itot,D +σ
2)]

(a)
= EX

[
exp
(
−a1X−a2X2/α −a3X2/α

)]
(b)
=

ˆ
µd

0
exp
(
−(a2 +a3)r2) 2r

µ2
d

dr

=
1− e−µ2

d (a2+a3)

(a2 +a3)µ2
d

,

where in (a), X = ‖i− j‖α , a1 = σ2θDP̂−1
D ; and (b) comes from the fact of ignoring the noise

σ2 = 0 and using the uniform distribution PDF between a D2D pair with maximum allowable

distance of µd (similar to Eq.(3.12)).

Note that from Eq. (3.17), as µd→ 0, q→ 1; and as µd→∞, q→ 0. If a typical UE i cannot be

in D2D mode, then it becomes a cellular user, such that P (δi = δC) = 1−q = 1−P (δi = δD).

3.3.2 Transmission Probability of a D2D User

Similar to Section 3.2.4, we obtain the expected RF energy harvesting rate for a D2D user; however

this time we do not limit the harvesting region to a specific region, but rather we extend it to the

whole space. That is said, we obtain the expected RF energy harvesting rate as in the following

theorem.

Theorem 3. The expected RF energy harvesting rate, when the path loss exponent α = 4, is ex-

3Throughout the paper, we use the notation f−1 to denote the inverse of f .
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pressed as

η =
π3/2υe

√
PCλ̃CλD

4

ˆ
∞

0
Q

(
−Nx√
x+σ2

n

)
x−3/2e−

π4λ̃2
CPC

16x dx. (3.18)

The energy utilization rate υ is defined as the number of units of energy required per second

by a D2D user [226].

Theorem 4. The energy utilization rate can be expressed as

υ = κλD exp

(
−λDπ

(
P̂D

ε

)2/α

Γ

(
1+

2
α

))
. (3.19)

Proof. Without loss of generality, the transmission region R0(ε) ⊂ R2 around a typical D2D user

is random and defined as the range within which other nodes can receive its signal with a power

above a decoding threshold ε . This allows a receiver to satisfy a minimum SINR so that the two

nodes are connected [227]. We define the transmission region as [213]:

R0(ε) =
{

x ∈ R2 : P̂Dl(x,0)hx0 > ε
}

=

{
x ∈ R2 : ‖x‖< µd,µd =

(
P̂Dhx0

ε

)1/α
}
,

(3.20)

where ε is the minimum power level required to be successfully heard (may or may not decode

successfully). The area of the transmission region is defined as [226]:

|R0(ε)|=
ˆ

R2
Πy∈ΦD1(P̂Dl(y,0)hy0 > ε)dx, (3.21)

where the indicator function 1(A) for event A is equal to one if A occurs or else is zero. The average
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transmission area is:

E[|Ry(ε)|] = EE0
ΦD

[|R0(ε)|] = EEΦD[|R0(ε)|]

= Eh

ˆ
R2

EΦDΠy∈ΦD1(P̂D‖x‖−αh0 > ε)dx

= Eh

ˆ
R2

e−λD1(P̂D‖x‖−α h0)>εdx

= Eh

ˆ
R2

e−λD1(‖x‖<µd)dx

= Eh

(
e−λDπµ2

d

)
= e−λDπEh[µ

2
d ]

(a)
= exp

(
−λDπ

(
P̂D

ε

)2/α

Γ

(
1+

2
α

))
,

(3.22)

where (a) comes from the fact that: Eh[µ
2
d ] = Eh

[
( P̂Dh0

ε
)

2
α

]
= ( P̂D

ε
)

2
α Eh(h

2
α

0 ), and Eh[hm
x ] = Γ(1+

m). The energy utilization rate is expressed as: υ = κλDE[|Ry(ε)|]. Substituting in Eq. (3.22)

completes the proof.

Let St,k denote the battery level at time t for D2D user k. The dynamics of the battery level

can be captured as: St,k = min
{

St−1,k +η−υ1
(
St−1,k ≥ υ

)
,G
}

, where G is the battery capacity,

which we assume is identical for all users. We define the transmission probability ρ of a D2D user

as [228]:

ρ = lim
n→∞

1
n

n

∑
t=1

E
[
1
(
St,k ≥ υ

)]
. (3.23)

Assuming infinite battery capacity4 and a saturated buffer model (i.e., D2D users always have

traffic to send), and using calculations in [228], we can express the transmission probability of

D2D user as

ρ = min
(

1,
η

υ

)
(3.24)

4The limit of exceeding the battery capacity is negligible when the capacity is much larger than the average stored
energy. Thus, the infinite battery capacity assumption can be regarded as an approximation.
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3.3.3 Spectral Efficiency Analysis

In this section, we characterize the spectral efficiency of cellular, D2D and MTC links in both

direct and relay modes by calculating E [log(1+SINR)] in each of these cases. For the D2D-

assisted MTC mode, instead of assuming that the transmissions in the first and second time slots

are independent, we introduce the temporal and spatial correlation in order to make the analysis

more realistic and practical.

3.3.3.1 Cellular Spectral Efficiency Analysis

Similar to [1], we adopt the spatial Aloha access scheme for MTC devices, where the device

transmits with probability ϖ in each time slot and refrains from transmission with probability

1−ϖ . Thus, the effective cochannel MTC interferers form a thinning HPPP Φ̃M from ΦM with

intensity λ̃M = ϖλM. Without loss of generality, the aggregate interference at a typical BS comes

from cellular transmitters in other cells; D2D transmitters and MTC devices in all cells. It is

expressed as

IBS = ∑
k∈ΦC∩A c

PChk0l(k,0)+ ∑
k∈Φ̃D

P̂Dhk0l(k,0)+ ∑
k∈Φ̃M

PMhk0l(k,0). (3.25)

Lemma 5. The Laplace transform of IBS is characterized as

LIBS(s) = exp

(
−λ̃DP̂2/α

D − λ̃MP2/α

M

sinc( 2
α
)

πs2/α

)

· exp

(
−2πλBPCs
(α−2)Rα−2

B
2F1

(
1,1− 2

α
;2− 2

α
;−sPC

Rα
B

))
.

(3.26)

Proof : Similar calculations to Appendix 8.1.

From (3.26), increasing PC, PM or P̂D increases the amount of interference at the BS, with

PC having the greatest impact due to the larger transmit power when compared to D2D or MTC

devices. Furthermore, increasing λ̃D or λ̃M can negatively impact the cellular spectral efficiency.
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That is why it is important to carefully design κ to protect cellular transmissions, without nega-

tively impacting D2D and MTC spectral efficiency.

Theorem 5. In an interference-limited network (σ2 = 0) and for α = 4, we have

P (γ0 ≥ θC) =
2

R2
B

RBˆ

0

exp
(
−b2r2−b3r2 tan−1 (b3r2))rdr,

where b2 = (1/2)π2
(

λ̃DP̂1/2
D + λ̃MP1/2

M

)
P−1/2

C θ
1/2
C ; and b3 = R−2

B θ
1/2
C .

Proof. We use similar calculation steps as in Theorem 2, with the assumption of CUs being uni-

formly distributed within a fixed region [229].

From Theorem 5, it can be seen that increasing D2D and MTC intensities decreases the cellular

coverage probability.

Theorem 6. The spatially averaged spectral efficiency of the cellular transmitters, RC, can be

characterized as

RC =
343
√

7λ
7/2
B

20
√

2λC

[(
7λB

2

)−5/2

−
(

7λB

2
+λC

)−5/2
]
·

ˆ
r>0

2πrλBe−πλBr2
ˆ

t>0
e−σ2

n rα (2t−1)LIBS

(
rα
(
2t−1

))
dtdr,

(3.27)

Proof : See Appendix 8.3.

Remarks: From (3.27), we note that the intensity of cellular transmitters, λC, is only included

in the denominator of the non-integral term of RC. Thus, as λC increases, RC decreases.

3.3.3.2 D2D Spectral Efficiency Analysis

Theorem 7. Using similar calculation steps as in Appendix 8.3, we can express the spatially

averaged spectral efficiency of the D2D links, RD, as

Rd
D =

ˆ
µd

0

2κρdy

µ2
d

ˆ
∞

0
e−σ2

n dα
y (2

t−1)LItot,D

(
dα

y
(
2t−1

))
dtddy.
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3.3.3.3 MTC Spectral Efficiency Analysis

Direct MTC Link

The following theorem provides an expression for the average SIR probability at a typical BS

for the direct MTC link.

Theorem 8. In interference-limited network (σ2 = 0) and for path-loss exponent α = 4, we have

P (γi,0 ≥ θM) =
2r
µ2

m

µmˆ

0

exp
(
−c2r2− c3r2 tan−1 (c3r2))rdr, (3.28)

where c2 = (1/2)π2
(

λ̃DP̂1/2
D + λ̃MP1/2

M

)
P−1/2

M θ
1/2
M ; and c3 = R−2

B θ
1/2
M P−1/2

M P1/2
C .

Proof: Similar derivation steps as in Theorem 2.

Theorem 9. The spatially averaged spectral efficiency of the direct MTC links, Rd
M, can be char-

acterized as

Rd
M =

ˆ
µm

0

2ϖdy

µ2
m

ˆ
t>0

e−σ2
n dα

y (2
t−1)LIBS

(
dα

y
(
2t−1

))
dtddy, (3.29)

D2D-assisted MTC Link

Cooperation introduces a correlation in the aggregate interference due to receivers being closely

located to each other, thereby affecting the system performance and rendering the analysis much

more complex [230]. In this section, we derive the average SIR of the MTC relay link under

correlated interference, where the interference at the relay and at the BS originate from the same

set of interferers [231] (see Fig. 3.5).

We shall ignore the noise (σ2 = 0) and proceed with the calculations for interference-limited

networks. Let us first consider the case when there is a single D2D relay available in the assist

region. Later, we will extend the result to when multiple D2D relays exist within the transmitter’s

assist region.
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We consider that both source node s and relay node r work in time division duplex (TDD) mode,

i.e., only one node transmits at any time in the two-hop relay link. The aggregated interference at

the relay node r during time slot t:

It
r = ∑

j∈Φt
C∩A

PCh jrl( j,r)+ ∑
j∈Φt

C∩A c

PCh jrl( j,r)+ ∑
j∈Φ̃t

D\{s}
P̂Dh jrl( j,r).

Similarly, the aggregated interference at destination node d is:

It
d = ∑

j∈Φt
C∩A c

PCh jdl( j,d)+ ∑
j∈Φ̃t

D\{s}
P̂Dh jdl( j,d)+ ∑

j∈Φ̃t
M\{s}

PMh jdl( j,d).

Then, the channel SIR between the source and relay is given by γs,r = PMhsrl(s,r)/It
r, while the

channel SIR between the relay and destination is given by γr,d = P̂Dhrdl(r,d)/It
d . The following

theorem provides an expression for the average SIR probability P
(
γs,r ≥ θM∩ γr,d ≥ θM

)
.

Theorem 10. In interference-limited network (σ2 = 0) and for generic path-loss exponent α , we

have

P
(
γs,r ≥ θM∩ γr,d ≥ θM

)
≈ exp

(
−λC

ˆ
∞

RB

1− 1
B1(x)B2(x)

dx
)

· exp
(
−λC

ˆ RB

0
1− 1

B2(x)
dx
)

exp
(
−λ̃M

ˆ
∞

0
1− 1

B1(x)
dx
)

· exp
(
−λ̃D

ˆ
∞

0
1− 1

B1(x)B2(x)
dx
)
,

(3.30)

where B1(x) ≈ 1+
(
θMl(x,d)P̂−1

D
)2/α

4πµ2/9; B2(x) ≈ 1+
(
θMl(x,r)P−1

M
)2/α

E[‖s− r‖]2; and

E[‖s− r‖] is given in Eq. (8.6).

Proof : See Appendix 8.4.

Extending the above to when multiple D2D relays exist in the assist region of the MTC CH,

we obtain the same as Eq. (3.30), but with B2(x)≈∏
Nr
n=1

(
1+
(
θMl(x,n)P−1

M
)2/α

E[‖s− r‖]2
)

.

Theorem 11. The spatially averaged spectral efficiency of the D2D-assisted MTC links, Rr
M, can
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be characterized as

Rr
M ≈ ϖ

∞̂

0

[
exp
(
−λC

ˆ
∞

RB

1− 1
T1(x, t)T2(x, t)

dx
)

exp
(
−λ̃D

ˆ
∞

0
1− 1

T1(x, t)T2(x, t)
dx
)

exp
(
−λC

ˆ RB

0
1− 1

T2(x, t)
dx
)

exp
(
−λ̃M

ˆ
∞

0
1− 1

T1(x, t)
dx
)]

dt,

where T1(x, t) = 1+
(
(2t−1)l(x,d)P̂−1

D
)2/α

4πµ2/9;

T2(x, t) = ∏
Nr
n=1

(
1+
(
(2t−1)l(x,n)P−1

M
)2/α

E[‖s− r‖]2
)

.

Remarks: Increasing any of the intensities of cellular, D2D or MTC devices decreases Rr
M.

We will be using the obtained expressions in Section 3.3.4 to study the impact of different

parameters, such as the cellular intensity, number of channels, and spectrum partition factor, on

the spectral efficiency of MTC, D2D and cellular networks.

