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Abstract

Rough set theory is a useful approach for decision rule induction which is applied

to large life data sets. Lower and upper approximations of concept values are used

to induce rules for incomplete data sets. In our research we will study validity of

modifications suggested to characteristic relation. We discuss the implementation of

modifications to characteristic relation, and the local definability of each modified set.

We show that all suggested modification sets are not locally definable except for max-

imal consistent blocks that are restricted to data set with "do not care" conditions. A

comparative analysis was conducted for characteristic sets and modifications in terms

of cardinality of lower and upper approximations of each concept and decision rules

induced by each modification. In this research, experiments were conducted on four

incomplete data sets with lost and do not care conditions. LEM2 algorithm was imple-

mented to induce certain and possible rules from the incomplete data set. To measure

the classification average error rate for induced rules, ten-fold cross validation was

implemented. Our results show that there is no significant difference between the

qualities of rule induced from each modification.
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Chapter 1

Introduction

Rough set theory is a useful approach for decision rule induction which is applied to large life data

sets. Rough set approach is used to handle incomplete data sets, where there are two interpreta-

tions of missing attribute values: lost values, denoted by "?" which means that the original attribute

value was known, however due to various reasons it was erased or never obtained. "Do not care"

values are denoted by "*". Such value is irrelevant and can be replaced by any value of attribute

domain, since its values does not affect the final outcome. Rough Set theory elementary sets are

extended to deal with incomplete data sets where characteristic set and characteristic relation are

proposed by Jerzy Grzymala-Busse to deal with incomplete information system with both lost and

"do not care" conditions. The characteristic set KB(x) may be interpreted as the set of all cases that

are indistinguishable from object x and for all attributes a ∈ B where the attribute value pairs are

based on the interpretation of missing attribute values. The characteristics relation R(B) is reflexive

but not symmetric or transitive. Decision rule induction is the process by which rules are induced

from the decision tables. It involves extraction of high level information from low level data and

it is the most fundamental data mining technique. Rule induction algorithm LEM2 is used with

lower and upper approximations of concept values to induce rules for incomplete data sets. In this

thesis, we will study modifications to the definition of characteristic relation that were suggested

due to two unreasonable situations, first the characteristic relation is classifying two objects that
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do not have any known equivalent attribute values to be in the same class or two objects that have

a lot of known equal attribute values, but are members of different classes. Another approach for

rule induction on incomplete data sets is the concept of maximal consistent block. It is defined as

that maximal collection of objects in which all objects are similar, and they are indiscernible based

on the attribute values available. The binary relation of maximal consistent blocks is symmetric

and reflexive.

The objective of this thesis is to study validity of modifications suggested to characteristic relation

and the local definability of each modified set, as well as the impact of each modification on rule

induction. A comparative analysis was conducted for characteristic sets and modifications in terms

of cardinalities of lower and upper approximations of each concept and decision rules induced by

each modification. Also, we measured the classification average error rate for induced rules by

implementing ten-fold cross validation.

Section 2 covers background knowledge on rough set theory and information systems. Section 3

covers modifications to the characteristic relation, maximal consistent blocks and the local defin-

ability of each modified relation characteristic sets. Section 4 covers data sets used in conducting

experiments and results of the experiments. Section 5 covers the conclusion derived from the

experiments.
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Chapter 2

Background

This chapter will provide an overview of complete and incomplete information systems, funda-

mental concepts of rough set theory and characteristic relation.

2.1 Information Systems and Decision Table

Decision table [13] is used as a way to represent knowledge and data in data mining, in which

each input data set is represented as a decision table. Each row of the decision table will represent

an object, and each column corresponds to a variable called an attribute, where attribute values

will provide information about the object, and attribute decision value will classify the object to

a concept. Conventionally, information system is the duple IS = <U, A> where U is non-empty

finite set of objects called the universe, and A = C ∪ D is a non-empty finite set of attributes, C is

the set of attributes and D is the set consisting of a decision attribute. For every a ∈ A and x ∈ U,

we have the a(x) ∈ Va where Va is called the domain of the attribute a. V =
⋃

a∈A Va is the value

set of all attributes. Let a ∈ A, x ∈ U, v ∈ Va, then the pair (a,v) is called attribute-value pair, then

the block of an attribute-value pair is denoted by [(a,v)] for a complete data set is [(a,v)]= { x | x ∈

U, a(x) = v }.
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2.2 Rough Set Theory

Rough Set Theory, introduced by Z.Pawlak is a mathematical tool used for analyzing the uncer-

tainty and vagueness of a data model. It is proven to be useful in Artificial Intelligence, Data

Mining, Machine Learning, Pattern Recognition, Knowledge Acquisition, etc. The main goal of

rough set analysis is the induction of approximation of concepts that can be used for feature selec-

tion, feature extraction, data reduction, decision rule generation, and pattern extraction.

Information system is complete if there is no missing attribute values and consistent if there do not

exist any objects with the same values to all attribute conditions, but their decision attribute has

different values. In rough set theory complete and consistent information system is categorized

by the indiscernibility relation [6], which is denoted by IND(B), where B ⊆ A, A is the set of all

attributes. IND(B) = { (x, y) | (x, y) ∈ U x U and ∀ a ∈ B⇒ a(x) = a(y) },

where a(x) denote the value of the attribute for the object x. Indescribability relation describes

the indescribability of an object, which means that any two objects are indistinguishable from

each other, therefore the indescribability relation on a complete data set is an equivalence rela-

tion. The equivalence relation is reflexive, symmetric and transitive. The equivalence classes of

B-Indescribability relation are called elementary sets of B and denoted by [x]B. Any union of B-

elementary sets will be called a B-definable set.

