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Abstract
We analyze single molecule FRET burst measurements using Bayesian nested sampling. The
MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data.
FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared
for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares
favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence.
FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs
depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency
distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II
(CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a
single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly
suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of
protein conformations from FRET data.

Keywords
calmodulin; FRET; single-molecule fluorescence; fluorescence dyes; Bayesian analysis; nested
sampling; maximum entropy; calcium/calmodulin dependent protein kinase II

Introduction
Single-molecule measurements are an increasingly standard technique in the biophysicist s
toolbox. In particular, single-molecule Förster resonance energy transfer (sm-FRET) has
been applied to investigate the conformational structure and dynamics of proteins, DNA,
and RNA[1–4]. The key to obtaining useful sm-FRET data is a well behaved dye pair. A
fluorescent energy donor dye and an energy acceptor must be incorporated into the
molecule(s) of interest. These dyes, while attached to biomolecules, should reorient relative
to each other on a time scale faster than the FRET efficiency transfer [5]. The dyes should
not interact with the parent molecule and, if they become spatially close to one another, they

© 2012 Elsevier B.V. All rights reserved.

Corresponding author: Carey K. Johnson, phone: 785-864-4219; fax: 785-864-5396; ckjohnson@ku.edu; address: Department of
Chemistry, Malott Hall, University of Kansas, Lawrence, KS 66044 USA.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Chem Phys. Author manuscript; available in PMC 2014 August 30.

Published in final edited form as:
Chem Phys. 2013 August 30; 422: . doi:10.1016/j.chemphys.2012.11.018.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



should not interact with each other. The nature of molecular interactions makes these criteria
hard to achieve. If dye interactions are well characterized, useful results may nevertheless be
derived from the data. Ultimately, the reliability of FRET results should be checked using
multiple dye pairs.

Single-molecule burst measurements are a powerful sm-FRET method [6–8]. In these
measurements, a dilute solution is placed on a confocal microscope. As single molecules
diffuse through a laser focus, fluorescence photons are emitted. The time of arrival of each
photon is detected by photodiodes. When a plot of photon arrivals is made, bursts of photons
are seen which give the measurement its name; see Figure 1. Burst measurements allow tens
of thousands of single molecules to be probed in a short time. Burst measurements can be
made in biologically realistic conditions, with appropriate pH and ionic strength. The
measurements do not require immobilization of the molecules by, for example, directly
tethering them to a surface or encapsulating them in vesicles or gels. This facilitates
investigation of the conformations, kinetics and binding constants with minimal change to
the native environment of the biomolecule.

Significant improvements have been made since the first sm-FRET burst measurements.
Alternating and pulsed lasers have been used to investigate dye bleaching, fluorescence
lifetimes, quantum yield inhomogeneities, anisotropies, and dye-biomolecule stoichiometry
[9–13]. Bayesian approaches [14–22] and complementary maximum entropy methods [23–
25] have been implemented for single-molecule data analysis.

We studied FRET efficiency distributions obtained from dye labeled calmodulin, using sm-
FRET bursts. Calmodulin is a small 16.7 kDa protein found in all eukaryotic cells. It is an
integral part of the cell s calcium signaling pathway. Calmodulin binds up to four Ca2+ ions,
with high affinities. It activates and deactivates target proteins in accordance with its Ca2+

occupancy. Its structure is relatively simple, consisting of two domains that each contain two
EF-hand motifs; see Figure 2 [26,27]. Calmodulin exists in both compact and elongated
conformations [27–31].

One of the enzymes that binds calmodulin is calcium/calmodulin dependent protein kinase II
(CaMKII)[32]. CaMKII is activated by Ca2+-calmodulin, and phosphorylates its substrates
so as to regulate a variety of cellular functions [33]. Isoforms of CaMKII have been found in
the heart, brain, lung, pancreas, liver, and skeletal muscle (see [34] and references therein).
The structure of calmodulin that is bound to a peptide from the binding domain of CaMKII
has been determined [35] (see Figure 2B). The FRET distributions stemming from
calmodulin bound to the CaMKII binding domain were investigated in this work.