3.3.4 Results and Analysis

In this section, we present analytical and simulation results for D2D-assisted MTC communication

as an underlay to the uplink cellular network, with energy harvesting D2D users. The parameters

in plotting the numerical and simulation results are summarized in Table 3.2 unless otherwise

specified5. In Fig. 3.7, we plot the average MTC spectral efficiency for both the direct MTC mode

and D2D-assisted MTC mode versus the intensity of cellular users. For the direct MTC mode, a

larger population of cellular users negatively impact the MTC spectral efficiency due to the larger

cellular and D2D interference on MTC links. However this is not true for the D2D-assisted MTC

mode, where a larger population of cellular users positively impact the MTC spectral efficiency.

This is explained by the fact that the average D2D transmission probability increases with λC, as

shown in Fig. 3.9, due to D2D users being able to harvest more RF power from ambient cellular

5We used similar parameters values to [209] and [232].
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Table 3.2: Simulation/Numerical Parameters

Radius of the macrocell RB 788 meters (inter-BS distance of 1500 meters)
Density of macrocells λB 1/

(
πR2

B
)

Density of UEs λU 10λB
Density of MTC devices λM 2λD
Power of a cellular user PC 200 mW
Power of D2D users, P̂D, and MTC devices, PM 2 mW
The total number of samples N 5000
Radius of relay-assisted region Rr 100 meters
Target SINR threshold θD, θC, θM 10 dB
Total number of available channels |B| 10
Spectrum partition factor κ 0.5
Aloha access probability ϖ for MTC devices 0.5
Path-loss exponent α 4
RF energy conversion efficiency υe 0.6 [218]

interference. This increases the number of D2D transmissions that can be supported in the network,

thereby offloading more MTC traffic on the shorter D2D links. Furthermore, it is interesting to see

that with κ = 0.8, we can achieve higher spectral efficiency than a smaller κ; however beyond a

specific λC, improvement in spectral efficiency can no longer be seen, since the D2D users are less

capable of harvesting RF power from the (1− κ)|B| subchannels, as they have now access to a

larger cellular spectrum proportion.

To elaborate further on this, we capture the impact that κ has on the coverage probability of

MTC devices in Fig 3.8. The figure shows that as κ increases, i.e., a larger fraction of the spectrum

is available for D2D transmissions, the coverage probability of MTC devices increases due to

offloading more MTC traffic on the shorter D2D links.

Fig. 3.9 depicts the D2D transmission probability versus λC for different values of |B|. When

more channels are available in the network, D2D users can harvest more RF power from them. As

can be seen from Fig. 3.9, a higher number of channels does not necessarily provide larger benefits

to D2D users, as |B|= 30 channels still give comparable performance to |B|= 60 channels, espe-

cially when λC is small. On the other hand, as |B| becomes smaller, the transmission probability

of D2D users starts decreasing due to reducing the number of subchannels D2D users can harvest

from.
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Fig. 3.10 shows the impact of ρ on the cellular spectral efficiency RC. As the transmission

probability, ρ , of D2D users increases, RC decreases, since more active D2D users means more

interference at cellular transmitters. As the spectrum partition factor, κ , increases, more D2D users

are accessing the spectrum thereby creating more interference in the cellular network. However,

note that it is difficult to achieve ρ = 1 as κ increases, since D2D users will harvest less RF power

from (1−κ)|B| subchannels. Thus, this figure is just to show the impact that ρ can have on RC.

To show the balance between efficiency and fairness among D2D and cellular transmitters that

are sharing the cellular spectrum, we plot the weighted proportional-fair spectral efficiency, Rp

in Fig. 3.11. It can be expressed as [1]: Rp = wC logRC +(1−wC) logRD, where 0 ≤ wC ≤ 1.

Fig. 3.11 shows that as the probability of UEs operating in D2D mode, q, increases from 0.5 to

0.7, so does the proportional-fair spectral efficiency Rp of the whole network. However, when q =

0.9, i.e., there is aggressive D2D offloading, Rp decreases as explained in [233]. Furthermore, as

the spectrum partition factor κ increases, Rp first increases and then decreases, which reveals an

interesting trade-off between cellular users, D2D users and the optimal κ that maximizes Rp. For

instance, for q = 0.7, Rp is maximized when κ = 0.2; and as q decreases to 0.5, the maximum Rp

is achieved when κ = 0.3. After that, as κ increases further, Rp starts decreasing mainly due to two

reasons: 1) increasing the interference at cellular transmitters from D2D links, which negatively

affects the cellular spectral efficiency; and 2) increasing κ means the intensity of cellular users

not using κ|B| subchannels, Φ̃C, decreases, which reduces the probability of D2D users harvesting

enough RF energy from ambient cellular signals, thereby decreasing their transmission probability.

This shows that RF energy harvesting can be beneficial to the whole network when κ is small.

Using the results of Fig. 3.7 and Fig. 3.11, we conclude that choosing a smaller value for κ (for

instance κ = 0.2), with more UEs operating in D2D mode, we can target mainly two important

performance criteria: 1) a balance and fairness among cellular and D2D users; and 2) a high

MTC spectral efficiency from offloading the traffic onto D2D links, especially in dense cellular

environment.

Finally, Fig. 3.12 shows the average D2D spectral efficiency, RD, in terms of λC for different
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values of |B|. For |B| > 10, as λC increases, RD increases due to an increase in the D2D trans-

mission probability ρ (see Fig. 3.9), without being negatively impacted by an increase in cellular

interference at D2D users. However, this is not true when the number of channels is small and

D2D users cannot harvest enough energy nor increase their spectrum access. Also note that for

|B|= 10, RD becomes stable beyond λC ≈ 7λB and does not improve anymore, unlike the case of

|B|= 40, mainly due to limiting the amount of harvested RF power.

3.3.5 Conclusions

In this work, we have analyzed the spectral efficiency and coverage probability of D2D-assisted

MTC communications under spatially correlated interference using stochastic geometry. First, we

analytically characterized the D2D transmission probability in terms of RF energy harvesting and

energy utilization rates. Second, we derived expressions for the spectral efficiency in order to

study the impact of RF energy harvesting on system performance. Simulation results have shown

that a small spectrum partition factor κ (κ = 0.2 or κ = 0.3 when 70% or 50% of UEs operate in

D2D mode, respectively), combined with an adequate number of available channels in the network

(|B| = 30 to 40) can achieve i) a balance and fairness in weighted spectral efficiency among D2D

and cellular users that are sharing the spectrum; ii) a higher D2D transmission probability; and iii)

a relatively high MTC and D2D spectral efficiency in a dense cellular environment.
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Figure 3.7: The average MTC spectral effi-
ciency in terms of λC for different values of κ

(λD = 10λB).
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Figure 3.10: The average cellular spectral effi-
ciency, RC, in terms of transmission probability,
ρ , for different values of κ .
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of q (λD = 10λB; wC = 0.65).
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Chapter 4

D2D Spatial Spectrum Sensing and

Cyber-Security for Enabling CPS over

Cellular Networks

Security of CPS is also an interesting aspect that we specifically study in this chapter and in Chap-

ter 6. The security threats of CPS are made easier first with the large volume of data that is

constantly flowing through the network, and second with the lack of qualified security experts. All

this makes the monitoring of sensitive information a challenging task for analysts. Different ap-

proaches can be taken in this regard such as implementing advanced security controls (authentica-

tion), monitoring of real-time data streams, implementing advanced anomaly detection techniques

by using neuromorphic computing for instance, real-time surveillance through computer vision

and visualization techniques, and so on [234].

In this chapter, through a case study we discuss about how spatial spectrum sensing in D2D

communications can help support the massive number of devices attempting to access the li-

censed cellular spectrum. We then present a low-complexity lightweight approach to secure the

in-proximity CPS communications. Finally, we present some results to study the impact of spatial

sensing region on the secure successful transmissions.

68



4.1 System Model

In the realm of cyber-physical systems, there is a large amount of data that is being sensed, col-

lected and transmitted, which place security threats under the spotlight of attention. This is espe-

cially true for the more vulnerable direct connections between proximity devices, which in turn

degrade system’s performance. There are different reasons why in-proximity D2D connections are

more vulnerable to security flaws: D2D devices have i) limited computational capabilities to em-

ploy data confidentiality, privacy preservation and authentication; ii) the semi- or fully-autonomous

security management (mutual authentication, key arrangement, etc.) [235]; and iii) the high com-

putational overhead cost of cryptographic solutions [236]. There have been some development

of low-complex and lightweight ciphers such as PRESENT [237]; however such solutions can be

time consuming and costly in terms of high power consumption as well as the complexity of key

management [238, 239]; that is why research efforts should be pushed toward simpler solutions

than cryptography.

To mitigate the potential D2D security threats such as eavesdropping, data fabrication and

privacy violation threats, we turn towards a lightweight low-complexity approach by exploiting

the physical characteristics of the wireless channels, by defining a D2D spatial transmission region

that can guarantee a minimum secrecy rate. By doing so, we are able to derive the detection

probability that D2D link is secure.

Mode Selection: A potential D2D user is a user with D2D traffic which can either use the

cellular or the D2D mode for communications based on one or a combination of different selection

criteria. This means that a potential D2D user can switch between D2D and conventional cellular

communications. For this case study, we use distance-based selection threshold µ [240]. Let LC

and LD be random variables representing the link lengths of a typical CU and D2D user, respec-

tively. More specific, a user is in D2D mode if the transceiver distance LD is smaller than µ . We

assume that the D2D receiver is uniformly distributed within a circle centered at user i located at
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location xi with a radius of D, as B (xi,D) [240], with probability density function (PDF):

fD(r) =
2r
D2 , 0≤ r ≤ D. (4.1)

Figure 4.1: An example of a hybrid network with D2D and cellular links with eavesdroppers
overhearing the D2D communication.

Fig. 4.1 illustrates a hybrid network of D2D links, cellular links and a set of eavesdroppers that

attempt to overhear the D2D transmissions. Furthermore, the figure shows a spatial sensing region

around D2D users. We consider an uplink cellular network, where D2D users and CUs share

the licensed spectrum. The use of stochastic geometry allows us to provide an accurate model

of interferers’ spatial locations by averaging over all their potential topological realizations [241].

The locations of the macro BSs are modeled by a homogeneous Poisson point process (HPPP),

ΦB of intensity λB. Let A (k,RB) denotes the coverage region of a macrocell, approximated by

a disk with radius RB = (πλB)
−1/2 centered at a generic BS k. UEs are uniformly distributed

in the coverage region of the corresponding BS and form an HPPP, ΦU of intensity λU. The

eavesdroppers form an HPPP ΦE of intensity λE.

We denote by ‖i− j‖ as the distance between any two nodes i and j. We use a power-law path-
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los model where the power of the signal transmitted by UEs decays at a rate of l(i, j) = ‖i− j‖−α ,

and α > 2 is the path-loss exponent of both cellular and D2D transmitters. To model the small-

scale fading over each channel, we use Rayleigh fading with mean one, with hi j denoting the

channel coefficient between nodes i and j.

For reliable communication, we assume that all users use a truncated channel inversion power

control [242, 243], which ensures the average received signal power at the intended receiver (i.e.,

D2D receivers and BSs) is at least equal to its sensitivity. Thus, UEs will use power control

Pi = ρLα
i , for i = {C,D}; and ρ� 1 is a constant that scales down the actual transmit power [240].

We differentiate between two different types of nodes τi with i = {D,C}, for D2D user and

cellular user, respectively. Let q∈ [0,1] be the probability that a user is a potential D2D user [240].

• D2D user: The UEs in D2D mode form a thinning PPP ΦD from ΦU, with intensity λD =

qλUP (LD < µ).

• Cellular user: The UEs in cellular mode include both cellular users and potential D2D users

operating in cellular mode. Therefore, these users form a thinning PPP ΦC from ΦU, with

intensity λC = (1−q)λU +qλUP (LC ≥ µ). Note that ΦU = ΦC∪ΦD, and ΦD∩ΦC = /0.

4.2 Spatial Spectrum Sensing

A sensing region As is defined as a circular region centered at a D2D user xi with sensing radius

Rs. Without loss of generality, the D2D transmitter is assumed located at the origin. A D2D

transmitter opportunistically accesses the spectrum by performing energy detection on the test

statistics Γ, where Γ = 1/N ∑
N−1
n=0 |y[n]|2; and y[n] is defined under two different hypotheses: i)

H0 when there are no active cellular users inside As; and ii) H1 when there is at least one active

cellular user inside As. It is given as [244]:

H0 : y[n] = ∑
i∈φC,a∩A C

s

√
PC,ihi‖xi‖−αsi[n]+ z[n], (4.2)
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H1 : y[n] = ∑
i∈φ̃C,a

φ̃C,a∩As 6= /0

√
PC,ihi‖xi‖−αsi[n]+ z[n],

(4.3)

where n = 0,1, ...,N− 1 is the sample index with N being the total number of samples; si[n] is

the nth sample of the received signal from cellular transmitter i by a typical D2D user; z[n] is the

Gaussian noise sample (z[n] ∼ N (0,σ2
n )); and φC,a is a realization of ΦC,a denoting the set of

active cellular transmitters’ locations; and A C
s is the complementary set of As. Let ε denotes the

underlying sensing threshold. The probabilities of false alarm Pf and spatial detection Pd are given

in [245] as

Pf =

ˆ
∞

0
Q

 ε− x−σ2
n√

(x+σ2
n )

2
/N

√ ρ

2πx3 e
−ρ(x−υ)2

2υ2x dx,

Pd =
∞

∑
i=1

Γ(1+ iδ )sin(πiδ )π2i−1(λBδE[Pδ
c ])

i

(−1)i+1(1− e−λBπR2
s )i! sin(πδ )i

ˆ
∞

0
Q

 ε− x−σ2
n√

(x+σ2
n )

2
/N

 dx
x1+iδ

− e−λBπR2
s Pf

1− e−λBπR2
s
,

(4.4)

where ρ =
2E[Pc]

3R4−α
s (2α−2)

(α−2)3R4
BE[P2

c ]
,υ =

2E[Pc]R2−α
s

(α−2)R2
B

, δ = 2/α , Q(x) = 1√
2π

´
∞

x e−u2/2du.

