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Summary

Previously, our laboratory demonstrated the existence of a β-subunit glycosylation-deficient 

human FSH glycoform, hFSH21. A third variant, hFSH18, has recently been detected in FSH 

glycoforms isolated from purified pituitary hLH preparations. Human FSH21 abundance in 

individual female pituitaries progressively decreased with increasing age. Hypo-glycosylated 

glycoform preparations are significantly more active than fully-glycosylated hFSH preparations. 

The purpose of this study was to produce, purify and chemically characterize both glycoform 

variants expressed by a mammalian cell line. Recombinant hFSH was expressed in a stable GH3 

cell line and isolated from serum-free cell culture medium by sequential, hydrophobic and 

immunoaffinity chromatography. FSH glycoform fractions were separated by Superdex 75 gel-

filtration. Western blot analysis revealed the presence of both hFSH18 and hFSH21 glycoforms in 

the low molecular weight fraction, however, their electrophoretic mobilities differed from those 

associated with the corresponding pituitary hFSH variants. Edman degradation of FSH21/18 -

derived β-subunit before and after peptide-N-glycanase F digestion confirmed that it possessed a 

mixture of both mono-glycosylated FSHβ subunits, as both Asn7 and Asn24 were partially 

glycosylated. FSH receptor-binding assays confirmed our previous observations that hFSH21/18 

exhibits greater receptor-binding affinity and occupies more FSH binding sites when compared to 

fully-glycosylated hFSH24. Thus, the age-related reduction in hypo-glycosylated hFSH 

significantly reduces circulating levels of FSH biological activity that may further compromise 

reproductive function. Taken together, the ability to express and isolate recombinant hFSH 

glycoforms opens the way to study functional differences between them both in vivo and in vitro.
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1. Introduction

Human pituitary FSH consists of three or four major glycoforms that differ in glycosylation 

of the hormone-specific β–subunit (Bousfield et al., 2008, Bousfield et al., 2014a, Bousfield 

et al., 2007, Walton et al., 2001). Fully glycosylated FSHβ subunit is detected in FSHβ-

specific Western blots as a 24,000 Mr band, while two glycan-deficient forms have been 

described, one that appears as a 21,000 Mr band (Walton et al., 2001) and another that is 

characterized by an 18,000 Mr band (Bousfield et al., 2014a). A non-glycosylated hFSHβ 

was detected by mass spectrometry (Bousfield et al., 2008, Bousfield et al., 2007, Walton et 

al., 2001), but in Western blots the 15,000 Mr hFSHβ band has only been observed after 

peptide-N-glycanase F (PNGase F) treatment of the other glycoforms (Bousfield et al., 

2014a). Most pituitary and urinary hFSH preparations we have analyzed possess both Mr 

24,000 (FSHβ24) and Mr 21,000 (FSHβ21) β-subunit variants, although the ratios may differ 

(Bousfield et al., 2008, Bousfield et al., 2014a, Bousfield et al., 2007, Walton et al., 2001). 

For simplicity, the hFSH glycoform with FSHβ24 will be designated as hFSH24, the one with 

FSHβ21 as hFSH21, and the one with FSHβ18 as hFSH18. Mixtures of glycoforms, such as 

pituitary hFSH, which possesses more FSHβ24 than FSHβ21, will be designated as 

hFSH24/21, with the first number indicating the more abundant variant. In our previous 

publications, we referred to hFSH21 as “di-glycosylated”, as mass spectrometry and Edman 

degradation independently demonstrated that the original FSHβ21 subunit preparation lacked 

both N-glycans (Walton et al., 2001). Thus, only the α subunit possessed N-glycans. Human 

FSH24 was termed “tetra-glycosylated” hFSH to indicate dual N-glycosylation of both α and 

β subunits (Bousfield et al., 2008, Bousfield et al., 2014a, Bousfield et al., 2007, Walton et 

al., 2001). Transgenic mice also express a non-glycosylated FSHβ15, which can 

heterodimerize with the mouse α-subunit to form hFSH15, however, it appears to be retained 

by pituitary gonadotropes (Davis et al., 2014).

The relative abundance of hFSH21 in individual female pituitaries appears to be dependent 

on the age of the woman and to decrease over reproductive life. The ratio of hFSH21/

hFSH24 in the pituitary changed from hFSH21 -dominant in 21- to 24-year old women to 

roughly equivalent in 39- to 41-year old women to hFSH24 -dominant in 55- to 81-year old 

women (Bousfield et al., 2014b). Increased abundance of high molecular weight forms of 

pituitary FSH followed ovariectomy in both rhesus macaque and rat females (Bogdanove, 

Campbell and Peckham, 1974, Peckham et al., 1973). Sephadex G-100 chromatograms 

indicated 56% ovariectomized rhesus pituitary hFSH was the high molecular weight variant 

(Peckham and Knobil, 1976). Western blots of individual ovariectomized rhesus pituitary 

FSH samples revealed 57% was FSH24 (Bousfield et al., 2007). Estrogen replacement in 

ovariectomized females reduced the abundance of high molecular weight FSH (Bogdanove 

et al., 1974, Peckham and Knobil, 1976). Neuraminidase digestion of rhesus FSH from 

ovariectomized females also reduced the abundance of high molecular weight FSH, which 

suggested the increase in size was due to sialic acid (Peckham and Knobil, 1976). It is not 
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yet clear what ovarian factor(s) regulate human FSH glycoform abundance. For example, 

the shift from hFSH21-dominant to hFSH21/hFSH24 equivalent ratios preceded the age at 

which circulating estrogen is known to decrease (Randolph et al., 2011).

