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Abstract

Many types of tumor, including glioma, melanoma, non-small cell lung, esophageal, head and 

neck cancer, among others, are intrinsically resistant to apoptosis induction and poorly responsive 

to current therapies with proapoptotic agents. In addition, tumors often develop multi-drug 

resistance based on the cellular efflux of chemotherapeutic agents. Thus, novel anticancer agents 

capable of overcoming these intrinsic or developed tumor resistance mechanisms are urgently 

needed. We describe a series of 2-aryl-2-(3-indolyl)acetohydroxamic acids, which are active 

against apoptosis- and multidrug-resistant cancer cells as well as glioblastoma neurosphere stem-

like cell cultures derived from patients. Thus, the described compounds serve as a novel chemical 

scaffold for the development of potentially highly effective clinical cancer drugs.
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Graphical Abstract

 Introduction

Apoptosis-resistant cancers represent a major challenge in the clinic as most of the currently 

available chemotherapeutic agents work through the induction of apoptosis and, therefore, 

provide limited therapeutic benefits for the patients affected by these malignancies.1,2 

Cancers with such intrinsic resistance to proapoptotic stimuli include the tumors of the lung, 

liver, stomach, esophagus, pancreas as well as melanomas and gliomas.3 For example, 

patients afflicted by a type of gliomas, known as glioblastoma multiforme,4,5 have a median 

survival expectancy of less than 14 months when treated with a standard protocol of surgical 

resection, radiotherapy and chemotherapy with temozolomide, carmustine or cisplatin.6 

Because glioma cells display resistance to apoptosis, they respond poorly to such 

conventional chemotherapy with proapoptotic agents.5,7

Resistance to apoptosis is also an intrinsic property of tumor metastases. Successful 

treatment of metastases remains an important clinical challenge as 90% of cancer patients 

die from metastastic cancer spread.8 By acquiring resistance to anoikis, a cell death process 

resulting from the loss of contact with extracellular matrix or neighboring cells,8 metastatic 

cells display poor sensitivity to apoptosis induction and are thus poorly responsive to 

conventional proapoptotic chemotherapeutic agents.5,9,10 One solution to apoptosis 

resistance entails the complementation of cytotoxic therapeutic regimens with cytostatic 

agents and thus a search for novel cytostatic anticancer drugs that can overcome cancer cell 

resistance to apoptosis is an important pursuit.12–15

Often, tumors are initially susceptible to cancer agents and patients respond to chemotherapy 

but eventually experience a relapse in spite of the continuing treatment. In such instances of 

acquired resistance tumors generally become refractory to a broad spectrum of structurally 

and mechanistically diverse antitumor agents and this phenomenon is referred to as 

multidrug resistance (MDR).16,17 MDR usually results from upregulation of certain protein 

pumps, such as P-glycoprotein (P-gp) in cancer cells, causing a decreased intracellular drug 

concentration. MDR is a major factor that contributes to the failure of chemotherapy, for 

example with such widely used anticancer drugs as the vinca alkaloids18 or the taxanes.19

Our recent studies of a reaction of indole derivatives with β-nitrostyrenes in polyphosphoric 

acid (PPA)20 led to the discovery of an efficient synthesis of 2-aryl-2-(3-

indolyl)acetohydroxamates. Although 2,2-diarylacetohydroxamates had been previously 

synthesized and studied as HDAC inhibitors,21,22 compounds in which one of the two 
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aromatic rings is an indole moiety had not been reported in the literature. Thus, 2-aryl-2-(3-

indolyl)acetohydroxamate was revealed to be a new chemotype prompting our thorough 

investigation of biological properties of compounds incorporating this structural feature. 

Although HDAC inhibition was not observed with these compounds (data not shown), these 

studies led to the discovery of significant activity associated with a number of synthesized 

compounds against cancer cell lines displaying resistance to various types of proapoptotic 

stimuli as well as glioblastoma neurosphere stem-like cell cultures derived from patients. It 

was also found that the active analogues exhibited their antiproliferative activity through a 

cytostatic non-apoptotic mechanism of action and maintained their potency against multi-

drug resistant cells, which are poorly responsive to important clinical cancer drugs taxol and 

vinblastine. Although the detailed mechanistic studies aimed at the elucidation of mode(s) of 

action of the 2-aryl-2-(3-indolyl)acetohydroxamates are currently pursued in our labs, the 

compelling evidence for the effectiveness of these compounds against the apoptosis- and 

multidrug resistant cancer cells prompts us to disclose our findings in the present paper.

 Results and Discussion

 Chemistry

2-Aryl-2-(3-indolyl)acetohydroxamates (3, Figure 1) were identified to be intermediates in 

our recently discovered transannulation of indoles to 2-quinolones carried out by reacting 2-

substituted indoles with β-nitrostyrenes in PPA at 100 °C.20 It was found that if the reaction 

temperature kept at 70 °C, compounds 3 could be isolated as the main reaction products 

(Figure 1A, Tables 1 and 2). The reaction scope was found to allow for the introduction of a 

variety of substituents R1, R2, R3 and R4 into the 2-aryl-2-(3-indolyl)acetohydroxamate 

scaffold 3. In addition, the recognition of limited access to a number of specific substituted 

indoles that would be required for systematic structure-activity relationship (SAR) analyses 

prompted the development of an alternative route based on an in situ Fisher indole synthesis 

utilizing arylhydrazines 4 and ketones 5 (Figure 1B). In this multicomponent variation, 

compounds 4 and 5 are reacted at 100 °C to allow for the indole formation and then the 

reaction temperature is lowered to 70 °C prior to the introduction of β-nitrostyrenes 2. Thus, 

the availability of two complementary approaches to compounds 3 permits the synthesis of 

analogues with the desired identity and positioning of substituents R1, R2, R3 and R4 on the 

2-aryl-2-(3-indolyl)acetohydroxamate scaffold facilitating the development of these 

compounds as medicinal agents. Since the synthesized compounds have four diversification 

points, a four-dimensional tagging system is employed for labeling the products. Thus, the 

reaction of hydrazine 4aa with ketone 5f produces indole 1aaf, which in the subsequent 

reaction with nitrostyrene 2n affords hydroxamic acid 3aafn.

 Pharmacology

 (a) SAR analyses—The evaluation of an initially synthesized series of compounds 3 
for a variety of activities led to the identification of double-digit micromolar antiproliferative 

potencies associated with the parent acetohydroxamate 3aaaa (Table 1). This finding led to 

an exploration of the SAR analyses by synthesizing the first generation compounds 3 
containing diverse substituents at different positions in the 2-aryl-2-(3-

indolyl)acetohydroxamate skeleton and testing this series for in vitro growth inhibition using 
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the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric 

assay23 against two cell lines, human HeLa cervical and MCF-7 breast adenocarcinomas 

(Table 1). It emerged from these experiments that the substitution on the benzene ring of the 

indole moiety (R2 ≠ H) was not tolerated (e.g., 3abfa and 3acfa), whereas the nitrogen could 

be derivatized (R1 ≠ H) with only a small activity drop (e.g., 3bafa vs 3aafa). The key SAR 

finding resulted from the variations of the C2-position of the indole moiety (R3 ≠ Ph as in 

3aaba, 3aaca, 3aada, 3aaea and 3aafa) and identification of single-digit micromolar 

potencies associated with compounds containing the β-naphthyl substituent at this position 

(as in 3aafa).

Based on the initial SAR in Table 1, the second generation compounds 3 were synthesized 

and they all contained an R2 = β-naphthyl, while R1 and R4 remained variable. These 

experiments led to the identification of a number of compounds possessing single-digit 

micromolar (e.g., 3aafe, 3aafk, 3aafm, 3aafn, 3aafo and 3aafp) or even submicromolar 

(e.g., 3aafe and 3aafp) activites, all containing meta and/or para-positioned R4. The addition 

of an R1 = alkyl (e.g., 3cafa, 3dafa, 3cafe and 3eafa) did not appear to be detrimental with 

GI50 values still in the single-digit micromolar region. Because of the significant 

lipophilicities associated with our acetohydroxamates and thus the possibility that the 

activities were a function of their lipophilic character, logP values were calculated for each 

analogue using three different methods, all giving similar results (Tables 1 and 2). The 

significant activity was indeed present among both less lipophilic analogues (e.g., 3aafc with 

logP = 4.1) and those with higher lipophilicity (e.g., 3cafe with logP = 8.4), thus ruling out 

such a possibility.

Finally, to assess the importance of the hydroxamic acid moiety, 3aafa was converted to 

nitrile 6 by treating the former with PCl3 and further to amide 7 by partial hydration of 6 in 

80% PPA (Figure 2). The evaluation of nitrile 6 and amide 7 for antiproliferative activity 

revealed a 6- and 3-fold lower potencies associated with these compounds as compared with 

hydroxamate 3aafa, thus underscoring the importance of the hydroxamic acid moiety but 

not its criticality.