4.3 D2D Links’ Secrecy Analysis

In this section, we obtain the probability of detecting that D2D link is secure by assuming that

each D2D link is exposed to all the eavesdroppers. We also obtain the secure transmission region

defined as the region within which eavesdroppers cannot intercept the communication with high

probability.

The aggregate interference of an eavesdropper located at a distance ‖z‖ away from the typi-

cal D2D link is the interference generated from active cellular transmitters and other active D2D
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transmitters, and is given by:

IE = ∑
k∈ΦC,a

PC,khk,zl(k,z)+ ∑
k∈ΦD,a\0

PD,khk,zl(k,z), (4.5)

where ΦD,a is approximated as an HPPP to model the locations of active D2D transmitters with

intensity [245] λD,a = β̄λD; with

β̄ =
(

Pd +(Pf−Pd)e−πλBR2
s

)
β1 +

(
1−Pd− (Pf−Pd)e−πλBR2

s

)
β0, (4.6)

where β1 is the spectrum access probability if the spectrum hole is correctly detected or when a

false alarm occurs, while β0 is the probability when misdetection occurs. The Laplace transform

of IE is given by [246]:

LIE (s) = exp

−λC,aE
[
Pδ

C

]
−λD,aE

[
Pδ

D

]
sincδ

πsδ

 . (4.7)

Let max
e∈ΦE

γe,0 denotes the eavesdropper with the most detrimental effect on D2D signal. In interference-

limited networks, the average probability that a D2D link is secure is equal to the average prob-

ability that the rate of the most detrimental eavesdropper falls below a certain threshold ζ . It is

expressed as [246]:

Ps(ζ ) = P

(
log
(

1+max
e∈ΦE

γe,0

)
< ζ

)
= exp

(
−λE sincδ(

λC,aE[Pδ
C ]+λD,aE[Pδ

D ]
)

E[P−δ

E ]
(
2ζ −1

)δ

)
,

(4.8)

where PE is the average transmit power of an eavesdropper. A D2D transmission is said to be secure

if Ps(ζ ) ≥ υs, where υs denotes the minimum required secrecy probability. Then, we can obtain
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an upper bound for the secrecy rate threshold for secure communication in high SINR regime as

ζ ≤ δ
−1 log2

(
−λE sincδ(

λCE[Pδ
C ]+λD,aE[Pδ

D ]
)

E[P−δ

E ] logυs

)
. (4.9)

The secure transmission region, At(µs,υs)⊂R2, around a typical D2D user is random and defined

as the range within which eavesdroppers cannot intercept the communication with high probabil-

ity. In other words, At(µr,υs) is the region where the set of all eavesdroppers are located out-

side a closed ball B
(

o,2ζ/α‖xo‖
)

centered around the typical D2D user located at ‖xo‖ with

radius 2ζ/α‖xo‖ [247]. Therefore we can use the upper bound on ζ defined in Eq.( 4.9) to define

At(µr,υs) as:

At(µr,υs) =
{

x ∈ R2 : ‖e− xo‖> µr = 2ζ/α‖xo‖
}
. (4.10)

Then,

µr ≤
ˆ D

0
2ζ/αr fD(r)dr = 2ζ/α 2D

3
. (4.11)

4.4 Achievable Secrecy Transmission Capacity

In the case when the packets are not successfully decoded, we assume no re-transmissions. Let

θD be the signal-to-interference-plus-noise ratio (SINR) threshold for successful transmission. We

can then define the mathematical expectation of the achievable secrecy transmission capacity, i.e.

the density of secure successful transmissions at a rate log(1+θD) as [246]:

ϒ = λD,a log(1+θD)P (γi,0 ≥ θD)

= λD,a log(1+θD)
1− e−µ2

r (a2+a3)

(a2 +a3)D2 ,

(4.12)

where a2 =
(

πλC,aθ δ
D/sincδ

)
E
[
Pδ

C

]
P−δ

D ; a3 = πλD,aθ δ
D/sincδ .
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4.5 Results

In this section, we present numerical results to study the achievable transmission capacity of

secrecy-based D2D cellular networks with spatial spectrum sensing. Unless otherwise stated, we

set the following system parameters: RB = 788 meters (which corresponds of an inter-BS distance

of 1500 meters), ζ = 0.5, D = 100 m, α = 4, λB = 1/
(
πR2

B
)
, θD = 20 dB, υs = 0.5, N = 5000,

and ρ = 10−11.

Fig. 4.2 shows the average achievable secrecy transmission capacity versus λU for different

values of q. As more users are operating in D2D mode (i.e., when q increases), the achievable

transmission capacity becomes higher due to the receiver becoming closer in distance to the trans-

mitter and eavesdroppers becoming far away. Moreover, as the intensity of users increases, the

secrecy transmission capacity increases since the interference of a larger legitimate user popula-

tion can be exploited in a beneficial way to protect D2D links from eavesdropping, from a physical

layer security perspective. Fig. 4.3 shows the average achievable secrecy transmission capacity
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Figure 4.2: The achievable secrecy transmission capacity versus the intensity of users for different
values of q (λE = 0.1λU; Rs = 150 m).

versus the sensing radius Rs for different values of q. We see that as Rs increases, the spatial

75



sensing becomes more conservative and less aggressive. This means, the probability of detecting

spatial spectrum holes decreases, leading to fewer active D2D transmissions. This in turn increases

the distances between the D2D transmitters and receivers, thereby making the D2D links more sus-

ceptible to eavesdropping. That is why we see a decreasing behavior in the secrecy transmission

capacity as the sensing radius increases.
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Figure 4.3: The achievable secrecy transmission capacity versus the sensing radius for different
values of q (λU = 10λB and λE = 0.1λU .

4.6 Conclusions

In this chapter, we have provided a detailed discussion and analysis on spatial spectrum sensing

and its effects on the density of successful secure transmissions. We showed that more aggressive

sensing can better protect D2D links against eavesdropping since more D2D users become active,

which reduce the distances between them.
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Chapter 5

Green Traffic Offloading for CPS over

Heterogeneous Networks

5.1 Introduction

In this chapter, we present another solution to relieve network congestion from CPS traffic and

increase throughput of both CPS and cellular communications. More specific, we turn towards cell

shrinking and offloading, a key technology in future 5G networks. Using this potential solution, we

are mainly targeting two important issues: i) enabling CPS communications over cellular networks

to provide CPS with several benefits such as ubiquitous coverage, global connectivity, reliability

and security; and ii) offloading a proportion of CPS traffic to small cells, which in tun increases the

throughput of macrocells, and frees more network resources to other users. Using stochastic ge-

ometry, we present an analysis on CPS offloading rate and achievable throughput when small cells

base stations (SCBSs) are powered by solar energy. The solar energy harvesting allows SCBSs to

offset the costs of serving CPS devices. Our results show the potential benefits for both macrocells

and small cells in terms of minimum achievable throughput when the CPS offloading rate is high.

In this chapter, we consider a single tier of power-grid MBSs and K tiers of SCBSs powered by

solar energy harvesting. Part of the CPS communications will be offloaded to SCBSs to help relieve
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cellular congestion. The uncertainty in energy harvesting can reduce the amount of offloaded data,

which is why we take into consideration the unexpected change in solar power due to season,

weather, or other effects. We try to answer several questions through stochastic geometry analysis

and numerical results: which network metrics maximize the amount of offloaded CPS traffic onto

small cells? How much gains can we obtain in the achievable throughput by offloading CPS traffic,

and how does the offloading impact the achievable throughput of small cells? We summarize our

contributions as follows:

• First, to the best of our knowledge, this is the first work that proposes offloading CPS com-

munications onto energy harvesting-based small cells for purposes of supporting the an-

ticipated massive number of CPS traffic in cellular networks, a driving force of future 5G

networks.

• Second, using tools from stochastic geometry, we analytically characterize the probability of

availability of SCBSs, the offloading rate, and the minimum achievable throughput of both

MBS and SCBSs.

• Third, we study the impact of different network metrics on the amount of offloaded CPS

traffic and achievable throughput of both macro and small cells. Our results show that the

higher the SCBSs’ availability is, the higher the offloading rate becomes, leading to greater

benefits to small cells and macrocells in terms of minimum total achievable throughput.

The remainder of this chapter is organized as follows. In Section 5.2, a system model for a two-

tier heterogeneous cellular network is presented. Section 5.3 provides expression for SCBSs avail-

ability using battery level dynamics, while Section 5.4 analytically characterizes the offloading

rate and the achievable throughput of heterogeneous networks. Section 5.5 presents the numerical

results and analysis. Finally, conclusions are drawn in Section 5.6.
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5.2 System Model

The system model, depicted in Fig. 5.1, consists of a single tier (denoted by tier 0) of power-

grid MBSs (PG-MBSs), whose locations form a homogeneous Poisson point process (HPPP) Φ0

with density λ0; and K tiers of solar energy harvesting SCBSs (EH-SCBSs), whose locations form

an HPPP Φk with density λk, where k ∈ {1, ...,K}. We assume that a kth tier base station (BS)

transmits to each of its users with fixed power Pk. The cellular users are modeled by an HPPP

Φc with intensity λc. Likewise, the CPS devices are modeled by an HPPP Φd with intensity λd.

Let the total number of users be Φu = Φc +Φd with intensity λu = λc +λd. Through stochastic

geometry analysis, we are able to provide an accurate model of BSs’ and users’ spatial locations

by averaging over all their potential topological realizations [241].

Figure 5.1: An example of a heterogeneous network powered by solar energy harvesting.

Let ‖xk− z‖ denotes the distance between a kth tier BS located at xk ∈ Φk, k ∈ {0, ..,K}, and

79



a user located at z ∈ Φu. We assume that the power of the signal transmitted by the BS decays

at a rate of ‖i− j‖−α , where α > 2 is the path-loss exponent. Rayleigh fading with mean one is

used to model the small-scale fading over each channel, with hxk,z denoting the channel coefficient

between SCBS located at xk and a user located at z. From now on, we drop the subscripts from

hxk,z since it is independent of the locations of xk and z. Since each user connects to the BS with

the highest received power, we do not consider small scale fading for cell association. In addition,

we adopt a biased cell association policy, where each BS of tier k has biasing factor Bk > 0 [248].

The service region Ak(xk) ⊂ R2 of the kth tier BS located at xk ∈ Φk, with k ∈ {0, ...,K}, is

random and defined as [249]:

Ak(xk) =

{
x ∈ R2 : xk = argmax

x∈x?j

PjB j‖x− z‖−α ,where x?j = argmax
x∈Φ?

j

PjB j‖x− z‖−α

}
, (5.1)

where x?j denotes the candidate BS with the highest average received signal power selected by user

z ∈Φu as a serving BS.

Then, the average area of service region of kth tier BS is given as [249]:

E[|Ak|] =
λ̃k (PkBk)

2/α

∑
K
j=0 λ̃ j

(
PjB j

)2/α
, (5.2)

where λ̃ j is the density of available BSs of tier j, i.e., BSs that have sufficient available energy.

This will be discussed in details in Section 5.3. Eq. (5.2) can be further expressed as [250]

E[|Ak|] =

[
K

∑
j=0

λ̄ jk
(
P̄jkB̄ jk

)2/α

]−1

, (5.3)

where λ̄ jk , λ̃ j/λ̃k; P̄jk , Pj/Pk; and B̄ jk , B j/Bk. Without loss of generality, we assume a typical

user at the origin using Slivniyaks theorem [251]. The aggregate interference at a typical user
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serviced by a BS located at x ∈ Φ̃k is:

Itot,0 =
K

∑
k=0

∑
k∈Φ̃k\x

Pkhk‖k‖−α , (5.4)

where Φ̃k is a PPP representing the set of available BSs that are transmitting with intensity λ̃k.

Then, the signal-to-noise-plus-interference ratio (SINR) is given by:

γ0 =
Pkhk‖x‖−α

Itot,0
. (5.5)

5.3 Solar Energy Harvesting Model

In this section, we describe the solar energy harvesting model to power SCBSs.

Table 5.1: Estimated power harvested from different sources [3].

Energy Source Harvested Power
Vibration/Motion
Human
Industry

4µW/cm2

100µW/cm2

Light
Indoor
Outdoor

10µW/cm2

10mW/cm2

RF
GSM
WiFi

0.1µW/cm2

0.001mW/cm2

Challenges: Solar energy harvesting is very appealing since it can provide the highest energy

density among the other renewable sources, as can be seen from Table 4.1, which shows the esti-

mated power that can be harvested from different sources [3]. Note that even though solar energy

harvesting has the highest energy intensity compared to other energy harvesting sources (see Table

4.1), it has many drawbacks, such as dependence on weather changing factors and geographical

regions which must be taken into consideration; inability to be used in cloudy areas that have low
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incidence of ambient solar irradiance; and so on. All these factors put a question mark whether

solar energy harvesting is a reliable source of energy. Indeed, the uncertainty in energy harvesting

can reduce the amount of offloaded data from macrocells to small cells, leading to CPS’ perfor-

mance deterioration. That is why, in this paper, we model the solar energy harvesting by taking

into account the unexpected change in solar power due to season, weather, and other effects.

