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Abstract

Targeted gene delivery using non-viral vectors is a highly touted scheme to reduce the potential 

for toxic or immunological side effects by reducing dose. In previous reports, TAT polyplexes 

with DNA have shown relatively poor gene delivery. The transfection efficiency has been 

enhanced by condensing TAT/DNA complexes to a small particle size using calcium. To explore 

the targetability of these condensed TAT complexes, LABL peptide targeting intercellular cell-

adhesion molecule-1 (ICAM-1) was conjugated to TAT peptide using a polyethylene glycol 

(PEG) spacer. PEGylation reduced the transfection efficiency of TAT, but TAT complexes 

targeting ICAM-1 expressing cells regained much of the lost transfection efficiency. Targeted 

block peptides properly formulated with calcium offer promise for gene delivery to ICAM-1 

expressing cells at sites of injury or inflammation.
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1. Introduction

The efficient delivery of therapeutic genes to a target site is a key to success in gene therapy. 

Viruses are very efficient gene vectors, but safety concerns such as immunogenicity of viral 

proteins and risk of oncogenesis still remain.1 Non-viral vectors are continually under 

development and offer the potential for clinical application.2 Cell penetrating peptides 

(CPPs), also called protein transduction domains (PTD), have emerged as a valuable 

component of non-viral vehicles facilitating the delivery of various molecules such as small 

molecule drugs3–4, imaging agents5–6, peptides7–8, proteins9–10, nucleic acids11–12, and 

nanoparticles13–14 across biological barriers. CPPs are relatively short (<30 amino acids) 

and usually contain multiple basic amino acids. The cationic properties of many CPPs 

allows complexation with nucleic acids, which can be further condensed into small 

nanoparticles by the addition of calcium chloride.15–16 When translating these cationic 
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complexes to in vivo studies, shielding with polyethylene glycol (PEG) and adding a peptide 

ligand to enable cell targeting may improve performance.

The HIV-1 trans-activating transcriptor (TAT) protein was among the first found to be 

capable of translocating cell membranes and gaining intracellular access. Specific peptide 

domains were identified from this protein that maintained translocation ability. One specific 

domain, TAT49–57 (RKKRRQRRR), is one of the most widely studied CPPs for intracellular 

therapeutic delivery. TAT has been extensively utilized to deliver a multitude of cargo in 

liposomes, polyplexes, solid lipid nanoparticles or other nanoparticle types or by direct 

conjugation to molecules of interest.17–22 TAT peptide has also been used to form 

electrostatic complexes with DNA and siRNA to facilitate intracellular delivery. 

Unfortunately, transfection efficiency of TAT complexes with DNA has been relatively 

poor, possibly due to an inability to form small complexes or deactivation of this CPP when 

bound to nucleic acids.23–24 It has been suggested that high molecular weight cationic 

polymers offer stable complexes, while small polymers give rise to large, unstable 

complexes.24 As a result, many groups have attempted to improve transfection efficiency by 

using a reducible TAT polymer23 or by stringing together multiple TAT copies (e.g. TAT2, 

TAT3, and TAT4).25–26 Recent work showed that TAT/DNA complexes have comparable 

transfection efficiency to polyethylenimine (PEI) when condensed using calcium.15 Calcium 

was reported to bind both DNA phosphate groups and/or TAT amine groups resulting in 

compact complexes with optimal DNA release.15 Translation of these complexes may 

require charge shielding to avoid clearance or targeting to promote accumulation at diseased 

tissue.

Cell adhesion molecules play an essential role in cell trafficking in the immune system. 

Intercellular cell-adhesion molecule-1 (ICAM-1), a member of the immunoglobulin 

superfamily, promotes cell adhesion in immunological and inflammatory reactions. It is 

constitutively expressed on some tissues and upregulated by inflammatory cytokines such as 

interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α) or interferon-γ (INF-γ).27–28 ICAM-1 

can be expressed on vascular endothelial cells, epithelial cells, fibroblasts, tissue 

macrophages, and antigen presenting cells.29 The upregulation of ICAM-1 is associated with 

diverse diseases such as atherosclerosis, ischemia and repurfusion, asthma, arthritis, graft 

rejection, and cancer metastasis.30–31 As a result, elevated ICAM-1 has been used as a target 

to deliver enzymes, nanoparticles, contrast agents, and antisense oligoneucleotides in an 

effort to improve health of pateints.32–38

LABL peptide (ITDGEATDSG) is derived from the I-domain of the αL-subunit of leukocyte 

function associated antigen-1 (LFA-1). LABL inhibits LFA-1/ICAM-1 interaction by 

binding to the D1 domain of ICAM-1 through its active region, ITDGEA.39 Blocking 

ICAM-1/LFA-1 interactions with antibodies and LABL-antigenic peptide conjugate have 

been shown to modulate disease severity and progression of psoriasis and experimental 

autoimmune encephalomyelitis (EAE), a model for multiple sclerosis.29, 40–42 In addition to 

receptor binding, LABL can be internalized by ICAM-1 suggesting an alternative 

mechanism to deliver therapeutics into cells having elevated ICAM-1 expression.43 Recent 