Since both glycoforms were also present in the urine of women (Bousfield et al., 2014b), 

they were secreted by the pituitary into the circulation, where they can influence ovarian 

activity. Possibly, the glycoform ratios in the blood change over time and exacerbate 

declining function of the aging ovary by limited cellular activation via the FSH receptor. We 

recently reported that pituitary hFSH21/18 exhibited a 9- to 20-fold higher hFSH receptor-

binding activity and occupied twice as many receptors as hFSH24 (Bousfield et al., 2014a). 

Urinary hFSH preparations used in assisted reproduction represent mostly hFSH24 

(Bousfield et al., 2007), since they are purified from postmenopausal urine. Most of the 

recombinant hFSH preparations commercially available for use in ovarian stimulation for 

assisted reproduction, such as Gonal F, consist largely of the hFSH24 glycoform (see below). 

Therefore, it would be interesting to see if the hFSH21 or hFSH18 glycoforms are beneficial 

for assisted reproduction procedures.

A randomized, open-label clinical study performed on 188 infertile couples reported that 

two types of hFSH preparations with different glycosylation patterns had different impacts 

on oocyte quality and clinical outcome (Selman H, 2010). A sequential combined protocol 

using both acidic and less-acidic hFSH preparations for ovarian stimulation improved oocyte 

maturity, implantation, and pregnancy rates (Selman H, 2010). Another possible practical 

application is a development of a monoclonal antibody specific only to hFSH21 or hFSH18 

glycoforms (in progress in our laboratory).

The aim of this study was to produce, isolate and structurally characterize recombinant 

hFSH glycoforms, to be used in the future for further in vitro and in vivo characterization of 

FSH action.

2. Materials and Methods

2.1 Hormone Preparations

Recombinant hFSH preparations, Follistim and GonalF were obtained from Organon and 

Serono, respectively. Purified pituitary hFSH preparations AFP-4161, AFP-5720D, and 

AFP-7298A were obtained from the National Hormone and Pituitary Program. Urinary 

hFSH was purchased from ProSpec, East Brunswick, NJ. Human pituitary FSH glycoforms 

were prepared as described previously (Bousfield et al., 2014a). Recombinant GH3-

hFSH24/21 was purified from small samples of conditioned medium by the same procedure 

used to isolate pituitary hFSH21/18; monoclonal antibody 46.3H6.B7 immunoaffinity 

chromatography followed by Superdex 75 gel filtration (Bousfield et al., 2014a). Antibodies 

used in this study are listed in supplement Table 1.

2.2 Analytical Procedures

Details of all procedures can be found in the supplement to this article. SDS-PAGE 

(Laemmli, 1970) was carried out using a Bio-Rad (Hercules, CA) Protean III mini-gel 

apparatus (Bousfield et al., 2007). Conventional Western blots of PVDF membranes were 
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carried out as previously described (Bousfield et al., 2014a). Automated Western blot 

procedures were carried out using a ProteinSimple (Santa Clara, CA) Simon following the 

manufacturer’s recommendations. Nano-electrospray ionization mass spectrometry was 

carried out as recently described for pituitary and urinary hFSH samples (Bousfield et al., 

2014b). Carbohydrate composition analysis was carried out on 4 N TFA hydrolysates 

(Bousfield et al., 2000) using a Thermo Scientific Dionex (Sunnyvale, CA) ISC-5000 

carbohydrate analyzer. FSHβ glycosylation sites were analyzed by a combination of 

PNGaseF digestion and automated Edman degradation. Glycosyltransferase expression was 

detected by RT-PCR.

2.3 Large-scale Recombinant hFSH Purification

Details of recombinant GH3-hFSH expression and glycoform purification can be found in 

the supplement. A rat pituitary tumor GH3 cell line, stably transfected with hFSH α- and β-

subunits (Muyan, Ryzmkiewicz and Boime, 1994), was the generous gift of Dr. I. Boime 

(Washington University Medical School, St. Louis, MO). Culture medium conditioned by 

these cells was the source of recombinant hFSH. The hormone was captured from 10.4 L 

serum-free culture medium by Octyl-Sepharose chromatography, then immunopurified with 

immobilized monoclonal antibody 4882 (SPD Development Co., Ltd., Bedford, UK.), which 

recognizes an α-subunit epitope and captures all human glycoprotein hormones. 

Immunopurified hFSH was fractionated by gel filtration using three, 10 X 300 mm Superdex 

75 (GE Healthcare, Piscataway, NJ) columns, connected in series. Relative glycoform 

abundance was determined by Western blot and the appropriate fractions pooled.

2.4 FSH receptor-binding assays

Animal procedures were approved by an institutional animal care and use committee. 

Competitive binding assays were carried out as described previously (Butnev et al., 1996). 

Saturation binding assays were carried out as described previously (Bousfield et al., 2014a) 

except bovine (Dias, Huston and Reichert, 1981) and human (Butnev et al., 1998) FSH 

receptor preparations were included.

3. Results

3.1 GH3-hFSH glycoform abundance

Western blot analysis of samples from small-scale expression experiments suggested 

recombinant hFSH expressed by GH3 cells might provide a more abundant source of 

partially glycosylated FSH glycoforms than pituitary extracts and commercially available 

recombinant hFSH preparations (Fig. 1). The relative abundance of the FSHβ21 band 

averaged 55% in mAb 46.3H6.B7 immunoaffinity/Superdex 75 gel filtration-purified, 

recombinant hFSH samples recovered from GH3 cells grown in 100 mm culture dishes (Fig. 