For complete data set, the lower and upper approximations [13] will be defined by using elemen-

tary sets of R(B). Let X be a concept, B ⊆ A, x ∈ U and R(B) is the equivalence relation for

complete data set which its elementary sets are [x]B, the B-lower and B-upper approximations of

X are defined as follows:

BX = ∪{[x]B| x∈X, [x]B ⊆ X}, BX = ∪{[x]B| x∈X, [x]B ∩ X 6= /0 }=∪{[x]B| x ∈ X}.

4



2.3 Incomplete Information Systems

In the real world, there are many incomplete data sets with missing attribute values due to various

reasons. There are two known interpretations of missing attribute values:

• Lost values, denoted by ?

The original attribute value was known, however due to various reasons it was erased and

never obtained. If for an attribute a, there exists a object x where a(x) = ?, then x is not

included in any [(a, v)] blocks for all specified values v of attribute a.

• "Do not care" values, denoted by *

Such attribute value can be replaced by any value of attribute domain, since it does not affect

the final outcome. If for an attribute a, there exists a object x where a(x) = *, then x is

included in all [(a, v)] blocks for all specified values v of attribute a.

object Temperature Headache Nausea Flu

1 High ? No Yes
2 Very-high Yes Yes Yes
3 ? No No No
4 High Yes Yes Yes
5 High ? Yes No
6 Normal yes No No
7 Normal No Yes No
8 * Yes * Yes

Table 2.1: An example of incomplete decision table

The attribute-value blocks for Table 2.1 data set when B = A are shown in Table 2.2.
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(a,v) [(a,v)]
(Temperature, High) {1, 4, 5, 8}

(Temperature, Very-high) {2, 8}
(Temperature, normal) {6, 7, 8}

(Headache, yes) {2, 4, 6, 8}
(Headache, no) {3, 7}
(Nausea, no) {1, 3, 6, 8}
(Nausea, yes) {2, 4, 5, 7, 8}

Table 2.2: Attribute-value blocks for Table2.1

2.4 Characteristic Sets and Characteristic Relation

Rough Set theory elementary sets are extended [3][9] to deal with incomplete data sets, character-

istic set and characteristic relation are introduced by Jerzy Grzymala-Busse to deal with incomplete

information system with both lost and "do not care" conditions. For object x ∈ U and B ⊆ A, the

characteristic set KB(x) of B is defined as the intersection of the sets K(x, a). For all a ∈ B, where

the set K(x, a) is defined in the following way:

(1) If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its value a(x).

(2) If a(x) =? or a(x) = *, then the set K(x, a) = U, where U is the set of all objects.

The characteristic sets for Table 2.1 incomplete data set where B = A are shown in Table 2.3.

KB(x)
KB(1) = {1, 8}
KB(2) = {2, 8}
KB(3) = {3}

KB(4) = {4, 8}
KB(5) = {4, 5, 8}
KB(6) = {6, 8}
KB(7) = {7}

KB(8) = {2, 4, 6, 8}

Table 2.3: Characteristic sets for Table 2.1.

For incomplete data set, the lower and upper approximations [3] will be defined by using char-

acteristics sets instead of elementary sets. For incomplete data sets there are three definitions of
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lower and upper approximation : singleton, subset and concept. Let X be a concept, B ⊆ A, x ∈

U, and R(B) be a characteristic relation for incomplete data set with characteristic set K(x), then

the singleton B-lower and B-upper approximations of X are defined as follows:

BX = {x ∈ U | KB(x) ⊆ X}, BX = {x ∈ U | KB(x) ∩ X 6= /0}

For incomplete data set presented in Table 1, the singleton A-lower and A-upper approximations

of the two concepts {1, 2, 4, 8} and {3, 5, 6, 7} are:

A{1, 2, 4, 8}={1, 2, 4}, A{3, 5, 6, 7}={3,7}.

A{1, 2, 4, 8}={1, 2, 4, 5, 6, 8}, A{3, 5, 6, 7}={3, 5, 6, 7, 8}.

A subset B-lower and B-upper approximations of X are defined as follows:

BX = ∪{KB(x) | x ∈ U, KB(x) ⊆ X}, BX = ∩{KB(x) | x ∈ U, KB(x) ∩ X 6= /0}.

For incomplete data set presented in Table 1, the subsets A-lower and A-upper approximations of

the two concepts are:

A{1, 2, 4, 8}={1, 2, 4, 8}, A{3, 5, 6, 7}={3,7}.

A{1, 2, 4, 8}={1, 2, 4, 5, 6, 8}, A{3, 5, 6, 7}={2, 3, 4, 5, 6, 7, 8}.

A concept B-lower and B-upper approximations of X are defined as follows:

BX = ∪{KB(x) | x ∈ X, KB(x) ⊆ X},

BX = ∪{KB(x) | x ∈ X, KB(x) ∩ X 6= /0}=∪{KB(x) | x ∈ X}.

For incomplete data set presented in Table 2.1, the concept A-lower and A-upper approximations

of the two concepts are:

A{1, 2, 4, 8}={1, 2, 4, 8}, A{3, 5, 6, 7}={3, 7}.

