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Abstract

Antibiotic resistance is a growing health concern, and new avenues of antimicrobial drug design 

are being actively sought. One suggested pathway to be targeted for inhibitor design is that of iron 

scavenging through siderophores. Here we present a high throughput screen to the isochorismate-

pyruvate lyase of Pseudomonas aeruginosa, an enzyme required for the production of the 

siderophore pyochelin. Compounds identified in the screen are high nanomolar to low micromolar 

inhibitors of the enzyme and produce growth inhibition in PAO1 P. aeruginosa in the millimolar 

range under iron-limiting conditions. The identified compounds were also tested for enzymatic 

inhibition of E. coli chorismate mutase, a protein of similar fold and similar chemistry, and of Y. 

enterocolitica salicylate synthase, a protein of differing fold but catalyzing the same lyase 

reaction. In both cases, subsets of the inhibitors from the screen were found to be inhibitory to 

enzymatic activity (mutase or synthase) in the micromolar range and capable of growth inhibition 

in their respective organisms (E. coli or Y. enterocolitica).

Keywords

siderophore; isochorismate pyruvate lyase; chorismate mutase; salicylate synthase

© 2014 Elsevier Ltd. All rights reserved.
*corresponding author; phone: + 1 785 864 5075; fax: + 1 785 864 5294; lamb@ku.edu.
1present address: Targanox, Inc., 37 Spinelli Place, Cambridge, Massachusetts 02138

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Supplementary data
Supplemental figure 1: assay readout, Z’ and signal-to-baseline plots. This material is available free of charge via the internet at http://
pubs.acs.org.

NIH Public Access
Author Manuscript
Bioorg Med Chem. Author manuscript; available in PMC 2015 November 01.

Published in final edited form as:
Bioorg Med Chem. 2014 November 1; 22(21): 5961–5969. doi:10.1016/j.bmc.2014.09.010.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://pubs.acs.org
http://pubs.acs.org


1. Introduction

Most pathogens require iron for survival because this metal serves as a required cofactor in 

many essential biological processes including DNA biosynthesis and cellular respiration [1]. 

While direct mechanisms for iron uptake (for example, uptake of heme) have evolved, 

indirect methods of iron acquisition, such as the use of high affinity iron chelators called 

siderophores, allow for iron scavenging regardless of the source [1]. Siderophore 

biosynthesis has been linked to virulence in many pathogenic bacteria [2–10]: without the 

ability to scavenge iron from the host, the bacteria are incapable of causing disease. 

Salicylate-capped siderophores are produced by several pathogenic bacteria, such as 

Yersinia spp. including the causative agent of plague, Mycobacterium tuberculosis, which is 

the causative agent of tuberculosis, and Pseudomonas aeruginosa, a nosocomial pathogen 

infecting susceptible hosts, including burn victims, cancer patients with hematological 

malignancies and those undergoing chemotherapy, patients with immune deficiencies such 

as AIDS patients, and Cystic Fibrosis (CF) patients [11]. Compounds that prevent the 

formation of salicylate or its incorporation into siderophores may prove to be a new class of 

antimicrobial drugs in this age of antibiotic drug resistance.

P. aeruginosa, Yersinia spp., and M. tuberculosis make chemically related siderophores that 

all use a salicylate cap (Figure 1A), the hydroxyl group of which is involved in iron 

chelation [12]. The salicylate 2 is formed in two steps from chorismate 4 with an 

isochorismate 1 intermediate (Figure 1B). The first step is the general acid-general base 

isomerization of chorismate to form isochorismate [13–15], whereas the second is the 

pericyclic migration of the enolpyruvyl tail [15, 16]. Because the cyclic transition state for 

this reaction includes a hydrogen, the result is the elimination of the tail and the formation of 

salicylate and pyruvate 3. For Yersinia spp. (siderophore: yersiniabactin) and M. 

tuberculosis (mycobactin), both reactions are catalyzed by a salicylate synthase, Irp9 and 

MbtI, respectively. The generation of the siderophore pyochelin by P. aeruginosa requires 

two enzymes, an isochorismate synthase (PchA) and an isochorismate-pyruvate lyase 

(PchB). Interestingly, PchA, Irp9 and MbtI are all structural homologues in the MST 

(menaquinone, siderophore and tryptophan biosynthesis) family, but as yet it is unknown 

why PchA cannot perform the pericyclic lyase reaction [17]. There are homologues of PchA 

that are isochorismate synthases, which also cannot perform the pericyclic lyase reaction. E. 

coli MenF [18, 19] is involved in menaquinone biosynthesis whereas EntC [20–23] from E. 

coli and VibC [24, 25] from Vibrio cholera are found in the biosynthetic pathways for 

dihydroxybenzoate capped siderophores. For MenF, EntC and VibC, the inability to perform 

the lyase reaction is biologically logical, since isochorismate is required for the formation of 

the biosynthetic products whereas salicylate is not [17].