1, lanes 2 and 3). This was greater than the 20–27% abundance found in pituitary and 

recombinant hFSH preparations (Fig. 1, lanes 4 and 7–10). GonalF revealed a triplet of 

immunoreactive bands in the FSHβ21 region of the gel, instead of the broad, glycoprotein-

like band observed in pituitary FSH preparations. All the pituitary FSHα subunit bands 

migrated faster than commercially produced recombinant hFSHα subunits (compare lower 

panel lanes 4–6 with 7–10).

Butnev et al. Page 4

Mol Cell Endocrinol. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 Characterization of total GH3-hFSH glycans by nano-spray mass spectrometry

Pituitary and recombinant hFSH oligosaccharide microheterogeneity was compared to 

identify differences in N-glycan populations that might impact biological activity. PNGaseF 

digestion quantitatively released oligosaccharides from reduced, carboxymethylated GH3-

hFSH, as indicated by a shift to later retention time for the PNGaseF-digested hormone 

sample (data not shown). The PNGaseF-released oligosaccharides were analyzed by nano-

spray mass spectrometry as described in supplementary materials. The spectra (supplement 

Fig. 2) were relatively weak compared with those from the pituitary hFSH and hFSH 

glycoform samples analyzed at the same time (Bousfield et al., 2014a); consequently, some 

minor glycans may have been missed. The glycans were predominantly bi- and tri-antennary 

complex-type oligosaccharides (supplement Fig. 3 and supplement Table 3), with the bi-

antennary more abundant than the tri-antennary (Fig. 2A), the opposite of what was 

encountered with the pituitary hFSH preparation and with reports in the literature (Green 

and Baenziger, 1988a, b, Renwick et al., 1987). A small amount of tetra-antennary structures 

may have been present but fragmentation spectra of these minor ions (supplement Table 3) 

were not obtained and, consequently, the possibility that these ions were from tri-antennary 

glycans with N-acetyl-lactosamine extensions cannot be excluded. Unlike pituitary hFSH 

samples, the tri-antennary glycans possessed 2 branches on the 6-antenna instead of the 3-

antenna (Harvey et al., 2008). Both neutral and acidic glycans were present; the acidic 

groups were all Neu5Ac, no sulfate was detected. The glycans also contained a substantial 

amount of fucose on the antennae, unlike the glycans from pituitary hFSH.

Of the four most abundant pituitary glycan families, based on neutral core oligosaccharide 

structure, two were triantennary, two were biantennary, and together they accounted for 

almost 40% of the glycan families (Fig. 2A and B), while three of the 4 most abundant 

recombinant hFSH glycans were biantennary, only one was triantennary. Together, these 

added up to just over 50%. The three most abundant individual glycan structures in both 

preparations were di-sialylated biantennary glycans (Fig. 2C and D), while the fourth was 

tri-sialylated, triantennary for pituitary hFSH and fucosylated, tri-sialylated, triantennary for 

recombinant hFSH. The four most abundant glycans accounted for 30% and 36% of the 

pituitary and recombinant hFSH glycans, respectively. Overall, recombinant hFSH glycans 

were less diverse than in pituitary hFSH, possessed relatively fewer large glycans of the 

triantennary class, and appeared to completely lack the tetraantennary class. Biantennary 

glycans were the largest glycan class present and this may have contributed to the faster 

migration of recombinant GH3-hFSH bands during SDS-PAGE. Nevertheless, the apparent 

greater abundance of hypo-glycosylated glycoform as compared with other pituitary and 

recombinant hFSH preparations indicated it was worthwhile to proceed to large-scale 

expression.

3.3 GH3-hFSH isolation

Large-scale GH3 cell expression of hFSH produced milligram quantities of immunoreactive 

recombinant hFSH in both serum-containing and serum-free conditioned media, which were 

processed separately. The following describes isolation of hFSH glycoforms from 10.4 liters 

of serum-free medium containing 21.2 mg hFSH immunoactivity. A total of 690 mg protein 

was eluted from Octyl-Sepharose with 30% ethanol. The FSH recovery was 95% of the 
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initial immunoreactivity. The dialyzed and lyophilized protein was dissolved in 0.1 M 

sodium phosphate, pH 7.0, with 0.15 M NaCl, and GH3-hFSH captured by immobilized 

anti-α monoclonal antibody 4882. GH3-hFSH and subunits were eluted from this resin with 

0.1 M glycine-HCl, 0.5 M NaCl buffer, pH 2.7. The recovery of recombinant GH3-

hFSH24/21 was 14.5 mg (68%) based on size exclusion chromatography (SEC) peak area. 

Separation of the FSH glycoforms was achieved by high performance gel filtration using 

three Superdex 75 columns connected in series. The resulting chromatogram consisted of a 

large heterodimer peak and a smaller free subunit peak (Fig. 3). Seven, 300 µL column 

fractions associated with the heterodimer peak were dried individually, dissolved in 600 µL 

water, the FSH concentration determined by SEC, and representative chromatograms shown 

(Fig. 3, inset I).

3.4 GH3-hFSH glycoform characterization

Each FSH and subunit fraction was evaluated by Western blot analysis (Fig. 3 inset II) and 

pooled glycoform preparations were characterized by SDS-PAGE (inset III). Comparison of 

the SEC chromatogram for fraction 1, at the beginning of the heterodimer peak, with that of 

fraction 7, near the end, revealed that the lower molecular weight fraction 7 exhibited a 

longer retention time and 71% increased peak width at half-height. The longer retention time 

indicated reduced molecular mass due, at least in part, to the absence of one or more FSHβ 

N-glycans, while greater peak width was consistent with the presence of two FSHβ bands in 

the Western blot of fraction 7 and only one in fraction 1. Similar results were obtained 

during analysis of fractions 2 and 6 (not shown). Carbohydrate composition analysis of 

fraction 1 and 2 hydrolysates indicated higher GlcNAc and Gal content relative to 3 Man 

residues than was found in fraction 6 and 7 hydrolysates (supplement Table 4). Greater 

relative abundance of both residues was consistent with fraction 1 and 2 glycans possessing 

largely triantennary glycans, which would possess 3 Gal residues/3 Man residues (actual 

values 2.9 and 2.8 for fractions 1 and 2, respectively). The Gal content of 1.4 residues/3 Man 

residues in fraction 6 and 7 hydrolysates suggests more 1- and 2-branch glycans, while the 

5.6 and 5.7 GlcNAc/3 Man content was consistent with initiation of the second and third 

glycan branches, but failure to extend them. Such glycans were detected in mass 

spectrometric analysis of total recombinant GH3-hFSH glycans (supplement Figs. 2 and 3). 