A{1, 2, 4, 8}={1, 2, 4, 6, 8}, A{3, 5, 6, 7}={3, 4, 5, 6, 7, 8}.

By definition, subset and concept lower and upper approximations are globally definable; therefore

they may be applied in data mining.

The characteristics relation R(B) is a relation on a set of all objects U defined for x, y ∈ U as

follows: (x, y) ∈ R(B) if and only if y ∈ KB(x)

Characteristic relation for Table 2.1 data set, where B = A defined as

R(A)={(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7), (8,
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2), (8, 4), (8, 6), (8, 8)}.

The characteristics relation R(B) is reflexive but not symmetric or transitive. The characteristic

relation is known if we know all the characteristic sets x ∈ U. When all missing attribute values

are lost values, the characteristic relation R(B) is reflexive and transitive and the relation will be

called a similarity relation. When all missing attribute values are "do not care" conditions, then the

B-characteristic relation R(B) is reflexive and symmetric, and the relation will be called a tolerance

relation.

2.5 Rule Induction

Decision rules classify data in the decision table to different concepts. A rule is represented in the

LERS [4][13] format as:

Number1, Number2

(attribute1,value1)&(attribute2,value2)&....&(attributen,valuen)→(decision, value)

The left hand side of the rule represents the attribute-value pairs and the right hand side represents

the concept. A object x ∈ U is covered by a rule r if and only if every condition of r is satisfied by

the corresponding attribute a with value v for object x. The numbers Number1 and Number2 are

based on LERS classification System in which they represent Strength and Specificity. Strength

is defined as the total number of training objects that are correctly classified by the rule. If all

the objects that are covered by ruler are correctly classified, then the rule r is consistent with the

dataset. Specificity is the total number of conditions or attribute value pairs in the rule r. Decision

rule induction is the process by which rules are induced from the decision tables. It involves

extraction of high level information from low level data and is the most fundamental data mining

technique. Examples for rule induction algorithms are LEM1 and LEM2 .
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2.5.1 The LEM2 Algorithm

The LEM2 (Learn from Examples Module, version 2) algorithm is a module of the LERS learning

system. LEM2 computes local covering for every concept of the training data set which will be

converted to a rule set [4][13]. For Incomplete data set, LEM2 will compute the local covering of

the approximations of every concept.

Let B be nonempty lower or upper approximation of a concept. T is a set of attribute-value pairs

where each (a, v) = t, a block of t is denoted by [t], which is a set of all objects x ∈ U that attribute

a have value v. T is a minimal complex of B only if

[T] =
⋂

t∈T [t] ⊆B

and there does not exist a subset T’ of T such that T’⊆B. Let T be a nonempty collection attribute-

vlaue pairs T, then T is a local covering if and only if it satisfies the following conditions:

(1) each member T of T is a minimal complex of B,

(2)
⋃

T∈T=B,

T is minimal, such that if any T ∈ T is removed, then second condition is not satisfied.

Consider an incomplete decision Table 2.1, a local covering of the characteristic set upper approx-

imation of concept [(Flu, yes)], A{1, 2, 4, 8} = {1, 2, 4, 6, 8} is

T = {{(Headache, yes)},{(Temperature, high), (Nausea, no)}} which corresponds to the following

possible rules :

3,1

(Headache, yes)→ (Flu, yes)

1,2

(Temperature, high) & (Nausea, no)→ (Flu, yes)

where the first rule covers objects {2, 4, 6, 8} and the second rule covers objects {1, 8}. These two

rules are consistent with the data set, and all of the objects of upper approximation of concept[(Flu,

yes)] are covered. Also, all rules induced are minimal and there is no redundant rule. A detailed

description of LEM2 algorithm is given in Appendix A.
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2.5.2 Global and Local Definability

For incomplete data sets, a set X ⊆ U is B-globally definable if it is a
⋃

KB(x), x ∈ U. If a set

is A-globally definable, then it will be called globally definable. Local definability is based on

attribute-values pairs granules. A set T of attribute-value pairs, where all attributes are distinct and

belong to a set B, a subset of the set A, will be called a B-complex. A block of B-complex T,

denoted by [T], is defined as the set ∩ { [t] | t ∈ T}.

Let B be a subset of U. Set B depends on a set T of attribute-value pairs where each t = (a, v) if

and only if [T] is nonempty and [T] ⊆ B.

In incomplete decision table, Let B ⊆ A where
⋃

T∈T from some B-complexes will be called a

B-locally definable set. A-locally definable sets will be called locally definable. An approximation

of a concept should be locally definable since decision rules are expressed in the form of attribute-

value pairs as noted above. In the listed conditions of local covering, condition
⋃

T∈T = B means

that the set [(decision, value)] must be locally definable. Since concepts approximations are used to

induce rules of the incomplete data set, characteristic sets that are used to construct approximation

must be at least locally definable. Any set X that is B-globally definable is B-locally definable as

well, however not every B-locally definable is B-globally definable. For decision tables in which

all missing attribute values are lost, local definability is reduced to global definability.
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Chapter 3

Modifications to Characteristic Relation

This chapter will provide an overview of all suggested modifications to the definition of character-

istic relation, also we will study the local definability of each modified relation characteristic sets.

A detailed description of the implementation of the modifications to characteristic relation is given

in Appendix B.