work showed that cLABL-conjugated nanoparticles could be successfully delivered to lung 

carcinoma epithelial cells.32
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The aim of this study was to target TAT/DNA complexes as a means to transfect ICAM-1 

expressing cells. TAT peptide was conjugated with LABL peptide using a polyethylene 

glycol (PEG) spacer. This block peptide was then complexed with plasmid DNA encoding 

luciferase. Calcium chloride was used to condense the complexes, thus yielding a small size 

with optimized DNA release.15 At optimal calcium concentration, the TAT-PEG-LABL was 

able to target DNA to ICAM-1 expressing cells and enhance transfection in comparison to 

untargeted complexes (e.g. TAT-PEG) offering an effective gene carrier to ICAM-1 

expressing cells.

2. Materials and methods

Materials

Branched polyethylenimine (PEI, 25 kDa) was purchased from Aldrich. Peptide conjugates 

were synthesized in house via solid phase peptide synthesis using an automated Pioneer 

Peptide Synthesizer (PerSeptive Biosystems, Foster City, CA). Resins were purchased from 

Applied Biosystems (Foster City, CA). Fmoc-(CH2CH2O)12 (MW 840, 46.5 Å spacer) and 

Fmoc amino acids were purchased from Peptide International Inc (Louisville, KY) and 

Advanced ChemTech (Louisville, KY), respectively. All peptide conjugates were purified 

by semi-preparative HPLC on a C18 column, and the purity was determined by analytical 

HPLC with detection at a wavelength of 220 nm (Shimadzu scientific instruments, 

Columbia, MD). The molecular weight was confirmed by electron spray mass spectrometry 

(LCT premier mass spectrometer, Water, Milford, MA). Carcinoma human alveolar basal 

epithelial cells (A549) were purchased from the American Type Culture Collection (ATCC) 

and cultured according to ATCC protocol. Plasmid DNA encoding firefly luciferase (pGL3, 

4.8 kbp) was obtained from Promega (Madison, WI). Plasmids were grown in Escherichia 
coli cells in Lubris Bertani (LB) broth supplemented with 60 µg/mL ampicillin and purified 

using QIAGEN plasmid Giga Kits (Valencia, CA) according to the manufacturer’s 

instructions. The DNA purity level was determined by UV/VIS spectrometer. DNA with an 

A260/A280 ratio of 1.8 or greater was used. F-12K medium was purchased from Mediatech, 

Inc (Manassas, VA). Agarose was purchased from Fisher Scientific (Fair Lawn, NJ). 

Heparin sodium was obtained from Spectrum Chemical Mfg. Corp. (Gardena, CA). 

Recombinant, human, tumor necrosis factor-α (TNF-α), luciferase assay kit and CellTiter 

96® Aqueous non-radioactive cell proliferation assay (MTS) were purchased from Promega 

(Madison, WI). Bicinchoninic acid assay (BCA) was purchased from Thermo Fisher 

Scientific Inc (Rockford, IL). Monoclonal anti-human CD54 (ICAM-1) domain D1 and 

monoclonal anti-human CD54 (ICAM-1) domain D1/FITC were purchased from Ancell 

(Bayport, MN). Lipofectamine 2000, 4’,6-diamidino-2-phenylindole, dilactate (DAPI, 

dilactate), TOTO-3 and SYBR green I were purchased from Invitrogen Molecular Probes 

Inc. (Carlsbad, CA).

Methods

Complex formation—Complex formation was conducted as described earlier.15 Briefly, 

complexes were prepared by adding 10 µL (0.1 µg/µL) of DNA to 15 µL of PEI (polymer 

nitrogen to DNA phosphate (N/P) ratio of 10) or to 15 µL of TAT conjugates (at desired N/P 

ratios) followed by intensive pipetting. Fifteen microliters of DNase free water or known 
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concentrations (e.g. 150 mM) of CaCl2 solution was then added to PEI and TAT complexes 

respectively, and the solution was vigorously pipetted again. Complexes were allowed to 

incubate at 4 °C for 30 min before use. Lipofectamine/DNA complex was prepared 

according to the manufacturer’s protocol.

Size and morphology—Complexes were prepared as described earlier. Hydrodynamic 

diameters of complex solutions were determined at 20 °C by dynamic light scattering (DLS) 

using a DynaPro plate reader (Wyatt Technology, Santa Barbara, CA). Complexes were 

analyzed in Corning 384-well UV-transparent plates using 30s data acquisitions and auto-

attenuation laser power. The Dynamics Software package version 6.12 was used to analyze 

the data.

Complex size was also examined over time in serum-free F12K medium. Complexes were 

prepared and diluted with the medium in the same manner as in transfection study, 1 part of 

complex solution: 4 parts of medium. Complex size was monitored at 0, 1, 2 and 4 hrs using 

a plate reader DLS.

Complexes intended for transmission electron microscopy (TEM) were air-dried on copper 

grids coated with carbon film. TEM images of complexes were obtained using A JEOL 1200 

EXII transmission electron microscope operating at an accelerating voltage of 80 kV.