In this section, we characterize the probability that an EH-SCBS in tier k ∈ {1, ..,K} is avail-

able to provide services to its users. Our solar energy model is based on [252] and [253], which

captures many parameters that affect the amount of solar irradiance. First, to understand what solar

irradiance includes, we refer to Fig. 5.2, which shows the different components of solar irradiance.

It can be thought of as the sum of the direct beam radiation that comes from the sun, the diffuse

radiation that gets scattered out by objects, molecules, aerosols and clouds, and the radiation that

gets reflected off the ground into the atmosphere. It is measured in Watts/meters2. We can model

Figure 5.2: An illustration of the different components of solar irradiance (retrieved from [2]).

the average solar radiation in terms of the time of the day τ as:

R(τ) =
hpeak

2
·
[
1+ cos

(
π

6
(τ−12)

)]
+Ar ·N (τ,1), (5.6)

for 6 ≤ τ ≤ 18 and 0 otherwise; where hpeak is the peak value of the harvesting power which

is a function in terms of the season or weather. Ar ·N (τ,1) captures the random changes that

82



can occur from cloud, rain or other effects, where Ar is the amplitude of the unexpected changes

and N (τ,1) is the Gaussian distribution with mean τ and unity variance. The amount of solar

irradiance available along the path may vary depending on the shadows due to obstacles (trees,

buildings, etc.), and Ar ·N (τ,1) captures this phenomena as well.

The harvested solar power Pk
sol for a kth tier SCBS at a certain time τ ∈ {1, . . .24} can be

predicted as

Pk
sol(τ) = (1−L(M))eel · epanelρA ·R(τ), (5.7)

where L is the energy loss due to inability to store solar power in the battery when temperatures

are too high or too low. For example, lithium-ion batteries can neither be charged below 0oC nor

above 45oC [253]. The solar irradiance R in (5.6) is multiplied with the solar panel size A and the

angular loss ρ to get the received radiation at a specific time τ . The angular loss accounts for the

non-orthogonality of solar radiation on the panel. However, only a fraction of the solar radiation

can be converted into electrical power due to solar panel efficiency losses epanel, as well as losses

eel during electrical conversion.

Let St,k denotes the average battery level at time t for kth tier SCBS. The dynamics of the

average battery level can be captured as

St,k = min
{

St−1,k + εk−Pk,Tot(t)T1St−1,k≥Pk,TotT

}
, (5.8)

where εk = Pk
sol(t); Pk,Tot(t) = ∆kPk + Pk,static is the total power consumption of kth tier SCBS,

with ∆k being the slope of the load-dependent power consumption and Pk,static is the static power

expenditure [254]; T is the transmission slot period; and S0,k = G is the initial battery capacity

level identical for all SCBSs. Let vk denotes the required number of time slots to harvest sufficient

power for transmission. Denote by Pk
H the harvested power by the energy harvesting circuit in the

kth tier SCBS. Denote the following notations: V = (1− L(M))eel · epanelA, and U = (hpeak/2) ·
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[
1+ cos

(
π

6 (τ−12)
)]

, then the energy harvesting probability of kth tier SCBS can be expressed as

ϕk = P
(

Pk
H > εkvk

)
= P (V ·U +VArN (τ,1)> εkvk)

= P

(
N (τ,1)>

εkvk−U ·V
VAr

)
=

1
2

erfc
(

εkvk−U ·V
VAr
√

2

)
,

(5.9)

where erfc(z) = 1− erf(z) is the complementary error function.

We define the availability ρk of kth tier SCBS as [228]:

ρk = lim
n→∞

1
n

n

∑
t=1

E
[
1St,k≥εkvk

]
. (5.10)

Assuming infinite batter capacity1, according to [228], the probability of availability of kth tier

SCBS can be expressed as

ρk = min
(

1,
εk

Pk,Tot

)
. (5.11)

Thus, the density of available SCBSs forms a thinning PPP Φ̃k from Φk, with intensity λ̃k = ρkλk.

The PG-MBSs are always available due to always having sufficient energy for transmission, then

they form an HPPP Φ̃0 = Φ0 with intensity λ̃0 = λ0.

5.4 CPS Offloading Rate

In this section, we analytically characterize the offloading rate of CPS traffic from an MBS b to

SCBS2.

Theorem 12. In interference-limited network (i.e., noise power is ignored, σ2 = 0 [255]) and

when all tiers have the same SIR threshold β , the probability that a typical user achieves β when

1The limit of exceeding the battery capacity is negligible when the capacity is much larger than the average stored
energy. Thus, the infinite battery capacity assumption can be regarded as an approximation [254].

2In this paper, we focus our analysis and derivations on offloading CPS traffic solely, excluding regular cellular
traffic for the sake of highlighting the benefits of CPS traffic offloading.
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it associates with its serving BS in kth tier can be expressed as

Pc,k = P (γk ≥ β ) = exp

−π

K

∑
j=0

λ̃kP̄2/α

jk r2/α
2β B̄2/α−1

jk

α−2 2F1

(
1,1− 2

α
;2− 2

α
,− β

B̄ jk

) ,

(5.12)

2F1 (a,b;c,z) = Γ(c)
Γ(b)Γ(c−b)

´ 1
0 tb−1(1− t)c−b−1(1− tz)−adt is the hypergeometric function.

Proof : See Appendix 8.5.

Let λb = λ̃0. The following lemma provides the average number of CPS devices Nk
b that are

offloaded from MBS b to SCBS k.

Lemma 6. The average number of CPS devices Nk
b that are offloaded from MBS b to SCBS k can

be expressed using the mean load approximation [248]:

E
[
Nk

b

]
=

λd

λb
Pc,kE[|Ak|]. (5.13)

Theorem 13. The offloading rate of CPS devices from MBS b to SCBSs can be characterized as

µb =
∑

K
k=1 E

[
Nk

b

]
λd/λb

. (5.14)

Lemma 7. By Shannon’s theorem, the minimum achievable data rate of a typical user when it

associates with a kth tier SCBS can be expressed as [256]

Rk = E
[

W
Nk

log2 (1+β )

]
=

W
E [Nk]

log2 (1+β ) , (5.15)

where W is the system bandwidth; and E [Nk] is the average number of users associated with kth

tier SCBS, and given as E [Nk] = λu/λ̃k +E
[
Nk

b

]
.

Theorem 14. The minimum achievable throughput of all K-tiers small cells can be characterized
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as [256]

Rtotal =
K

∑
k=1

Pc,kλuE[|Ak|]Rk

= λuW log2 (1+β )
K

∑
k=1

Pc,k

[
K

∑
j=0

λ̄ jk
(
P̄jkB̄ jk

)2/α

]−1
1

λu/λ̃k +E
[
Nk

b

]
 .

(5.16)

Eq. (5.16) shows that the minimum achievable throughput is related to the availabilities of SCBSs,

the users density, the number of users offloaded to SCBSs and the coverage probability. We study

the impact of many of these metrics in the next section.

Finally, we can characterize the minimum achievable throughput of the 0-tier PG-MBSs as

Rtotal = Pc,0λuW log2 (1+β )

[
K

∑
j=0

λ̄ j0
(
P̄j0B̄ j0

)2/α

]−1
1

λu/λb−∑
K
k=1 E

[
Nk

b

] . (5.17)

5.5 Results and Analysis

In this section, we present numerical illustrations using MATLAB simulation tool to study the

amount of offloaded traffic and its impact on the minimum achievable throughput of both macro-

cell and small cells. Unless otherwise noted, we set the following system parameters: λu =

100/(π10002); λk = [0.09,0.05,0.01] ·λu; β = 3 dB [250]; λd = 0.5λu; W = 20 ∗ 106 Hz [248];

Pk = [46,33,23] dBm [257]; Bk = [1,10,10] dB [258]; α = 4; K = 3; L(M) = 0.25; eel = 0.7;

epanel = 0.07; ρ = 0.7; A= 170cm2 [253]; Ar = 0.4; δk = 8; Pk,static = 4.8 Watt; and T = 1 sec [254].

Fig. 5.3 shows the offloading rate versus the probability of availability of SCBSs for different

values of biasing factors. If a small cell has a biasing factor of 10 dB, it means that a macrocell

user is willing to be associated with that small cell even if the received maximum power is 10 dB

less than that of the macrocell. First, we see that an increase in the availability of SCBSs yields

an increase in the offloading rate, since SCBSs become more willing to serve macrocell users

when they have harvested enough solar power. Second, as the biasing factor increases, so does the

offloading rate since CPS devices become more inclined towards associating with SCBSs. That
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is, with SCBSs becoming more available and macrocell users becoming more biased to associate

with these small cells, we see an increasing trend in the amount of offloaded CPS traffic. For

instance, we see from Fig. 5.3 that if CPS devices are willing to associate with SCBSs if the

maximum received power is 20 dB less than the macrocell, then the offloading rate can reach

almost 60% provided SCBSs are highly available. It is interesting to note that with the probability

of availability of SCBSs approaching 1, the offloading rate does not increase by much, but rather

reaches a more stable value, especially when the SCBSs’ biasing factors are high, mainly due to

small cells reaching their maximum network capacity.
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Figure 5.3: The offloading rate versus the probability of availability ρk of SCBS for different
values of biases.

Fig. 5.4 shows the minimum achievable throughput of all K-tiers small cells versus the intensity

of CPS devices λd for different values of biasing factors. As the intensity of CPS devices increases,

the achievable throughput decreases due to the high levels of interference from a larger population

of CPS devices. What is interesting to note is that as the biasing factor towards SCBSs increases,

the total throughput of users increases, since more users get offloaded from macrocell to small
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cells, which have higher throughout due to shorter distances and users being closer to the SCBSs.

Furthermore, small cell users have lower mobility than macrocell users leading to less fading and

high capacity.
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Figure 5.4: The minimum achievable throughput of all K-tiers small cells versus the intensity of
CPS devices λd for different values of biases.

Finally, Fig. 5.5 shows the minimum achievable throughput of the 0-tier macrocell versus the

he probability of availability ρk of SCBS for different values of CPS intensity λd. It is clear that

when SCBSs become more available, the macrocell experiences higher throughput since more CPS

users get offloaded to SCBSs, thereby freeing more network resources to other macrocell users.

Moreover, in the presence of a large number of CPS users, a large proportion of them get offloaded

to small cells, leading to even higher total achievable throughput for the macrocell.

5.6 Conclusion

In this chapter, we have presented a potential solution to the anticipated massive number of CPS

devices that will be expected to communicate over the cellular spectrum. Using the concept of
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Figure 5.5: The minimum achievable throughput of the 0-tier macrocell versus the he probability
of availability ρk of SCBS for different values of CPS intensity λd.

cell shrinking and offloading technology, a proportion of CPS communications are offloaded from

macrocell to small cells. We allowed SCBSs to be powered by solar power to offset the costs

of serving CPS devices. In other words, as long as SCBSs are available (i.e., they have enough

available power), the CPS traffic offloading can bring benefits to both macrocell BSs and SCBSs.

Indeed, we showed in our results that a high biasing factor and a high availability probability of

SCBSs can lead to a high CPS offloading rate and a high minimum achievable throughout for the

macrocell as well as for the small cells.
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Chapter 6

A Physical Layer Security Scheme for

Mobile Health Cyber-Physical Systems

6.1 Introduction

Mobile Health (m-Health) has recently grown in popularity due to its ability to improve patients’

health status by delivering efficient, effective and high-quality healthcare. Different from e-Health

systems that are targeted for small-scale networks using wearable biomedical sensors, the Internet,

and other related technologies such as virtual reality in prevention, diagnosis and treatment, m-

Health systems are emerged as next-generation e-health systems where mobile devices, wireless

technologies, and social media have made possible the storage, processing, and analysis of large

volume of data as well as remote sensing for long-term continuous health monitoring [195, 90,

259]. M-health systems will shape the future of tele-medicine across multiple disciplines from

cardiology, surgery to psychiatry, especially with their continuous expansion. It is expected that

by 2020, there will be more than 774 million connected health-related devices [90].

The last decade has witnessed technological advancements in the healthcare system through

the use of wireless biomedical sensors by deploying a medical body area network (MBAN). In an

MBAN, sensors are placed in the vicinity of patient’s body or even inside the body to collect health-

90



related data using short-range wireless technologies. The collected data is then transmitted to the

medical staff who analyzes them for purposes of monitoring patients’ physiological conditions

and disease progression in a cost-effective way. Unlike conventional wire-connected devices that

limit patient’s mobility, the use of wireless sensors on human body provides greater mobility and

comfort. Some potential m-Health applications include diabetes management by measuring blood

sugar levels and the insulin dosage, blood pressure and heart rhythm monitoring, elderly support

by tracking their medications and activity levels, fitness indicators monitoring during workouts,

and a myriad of other applications [90].