3.1 Motivation for the modification

The modifications to the definition of characteristic relation were suggested due to two unreason-

able situations, the characteristic relation is classifying two objects that do not have any known

equivalent attribute values to be in the same class or two objects that have a lot of known equal

attribute values to be in different classes. For example, for an incomplete decision Table 2.1, we

see that objects 1 and 8 have no known equal attribute values, however object 8 belongs to RA(1).

Also for objects 4 and 5 where they have a lot of known equal attribute values, but object 5 is not

included in RA(4). Let S be an incomplete information system in which B ⊆ A, x ∈ U, For the

next few definitions we will use the following notations:

PB(x) = {a | a ∈ B, a(x) 6= *}, QB(x) = {a | a ∈ B, a(x) 6= ?},

C = QB(x)∩QB(y)6= /0, D = PB(x)∩QB(y)∩PB(x)∩QB(y) 6= /0,

IU is the identity relation on U = {(x,x) | x ∈ U}.

11



3.2 R’ Characteristic Relation

In [11], the author proposed a characteristic relation defined by R’ to deal with the two unreason-

able situations mentioned above. R’ characteristic relation is defined as follow:

R’ (B) = { (x, y)∈ U | (∀ a ∈ C, a(x)=a(y) ∨ a(x) = * ∨ a(y) = *) ∧ (∀ a ∈ D, a(x) = a(y) ) } ∪ IU.

R’ characteristic sets for Table 2.1 incomplete data set where B = A , are presented in Table 3.1.

R’A(x)
R’A(1) = {1, 3}
R’A(2) = {2, 8}
R’A(3) = {1, 3}

R’A(4) = {4, 5, 8}
R’A(5) = {4, 5, 8}
R’A(6) = {6, 8}
R’A(7) = {7}

R’A(8) = {2, 4, 6, 8}

Table 3.1: R’ characteristic sets for Table 2.1 incomplete data set

R’ Characteristic relation for Table 2.1 data set, where B = A is defined as :

R’(A) = {(1, 1), (1, 3), (2, 2), (2, 8), (3, 1), (3, 3), (4, 4), (4, 5), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6),

(6, 8), (7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}.

R’ is reflexive and symmetric while it is not necessary transitive. The existence of Identity Relation

will ensure the reflexive property of R’A.

A concept B-lower and B-upper approximations of X are defined as follows:

AX = ∪{R’A(x) | x ∈ X, R’A(x) ⊆ X},

AX = ∪{R’A(x) | x ∈ X, R’A(x) ∩ X 6= /0 } = ∪{R’A(x) | x ∈ X}.

For incomplete data set presented in Table 2.1, the concept A-lower and A-upper approximations

of the two concepts are:

A{1,2,4,8} = {2, 8}, A{3,5,6,7} = {7},

A{1,2,4,8} = {1, 3, 2, 8, 4, 5, 6}, A{3,5,6,7} = {1, 3, 4, 5, 6, 8, 7}.

12



3.3 R1, R2 and R3 Characteristic Relations

In [12], characteristic relations R1, R2 and R3 are proposed for solving different unreasonable

situations in RA(x) where R1, will discard objects that do not have any known attribute values to

be classified in the same class. R2 will include objects that have a lot of known equivalent attribute,

but were discarded in RA(x) due to the existence of lost conditions to be in the same class. R3 will

combine the advantages of R1 and R2.

R1characteristic relation is defined as follows:

R1(B) ={ (x,y) ∈ UxU | (∀ a ∈ QB(x), a(y) 6=?) ∧ (∀ a ∈ D, a(x) = a(y))}

R1 characteristic sets for Table 2.1 incomplete data set, where B = A , are presented in Table 3.2.

R1
A(x)

R1
A(1) = {1}

R1
A(2) = {2, 8}

R1
A(3) = {3}

R1
A(4) = {4, 8}

R1
A(5) = {4, 5}

R1
A(6) = {6, 8}

R1
A(7) = {7}

R1
A(8) = {2, 4, 6, 8}

Table 3.2: R1 Characteristic sets for Table 2.1 incomplete data set

R1 Characteristic relation for Table 2.1 data set, where B = A is defined as :

R1(A) = {(1, 1), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (6, 6), (6, 8), (7, 7), (8, 2), (8, 4),

(8, 6), (8, 8)}.

A concept A-lower and A-upper approximations of X are defined as follows:

AX = ∪{R1
A(x) | x ∈ X, R1

A(x) ⊆ X},

AX = ∪{R1
A(x) | x ∈ X, R1

A(x) ∩ X 6= /0 } = ∪{R1
A(x) | x ∈ X}.

For incomplete data set presented in Table 2.1, the concept A-lower and A-upper approximations

of the two concepts are:

A{1, 2, 4, 8} = {1, 2, 8, 4}, A{3, 5, 6, 7} = {3, 7},
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A{1, 2, 4, 8} = {1, 8, 2, 4, 6}, A{3, 5, 6, 7} = {3, 4, 5, 6, 8, 7}.

R1
A is a binary relation that is reflexive, but not symmetric and transitive. It is more restrictive

compared to RA

R2characteristic relation is defined as follows:

R2(B) = { (x, y) ∈ UxU | (∀ a ∈ C, a(x) = a(y) ∨ a(x) = * ∨ a(y) = *) }

R2 characteristic sets for Table 2.1, where B = A, are presented in Table 3.3.