We attached a fluorescent dye to each domain of calmodulin; see Figure 2. Upon excitation
of the donor dye, FRET can take place between the dyes. Single-molecule burst FRET
measurements were made on freely diffusing molecules. The resulting FRET data were then
analyzed via a Bayesian nested sampling approach. This analysis has not been performed
before and its results were compared to those obtained using the classic maximum entropy
method (cMEM) for sm-FRET bursts [22]. Both methods were applied to analyze FRET
distributions for calmodulin under conditions of high and low Ca2+ and also in the presence
and absence of the CaMKII binding-domain peptide. We compared the two methods of
analysis and, below, we discuss the role of dye-protein interactions in the FRET
distributions.
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Methods
Sample preparation

Calmodulin was mutated at sites 44 and 117, changing the native threonine residues to
cysteines (CaM-44-117). The protein was expressed in E. coli. The cells were induced with
0.4 mM IPTG at an O.D. of 0.7. Then they were pelleted by centrifuging and re-suspended
in TRIS or MOPS buffer. The cells were lysed by adding 150 μg/ml lysozyme, with
incubation at 37 °C, and sonicated three times in an ice bath for 30 seconds. Cell debris was
separated by centrifuging at 19,500 rpm for 30 minutes at 4 °C. CaCl2 was added to the
sample to a final concentration of 5 mM. CaM-44-117 was purified on an Äkta FPLC with a
25 ml bed of Phenylsepharose 6 Fast Flow (high-sub) column (XK 16/20 GE Healthcare).
Before sample loading, the column was equilibrated with 50 mM TRIS, 1 mM CaCl2, pH
7.5. The column was then washed with two column volumes of 50 mM TRIS, 1 mM CaCl2,
pH 7.5, followed by three column volumes of 50 mM TRIS, 1 mM CaCl2, 500 mMNaCl,
pH 7.5, and three more column volumes of 50 mM TRIS, 1 mM CaCl2, pH 7.5.
CaM-44-117 was eluted from the column with 10 mM TRIS, 10 mM EDTA, pH 7.5. The
elution peaks containing CaM-44-117 were further purified on a Superdex size exclusion
column (GE Healthcare) in 10 mM HEPES, 0.1 M KCl, 1.0 mM MgCl2, 0.1 mM CaCl2, pH
7.4. The protein was aliquoted into 2.1 mg portions and stored at −80 °C.

The cysteines were labeled with fluorescent FRET dye pairs by maleimide reaction
chemistry, as described previously [36]. The FRET donor dye was Alexa Fluor 488 C5
maleimide (AF488) (Molecular Probes). The acceptor was either Alexa Flour 594 C5
maleimide (AF594) or Texas Red C2 maleimide (TR) (Molecular Probes). Free dye was
separated from dye-labeled protein by means of size exclusion chromatography (G-25
Sephadex fine, GE Healthcare Life Sciences). CaM-44-117 labeled with two donor or two
acceptor dyes was separated from the FRET species containing one donor and one acceptor
dye by C18 reverse phase HPLC (Jupiter 3u C18 300A 250×4.6mm column, Phenomenex).
The HPLC solvent was exchanged with either 10 mM HEPES or 30 mM HEPES, 0.1 M
KCl, 1.0 mM MgCl2, 0.1 mM CaCl2, pH 7.4, and was stored at −80 C. The resulting
samples were CaM-44-117 labeled with AF488 and AF594 (CaM-44-117-AF488-AF594),
or CaM-44-117 labeled with AF488 and TR (CaM-44-117-AF488-TR).

Calmodulin samples were diluted to 15–40 pM for sm-FRET burst measurement. The
experiments were performed in 30 mM HEPES, 0.1 M KCl, 1.0 mM MgCl2, 0.1 mM CaCl2,
pH 7.4, which will be called high Ca2+ buffer, and 30 mM HEPES, 0.1 M KCl, 1.0 mM
MgCl2, 3.0 mM EGTA, pH 7.4 (low Ca2+ buffer). For measurements of dye-labeled
calmodulin in the presence of CaMKII peptide, the peptide was added to the solution up to a
final concentration of 1.1 μM. Calcium/calmodulin dependent protein kinase II peptide
fragment 290–309 was purchased from Sigma Aldrich. The sample was dissolved in high
Ca2+ buffer. The peptide was stored at −20 °C prior to use.