 (b) Activity against cells exhibiting various types of resistance to 
proapoptotic stimuli—As part of the ongoing efforts in our lab aimed at identification of 

compounds active against cancer cell displaying resistance to proapoptotic agents,24–27 the 

selected 2-aryl-2-(3-indolyl)-acetohydroxamates were evaluated for in vitro growth 

inhibition against a panel of additional cancer cell lines including those resistant to various 

proapoptotic stimuli, such as human T98G and U87 glioblastoma28,29 and human A549 non-

small-cell lung cancer (NSCLC),30 as well as an apoptosis-sensitive tumor model, such as 

human Hs683 anaplastic oligodendroglioma,28 used as reference. The obtained GI50 values 

associated with potent hydroxamates are shown in Table 3. The data reveal that for the most 

part these compounds retain the single-digit antiproliferatve GI50 values in this challenging 

cancer cell panel. Further analysis of the results from Tables 2 and 3 combined shows that 

the hydroxamates do not discriminate between the cancer cell lines based on the apoptosis 

sensitivity criterion and display comparable potencies in both cell types, indicating that 
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apoptosis induction is not the primary mechanism responsible for antiproliferative activity in 

this series of compounds.

Our previous experience of working with cells resistant to various proapoptotic stimuli 

shows that generally a certain population of cells becomes rapidly eliminated with 

proapoptotic agents used at low concentrations leading to low GI50 values. However, these 

high potencies can be somewhat misleading as there often remains a significant portion of 

cells that resists the effects of the proapoptotic agents even at concentrations 100- or 1000-

fold of their GI50s.31 It was thus instructive to compare the hydroxamates with common 

proapoptotic agents for their ability to affect such resistant populations. Indeed, as can be 

seen in Figure 3, hydroxamates 3aafa and 3aafp have potent growth inhibitory properties 

against most of the cells in U87 and A549 cultures and, with increasing concentration, 

rapidly reach antiproliferative levels of a non-discriminate cytotoxic agent phenyl arsine 

oxide (PAO). In contrast, common proapoptotic agents taxol and podophyllotoxin have no 

effect on proliferation of ca. 50% of cells in these cultures at concentrations up to 100 μM.

 (c) Quantitative videomicroscopy—To obtain insight into the effectiveness of 2-

aryl-2-(3-indolyl)acetohydroxamates against apoptosis-resistant cancers, computer-assisted 

phase-contrast microscopy12,13,15 (quantitative videomicroscopy) was employed to observe 

the phenotypic morphological changes in cancer cells as they are treated with these 

compounds. Figure 4 shows that acetohydroxamate 3aafa inhibits cancer cell proliferation 

without inducing cell death when assayed at concentrations slightly exceeding the GI50 

values (25 μM) in SKMEL-28 melanoma and U373 glioblastoma cells, both exhibiting 

resistance to various proapoptotic stimuli.28,32 Based on the phase contrast pictures obtained 

by means of quantitative videomicroscopy, a global growth ratio (GGR) was calculated, 

which corresponds to the ratio of the mean number of cells present in a given image 

captured in the experiment (in this case after 24, 48 and 72 h) to the number of cells present 

in the first image (at 0 h). The ratio obtained in the 3aafa-treated experiment was then 

divided by the ratio obtained in the control. The GGR value of ca. 0.3 in both of these two 

cell lines indicates that 30% of cells grew in the 3aafa-treated experiment as compared to 

the control over a 72 h observation period. Thus, the GGR calculations are consistent with 

the MTT colorimetric data and indicate that it is the cytostatic properties associated with the 

hydroxamates that are responsible for their antiproliferative effects against apoptosis-

resistant cancer cells at least at relevant concentrations (slightly above the GI50 values).

 (d) Redifferentiation of U87 cells to an astrocytic phenotype—To elucidate the 

fate of the cells whose growth has been arrested with the hydroxamates, the phenotypic 

morphological changes of U87 glioma cells were observed for a period of several weeks 

after the treatment with hydroxamate 3aafa at the GI50 concentration. Interestingly, while 

untreated cells proliferated rapidly and quickly formed spheroids (Figure 5B), the treated 

cells ceased to replicate and appeared to undergo redifferentiation to a non-malignant state 

resembling a reactive astrocyte (data not shown) phenotype (Figure 5C). Although such 

redifferentiation processes are known, there are only a few small molecule agents reported to 

induce these epigenetic transformations.33,34 The literature reports indicate that these 

redifferentiated cells possess significantly reduced tumorigenicity in vivo33 and, thus, new 
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chemical entities capable of triggering such phenotypic changes hold a promising but 

completely unexplored potential as anticancer agents.

 (e) Activity against MDR cells, glioblastoma neurosphere stem-like cell 
cultures derived from patients and normal fibroblasts—Compared with the 

intrinsic drug resistance, as described above for such as cancers as glioblastoma and 

melanoma, a large variety of tumors can also develop resistance to anticancer drugs resulting 

in MDR as explained in the introduction. To assess whether the hydroxamates can overcome 

this resistance mechanism, selected hydroxamates were tested against MDR cells (Table 4). 

The MDR uterine sarcoma cell line MES-SA/Dx5 was utilized for this experiment. This cell 

line was established from the parent uterine sarcoma MES-SA, grown in the presence of 

increasing concentrations of doxorubicin and is known to be resistant to a number of P-gp 

substrates.35 Both taxol and vinblastine displayed more than a thousand fold drop in potency 

when tested for antiproliferative activity against the MDR cell line as compared with the 

parent line (Table 4). In contrast, there was only a small variation in the sensitivities of the 

two cell lines towards the hydroxamates indicating their potential to overcome clinical multi-

drug resistance.

Given the ability of the hydroxamates to overcome drug resistance a few select compounds 

were further evaluated against glioma cells grown in neurosphere conditions, which are 

known to promote the growth of stem-like cells from human glioma tissue. Indeed, the 

neurospheres show the ability of self-renewal by regrowing in culture from individual cells, 

can differentiate into multiple neural lineages and recapitulate human gliomas on both 

histological and genetic levels more faithfully than serum cultured glioma cell lines when 

injected into the brains of mice.36–39 Because, neurosphere cells are generally resistant to 

radiation and chemotherapy,40–43 the micromolar to submicromolar activity of of the 

hydroxamates against the glioma neurosphere cell cultures is noteworthy (Table 4). The 

glioma culture 031810 used is derived from a patient with glioblastoma who progressed on 

temozolomide due to high O6-methylguanine-DNA-methyltransferase (MGMT) expression 

and thus shows high resistance to this agent (Table 4). It is worthy of note, that the 

unmethylated MGMT promoter leading to such temozolomide resistance is found in about 

half of all GBM patients, who respond poorly to temozolomide chemotherapy.44 To date, no 

alternative treatment exists for this group of patients.44

Finally, selected hydroxamates were tested against the normal human dermal (NHDF) and 

lung (NHLF) fibroblast cell lines in comparison with the cancerous glioma and NSCLC cells 

(Figure 6). The compounds displayed a modest but noteworthy selectivity in inhibiting the 

growth of cancer cells with 3aafa and 3aafp being particularly ineffective at inhibiting the 

proliferation of the normal NHDF cell line (Figure 6). These results show that the selectivity 

of the hydroxamates toward cancer cells is structure-dependent and can be optimized to 

select the best candidates for the forthcoming in vivo tests in animal models.

 Conclusion

Drug resistance is one of the main causes for the failure of cancer chemotherapy, affecting 

patients with a broad variety of tumors. Resistance to chemotherapy can be intrinsic, in 
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which cancers such as glioma, melanoma or NSCLC, among others, fail to respond to the 

first chemotherapy given. Resistance can also be acquired, in which tumors innately respond 

to chemotherapy but eventually become refractory to a broad spectrum of structurally and 

mechanistically diverse antitumor agents. The results presented herein demonstrate the 

potential 2-aryl-2-(3-indolyl)acetohydroxamates for the treatment drug-resistant cancer, 

regardless of whether the latter harbors intrinsic and acquired resistance mechanisms. The 

structural scaffold associated with these compounds represents a new chemotype, whose 

further investigation is warranted by the described findings and should be facilitated by the 

straightforward synthetic methodologies developed to accommodate systematic SAR studies 

as well as preparation of specific designed analogues. The ongoing work includes further 

optimization of compound potency, elucidation of mechanisms responsible for cytostatic and 

redifferentiation effects as well as experiments involving animal models of drug-resistant 

human cancer.

 Experimental Section

 General Experimental

Reagents, solvents and catalysts were purchased from commercial sources (Acros Organics 

and Sigma-Aldrich) and used without purification. All reactions were performed in oven-

dried flasks open to the atmosphere and monitored by thin layer chromatography on TLC 

precoated (250 μm) silica gel 60 F254 glass-backed plates (EMD Chemicals Inc.). 