The current work was initiated as a high throughput screen for the isochorismate-pyruvate 

lyase from P. aeruginosa (PchB), which performs the second, pericyclic reaction in the 

generation of the pyochelin siderophore. PchB is easily generated, we have adopted an 

effective microbial production system for obtaining the substrate isochorismate [26], and the 

salicylate product is fluorescent, allowing for the development of an enzymatic assay 

suitable for automation. PchB is a structural homologue of E. coli chorismate mutase 

(EcCM) of the AroQ structural class (Figure 2) [27, 28]. EcCM is the N-terminal domain of 
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the well-studied bifunctional P-protein [29], the terminal enzyme of the shikimate 

biosynthetic pathway that is the branch point for the production of aromatic amino acids 

[30]. Both PchB and EcCM perform pericyclic reactions with similar transition states, 

differing in the alignment of the enolpyruvyl tail over the ring and thus the atomic 

composition of the cyclic transition state (Figure 2) [17]. The shikimate pathway is also 

recognized as an attractive target for antimicrobial drug design, since mammals do not 

synthesize aromatic amino acids. Rational design of inhibitors has been conducted for the 

chorismate mutases [31–38], including the TSA (transition state analogue), an oxabicyclic 

acid generated by Bartlett [34, 35]. EcCM is refractory to screening, because it lacks a good 

spectrophotometric handle and is difficult to make in sufficient quantities.

While pyochelin has been implicated in virulence [4, 10], any compounds that are effective 

inhibitors against PchB would need to be used in combination with inhibitors to the other 

iron scavenging pathways in P. aeruginosa, including that of the high affinity siderophore 

pyoverdin. Salicylate synthases (for example, Irp9 and MbtI mentioned above) perform the 

same pericyclic reaction as PchB (Figure 2), but are found in siderophore biosynthetic 

pathways necessary for virulence by organisms that are more limited in variety of iron 

uptake systems (most particularly, in Yersinia spp. [2, 3, 6] and M. tuberculosis [5, 7–9]). 

While salicylate synthases perform the same reaction, they do so using a different protein 

scaffold (Figure 2). Salicylate synthesis and activation of salicylate by adenylation for 

incorporation into siderophores have been the targets of inhibition studies to produce lead 

compounds for antimicrobial drug design. Rational design of inhibitors to enzymes such as 

isochorismate synthase, salicylate synthase and salicylate adenylase has been documented 

[39–59], as well as high throughput screening for inhibitors of salicylate synthase [60].

We hypothesized that compounds identified as inhibitors in an enzymatic screen may also be 

effective against an enzyme that performs the same chemistry albeit using a differing protein 

fold. By the same token, an inhibitor identified by screening methods may also be effective 

against a protein with a homologous protein scaffold and similar transition states, in this 

case, allowing for a way to identify inhibitors to an enzyme that is not suitable for screening. 

Therefore, we report a high-throughput screen designed to identify inhibitors of the 

isochorismate-pyruvate lyase from P. aeruginosa, measuring decreased salicylate 

production from isochorismate in the presence of an inhibitory compound. The compounds 

were further tested for inhibition of salicylate production from chorismate by the Y. 

enterocolitica salicylate synthase Irp9 which performs the same pericyclic lyase reaction but 

using a different protein fold. An orthogonal assay was used to measure inhibition of 

pyruvate production for both PchB and Irp9. Due to similarities in protein fold, substrate and 

transition state, identified compounds were also tested for inhibition of E. coli chorismate 

mutase activity, measuring chorismate disappearance. Finally, growth inhibition was 

measured for P. aeruginosa, E. coli and Y. enterocolitica for two of the most promising 

compounds.
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2. Results

2.1 High Throughput Screen

Our assay measures the conversion of isochorismate to salicylate and pyruvate by the 

isochorismate-pyruvate lyase, PchB. The assay takes advantage of the fluorescent properties 

of salicylate, and is amenable to standard lab and high throughput conditions. Using the lab 

conditions and concentrations derived from steady state kinetics [27] as a starting point, a 

high-throughput assay was developed. Optimization of the assay conditions were tested by 

varying enzyme and substrate concentration and incubation times. The assay was insensitive 

to DMSO up to concentrations of 2%.

The assay was automated at the University of Kansas High Throughput Screening 

Laboratory and used to screen PchB versus the ChemDiv, ChemBridge, Microsource, 

Prestwick and the University of Kansas Chemical Methodologies and Library Development 

libraries. A pilot screen identified compound 6 as a positive control. Wells in each plate 

were reserved for no enzyme negative controls and 10 µM compound 6 positive controls to 

allow for the calculation of plate-to-plate statistics and to detect irregularities in the screen. 

Each compound was screened at a concentration of 10 µM. Substrate and enzyme dilutions 

were prepared fresh each day, with 30 plates run per day. Many compounds (258) were 

auto-fluorescent (showed > 100% inhibition) and were eliminated from further analysis 

(Supplemental Figure 1A). Compounds that showed inhibition effects greater than plate 

median plus three standard deviations but less than/equal to 100% (422 compounds) were 

deemed “actives” – a hit rate of 0.4%. Z’ factors on individual plates ranged from 0.5 to 0.9 

and was 0.8 overall (Supplemental Figure 1B). The signal to baseline ranged from 10 to 30. 