R2
A(x)

R2
A(1) = {1, 3, 8}

R2
A(2) = {2, 8}

R2
A(3) = {1, 3}

R2
A(4) = {4, 5, 8}

R2
A(5) = {4, 5, 8}

R2
A(6) = {6, 8}

R2
A(7) = {7}

R2
A(8) = {1, 2, 4, 5, 6, 8}

Table 3.3: R2 Characteristic sets for Table 2.1 incomplete data set

R2 Characteristic relation for Table 2.1, where B = A is defined as follows :

R2(A) = {(1, 1), (1, 3), (1, 8), (2, 2), (2, 8), (3, 1), (3, 3), (4, 4), (4, 5), (4, 8), (5, 4), (5, 5), (5, 8),

(6, 6), (6, 8), (7, 7), (8, 1), (8, 2), (8, 4), (8, 5), (8, 6), (8, 8)}.

A concept A-lower and A-upper approximations of X are defined as follows:

AX = ∪{R2
A(x) | x ∈ X, R2

A(x)⊆X}

AX = ∪{R2
A(x) | x ∈ X, R2

A(x) ∩ X 6= /0 } = ∪{R2
A(x) | x ∈ X}

For incomplete data set presented in Table 2.1, the concept A-lower and A-upper approximations

of the two concepts are:

A{1, 2, 4, 8} = {2, 8}, A{3, 5, 6, 7} = {7},

A{1, 2, 4, 8} = {1, 3, 8, 2, 4, 5, 6}, A{3, 5, 6, 7} = {1, 3, 4, 5, 8, 6, 7}.

R2
A is a binary relation that is reflexive. It is less restrictive compared to RA .

R3 characteristic relation for Table 2.1, where B = A is defined as follows:

R3(B) ={ (x, y) ∈ UxU | (∀ a ∈ C, a(x) = a(y) ∨ a(x)= * ∨ a(y)= *) ∧ (∀ a ∈ D, a(x) = a(y) ) }
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R3 characteristic sets for Table 2.1, where B = A , are presented in Table 3.4.

R3
A(x)

R3
A(1) = {1, 3}

R3
A(2) = {2, 8}

R3
A(3) = {1, 3}

R3
A(4) = {4, 5, 8}

R3
A(5) = {4, 5}

R3
A(6) = {6, 8}

R3
A(7) = {7}

R3
A(8) = {2, 4, 6, 8}

Table 3.4: R3 characteristic sets for Table 2.1.

R3 characteristic relation for Table 2.1, where B = A , is defined as follows :

R3(A) = {(1, 1), (1, 3), (2, 2), (2, 8), (3, 1), (3, 3), (4, 4), (4, 5), (4, 8), (5, 4), (5, 5), (6, 6), (6, 8),

(7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}.

A concept A-lower and A-upper approximations of X are defined as follows:

AX = ∪{R3
A(x) | x ∈ X, R3

A(x) ⊆ X},

AX = ∪{R3
A(x) | x ∈ X, R3

A(x) ∩ X 6= /0 } = ∪{R3
A(x) | x ∈ X}.

For incomplete data set presented in Table 2.1, the concept A-lower and A-upper approximations

of the two concepts are:

A{1, 2, 4, 8} = {2, 8}, A{3, 5, 6, 7} = {7},

A{1, 2, 4, 8} = {1, 3, 2, 8, 4, 5, 6}, A{3, 5, 6, 7} = {1, 3, 4, 5, 6, 8, 7}.

3.4 Maximal Consistent Blocks

The concept of maximal consistent block was introduced in [2]. A maximal consistent block is

defined as the maximal collection of objects in which all objects are similar, and are indiscernible

based on the attribute values available. Let K(A) be a characteristic relation and KA(x) be a char-

acteristic set, we say that Y ∈ KA(x) is a maximal characteristic set if and only if Y is a maximal

subset of KA(x), such that for any x, y ∈ Y, (x, y) or (y, x) ∈ K(A). For x∈ U, maximal charac-

teristic neighborhood system is derived for each characteristic set K(A) consisting of its maximal
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subsets, and it is defined as :

NS(K(A)) = {Y ⊂ KA(x) : Y is a maximal set of KA(x) }

The neighborhood maximal consistent block sets for Table 2.1, are presented in Table 3.5.

NS(KA(x))
NS(KA(1)) = {{1}}

NS(KA(2)) = {{2, 8}}
NS(KA(3)) = {{3}}

NS(KA(4)) ={{4, 8}}
NS(KA(5)) = {{5}}

NS(KA(6)) = {{6, 8}}
NS(KA(7)) = {{7}}

NS(KA(8)) = {{2, 8}, {4, 8}, {6, 8}}

Table 3.5: Maximal consistent block Table 2.1 incomplete data set

The maximal consistent block relation for Table 2.1, are defined as follows :

R(A) = {(1,1), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 5), (6, 6), (6, 8), (7, 7), (8, 2), (8, 4), (8, 6), (8,

8)}.

A concept A-lower and A-upper approximations of X are defined as follows:

AX = ∪{Y ∈ NS((KA(x)):x ∈ X,Y ⊆ X},

AX = ∪{Y ∈ NS((KA(x)):x ∈ X,Y ∩ X 6= /0 }.