The use of mobile communications allows the healthcare practitioners to use the sensed vitals

signs (electrocardiogram, oxygen saturation, glucose level, etc.) together with patient’s medical

history to remotely control the medications, intensity of exercises, detect a life-threatening state,

etc. This means that these vital signs need to be reliably, timely and securely transmitted to the re-

mote medical location [260]. This constitutes a potential cyber-physical systems (CPS) application

in healthcare, where a CPS is defined as a system with integrated communication and computa-

tional capabilities with tight interactions with the physical world [261]. In the context of healthcare,

the various biomedical sensors and the mobile devices that interact with each other constitute the

physical world, which needs to convey the processed vital signs to an m-Health server running

monitoring programs for patients with chronic diseases [261, 195].

With m-Health being employed on a large scale with tight intensive interactions among its

sensors and mobile devices, it creates a set of challenges, among which the security and privacy

of patients’ personal health information (PHI) are the most important ones [262]. These secu-

rity vulnerabilities are made easy with the nature of the open wireless medium, which introduces

eavesdropping, data fabrication and privacy violation threats. As a matter of fact, an eavesdropper

can intercept the communication between the sensors and the mobile devices in an attempt to steal

or fabricate patients’ PHI. By doing so, the eavesdropper can guess the patient’s disease or health

status with high probability.

In this chapter, we consider a three-tier m-Health architecture, adopted in [263, 264, 260, 265].
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The first tier is the sensor network tier where sensors on the body or around the residence of the

patient capture vital signals using a short range wireless technology such as Bluetooth. The sensed

data is then transmitted to the mobile computing network tier, where mobile devices form an ad-

hoc network to route the data to a fixed remote location. Finally, the back-end network tier consists

of servers with high computational capabilities that analyze the sensed data along with patient’s

past medical records and transmit a medical report to the medical staff. To provide privacy protec-

tion for patient’s data records, we aim to develop a physical layer security scheme by exploiting

the characteristics of wireless channels in the second tier, mainly because it is more vulnerable to

security threats due to i) the limited computational capabilities of mobile device to employ data

confidentiality, privacy preservation and authentication; ii) the semi- or fully-autonomous security

management (mutual authentication, key arrangement, etc.) [194]; and iii) the high computational

overhead cost of cryptography in mobile health applications [195]. This work can be easily ex-

tended to include privacy protection in the first tier; however it is out of the scope of this chapter.

6.1.1 Related Work

While cryptography can guarantee to some extent the data confidentiality, integrity and authenti-

cation [37], implementing it in mobile health applications can be time consuming and costly in

terms of computational overhead, high power consumption as well as the complexity of key man-

agement [38, 39]. For these reasons, we turn towards a lightweight low-complexity approach to

protect the privacy of medical data measured by the sensors and processed and routed by the mo-

bile devices by exploiting the physical characteristics of the wireless channels. This idea is not new

as it dates back several centuries, where intentional echoes were generated by the circular shape of

the Hall Pompeiana of Massimo in Italy in order to make its center indecipherable [40]. The work

of exploiting the characteristics of wireless channels dates back to the pioneer work of Shannon

and Wyner’s wire-tap channel [266].

A public key infrastructure for secure healthcare in hospitals was proposed in [267]. The base

station generates keys to secure the connection between itself and the patients or a healthcare
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service system (HSS) through bilateral key handshaking method. Secure communication between

patients and HSS can be established through using a secret key disclosed to either of them by the

base station.

Patients monitoring is envisioned to reduce medical costs, allowing for more flexibility and

mobility in health management while providing accurate treatment and diagnosis. A smart mobile

device capable of providing continuous long-term health monitoring in a private and personalized

way was proposed in [268]. To guarantee privacy protection, new patients register through the

server of preferences, which generates cryptographic keys as well alarm states conditions to easily

help and find lost patients.

A three-tier hierarchical healthcare architecture was proposed in [264] where different security

schemes were proposed in the different tiers using public key cryptography, key agreement with

a third party, a secure ad-hoc routing protocol and polynomial-based encryption. Other crypto-

graphic solutions were also suggested in [39, 269].

Secure neighborhood discovery (ND) for users in close proximity to each other is not new and

has been thoroughly investigated in literature. In addition to the use of cryptography in ND proto-

cols, other approaches exist such as distance bounding where the distance to a potential neighbor

is estimated by multiplying the signal round-trip time with its propagation speed [270]. Different

works proposed different approaches to prevent measurement falsification by a dishonest user, such

as [271] that used rapid bit exchange phase to measure processing and transmission delays in order

to obtain a ranging distance estimate. Others suggested adding a timestamp at the appropriate in-

stant for the outgoing messages [272]. Moreover, directional antennas approach has been proposed

to detect relay attacks by using non-overlapping opposite zones to discover neighbors [273]. RF

fingerprinting is another physical layer security approach that was proposed to recognize a legit-

imate user from an attacker by identifying the signal patterns and characteristics of the received

signals [274]. Optimal power allocation to maximize the achievable secrecy rate has been investi-

gated in [275, 276, 277] and others. Unlike the previous works mentioned, the proposed security

model in this chapter is completely new and promising research frontier, which uses stochastic

93



geometry tools to provide insights on a transmission region that guarantees a secrecy rate and out-

age constraints, along with power tuning and adjustments depending on ambient interference to

secure the health sensed data as they hop from one mobile device to another to reach the medical

servers. Even though the research on physical layer security in healthcare systems is very limited,

we provide briefly some of the previous works proposed for cellular and sensor networks.

In our prior works [278, 279], we have proposed physical layer security schemes for device-to-

device (D2D) and e-health networks using similar security concepts as in this chapter. We showed

in [278] that a large cellular population can be exploited in a beneficial way to protect D2D links

against eavesdropping. While in [279], we optimized the privacy-protected transmission region for

inter-MBAN, which allows the transmitter to adapt its power to be protected from potential eaves-

droppers. In D2D cellular networks, several chapters have focused on the secure communications

of cellular users in D2D-enabled networks such as [280], where the interference from D2D trans-

mitters can jam the eavesdroppers to protect the security of cellular links. In [281], a downlink

transmission was made secure in cellular network using linear precoding with regularized channel

inversion. In cognitive networks, secrecy beamforming and artificial noise were shown to enhance

the secure transmission of large scale spectrum sharing networks [282]. In cooperative networks,

relays’ trustworthiness and reputation play an important role in system performance. A relay with

malicious behavior can fabricate, alter or steal the data before transmitting it. This has been in-

vestigated in many works such as [283, 284]. Finally, physical layer security schemes in wireless

sensor networks have been proposed in different works [285, 286]. For instance, in [285], using

stochastic geometry, the authors derived expressions for the average secrecy rate between sensors

and access points and between the access points and the sinks. It was shown that multiple antennas

at the access points can enhance the overall average secrecy rate of the sensor network.

6.1.2 Approach, Contributions and Organization

In this chapter, we consider a three-tier m-Health hierarchical architecture: i) sensor network tier,

ii) mobile computing network tier, and iii) back-end network tier. To guarantee the privacy and
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security of a large volume of health records transmitted by sensors and processed and routed by

mobile devices to the servers, we propose a security scheme in the second tier using stochastic

geometry. This work provides a theoretical physical layer security capacity analysis, and thus

is different from security attack modeling works such as in [287, 288], in which the system is

analyzed to detect, locate and deter data injection attacks. We summarize the contributions of this

chapter as follows:

• First, we consider two different scenarios: when the mobile device transmits either to the

nearest neighbor or to the furthest neighbor. This allows us to study the trade-off between

secrecy and latency for these two scenarios through numerical illustrations, where we show

that transmitting to the nearest neighbor does not necessarily result in higher latency (due to

increasing the number of hops to the destination) since the probability of successful trans-

mission in the nearest neighbor case is higher than that of the furthest neighbor case.

• Second, we characterize the transmission region around a transmitter that satisfies a specified

secrecy probability, a target outage probability and a delay threshold constraint by consid-

ering two different scenarios: when the mobile devices have full information on the eaves-

droppers1, and when no information is available about the behaviors of users, i.e., whether

they are legitimate users or not. In each of these scenarios, the mobile device can choose the

next-hop user in its transmission region as: i) the nearest to it or ii) the furthest to it.

• Third, the analytical framework allows us to compare different performance metrics such as

the transmission region and the average end-to-end delay for the different scenarios under

study.

The remainder of this chapter is organized as follows. In Section 6.2, a system model for a

three-tier hierarchical m-Health system with eavesdroppers overhearing the mobile devices’ com-

munications is presented. Section 6.3.1 presents the coverage analysis of mobile computing tier.

1In this chapter, the eavesdroppers are non-legitimate users whose locations in the hospital follow a homogeneous
Poisson point process.
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The secrecy of mobile links is analyzed for two different scenarios: when having full information

on eavesdroppers, and when that information is not available in Section 6.3.2 and Section 6.3.3;

respectively. Section 6.3.4 presents the average end-to-end delay analysis. Section 6.4 presents the

numerical illustrations and analysis. Finally, conclusions are drawn in Section 6.5.

6.2 System Model

6.2.1 M-Health Model

Figure 6.1: An example of a three tier hierarchical m-Health system in presence of multiple eaves-
droppers.

Fig. 6.1 shows a three tier m-Health network architecture: sensor network, mobile computing

network, and back-end network, along with a set of eavesdroppers overhearing the communication
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of the mobile computing network tier. All nodes in the first and second tiers share the same unli-

censed ISM (Industrial, Scientific and Medical) band. The sensor network communication refers

to communication between medical biosensors, which collect health-related data such as blood

pressure, insulin level, heart rhythm, etc. from patient’s own body, and transmit them to the sec-

ond network tier. The sensors can be either placed on patient’s body (MBAN) using the IEEE

802.15.6 standard for on-body communications; and/or in the patient’s surroundings (e.g., in the

patient’s home or in a nursing house) forming a ZigBee network using the IEEE 802.15.4 stan-

dard for physical and medium access control (MAC) layer communications. The sensors should

transmit at a low power since they are operating at close proximity from the body. This helps

extend their battery lifetime and reduce the dangers of electromagnetic radiation exposure on the

patient [289]. The second tier consists of mobile devices such as PDA and laptop organized in an

ad-hoc network. These mobile devices need to support multiple network interfaces: Bluetooth and

ZigBee to communicate with the lower tier and WLAN for communication with the upper layer.

The sensed data is then routed through the mobile ad-hoc network to reach a fixed remote or local

station in the third tier that is structured on the Internet, where servers and application databases

can do long-term storage, processing and analysis on the big data in order to provide a medical

report on patient’s health or health records access to healthcare providers [264]. It should be noted

that in this paper, we are not evaluating the whole system performance, but rather the second tier’s

secrecy performance. We are more concerned about the security in the second tier rather than the

first tier (medical sensor network), since in the latter, i) the distances between sensors are very short

unlike the second tier, and ii) the security of the collected sensed data at the coordinator cluster

head is more significant than the individual sensed data by medical sensors.

In what follows, we describe the model of the second tier network for which we develop a

security scheme, using stochastic geometry. Stochastic geometry provides an accurate model of

interferers’ spatial locations by averaging over all their potential topological realizations [290].

With nodes sharing the unlicensed bands, stochastic geometry takes into consideration not only

the channel model, but also the MAC to determine concurrently transmitting nodes’ spatial distri-
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bution, i.e., the effective interferers [291].

6.2.2 Sensor and Mobile Computing Tier Networks Model

We consider that the sensor network tier consists of sensors in the patient’s environment communi-

cating with a coordinator (CN) using the IEEE 802.15.4 wireless personal area networks (WPANs),

and sensors placed on patient’s body or inside her collecting data using the IEEE 802.15.6 standard.

The IEEE 802.15.4 standard defines the physical and link layers for low data rate communications,

on which ZigBee standard is built on top to provide upper layer communications; while the IEEE

802.15.6 standard is dedicated for short range wireless communications in the vicinity or inside

the human body using low transmission power. On the other hand, the mobile computing tier uses

the IEEE 802.11 ad-hoc mode standard for communication. This standard provides a low-cost

technology with high coverage and throughput, making it suitable to set up a mobile ad-hoc net-

work (MANET) [292]. Unlike IEEE 802.15.4, IEEE 802.11 nodes operate at higher transmission

power (30 dBm) with higher data rates [293]. This creates coexistence problems between IEEE

802.11 and IEEE 802.15.4/802.15.6, especially that there is a significant overlap between most of

the channels used by these standards. As for channel access, all these networks use the carrier

sense multiple access with collision avoidance (CSMA/CA), allowing multiple nodes to transmit

at different times without interference.

6.2.3 Channel Model

The distance between any two nodes i and j is denoted by ‖i− j‖. We assume that the power of

the signal transmitted by nodes decays at a rate of l(i, j) = ‖i− j‖−α , where α > 2 is the path-loss

exponent of transmitters. We use Rayleigh fading with mean one to model the small-scale fading

over each channel. Let hi j denotes the channel coefficient between nodes i and j. Let PMBAN,i,

PCN,i, and PMANET,i denote the powers of ith MBAN sensor node, ith CN node, and ith 802.11

mobile node, respectively.

For reliable communication, we assume that all users use a truncated channel inversion power
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control [213, 294] to assure that the average received signal power at the intended receiver is at least

equal to its sensitivity. Let Lm be a random variable representing the link length of a typical node.

Thus, nodes will use power control Pi = ρLα
m; and ρ� 1 denotes the coefficient of proportionality

that scales down the actual transmit power since in reality, the practical transmit power of a node

is far less than the path-loss [1].
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Figure 6.2: A topological realization of an m-Health system with medical sensor and MANET
networks.