Visualization was accomplished with UV light. Filtration was performed using silica gel 

(32–63 μm, 60 Å pore size). 1H and 13C NMR spectra were recorded on Bruker DRX-400 

and Bruker DRX-500 spectrometers. Chemical shifts (δ) are reported in ppm relative to the 

TMS internal standard. Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet). Indoles: 2-phenyl-1H-indole (1aaa), 2-(2-nitrophenyl)-1H-indole 

(3aab), 2-(4-methoxyphenyl)-1H-indole (3aac), 2-methyl-1H-indole (3aad), 2-

(naphthalen-1-yl)-1H-indole (1aae), 2-(naphthalen-2-yl)-1H-indole (1aaf), 1-methyl-2-

(naphthalen-2-yl)-1H-indole (1baf), and 5-methoxy-2-(naphthalen-2-yl)-1H-indole (1acf) 
were purchased from commercial sources and used as received. Procedures for preparation 

of 5-methyl-2-(naphthalen-2-yl)-1H-indole (1abf), 1-butyl-2-(naphthalen-2-yl)-1H-indole 

(1caf), 1-(sec-butyl)-2-(naphthalen-2-yl)-1H-indole (1daf), 1-benzyl-2-(naphthalen-2-

yl)-1H-indole (1eaf) are provided below. Ketones: acetophenone (5a), o-nitroacetophenone 

(5b), p-methoxyacetophenone (5c), acetone (5d), 1-acetylnaphalene (5e), and 2-

acetylnaphalene (5f) were obtained from commercial sources and used as received. 

Arylhydrazines: pehylhydrazine (4aa), p-tolylhydrazine (4ab), and p-anisylhydrazine (4ac) 

were obtained from commercial sources and used as received. Nitroalkenes: (2-

nitrovinyl)benzene (2a), 1-nitro-4-(2-nitrovinyl)benzene (2b), 1-fluoro-3-(2-

nitrovinyl)benzene (2c), 1-bromo-2-(2-nitrovinyl)benzene (2d), 1,2-dimethoxy-4-(2-

nitrovinyl)benzene (2f), 1-chloro-2-(2-nitrovinyl)benzene (2h), 1,2-dichloro-4-(2-

nitrovinyl)benzene (2i), 1-(2-nitrovinyl)-4-(trifluoromethoxy)benzene (2j), 1-methyl-4-(2-

nitrovinyl)benzene (2m), N,N-dimethyl-4-(2-nitrovinyl)aniline (2p) were acquired from 

commercial sources and used as received. 1-Isopropyl-4-(2-nitrovinyl)benzene (2e), 1-

fluoro-4-(2-nitrovinyl)benzene (2g), 1,2-dimethyl-4-(2-nitrovinyl)benzene (2k), 1-ethoxy-4-

(2-nitrovinyl)benzene (2l), 1-methyl-3-(2-nitrovinyl)benzene (2n) were synthesized using a 
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reported procedure,45 as well as N,N-diethyl-4-(2-nitrovinyl)aniline (2o).46 Elemental 

analyses were performed using a CHN-1 analyzer. HRMS analyses were performed on ESI 

Bruker Maxis. The synthesized compounds were at least 95% pure according to elemental 

analyses and/or HPLC chromatograms.

 Compound 1abf—A mixture of 4-methylphenylhydrazine (4ab) (1.22 g, 10 mmol) and 

2-acetylnaphthalene (5f) (1.70 g, 10 mmol) was vigorously stirred at 100–110 °C in 80% 

PPA (3–5 g) for 40 min. When the reaction was complete based on TLC analysis the mixture 

was cooled down to rt, poured into water (50 mL), and neutralized with aqueous ammonia. 

The formed precipitate was filtered, dried in vacuum, and used without additional 

purification. Yield 2.44 g (9.5 mmol, 95%); m.p. = 212–213 °C (toluene); 1H NMR (400 

MHz, CDCl3) δ, ppm: 8.43 (br. s, 1H), 8.08 (s, 1H), 7.93-7.86 (m, 4H), 7.56-7.48 (m, 2H), 

7.46 (s, 1H), 7.30-7.34 (m, 1H), 7.07 (d, J = 8.2 Hz, 1H), 6.9 (s. 1H), 2.49 (s. 3H); 13C NMR 

(100 MHz, CDCl3) δ: 133.7, 129.8, 128.9, 128.7, 128.4, 128.1, 127.9, 126.8, 126.7, 126.4, 

126.3, 125.4, 124.9, 124.4, 123.9, 120.6, 118.2, 111.0, 21.6; HRMS calc’d for C19H16N (M

+H)+: 258.1277, found 258.1276.

 Compound 1caf—To a stirred solution of KOH (2.24 g, 40 mmol) in DMSO (20 mL 

was added 2-(2-naphthyl)indole (1aaf) (2.43 g, 10 mmol), and the mixture was stirred for 45 

min. Then, n-butyl bromide (2.7 g, 20 mmol) was added and the stirring was continued for 

additional 45 min. The mixture was diluted with water (20 mL) and extracted with benzene 

(3 × 50 mL). Combined organic layers were washed with water (3 × 100 mL), dried with 

CaCl2 and concentrated in vacuum to obtain the titled compound as yellowish oil. Yield 2.60 

g (8.7 mmol, 87%); 1H NMR (400 MHz, CDCl3) δ, ppm: 7.99-7.92 (m, 4H), 7.77 (d, J = 7.8 

Hz, 1H), 7.65 (dd, J = 8.4, 1.7 Hz, 1H), 7.58-7.55 (m, 2H), 7.45 (d, J = 8.2 Hz, 1H), 7. 28 

(ddd, J = 7.4, 7.6, 1.1 Hz, 1H), 7.19 (ddd, J = 7.4, 7.4, 0.9 Hz, 1H), 6.65 (s, 1H), 4.25 (t, J = 

7.5 Hz, 2H), 1.74 (m, 2H), 1.21 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ: 141.5, 137.7, 133.4, 132.9, 130.9, 128.5, 128.4, 128.3, 128.2, 127.9, 127.4, 126.6, 

126.5, 121.7, 120.7, 119.9, 110.2, 102.7, 44.1, 32.3, 20.1, 13.8; HRMS calc’d for C22H22N 

(M+H)+: 300.1747, found 300.1749.

 Compound 1daf—To a stirred solution of KOH (2.24 g, 40 mmol) in DMSO (20 mL 

was added 2-(2-naphthyl)indole (1aaf) (2.43 g, 10 mmol), and the mixture was stirred for 45 

min. Then, sec-butyl bromide (2.7 g, 20 mmol) was added and the stirring was continued for 

additional 60 min. The mixture was idluted with water (20 mL) and extracted with benzene 

(3 × 50 mL). Combined organic layers were washed with water (3 × 100 mL), dried with 

CaCl2 and concentrated in vacuum to obtain the titled compound as colorless solid. Yield 

2.52 g (8.4 mmol, 84%); m.p. = 103–104 °C (petroleum ether); 1H NMR (400 MHz, CDCl3) 

δ, ppm: 7.99-7.91 (m, 4H), 7.69, (d, J = 7.9 Hz, 1H), 7.63 (dd, J = 8.4, 1.5 Hz, 1H), 

7.59-7.55 (m, 3H), 7.44 (d, J = 8.2 Hz, 1H), 7.27 (ddd, J = 7.6, 7.5, 0.7 Hz, 1H) 7.18 (t, J = 

7.3 Hz, 1H), 6.66 (s, 1H), 4.15-4.13 (m, 2H), 2.15-2.04 (m, 1H), 0.69-067 (m, 6H); 13C 

NMR (100 MHz, CDCl3) δ: 141.8, 138.0, 133.4, 132.9, 131.22, 128.7, 128.4, 128.3, 128.2, 

127.9, 127.6, 126.6, 126.5, 121.6, 120.7, 119.9, 110.7, 103.0, 51.5, 29.1, 22.9, 20.2; HRMS 

calc’d for C22H22N (M+H)+: 300.1747, found 300.1750.
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 Compound 1eaf—To a stirred solution of KOH (2.24 g, 40 mmol) in DMSO (20 mL 

was added 2-(2-naphthyl)indole (1aaf) (2.43 g, 10 mmol), and the mixture was stirred for 45 

min. Then, benzyl bromide (3.4 g, 20 mmol) was added and the stirring was continued for 

additional 45 min. The mixture was diluted with water (20 mL) and extracted with benzene 

(3 × 50 mL). Combined organic layers were washed with water (3 × 100 mL), dried with 

CaCl2 and concentrated in vacuum to obtain the titled compound as colorless solid. Yield 

3.07 g (9.2 mmol, 92%); m.p. = 144–146 °C (toluene); 1H NMR (400 MHz, CDCl3) δ, ppm: 

7.89-7.84 (m, 3H), 7.76-7.70 (m, 2H), 7.57 (dd, J = 8.5, 1.7 Hz, 1H), 7.51-7.49 (m, 2H), 

7.32-7.24 (m, 4H), 7.20-7.17 (m, 2H), 7.08 (d, J = 6.8 Hz, 2H), 6.77 (s, 1H), 5.43 (s, 

2H); 13C NMR (100 MHz, CDCl3) δ: 142.0, 138.4 (2C), 133.3, 133.0, 130.2, 128.9 (2C), 

128.5, 128.4, 128.3 (2C), 127.8, 127.4, 127.2, 126.6, 126.5, 126.2 (2C), 122.2, 120.7, 120.4, 

110.7, 102.9, 48.1; HRMS calc’d for C25H20N (M+H)+: 334.1590, found 334.1595.