Agarose gel electrophoresis—Complexes were prepared as described earlier, then 4 µL 

of Tris-acetate-EDTA (TAE) buffer and 4 µL of SYBR Green I was added into the mixture. 

The mixture was incubated at room temperature for 30 min, and 7 µL of DNA loading buffer 

was added. Then, 6 µL of the mixture was loaded on to a 1 % agarose gel, and 

electrophoresed at 110 V for 30 min. A 1 kb DNA ladder was used as a marker. DNA 

migration bands were visualized and photographed with an Alpha Imager (Alpha Innotech 

Corp., San Leandro, CA).

For heparin displacement studies, complexes were challenged with 0.05 to 0.35 U heparin 

for 30 min at room temperature. Complex solutions were treated with TAE buffer and 

SYBR Green I, followed by the addition of DNA loading buffer and electrophoresis as 

described above. Uncomplexed and untreated DNA diluted with identical electrophoresis 

solutions were used as a control.

Cytotoxicity assay—Cytotoxicity of TAT conjugates and PEI was determined using a 

CellTiter 96 AQueous Cell Proliferation assay kit. A549 cells were seeded in 96-well plates 

(8000 cells/well) for 24 hrs prior to use. The growth medium was replaced with serum-free 

medium containing TAT conjugates and PEI at various concentrations and incubated for 24 

hrs. After incubation, the medium containing sample was replaced with 100 µL of serum-

free medium. Then, 20 µL of solution mixture of MTS ([3–(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]) and PMS (phenazine 

methosulfate) were added to each well, and the plates were then incubated at 37 °C, 5% CO2 

for 2 hrs. The absorbance of formazan product was measured at 490 nm using a microplate 

reader (SpectraMax M5; Molecular Devices Corp., CA).
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Relative ICAM-1 expression on A549 cells—Cells were incubated with TNF-α (1000 

U/mL) for 24 and 48 hrs to activate ICAM-1 expression on the cell surface.44 Cells were 

then trypsinized, centrifuged, and washed three times with ice-cold PBS. Cells were divided 

into microcentrifuge tubes (5×105 cells/ 50 µL). AB serum was added to block non-specific 

binding (25 µL) and incubated on ice for 10 min at room temperature. Cells were washed 

with ice-cold PBS and monoclonal anti-human CD54 (ICAM-1) domain D1/FITC (80 µL) 

was added and incubated on ice for 45 min. Cells were washed three times with ice-cold 

PBS and fixed with 4 % paraformaldehyde. The fluorescent intensity of cells was measured 

using the FACscan flow cytometer. Data analysis was performed using Cell Quest software 

(BD).

Transfection studies—A549 cells were seeded in 96-well plate (8000 cells/well) for 24 

hrs prior to transfection or activation of ICAM-1. Cells were incubated with TNF-α (1000 

U/mL) for an additional 48 hrs for transfection studies on cells with up-regulated ICAM-1. 

Complexes were prepared as described earlier. Prior to transfection, growth medium was 

removed and cells were washed with PBS (100 µL) twice. Complexes (20 µL) were diluted 

with serum-free medium (80 µL) and then were added to each well. After 5 hrs of 

transfection, transfection medium was replaced with growth medium and cells were 

incubated for another 48 hrs. The luciferase assay kit was used to determine gene 

expression. Cells were harvested and luciferase expression was measured according to the 

manufacturer’s protocol. Luciferase activity was quantified in relative light units (RLUs) 

using a microplate reader (SpectraMax M5; Molecular Devices Corp., CA), and normalized 

by total cellular protein which was determined using a bicinchoninic acid (BCA) assay.

Transfection parameters such as CaCl2 concentrations (0–300 mM) and N/P ratios (5–30) 

were optimized using TAT and TAT-PEG complexes in normal A549 cells. For targeting 

studies in cells activated using TNF-α, 25 and 50% of the TAT-PEG-LABL were selected to 

be incorporated into complexes (the remainder was TAT-PEG). Previous work demonstrated 

that increasing ligand density (e.g. from 25% to 50%) increased the binding and uptake of 

particles targeting ICAM-1 receptors.45 Particles with 50% targeting ligand showed the 

highest interaction compared to other formulations. Increasing ligand density (e.g. 75% and 

100%) resulted in decreased binding and uptake of the particles.

The effect of ICAM-1 receptor blocking on transfection efficiencies of targeted complexes 

was also examined. Activated cells were incubated with various concentrations of free 

LABL peptide or anti-ICAM-1 mAb for 30 min. Cells were then washed three times with 

serum-free medium and incubated with 50% TAT-PEG-LABL/DNA and TAT/DNA 

complexes for 5 hrs. Luciferase expression was measured as described above.