6.2.4 Interference Sources

In what follows, we consider the Euclidean plane R2. Fig. 6.2 shows a topological realization

of medical sensor and MANET networks. The MBAN sensor nodes’ spatial locations follow a

homogeneous Poisson point process (PPP), ΦMBAN(t) of intensity λMBAN(t) at some instant time

t[291]. In what follows, the index t will be omitted to simplify the notations. Since the channel

of MBAN is divided into superframes containing active and inactive periods, we therefore model

the active MBAN sensor nodes as a thinning PPP, Φa
MBAN of intensity λ a

MBAN = ηλMBAN, where

η is the duty cycle of an MBAN sensor node representing the percentage of period activity in a

superframe [291]. The spatial locations of the CNs in IEEE 802.15.4 are modeled according to a
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homogeneous PPP, ΦCN with intensity λCN [295]. Furthermore, IEEE 802.11 transmitters’ spatial

locations follow a homogeneous PPP, ΦMANET of intensity λMANET. The receivers are assumed to

be located randomly around the transmitters, i.e., they can be present anywhere within a given re-

gion [296]. We assume that all nodes employ contention-based channel access and use CSMA/CA

where a node transmits only if no other nodes are detected active within a sensing range. A node

is continuously sensing the medium. If it detects another node in its contention domain, it refrains

from transmitting and freezes its timer. The timer specifies the number of time slots the node has

to back-off and wait before attempting to transmit [90].

To capture the effects of CSMA/CA and to accurately model the spatial distributions of nodes,

we use the Matérn hard core point process (MHCPP) type II, where each node is associated with a

random independent mark uniformly distributed between [0,1], and a node refrains from transmis-

sion only if there exists another node in its contention domain with a smaller mark. On the other

hand, in MHCPP type I, all nodes with a neighbor in its contention domain are silenced [297].

The MHCPP type II is constructed from the parent PPP, which represents the set of all contending

nodes. We define the contention domain as a random shaped region depending on the channel

fading, where nodes continuously sense the medium, measure the power level and then compare

it to a carrier sensing threshold δ . If the measured power is less than δ , the nodes can transmit;

otherwise they back off.

The intensity of mobile devices that access the same logical channel is given as [295]

λ
C
MANET = λMANET

(
1− e−N (γ)

)
/N (γ), (6.1)

where N (γ) = πλMANETE
[

P
2
α

MANET

]
Γ
(
1+ 2

α

)
δ
− 2

α represents the mean number of mobile de-

vices in the contention domain of a generic mobile device located at x ∈ R2. Due to the rapid

dynamic channel gain variations, the representative or typical mobile device cannot guarantee

non-interference from other nodes in the different realizations of its contention domain. Thus,
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the representative mobile device can only avoid the interference in the contention domain real-

ized at the time it listens to the spectrum and schedules its transmission [295]. This means that

the interferers no longer form an MHCPP, but rather a non-homogeneous PPP, ΦMANET
I of inten-

sity λ MANET
I . The interference at a test node is generated from nodes trying to access the same

channel and nodes located outside the test node’s contention domain. Let I (r) denotes the set

of interferers outside the test node’s contention domain and located at distance r away from it.

Then, I (r) = Fh(δ rα/E[PCN])Fh(δ rα/E[PMANET])Fh(δ rα/E[PMBAN]), where Fh(.) is the cumu-

lative distribution function (CDF) of the channel gains [295]. Finally, λ MANET
I = λ C

MANETI (r).

6.3 Physical Layer Security Scheme

6.3.1 Coverage Analysis of Mobile Computing Tier

Without loss of generality, we consider a typical route since the mobile devices have a homoge-

neous distribution [298]. Therefore the subsequent analysis will be focused on a typical link along

a typical route. We define the probability of a successful transmission from the typical mobile de-

vice o located at xo ∈ R2 in the MANET using IEEE 802.11 ad-hoc mode standard to its neighbor

i as: ps = P (γi,o ≥ θ)2, where γ denotes the signal-to-interference plus noise ratio (SINR). Since

security and latency are the utmost performance metrics in m-Health CPS, we obtain ps under two

different scenarios: when the typical mobile device transmits i) to its nearest neighbor and ii) to its

furthest neighbor.

We assume that the neighboring node for the typical transmitter lies within an angle 0 < φ ≤

π/2 of the source-destination axis [299]. The probability density function of the distance Lf from

any node to its furthest neighbor within dmax is given as [299]:

fLf(r) =
rφer2φ/2

ed2
maxφ/2−1

, 0≤ r ≤ dmax. (6.2)

2The probability of successful transmission accross every typical link along the typical route is the same in the
network [298].

101



On the other hand, the probability density function of the distance Lc from any node to its nearest

neighbor is given as [299]:

fLc(r) = rλφe−λ r2φ/2, r ∈ R+. (6.3)

Lemma 8. The Laplace transform of the aggregate interference at the typical mobile device o, Io,

is given by:

LIo(s) = exp
(
−2πλ MANET

I E[P
2
α

MANET]

αδ
2
α

ˆ
∞

0

sδx
2
α
−1

sδ + x

(
1− e−x)dx

·
ˆ

∞

0

sδy
2
α
−1

sδ + y

(
1− e−y)dy

ˆ
∞

0

sδ z
2
α
−1

sδ + z

(
1− e−z)dz

)
,

(6.4)

where x = δ rα/E[PCN]; y = δ rα/E[PMANET]; and z = δ rα/E[PMBAN].

Proof : See Appendix 8.6.

Looking at Eq. (6.4), it is very hard to use it as is for further analysis and computations. How-

ever, using numerical evaluations we can obtain explicit expressions by considering that the density

of colliding nodes can be expressed as: λ̃k = Nkλk, with Nk being the average number of colliding

nodes [300], and k = {MANET,CN,MBAN}. Therefore, the density of interfering nodes becomes:

λ k
I = λ C

k λ̃k. Thus, we can re-express LIo(s) as:

LIo(s) = exp

(
− Ωπs

2
α

sinc
( 2

α

)) , (6.5)

where Ω = λ CN
I E

[
P

2
α

CN

]
+λ

a,MBAN
I E

[
P

2
α

MBAN

]
+λ MANET

I E
[

P
2
α

MANET

]
.

Theorem 15. For the mobile computing tier and in interference-limited regime, the probability of
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a successful transmission ps = P (γi,0 ≥ θ) from a typical mobile device to its neighbor is:

ps =

ˆ
µc

0
exp

(
−πθ

2
α r2

ΩE
[

P
2
α

MANET

]−1

sinc−1
(

2
α

))
fLm(r)dr, (6.6)

where µc is the maximum coverage distance of the transmitter and m is c for nearest neighbor and

f for furthest neighbor.

When transmitting to the furthest neighbor, ps becomes:

ps =

φ

1− e
µ2

c

(
φ/2−πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃

)
2

(
πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃−φ/2

)(
ed2

maxφ/2−1
) , (6.7)

where Ω̃ = Ω/sinc(2/α).

When transmitting to the nearest neighbor, ps becomes:

ps =

(λMANETφ)

1− e
−µ2

c

(
πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃+λMANETφ/2

)
2

(
πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃+λMANETφ/2

) .
(6.8)

Proof : See Appendix 8.7.

Next, we obtain an upper bound on the distance µc that guarantees a target outage probability

ν .

Corollary 1. An upper bound for the typical link transmission success probability when transmit-
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ting to the furthest neighbor can be obtained as:

ps ≥ 1−ν

φ

1− e
µ2

c

(
φ/2−πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃

)
2

(
πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃−φ/2

)(
ed2

maxφ/2−1
) ≥ 1−ν

⇒ e
µ2

c

(
φ/2−πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃

)
< 1−2φ

−1 (1−ν)

(
πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃−φ/2

)(
ed2

maxφ/2−1
)

︸ ︷︷ ︸
ψ

⇒ µc <

√√√√√ logψ

φ/2−πθ
2
α E
[

P
2
α

MANET

]−1

Ω̃

≤ dmax. (6.9)

Corollary 2. Performing similar calculations as above gives us a lower bound on µc for the nearest

neighbor case. Therefore, it is not straightforward to obtain an upper bound for the typical link

transmission success probability when transmitting to the nearest neighbor. By applying Jensen’s

Inequality, we obtain a lower bound on ps, which we then use to obtain an upper bound on µc.

Thus,

µc <
1√

λMANETφ/2
4

√√√√√√√√√1− 2
α!

Γ

(
α

2
+1
)
−

(λMANETφ/2) log(1−ν)

πθ
2
α E
[

P
2
α

MANET

]−1

Ω̃


α

2
, (6.10)

where Γ(a) =
´

∞

0 e−tta−1dt.

Proof: See Appendix 8.8.

In what follows, we consider non-colliding eavesdroppers and we model their locations using

homogeneous PPP, ΦE, with intensity λE. The eavesdroppers attempt to intercept the transmitted
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data by the mobile devices in the second tier network.

6.3.2 Full Information on Eavesdroppers

In this scenario, we assume that eavesdropper users and their spatial locations are known to the

legitimate users [301, 302]3. Recognizing legitimate users from malicious ones is out of the scope

of this paper; however the process can be achieved by assigning trust values to neighbors, which

are then kept in a database. Over time, the trust values are updated based on observations of

users’ behaviors [303]. In [304], Liu et al. describe different methods to estimate eavesdroppers’

locations using received signal strength (RSS), angle of arrival (AOA), time of arrival (TOA),

and/or time difference of arrival (TDOA). We are interested in the eavesdropper that dominates

the secrecy rate, i.e., the most detrimental eavesdropper with the highest SINR. The aggregate

interference at a typical eavesdropper located at a distance ‖z‖ away from the typical mobile link

is the interference generated from all users in the first and second tiers, and is given by by Eq. (6.5),

since shifting the coordinates of the eavesdropper to the origin does not change the distribution of

PPP [305].

Let max
e∈ΦE

γe,0 denotes the highest received eavesdropper SINR of the typical mobile device sig-

nal, i.e., the eavesdropper with the most detrimental effect on the typical mobile device signal.

Lemma 9. In interference-limited networks, the average probability that a mobile device link is

secure is equal to the average probability that the rate of the most detrimental eavesdropper falls

below a threshold ε . It is expressed as:

ξ (ε) = P

(
log
(

1+max
e∈ΦE

γe,0

)
< ε

)

= exp

− λE

(2ε −1)
2
α E
[

P
2
α

E

]−1

Ω̃

 .

(6.11)

3The secrecy of the communication can be guaranteed when the locations of eavesdroppers are known, which helps
enhance the physical layer security scheme.
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Proof : See Appendix 8.9.

Remarks : From Eq. (6.11), it is interesting to see that the average secrecy rate increases with

a decrease in the eavesdroppers population, since it increases the distances of eavesdroppers to the

legitimate users.

A mobile device transmission is said to be secure if ξ (ε)≥ υs, where υs denotes the minimum

required secrecy probability.

Lemma 10. An upper bound for the secrecy rate threshold for secure communication in the high

SINR regime is given by:

ε ≤ α

2
log2

 −λE

E
[

P
2
α

E

]−1

Ω̃ logυs

 . (6.12)

The secure transmission region, As(µs,υs)⊂R2, around a typical mobile transmitter is random

and defined as the range within which eavesdroppers cannot intercept the communication with high

probability. In other words, As(µs,υs) is the region where the set of all eavesdroppers are located

outside a closed ball B
(

o,2ε/α‖xo‖
)

centered around the typical mobile transmitter located at

‖xo‖ with radius 2ε/α‖xo‖ [306]. Therefore we can use the upper bound on ε defined in Eq.( 6.12)

to define As(µs,υs) as:

As(µs,υs) =
{

x ∈ R2 : ‖e− xo‖> µs = 2ε/α‖xo‖
}
. (6.13)

In case of transmitting to the furthest neighbor:

µs ≤
ˆ dmax

0
2ε/αr fLf(r)dr = 2ε/α dmaxed2

maxφ/2− c
ed2

maxφ/2−1
, (6.14)

where ε =(α/2) log2

(
−λE/

(
E
[

P
2
α

E

]−1

Ω̃ logυs

))
; c=

√
π/(2φ)erfi

(
dmax

2
√

2φ

)
; and erfi(x)=

2/
√

π
´ x

0 et2
dt is the imaginary error function.
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In case of transmitting to the nearest neighbor:

µs ≤
ˆ

∞

0
2ε/αr fLc(r)dr = 2ε/α

√
π

2λMANETφ
, (6.15)

where ε = (α/2) log2

(
−λE/

(
E
[

P
2
α

E

]−1

Ω̃ logυs

))
.