Active compounds (231 of the 422) were confirmed by rescreening from the source plates in 

the high-throughput assay. Based on score (IC50 values from dose response data), 

availability and price, five compounds from three structural classes (9–13) were purchased 

for further evaluation (Figure 3). Compounds 6–8 were no longer commercially available 

and so were synthesized as described in the Methods.

2.2 Inhibition of isochorismate-pyruvate lyase (PchB)

The eight selected hits from the high-throughput screen were more rigorously examined 

with the same conditions that were used to obtain the original kinetic constants [27]. Half 

maximal inhibitory concentration (IC50) values for the prospective inhibitors were 

calculated from dose response curves based on percent inhibition of PchB (Table 1). All 

compounds were effective with IC50 values ranging from 100 nM to 10 µM. KI values were 

determined for compounds 6, 9 and 10: 44 +/− 2 nM, 80 +/− 8 nM, and 350 +/− 40 nM, 

respectively, and all three were competitive inhibitors. An orthogonal assay was adopted to 

measure pyruvate production (as opposed to salicylate production) using an absorbance 

based assay. The calculated IC50 values for this assay were comparable to those from the 

original salicylate fluorescence assay.

2.3 Inhibition of salicylate synthase (Irp9)

Since Irp9 performs the same chemistry as PchB, albeit by an enzyme of a different 

structural class, the same assays (salicylate production and pyruvate production) were used 
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to determine IC50 values for the eight selected hits from the high-throughput screen. The 

compounds of the first structural class (6–8) were not inhibitory for Irp9 in either assay 

(Table 1). The remaining compounds showed IC50 values ranging from 25 to 160 µM in the 

salicylate production assay, but these values were only recapitulated in the pyruvate 

production assay for compounds 10 and 12. A KI value was determined for compound 10: 

0.8 +/− 0.2 µM, a competitive inhibitor.

2.4 Inhibition of chorismate mutase (EcCM)

EcCM and PchB are of the same structural class and both perform pericyclic reactions on 

similar substrates (chorismate and isochorismate). Therefore, the eight selected hits from the 

high-throughput screen were also tested for inhibition of EcCM using a chorismate 

disappearance absorbance assay. Compounds 6 through 13 gave IC50 values between 30 and 

200 µM (Table 1). KI values were determined for compounds 6 and 10: 30 +/− 10 µM, and 

40 +/− 20 µM, respectively, and both were competitive inhibitors.

2.5 Bacterial Growth Inhibition

To determine if the compounds were effective at inhibiting bacterial growth, half maximal 

effective concentration (EC50) values were determined for P. aeruginosa, Y. enterocolitica, 

and E. coli. The HTS and subsequent screens provided a minimal structure-activity 

relationship for the two compound classes represented by compounds 6 and 10. Therefore, 

these two compounds were chosen for EC50 determination. The EC50 values were 

determined in iron-rich (200 µM) or iron-poor (5 µM) media for both P. aeruginosa and Y. 

enterocolitica to determine if inhibition is related to iron uptake. The EC50 values were not 

determined in iron-free media, because the bacteria could not be reliably grown in the 

absence of iron even without potential inhibitors. For P. aeruginosa, EC50 values were 

determined for the wildtype PAO1 strain, for a pyoverdin-minus PAO1 strain, and for a 

pyochelin-minus PAO1 strain. The pyoverdin-minus strain is a ΔpvdA knockout strain, 

deficient in the ornithine hydroxylase enzyme that is the first committed step for production 

of the high-affinity pyoverdin siderophore. The pyochelin-minus strain is a ΔpchE knockout 

strain, deficient in the nonribosomal peptide synthetase required for salicylate incorporation. 

These data are normalized relative to bacteria grown in the absence of inhibitor and plotted 

as relative growth. The highest concentration of the compounds tested in these assays was 5 

mM, limited by solubility and vehicle (DMSO) toxicity.

Compounds 6 and 10 are sub-micromolar inhibitors of the isochorismate-pyruvate lyase 

required for pyochelin production. These compounds did not cause growth inhibition in 

iron-rich media, regardless of P. aeruginosa, strain (Figure 4A and 4B, Table 2). This was 

anticipated, since the bacteria were not reliant on siderophore production for iron uptake 

when the media is replete with iron. Under iron-limiting conditions, if the compounds were 

specific for inhibition of PchB, we would expect the strongest inhibition in pyoverdin-minus 

strain, as this strain is more reliant on the pyochelin pathway for iron-uptake. The wildtype 

PAO1 strain could show some growth inhibition or this could be overcome by the functional 

and more efficient pyoverdin pathway. The pyochelin-deficient strain should show no 

inhibition in relative growth, since the pyochelin production pathway was genetically 

disrupted. Both the wildtype PAO1 strain and the pyoverdin-minus strain showed growth 
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inhibition for both compounds at concentrations that were >5 mM. The pyochelin-minus 

strain was not inhibited by compound 6 but was inhibited at > 5mM by compound 10. These 

data suggest that compound 6 maybe more specific for the pyochelin pathway than 

compound 10. However, these data suggest that under iron-limiting conditions there may be 

a second target that is also inhibited by compound 10. P. aeruginosa has chorismate mutases 

that may be inhibited. Additionally, P. aeruginosa is highly antibiotic resistant due in part, 

to the presence of efflux pumps for the export of xenobiotics. Growth inhibition would 

likely be augmented in the presence of an efflux pump inhibitor, such as phenylalainine-

arginine-β-naphthylamide [61], a future direction of this work.