Confocal microscopy of internalization—DNA was fluorescently labeled with the 

intercalating nucleic acid stain TOTO-3 using a molar ratio of 1 dye molecule per 300 base 

pairs for 30 min at room temperature in the dark. Then, complexes were prepared as 

described earlier with the labeled DNA. A549 cells activated with TNF-α mounted onto 

glass slides were incubated with complexes for 4 hrs. Cells were then washed three times 

with ice-cold PBS and fixed with 4 % paraformaldehyde. Nuclei were labeled with DAPI 

dilactate (300 nM, ex: 358 nm, em: 461 nm) for 5 min at 37 °C, 5 % CO2. Cells were 
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observed using an Olympus Spinning Disk Confocal Microscope and TIRF-M inverted 

fluorescence microscope using 20X or 60X objectives (DAPI, ex: 387 nm, em: 415–470 nm, 

TOTO-3, ex: 628 nm, em: 669–726 nm). Bright field transmission images were obtained at 

the same time.

Statistic analysis—GraphPad Prism 4 software was used for statistical analysis. 

Statistical significance for differences between two data sets was determined by unpaired 

Student’s t-test (90% confidential interval). One-way ANOVA, Tukey post test was used to 

analyze the differences when more than two data sets were compared.

3. Results

3.1 Purification and characterization of TAT, TAT-PEG, and TAT-PEG-LABL

All TAT peptide conjugates were synthesized according to a standard Fmoc protocol. The 

crude peptide and conjugates were purified by semi-preparative HPLC on a C18 column, 

and the purity was determined by analytical RP-HPLC (purity >95 %) (Fig. 1). The expected 

molecular weight was confirmed by electrospray ionization mass spectrometry; TAT MW 

1338.9 Da, TAT-PEG MW 1939.2 Da, TAT-PEG-LABL MW 2885.6 Da (Fig. 2).

3.2 Physicochemical characterization of complexes

An important characteristic for efficient gene delivery using cationic polymers is the 

formation of small and stable complexes with DNA.46 The ability of TAT and TAT 

conjugates to form complexes with DNA was studied using agarose gel electrophoresis at 

N/P ratios of 0, 1, 2, 3, 4, 5, 10, 20, and 30. The immobilization of DNA suggested that TAT 

and TAT-PEG conjugates were able to form complexes with DNA and completely 

immobilize DNA starting at an N/P ratio of 1 and 2, respectively (Fig. 3). Targeting ligands 

(TAT-PEG-LABL) were included at various ratios with TAT-PEG and DNA mobility was 

assessed at an N/P ratio of 30. Targeted TAT conjugates in all formulations (e.g. 25, 50, and 

75 % TAT-PEG-LABL) were able to immobilize DNA. The data also suggested that 

PEGylation did not negatively affect the ability of TAT to complex with DNA at N/P ratios 

≥2.

Next, hydrodynamic diameters and morphology of the complexes were evaluated by DLS 

and TEM, respectively. TAT, TAT-PEG, 25 % TAT-PEG-LABL, and 50 % TAT-PEG-

LABL complexes were prepared at an N/P ratio of 30 and in the presence of various 

concentrations of CaCl2. Complexes with discrete percentages of targeting ligands were 

prepared by varying the relative amounts of TAT-PEG and TAT-PEG-LABL (e.g. 25% or 

50% TAT-PEG-LABL). The complex size in deionized water varied with CaCl2 

concentration (Fig. 4A). TAT and TAT-PEG complexes were generally smaller than 25 % 

and 50 % TAT-PEG-LABL complexes. Without CaCl2, most complexes were quite large 

(>400 nm) as determined by DLS. When adding 30 mM CaCl2, the complexes were larger 

than the initial size suggesting that a low concentration of CaCl2 may induce aggregation. 

Adding 150 mM CaCl2 yielded a minimum diameter for most complexes (110, 190, 290 nm 

for TAT, TAT-PEG, and 50 % TAT-PEG-LABL complexes, respectively). The data 

suggested that the TAT peptide could not condense DNA well without calcium chloride and 
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that an optimal amount of calcium chloride is essential to form compact particles. 

Comparing the size of TAT and TAT-PEG complexes suggested that PEGylation increased 

the hydrodynamic diameter as observed by others.47

Complex size in serum-free F12K media was also determined over time. TAT, TAT-PEG, 

25 % TAT-PEG-LABL, and 50 % TAT-PEG-LABL complexes were prepared as described 

earlier at an N/P ratio of 30 and in the presence of various concentrations of CaCl2. 

Complexes were handled similarly to transfection studies. Generally, most complexes in 

media (Fig. 4B) were substantially smaller than in deionized water (Fig. 4A). At lower or 

higher CaCl2 concentration (75 and 300 mM), particle size was initially larger than at CaCl2 

150 mM, but no precipitation was observed (Fig. 4B). The hydrodynamic diameter was also 

monitored for complexes with 150 mM of added CaCl2 for 4 hrs. Complexes were small and 

stable over time (Fig. 4C).

The morphology of complexes was characterized using transmission electron microscopy 

(TEM). TAT, TAT-PEG, 25 % TAT-PEG-LABL, and 50 % TAT-PEG-LABL complexes 

were prepared as described earlier at an N/P ratio of 30. Formulations without CaCl2 were 

compared to those including 75 mM CaCl2. TEM images indicated that most complexes had 

a globular shape and were substantially smaller than 300 nm (Fig. 5), but images reflect the 

dry state. Agglomerates were occasionally visible in these samples and may account for the 

larger diameters observed by DLS or may be attributable to sample drying. This difference 

between the DLS data and TEM data could be due to small amount of flocculates observed 

from DLS experiments. The flocculates (~1 µm, <5% of population) have greatly shifted the 

mean diameter, which is a major disadvantage of DLS.