Single molecule microscope
Burst measurements were made with an inverted Nikon TE 2000 fluorescence microscope
system, as described previously [37]. Donor dye excitation was performed with a 488 nm
argon ion laser (2201-20SL, JDS Uniphase, San Jose, CA) of power 25 μW measured ahead
of the microscope. The laser beam was transformed to circular polarization by a consecutive
linear polarizer and quarter-wave plate, and was directed into the microscope by a
500DCXR dichroic beam splitter (Chroma). To spectrally separate the donor and acceptor
emission bands, we used emission filters, ET535/50m and HQ 650/100m-2p, and a dichroic
beam splitter, 565 DCLP (Chroma Technology Corp., Bellows Falls, VT).
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Samples were placed in petri dishes fitted with a bottom cover slip (MatTek Corp., Ashland,
MA). Sample cell surfaces were coated with bovine serum albumin (BSA) prior to the
experiments; BSA minimizes sample loss due to surface adsorption. Multiple data sets from
two separate days were combined to give a total of approximately 16 hours of collection for
each sample type.

Simulated Data
Simulated data were used to test the MultiNest fitting model. Random numbers were
generated according to the photon distribution analysis (PDA) [38]. Two Gaussian
distributions were used to simulate P(E). The fluorescence dimension was Poisson
distributed, with an average background of 20 photons for each simulation. Background
noise was added to the simulated data. The background noise was Poisson distributed with a
mean of 0.3 counts in the donor channel and 0.2 in the acceptor channel. A detailed
description of the simulated data algorithm has been published elsewhere [22].

Theory
Bayesian analysis is encapsulated in Bayes theorem for relating probabilities,

(1)

where θ denotes the set of fitting parameters, D is the data, and m is the model. The vertical
bar indicates that these are conditional probabilities. Each term in Bayes theorem has
relevant meaning. P(θ|m) is called the prior and is the probability assigned to the set of
parameters before data is collected, consistent with the model. The likelihood, P(D|θ,m), is
the probability of obtaining the data set for assumed values of the parameters and the model.
Multiplication by the likelihood updates the prior in the light of the data to give the
posterior, P(θ|D,m). The posterior is the probability of obtaining a particular set of parameter
values given the data (and the model). In general it is a multidimensional probability
distribution over the space of fitting parameters. The evidence, P(D|m), normalizes the
product of the prior and likelihood. It is the probability of obtaining the data set D given the
model chosen. The evidence is crucial for model selection. It offers a systematic way of
deciding what model best describes the data.

The posterior distribution and evidence have been calculated in a variety of ways.
Techniques such as Bayesian maximum entropy and Markov Chain Monte Carlo (MCMC)
path sampling methods have been used [39–41]. MCMC methods have traditionally focused
on sampling the inference distribution, and often minimize the importance of the evidence
[42]. These algorithms have faced sampling efficiency problems for multimodal inference
distributions [43,44]. Recent nested sampling approaches have focused on calculation of the
Bayesian evidence [42,43]. The prior is sampled randomly within “nested” contours of
increasing likelihood [42]. In particular, the MultiNest algorithm calculates the evidence,
identifies modes in multimodal posteriors, and generates random samples of the posterior
distribution [44]. Modes are values of parameters where there is a local maximum in the
posterior distribution. The samples can be used to calculate parameter averages, averages of
predicted distributions, and derived data. We used MultiNest to determine the average
apparent FRET efficiency distribution, as described shortly. For a complete explanation of
the MultiNest algorithm, we refer readers to the original manuscripts [43,44].
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Model
We determined the FRET efficiency distribution of simulated data and of dye labeled
calmodulin using a Bayesian inference approach. Photon distribution analysis (PDA) theory
was used as the basic framework [25,38,45]. The arrival times of photons in two channels
were noted. The photon counts were binned into equal, non-overlapping 300 μs time bins.
Bins containing a total of ten to sixty detector counts were used to create a two-dimensional
signal histogram for the experimental data. Bins containing one to fifty-five counts were
used for simulated data. The histogram contains the number of times a bin contained S1 and
S2 detector counts in channels 1 and 2, N(S1,S2). PDA describes how to transform the
apparent FRET efficiency distribution P(Eapp) into the signal distribution P(S1,S2)[38],
according to the formula

(2)

where F1 and F2 are the number of emitted photons detected, F = F1+F2, Eapp is the
apparent FRET efficiency, B1 and B2 are the number of background counts detected, P(F1|
F,Eapp) is a binomial distribution with probability of success 1−Eapp, P〈B1〉 and P〈B2〉 are
Poisson distributions with averages 〈B1〉 and 〈B2〉, and P(S) is the probability of detecting a
total number of counts S=S1+S2 in a bin. The distribution P(S) (i.e. including background
counts) is an approximation to the fluorescence photon distribution P(F) as described by
Antonik et al.[38] The signal histogram, N(S1,S2), is a measure of the signal distribution,
P(S1,S2). Here, N(S1,S2) and P(S1,S2) differ by a normalization factor of the total number
of counts in the signal histogram.

