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We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and 
the possible �n bound state. The search is performed with the ALICE detector in central (0–10%) Pb–
Pb collisions at √sNN = 2.76 TeV, by invariant mass analysis in the decay modes �n → dπ+ and H-
dibaryon → �pπ−. No evidence for these bound states is observed. Upper limits are determined at 99% 
confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are 
compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the 
production of other loosely bound states, like the deuteron and the hypertriton.
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1. Introduction

Particle production in Pb–Pb collisions at the Large Hadron Col-
lider (LHC) has been extensively studied [1–3]. The observed pro-
duction pattern is rather well described in equilibrium thermal 
models [4–7]. Within this approach, the chemical freeze-out tem-
perature Tchem, the volume V and the baryo-chemical potential 
μB are the only three free parameters. Even loosely bound states 
such as the deuteron and hypertriton and their anti-particles have 
been observed [8–10] and their rapidity densities are properly de-
scribed [11–17]. Consequently other loosely bound states1 such as 
the H-dibaryon and the �n are expected to be produced with cor-
responding yields.

The discovery of the H-dibaryon or the �n bound state would 
be a breakthrough in hadron spectroscopy as it would imply the 
existence of a six-quark state and provide crucial information 
on the �-nucleon and �–� interaction. We consequently have 
started the investigation on the possible existence of such exotic 
bound states in pp and Pb–Pb collisions at the LHC. Searches for 
�-nucleon bound states in the �p and �n channels have been 
carried out (see Refs. [18–20]). The H-dibaryon, which is a hypo-
thetical bound state of uuddss (��), was first predicted by Jaffe 
using a bag model approach [21]. Experimental searches have been 
undertaken since then, but no evidence for a signal was found 
(see [22,23] and the references therein). Recently, the STAR Col-
laboration investigated the �–� interaction through the measure-

� E-mail address: alice-publications@cern.ch.
1 The expected masses of these states are some MeV below the sum of the mass 

of their constituents.

ment of �� correlations [24]; this and a theoretical analysis of 
these data [25] did not reveal a signal. Many theoretical investiga-
tions of the possible stability of the H-dibaryon have been carried 
out, but predicting binding energies in the order of MeV for masses 
of around 2 GeV/c2 is extremely difficult and challenging [26–29].

Our approach is to search for such bound states in central Pb–
Pb collisions at LHC energies where rapidity densities can be well 
predicted by thermal [16,17,30] and coalescence [31] models. The 
model predictions for rapidity densities of these particles are used 
and tested against the experimental results.

In this paper the analysis strategies for the searches of the 
�n → dπ+ bound state and the H-dibaryon → �pπ− are pre-
sented. The analysis focuses on the �n bound state because pro-
duction of anti-particles in the detector material is strongly sup-
pressed and thus secondary contamination of the signal is reduced. 
For the H-dibaryon both the � and the p originate from secondary 
vertices where knock-out background is less likely. No search for 
the anti-H is performed yet, although it is assumed to be pro-
duced with equal yield but the measurement depends strongly on 
the absorption correction. We begin with a short introduction to 
the ALICE detector and a description of the particle identification 
technique used to identify the decay daughters and reconstruct in-
variant mass distributions. To assess the possible existence of these 
states we compare the experimental distributions with the model 
predictions.

2. Detector setup and data sample

The ALICE detector [32] is specifically designed to study heavy-
ion collisions. The central barrel comprising the two main track-
ing detectors, the Inner Tracking System (ITS) [33] and the Time 
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Projection Chamber (TPC) [34] is housed in a large solenoidal 
magnet providing a 0.5 T field. The detector pseudorapidity cov-
erage is |η| ≤ 0.9 over the full azimuth. An additional part of the 
central barrel are detectors in forward direction used mainly for 
triggering and centrality selection. The VZERO detectors, two scin-
tillation hodoscopes, are placed on either side of the interaction 
point and cover the pseudorapidity regions of 2.8 < η < 5.1 and 
−3.7 < η < −1.7. The centrality selection is based on the sum of 
the amplitudes measured in both detectors as described in [35]
and [36].

The ITS consists of six cylindrical layers of three different types 
of silicon detectors. The innermost part comprises two silicon pixel 
(SPD) and two silicon drift detector (SDD) layers. The two outer 
layers are double-sided silicon microstrip detectors (SSD). Due to 
the precise space points provided by the ITS a high precision de-
termination of the collision vertex is possible. Therefore, primary 
and secondary particles can be well separated, down to 100 μm 
precision at low transverse momentum (pT ≈ 100 MeV/c).