Forming complexes with polycations can protect DNA from degradation and often 

effectively condenses DNA, but DNA release is also crucial for enhancing transfection 

efficiency.48 Complex stability was evaluated by displacing DNA using heparin. TAT, 

TAT-PEG, 25 % TAT-PEG-LABL and 50 % TAT-PEG-LABL complexes were tested in 

this experiment. The complexes were formed at an N/P ratio of 30 using various 

concentrations of CaCl2 and challenged with free heparin (Fig. 6). TAT complexes yielded 

the most stable DNA complexes, whereas TAT-PEG complexes had the lowest stability. 

The 25 % TAT-PEG-LABL and 50 % TAT-PEG-LABL complexes showed intermediate 

stability between TAT and TAT-PEG complexes. At all CaCl2 concentrations, TAT 

complexes were very stable and did not release DNA even at high heparin concentration 

(Fig. 6A). TAT-PEG complexes were most stable at a CaCl2 concentration of 75 mM; 

however, some DNA mobility was observed at most all CaCl2 concentrations (Fig. 6B). The 

stability of 25 % TAT-PEG-LABL and 50 % TAT-PEG-LABL complexes also depended on 

CaCl2 concentration. Fifty percent TAT-PEG-LABL complexes started to release DNA at a 

CaCl2 concentration of 150 mM and DNA was substantially displaced by heparin at a CaCl2 

concentration of 300 mM (Fig. 6D).

3.3 Cytotoxicity, transfection efficiency, and intracellular accumulation of complexes

Toxicity is a major issue with many non-viral vectors and a correlation between high 

toxicity and improved transfection efficiency is often reported.49 The cytotoxicity of TAT, 

TAT-PEG, and TAT-PEG-LABL in unactivated and activated A549 cells overexpressing 
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ICAM-1 was evaluated and compared to PEI. After 24 hrs of incubation, TAT, TAT-PEG, 

and TAT-PEG-LABL revealed negligible cytotoxicity, whereas PEI showed extreme 

cytotoxicity with an IC50 value of ~50 and ~10 µg/mL in normal and activated cells, 

respectively (Fig. 7). At high concentration, TAT-PEG had slightly less cytotoxicity than 

TAT in unactivated cells (Fig. 7A).

Transfection efficiency was determined in A549 cells. This cell line may be activated by 

proinflammatory cytokines to overexpress ICAM-1. In order to optimize transfection 

parameters such as CaCl2 concentration and N/P ratios, transfection studies of TAT/DNA 

and TAT-PEG/DNA complexes were evaluated in unactivated A549 cells (Fig. 8). 

Luciferase gene expression was measured 48 hrs post-transfection and compared to PEI and 

Lipofectamine 2000. Generally, TAT and TAT-PEG complexes showed relatively low 

transfection efficiencies in the absence of CaCl2 and at low CaCl2 concentrations (e.g. 5 and 

30 mM). TAT complexes showed the highest transfection efficiency at 150 mM added 

CaCl2 (Fig. 8A). TAT-PEG complexes showed slightly lower and a similar trend of 

transfection efficiency compared to TAT complexes. The data suggested that CaCl2 

concentrations around 150 mM provided optimal transfection, perhaps due to the small 

complex size, DNA protection, and/or efficient DNA release.

Next, the transfection efficiencies of TAT and TAT-PEG complexes at different N/P ratios 

were examined at CaCl2 concentrations of 0, 30, and 75 mM. Using 75 mM of added CaCl2, 

N/P ratios between 10 and 20 yielded high transfection levels for TAT complexes, 

exceeding the performance of PEI and Lipofectamine 2000 (Fig. 8B). TAT-PEG complexes 

showed a somewhat similar trend, reaching the maximum transfection level at N/P ~30 and 

at the highest calcium concentration of 75 mM (Fig. 8C). Transfection levels of TAT-PEG 

complexes were substantially lower than TAT complexes, as expected. The reduced 

transfection level of TAT-PEG was in agreement with complex stability data since TAT-

PEG was less effective at packaging DNA (Fig. 6B).

Relative ICAM-1 receptor expression levels in A549 cells after activation with TNF-α for 

24 hrs and 48 hrs was quantified using FITC-labeled monoclonal anti-human CD54 (anti-

ICAM-1) and a FACscan flow cytometer. The fluorescence intensity representing the 

relative ICAM-1 expression level showed 22-fold and 41-fold increases in A549 cells after 

24 hrs and 48 hrs of activation compared to normal cells, respectively (Fig. 9).