For incomplete data set presented in Table 2.1, the concept A-lower and A-upper approximations

of the two concepts are:

A{1, 2, 4, 8} = {1, 8, 2, 4, 6}, A{3, 5, 6, 7} = {3, 4, 5, 8, 6, 7},

A{1, 2, 4, 8} = {1, 8, 2, 4, 6}, A{3, 5, 6, 7} = {3, 4, 5, 8, 6, 7}.

3.5 Analysis of Modified Relations

Based on results of incomplete data set in Table 2.1, the analysis of modified relation is presented

as follows :
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• R1
A will ignore the similarity in objects that only have "?" and "*" interpretation. Two

objects are considered similar only if all of their known attribute values are equal. For

example, the characteristics set of object 1 is {1, 8} and it considers objects 1 and 8 to be

similar, but R1
A treats each object as a different since there is no known equal attribute value,

R1
A(1) = {4, 5}. As well for object 5, the characteristics set is {4, 5, 8}, but since object 5

and 8 have no know equal attribute value, R1
A(5)= {4, 5}.

• R2
A will ignore the similarity in the objects that only have "?" interpretation. Two objects

are considered similar only if there exits at least one known equal attribute value or missing

attribute value is interpreted as "*". For example, the characteristics set of object 1 is {1,

8}, and it considers objects 1 and 8 to be similar, however R2
A treats objects 1, 3 and 8 to

be similar, since objects 1 and 3 have attribute value Nausea to be equal and object 8 have

missing attribute value Nausea interpretation to be " *". R1
A(1)= {1, 3, 8}.

• R’ and R3
A will ignore the similarity in the objects that only have "?" and "*" interpretation.

Two objects are considered similar only if there exits at least one known equal attribute value

or missing attribute value is interpreted as " * ". For example, the characteristics set of object

1 is {1, 8} and it considers objects 1 and 8 to be similar, but R’ and R3 treat each object as

different since there is no known equal attribute value and Headache attribute value is not

"*", however objects 1 and 3 are consider to be similar since attribute value Nausea is equal.

R’A(1) and R3
A(1)= {1, 3}.

• The maximal consistent block ignores the similarity in the objects, which has "?" interpreta-

tion. The characteristics set of object 5 is {4, 5, 8} considers objects 4,5 and 8 to be similar,

but maximal consistent block treats each object as a separate block. Maximal consist block

of object 5 is {5}.

• Maximal consistent block provides better discernibility for the objects with "*" interpreta-

tion. For example, the characteristics set of objects 8 considers objects {2, 4, 6, 8} to be
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similar, but the maximal consistent block of object 8 splits them into three separate blocks

{{2, 8}, {4, 8}, {6, 8}}.

3.6 Local Definability of Modified Relations

The author of this paper [5] studied the modifications explained above that is suggested to charac-

teristic relation in term of local definability to validate whether the modified relations are suitable

for data mining.

• R’ characteristic relation where characteristic class R’A(x), x∈ U is proven to be not B-

locally definable by showing that for Table 2.1 R’A(1) = {1, 3} and R’A(3) = {1, 3}, while

attribute-value blocks for Table 2.1 show that whenever there is a object 1, object 8 must

exist in the same block. This means that any intersection of blocks containing object 1, it

must includes object 8 as well, however 8 /∈ R’A(1), R’A(3).

• R1
A characteristic relation where characteristic class R1

A(x), x∈U is not B-locally definable

by showing that for Table 2.1 R1
A(1) = {1}, while attribute-value blocks for Table 2.1 shows

that any intersection of blocks containing object 1, it must include object 8 as well, however

8 /∈ R1
A(1).

• R2
A characteristic relation where characteristic class R2

A(x), x∈U is not B-locally definable

by showing that for Table 2.1 R2
A(3) = {1, 3}, while attribute-value blocks for Table 2.1

shows that any intersection of blocks containing object 1, it must include object 8 as well,

however 8 /∈ R2
A(3).

• R3
A characteristic relation where characteristic class R3

A(x), x∈U is not B-locally definable

by showing that for Table 2.1 R3
A(3) = {1, 3}, while attribute-value blocks for Table 2.1

shows that any intersection of blocks containing object 1, it must include object 8 as well,

however 8 /∈ R3.
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• Maximal consistent blocks are not B-locally definable when missing attribute values are of

"do not care" and lost conditions. NS(KA(1)) = {{1}}, while attribute-value blocks for Table

2.1 shows that any intersection of blocks containing object 1, it must include object 8 as well,

but 8 /∈ NS(KA(1)) = {{1}} , however maximal consistent block is B-locally definable when

missing attribute values of do not care condition only. For example incomplete data set

Table 3.6 maximal consistent blocks of A are [[1, 3], [1, 8], [2, 8], [4, 5, 8], [6, 8], [7]] and

attribute-value blocks and characteristic sets are presented respectively in Tables 3.7 and 3.8.

X is a maximal consistent block of B if and only if X is an intersection of all characteristic

sets KA(x) where x ∈ X. For example maximal consistent block [1,8] is represented as

KB(1) ∩ KB(8) = {1, 3, 8} ∩ {1, 2, 4, 5, 6, 8} = {1, 8}. Each characteristic set KA(x) is

B-globally definable and can be presented as an intersection of some blocks of attribute-

value pairs with specified attribute values. Let us denote the set of such attribute-value pairs

by Tx. For any maximal consistent block X there exists x ∈ U such that X ⊆ KA(x). For

any y ∈ X, if a(x) is specified then either A(y) = a(x) or a(y) = "*", [1,8] is represented

as [(Temperature, High)] ∩ [(Nausea, no)] ∩ [(Headache, yes)] = {1, 3, 4, 5, 8} ∩ {1, 3,

6, 8} ∩ {1, 2, 4, 5, 6, 8} = {1, 8}. Maximal consistent block X can be presented as an

intersection of blocks of attribute-value pairs from Tx. Therefore X is B-locally definable.