Compound 6 was not an enzymatic inhibitor of the Y. enterocolitica salicylate synthase Irp9, 

but compound 10 was a micromolar inhibitor. If our hypothesis was correct and compound 

10 was specific for yersiniabactin biosynthesis, then neither should inhibit Y. enterocolitica 

bacterial growth under iron rich conditions, and only compound 10 should inhibit under iron 

poor conditions. If the inhibitors are non-selective, then both may inhibit bacterial growth 

under both iron rich and iron poor conditions. If the inhibitors work against both the 

yersiniabactin biosynthesis and another enzymatic process, then compound 10 should be 

more effective under iron poor conditions. Based on the data in Figure 4C and Table 2, both 

compounds give EC50 concentrations in the millimolar range under both iron rich and iron 

poor conditions (indeed, the differing iron conditions were within error of each other), 

suggesting that compound 10 is not selective for siderophore biosynthesis and that both 

inhibitors are causing growth inhibition by some other mechanism.

Compounds 6 and 10 are low micromolar inhibitors of E. coli chorismate mutase. In growth 

inhibition assays against Seattle strain E. coli, compound 6 arguably showed no growth 

inhibition, while compound 10 gave an EC50 value of 3 mM (Figure 4D).

3. Discussion

Two inhibitors of PchB are reported in the literature: Bartlett’s TSA (Ki ~2 µM) and 

adamantane-1-phosphonate (Ki >5 mM) [62]. The work reported here identifies three 

compounds with Ki values in the nanomolar range: 6 (Ki 44 +/− 2 nM), 9 (Ki = 80 +/− 8 nM) 

and 10 (Ki = 350 +/− 40 nM). In addition, compounds 6 and 10 show growth inhibition of P. 

aeruginosa at millimolar concentrations under iron-limiting conditions. Therefore, these 

compounds represent the best known inhibitors of PchB, and may serve as initial lead 

compounds for the development of new antibtiotics.

To our knowledge, the best known inhibitor for E. coli chorismate mutase is Bartlett’s TSA. 

The literature reports inhibition of this and similar compounds as I50/Km
1, with a value of 

0.008 for the TSA [34, 35]. Similar calculations were performed for compounds 6 and 10 
versus EcCM, and values of 0.05 and 0.053 were determined, better than all of the reported 

compounds save the TSA. These compounds therefore represent new scaffolds suitable for 

1Bartlett and colleagues reported inhibition of chorismate mutase/prephenate dehydrogenase by their transition state analogues as 
I50 /Km values [34, 35], where they defined I50 as “the concentration of inhibitor giving 50% inhibition when the substrate 
concentration equals Km” [34]. For the sake of direct comparison, we likewise make these calculations.
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optimization as chemical probes and inhibitors of chorismate mutases. Furthermore, 

compound 10 also was effective at growth inhibition of E. coli in the millimolar range.

Rational design of inhibitors against isochorismate and salicylate synthases and similar 

chorismate-utilizing enzymes have primarily targeted varying the pyruvylenol tail of the 

substrate and have produced inhibitors with low micromolar Ki values [47, 51, 52, 63] 

Interestingly, in two cases, PchB was used to convert isochorismate generated by an 

isochorismate synthase into salicylate for detection but there is no mention as to whether the 

inhibitors were tested for inhibition of PchB alone [51, 52]. A high-throughput screen 

against the salicylate synthase from M. tuberculosis (MbtI) identified two structural classes 

of inhibitors, which showed IC50 values in the low micromolar range [60]. The first was a 

diarylsulfone reminiscent of compound 9; however, compounds of this scaffold have been 

identified as pan assay interference compounds [64] and are therefore unlikely for further 

development. The second was a benzimidazole-2-thione similar to compounds 10–12. We 

likewise determined a micromolar IC50 values for compound 10 with the Y. enterocolitica 

salicylate synthase Irp9, which shows growth inhibition of Y. enterocolitica in the low 

millimolar range. These fused heterocyclic ring systems may be an excellent starting point 

for inhibition in the MST enzyme class.

We hypothesized that an inhibitor identified through a high throughput screen may be 

effective against enzymes of similar scaffold or the same catalytic function. The screen 

against the isochorismate-pyruvate lyase identified competitive inhibitors that were found to 

likewise be competitive inhibitors against chorismate mutase (similar fold and active site 

structure) and salicylate synthase (same catalytic mechanism). While one may speculate that 

the ability to “target hop” may be only possible with competitive inhibitors, exploiting 

similarity of the active site and/or transition state, it is also possible to envision a scenario 

where an allosteric regulator binding site may also be similarly employed. The bacterial 

inhibition studies suggest that the compounds may be multi-selective. In other words, the 

compounds inhibit proteins of similar structure and/or function in vitro, and may do so in 

vivo as well. All of the bacterial cultures grown generate chemically-related siderophores 

with salicylate or dihydroxybenzoate caps utilizing enzymes that are structurally or 

functionally related the PchB and/or Irp9. These bacterial species also produce aromatic 

amino acids, thereby utilizing a chorismate mutase of the same structural family as EcCM. 