Sialic acid content was lower than the Gal content for all four hydrolysates indicating the 

presence of uncapped glycans, which were also observed in the glycan mass spectra. The 

same characteristics, enrichment for triantennary glycans in pituitary hFSH24 and greater 

abundance of biantennary glycans in hFSH21, along with partial sialylation of most glycans 

was observed following mass spectrometric analysis of pituitary hFSH glycoform glycans 

(Bousfield et al., 2014b).

FSH radioligand assay (Fig. 4A) indicated fractions 6 and 7 possessed the same receptor-

binding activity, which was 6.4-fold greater than that of fraction 2 and 15-fold greater than 

that of fraction 1 (Table 1). There was no significant difference between hFSH21/18 fractions 

6 and 7 (p = 0.37), but hFSH24 fraction 1 was significantly less active than fraction 2 (p < 

0.0001). Both low molecular weight hFSH21/18 fractions were significantly more active than 

both high molecular weight hFSH24 fractions (p < 0.0001).
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SDS-PAGE revealed a single, broad Coomassie Blue stained band for each glycoform 

preparation, which is typical for FSH preparations that display a high degree of 

microheterogeneity in the glycan moieties attached to both subunits (Fig. 3, inset III). The 

faster mobility of the broad GH3-hFSH21/18 band suggested both subunits were smaller than 

those associated with GH3-hFSH24. Three high molecular weight protein contaminants 

appeared in the hFSH24 lane, but were not observed in the SEC chromatogram (inset I), nor 

were they detected in Western blots.

Both glycoform preparations were analyzed by conventional, SDS-PAGE/electrotransfer to 

PVDF and probe, as well as automated, capillary electrophoresis Western blot procedures 

(Fig. 5). The pooled hFSH24 glycoform preparation possessed 79% FSHβ24 along with 21% 

FSHβ21 (Fig. 5A, lane 1). The latter was only 11% by automated Western blotting (Fig. 5B, 

lanes 3 and 4). The hFSH21/18 preparation appeared to possess a mixture of 54% FSHβ21 

and 46% FSHβ18 in the conventional blot and 66% and 34%, respectively, in the automated 

blot. The hFSHβ21 band partially overlapped with the FSHβ24 band in the hFSH24 

preparation in both Western blot systems. The GH3-hFSH21 fraction resembled pituitary 

hFSH21/18 isolated from hLH preparations, as both partially glycosylated FSHβ subunit 

variants were present (Bousfield et al., 2014a). It is likely the narrow detection range for our 

FSHβ Western blots was largely responsible for GH3-hFSH18 not being detected in the 

unfractionated GH3-hFSH. The difference in mobility between GH3-FSHβ24 and GH3-

FSHβ21 was not as large as expected from the individual fraction Western blot in Fig. 3.

Automated Western blot analysis involved separation of reduced samples by capillary 

electrophoresis under conditions that approximated 10% polyacrylamide gels, according to 

the manufacturer. Migration of FSH subunits differed from what we had become used to for 

conventional Western blots (Fig. 5B and C). Comparison with pituitary hFSH samples 

revealed GH3-hFSH24 β-subunit migrated as a single band, as in the conventional Western 

blot. While the separation of the GH3-hFSH21/18 bands was improved over polyacrylamide 

gels, migration of the FSHβ21 band was closer to that of the FSHβ24 band. Although the 

pituitary hFSH preparation possessed only FSHβ21, when subunits were immunopurified, its 

migration during capillary electrophoresis was like that of GH3-hFSH18. Migration of the 

FSHα subunits was similar for pituitary hFSH24/21 and GH3-hFSH24, which contrasted with 

the slower migration of FSHα in the GonalF and Follistim preparations in a conventional 

Western blot (Fig. 1, lanes 7–10). Migration of GH3-hFSH21/18 α-subunit produced a band 

as broad as pituitary FSHα, attended by a somewhat faster mobility.

3.5 Determination of glycosylation site occupancy by Edman degradation

In case of the hFSHβ24 there was virtually no PhNCS-Asn detected at cycles 5 and 7, which 

correspond to Asn7 in the truncated and full-length hFSHβ primary structures (supplement 

Figs. 6A and B). After PNGase F digestion, significant amounts of PhNCS-Asp were 

observed at Edman cycles corresponding to Asn7 in hFSHβ24 (supplement Figs. 6C and D). 

The results of sequencing PNGase F-digested hFSHβ21/18 demonstrated 23% of the Asn7 

and 71% of the Asn24 residues were not glycosylated (supplement Fig. 7). This was 

consistent with the greater abundance of hFSH21 (lacks Asn24 glycan) than hFSH18 (lacks 

Asn7 glycan) in GH3-hFSH21/18 Western blots.
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3.6 Comparison of GH3-hFSH glycoform receptor-binding activities

In a homologous competition assay, the activity of recombinant GH3-hFSH24 was 20844 

IU/mg, compared with highly purified pituitary hFSH reference preparation (Fig. 4B and 

Table 2). The activity of the recombinant GH3-hFSH21/18 preparation was 2.8-fold greater, 

57942 IU/mg. The reduced difference in the pooled glycoform preparation activities 

remained significantly different from each other (p < 0.0001) and from pituitary hFSH24 (p 

< 0.0001). It was unlikely that it was the use of human FSH tracer and hFSHR, as a 2-fold 

difference was observed in the rat/125 I-eFSH RLA for the same glycoform preparations 

(data not shown).