The TPC is the main tracking detector of ALICE and surrounds 
the ITS. It has a cylindrical design with a diameter of ≈ 550 cm, 
an inner radius of 85 cm, an outer radius of 247 cm and an overall 
length in the beam direction of ≈ 510 cm. The 88 m3 gas volume 
of the TPC is filled with a mixture of 85.7% Ne, 9.5% CO2 and 
4.8% N2. When a charged particle is travelling through the TPC, 
it ionizes the gas along its path and electrons are released. Due 
to the uniform electric field along the z-axis (parallel to the beam 
axis and to the magnetic field) the electrons drift towards the end 
plates, where the electric signals are amplified and detected in 
557 568 pads. These data are used to calculate a particle trajec-
tory in the magnetic field and thus determine the track rigidity p

z
(the momentum p of the particle divided by its charge number z). 
The TPC is also used for particle identification via the energy de-
posit dE/dx measurement (see section 3).

A complete description of the performance of the ALICE sub-
detectors in pp, p–Pb and Pb–Pb collisions can be found in [37].

The searches carried out and reported here are performed by 
analysing the data set of Pb–Pb collisions from 2011. In the de-
scribed analyses we use 19.3 × 106 events with a centrality of 
0–10%, determined by the aforementioned VZERO detectors from 
the previously mentioned campaign.

3. Particle identification

The precise Particle IDentification (PID) and continuous tracking 
from very low pT (100 MeV/c) to moderately high pT (20 GeV/c) 
is a unique feature of the ALICE detector at the LHC. The PID 
used in the analysis described in this letter takes advantage of 
two different techniques. The energy deposit (dE/dx) and rigidity 
are measured with the TPC for each reconstructed charged-particle 
trajectory. This allows the identification of all charged stable parti-
cles, from the lightest (electron) to the heaviest ones (anti-alpha). 
The energy deposit resolution of the TPC in central Pb–Pb collisions 
(investigated here) is around 7%. The corresponding particle sepa-
ration power is demonstrated in Fig. 1. This technique was used 
in the following to identify the deuterons, protons and pions. The 
second method makes use of specific topologies from weak decays, 
which result in typical V 0 decay patterns. This is used here for the 
detection of the �n bound state and the two V 0 decay patterns 
of the ��, namely for the � identification and the proton–pion 
decay vertex.

4. Analysis

The strategies of investigation for the two exotic bound states 
discussed here are quite similar. They both require the detection 

Fig. 1. TPC dE/dx spectrum for negative particles in a sample of three different trig-
ger types (minimum bias, semi-central and central). The dashed lines are parametri-
sations of the Bethe–Bloch-formula [38–40] for the different particle species.

of a secondary vertex, which in one case is a pure V 0 and in the 
second a double V 0 decay pattern. We discuss them separately in 
the following sub-sections. First we describe briefly the common 
aspects of both analyses.

The tracks used in the analyses have to fulfil a set of selection 
criteria to ensure high tracking efficiency and dE/dx resolution. 
Each track was required to have at least 70 of up to 159 clus-
ters in the TPC attached to it, with the (rather loose) requirement, 
that the χ2 of the momentum fit is smaller than 5 per cluster. 
Tracks with kinks due to weak decays of kaons and pions are re-
jected. To achieve final precision the accepted tracks are refit while 
the track finding algorithm is run inwards, outwards and inwards 
again (for more details on the ALICE tracking see [37] and section 5 
of [41]).

V 0 decays are determined by two (or more) tracks which are 
emitted from a secondary vertex and which might come close to 
each other (the minimum distance is called Distance-of-Closest-
Approach DCA) while each of the tracks has a certain minimum 
distance (DCA of the track to a vertex) to the primary vertex. 
A powerful selection criterion for detecting proper V 0 candidates 
is the restriction of the pointing angle, namely the angle between 
the reconstructed flight-line and the reconstructed momentum of 
the V 0 particle. More details of the secondary vertex reconstruc-
tion can be found in [3,37,41], where also the clear and effective 
identification of � baryons is displayed using the aforementioned 
technique. The selection criteria, described below, are optimised 
using a Monte Carlo set where the simulated exotic bound states 
are assumed to live as long as a free � baryon. This is a reason-
able assumption for all strange dibaryons, which are expected to 
live around 2–4 × 10−10 s [42–44] in the regions of binding ener-
gies investigated here.