Thus, the transmission region Ar(µr,ν ,υs) ⊂ R2 around a typical mobile transmitter that sat-

isfies a secrecy rate ξ (ε)≥ υs and a target outage probability ν is defined as:

Ar(µr,ν ,υs) =
{

x ∈ R2 : ‖x‖< µr,µr = min{µs,µc}
}
. (6.16)

6.3.3 No Information on Eavesdroppers

In this scenario, the malicious users are not known to the legitimate users. Thus, we consider

the worst-case scenario that all users are malicious [307, 308] and form a homogeneous PPP ΦI

of intensity λI = λ CN
I +λ

a,MBAN
I +λ MANET

I +λ E
I , since the superposition of independent PPP is

also a PPP [309]. We are interested in a state S where all interferers are located outside region

B (o,Rc). A transmission region is said to be secure if the probability of the interference power

received by the mobile user falling below ε is greater than υs. Thus, the interference samples

received by the typical mobile device outside region B can be expressed as

S : y[n] = ∑
i∈φI∩Bc

si[n]+ z[n], (6.17)

where n = 0,1, ...,N− 1 is the sample index with N being the total number of samples; si[n] =

(PI,ohiol(i,o)) [n] is the nth sample of the received signal from interferer i by a typical mobile user;

z[n] is the Gaussian noise (z[n]∼N (0,σ2
n )); φI is a realization of ΦI denoting the set of interferers’

locations; and Bc is the complementary set of B. The average received interference power can be

expressed as ζ = 1/N ∑
N−1
n=0 y[n]. When N is large, by central limit theorem, the distribution of ζ
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approaches Gaussian distribution. Thus, we can characterize the mean and variance of ζ as [219]:

E(ζ ) = ∑
i∈φ̃I,|B|=0

PI,ihiol(i,o) = II,

Var(ζ ) =
1

N2

(
II +σ

2
n
)
,

(6.18)

where |B| denotes the number of interferers inside region B. As can be seen in Eq. (6.18), the

random variable II depends on the spatial distribution of interferers. Because the secrecy of the

link depends heavily on II, we can express the average probability that a mobile link is secure as:

ξ (ε) =
λMANET

λtot

ˆ
∞

0
fII(x)P (ζ < ε|II,S )dx, (6.19)

where λtot = λMANET + λMBAN + λCN + λE; fII(x) is the PDF of II; and P (ζ < ε|II) = 1−

Q
(

N(ε−x)√
x+σ2

n

)
, where Q-function is the tail probability of the standard normal distribution. Next,

we obtain an expression for fII(x) in order to characterize ξ (ε).

Lemma 11. An expression of the Laplace transform of II can be obtained as:

LII(s) = E[e−sII ]

= exp
(
−2πλI

ˆ
∞

Rc

(
1−EPI

[
1

1+ sPIr−α

])
rdr
)

= exp
(
− 2πλIs
(α−2)Rα−2

c
E
[

2F1

(
1,1− 2

α
;2− 2

α
;−sPI

Rα
c

)
PI

])
.

(6.20)

For the special case of α = 4, LII(s) becomes:

LII(s) = exp
(
−R−2

c
√

sE
[√

PI arctan
(√

sPI

R2
c

)])
. (6.21)

The PDF of II can be accurately approximated by a log normal distribution [310, 311] as:

fII(x)≈
1

xϑ
√

2π
exp
(
− log(x/m)2

2ϑ 2

)
, (6.22)
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where ϑ 2 = log
(
κ2/κ2

1 +1
)
; m = κ1/exp(ϑ 2/2); κ1 = E[PI]/R4

c ; and κ2 = 2E[P2
I ]/(3R8

c).

Theorem 16. In interference-limited networks, the average probability that a mobile link is secure

can be expressed as:

ξ (ε) =
λMANET

λtot

ˆ
∞

0
Q

(
−N(ε− x)√

x+σ2
n

)
fII(x)dx

(a)
≈ λMANET

λtot

1−
ˆ

∞

ε

exp
(
− log(x/m)2

2ϑ 2

)
xϑ
√

2π


=

λMANET

λtot

(
1−Q

(
logε− logm

ϑ

))
,

(6.23)

where (a) comes from the fact that the Q-function can be approximated by a step function in

interference-limited regime [312].

Corollary 3. An upper bound for the secrecy rate threshold for secure communication in interference-

limited regime is given by:

ξ (ε)≥ υs⇒ ε < mexp
(

ϑQ−1
(

1−υse−πλMANETR2
c

))
. (6.24)

Therefore, in case of transmitting to the furthest neighbor,

µs < 2
m
α

exp
(

ϑQ−1
(

1−υse−πλMANETR2
c
))

dmaxed2
maxφ/2− c

ed2
maxφ/2−1

. (6.25)

In case of transmitting to the nearest neighbor:

µs < 2
m
α

exp
(

ϑQ−1
(

1−υse−πλMANETR2
c
))√

π

2λMANETφ
, (6.26)

Thus, the transmission region Ar(µr,ν ,υs) ⊂ R2 around a typical mobile transmitter that sat-
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isfies a secrecy rate ξ (ε)≥ υs and a target outage probability ν is defined as:

Ar(µr,ν ,υs) =
{

x ∈ R2 : ‖x‖< µr,µr = min{µc,µs}
}
. (6.27)

6.3.4 End-to-End Delay Analysis

In this section we analyze the mean end-to-end delay defined as the average number of time slots

required for the packet to reach the destination. We use the random-sequential totally asymmetric

simple exclusion process (random-sequential TASEP) as defined in [298, 313], which describes

system dynamics with interacting particles (or packets). Considering L̄+1 sites (or nodes) in the

system, then a single site is uniformly randomly picked for transmission with probability 1/(L̄+1).

The picked site is denoted as site 0 (source node) which performs hopping with probability ps

through L̄ sites to reach the destination site. The configuration site τi[t] defines whether a site is

occupied at time t, i.e. has a packet in its buffer (τi[t] = 1) or empty (τi[t] = 0). The probability

that a node is occupied is equal to the average number of packets at node i’s buffer. The occupancy

of source and destination nodes are given in [[298], Eq. 8]:

E[τ1] =
3L̄

2(2L̄+1)
and E[τL̄] =

L̄+2
2(2L̄+1)

, (6.28)

with the average number of occupied nodes: ∑
L̄
i=0 E[τi] = 1+ L̄/2. Next, we find the average

number of hops in the system.

The area of transmission region of a typical mobile transmitter is defined as [314]:

|Ar(µr,ν ,υs)|=
ˆ
R2

Πy∈ΦMANET1(‖x‖< µr)dx. (6.29)
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The average transmission area can be expressed as

E[|Ar(µr,ν ,υs)|] = EEo
ΦMANET

[|Arµr,ν ,υs)|]

= EEΦMANET[|Ar(µr,ν ,υs)|]

=

ˆ
R2

EΦMANETΠy∈ΦMANET1(‖x‖< µr)dx

=

ˆ
R2

e−λMANET1(‖x‖<µr)dx = e−λMANETπµ2
r .

(6.30)

We define the number of all relay users located in the transmission region, Ar(µr,ν ,υs), of the

typical user o as Nr = |∀{ j ∈ΦMANET \o}|∩Ar(µr,ν ,υs)
4. Nr is a Poisson random variable with

mean λMANETE[|Ar(µr,ν ,υs)|]. It should be noted that Nr is not a function of relay users’ locations

j.

The average number of hops in the system becomes: L̄ = λMANET/Nr. At steady state (as

t → ∞), the spatial throughput at steady-state becomes [298]: T (L̄) = ps/(2L̄+1). By Little’s

theorem, the average end-to-end delay5 is expressed as [298]

D(L̄) =

L̄
∑

i=0
E[τi]

T
=

2L̄2 +5L̄+2
2ps

.
(6.31)

In case of transmitting to the furthest neighbor:

D(L̄) =
∆1

(
2e2λMANETπµ2

r +5eλMANETπµ2
r +2

)
1− e

µ2
c

(
φ/2−πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃

) , (6.32)

∆1 =

(
πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃−φ/2

)(
ed2

maxφ/2−1
)

φ−1.

4|.| denotes the set cardinality.
5Queuing delay is neglected since we assume that source nodes always have packets to transmit.
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In case of transmitting to the nearest neighbor:

D(L̄) =
∆2

(
2e2λMANETπµ2

r +5eλMANETπµ2
r +2

)
1− e

−µ2
c

(
πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃+λMANETφ/2

) , (6.33)

∆2 =

(
πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃+λMANETφ/2

)
(λMANETφ)−1.

Let DTh denotes the maximum allowable delay after which the packet needs to be discarded.

In case of transmitting to the furthest neighbor:

D(L̄)≤ DTh

⇒ µr ≤

√
DTh

9πλMANETρ1
− 1

πλMANET
, µd,

(6.34)

ρ1 = ∆1
/(

1− exp

(
µ2

c

(
φ/2−πθ

2
α E
[

P
2
α

MANET

]−1

Ω̃

)))
.

In case of transmitting to the nearest neighbor:

µr ≤

√
DTh

9πλMANETρ2
− 1

πλMANET
, µd, (6.35)

where ρ2 = ∆2

/1− e
−µ2

c

(
πθ

2
α E
[

P
2
α

MANET

]−1
Ω̃+λMANETφ/2

).

The transmission region Ar(µr,ν ,υs,DTh) that satisfies a secrecy rate ξ (ε)≥υs, a target outage

probability ν and a target end-to-end delay threshold DTh is defined as

Ar(µr,ν ,υs,DTh) =
{

x ∈ R2 : ‖x‖< µr,µr = min{µs,µc,µd}
}
. (6.36)
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6.4 Numerical Results and Analysis

In this section, we present numerical results to study the proposed security scheme for mobile

computing network tier. Unless otherwise stated, we set the following system parameters: Nm =

1 [300], α = 4, λCN = λMBAN = λMANET = 10−1 m−2; υs = 0.5; δ = 10−5 dBm [295]; θ = 20 dB

(high SINR conditions) [306]; ν = 0.5 ; φ = π/2 [298]; N = 5000; and dmax = 3 m.
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Figure 6.3: The average transmission capacity versus the intensity of mobile users under full in-
formation on eavesdroppers (λE = 10−2).

Fig. 6.3 depicts the average transmission capacity, i.e., the density of successful transmissions

at a rate log(1+ θ), expressed as ϒ = λMANET log(1+ θ)ps [279]. Under the proposed security

scheme, the transmitter restricts its transmission power to the secure transmission region As, lead-

ing to a higher secrecy probability but at the expense of fewer number of transmissions. However,

when secure transmission is not employed, the transmitter is able to extend its range of commu-

nications to a larger number of users, but at the expense of compromising its protection from

eavesdroppers. Furthermore, transmitting to the nearest neighbor achieves higher transmission ca-

pacity compared to when transmitting to the furthest neighbor, due to increasing the probability of

successful transmissions, as will be explained in Fig. 6.7.
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Fig. 6.4 shows the average secrecy probability ξ (ε) versus the intensity of eavesdroppers λE.

First, the average secrecy probability decreases as λE increases mainly due to reducing the dis-

tances between legitimate users and eavesdroppers. Second, when the mobile user has full infor-

mation on the eavesdroppers in the network, it can achieve much higher secrecy probability than

that of the scenario without information on malicious users, since the latter treats all interferers as

eavesdroppers (worst-case scenario). This is especially true for a smaller population of eavesdrop-

pers. Third, when transmitting to the nearest neighbor, the secrecy probability is higher than when

transmitting to the furthest neighbor.
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Figure 6.4: The average secrecy probability ξ (ε) versus the intensity of eavesdroppers (Rc = 10 m
and ε = 0.5 ).

Fig. 6.5 shows the secure transmission distance µs versus the intensity of mobile users.Transmitting

to the nearest neighbor achieves higher µs than when transmitting to the furthest neighbor, due to

larger distances from the interferers to the mobile user. Furthermore, it can be seen that the full

information on eavesdroppers scenario achieves much higher secure transmission distance.

Fig. 6.6 plots the transmission distance µr = min{µs,µc} for the no information on eavesdrop-

pers scenario versus the intensity of mobile users for different values of Rc. Transmitting to the

nearest neighbor achieves the highest transmission distance that guarantees a target outage proba-
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Figure 6.5: The secure transmission distance µs versus the intensity of mobile users (Rc = 10 m).

bility ν and a secrecy probability υs. As Rc increases, the interference inside region B becomes

higher, leading to a decrease in the secure transmission region. Note that for all values of Rc, trans-

mitting to the furthest neighbor achieves the lowest µr since it is constrained with the small secure

transmission distance µs.

Fig. 6.7 depicts the mean end-to-end delay versus λMANET. When information on eavesdrop-

pers is available, transmitting to the nearest neighbor achieves the lowest delay due to higher

successful transmission probability ps. Furthermore, transmitting to the nearest neighbor without

information on eavesdroppers achieves lower delay than the case of transmitting to the furthest

neighbor. It is interesting to see that beyond λMANET = 0.14, the no information-nearest neigh-

bor case becomes worse than the no information-furthest case since the latter is not in function of

mobile users’ intensity, so it remains constant throughout.

To study the achievable trade-off between the delay and the secrecy, we plot Fig. 6.8, which

shows an almost linear behavior for the ratio D(L̄)/ξ (ε) in terms of λE for all the cases except for

the full information-furthest case which increases exponentially. As can be seen, transmitting to

the nearest neighbor with full information on eavesdroppers achieves the best trade-off between
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Figure 6.6: The transmission distance µr = min{µs,µc} versus the intensity of mobile users (λE =
10−2).
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delay and secrecy, followed by the case of transmitting to the furthest neighbor. When the mobile

user does not have information on users’ behaviors, it is always better to transmit to the nearest

neighbor rather than to the furthest one.
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Figure 6.8: The plot of D(L̄)/ξ (ε) versus the intensity of eavesdroppers (Rc = 10 m; ε = 0.5; and
source node is assumed to be 25 m away from the destination node).

Finally, Fig. 6.9 shows the transmission distance µr = min{µs,µc,µd} versus λE for different

values of DTh. As the delay threshold deadline is relaxed, so is the transmission distance. Beyond

DTh = 50 seconds, we do not see much changes to µr since it becomes constrained by the minimum

among µc and µs excluding µd. In other words, we see similar performance as in Fig. 6.6.