Leveling off of FSHR binding sites by both recombinant and pituitary hFSH24 tracer 

occurred at a lower concentration than that for GH3-hFSH21/18 tracer in three species, rat, 

bovine and human (Fig. 6). The difference in binding ranged from almost 2-fold in calf testis 

membranes to 3-fold in the CHO-hFSHR cell line (Table 3). An almost 6-fold difference 

was observed in the rat, however, this was due to the last 3 concentrations, which abruptly 

diverged from the pattern established by the first 6 concentrations (Fig. 6A inset). While not 

consistently observed in every experiment, this phenomenon occurs frequently.

3.7 Glycosyltransferase expression in GH3 cells

The majority of the glycans in GH3-hFSH were bi-antennary and these were more abundant 

than their counterparts in pituitary hFSH (supplement Fig. 2 and Table 2). A striking 

difference between pituitary and GH3 recombinant hFSH glycan populations was the 

absence of GlcNAc on the 4-position of the 3-antenna in tri-antennary glycans from the 

latter and the absence of GlcNAc on the 6-position of the 6-antenna in tri-antennary glycans 

from the former. As GlcNAc residues are attached to N-linked glycoproteins by specific 

GlcNAc transferases, we evaluated GH3 cell mRNA for GlcNAc transferase IV and V 

isozymes. The former adds GlcNAc in β1–4 linkage to Man α(1–3)Man in the 

pentasaccharide core, while the latter adds GlcNAcβ1–6 to Man α(1–6)Man. Since pituitary 

hFSH possesses tetra-antennary glycans, at least one isoform of each transferase must 

function in gonadotropes. Both GlcNAc transferase IVa and IVb, but not IVc, were 

expressed in GH3 cells, however, no GlcNAcβ(1–4)Man was detected in GH3-hFSH 

glycans. Only GlcNAc transferase V, but not Vb, was detected (Fig. 7A). The former 

appeared to be active as, all tri-antennary glycans possessed GlcNAcβ(1–6)Man. The 

abundance of tri-antennary glycans was much higher in pituitary hFSH glycans than in GH3-

hFSH glycans, suggesting the activity of GH3 GlcNAc transferase V was lower than that of 

pituitary GlcNAc transferase isozymes.

Antenna-linked Fuc residues were common in GH3-hFSH glycans and relatively rare in 

pituitary hFSH oligosaccharides (Green and Baenziger, 1988a, b, Renwick et al., 1987). 

GH3 cells expressed fucosyltransferase isozymes 1, 11, 10, 7, and 2, in decreasing order of 

PCR product abundance (Fig. 7B). The transferase isozyme responsible for antenna-linked 

fucose, Fut8, was undetectable in our experiments. Nevertheless GH3-hFSH glycans 

included more antenna-linked fucose than those derived from pituitary hFSH or hFSH 

glycoforms.
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In FSH, Neu5Ac is added in either α2–3 or α2–6 linkage. Each linkage is the result of a 

separate sialyltransferase isoform (Weinstein, de Souza-e-Silva and Paulson, 1982). RT PCR 

identified two α2–3 sialyltransferase isoform and one α2–6 sialyltransferase isoform 

messages (Fig. 7C). While no experiments were performed to evaluate the relative 

abundance of these two linkages, it is reasonable to expect more α2–3-linked Neu5Ac in 

GH3-hFSH preparations. This will be tested when additional recombinant GH3-hFSH 

glycoform preparations become available.

4. Discussion

The goal of the current study was to isolate and characterize recombinant FSH glycoforms. 

We found the three variants we are interested in studying: FSH24, FSH21, and FSH18. 

However, differences in electrophoretic mobility of the FSHβ bands required additional 

analysis to verify that GH3 cells had indeed produced all three. Oligosaccharide 

microheterogeneity differed from pituitary hFSH, revealing a shift toward more biantennary 

glycans and addition of a third antenna on a more flexible position, which might have 

affected electrophoretic mobility. The pooled recombinant glycoform preparations exhibited 

a reduced difference in apparent affinity for the FSH receptor and it is not yet known if this 

reflects cross contamination of glycoforms or variations in the ratio of FSH21 to FSH18. 

Furthermore, it is unknown if glycan structural differences from pituitary hFSH will be 

functionally significant. Results of both in vitro and in vivo functional studies using these 

recombinant glycoform analog preparations indicate that recombinant GH3-hFSH21/18 is 

more active than GH3-hFSH24 (Davis, J.S. and Kumar, T.R., unpublished data).