Transfection efficiencies of TAT derivative complexes (e.g. TAT, TAT-PEG, 25 % and 50 

% TAT-PEG-LABL + TAT-PEG) in A549 cells with upregulated ICAM-1 at different 

concentrations of calcium chloride were examined. Cells were activated with TNF-α for 48 

hrs prior to transfection. Complexes were formed at an N/P ratio of 30 and luciferase gene 

expression was measured 48 hrs post-transfection. Overall, complexes formed with 150 mM 

of added CaCl2 showed superior transfection efficiency compared to complexes formed with 

other CaCl2 concentrations (Fig. 10). Data were consistent with transfection data in normal 

cells, which showed maximum transfection levels at 75 and 150 mM CaCl2 (Fig. 8A). In 

both normal and activated cells, TAT complexes showed transfection efficiencies (150 mM 

CaCl2) that were comparable to PEI and Lipofectamine 2000.
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As anticipated, TAT-PEG complexes showed the lowest gene expression level; however, 

transfection efficiency was regained by including targeting ligands (TAT-PEG-LABL) in 

the formulations. Including twenty five percent TAT-PEG-LABL with TAT-PEG gave 

improved transfection efficiency compared to TAT-PEG, and 50% TAT-PEG-LABL 

complexes achieved the highest transfection level for targeted complexes (75 and 150 mM 

CaCl2). The observed transfection efficiency was consistent with complex size. According 

to DLS data, complex sizes at 150 mM CaCl2 were small (100–200 nm) and stable in the 

medium.

A blocking study was performed to determine the effect of ICAM-1 receptor blocking on 

transfection efficiency of targeted complexes. TAT/DNA and 50% TAT-PEG-LABL/DNA 

complexes were formed as described earlier at an N/P ratio of 30 using 150 mM CaCl2. 

Activated cells were incubated with various concentrations of free LABL peptide or anti-

ICAM-1 mAb prior to exposure to TAT complexes. The reduced transfection levels of 

targeted complexes (Fig. 11) suggested that the binding of targeted complexes to ICAM-1 

on activated A549 cells was hindered when free LABL peptide or anti-ICAM-1 mAb was 

added. Inhibition was dose dependent with higher LABL concentrations leading to lower 

transfection. It is worth noting that activated A549 cells exhibited substantially lower 

transfection when compared to normal cells. Transfection efficiencies of PEI and 

Lipofectamine 2000 in activated cells were significantly reduced compared to normal cells. 

Interestingly, 25% and 50% TAT-PEG-LABL complexes were able to maintain transfection 

levels in both normal and activated cells (Fig. 12).

Targeted complexes were expected to enhance binding and internalization compared to 

untargeted complexes in activated ICAM-1 expressing cells. Untargeted (TAT-PEG) and 

targeted complexes (50 % TAT-PEG-LABL) were imaged by confocal microscopy. DNA 

was fluorescently labeled using TOTO-3. Both complexes were formed with labeled DNA 

under the same conditions (CaCl2 150 mM, N/P = 30) and incubated with activated cells for 

4 hrs. DNA in TAT-PEG complexes was difficult to detect in culture. Conversely, DNA 

from 50 % TAT-PEG-LABL complexes were observed in the vast majority of the cells and 

overlayed both the cell bodies and nuclei (Fig. 13).

4. Discussion

Despite its low molecular weight, TAT was confirmed as a powerful transfection agent 

when condensed with an optimal concentration of CaCl2. Targeting ligands are expected to 

improve the performance of these types of vectors when translated to in vivo studies. 

Therefore, TAT was modified with PEG and the peptide LABL, a well-characterized ligand 

for ICAM-1. TAT, TAT-PEG, and TAT-PEG-LABL block peptides were carefully 

synthesized and the structure validated. In general, all forms of TAT showed minimal 

cytotoxicity. TAT-PEG had less cytotoxicity than TAT in unactivated A549 cells. Earlier 

reports suggest PEGylation often reduces cytotoxicity of cationic polymers.50–51 The CaCl2 

concentration range used in this study was considerably safe. The IC50 value of CaCl2 was 

~210 mM for A549 cells.15 Final concentrations of CaCl2 used with cells in transfection 

studies ranged from 1–60 mM (corresponding to the reported starting concentrations of 5–

300 mM) which were far below this IC50 value.
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TAT and TAT-PEG were able to immobilize DNA starting form N/P ratios 1 and 2, 

respectively. The data were consistent with previous reports that indicated TAT can 

immobilize DNA at an N/P ratio as low as ~2.15, 25 The data also suggested that PEGylation 

and incorporation of targeting ligand did not interfere with DNA complexation.