However, these studies do not rule out the possibility that these inhibitors are non-selective, 

inhibiting a target dissimilar and completely independent to those tested. Identification of 

the cellular target(s) is the next important step in this experimentation. .

4. Conclusions

The HTS screen presented here identified inhibitors of the isochorismate-pyruvate lyase 

from P. aeruginosa. Lead compounds were scrutinized in an orthogonal assay and for 

bacterial growth inhibition. The inhibitors were similarly tested against an enzyme that 

performs identical chemistry in a different protein scaffold (salicylate synthase) and against 

an enzyme with a homologous protein scaffold that performs similar chemistry (chorismate 

mutase). Inhibitors were identified that are better than those previously reported in the 

literature, and also cause growth inhibition of P. aeruginosa in a seemingly iron-dependent 
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way. A subset of the identified inhibitors were also effective against enzymes of similar 

scaffold (EcCM) or identical chemistry (Irp9). The result is a series of compounds are 

among the most effective inhibitors to date for all three enzymes and may prove useful in 

the discovery of future antibiotics.

5. Methods

5.1 Preparation of substrates

Isochorismate was isolated from Klebsiella pneumoniae 62-1 harboring the entC plasmid 

pKS3-02 [26] with only minor changes, as described previously [27]. Chorismate was 

isolated from Klebisella pneumonia 62-1 [65] with only minor changes, as previously 

described [14].

5.2 Preparation of Overexpression Plasmids

The PchB overexpression plasmid (without a histidine tag) was generated as previously 

described [28]. The Irp9 overexpression plasmid was generated as previously described [66].

E. coli chorismate mutase (EcCM) is a domain of a larger pheA gene. The EcCM domain 

portion of the pheA gene was amplified from Escherichia coli K-12 substrain genomic 

MG1655 DNA (ATCC) by polymerase chain reaction by use of Master Mix (Eppendorf) 

with 1.5 mM magnesium acetate. The forward primer (5’-ATC GTC ATA TGA CAT CGG 

AAA ACC CGT TA-3’) includes an NdeI site (underlined) and the reverse primer (5’-TTA 

AGC TTT CAG AGA AAA GCG ATG CGT GCT G-3’) contains a stop codon and a 

HindIII site (underlined). The amplified 352 base pair fragment was digested with NdeI and 

HindIII and ligated into the pET28b plasmid (Novagen) digested with the same enzymes. 

The resultant plasmid encodes the chorismate mutase domain of pheA with an N-terminal 

histidine tag and no mutations.

5.3 Protein overexpression and purification

PchB without the histidine tag was overexpressed and purified as previously described [28]. 

Irp9 was overexpressed and purified as previously described [66].

BL21 Star (DE3) pLysS E. coli containing the EcCM expression plasmid were grown in LB 

medium containing 50 µg/mL kanamycin at 37 °C with shaking (250 rpm) until an OD600 of 

~0.8 was reached. The culture temperature was reduced to 30 °C and the cells were 

harvested by centrifugation (6 000g, 10 min, 4 °C) after 4 h. The cell pellet was resuspended 

in 15 mL of 20 mM Tris-HCl pH 8.8, 500 mM NaCl, 5 mM imidazole (buffer A) per liter of 

culture. Cells were disrupted by use of a French pressure cell (35 000 psi), and cellular 

debris was removed by centrifugation (12 000g, 30 min, 4 °C). The supernatant was applied 

to a chelating Sepharose fast-flow column (Amersham Biosciences) charged with nickel 

chloride and pre-equilibrated in buffer A. EcCM protein eluted at 250 mM imidazole in a 

linear gradient of 5–500 mM imidazole in buffer A. The pooled fractions were applied to a 

Superdex 75 size-exclusion column (Amersham Biosciences) equilibrated with 25 mM 

sodium phosphate pH 8.5, 150 mM KCl, 10% glycerol. The fractions containing EcCM 

were pooled and concentrated by use of an Amicon stirred cell with a YM-10 membrane to 
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417 µM as determined by absorbance at 280 nm (ext. coeff 1,490 M−1 cm−1) and stored at 

−80 °C.

5.4 High-throughput screening

To identify inhibitors of PchB required for salicylate synthesis, high throughput screening 

was performed using an assay in which isochorismate is converted to salicylate by PchB. 

The fluorescence of salicylate was measured with an excitation wavelength of 300 nm and 

an emission wavelength of 400 nm. The assay was adapted to 384-well (Costar #3575) 

format and used to screen the compound libraries available at the University of Kansas High 

Throughput Screening Laboratory, Lawrence, Kansas. The compound collection was 

derived from both commercially available compound libraries (Prestwick (1120 

compounds), Microsource Spectrum collection (2000 compounds), ChemDiv library (50,000 

compounds), Chembridge library (43,736 compounds)) and the compounds (3360) 

synthesized at the University of Kansas Center for Chemical Methodologies and Library 

Development (CMLD). All enzyme and substrate stocks were prepared in reaction buffer 

containing 50 mM Tris-HCl, pH 8.0, 150 mM NaCl and 1 mM TCEP. The assay was 

initiated by adding PchB (12 nM final concentration) enzyme mixture to compounds (10 µM 

final concentrations) in a 384-well plate and incubated 5 mins at room temperature. The 

reaction was initiated by adding substrate (isochorismate, 3 µM final which is 1.5-times the 

Km) solution to the wells containing the compounds and enzyme mixture. The fluorescence 

intensity was measured at 0 and 20 mins, during which time the reaction was linear at 25 °C, 

using a Tecan Safire2 plate reader. Each plate had 16 wells of positive controls (DMSO with 

no compound) and 14 wells for minus protein negative controls. A compound identified 

from a previous ChemBridge library screen (ChemBridge #5325243) was included in two 

wells as a positive assay control (6 µM). In summary, a total number of 100,216 compounds 

were screened.