P(Eapp) was digitized into a grid of 100 equally spaced points. For MultiNest fits, the
probability placed in each grid point was determined from a sum of Gaussian distributions.
Each Gaussian was parameterized by an amplitude, a, width, σ, and center, x,

(3)

where ΔEapp is the grid bin width and P(Eapp
i) is the probability at grid point i. The number

of Gaussians, k, was changed in subsequent fits, and the evidence was used to determine the
best model choice.

Random samples from the posterior distribution produced by MultiNest were used to
calculate the average P(Eapp). Since the average P(Eapp) distribution is calculated from
samples, peaks in the resulting P(Eapp) need not be Gaussian. The fitting model we used
represents the distribution as a sum of Gaussians. After fitting based on a dataset, P(Eapp) is
transformed into the FRET efficiency distribution, P(E). The FRET efficiency is related to
the apparent FRET efficiency by [38]

(4)

where g1 and g2 are the detection efficiencies for the donor and acceptor data acquisition
channels, φ1 and φ2 are the quantum yields of the donor and acceptor dyes, and c is the cross
talk of the donor emission into the acceptor data acquisition channel. The detection
efficiencies and cross talk were measured as in Ref. [22].
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Prior
Each parameter must be assigned a prior distribution. In the context of a Gaussian model in
which each peak represents a population of protein conformations, we chose to constrain the
range of x to the interval [0,1] (inclusive). The amplitude parameter ak must be constrained
to the range [0,1] because the entire distribution is constructed from the sum of a finite
number of Gaussians. The width of the distribution must have a lower bound of zero, as a
negative width has no meaning. The upper bound on the width parameter could in principle
stretch to infinity. As the width increases the peaked Gaussian distribution flattens into a
line, however. Since P(Eapp) is expected to contain peaks, we chose to constrain the width of
the distribution to the range [0,1]. We choose the prior probability distribution for each
parameter to be flat within the chosen bounds (a top hat distribution).

Likelihood
A Poisson distribution was chosen for the likelihood

(5)

where Di is a data point in the signal histogram N(S1,S2), Mi is a mock data point calculated
from the model for a specific value of the parameters, and the sum is taken over all data
points in the signal histogram indexed by i.

Classic Maximum Entropy
For comparison, the classic maximum entropy method was used to recover the joint
distribution for the apparent FRET efficiency and the fluorescence photons, P(Eapp,F),
modeled as a discretized joint distribution [22]. In addition, a hidden distribution consisting
of multiple layers of P(Eapp,F) was used to introduce correlations between adjacent grid
points in each layer [22,41,46]. The recovered joint distribution was then marginalized over
the fluorescence photon dimension to give P(Eapp). The result was compared with the
MultiNest sampling approach. A description of cMEM for sm-FRET burst data has been
published previously [22].

Results
The MultiNest model was tested with simulated data. Figure 3 shows the fitting results. The
left column compares the simulated P(E) distribution (black) to the fit (red). Fits were
undertaken with varying numbers of Gaussians in the model. The fit from the model with
the largest Bayesian evidence is plotted in the left column. The right hand column shows the
log Bayesian evidence for each fit. The fitted P(E) distributions corresponding to that model
with the largest evidence accurately match the simulated distributions.

The simulated data were also matched against cMEM. The number of layers (nL) in the
hidden distribution was varied from 0 to 6 in successive fits. The cMEM model with the
largest log evidence for each simulation is tabulated in Table 1. A five layer cMEM model
was optimal for each simulated data set. The MultiNest model with the largest evidence for
each data set is displayed in Table 1 for comparison. In all fits of simulated data, the
evidence was larger for the MultiNest models than the cMEM models, showing that
MultiNest succeeds in modeling the simulated data better than cMEM.

CaM-44-117-AF488-AF594 and CaM-44-117-AF488-TR bursts were measured in both
high Ca2+ and low Ca2+ buffers. Figure 4 shows the FRET efficiency distribution
determined by fitting the signal histogram using MultiNest and cMEM fitting methods. All
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distributions show a donor-only peak with an apparent FRET efficiency near zero. The fit
distributions determined by MEM and MultiNest are similar in all panels. Panel A reveals
two FRET states for CaM-44-117-AF488-AF594 in high Ca2+. In low Ca2+, CaM-44-117-
AF488-AF594 shows a single FRET state which exhibits a small shoulder at lower FRET
efficiency, in Panel B. Panel C shows distributions of CaM-44-117-AF488-TR in high Ca2+.
The greatest difference in the FRET efficiency distributions determined by the two
techniques is found in panel C. Maximum entropy recovers three distinct FRET states from
the data. MultiNest, in contrast, recovers two FRET states, but with a shoulder.
CaM-44-117-AF488-TR in low Ca2+ is displayed in panel D.