4.1. �n bound state

In analogy to recent hypertriton measurements [8,9] we focus 
here on the expected two-body decay �n → dπ+ . For the data 
analysis the following strategy is used: first displaced vertices are 
identified using ITS and TPC information. In a second step the neg-
ative track of the V 0 candidate is identified as an anti-deuteron 
via the TPC dE/dx information. If the second daughter is identified 
as a pion, the invariant mass of the pair is reconstructed. Both par-
ticles are required to lie within a 3 standard deviations (σ ) band 
of the expected Bethe–Bloch lines of the corresponding particles. 
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Table 1
Selection criteria for �n analysis.

Selection criterion Value

Track selection criteria
Tracks with kinks rejected
Number of clusters in TPC ncl > 70
Track quality χ2/cluster < 5
Acceptance in pseudorapidity |η| < 0.9
Acceptance in rapidity |y| < 1

V 0 and kinematic selection criteria
Pointing angle � < 0.045 rad
DCA between the V 0 daughters DCA < 0.3 cm
Momentum ptot of the anti-deuteron ptot > 0.2 GeV/c
Energy deposit dE/dx anti-deuteron dE/dx > 110 (from Fig. 1)
PID cut for daughters ±3σ (TPC)

Fig. 2. Invariant mass distribution for dπ+ for the Pb–Pb data corresponding to 
19.3 × 106 central events. The arrow indicates the sum of the mass of the con-
stituents (�n) of the assumed bound state. A signal for the bound state is expected 
in the region below this sum. The dashed line represents an exponential fit outside 
the expected signal region to estimate the background.

To identify the secondary vertex the two daughter tracks have to 
have a DCA smaller than 0.3 cm. Another condition is that the 
maximum pointing angle is smaller than 0.045 rad (see descrip-
tion above). Deuterons are cleanly identified in the rigidity region 
of 400 MeV/c to 1.75 GeV/c. To limit contamination from other 
particle species, the dE/dx has to be above 110 units of the TPC 
signal, shown in Fig. 1.

The selection criteria are summarised in Table 1. The resulting 
invariant mass distribution, reflecting the kinematic range of iden-
tified daughter tracks, is displayed in Fig. 2.

4.2. H-dibaryon

The search for the H-dibaryon is performed in the decay chan-
nel H → �pπ− , with a mass lying in the range 2.200 GeV/c2 <

mH < 2.231 GeV/c2 (see Fig. 3). The analysis strategy for the H-
dibaryon is similar as for the �n bound state described above, 
except that here a second V 0-type decay particle is involved.

One V 0 candidate originating from the H-dibaryon decay ver-
tex has to be identified as a � decaying into a proton and a 
pion. In addition another V 0 decay pattern reconstructed from a 
proton and a pion is required to be found at the decay vertex 
of the H-dibaryon. First the invariant mass of the � is recon-
structed and then the candidates in the invariant mass window of 
1.111 GeV/c2 < m� < 1.120 GeV/c2 are combined with the four-
vectors of the proton and pion at the decay vertex. A 3σ dE/dx
cut in the TPC is used to identify the protons and the pions for 
both the � candidate and the V 0 topology at the H-dibaryon de-
cay vertex.

Fig. 3. Invariant mass distribution for �pπ− for the Pb–Pb data corresponding to 
19.3 × 106 central events. The left arrow indicates the sum of the masses of the 
constituents (��) of the possible bound state. A signal for the bound state is ex-
pected in the region below this sum. For the speculated resonant state a signal is 
expected between the �� and the 	p (indicated by the right arrow) thresholds. 
The dashed line is an exponential fit to estimate the background.

Table 2
Selection criteria used for �� (H-dibaryon) analysis.

Selection criterion Value

Track selection criteria
Tracks with kinks rejected
Number of clusters in TPC ncl > 80
Track quality χ2/cluster < 5
Acceptance in pseudorapidity |η| < 0.9
Acceptance in rapidity |y| < 1

V 0 selection criteria
DCA V 0 daughters DCA < 1 cm
DCA positive V 0 daughter – H decay vertex DCA > 2 cm
DCA negative V 0 daughter – H decay vertex DCA > 2 cm

Kinematic selection criteria
DCA positive H daughter – primary vertex DCA > 2 cm
DCA negative H daughter – primary vertex DCA > 2 cm
DCA H daughters DCA < 1 cm
Pointing angle of H � < 0.05 rad
PID cut for daughters ±3σ (TPC)
� mass window ±3σ

To cope with the huge background caused by primary and sec-
ondary pions additional selection criteria have to be applied. Each 
track is required to be at least 2 cm away from the primary vertex 
and the tracks combined to a V 0 are required to have a minimum 
distance below 1 cm. The pointing angle is required to be below 
0.05 rad. All selection criteria are summarised in Table 2. The re-
sulting invariant mass is shown in Fig. 3. The shape of the invariant 
mass distribution is caused by the kinematic range of the identi-
fied daughter tracks.