Size and morphology of block peptide/DNA complexes were then characterized. Complex 

stability was also examined using heparin displacement. The data suggested that CaCl2 

played a critical role on complex size and DNA release. At optimal CaCl2 concentration 

(150 mM CaCl2), complexes were small and stable in the medium. It is probable that 

calcium bridges between DNA phosphate groups and/or TAT amine groups helped condense 

complexes into compact particles.15 Ionic strength is known to affect the size of nanoparticle 

formulations, especially for charged particles. It was reported that adding calcium and 

magnesium (>30 mM) reduced aggregation and yielded more monodisperse plasmid-lipid 

nanopaticles.52

In addition to controlling particle size, calcium concentration also affected DNA release. For 

example, 50% TAT-PEG-LABL complexes started to release DNA at a CaCl2 concentration 

of 150 mM and DNA was substantially displaced by heparin at a CaCl2 concentration of 300 

mM (Fig. 6D). A previous study suggested that TAT complexes may be “loosened” at high 

calcium concentration as evidenced by fluorescent DNA probes.15 Ionic strength may also 

contribute to the observed destabilization. It has been reported that, at low salt concentration 

(≤ 50 mM NaCl), polymer-DNA binding is not strongly dependent on ionic strength. High 

salt concentration, however, can alter polymer-DNA binding and may cause dissociation of 

complexes due to electrostatic shielding.53 The stability of polycation/ DNA complexes has 

been identified as a rate limiting step for intracellular release of DNA, which can impair 

transfection efficiency. Previous reports showed ‘weak’ chitosan polyplexes offered a faster 

onset of transfection and higher gene expression both in vitro and in vivo.54 Therefore, a 

fine balance between complex stability and DNA release is essential for efficient 

transfection. Tuning calcium concentration provides a simple formulation approach for 

optimizing TAT complex size and DNA release.

Transfection efficiencies of TAT and TAT-PEG in A549 cells were enhanced by optimizing 

calcium concentration. The data suggested that small complex size, optimal complex 

stability and DNA release may contribute to the improved gene expression. Calcium has 

been shown to enhance transfection efficiency for lipid gene delivery systems.52, 55–57 The 

detailed mechanism of calcium enhancement for these systems has not been clear and 

several mechanisms have been proposed.52, 56–57 It was suggested that calcium may increase 

membrane association or cellular uptake of complexes or particles. More importantly, 

calcium may act as a lysosomotropic agent and destabilize endosomal and/or lysosomal 

membranes thus increasing endo-lysosomal release. Interestingly, Fujita and others reported 

that calcium did not improve the performance of arginine-PEG-lipid-coated DNA/ 

protamine complexes.55 Generally, substantially higher calcium concentrations were used to 

condense and control DNA release from modified TAT complexes reported here.

Several groups have used TAT peptides at high N/P ratios possibly because TAT peptides 

have also been shown to lose membrane translocation ability upon binding to DNA.25, 58 It 
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was reported that excess free TAT peptides enhanced transfection efficiency of TAT/DNA 

complexes by preventing complex disruption by proteoglycans.59 Interestingly, it was also 

previously reported that large amounts of free PEI remained in PEI/DNA mixtures. The 

presence of free PEI was suggested to improve membrane permeability, thus enhancing 

DNA release into the cytoplasm.60

Adding the PEG block served as a hydrophilic arm for attaching targeting ligands with the 

goal of recovering transfection efficiency and adding specificity. LABL, a peptide ligand for 

ICAM-1 was linked to TAT-PEG using solid phase synthesis. The resulting TAT-PEG-

LABL was confirmed using mass spectrometry (Fig. 2), and used in studies with actived 

A549 cells, which overexpress ICAM-1. TAT-PEG-LABL and TAT-PEG were mixed at 

different ratios resulting in a different percentage of targeting ligands when forming 

complexes with DNA. This targeted gene delivery system was then explored for transfection 

of A549 cells overexpressing ICAM-1. PEGylation significantly reduced transfection 

efficiency when compared to unmodified TAT as expected. The low transfection observed 

for TAT-PEG complexes was consistent with poor complex stability and with previous 

reports that indicated PEG-based polymers or liposomes had reduced transfection levels, 

possibly due to steric hindrance.18, 53 Transfection efficiency was recovered by 

incorporating the LABL targeting ligand.

Complexes containing 50% TAT-PEG-LABL 75 and 150 mM showed high transfection 

levels when 75 and 150 mM CaCl2 was added. The relatively low transfection efficiencies 

of 25% and 50% TAT-PEG-LABL complexes at 300 mM CaCl2 may be due to their large 

sizes (430 and ~900 nm, respectively) in the medium and inadequate ability to protect DNA 

as suggested by heparin displacement data. It was previously reported that particles smaller 

than ~200 nm were internalized mainly by endocytosis, whereas particles larger than ~200 

nm were taken up mostly by phagocytosis.61 It was also reported that when phagocytosis 

occurs, transfection efficiency can be reduced.16 The blocking data strongly supported a 

specific, ICAM-1 receptor mediated interaction.

PEI and Lipofectamine 2000 showed significantly reduced transfection levels in activated 

cells compared to normal cells. Exposure to TNF-α, a pro-inflammatory cytokine, can alter 

cellular functions. Previous reports showed that TNF-α decreased cell viability in primary 

and immortalized cell lines.62–63 Some studies have also shown that, under inflammatory 

conditions, cells often have decreased endocytic activity and different endocytic pathways 

may be favored.64 This is important evidence that certain cell types may be more difficult to 

transfect due to abnormal cellular functions under pathological conditions.

The observed transfection efficiency of targeted complexes resulted from a combination of 

optimal complex size, complex stability, DNA release, and the presence of targeting ligands. 