Mass spectrometry revealed many similarities and one major difference between pituitary 

hFSH and recombinant GH3-hFSH oligosaccharide populations. Comparison on the basis of 

individual glycan structures suggested greater similarity in glycosylation patterns for both 

preparations than when the combination of structures sharing the same neutral core were 

compared. For example, the three most abundant glycan structures in both hormone 

preparations were all disialylated biantennary oligosaccharides, while the fourth most 

abundant structures were trisialylated and triantennary, but differed in the location of the 

third antenna. This antenna was located on the Man6-branch in GH3-hFSH glycans, linked 

β1–6 to an exocyclic carbon atom in a mannose residue that was itself linked α1–6. The 

exocyclic linkages created the possibility of greater flexibility than is associated with 

triantennary pituitary FSH glycans, in which the third antenna was β1–4 linked to mannose 

ring carbon 4 in the Man3branch (Homans, Dwek and Rademacher, 1987). When glycan 

family abundance was compared, the greater abundance of triantennary glycans in pituitary 

hFSH was consistent with the fact that its two most abundant families both possessed 

triantennary glycan cores, as compared with biantennary cores for the two most abundant 

families in GH3-hFSH. For GH3-hFSH glycans, the third most abundant family was also 

biantennary, while only the fourth family was triantennary. The combination of smaller 

glycans and greater flexibility on the part of the GH3-hFSH triantennary glycans may have 

contributed to the faster electrophoretic mobility for this preparation than pituitary hFSH in 

Western blots.

Butnev et al. Page 9

Mol Cell Endocrinol. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The purified GH3-hFSH Western blot revealed roughly equivalent amounts of hFSH24 and 

hFSH21, as compared with 20–27% hFSH21 in pituitary and other recombinant hFSH 

preparations. The promise of increased yield of hypo-glycosylated hFSH was fulfilled, as 

purification yielded twice as much GH3-hFSH21/18 as GH3-hFSH24. All three glycoforms 

were present in GH3-hFSH preparations, although hFSH18 was not detected until the 

glycoform separation step, as previously reported for pituitary hFSH glycoforms (Bousfield 

et al., 2014a). Differentiating GH3-hFSH21 from GH3-hFSH24 by either conventional or 

automated Western blot experiments was not straightforward because of partial overlap in 

electrophoretic mobilities of the FSHβ and FSHβ21 subunit bands. This may have been due 

to greater biantennary glycan abundance (56%) and reduced abundance of tri-antennary 

glycans (30%) in GH3-hFSH preparations than was observed in pituitary hFSH (38% and 

41%, respectively). However, Gonal F preparations appear to possess even more (66%) 

biantennary glycans, with only 24% triantennary and 9% tetraantennary (Gervais et al., 

2003), yet the electrophoretic mobilities of their β-subunits match those of pituitary hFSH. 

While glycans are generally considered to be very flexible molecules, one feature that 

exhibits the greatest flexibility is the antenna attached to the Man6-branch (Petrescu et al., 

1999). Since GH3-hFSH triantennary glycans almost exclusively possess Man6-linked third 

antennae, the increased flexibility may permit greater mobility during electrophoresis. 

Nevertheless, automated Edman degradation of the deglycosylated, hypo-glycosylated 

FSHβ21/18 preparation confirmed the presence of both mono-glycosylated β-subunits and the 

greater abundance of FSHβ21 as compared with FSHβ18.

While individual GH3-hFSH21/18 column fractions exhibited a 6- to 15-fold greater apparent 

affinity for the rat FSH receptor, the pooled GH3-hFSH21/18 preparation displayed only 2.8-

fold greater affinity for both the rat and human FSH receptors. The reduced difference was 

caused by a leftward shift of the GH3-hFSH24 ID50. It is possible that the 11–21% 

contamination with hypo-glycosylated hFSH, detected in Western blots, contributed to the 

increased receptor-binding activity of GH3-hFSH24. However, purified pituitary hFSH 

preparations often possess 20% hFSH21, yet are only as active as most hFSH24 preparations 

(Bousfield et al., 2014a, Bousfield et al., 2007). We were able to use 125I-hFSH21/18 to 

demonstrate that this glycoform could access at least twice as many FSH binding sites as 

hFSH24 tracer in FSH receptor-binding experiments involving two additional species, 

bovine and human. This is consistent with a recent report from our laboratory that during 

competitive binding and association assays, that used the same concentration of 125I-FSH 

tracer, or those experiments in which the tracer concentrations progressively increased, 

hypo-glycosylated pituitary FSH preparations bound more rat FSHR sites than fully-

glycosylated FSH24 preparations (Bousfield et al., 2014a). The magnitude of the binding in 

the present study reflected the increasing numbers of FSH receptors found in rat and calf 

testicular membranes and in overexpressed human FSH receptors. Nevertheless, greater 

hFSH21/18 binding was consistently observed, suggesting it is a general phenomenon.

When FSHRs were assumed to exist as single receptor molecules in target cell membranes, 

increased ligand binding associated with missing N-glycans would have been difficult to 

interpret because hFSH glycans do not appear to be close to the FSHR extracellular domain 

(supplement Fig. 8A). However, FSHR has been reported to exist as dimers, trimers or small 

oligomers in the membrane (Guan et al., 2010, Jiang et al., 2014, Thomas et al., 2007). 
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Accordingly, binding of FSH to one ligand binding site may affect FSH binding to a second 

ligand binding site, and dissociation studies seemed to provide supporting evidence (Urizar 

et al., 2005). Moreover, FSH dissociation was incomplete, supporting the existence of 

monomeric as well as dimeric/oligomeric receptors. As the latter possess one occupied and 

at least one unoccupied FSH binding site, unlabeled hormone may bind the unoccupied site 

and subsequently displace bound FSH tracer. Dimeric/oligomeric FSHRs account for the 

ability of 1000-fold excess cold FSH to partially displace receptor-bound 125I-FSH tracer. 

As monomeric FSH receptors lack unoccupied FSH binding sites, cold hormone cannot 

displace FSH tracer because the FSH-FSHR binding has been demonstrated to be stable for 

as long as 24 hours in the absence of cold FSH (Cheng, 1975). A recent review of FSH and 

FSHR structural biology pointed out that as FSH binding proceeds, the molecule exhibits 

less and less flexibility, which is consistent with the absence of spontaneous dissociation by 

FSH from its receptor (Jiang, Dias and He, 2013).