5.5 HTS data analysis

Relative Fluorescence Units (RFU) per minute was calculated by subtracting the 

fluorescence intensity from pre-reads (before the addition of isochorismate) from that of the 

end reads (20 mins after the addition of isochorismate). The percent inhibition was 

calculated from median RFU/min in all DMSO/compound containing wells. A hit rate of 

0.4% was obtained with 422 compounds showing >50% inhibition in salicylate synthesis 

over the DMSO treated controls. An average Z’ value of 0.80 ± 0.05 was obtained across all 

plates screened.

5.6 Secondary screening at HTS facility

All 422 compounds were cherry picked and tested for activity in an 8-point dose-response 

curve with 2-fold serial dilutions starting at 30 µM. The primary screening assay was used to 

confirm activity of the cherry-picked compounds. A reconfirmation rate of 50% was 

obtained and 131 compounds were found to be dose-responsive, with IC50 values ranging 

from 410 nM to >30 µM.
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5.7 Preparation of compounds for confirmatory assays and minimum inhibitory 
concentration

Compounds 9–13 were purchased from ChemDiv. Compounds 6, 7, and 8 were no longer 

available from ChemBridge and were prepared by a modified procedure that was originally 

reported by Miller and colleagues [67].

5.7.1 General procedure—Anthranilic acid (177 mg, 1.29 mmol) was added to a 

solution of Na2CO3 (5 mL, 0.63 M) at 60°C. The appropriate sulfonyl chloride (1.55 mmol, 

1.2 equiv) was added in three portions over a period of 10 min. The reaction was heated to 

75°C for 30 min and then raised to 85°C and quenched with a solution of HCl (1 mL, 6 M). 

The solution was cooled to room temperature and the resulting precipitate collected by 

vacuum filtration and was dried under vacuum overnight. All materials were obtained from 

commercial suppliers and used without further purification. 1H NMR and 13C NMR were 

recorded on a Bruker AV-500 with cryoprobe. Chemical shifts (δ) are reported in ppm 

downfield from TMS and are referenced to the residual DMSO solvent peak. High 

resolution mass spectroscopy (HRMS) was performed using a LCT Premier (Micromass 

Ltd., Manchester UK) time of flight mass spectrometer with an electrospray ion source. 

Melting points are uncorrected and were measured on a Thomas Hoover Capillary Melting 

Point Apparatus.

5.7.2 5-(N-(2-carboxyphenyl)sulfamoyl)-2-hydroxybenzoic acid (Compound 6)
—1H NMR (500 MHz, DMSO) δ 10.99 (s, 1H), 8.14 (d, J = 2.5 Hz, 1H), 7.89 (dd, J = 7.9, 

1.5 Hz, 1H), 7.84 (dd, J = 8.8, 2.5 Hz, 1H), 7.57 (m, 1H), 7.49 (dd, J = 8.3, 0.9 Hz, 1H), 

7.14 (td, J = 8.0, 1.2 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 

170.19, 169.76, 164.32, 139.62, 134.63, 133.47, 131.64, 130.06, 128.84, 123.78, 119.07, 

118.66, 117.30, 113.97. HRMS: [M-H]− calcd 336.0178, found 336.0183. Melting point: 

221–222°C (dec.)

5.7.3 2-(3-carboxyphenylsulfonamido)benzoic acid (Compound 7)—1H NMR 

(500 MHz, DMSO) δ 11.21 (s, 1H), 8.26 (t, J = 1.6 Hz, 1H), 8.15 (m, 1H), 8.02 (ddd, J = 

7.9, 2.0, 1.1 Hz, 1H), 7.88 (dd, J = 7.9, 1.5 Hz, 1H), 7.69 (dd, J = 11.8, 4.0 Hz, 1H), 7.57 

(m, 1H), 7.50 (dd, J = 8.3, 0.9 Hz, 1H), 7.15 (td, J = 7.9, 1.2 Hz, 1H). 13C NMR (126 MHz, 

DMSO) δ 169.68, 165.77, 139.33, 139.20, 134.58, 134.04, 132.03, 131.62, 130.91, 130.33, 

127.31, 123.97, 119.24, 117.65. HRMS: [M-H]− calcd 320.0229 found 320.0229. Melting 

point: 234–236°C (dec.)