These characteristics are well known to effect internalization and DNA release, and the 

resulting transfection efficiency. The performance of targeted TAT-PEG-LABL suggested 

that these complexes may be a promising vector for targeted gene transfection to sites of 

inflammation in vivo. Although accurate targeting of TAT-PEG-LABL complexes was 

demonstrated here, it may be necessary to investigate other epithelial, endothelial, or 

inflammatory cell lines.
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Figure 1. 
HPLC chromatograms for TAT, TAT-PEG, and TAT-PEG-LABL confirmed purity > 95%.
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Figure 2. 
Electrospray ionization (ESI) mass spectra of (A) TAT, (B) TAT-PEG, and (C) TAT-PEG-

LABL were in agreement with calculated masses.
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Figure 3. 
Gel electrophoresis of (A) TAT/DNA and (B) TAT-PEG/DNA complexes at different N/P 

ratios. (C) TAT-PEG-LABL/DNA complexes at an N/P ratio of 30 with different amounts 

of TAT-PEG-LABL combined with TAT-PEG. All complexes at all N/P ratios limited the 

mobility of DNA.
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Figure 4. 
DLS was used to determine the size of TAT/DNA, TAT-PEG/DNA, 25% TAT-PEG-LABL/

DNA, and 50% TAT-PEG-LABL/DNA complexes at an N/P ratio of 30 with different 

concentration of CaCl2. (A) The hydrodynamic diameter of complexes were determined in 

deionized water and (B) in serum-free F12K media. (C) The hydrodynamic diameter of 

complexes (formed with 150 mM CaCl2) in F12K media were stable over time. For missing 

data points, diameter was >1 µm.
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Figure 5. 
Transmission electron micrographs of (A) TAT/DNA, (B) TAT/DNA-Ca, (C) TAT-PEG/

DNA, (D) TAT-PEG/DNA-Ca, (E) 25% TAT-PEG-LABL/DNA, (F) 25% TAT-PEG-

LABL/DNA-Ca (G) 50% TAT-PEG-LABL/DNA, and (H) 50% TAT-PEG-LABL/DNA-Ca 

complexes. Complexes were formed at an N/P ratio of 30 without CaCl2 (left panel) or with 

75 mM of CaCl2 (right panel). Scale bars are 500 nm.
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Figure 6. 
A heparin displacement assay for (A) TAT/DNA, (B) TAT-PEG/DNA, (C) 25% TAT-PEG-

LABL/DNA, and (D) 50% TAT-PEG-LABL/DNA complexes was used to assess the effect 

of calcium chloride concentration (0, 30, 75, 150, 300 mM) on complex stability. 

Complexes were formed at an N/P of 30 and incubated for 30 min with increasing heparin 

concentrations (0.05–0.35 U). Free DNA is shown as a control (C) to the left.
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Figure 7. 
TAT peptide and derivatives showed low cytotoxicity in comparison to PEI (A) in 

unactivated and (B) in activated A549 cells, which overexpress ICAM-1.
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Figure 8. 
Transfection efficiencies of TAT peptide derivative/DNA complexes in A549 cells. (A) 

TAT/DNA and TAT-PEG/DNA complexes at an N/P ratio of 30 with different 

concentrations of calcium chloride (B) TAT/DNA complexes at different N/P ratios (C) 

TAT-PEG/DNA complexes at different N/P ratios. L= Lipofectamine.
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Figure 9. 
Relative ICAM-1 expression level in A549 cells after activation with TNF-α for 24 hrs and 

48 hrs (* = p<0.05, t-test).
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Figure 10. 
Transfection efficiencies of TAT peptide derivative/DNA complexes in activated A549 cells 

(overexpressing ICAM-1) at different concentrations of calcium chloride. Complexes were 

formed at an N/P ratio of 30. L= Lipofectamine (* = p<0.05, one-way ANOVA, Tukey post 

test).
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Figure 11. 
Transfection efficiencies of TAT/DNA and 50% TAT-PEG-LABL/DNA complexes in 

activated A549 cells (overexpressing ICAM-1) after incubation with free LABL peptide or 

anti-ICAM-1 mAb prior to exposure to TAT complexes. Complexes were formed at an N/P 

ratio of 30 and 150 mM CaCl2. (* = p<0.05, ** = p<0.01, one-way ANOVA, Tukey post 

test).
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Figure 12. 
Transfection efficiencies of 25% and 50% TAT-PEG-LABL/DNA complexes in normal and 

activated A549 cells. Complexes were formed at an N/P ratio of 30 and and 150 mM CaCl2. 

(* = p<0.05, t-test)
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Figure 13. 
Micrographs of (A) TAT-PEG/DNA complexes and (B) 50% TAT-PEG-LABL/DNA 

complexes in A549 cells (activated with TNF-α) after 4 hrs of incubation at 37°C. 

Complexes were formed at an N/P ratio of 30 and a CaCl2 of 150 mM. (1 = DAPI 

fluorescence (cell nuclei), 2 = TOTO-3 fluorescence (DNA), 3 = Merged DAPI and 

TOTO-3 fluorescence, 4 = Merged DAPI, TOTO-3 fluorescence, and bright field 

transmission.)
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