In general, maximal consistent block is not B-globally definable. For example set {1,8} is

not B-globally definable, but it is B-locally definable.

case Temperature Headache Nausea Flu

1 High * No Yes
2 Very-high Yes Yes Yes
3 * No No No
4 High Yes Yes Yes
5 High * Yes No
6 Normal yes No No
7 Normal No Yes No
8 * Yes * Yes

Table 3.6: An example of incomplete decision table
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(a,v) [(a,v)]
(Temperature, High) {1, 3, 4, 5, 8}

(Temperature, Very-high) {2, 3, 8}
(Temperature, normal) {3, 6, 7, 8}

(Headache, yes) {1, 2, 4, 5, 6, 8}
(Headache, no) {1, 3, 5, 7}
(Nausea, no) {1, 3, 6, 8}
(Nausea, yes) {2, 4, 5, 7, 8}

Table 3.7: Attribute-value blocks for Table 3.6.

KB(x)
KB(1) = {1, 3, 8}
KB(2) = {2, 8}
KB(3) = {1, 3}

KB(4) = {4, 5, 8}
KB(5) = {4, 5, 8}
KB(6) = {6, 8}
KB(7) = {7}

KB(8) = {1, 2, 4, 5, 6, 8}

Table 3.8: Characteristic sets for Table 3.6.
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Chapter 4

Experiments

The objective of this thesis is to investigate the impact of the modifications suggested to character-

istic relation on concept lower and upper approximations and rules induced in a comparison to the

characteristic relation. An experimental comparative analysis is conducted between characteristic

sets and modifications sets in terms of cardinalities of lower and upper approximations of each

concept and decision rules induced by each modification. We conducted experiments on four in-

complete data sets where each data set has different interpretations and percentage of missing data.

Each data set have three interpretations of missing data, where missing attribute values will only be

lost conditions, "do not care" conditions or both types of missing attribute values. Brief description

of the input data sets used in experiments is shown in Section 4.1. Results of comparison between

upper and lower Approximations of each modification are shown in Section 4.2. Section 4.3 shows

experiments on rules induced from different relation sets.

4.1 Data Sets

Experiments were conducted on the following incomplete data sets with varying levels of missing

data are shown in Table 4.1. Below is a brief description for all the data sets.

• Breast Cancer Data set :

This data set is obtained from the University Medical Center, Institute of Oncology, Ljubl-
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jana, Yugoslavia. There are 9 attributes and total of 277 instances. The attributes are cat-

egorical. Dataset has 2 decision classes, which specify the condition as "recurrence" or

"non-recurrence" events.

• Hepatitis Data set:

It has 19 attributes and total of 155 instances. There are 2 decision classes with each labeled

as one of the two types possible either "no" or "yes". All attributes are categorical.

• Lymph Data set:

The lymphography domain was obtained from the University Medical Centre, Institute of

Oncology, Ljubljana, Yugoslavia. There are 18 attributes and 148 instances in the dataset.All

attributes are categorical. There are 4 decision classes, with each labeled as "one", "two",

"three" or "four".

• Iris Data set:

This is the best-known database to be found in the pattern recognition literature. There are

four attributes and 150 records. There are 3 classes labelled as "Iris Setosa", "Iris Versicolor"

and "Iris Virginica".
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Table 4.1: Incomplete data sets used in experiments

4.2 Results of Comparison Between Upper and Lower Approximations

Experiments were conducted on data sets listed in Section 4.1 with varying levels of missing at-

tribute values. The cardinalities of concept lower and upper approximations of characteristics sets

and each new modified sets are compared. Results of a comparison between upper and lower ap-

proximations are shown in Tables 4.2, 4.3, 4.4 and 4.5. Data sets approximations cardinalities are

exhibiting the following results:

• The cardinality of upper approximation using R’ characteristic relation sets for incomplete

data sets is greater than or equal to the cardinality of upper approximation of characteristic

sets, while the lower approximation cardinality is smaller than lower approximation cardi-

nality of characteristic sets.

• The cardinality of upper approximation using R1 characteristic relation sets for incomplete

data sets is either smaller than or equal to the cardinality of upper approximation of charac-

teristic sets. The cardinality of lower approximation using R1 is greater than or equal to the

cardinality of lower approximation using characteristic sets.
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• The cardinality of upper approximation using R2 for incomplete data sets is greater than or

equal to the cardinality of upper approximation using characteristic sets, while the lower

approximation cardinality is smaller than or equal to the cardinality of lower approximation

using characteristic sets.

• The cardinality of upper approximation using R3 characteristic relation sets for incomplete

data sets is either greater than or equal to the cardinality of upper approximation using char-

acteristic sets, while the lower approximations is smaller than or equal to the lower approxi-

mation cardinality of characteristic set.

• The cardinality of upper approximation using maximal consistent blocks for incomplete data

sets is smaller than or equal to the cardinality of upper approximation of characteristic sets.