 Preparation of 2-aryl-2-(3-indolyl)acetohydroxamates 3. General Method A: A 

mixture of a selected indole 1 (1 mmol) and a selected nitrostyrene 2 (1.2 mmol) in 80% 

PPA (3–4 g) was stirred at 65–70 °C for 1 h. The disappearance of the starting indole was 

monitored by TLC. After the indole has reacted completely, the mixture was cooled to rt, 

poured in water (50 mL) and treated with saturated NH4OH to pH 8. The formed precipitate 

was filtered and recrystallized from the indicated solvent.

 Preparation of 2-aryl-2-(3-indolyl)acetohydroxamates 3. General Method B: A 

mixture of a selected arylhydrazine 4 (1 mmol) and a selected methylaryl ketone 5 (1 mmol) 

in 80% PPA (2–3 g) was stirred at 100–110 °C for 40 min. The disappearance of the starting 

arylhydrazine was monitored by TLC. After the arylhydrazine has reacted completely, the 

temperature was decreased to 65–70 °C and a selected nitrostyrene 2 (1.2 mmol) was added. 

The mixture was stirred at this temperature for 1 h and the disappearance of the intermediate 

indole 1 was monitored by TLC. After the indole has reacted completely, the mixture was 

cooled to room temperature, poured in water (50 mL) and treated with saturated NH4OH to 

pH 8. The formed precipitate was filtered and recrystallized from the indicated solvent.

 Compound 3aaaa—Synthesized according to the general method A from 2-

phenylindole (3aaa) and (2-nitrovinyl)benzene (2a) in 82% yield; Alternatively prepared 

according to the general method B starting from phenylhydrazine (4aa), acetophenone (5a) 

and (2-nitrovinyl)benzene (2a): 76%; m.p. = 220–221°C (toluene/petroleum ether); 1H 

NMR (500 MHz, CDCl3) δ, ppm: 11.30 (br. s, 1H), 10.75 (br. s, 1H), 8.81 (br. s, 1H), 7.73 

(d, J = 8.0 Hz, 1H), 7.54-7.48 (m, 4H), 7.41 (dd, J = 7.2, 7.1 Hz, 1H), 7.35 (d, J = 8.1 Hz, 

1H), 7.27-7.16 (m, 5H), 7.06 (dd, J = 7.6, 7.4 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 5.10 (s, 

1H); 13C NMR (125 MHz, CDCl3) δ, ppm: 168.6, 140.7, 136.2, 132.5, 128.6 (23), 128.5 

(23), 128.0 (23), 127.9 (23), 127.7, 127.6, 126.1, 122.3, 121.1, 118.5, 110.9, 109.2, 46.0; 

EA: Calcd for C22H18N2O2: C 77.17, H 5.30, N 8.18. Found: C 77.33, H 5.22, N 8.11; 

HRMS calc’d for C22H18N2O2Na (M+Na)+: 365.1260, found 365.1272.

 Compound 3aaab—According to the method A, starting from 2-phenyl-1H-indole 

(3aaa) and 1-nitro-4-(2-nitrovinyl)benzene (2b): 73%; According to the method B, starting 

from phenylhydrazine (4aa), acetophenone (5a) and 1-nitro-4-(2-nitrovinyl)benzene (2b): 
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68%; m.p. = 156–157 °C (toluene); 1H NMR (400 MHz, DMSO) δ, ppm: 11.44 (br. s, 1H), 

10.89 (br. s, 1H), 8.96 (br. s, 1H), 8.14 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 

7.49-7.46 (m, 4H), 7.42-7.36 (m, 5H), 7.09 (t, J = 7.2 Hz, 1H), 6.92 (t, J = 7.5 Hz,1H), 5.20 

(s, 1H); 13C NMR (100 MHz, DMSO) δ: 167.8, 148.6, 146.0, 136.7, 136.2, 132.2, 129.3 

(2C), 128.7 (4C), 127.9, 127.4, 123.3 (2C), 121.6, 121.4, 118.9, 111.2, 108.0, 46.1; HRMS 

calc’d for C22H17N3O4Na (M+Na)+: 410.1111, found 410.1111.

 Compound 3aaba—According to the method A, starting from 2-(2-nitrophenyl)-1H-

indole (3aab) and (2-nitrovinyl)benzene (2a): 68%; According to the method B, starting 

from phenylhydrazine (4aa), 2-nitroacetophenone (5b) and (2-nitrovinyl)benzene (2a): 61%; 

m.p. = 118–119 °C (toluene); 1H NMR (400 MHz, DMSO) δ, ppm: 11.27 (br. s, 1H), 10.71 

(br. s, 1H), 8.87 (br. s, 1H), 8.12 (dd, J = 8.1, 0.9 Hz, 1H), 7.80-7.61 (m, 4H), 7.54 (d, J = 7.4 

Hz, 2H), 7.29 (d, J = 8.0 Hz, 1H), 7.18-7.06 (m, 5H), 6.91 (t, J = 7.4 Hz, 1H), 4.77 (s, 

1H); 13C NMR (100 MHz, DMSO) δ: 166.4, 147.6, 139.9, 136.2, 134.2, 133.7, 133.1, 129.8, 

127.8 (2C), 127.7 (3C), 127.0 (2C), 126.1, 124.5, 121.4, 118.5, 111.2, 110.9, 45.9; HRMS 

calc’d for C22H17N3O4Na (M+Na)+: 410.1111, found 410.1109.

 Compound 3aaca—According to the method A, starting from 2-(4-

methoxyphenyl)-1H-indole (3aac) and (2-nitrovinyl)benzene (2a): 43%; According to the 

method B, starting from phenylhydrazine (4aa), 4-methoxyacetophenone (5c) and (2-

nitrovinyl)benzene (2a): 35%; m.p. = 133–134 °C (toluene); 1H NMR (400 MHz, DMSO) δ, 

ppm: 11.22 (br. s, 1H), 10.73 (br. s, 1H), 8.81 (br. s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.43 (d, J 
= 8.5 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.27-7.17 (m, 5H), 7.06-7.01 (m, 3H), 7.86 (t, J = 

7.5 Hz, 1H), 5.04 (s, 1H), 3.81 (s, 3H); 13C NMR (100 MHz, DMSO) δ: 169.1, 159.4, 141.3, 

136.7, 136.5, 130.4 (2C), 128.5 (2C), 128.4 (2C), 128.3, 126.6, 125.4, 122.6, 121.3, 118.9, 

114.6 (2C), 111.2, 109.0, 55.7, 46.6; HRMS calc’d for C23H20N2O3Na (M+Na)+: 395.1373, 

found 395.1366.

 Compound 3aada—According to the method A, starting from 2-methyl-1H-indole 

(3aad) and (2-nitrovinyl)benzene (2a): 46%; According to the method B, starting from 

phenylhydrazine (4aa), acetone (5d) and (2-nitrovinyl)benzene (2a): 27%; m.p. = 110–

112 °C (toluene); 1H NMR (400 MHz, DMSO) δ, ppm: 10.86 (br. s, 1H), 10.79 (br. s, 1H), 

8.86 (br. s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.37 (s, 1H), 7.26-7.20 (m, 5H), 6.94 (ddd, J = 7.4, 

7.4, 0.6 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 4.93 (s, 1H), 2.30 (s, 3H); 13C NMR (100 MHz, 

DMSO) δ: 168.7, 140.5, 135.1, 133.2, 128.1 (2C), 127.9 (2C), 127.7, 126.1, 119.9, 119.8, 

118.0, 110.2, 108.5, 45.3, 11.9; HRMS calc’d for C22H17N3O4Na (M+Na)+: 303.1104, 

found 303.1103.

 Compound 3aaea—According to the method A, starting from 2-(1-naphthyl)-1H-

indole (3aae) and (2-nitrovinyl)benzene (2a): 76%; According to the method B, starting 

from phenylhydrazine (4aa), 1-acetylnaphthalene (5e) and (2-nitrovinyl)benzene (2a): 70%; 

m.p. = 110–112 °C (toluene); 1H NMR (400 MHz, DMSO, 338K) δ, ppm: 11.28 (br. s, 1H), 

10.41 (br. s, 1H), 8.63 (br. s, 1H), 8.03-7.99 (m, 2H), 7.79-7.50 (m, 5H), 7.40-7.33 (m, 2H), 

7.26-7.07 (m, 6H), 6.93 (t, J = 7.4 Hz, 1H), 4.73 (s, 1H); 13C NMR (100 MHz, DMSO) δ: 

168.8, 140.3, 136.3, 134.9, 133.2, 132.5, 130.0, 129.2, 128.6, 128.5, 128.1, 127.9 (2C), 
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127.2, 126.4, 126.0 (2C), 125.7, 125.5, 125.2, 122.4, 121.1, 118.4, 111.4, 110.8, 46.2; 

HRMS calc’d for C26H20N2O2Na (M+Na)+: 415.1417, found 415.1417.