5. Systematics and absorption correction

Monte Carlo samples have been produced to estimate the ef-
ficiency for the detection of the �n bound state and the H-
dibaryon. The kinematical distributions of the hypothetical bound 
states were generated uniformly in rapidity y and in transverse 
momentum pT. In order to deal with the unknown lifetime, differ-
ent decay lengths are investigated, ranging from 4 cm up to 3 m. 
The lower limit is determined by the secondary vertex finding ef-
ficiency and the upper limit by the requirement that there is a 
significant probability for decays inside the TPC2 (the final accep-

2 For the H-dibaryon there is also a theoretical maximal decay length calculated 
for the investigated decay channel [45].
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tance × efficiency drops down to 1% for the �n and 10−3 for the 
H-dibaryon). The shape of transverse momentum spectra in heavy-
ion collisions is described well by the blast-wave approach, with 
radial flow parameter 〈β〉 and kinetic freeze-out temperature Tkin
as in [46]. The true shape of the pT spectrum is also not known, 
therefore it is estimated from the extrapolation of blast-wave fits 
to deuterons and 3He spectra at the same energy [10]. To obtain 
final efficiencies, the resulting blast-wave distributions constructed 
for the exotic bound states are normalised to unity and convoluted 
with the correction factors (efficiency × acceptance).

Typical values of the final efficiency are of the order of a few 
percent assuming the lifetime of the free �. The uncertainty in the 
shape of the pT distributions is the main source of systematic er-
ror. Blast-wave fits of deuteron and 3He spectra are employed to 
explore the range of systematic uncertainties. Analyses of these 
results lead to a systematic uncertainty in the overall yield of 
around 25%.

Other systematic uncertainties are estimated by varying the 
cuts described in Table 1 and Table 2 within the limits consistent 
with the detector resolution. The contributions of these systematic 
uncertainties are typically found to be in the percent range. The 
combination of the different sources leads to a global systematic 
uncertainty of around 30% for both analyses, when all uncertain-
ties are added in quadrature.

For the �n bound state analysis the possible absorption of the 
anti-deuterons and the bound state itself when crossing material 
has to be taken into account. For this, the same procedure as used 
for the anti-hypertriton analysis [9] is utilised. The absorption cor-
rection ranges from 3 to 40% (depending on the lifetime of the �n
bound state, which determines the amount of material crossed) 
with an overall uncertainty of 7%.

6. Results

No significant signal in the invariant mass distributions has 
been observed for both cases, as visible from Fig. 2 and Fig. 3.3

The shape of the invariant mass distribution of dπ+ is of purely 
kinematic origin, reflecting the momentum distribution of the par-
ticles used. The selection criteria listed in Table 1 are tuned to 
select secondary decays. The secondary anti-deuterons involved 
in the analysis originate mainly from two sources: The first and 
dominating source are daughters from three-body decays of the 
anti-hypertriton (3

�̄
H → d̄p̄π+ and 3

�̄
H → d̄n̄π0) where the other 

decay daughters are not detected. The invariant mass spectrum is 
obtained by combining theses anti-deuterons with pions generated 
in the collision. The second source is due to prompt anti-deuterons 
which are incorrectly labelled as displaced, because they have such 
low momenta that the DCA resolution of these tracks is not suffi-
cient to separate primary from secondary particles.

Since no signal in the invariant mass distributions is observed 
upper limits are estimated. For the estimation of upper limits 
for the rapidity density dN/dy the method discussed in [47] is 
utilised. In particular, we apply the software package TRolke as im-
plemented in ROOT [48]. This method needs as input mass and 
experimental width (3σ ) of the hypothetical bound states. The ob-
served counts are therefore compared to a smooth background 
as given by an exponential fit outside the signal region (as indi-
cated by the line in Fig. 2 and Fig. 3). For both candidates �n
and H-dibaryon we assume a binding energy of 1 MeV. The width 
is determined by the experimental resolution and obtained from 

3 Note that a hypothetical H-dibaryon with a mass above the 	p threshold would 
not be observable in the present analysis.

Fig. 4. Upper limit of the rapidity density as function of the decay length shown for 
the �n bound state in the upper panel and for the H-dibaryon in the lower panel. 
Here a branching ratio of 64% was used for the H-dibaryon and a branching ratio of 
54% for the �n bound state. The horizontal (dashed) lines indicate the expectation 
of the thermal model with a temperature of 156 MeV. The vertical line shows the 
lifetime of the free � baryon. (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

Monte Carlo simulations. In addition, the final efficiency which 
is discussed in section 5 is required. Further, values of branch-
ing ratios of the assumed bound states are needed. These depend 
strongly on the binding energy. With a 1 MeV binding energy for 
the �n bound state the branching ratio in the d +π+ decay chan-
nel is expected to be 54% [49]. The branching ratio for a 1 MeV or 
less bound H-dibaryon decaying into �pπ− is predicted to be 64%, 
see [44].