Qualitative differences in FSHR conformation or in the number of ligand binding sites 

occupied might alter signal transduction in gonadal target cells. Alternatively, it has been 

shown that some cellular responses to gonadotropin stimulation, such as cAMP 

accumulation, are directly proportional to the number of occupied receptors on the surface 

of target cells (Bhaskaran and Ascoli, 2005). The larger number of FSH binding sites 

available to hypo-glycosylated hFSH predicts that it will be more active than fully-

glycosylated hFSH. Indeed, we have found this to be true both in vitro and in vivo (Davis et 

al., 2014). Despite some variation in the appearance of their β-subunit bands in Western 

blotting experiments, it seems likely that the mechanism responsible for the difference in 

receptor binding between hFSH21/18 and hFSH24 is the same for both pituitary and 

recombinant FSH glycoform preparations.

A recent study characterized hFSH isoforms, classified as either di- or tetra-glycosylated 

hFSH glycoforms (and corresponding to hFSH21/18 and hFSH24 in the present study) in 

daily serum samples obtained from 79 healthy women during their menstrual cycles 

revealed very interesting observations (Wide and Eriksson, 2013). The pattern of the serum 

hFSH21 concentrations was characterized by a steep rise from day 27 of a previous cycle to 

days 3–6 of the next cycle and then a decrease in concentration lasting from day 7 to day 11 

followed by a pronounced midcycle peak (Wide and Eriksson, 2013). After that there was a 

rapid decrease to the lowest level on days 17–19 (Wide and Eriksson, 2013). The hFSH24 

glycoform concentration increased to a high plateau level lasting from day 3 to day 15 

followed by a slow decrease with no midcycle peak (Wide and Eriksson, 2013). These 

findings suggest that FSH glycoforms have different physiological roles in ovarian 

stimulation and are consistent with clinical studies showing improved ovarian stimulation 

with mixtures of acidic and less acidic hFSH isoforms (Selman, Pacchiarotti and El-

Danasouri, 2010). High and low sialic acid content FSH and Conanavalin A unbound and 

tightly bound FSH have recently been shown to elicit strikingly different patterns of gene 

expression in cultured KGN granulosa cell tumor cells (Loreti et al., 2013). The availability 

of recombinant hFSH glycoform preparations will make it possible to determine if similar 

effects can be obtained with fully- and hypo-glycosylated hFSH, as GH3-hFSH21/18 
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glycoforms have been demonstrated to be more active than GH3-hFSH24 both in vitro and in 

vivo (Davis et al., 2014).

Transformed GH3 cells expressed the three physiologically relevant hFSH glycoforms, 

FSH24, FSH21, and FSH18, previously found in the pituitary gland. Glycan mass 

spectrometry revealed many of the glycan structures found in pituitary hFSH were also 

present in GH3-hFSH. Amino acid sequencing of the hypo-glycosylated glycoform β-

subunits revealed that the Asn24 oligosaccharide is missing from hFSH21 and the Asn7 

glycan is missing in hFSH18. Hypo-glycosylated hFSH21/18 preparations exhibited higher 

apparent affinity for the FSH receptor and occupied twice as many FSH binding sites as 

fully-glycosylated hFSH24.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Recombinant hFSH glycoforms hFSH24, hFSH21, and hFSH18 were expressed 

in transformed GH3 cells.

• Recombinant hFSH showed a similar pattern of glycosylation 

macroheterogeneity as pituitary hFSH.

• Oligosaccharide microheterogeneity was similar for both pituitary and 

recombinant hFSH, the major qualitative difference was the branching pattern 

for triantennary glycans.

• Recombinant hFSH21/18 occupied more FSH binding sites than pituitary hFSH24 

in binding assays involving rat, bovine, and recombinant human FSH receptor 

preparations.
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Figure 1. FSH subunit Western blot collage comparing several pituitary and recombinant hFSH 
glycoform preparations
Samples of reduced hFSH preparations were subjected to electrophoresis on 15% 

polyacrylamide gels, electroblotted to PVDF, and probed with anti-hFSHβ monoclonal 

antibody RFSH20 (upper panel) and anti-alpha antibody HT13 (lower panel). The arrows 

indicate the 24,000 and 21,000 Mr pituitary hFSHβ bands, as well as the FSHα subunit band. 

Lane 1, 1 µg pituitary hFSH AFP4161; lane 2, 1 µg GH3-hFSH; lane 3, 0.5 µg GH3-hFSH; 

lane 4, 1 µg hFSH AFP4161 (20% FSHβ21); lane 5, 1 µg pituitary hFSH21/18 (60% FSHβ21, 

40% FSHβ18); lane 6, 1 µg hFSH24 (FSHβ21 below limits of detection); lanes 7 and 8, 0.5 

and 1 µg samples Follistim recombinant hFSH (27% FSHβ21); lanes 9 and 10, 0.5 and 1 µg 

samples GonalF recombinant hFSH (21% FSHβ21). Lanes 1–3 and 4–10 are from separate 

Western blots.
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Figure 2. Comparison of pituitary hFSH with recombinant GH3-hFSH glycans
The mass spectra, data tables, and glycan structure diagrams are shown in the supplement. 

A. Glycan abundance based on neutral core oligosaccharide structures, as indicated. B. Six 

most abundant neutral glycan cores for pituitary and recombinant hFSH, as indicated. C. 