 Compound 3aafa—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and (2-nitrovinyl)benzene (2a): 85%; According to the method B, starting 

from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and (2-nitrovinyl)benzene (2a): 73%; 

m.p. = 152–154 °C (toluene). 1H NMR (500 MHz, DMSO) δ, ppm: 11.31 (br. s, 1H), 10.76 

(br. s, 1H), 8.82 (br. s, 1H), 8.03-7.97 (m, 3H), 7.91 (dd, J = 8.8, 2.1 Hz, 1H), 7.77 (d, J = 8.1 

Hz, 1H), 7.68 (dd, J = 8.5, J = 1.3 Hz, 1H), 7.58-7.56 (m, 2H), 7.38 (d, J = 8.1 Hz, 1H), 

7.29-7.17 (m, 5H), 7.09 (dd, J = 7.8, 7.4 Hz, 1H), 6.91 (dd, J = 7.8, 7.5 Hz, 1H), 5.19 (s, 

1H); 13C NMR (125 MHz, DMSO) δ: 168.5, 140.8, 136.4, 135.9, 132.8, 132.2, 130.0, 128.1, 

128.0 (23), 127.9, 127.8, 127.6, 127.5, 127.4 126.6, 126.4, 126.3, 126.2, 122.3, 121.3, 118.6, 

110.9, 109.9, 99.9, 45.8; EA: Calcd for C26H20N2O2: C 79.57, H 5.14, N 7.14. Found: C 

79.68, H 5.09, N 7.16; HRMS calc’d for C26H20N2O2Na (M+Na)+: 415.1417, found 

415.1419.

 Compound 3abfa—According to the method A, starting from 5-methyl-2-(2-

naphthyl)-1H-indole (3abf) and (2-nitrovinyl)benzene (2a): 79%; According to the method 

B, starting from 4-tolyl-hydrazine (4ab), 2-acetylnaphthalene (5f) and (2-nitrovinyl)benzene 

(2a): 73%; m.p. = 133–135 °C (toluene); 1H NMR (400 MHz, DMSO) δ, ppm: 11.34 (br. s, 

1H), 10.75 (br. s, 1H), 8.82 (br. s, 1H), 8.00-7.87 (m, 5H), 7.65 (dd, J = 8.65, 1.08 Hz, 1H), 

7.60 (s, 1H), 7.57-7.54 (m, 2H), 7.29-7.17 (m, 6H), 7.92 (dd, J = 8.2, 0.9 Hz, 1H), 5.17 (s, 

1H), 2.31 (s, 3H); 13C NMR (100 MHz, DMSO) δ: 169.1, 141.4, 136.7, 135.3 (2C), 133.3, 

132.7, 130.6, 128.6 (4C), 128.5, 128.4, 128.1, 127.9, 127.3, 127.1, 127.0, 126.8, 126.7, 

123.5, 122.2, 111.2, 109.8, 46.7, 22.0; HRMS calc’d for C27H22N2O2Na (M+Na)+: 

429.1573, found 439.1577.

 Compound 3acfa—According to the method B, starting from (4-

methoxyphenyl)hydrazine (4ac), 2-acetylnaphthalene (5e) and (2-nitrovinyl)benzene (2a): 

28%; m.p. = 128–130 °C (toluene); 1H NMR (400 MHz, DMSO) δ, ppm: 11.31 (br. s, 1H), 

10.80 (br. s, 1H), 8.85 (br. s, 1H), 8.01-7.88 (m, 4H), 7.65 (d, J =8.59 Hz, 1H), 7.59-7.53 (m, 

2H), 7.37 (s, 1H), 7.30-7.17 (m, 5H), 7.75 (dd, J = 8.7, 2.4 Hz, 1H), 5.16 (s, 1H), 3.64 (s, 

3H); 13C NMR (100 MHz, DMSO) δ: 168.6, 152.8, 140.8, 136.8, 132.8, 132.2, 131.7, 130.1, 

128.4, 128.3, 128.1 (4C), 128.0, 127.6, 127.3, 126.6, 126.5, 126.3, 126.2, 111.5, 111.2, 

109.6, 104.5, 55.2, 46.3; HRMS calc’d for C27H22N2O3Na (M+Na)+: 445.1523, found 

445.1523

 Compound 3bafc—According to the method A, starting from N-methyl-2-(2-

naphthyl)-1H-indole (3baf) and 3-fluoro(2-nitrovinyl)benzene (2c): 54%; m.p. = 133–

134 °C (toluene/petroleum ether); 1H NMR (400 MHz, DMSO) δ, ppm: 10.69 (br. s, 1H), 

8.89 (br. s, 1H), 8.07-7.92 (m, 4H), 7.73 (d, J = 8.0 Hz, 1H), 7.61 (m, 2H), 7.50 (d, J = 8.2 

Hz, 2H), 7.26-7.17 (m, 4H), 7.08 (d, J = 7.3 Hz, 1H), 7.0 (t, J = 7.3 Hz, 1H), 4.84 (s, 1H), 

3.59 (s. 3H); 13C NMR (100 MHz, DMSO) δ: 167.7, 159.8 (d, 1JCF = 247.2 Hz), 138.8, 

136.9, 132.6, 132.5, 130.2, 129.9, 128.4 (d, 3JCF = 6.9 Hz), 128.2, 128.1, 127.9, 127.8, 

127.6, 127.5, 126.7, 126.6, 126.5, 123.8, 121.4, 120.9, 119.2, 114.7 (d, 2JCF = 22.3 Hz), 
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109.8, 108.9, 40.4, 30.9; HRMS calc’d for C27H21FN2O2Na (M+Na)+: 447.1479, found 

447.1493.

 Compound 3bafa—According to the method A, starting from N-methyl-2-(2-

naphthyl)-1H-indole (3baf) and (2-nitrovinyl)benzene (2a): 75%; m.p. = 114–115 °C 

(toluene/petroleum ether); 1H NMR (400 MHz, DMSO) δ, ppm: 10.66 (br. s, 1H), 8.84 (br. 

s, 1H), 8.03-7.91 (m, 4H), 7.77 (d, J = 8.1 Hz, 1H), 7.62-7.60 (m, 2H), 7.52 (d, J = 8.8 Hz, 

1H), 7.48 (d, J = 8.1 Hz, 1H), 7.26-7.14 (m, 7H), 6.98 (dd, J = 7.8, 7.5 Hz, 1H), 4.85 (s, 1H), 

3.60 (s, 3H); 13C NMR (100 MHz, DMSO) δ: 168.5, 140.7, 138.8, 137.1, 132.6, 132.5, 

130.0, 128.4, 128.2, 128.1, 127.9 (4C), 127.6, 126.7, 126.5 (2C), 126.1, 122.3, 121.3, 118.8, 

110.8, 109.5, 99.5, 46.4, 30.8; EA: Calcd for C27H22N2O2: C 79.78, H 5.46, N 6.89. Found: 

C 80.03, H 5.39, N 6.81; HRMS calc’d for C27H22N2O2Na (M+Na)+: 429.2416, found 

429.2418.

 Compound 3bafd—According to the method A, starting from N-methyl-2-(2-

naphthyl)-1H-indole (3baf) and 2-bromo(2-nitrovinyl)benzene (2d): 36%; m.p. = 109–

113 °C (toluene/petroleum ether); 1H NMR (400 MHz, CDCl3) δ, ppm: 7.91 (d, J = 8.2 Hz, 

2H), 7.80 (d, J = 7.00 Hz, 1H), 7.69-7.64 (m, 1H), 7.59-7.49 (m, 5H), 7.42 (d, J = 8.2 Hz, 

1H), 7.30 (d, J = 8.2 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.17-7.13 (m, 2H), 7.09-7.06 (m, 

1H), 5.43 (s, 1H), 3.68 (s, 3H); 13C NMR (100 MHz, DMSO) δ, ppm: 167.6, 139.8, 139.0, 

137.0, 132.5, 132.4, 132.3, 130.9, 129.8, 128.4, 128.2, 128.1, 127.8, 127.6, 127.5, 127.2, 

126.8, 126.6, 126.4, 123.9, 121.4, 120.2, 119.4, 110.0, 109.5, 47.1, 31.0; HRMS calc’d for 

C27H21BrN2O2Na (M+Na)+: 507.0679, found 507.0677.