The FRET efficiency distributions of calmodulin in an excess of CaMKII peptide are
displayed in Figure 5. Again, all fits display a donor-only peak at an apparent FRET
efficiency of zero. In high Ca2+, CaM-44-117-AF488-AF594 with CaMKII peptide displays
a single FRET state centered at 0.79; see Fig 5A. CaM-44-117-AF488-AF594 with CaMKII
peptide in low Ca2+ has a large FRET state centered at 0.77, with a shoulder to the left. In
high Ca2+, CaM-44-117-AF488-TR has a larger peak centered at 0.80, and a small amount
of probability flanking each side of the peak; see Fig 5C. CaM-44-117-AF488-TR in low
Ca2+with CaMKII peptide is centered at 0.91 with a shoulder to the left of the peak.

The optimal number of Gaussians in the MultiNest model for the experimental data was
determined from the Bayesian evidence. Figure 6 shows typical plots of the log evidence
versus number of Gaussians (for MultiNest fits), or versus the number of blurring layers (for
cMEM). Figure 6A plots the log evidence for fits of CaM-44-117-AF488-AF594 in high
Ca2+for MultiNest. Figure 6B plots the log evidence for fits of CaM-44-117-AF488-AF594
in high Ca2+ with differing numbers of blurring layers. In both panels the evidence rises to a
maximum and then begins to decrease as more layers or Gaussians are added to the models.
Similar behavior was observed for all data sets analyzed.

For each data set, the cMEM and MultiNest models that produced the highest evidence were
plotted. Table 2 shows the log evidence for the best model in the MEM and MultiNest
framework. With the exception of CaM-44-117-AF488-TR in low Ca2+ with CaMKII
peptide data, the cMEM models produced larger evidences than the MultiNest models,
indicating that cMEM represents a better model, given this data.

An example of cMEM recovery is shown in Figure 7. The data correspond to CaM-44-117-
AF488-AF594 with and without CaMKII peptide in high Ca2+ buffer. Figures 7A and 7B
show P(Eapp,F). The joint distribution can be marginalized to obtain the apparent FRET
efficiency distribution P(Eapp) or the fluorescence photon distribution P(F). Figures 7C and
7D show P(F) calculated from panels A and B. P(F) is also compared to the signal
distribution P(S) calculated from the data sets. Once P(Eapp) is obtained by marginalization,
the distribution can be transformed into P(E). Figures 4A and 5A show P(E) for these
datasets.

The quality of the distributions recovered by MultiNest and cMEM can be compared by
computation of the fitting residuals. An example is shown in Figure 8. Figure 8A shows the
data for CaM-44-117-AF488-AF594 with CaMKII peptide in high Ca2+. The data is shown
as a two dimensional signal histogram, N(S1,S2). The average P(Eapp) distribution from
MultiNest was used to generate expected ( mock ) data. The mock data were used in
conjunction with the experimental data to calculate the residuals. The residuals calculated
for the mock data set and actual data set are shown in Figure 8B. The residuals for mock
data generated from the cMEM are shown in Figure 8C. The MultiNest model used three
Gaussians, and the cMEM model contained four layers of blurring.
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Discussion
Classic maximum entropy and MultiNest

The MultiNest model produced larger evidences than cMEM for each simulated data set.
For experimental data, however, cMEM produced larger evidence values than MultiNest,
with the exception of low Ca2+ CaM-44-117-AF488-TR with CaMKII peptide. This
observation shows that the cMEM model was more appropriate for the experimental data
sets, whereas the MultiNest model was more appropriate for the simulated data sets,
suggesting that MultiNest models are particularly well suited to situations in which Gaussian
distributions can be expected.

There are several differences between the cMEM and MultiNest models. The number of
parameters in each model is very different. The Gaussian model in MultiNest contains three
parameters for each Gaussian. cMEM was not constrained to any parameterized function.
Each point in the discretized P(Eapp,F) distribution was a variable parameter. For the
calmodulin fits, there were 100 grid points in the Eapp dimension and 51 grid points in the F
dimension for a minimum number of variable parameters in the cMEM model of 5100. This
corresponds to a cMEM model containing only one layer. However, multilayered models
consistently gave a higher evidence value than a one-layer non-blurred model. Each layer
added to the model was blurred by a Gaussian footprint function by a factor of 2 greater than
the previous layer. This reduces the effective degrees of freedom for each layer by adding
correlations between adjacent grid points [41].