The resulting upper limits, for 99% CL, are shown in Fig. 4 as 
a function of the different lifetimes; for the �n bound state in 
the upper panel and for the H-dibaryon in the lower panel. These 
upper limits include systematic uncertainties. For the �n the ab-
sorption corrections are also considered in the figure, which causes 
the upper limits to be shifted upwards.

The obtained upper limits can now be compared to model 
predictions. The rapidity densities dN/dy from a thermal model 
prediction for a chemical freeze-out temperature of, for example, 
156 MeV, are dN/dy = 4.06 × 10−2 for the �n bound state and 
dN/dy = 6.03 × 10−3 for the H-dibaryon [16]. These values are 
indicated with the (blue) dashed lines in Fig. 4. For the investi-
gated range of lifetimes the upper limit of the �n bound state is 
at least a factor 20 below this prediction. For the H-dibaryon the 
upper limits depend more strongly on the lifetime since it has a 
different decay topology and all four final state tracks have to be 
reconstructed. The upper limit is a factor of 20 below the thermal 
model prediction for the lifetime of the free � and becomes less 
stringent at higher lifetimes since the detection efficiency becomes 
small. For a lifetime of 10−8 s, corresponding to a decay length of 
3 m, the difference between model and upper limit reduces to a 
factor two.

In order to take the uncertainties in the branching ratio into 
account, we plot in Fig. 5 the products of the upper limit of the 
rapidity density times the branching ratio together with several 
theory predictions [16,30,31,50]. The curves are obtained using the 
value for the �-lifetime of Fig. 4.

The (red) arrows in the figures indicate the branching ratio 
from the theory predictions [44,49]. The obtained upper limits are 
a factor of more than 5 below all theory predictions for a branch-
ing ratio of at least 5% for the �n bound state and at least 20% for 
the H-dibaryon.
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Fig. 5. Experimentally determined upper limit, under the assumption of the lifetime 
of a free �. In the upper panel shown for the �n bound state and for the H-
dibaryon in the lower panel. It includes 30% systematic uncertainty for each particle 
and 6% correction for absorption with an uncertainty of 7% for the �n bound state. 
The theory lines are drawn for different theoretical branching ratios (BR) in blue for 
the equilibrium thermal model from [16] for two temperatures (164 MeV the full 
line and 156 MeV the dashed line), in green the non-equilibrium thermal model 
from [30] and in yellow the predictions from a hybrid UrQMD calculation [50]. The 
H-dibaryon is also compared with predictions from coalescence models, where the 
full red line visualises the prediction assuming quark coalescence and the dashed 
red line corresponds to hadron coalescence [31]. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.)

7. Discussion

The limits obtained on the rapidity density of the investigated 
exotic compound objects are found to be more than one order of 
magnitude below the expectations of particle production models, 
when using a realistic branching ratio and a reasonable lifetime. It 
has to be noted that simultaneously, a clear signal was observed 
for the very loosely bound hypertriton (binding energy < 150 keV) 
for which production yields have been measured [9]. These yields 
along with those of nuclei A = 2, 3, 4 agree well with the pre-
dictions of the thermal model discussed above and decrease with 
each additional baryon number by roughly a factor 300. One would 
therefore assume that the yield of the �n, if such particle existed, 
should also be predicted by this model and with a value for the 
rapidity density of about a factor 300 higher than the measured 
hypertriton yield. Similar considerations hold for the H-dibaryon.

8. Conclusion

A search is reported for the existence of loosely bound strange 
dibaryons �� and �n whose possible existence has been dis-
cussed widely in the literature. No signals are observed. On the 
other hand, loosely bound objects with baryon number A = 3 such 
as the hypertriton have been measured in the same data sample. 
The yields of nuclei [10] and of the hypertriton [9] are quantita-
tively understood within a thermal model calculation. The present 
analysis provides stringent upper limits at 99% confidence level for 
the production of H-dibaryon and �n bound state, in general sig-
nificantly below the thermal model predictions. The upper limits 
are obtained for different lifetimes. The values are well below the 
model predictions when realistic branching ratios and reasonable 
lifetimes are assumed. Thus, our results do not support the exis-
tence of the H-dibaryon and the �n bound state.
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