 Compound 3aafe—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 4-isopropyl(2-nitrovinyl)benzene (2a): 73%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 4-isopropyl(2-

nitrovinyl)benzene (2e): 61%; m.p. = 147–148 °C (toluene/petroleum ether). 1H NMR (400 

MHz, DMSO) δ, ppm: 11.44 (br. s, 1H), 10.76 (br. s, 1H), 8.82 (br. s, 1H), 8.02-7.9 (m, 4H), 

7.82 (d, J = 8.1 Hz, 1H), 7.66 (dd, J = 8.5, 1.59 Hz, 1H) 7.60-7.53 (m, 2H), 7.38 (d, J = 8.1 

Hz, 1H), 7.17-7.06 (m, 5H), 6.92 (ddd, J = 15.0, 7.5, 0.5 Hz, 1H), 5.16 (s, 1H), 2.86-2.76 (m, 

1H), 1.14 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, DMSO) δ, ppm: 168.8, 146.2, 138.1, 

136.4, 136.0, 132.8, 132.2, 130.1, 128.1, 128.0 (2C), 127.9, 127.6, 127.5, 126.7, 126.5, 

126.3, 125.9 (2C), 122.4, 121.3, 118.6, 111.0, 110.0, 45.9, 39.9, 33.0, 23.9 (2C); Calc’d for 

C29H26N2O2: C 80.16, H 6.03, N 6.45. Found: C 80.31, H 5.95, N 6.36; HRMS calc’d for 

C29H26N2O2Na (M+Na)+: 457.1884, found 457.1887.

 Compound 3aaff—According to the method A, starting from 2-(2-naphth yl)-1H-

indole (3aaf) and 3,4-dimethoxy(2-nitrovinyl)benzene (2f): 60%; According to the method 

B, starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 3,4-dimethoxy(2-

nitrovinyl)benzene (2f): 56%; m.p. = 143–144 °C (toluene); 1H NMR (400 MHz, DMSO) δ, 

ppm: 11.44 (br. s, 1H), 10.70 (br. s, 1H), 8.81 (br. s, 1H), 8.02-7.89 (m, 4H), 7.85 (d, J = 8.1 

Hz, 1H), 7.67 (dd, J = 8.5, 1.4 Hz, 1H), 7.59-7.54 (m, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.09 (t, 

J = 7.2 Hz, 1H), 6.94 (t, J = 7.3 Hz, 1H), 6.85-6.83 (m, 2H), 7.76 (dd, J = 8.4, 1.5 Hz, 1H), 

5.12 (s, 1H), 3.68 (s, 3H), 3.59 (s, 3H); 13C NMR (100 MHz, DMSO) δ: 168.8, 148.3, 147.4, 
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136.4, 136.0, 133.1, 132.8, 132.2, 130.1, 128.1, 127.9, 127.8, 127.6, 127.5, 126.7, 126.5, 

126.3, 122.2, 121.3, 120.4, 118.6, 112.4, 111.6, 111.0, 110.2, 55.5, 55.4, 45.9; HRMS calc’d 

for C28H24N2O4Na (M+Na)+: 475.1628, found 475.1635

 Compound 3aafg—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 4-fluoro(2-nitrovinyl)benzene (2g): 76%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 4-fluoro(2-

nitrovinyl)benzene (2g): 64%; m.p. = 138–139°C (toluene/petroleum ether); 1H NMR (400 

MHz, DMSO) δ, ppm: 11.50 (br. s, 1H), 10.80 (br. s, 1H), 8.88 (br. s, 1H), 8.04-7.97 (m, 

4H), 7.92 (dd, J = 8.8, 2.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.67 (dd, J = 8.5, J = 1.3 Hz, 

1H), 7.59-7.55 (m, 2H), 7.39 (d, J = 8.1 Hz, 1H), 7.27-7.23 (m, 2H), 7.13-7.08 (m, 3H), 6.93 

(dd, J = 7.8, 7.5 Hz, 1H), 5.18 (s, 1H); 13C NMR (100 MHz, DMSO) δ: 168.4, 160.7 

(d, 1JCF = 242.5 Hz), 136.9 (d, 4JCF = 3.0 Hz), 136.4, 136.2, 132.8, 132.2, 130.0, 129.8 

(d, 3JCF = 8.1 Hz, 2C), 128.1, 128.0, 127.7, 127.6, 127.5, 126.6, 126.5, 126.4, 122.0, 121.4, 

118.8, 114.8 (d, 2JCF = 21.6 Hz, 2C), 111.0, 109.7, 45.5; EA: Calcd for C26H19FN2O2: C 

76.08, H 4.67, N 6.83. Found: C 76.23, H 4.62, N 6.76; HRMS calc’d for C26H19FN2O2Na 

(M+Na)+: 432.1244, found 432.2432.

 Compound 3aafh—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 2-chloro(2-nitrovinyl)benzene (2h): 84%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 2-chloro(2-

nitrovinyl)benzene (2h): 72%; m.p. = 164–166 °C (toluene/petroleum ether). 1H NMR (500 

MHz, DMSO) δ, ppm: 11.59 (br. s, 1H), 10.67 (br. s, 1H), 8.80(br. s, 1H), 8.01-7.94 (m, 

2H), 7.79 (d, J = 8.6 Hz, 2H), 7.60-7.54 (m, 4H), 7.45 (t, J = 8.2 Hz, 2H), 7.39(dd, J = 1.6, 

5.5 Hz, 2H), 7.29-7.23 (m, 3H), 7.14 (t, J = 7.3 Hz, 1H), 6.85(t, J = 7.6 Hz, 1H), 5.46 (s, 

1H); 13C NMR (125 MHz, DMSO) δ: 167.5, 138.4, 136.3, 136.1, 133.0, 132.8, 132.2, 131.0, 

129.9, 129.1, 128.4, 128.1, 128.0, 127.9, 127.6, 127.0, 126.6, 126.4, 126.2, 121.5, 120.8, 

119.2, 111.3, 108.8, 99.5, 44.6; EA: Calcd for C26H19ClN2O2: C 73.15, H 4.49, N 6.56. 

Found: C 73.26, H 4.42, N 6.61; HRMS calc’d for C26H19ClN2O2Na (M+Na)+: 449.1027, 

found 449.1012.

 Compound 3aafi—According to the method A, starting from 2-(2-naphthyl)-1H-indole 

(3aaf) and 3,4-dichloro(2-nitrovinyl)benzene (2i): 45%; According to the method B, starting 

from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 3,4-dichloro(2-nitrovinyl)benzene 

(2i): 43%; m.p. = 144–150 °C (toluene/petroleum ether). 1H NMR (500MHz, DMSO) δ, 

ppm: 11.58 (br. s, 1H), 10.85 (br. s, 1H), 8.97 (br. s, 1H), 8.01 (s, 1H), 7.98-7.91 (m, 2H), 

7.73 (d, J = 8.1 Hz,1H), 7.65 (d, J = 8.3 Hz, 2H), 7.58-7.52 (m, 3H), 7.43-7.36 (m, 2H), 

7.18-7.11 (m, 2H), 6.97 (t, J = 7.4 Hz, 1H), 5.21 (s, 1H); 13C NMR (125 MHz, DMSO) δ: 

167.8, 141.8, 136.6, 136.4, 132.8, 132.3, 130.7, 130.4, 129.9, 129.7, 129.0, 128.6, 128.3, 

128.1, 127.7, 127.6, 127.5, 126.6 (2C), 126.5, 121.6, 121.6, 119.1, 111.3, 108.6, 45.5; EA: 

Calcd for C26H18Cl2N2O2: C 67.69, H 3.93, N 6.07. Found: C 67.83, H 3.87, N 6.15; 

HRMS calc’d for C26H18Cl2N2O2Na (M+Na)+: 483.0638, found 483.0643, 485.0662.

 Compound 3aafc—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 3-fluoro(2-nitrovinyl)benzene (2c): 75%; According to the method B, 
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starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 3-fluoro(2-

nitrovinyl)benzene (2c): 64%; m.p. = 126–127 °C (toluene/petroleum ether). 1H NMR (400 

MHz, DMSO) δ, ppm: 11.54 (br. s, 1H), 10.86 (br. s., 1H), 8.92 (br. s., 1H), 8.03-7.90 (m, 

4H), 7.74 (d, J= 8.1 Hz, 1H), 7.65 (dd, J= 8.4, 1.7 Hz, 1H), 7.60-7.54 (m, 2H), 7.41-7.28 (m, 

2H), 7.25 (dd, J= 5.1, 1.4 Hz, 2H), 7.16 (d, J= 7.5 Hz, 1H), 7.11 (ddd, J= 7.5, 7.5, 0.8 Hz, 

1H), 6.95 (ddd, J= 11.4, 7.6, 0.6 Hz, 1H), 5.19 (s., 1H); 13C NMR (100 MHz, DMSO) δ: 

168.1, 162.0 (1JCF = 242.0 Hz) 143.7 (d, 3JCF = 6.0 Hz), 136.4, 132.8, 132.3, 130.0, 129.9, 

129.8, 128.0 (2C), 127.7, 127.6 (2C), 126.6, 126.5, 126.4, 124.2, 121.9, 121.4, 118.8, 114.7 

(d, 2JCF = 21.8 Hz), 113.1 (d, 2JCF = 20.7 Hz), 111.1, 109.2, 46.0; HRMS calc’d for 

C26H19FN2O2Na (M+Na)+: 433.1323, found 433.1337.