Built into the Bayesian evidence is a dependence on the number of parameters. For two fits
that reproduce the data well but have differing numbers of parameters, the fit with fewer
parameters will have larger evidence [47]. This parameter dependence would work in favor
of the MultiNest model used in this paper. However, cMEM models with multiple layers of
blurring fit the experimental data better in most cases examined here (though not all),
increasing the evidence above that of MultiNest. Although the residuals are not explicitly
minimized in the Bayesian framework, the likelihood penalizes large differences between
the experimental data and model-generated mock data. The residuals from Figure 8B and 8C
show systematic deviations and larger amplitudes for the MultiNest model than cMEM.

Another difference between models was the approximation of setting P(F) equal to P(S) in
the PDA (equation 2) for the MultiNest model. The approximation is not needed in the
cMEM model, as P(Eapp,F) was fitted directly. Figures 7A and 7B show the two
dimensional P(Eapp,F) distribution recovered by cMEM for CaM-44-117-AF488-AF594,
with and without CaMKII peptide in high Ca2+. The P(F) distribution is found by
marginalizing over all allowed values of Eapp. P(S) is compared to P(F) in Figures 7C and
7D. In both cases P(F) closely resembles P(S). However, cMEM has the freedom to utilize
different shapes for P(F) at each FRET efficiency - the fit is two-dimensional, whereas the
signal approximation in the MultiNest model must use the same shape, P(S), across all
FRET efficiencies, assuming that F and E are independent. This assumption does not hold if
the quantum yields of the donor and acceptor dye are different. Figure 9 shows P(F)
calculated over ranges of Eapp associated with the donor only and CaMKII peptide bound
CaM-44-117-AF488-AF594 in high Ca2+. Fewer photons are likely to be detected by bursts
with a FRET efficiency around 0.84 than for the donor only species. This is consistent with
the fact that the quantum yield of AF594 is lower than that of AF488, and energy transfer
from AF488 to AF594 will result in a species that is not as bright as a species with no
energy transfer. Kalinin et al. have shown that utilizing a variable fluorescence distribution
improves the fit [25,45]. This may contribute to the improved fit for cMEM with regard to
the experimental data. In future work, the MultiNest model could be adjusted to include an
analytical form for the P(F) decay. This would require more model parameters, but would
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allow the joint distribution P(Eapp,F) to be modeled. Again, the evidence could be used to
determine whether the new model is better suited to analyze the data.

The simulated data was ideal for use with the signal approximation and MultiNest model. Its
purpose was to test our algorithms. In MultiNest, the P(E) distribution is modeled as a sum
of Gaussians. The simulated data was constructed with this assumption in mind. Two
Gaussian P(E) states were used, each having the same P(F) shape. The centers of the two
Gaussian distributions used to simulate P(E) were set closer in successive simulations until
the two peaks were no longer discernible in the P(E) distribution; see Figures 3 A,C,E,G.
The difference in log evidence between a two-Gaussian or single Gaussian fit was 5460.7,
182.8, 12.6, and −1.3 for simulations 1, 2, 3 and 4 respectively (Figures 3 B, D, F, G). As
the centers of the underlying Gaussians were moved closer together in the first three
simulations, the fit to a single Gaussian improved, but was still not as good as the two-
Gaussian model. In the fourth simulation, the single-Gaussian model was adequate to
specify the P(Eapp) distribution, with a slightly larger evidence. Models with three and four
Gaussians had lower evidence than the two Gaussian model for all simulated datasets. This
demonstrates the power of the Bayesian evidence for model selection. Overall, the
MultiNest model performed as expected, fitting the simulated data well with few parameters
and with larger evidence than cMEM. Furthermore, the residuals from the MultiNest fits
with largest evidences were not biased.

Dye interactions and peptide binding
The FRET distributions of CaM-44-117-AF488-AF594 and CaM-44-117-AF488-TR in the
absence of CaMKII peptide are distinct. The Förster distance, R0, for AF488-AF594 on
calmodulin was estimated as 56 Å, and for AF488-TR the distance is 54 Å. The dye linker
lengths differ by three carbon to carbon sp3 hybridized bonds. Both dye pairs are
zwitterionic. However, Texas Red carries charge that is overall neutral, whereas AF594 has
an overall charge of −1. Dyes with similar Förster distances and linker lengths that do not
interact with each other or the protein are expected to produce similar FRET distributions.
The difference in distributions determined for these dye pairs in the absence of CaMKII
suggests more severe differences, which cannot be accounted for merely by differences in
R0 or linker length. It appears that there is a difference in protein-dye interactions.