5.7.4 2-bromo-5-(N-(2-carboxyphenyl)sulfamoyl)benzoic acid (Compound 8)
—1H NMR (500 MHz, DMSO) δ 11.16 (s, 1H), 8.09 (d, J = 2.4 Hz, 1H), 7.91 (t, J = 8.4 Hz, 

1H), 7.90 (s, 1H), 7.80 (dd, J = 8.4, 2.4 Hz, 1H), 7.57 (ddd, J = 8.5, 7.4, 1.6 Hz, 1H), 7.47 

(dd, J = 8.3, 0.8 Hz, 1H), 7.17 (td, J = 7.9, 1.1 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 

169.59, 165.85, 138.99, 138.25, 135.53, 134.61, 134.58, 131.68, 130.25, 128.73, 126.01, 

124.10, 119.30, 117.84. HRMS: [M-H]−calcd 397.9334, found 397.9333. Melting point: 

219–220°C (dec.)
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5.8 Salicylate fluorescence assay

For the PchB assays, 50 nM enzyme was added to 50 mM potassium phosphate, pH 8 and 

the reaction was initiated by the addition of isochorismate. For the Irp9 assays, 100 nM 

enzyme was added to 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 10% (v/v) glycerol and the 

reaction was initiated by the addition of chorismate. Initial velocities were determined at 25 

°C by measuring the accumulation of salicylate by fluorescence with an excitation 

wavelength of 310 nm and an emission wavelength of 430 nm using a Cary Eclipse 

fluorescence spectrometer (Varian) with temperature controller. Initial velocities were 

measured for 120 seconds during which the reaction was linear. The substrate concentration 

was set at the Km of 2 µM for IC50 determination, and the inhibitor concentrations varied. 

For the Ki determination for compounds 9 and 10, the PchB concentration was 50 nM and 

the isochorismate concentrations ranged from 0–75 µM with inhibitor concentrations 

ranging from 0–100 nM for compound 9 and 0–1.5 µM for compound 10. The data was 

collected as for the IC50 determination measuring the fluorescence of salicylate at 430 nm 

upon excitation at 310 nm.

The Ki was determined for compound 6 using a TgK Scientific SF-61DX2 stopped-flow 

apparatus equipped with a photomuliplier detector and a mercury-xenon lamp at 25 °C. 

Equal volumes of enzyme with inhibitor were mixed with isochorismate (for PchB Ki 

determination) or chorismate (for Irp9 Ki determination) and initial velocity measurements 

were collected as an increase in salicylate fluorescence upon excitation at 310 nm using a 

cutoff filter at 360 nm. Initial velocities determined using the stopped-flow were measured 

for 30 seconds during which the reaction was linear. The final concentration of PchB was 50 

nM, the isochorismate concentration ranged from 0–50 µM and the inhibitor concentration 

ranged from 0–100 nM in a reaction buffer of 50 mM potassium phosphate, pH 8, 1 mM 

TCEP. The final concentration of Irp9 was 100 nM, the chorismate concentration ranged 

from 0–40 µM and the inhibitor concentration ranged from 0–10 µM in a reaction buffer of 

50 mM Tris, pH 7.5, 10 mM MgCl2, 10% glycerol.

5.9 Pyruvate production assay

This assay is based on the method described by Anthon and Barrett [68]. For the PchB 

pyruvate production assays, 50 nM enzyme was added to 50 mM potassium phosphate, pH 8 

and the reaction was initiated by the addition of isochorismate. For Irp9, 200 nM enzyme 

was used and the reaction was initiated by the addition of chorismate. Initial velocities were 

determined at 25 °C by adding 70 µl of sample at 2 min time points to 70 µl 0.25 g/L 2,4-

dinitrophenylhydrazine in 1 M HCl and incubated 10 min at 37 °C. The absorbance at 515 

nm was read upon addition of 70 µl 1.5 M NaOH using a Cary 50 MPR microplate reader 

(Varian) and converted to pyruvate concentration by means of a standard curve. The 

substrate concentration was set above the Km of 10 µM for IC50 determination, and the 

inhibitor concentrations varied. All experiments were performed in triplicate.

5.10 Chorismate disappearance assay

For the EcCM assays, the disappearance of chorismate was determined using a TgK 

Scientific SF-61DX2 stopped-flow apparatus equipped with a photomuliplier detector and a 

mercury-xenon lamp operated at 37 °C. Equal volumes of enzyme with inhibitor were mixed 
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with chorismate in reaction buffer consisting of 50 mM Tris-HCl, pH 8, 2.5 mM EDTA, 20 

mM βME, 0.01 % BSA and initial velocity measurements were collected as a decrease in 

absorbance at 310 nm for 30 seconds during which the reaction was linear. Pre-injection 

enzyme, substrate, and inhibitor concentration were twice the final concentration in the cell 

(post-mixing). The post-mixing concentrations were 500 nM for the enzyme, substrate 

chorismate concentration was set at the Km of 600 µM, and the inhibitor concentration 

varied from 0–500 µM. All experiments were performed in triplicate. For the Ki 

determination of compounds 6 and 10, the final concentration of EcCM was 500 nM, the 

chorismate concentration ranged from 0–2 mM and the inhibitor concentration ranged from 

0–50 µM.