 Compound 3aafj—According to the method A, starting from 2-(2-naphthyl)-1H-indole 

(3aaf) and 4-(trifluoromethoxy)(2-nitrovinyl)benzene (2j): 56%; According to the method 

B, starting from phenyl-hydrazine (4aa), 2-acetylnaphthalene (5f) and 4-(trifluoromethoxy)

(2-nitrovinyl)benzene (2j): 52%; m.p. = 136–137°C (toluene/petroleum ether).1H NMR (400 

MHz, DMSO) δ, ppm: 11.52 (br. s., 1H), 10.83 (br. s., 1H), 8.9 (br. s., 1H), 8.02-7.90 (m, 

4H), 7.75 (d, J = 8.08 Hz, 1H), 7.65 (dd, J = 9.2, 1.2 Hz, 1H), 7.59-7.54 (m, 2H), 7.40 (d, J = 
8.1 Hz, 1H), 7.33 (d, J= 8.8 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.10 (ddd, J = 7.6, 7.5, 0.5 Hz, 

1H), 6.94 (t, J = 7.4 Hz, 1H), 5.22 (s, 1H); 13C NMR (100 MHz, DMSO) δ, ppm: 168.2, 

146.7, 140.1, 136.4 (2C),, 136.3, 132.8, 132.2, 129.8 (2C), 128.0 (3C), 127.6 (2C), 126.6, 

126.5, 126.4, 121.9, 121.4, 120.7 (2C), 120.0 (q, 1JCF = 255.5 Hz), 118.8, 111.1, 109.3, 

45.6; HRMS calc’d for C27H19F3N2O2Na (M+Na)+: 499.1240, found 499.1232

 Compound 3aafk—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 3,4-dimethyl(2-nitrovinyl)benzene (2k): 70%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 3,4-dimethyl(2-

nitrovinyl)benzene (2k): 59%; m.p. = 144–147 °C (toluene/petroleum ether). 1H NMR (400 

MHz, DMSO) δ, ppm: 11.43 (br. s, 1H), 10.73 (br. s, 1H), 8.81 (br. s, 1H), 8.03-7.97 (m, 

3H), 7.92-7.90 (m, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.65 (dd, J = 8.7, 1.6 Hz, 1H), 7.60-7.54 

(m, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.10-7.06 (m, 1H), 7.02-7.01 (m, 2H), 6.94-6.89 (m, 2H), 

5.11 (s, 1H), 2.15 (s, 3H), 2.13 (s, 3H);); 13C NMR (100 MHz, DMSO) δ, ppm: 168.8, 

138.1, 136.4, 136.0, 135.5, 133.9, 132.8, 132.2, 130.1, 129.1 (2C), 128.1, 128.0, 127.9, 

127.6, 127.5, 126.7, 126.5, 126.3, 125.5, 122.4, 121.3, 118.5, 110.9, 110.1, 45.9, 19.6, 18.9; 

Calc’d for C28H24N2O2: C 79.98, H 5.75, N 6.66. Found: C 80.09, H 5.69, N 6.69; HRMS 

calc’d for C28H24N2O2Na (M+Na)+: 443.1730, found 443.1732.

 Compound 3aafd—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 2-bromo(2-nitrovinyl)benzene (2d): 57%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 2-bromo(2-

nitrovinyl)benzene (2d): 55%; m.p. = 134–135 °C (toluene/petroleum ether). 1H NMR (400 

MHz, CDCl3) δ, ppm: 8.45 (br. s, 1H), 7.88-7.86 (m, 3H), 7.71 (s, 1H), 7.59 (d, J = 7.7 Hz, 

2H), 7.55-7.50 (m, 3H), 7.45 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.22-7.17 (m, 

2H), 7. 13 (ddd, J = 7.9, 7.6, 0.1 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 5.65 (s, 1H); 13C NMR 

(100 MHz, CDCl3) δ, ppm: 169.8, 137.7, 137.6, 136.3, 133.5, 133.4, 133.1, 131.1, 129.4, 

129.1, 129.0, 128.5, 128.0, 127.9, 127.8, 127.7, 126.9, 126.8, 125.6, 125.3, 123.0, 121.1, 
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120.3, 111.4, 108.0, 48.1; HRMS calc’d for C24H21BrN2O2Na (M+Na)+: 471.0679, found 

471.0692.

 Compound 3aafl—According to the method A, starting from 2-(2-naphthyl)-1H-indole 

(3aaf) and 4-ethoxy(2-nitrovinyl)benzene (2l): 81%; According to the method B, starting 

from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 4-ethoxy(2-nitrovinyl)benzene 

(2l): 72%; m.p. = 157–161 °C (toluene/petroleum ether). 1H NMR (400 MHz, CDCl3) δ, 

ppm: 8.36 (br. s, 1H), 8.35 (br. s, 1H),7.86-7.77 (m, 4H), 7.55-7.49 (m, 4H), 7.39 (t, J = 3.9 

Hz, 1H), 7.22 (d, J = 8.8 Hz, 2H), 7.16 (dd, J = 7.4, 7.6 Hz, 1H), 7.04 (dd, J = 7.5, 7.6 Hz, 

1H), 6.81 (d, J = 8.6 Hz, 2H), 5.29 (s, 1H), 3.99 (q, J = 7.0 Hz, 2H), 1.40 (t, J = 7.0 Hz, 

3H); 13C NMR (125 MHz, CDCl3) δ, ppm: 170.8, 158.3, 137.1, 136.3 (2C), 133.4, 133.0, 

130.0 (2C) 129.4, 128.9, 128.3, 127.9 (2C) 127.6, 126.9, 126.8, 126.0, 122.9, 120.8, 120.7, 

114.9 (2C), 111.3, 109.7, 63.6, 47.0, 15.0; EA: Calcd for C28H24N2O3: C 77.04, H 5.54, N 

6.42. Found: C 77.23, H 5.48, N 6.32; HRMS calc’d for C28H24N2O3Na (M+Na)+: 

459.1679, found 459.1673.

 Compound 3aafm—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 4-methyl(2-nitrovinyl)benzene (2m): 80%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 4-methyl(2-

nitrovinyl)benzene (2m): 72%; m.p. = 135–140 °C (toluene/petroleum ether). 1H NMR (400 

MHz, DMSO) δ, ppm: 11.46 (br. s, 1H), 10.79 (br. s, 1H), 8.85 (br. s, 1H), 8.03-7.90 (m, 

4H), 7.76 (d, J = 8.1 Hz, 1H), 7.67 (dd, J = 8.6, 1.4 Hz, 1H), 7.59-7.54 (m, 2H), 7.39-7.36 

(m, 2H), 7.29-7.17 (m, 3H), 7.08 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.9 (ddd, J = 7.5, 7.5, 0.8 

Hz,1H), 5.19 (s, 1H), 2.44 (s, 3H); 13C NMR (100 MHz, DMSO) δ, ppm: 168.6, 140.8, 

136.4, 136.1, 132.8, 132.2, 130.0 (2C), 128.1 (2C), 128.0 (3C), 127.9, 127.6, 127.5, 126.6, 

126.5, 126.3, 126.2, 122.3, 121.3, 118.6, 111.0, 109.9, 46.2, 35.8; Calc’d for C27H22N2O2: 

C 79.78, H 5.46, N 6.89. Found: C 79.91, H 5.40, N 6.94; HRMS calc’d for C27H22N2O2Na 

(M+Na)+: 429.1573, found 429.1703.

 Compound 3aafn—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 3-methyl(2-nitrovinyl)benzene (2n): 76%; According to the method B, 

starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 3-methyl(2-

nitrovinyl)benzene (2n): 69%; m.p. = 155–156 °C (toluene/petroleum ether). 1H NMR (400 

MHz, DMSO) δ, ppm: 11.45 (br. s, 1H), 10.76 (br. s, 1H), 8.83 (br. s, 1H), 8.02-7.89 (m, 

4H), 7.76 (d, J = 8.6 Hz, 1H), 7.66 (dd, J = 8.5, 2.5 Hz, 1H), 7.59-7.54 (m, 2H), 7.39-7.37 

(m, 2H), 7.30-7.06 (m, 3H), 7.03-6.98 (m, 1H), 6.93-6.89 (m, 1H), 5.15 (s, 1H), 2.22 (s, 

3H); 13C NMR (100 MHz, DMSO) δ, ppm: 168.6, 140.7, 137.0, 136.4, 136.1, 132.8, 132.2, 

130.1, 128.6, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 126.9, 126.7, 126.5, 126.4, 125.2, 

122.3, 121.3, 118.6, 111.0, 109.9, 108.3, 46.2; Calc’d for C27H22N2O2: C 79.78, H 5.46, N 

6.89. Found: C 79.91, H 5.39, N 6.96; HRMS calc’d for C27H22N2O2Na (M+Na)+: 

429.1573, found 429.1569.