In the presence of the CaMKII binding domain, both Ca2+ bound CaM-44-117-AF488-
AF594 and CaM-44-117-AF488-TR give largely the same distribution. The dissociation
constant for Ca2+calmodulin and CaMKII is 100 ± 35 pM [48,49]. Thus, at the
concentrations used in our measurements at high Ca2+, nearly all calmodulin was bound to
the CaMKII peptide. CaM binds to the CaMKII peptide in a classic CaM binding motif, in
which hydrophobic regions exposed in Ca2+-activated CaM interact with hydrophobic
residues of the CaMKII binding domain to form the compact structure shown in Figure 2B
[50]. Figure 4 shows that the FRET distributions differ for CaM-44-117-AF488-TR and
CaM-44-117-AF488-AF594 in the absence of CaMKII peptide. The convergence of these
distributions to nearly identical distributions with a main FRET peak centered at a FRET
efficiency of 0.80 for both CaM-44-117-AF488-TR and CaM-44-117-AF488-AF594 in the
presence of peptide suggests that interactions (or noninteractions) of the dye pairs with the
protein are similar in the peptide-bound conformation. Dyes could interact with the protein
at a number of surface sites including, for calmodulin at high Ca2+, the hydrophobic
domains involved in target binding. The FRET distributions for CaM-44-117-AF488-TR
and CaM-44-117-AF488-AF594 in the presence of CaMKII peptide are not quite identical.
A small shoulder appears with the TR acceptor around E=0.45, suggesting the presence of a
minor population of CaM-44-117-AF488-TR for which TR interacts differently with the
protein. In low Ca2+ conditions, in which the hydrophobic binding domains of CaM are
buried [51], the distributions for CaM-44-117 with both dye pairs in the presence and
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absence of CaMKII peptide are similar, consistent with the notion that the dye pairs interact
differently with the hydrophobic domains accessible under high-Ca2+ conditions in the
absence of target peptide.

Conclusion
The FRET distributions of CaM-44-117-AF488-AF594 and CaM-44-117-AF488-TR imply
that it is vital to understand the interactions between dyes and protein for interpretation of
calmodulin conformations from sm-FRET. Experiments with multiple dye pairs are essential
to elucidate differences in FRET states due to the nature of the dye. The multiple FRET
states observed with Texas Red at high Ca2+ suggest that TR interacts differently with the
high-Ca2+ protein than AF594.

The MultiNest Bayesian analysis generates satisfactory models for the underlying FRET
distribution from sm-FRET burst data. In our implementation, MultiNest uses Gaussian
models for the FRET distributions, so it is not surprising that MultiNest is particularly
successful in fitting data for which Gaussian distributions are expected. For the experimental
FRET distributions we found that cMEM provided a better model than MultiNest, judged by
the Bayesian evidence. MultiNest is adaptable to different models, and the calculation of the
Bayesian evidence allows model selection. We believe that MultiNest will be particularly
appropriate for testing specific models for the FRET distribution (Gaussian or some other
form). The model we used with MultiNest could also be modified to incorporate a specific
model for the fluorescence distribution P(F). This makes MultiNest a viable choice for
parameterized model selection in single molecule spectroscopy.
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Highlights

We analyzed single-molecule burst FRET data by Bayesian nested sampling.

MultiNest accurately recovered FRET distributions in tests on simulated data.

We measured single-molecule FRET for calmodulin labeled at sites 44 and 117.

Measured FRET distributions depended significantly on the dye pair used.