Glycan variant abundance, grouped by neutral core structure. D. Six most abundant glycans 

in pituitary and recombinant hFSH, as indicated.
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Figure 3. Superdex 75 chromatography of immunopurified recombinant, GH3-hFSH
Representative chromatogram showing fractionation of hFSH heterodimer and subunit 

peaks. Fractions 1–3 were pooled, as indicated by shaded bar labeled, A, and yielded 514 µg 

GH3-hFSH24, while GH3-hFSH21/18 consisted of pooled fractions 6 and 7, which yielded 

1058 µg lyophilized protein (B). The intermediate molecular weight, mixed glycoform 

preparation consisted of 1106 µg. Total GH3-hFSH recovery was 2680 µg, 12.6% of the 

FSH immunoreactivity in conditioned medium. Inset II shows a collage of two Western 

blots used to identify the components of each fraction. The blots were aligned by the tops of 

the FSHβ24 bands in urinary hFSH24/21 used as a reference. The bar indicating the portion of 

the free subunit peak evaluated in this study was labeled C. Inset I: analytical SEC of 

fractions 1 and 7 illustrating the differences in peak shape and retention time. Inset II: Anti-

hFSHβ Western blot of fractions 1–14, as indicated. Inset III: SDS-PAGE followed by 

Coomassie Blue staining. Lane 1, GH3-hFSH24; lane 2, GH3-hFSH21/18. BioRad Precision 

Pre-stained MW marker positions are indicated.
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Figure 4. FSH radioligand assay of GH3-hFSH fractions and glycoform preparations
A. Samples of fractions 1, 2, 6, and 7 from the chromatogram in Fig. 3 were serially diluted 

and used to compete for the binding of 125I-eFSH to rat testis homogenate. Reference 

preparations included hFSH24/21 (AFP7298A, closed circle) and pituitary hFSH24 (closed 

square). Quantitative results are listed in Table 1. B. GH3-hFSH glycoform preparations 

tested in a homologous FSH RLA, which employed 125I-hFSH21 as tracer and CHO cells 

expressing hFSH receptors as the receptor preparation. Quantitative results are listed in 

Table 2.
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Figure 5. Conventional and automated Western blotting of GH3-hFSH24 and –hFSH21/18 

preparations
A. Conventional Western blot probed with anti-hFSH/FSHβ antibody RFSH20. Lane 1, 1 µg 

GH3-hFSH24; lane 2, 1 µg GH3-hFSH21/18. B. Automated Western blot probed with anti-

FSHβ antibody 15-1.C3C5 diluted 1:100. Lane 1, 40 ng pituitary hFSH AFP7298A; lane 2, 

40 ng pituitary hFSH AFP7298A; lane 3, 40 ng GH3-hFSH24; lane 4, 40 ng GH3-hFSH24; 

lane 5, 40 ng GH3-hFSH21/18; lane 6, 40 ng GH3-hFSH21/18. C. Automated Western blot 

probed with anti-α antibody 15-2.C3.B8 diluted 1: 100. Samples are shown in the same 

order as in panel B.
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Figure 6. Binding of GH3-hFSH glycoforms to rat, bovine, and human FSH receptors under 
conditions close to saturation
Specific binding of 125I-GH3-hFSH24, 125I-pituitary hFSH24, or 125I-GH3-hFSH21/18, as 

indicated, to FSH receptor preparations. A. Rat testicular homogenate 25 mg/tube. Inset. 

Binding at low tracer concentrations. B. Calf testis membranes 20 mg/tube. C. Human FSH 

receptors expressed in Chinese hamster ovarian cells, 250,000 cells/tube. Each panel, 

representative results from two experiments.

Butnev et al. Page 21

Mol Cell Endocrinol. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Glycosyltransferase expression in GH3 cells
A. RT-PCR detection of glycosyltransferases in GH3 cells expressing hFSH. B. 

Fucosyltransferase isoform expression in GH3 cells expressing hFSH. C. Sialyltransferase 

isoform expression in GH3 cells expressing hFSH.
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Table 1
FSH receptor-binding activities of GH3-hFSH glycoform fractions

Two high molecular weight and two low molecular weight fraction that were recovered from Superdex 75 gel 

filtration chromatography (Fig. 3) were tested in rat testis FSH RLA using 125I-eFSH tracer.

FSH Preparation ID50
(ng)

Relative Potency
(IU/mg)

FSH21/18/FSH24

Pituitary hFSH24/21 114 8560a

Pituitary hFSH24 253 3875

GH3-hFSH Frxn 1 131 7498 15.0

GH3-hFSH Frxn 2 56 17518 6.4

GH3-hFSH Frxn 6 7.9 124335

GH3-hFSH Frxn 7 8.7 112598

a
As provided by the National Hormone and Pituitary Program for AFP7298A.
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Table 2
FSH receptor-binding activities of GH3-hFSH glycoform preparations

The pooled GH3-hFSH21 and GH3-hFSH21/18 preparations (Fig. 3) were tested in CHO-hFSH receptor RLA 

using 125I-hFSH21 tracer.

FSH Preparation ID50
(ng)

Relative Potency
(IU/mg)

FSH21/18/FSH24

Activity Ratio

Pituitary hFSH24/21 75 8560a

Pituitary hFSH24 136 4721

GH3-hFSH24 30.8 20844

GH3-hFSH21/18 11.1 57942 2.8

a
As provided by the National Hormone and Pituitary Program for AFP7298A.
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Table 3

Ratio of FSH21/18 to FSH24 binding to rat, bovine, and human FSH receptors in receptor binding studies under 

conditions close to saturation shown in Fig. 6.

FSH receptor preparation Rat Testis Homogenate Calf Testis Membranes CHO-hFSHR

FSH24 Bmax 0.9972 2.609 600.8

FSH24 Kd 1062 685.0 1805

FSH21/18 Bmax 5.859 4.721 1784

FSH21/18 Kd 4198 484.9 1697

Ratio FSH21/18/FSH24 Bmax 5.9 1.8 3.0
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