The cardinality of lower approximation using maximal consistent blocks for incomplete data

sets is either greater than or equal to the cardinality of lower approximation using character-

istic sets.

• The variation between approximations cardinalities for characteristics sets and modification

sets is larger for incomplete data set with "?" interpretation, when compared to incomplete

data set with both missing attribute value interpretations, and it is observed to be the smallest

for incomplete data sets with "*" interpretation.
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Table 4.2: Approximation cardinality for data set hepatitis.d

Table 4.3: Approximation cardinality for data set iris.d

Table 4.4: Approximation cardinality for data set lymphography.d

Table 4.5: Approximation cardinality for data set breast.d
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4.3 Experiments on Rules Induced from Modified Characteristic Relations

This section will investigate the impact of the modifications suggested to characteristic relation on

rule induced. Experiments are conducted on rule induced from different characteristic relations

implantations of incomplete data sets. The data set from which rules are induced is called training

set, and the data set that the accuracy of classification with the induced rules is measured is called

testing set. The LERS classification method used in classifying unseen cases, cross validation and

error rate are explained in subsection 4.2.1. Subsection 4.2.2 will describe the experiment process

of calculating classification error rate and results of the experiments are presented in Subsection

4.2.3.

4.3.1 LERS Classification System and Cross Validation

Classification method used of LER learning system introduced in [14], which is the classification

of an unseen case to concept depend on three parameters: strength, support and partial or complete

matching factor. Strength is the total number of cases of training data sets that are correctly classi-

fied by the rule, and specificity is the total number of conditions in rule r. The support for concept

C is defined as:

If complete matching for case x is not achieved, search for partially matched rules with case x.

Partially matched factor (pmf) is that attributes values of a case x that match at least one of the

conditions of rule r, and defined as the number of conditions matched by the total number of

conditions of rule r. When there is a partially matched cases the support of concept C is defined as

:
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If rules r1, r2,...., rn all completely or partially match a testing data case x and all rules have the

same concept C, case x will be classified as concept C. If the matching rules refer to different

concepts, then support is calculated for every concept. The concept with the largest support will

be concept that the case x is classified to.

Ten-fold cross validation is used to measure the accuracy of classification model produced from

the rule induced of the incomplete data set. The incomplete data set is randomly reordered, then

the reordered data set is partitioned into ten subsets, where each subset contain roughly 10% of the

data set. Each subset in the ten subsets is used as testing data, while the other subsets are used as

training data. The rule set induced from the training set is used to classify every case of the testing

set. The error rate is measured as total number of incorrectly classified or unclassified cases by the

total number of cases. Ten runs of rule induction and classification are conducted and the average

error rate is used to measure the accuracy of classification of each modification.

4.3.2 Experimental Procedure

LEM2 is implemented for rule induction where the input to LEM2 is the upper and lower concept

approximations of each relation sets. The procedure of the experiment is shown in Figure 4.1. For

each incomplete data set, LEM2 was applied and the algorithm will produce two sets of rules :

possible and certain rule sets. Average error rate of the classification was calculated for each rule

sets.
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Figure 4.1: Experimental procedure

4.3.3 Experimental Results

The average error rates of ten-fold cross validation for incomplete data sets are shown in Table

4.6 and Table 4.7. Our result shows that there is no significant difference between the qualities of

rule induced from each modification except for the incomplete data set iris with interpretation "?",

where the possible average error rate is much higher compared to all other modifications. It is noted

that possible rules average error rate of R1 and maximal consistent block for most incomplete data

sets is slightly smaller than or equal to characteristic set possible rules average error rate, while

certain rules average error rate of R’, R2 and R3 for most incomplete data sets is slightly smaller

than or equal to characteristic set certain rules average error rate. Certain rules have smaller average

error rate compared to possible rules average error rate.
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Table 4.6: Possible rule average error rate

Table 4.7: Certain rule average error rate
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Chapter 5

Conclusion

In this thesis, we investigated the validity of modifications suggested to the definition of char-

acteristic relation defined for the incomplete data set. We showed that all modified characteristic

relations are not locally definable except for maximal consistent blocks that are restricted to data set

with " do not care" conditions. LEM2 algorithm was implemented to induce certain and possible

rules from the incomplete data set. In our research twelve incomplete data sets with different inter-

pretations of missing attribute values were used to conduct an experimental comparative analysis

of the cardinalities of lower and upper approximations of each concept. In term of upper approx-

imations, R2, R3 and R’ achieve no better accuracy than characteristics sets, but R1 and maximal

consistent blocks have higher accuracy compared to characteristics sets. In term of Lower approx-

imation, R1 and maximal consistent blocks achieve no better accuracy than characteristics sets, but

R2, R3 and R’ achieve better accuracy compared to characteristic set. To measure the classification

average error rate for induced rules, ten-fold cross validation was implemented. Our results show

that possible rules induced using R1 and maximal consistent blocks are slightly more consistent

compared to characteristic set possible rules, and certain rules induced using R2, R3 and R’ are

slightly more consistent compared to characteristic set certain rules. To conclude, even though

modified definitions of characteristic sets improved the accuracy and consistency of possible and

certain rules induced compared to characteristic sets rules, the modified sets are not locally de-
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finable. Suggested new modified relations should not be used in data mining except for maximal

consistent blocks, when the interpretation of missing attribute values is of "do not care" conditions.
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Appendix B

Algorithm of computing the modifications suggested to characteristic relation is presented below.
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