FRET distributions collapsed to one peak for calmodulin bound to CaMKII peptide.
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Figure 1.
Photons detected in two detection channels binned into 300 μs time bins. Green corresponds
to photons detected in the channel monitoring donor dye emission. Red corresponds to
photons detected in the channel monitoring acceptor dye emission. The number of photons
detected in the acceptor channel was multiplied by −1 for clarity in the plot. The origin of
the time axis is the start of the experiment. Data are for CaM-44-117-AF488-AF594 in high
Ca2+ buffer.
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Figure 2.
A) Ca2+ calmodulin, PDB: 1CLL B) Ca2+ calmodulin bound to CaMKII peptide fragment
(pink), PDB 1CDM. Both panels) Ca2+ ions are brown. Dye labeling site on residue 44 is
shown as a red sphere. The dye labeling site on residue 117 is shown as a green sphere.
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Figure 3.
Left column: Red squares show the distribution determined by the MultiNest model having
highest log evidence. The black line is the simulated distribution. Right column: log
evidence for fits with different numbers, k, of Gaussians in the MultiNest model. (A) and
(B) simulation 1. (C) and (D) simulation 2. (E) and (F) simulation 3. (G) and (H) simulation
4.
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Figure 4.
FRET efficiency distributions determined by the classic maximum entropy method (black)
and MultiNest (red) A) Ca2+ bound CaM-44-117-AF488-AF594 B) Ca2+ free CaM-44-117-
AF488-AF594 C) Ca2+ bound CaM-44-117-AF488-TR D) Ca2+ free CaM-44-117-AF488-
TR
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Figure 5.
FRET efficiency distributions of calmodulin in the presence of CaMKII peptide (290–309),
determined by the classic maximum entropy method (black), and MultiNest (red) A) Ca2+

bound CaM-44-117-AF488-AF594 with CaMKII peptide B) Ca2+ free CaM-44-117-AF488-
AF594 with CaMKII peptide C) Ca2+ bound CaM-44-117-AF488-TR with CaMKII peptide
D) Ca2+ free CaM-44-117-AF488-TR with CaMKII peptide.
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Figure 6.
Log evidence plots for Ca2+ bound CaM-44-117-AF488-AF594. A) MultiNest fits with
differing numbers of Gaussian distributions in the model. B) MEM fits with multiple layers
of blurring in the model.
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Figure 7.
A) P(Eapp,F) distribution recovered by cMEM for CaM-44-117-AF488-AF594 in high Ca2+.
B) P(Eapp,F) distribution recovered by cMEM for CaM-44-117-AF488-AF594 with CaMKII
peptide in high Ca2+. C) P(F) distribution (red squares) and P(S) signal distribution (black
line) for CaM-44-117-AF488-AF594 in high Ca2+. D) P(F) distribution (red squares) and
P(S) signal distribution (black line) for CaM-44-117-AF488-AF594 with CaMKII peptide in
high Ca2+.
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Figure 8.
CaM-44-117-AF488-AF594 with CaMKII peptide in high Ca2+ A) Two dimensional signal
histogram N(S1,S2) data. B) Fitting residuals from a three Gaussian model MultiNest fit. C)
Fitting residuals from a cMEM fit with four layers of blurring.
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Figure 9.
FRET state dependent P(F) for CaM-44-117-AF488-AF594 with CaMKII peptide in high
Ca2+ buffer, as determined by cMEM. The black line shows P(F) calculated in the range of
Eapp from 0.0 to 0.13 corresponding to the donor only species. The red line shows P(F)
calculated in the Eapp range 0.71 to 0.91. Both distributions were normalized so that each
P(F) distribution sums to one. The full two dimensional distribution is shown in Figure 7B.
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Table 1

Best log evidences for simulated data

Simulation MultiNest cMEM

# ln P(D|k) k ln P(D|nL) nL

1 −2114.3 ± 0.5 2 −2818 ± 4 5

2 −1883.1 ± 0.5 2 −2619 ± 4 5

3 −1800.5 ± 0.5 2 −2560 ± 4 5

4 −1721.0 ± 0.4 1 −2520 ± 4 5
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Table 2

Calmodulin log evidence

Sample MultiNest cMEM

CaM-44-117-AF488-AF594 high Ca2+ −3863.5 ± 0.6 −3369 ± 6

CaM-44-117-AF488-AF594 low Ca2+ −3254.9 ± 0.6 −3114 ± 6

CaM-44-117-AF488-AF594-CaMKII high Ca2+ −5712.9 ± 0.6 −3710 ± 29

CaM-44-117-AF488-AF594-CaMKII Apo −5129.5 ± 0.7 −3517 ± 14

CaM-44-117-AF488-TR high Ca2+ −5150.2 ± 0.7 −3836 ± 16

CaM-44-117-AF488-TR low Ca2+ −3541.2 ± 0.6 −3018 ± 5

CaM-44-117AF488-TR-CaMKII high Ca2+ −4048.6 ± 0.6 −3490 ± 14

CaM-44-117-AF488-TR-CaMKII low Ca2+ −2534.2 ± 0.6 −2890 ± 7
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