Discussions and Insights

By defining a secure ranging distance around a typical transmitter using stochastic geometry

tools, we showed that the transmitter was able to communicate with its neighbors with high average

secrecy probability, without the need for complex calculations to estimate the legitimate neighbors

distances like in [271, 272], and without the need for sophisticated secure protocols such as RF

fingerprinting [274] or forbidden structures identification in connectivity graphs [315]. By learning

about users’ behaviors and trustworthiness, the transmitter was able to extend its secure commu-

nication range, while achieving a low mean end-to-end delay, a critical requirement for sensitive
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Figure 6.9: The transmission distance µr = min{µs,µc,µd} versus the intensity of mobile users for
different values of DTh (Rc = 10m and λE = 10−2).

medical data. Furthermore, we showed that the cost of securely communicating with neighboring

devices is a decreased transmission capacity due to limiting the communication range between

devices.

6.5 Conclusions

In this chapter, we have proposed a physical layer security scheme for mobile computing tier in m-

Health CPS using tools from stochastic geometry. We have analytically derived expressions for the

transmission region around a typical mobile user that satisfies a secrecy probability, a target outage

probability and a delay threshold constraints. Furthermore, we have provided analysis on the av-

erage end-to-end delay across a typical link. We have compared these performance metrics in two

different scenarios: when information on users’ behaviors is available and when it is unavailable.

In addition, we considered two cases: i) when mobile user transmits to the nearest neighbor, and ii)

when it transmits to the furthest neighbor. Numerical results have shown that being equipped with

information on eavesdroppers can benefit the system performance in terms of secrecy and latency.
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On the other hand, when that information cannot be obtained, it is always best to transmit to the

nearest neighbor.
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Chapter 8

Appendix

8.1 Proof of Lemma 1

For a tractable and accurate analysis, we consider the aggregated RF interference at D2D user as

the sum of the interference I0 coming from CUs outside Ah and the interference coming from

inside Ah. We assume a typical D2D user at the origin using Slivniyaks theorem. Let A c
h be the

complementary set of Ah.

LIRF(s) = EΦC

exp

−s ∑
xi∈φ̃C∩Ah
Φ̃C∩Ah 6= /0

PChxi,0l(xi,0)


EΦC

exp

−s ∑
xi∈Φ̃C∩A c

h

PChxi,0l(xi,0)


(a)
=

∑
∞
k=1 P(N(Ah) = k)E [exp(−sPChxi,0l(xi,0))]

k

1− e−λ̃CπR2
h

LI0(s)

=
e−λ̃CπR2

h

1− e−λ̃CπR2
h
LI0(s)

∞

∑
k=1

(λ̃CπR2
h)

k

k!
E
[

1
1+ sPCl(xi,0)

]k

= LI0(s)
∑

∞
k=0

(λ̃CπR2
h)

k

k! E
[

1
1+sPCl(xi,0)

]k
−LI0(s)e

−λ̃CπR2
h

1− e−λ̃CπR2
h

=

exp
(
−2λ̃Cπ2(s)2/α P2/α

C
α sin(2π/α)

)
−LI0(s)e

−λ̃CπR2
h

1− e−λ̃CπR2
h

,
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where (a) comes from the fact that transmitters are uniformly distributed and the number of trans-

mitters follows a Poisson distribution. Note that the expression is conditioned on having at least

one cellular transmitter inside Ah.

Now, we need to find LI0(s). Let xi be the location of CU and yi(xi) be the location of corre-

sponding serving BS. Let A be the event of ‖xi‖ ≥ Rh.

LI0(s) = E[e−sI0]

= EΦC,ΦB,h

[
∏

xi∈φC

∏
yi∈φB

e−sPChxi,0l(xi,0)1{A}

]

(a)
= EΦC,h

 ∏
xi∈φC

EΦB ∏
yi∈φB

‖yi−xi‖≤‖φB−xi‖

e−sPChxi,0l(xi,0)1{A}


(b)
= EΦC,h

[
∏

xi∈φC

E‖xi−y∗i ‖e
−sPChxi,0l(xi,0)1{A}

]
(c)
≈ exp

(
−2πλB

ˆ
∞

Rh

(
1− 1

1+ sPCr−α

)
rdr
)

= exp

(
− 2πλBPCs
(α−2)Rα−2

h
2F1

(
1,1− 2

α
;2− 2

α
;−sPC

Rα
h

))
,

where (a) comes from the independence of ΦB and ΦC and (b) comes from the fact that a CU would

select the nearest BS. Note that the distances from CU to serving BSs are correlated; however this

correlation is very weak and can be ignored [211], which justifies the approximation sign in (c).

8.2 Proof of Lemma 3

FDZ(dz) = P(DZ ≤ dz)

= P(D2
X +D2

Y −2DX DY cosφ ≤ d2
z )

= P(DY ≤
√

d2
z −D2

X +2DX DY cosφ).
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Using Leibnitz Integration rule and having fDX (dx), fDY (dy), fΦ(φ) independent, we get:

fDZ(dz) =
d

ddz

[ˆ
π/2

−π/2

ˆ Rr

0

ˆ √d2
z−D2

X+2DX DY cosφ

0
fDY (dy) fDX (dx) fΦ(φ)d(dy)d(dx)dφ

]

=

ˆ
π/2

−π/2

ˆ Rr

0

dz√
2d2

x d2
y cosφ −d2

x +d2
z

fDY (
√

2d2
x d2

y cosφ −d2
x +d2

z ) fDX (dx) fΦ(φ)d(dx)dφ

=

ˆ
π/2

−π/2
fΦ(φ)

ˆ Rr

0

4πλDdz

µ2
m
(
1− e−πλDR2

r
)dxe−πλDd2

x d(dx)dφ

=
2dz

πµ2
m
, 0≤ dz ≤

√
πµm.

(8.1)

8.3 Proof of Theorem 6

The spectral efficiency of cellular users is defined by Proposition 3 in [1] as:

RC = E0
ΦB,ΦC

[
1
N

]
E [log(1+SINR)] , (8.2)

where N is a random variable representing the number of cellular transmitters in a cell. Considering

a cell area S, and having ΦB independent from ΦC, we have:

E0
ΦB,ΦC

[
1
N

]
= ES

[
E0

ΦC

[
1

N(S)
|S
]]

= ES

[
∞

∑
n=1

(SλC)
n−1e−SλC

n(n−1)

]
= ES


(

1− e−SλC

)
SλC

 . (8.3)

To obtain a closed-form expression for the PDF of S, we use a sufficiently accurate approximation

as defined in [316]:

fS(x) =
343
15

√
7

2π
(xλB)

5/2 exp
(
−7

2
xλB

)
λB. (8.4)
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Substituting (8.4) in (8.3) gives;

E0
ΦB,ΦC

[
1
N

]
=

343
√

7λ
7/2
B

20
√

2λC

[(
7λB

2

)− 5
2

−
(

7λB

2
+λC

)− 5
2
]
.

To calculate E [log(1+SINR)], we use Theorem 3 in [317]:

E [log(1+SINR)] =
ˆ

r>0
2πrλBe−πλBr2

ˆ
t>0

e−σ2
n rα (2t−1)LIBS

(
rα
(
2t−1

))
dtdr,

(8.5)

where 2πrλBe−πλBr2
is the PDF of the transceiver distance. Substituting (8.5) in (8.2) analytically

characterizes RC.

8.4 Proof of Theorem 10
P
(
γs,r ≥ θM∩ γr,d ≥ θM|ΦC,ΦD,ΦM

)
= P

(
PMhsrl(s,r)≥ θMIt

r ∩ P̂Dhrdl(r,d)≥ θMIt
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 ∏
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P̂Dl(r,d)

)
 · ∏
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El

 1

1+
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θMl(x,r)
PMl(s,r)

)
 .

The PDF of the distance between relay and destination is given by Lemma 3. By transformation

of random variables, we can obtain the PDF of l(r,d) as
(

2l−2/α−1
)
/
(
απµ2) for 1/

(√
πµ
)α ≤

l ≤ ∞. A closed-form expression for El(r,d)
[
1/
(
1+θMl(x,d)/

(
P̂Dl(r,d)

))]
cannot be obtained.

Therefore, we use the following approximation obtained from numerical observations in [209]:
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E [1/(1+Krα)]≈ 1/
(

1+K2/αE[r]2
)

. Then,

El
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 , (8.6)

where erf(z) = (2/
√

π)
´ z

0 e−t2
dt is the error function.

Using E
[

∏
x∈Φ

v(x)
]
= exp

(
−λ
´
R2 [1− v(x)]dx

)
completes the proof.

8.5 Proof of Theorem 12

Since hk ∼ exp(1), then P (hk ≥ x) = e−x. We can write the following:

P (γk ≥ β ) = P
(
hk ≥ β rαP−1

k (Itot,k +σ
2)
)

= E
[
exp
(
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k (Itot,k +σ
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2
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k )
]

The Laplace transform of LItot,k(β rαP−1
k ) is given in Eq. (43) in [257] as:

LItot,k(β rαP−1
k ) = exp
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2β B̄2/α−1

jk

α−2 2F1
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B̄ jk

) . (8.7)
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For interference-limited networks, we ignore the noise (σ2 = 0). Then, according to [257]:

P (γk ≥ β ) =
K

∏
j=0

LItot,k(β rαP−1
k )

= exp

−π

K

∑
j=0
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2β B̄2/α−1
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α−2 2F1
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α
;2− 2

α
,− β

B̄ jk

) ,

which completes the proof.

8.6 Proof of Lemma 8

LIo(s) = E
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= exp
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(b)
= exp
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sδy
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1− e−y)dy
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∞

0

sδ z
2
α
−1

sδ + z

(
1− e−z)dz

)
where (a) comes from using the probability generating functional of the PPP; and (b) is obtained

from [295] using Fh(g) = 1− e−g, and letting x = δ rα/E[PCN], y = δ rα/E[PMANET], and z =

δ rα/E[PMBAN], which completes the proof.
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8.7 Proof of Theorem 15

Let Ω̃ = ω/sinc(2/α). Since hio ∼ exp(1), then P (hio ≥ x) = e−x, then we can write the follow-

ing:

P (γi,o ≥ θ) = P
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)(
ed2

maxφ/2−1
) ,

(8.8)

where in (a), we ignore the noise (σ2 = 0). Similarly, we obtain the successful transmission

probability when the typical mobile device is communicating with its nearest neighbor.

8.8 Proof of Corollary 2

From Appendix 8.7, we can write the following:

P (γi,o ≥ θ) = EX

[
e−b2X

2
α

]
, (8.9)

where X = rα ; and b2 = πθ
2
α E
[

P
2
α

MANET

]−1

Ω̃.

We follow similar calculations to [318]:

Let χ(x) = e−b2x2/α

, then χ ′(x) = −2b2x(2/α)−1e−b2x2/α

α
; and χ ′′(x) =

2b2e−b2x2/α
(

2b2x
4
α −2+(α−2)x

2
α −2

)
α2 .

For α > 2, χ ′′(x)≥ 0 for x≥ 0, and thus χ(x) is convex for x≥ 0.
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Then, we apply Jensen’s Inequality to get: EX

[
e−b2X2/α

]
≥ e−b2E[X ]2/α

.

E[X ]2/α =

{
λMANETφ

ˆ
µc

0
rα+1e−λMANETr2φ/2dr

}2/α

= (λMANETφ/2)−1
(

Γ

(
α

2
+1
)
−Γ

(
α

2
+1,λMANETµ

2
c φ/2

)) 2
α

.

exp
(
−b2E[X ]2/α

)
≥ 1−ν

⇒ Γ

(
α

2
+1,λMANETµ

2
c φ/2

)
> Γ

(
α

2
+1
)
−
(
(λMANETφ/2) log(1−ν)

b2

)α

2

,

where Γ(a,x)=
´

∞

x e−tta−1dt. Next we use the following approximation for the incomplete Gamma

function, when n is integer [319]: Γ(1+n,x)= n!e−xen(x), where en(x)= 1+x+x2/2+ ...+xn/n!,

for n= 0,1,2, .. are the partial sums of the exponential series. Furthermore, since λMANETµ2
c φ/2�

1 [205], we can safely approximate e−x ≈ 1− x, and en(x)≈ 1+ x.
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8.9 Proof of Lemma 9

Using similar calculations to [280]:

P

(
log
(
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γe,o

)
< ε

)
= P

(
max
e∈ΦE

γe,o < 2ε −1
)

(a)
= P

( ⋂
e∈ΦE

γe,o < 2ε −1

)
(b)
= EΦE

[
1

( ⋂
e∈ΦE

γe,o < 2ε −1

)]

= EΦE

[
∏

e∈ΦE

P (γe,o < 2ε −1|z)

]

= EΦE

[
∏

e∈ΦE

(
1− e−P−1

E,e (2
ε−1)l(z,o)−1(σ2+IE)

)]
(c)
= EΦE

[
∏

e∈ΦE

(
1−LIE

(
P−1

E,e (2
ε −1)l(z,o)−1

))]

= exp
(
−2πλE

ˆ
∞

0
EPE

[
LIE

(
P−1

E (2ε −1)l(z,o)−1)]rdr
)

= exp

− λE

(2ε −1)
2
α E
[

P
2
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 ,

where (a) comes from the fact that the probability of the most detrimental rate falls below ε is

equal to all the rates falling below ε; in (b) the indicator function 1(A) for event A.
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