5.11 Bacterial strains used for growth inhibition assays

Wild type strains include E. coli strain Seattle (ATCC, 25922), Yersinia enterocolitica 

(ATCC 9610) and P. aeruginosa PAO1 (provided by Dr. Jeffrey L. Urbauer, University of 

Georgia, Athens, GA). P. aeruginosa deletion mutant strains were acquired from a P. 

aeruginosa PAO1 transposon mutant library (University of Washington [69]) and include a 

P. aeruginosa PAO1 PvdA deletion mutant (PW5011) and a P. aeruginosa PAO1 PchE 

deletion mutant (PW8175).

5.12 Growth inhibition assasy

P. aeruginosa and Y. enterocoltica were grown overnight in LB media and diluted to an 

OD600 of 0.5 with PMH-D media [70]. Dose response curves were determined by adding 10 

µl diluted cells with 90 µl of PMH-D media with 5 µM FeCl3 (iron-limited) or 200 µM 

FeCl3 (iron-rich) containing inhibitor concentrations of 0–5 mM. The plates were incubated 

at 37 °C with shaking (200 rpm) for 24 hrs at which time the well solution was centrifuged 

to pellet the cells and the media with residual inhibitor was removed. The cells were 

resuspended in 100 µl LB media and the absorbance at 600 nm was read using a Cary 50 

MPR microplate reader (Varian). E. coli were grown overnight in LB media and diluted to 

an OD600 of 0.2 with LB media. Dose response curves were determined by adding 10 µl 

diluted cells with 90 µl of tryptic soy broth containing inhibitor concentrations of 0–5 mM. 

The plates were incubated at 37 °C with shaking (200 rpm) for 10 hrs and the absorbance 

was read at 600 nm. All experiments were performed in triplicate.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

EcCM E. coli chorismate mutase

EntC isochorismate synthase from E. coli

Irp9 salicylate synthase from Yersinia enterocolitica

MbtI salicylate synthase from Mycobacterium tuberculosis

MenF isochorismate synthase from E. coli

MST protein family containing proteins of menaquinone, siderophore or tryptophan 

biosynthesis

PchA isochorismate synthase from Pseudomonas aeruginosa

PchB isochorismate-pyruvate lyase from Pseudomonas aeruginosa

TSA transition state analogue

VibC isochorismate synthase from Vibrio cholera
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Figure 1. Salicylate-capped Siderophores and the Enzymes Targeted
a. The salicylate-capped siderophores generated by P. aeruginosa (pyochelin), Yersinia spp. 

(yersiniabactin) and M. tuberculosis (mycobactin). b. The isochorismate-pyruvate lyase 

from Pseudomonas aeruginosa (PchB) is the specific enzyme of screen, and performs the 

pericyclic cleavage of isochorismate 1 to form salicylate 2 and pyruvate 3. Inhibitors were 

also tested against the salicylate synthase from Yersinia enterocolitica (Irp9), which is a 

chorismate-utilizing enzyme and a structural homologue of the isochorismate synthase PchA 

from P. aeruginosa. Irp9 and PchA catalyze the conversion of chorismate 4 to isochorismate 
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1. Irp9 subsequently catalyzes the same lyase reaction as PchB from an isochorismate 

intermediate, whereas PchA does not. The compounds were also tested for inhibition of E. 

coli chorismate mutase (EcCM), also a chorismate-utilizing enzyme, which performs a 

pericyclic reaction similar to that catalyzed by PchB, generating prephenate 5.
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Figure 2. Enzyme scaffolds and transition states
The X-ray crystallographic structures for PchB (PBD code: 3REM) with salicylate and 

pyruvate bound, EcCM (1ECM) with Bartlett’s TSA inhibitor bound, and Irp9 (2FN1) with 

Mg2+, salicylate and pyruvate are depicted as cartoons. Each of these enzymes is a 

homodimer, with one monomer shaded darker than the other, and the active sites identified 

by the ligands shown as sticks. PchB and EcCM share the same fold – they are AroQ 

enzymes, whereas Irp9 is in the MST family of enzymes. The transition states for the 

reactions catalyzed, isochorismate-pyruvate lyase (left) and chorismate mutase (right), are 

shown below. The transition states are similar, differing only in the alignment of the 

pyruvylenol tail over the ring to make a cycle at the 1 (mutase) or 2 (lyase) carbon. PchB 

and Irp9 perform the same chemistry using different scaffolds, whereas PchB and EcCM 

perform related reactions in the same scaffold. It should be noted that PchB has adventitious 

mutase activity, albeit very low.
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Figure 3. Compounds selected from screen for further evaluation
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Figure 4. Growth inhibition of Pseudomonas aeruginosa, Yersinia enterocolitica and E. coli 
growth
a. P. aeurginosa growth inhibition by compound 6. b. P. aeurginosa growth inhibition by 

compound 10. For both A and B, left: WT PAO1 strain; middle: ΔpvdA PAO1, a pyoverdin 

minus strain; right: ΔpchE PAO1, a pyochelin minus strain. c. Y. enterocolitica growth 

inhibition by compound 6 (left) and compound 10 (right). For A–C: symbols: ∘ iron poor, ∙ 

iron rich. d. E. coli growth inhibition by compound 6 (∘) and compound 10 (∙) under iron 

rich conditions.
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