 Compound 3aafo—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 4-(N,N-diethylamino)(2-nitrovinyl)benzene (2o): 53%; According to the 

method B, starting from phenyl-hydrazine (4aa), 2-acetylnaphthalene (5f) and 4-(N,N-
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diethylamino)(2-nitrovinyl)benzene (2o): 50%; m.p. = 168–170 °C (chloroform). 1H NMR 

(400 MHz, DMSO) δ, ppm: 11.40 (br. s, 1H), 10.65 (br. s, 1H), 8.76 (br. s, 1H), 8.01 (d, J = 
9.6 Hz, 2H), 7.98-7.90 (m, 2H), 7.85 (d, J = 8.1 Hz, 1H), 7.67 (dd, J = 8.5, 1.7 Hz, 1H), 

7.59-7.53 (m, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.07 (ddd, J = 7.6, 7.1, 1.1 Hz, 1H), 7.02 (d, J = 
8.8 Hz, 2H), 6.91 (ddd, J = 7.3, 7.1, 0.9 Hz, 1H), 6.55 (d, J = 8.9 Hz, 2H), 5.05 (s, 1H), 3.26 

(q, J = 7.0 Hz, 4H), 1.03 (t, J = 7.0 Hz, 6H); 13C NMR (100 MHz, DMSO) δ, ppm: 169.3, 

145.9, 136.4, 135.7, 132.9, 132.2, 130.3, 128.9 (2C), 128.1, 128.0 (2C), 127.6, 127.5, 127.1, 

126.7, 126.5, 126.3, 122.7, 121.3, 118.5, 111.3 (2C), 110.9, 110.8, 45.4, 43.6 (2C), 12.4 

(2C); Calc’d for C30H29N3O2: C 77.73, H 6.31, N 9.06. Found: C 77.85, H 6.27, N 8.99; 

HRMS calc’d for C30H29N3O2Na (M+Na)+: 486.2152, found 486.2159.

 Compound 3aafp—According to the method A, starting from 2-(2-naphthyl)-1H-

indole (3aaf) and 4-(N,N-dimethylamino)(2-nitrovinyl)benzene (2p): 45%; According to the 

method B, starting from phenylhydrazine (4aa), 2-acetylnaphthalene (5f) and 4-(N,N-

diethylamino)(2-nitrovinyl)benzene (2p): 43%; m.p. = 168–167 °C (toluene/petroleum 

ether). 1H NMR (400 MHz, DMSO) δ, ppm: 11.40 (br. s, 1H), 10.67 (br. s, 1H), 7.77 (br. s, 

1H), 8.03-7.90 (m, 4H), 7.80 (d, J = 8.1 Hz, 1H), 7.67 (dd, J = 8.6, 1.6 Hz, 1H), 7.60-7.53 

(m, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.09-7.04 (m, 3H), 6.9 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 6.63 

(dt, J = 8.9, 2.4 Hz, 2H), 5.07 (s, 1H), 2.82 (s, 6H); 13C NMR (100 MHz, DMSO) δ, ppm: 

169.2, 149.0, 136.4, 135.8, 132.9, 132.2, 130.2, 128.6 (2C), 128.3, 128.2, 128.1, 128.0, 

127.6, 127.4, 126.7, 126.5, 126.3, 122.7, 121.3, 118.5, 112.2 (2C), 110.9, 110.7, 45.4, 40.25 

(2C); Calc’d for C28H25N3O2: C 77.22, H 5.79, N 9.65. Found: C 77.39, H 5.71, N 9.59; 

HRMS calc’d for C28H25N3O2Na (M+Na)+: 458.1839, found 458.1846.

 Compound 3cafa—According to the method A, starting from N-butyl-2-(2-

naphthyl)-1H-indole (3caf) and (2-nitrovinyl)benzene (2a): 83%; m.p. = 110–112 °C 

(carbon tetrachloride). 1H NMR (400 MHz, DMSO) δ, ppm: 10.63 (br. s, 1H), 8.83 (br. s, 

1H), 8.06-7.97 (m, 4H), 7.76 (d, J = 8.0 Hz, 1H), 7.63-7.59 (m, 2H), 7.49 (d, J = 8.2 Hz, 

1H), 7.23-7.12 (m, 7H), 6.95 (t, J = 7.5 Hz, 1H), 4.77 (s, 1H), 4.05 (m, 2H), 1.49 (m, 2H), 

1.02 (q, J = 7.37 Hz, 2H), 0.62 (t, J = 7.29 Hz, 3H); 13C NMR (100 MHz, DMSO) δ, ppm: 

168.5, 140.7, 138.6, 136.3, 132.7, 132.6, 128.7, 128.0, 127.9 (4C), 127.8 (2C), 127.7, 126.7 

(2C), 126.5 (2C), 126.12, 122.5, 121.3, 118.8, 111.1, 109.0, 46.3, 43.0, 31.5, 19.2, 13.4; 

HRMS calc’d for C30H28N2O2Na (M+Na)+: 471.2043, found 417.2054.

 Compound 3dafa—According to the method A, starting from N-(sec-butyl)-2-(2-

naphthyl)-1H-indole (3daf) and (2-nitrovinyl)benzene (2a): 80%; m.p. = 131–133 °C 

(carbon tetrachloride). 1H NMR (400 MHz, DMSO) δ, ppm: 10.64 (br. s, 1H), 8.83 (br. s, 

1H), 8.09-7.88 (m, 4H), 7.54 (d, J = 8.0 Hz, 1H), 7.62-7.56 (m, 2H), 7.51 (d, J = 8.3 Hz, 

1H), 7.53-7.11 (m, 7H), 6.94 (t, J = 7.6 Hz, 1H), 4.77 (s, 1H), 3.99-3.90 (m, 2H), 1.88-1.87 

(m, 1H),0.56-0.54 (m, 6H); 13C NMR (100 MHz, CDCl3) δ, ppm: 168.6, 140.7, 138.8, 

136.7, 132.7, 132.5, 128.8, 128.0, 127.9 (4C), 127.8 (2C), 127.7, 126.7, 126.6, 126.5, 126.1, 

122.4, 121.2 (2C), 118.7, 111.2, 110.3, 50.5, 46.3, 28.4, 19.8 (2C); HRMS calc’d for 

C30H28N2O2Na (M+Na)+: 471.2043, found 417.2048.
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 Compound 3cafe—According to the method A, starting from N-butyl-2-(2-

naphthyl)-1H-indole (3caf) and 4-isopropyl(2-nitrovinyl)benzene (2e): 68%; m.p. = 132–

134 °C (carbon tetrachloride). 1H NMR (400 MHz, DMSO) δ, ppm: 10.60 (br. s, 1H), 

8.05-7.94 (m, 4H), 7.81 (d, J = 8.0 Hz, 1H), 7.62-7.58 (m, 2H), 7.48 (d, J = 8.2 Hz, 2H), 

7.14 (t, J = 7.3 Hz, 1H), 7.08-7.02 (m, 4H), 6.96 (t, J = 7.5 Hz, 1H), 4.74 (s, 1H), 4.04-4.03 

(m, 2H), 2.82-2.74 (m, 1H), 1.52-1.45 (m, 2H), 1.12 (d, J = 6.9 Hz, 6H), 1.02 (q, J = 7.38 

Hz, 2H), 0.62 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, DMSO) δ, ppm: 168.7, 146.0, 138.5, 

138.0, 136.3, 132.7, 132.5, 130.0, 128.7, 128.3, 128.1, 128.0, 127.8 (2C), 127.7, 126.7 (2C), 

126.5, 125.8 (2C), 122.5, 121.2, 118.7, 111.3, 109.8, 46.0, 43.0, 32.9, 31.5, 23.8 (2C), 19.2, 

13.4; HRMS calc’d for C33H34N2O2Na (M+Na)+: 513.2512, found 513.2521.

 Compound 3eafa—According to the method A, starting from N-benzyl-2-(2-

naphthyl)-1H-indole (3eaf) and (2-nitrovinyl)benzene (2a): 75%; m.p. = 118–120 °C 

(carbon tetrachloride). 1H NMR (400 MHz, DMSO) δ, ppm: 10.68 (br.s, 1H), 8.86 (br. s, 

1H), 7.99-7.87 (m, 4H), 7.77 (d, 1H), 7.43-7.34 (m, 3H), 7.26-7.15 (m, 8H), 7.08 (t, 1H), 

6.95 (t, 1H), 6.85 (d, 1H), 5.32 (m, 2H), 4.83 (s, 1H); 13C NMR (100 MHz, DMSO) δ, ppm: 

168.5, 140.6, 138.9, 138.2, 136.6, 132.6 (2C), 128.4 (2C), 128.0 (4C), 127.8 (2C), 127.7, 

127.0, 126.9, 126.8, 126.6, 126.2, 126.0 (3C), 122.6, 121.6, 119.2, 111.7, 110.3, 46.8, 46.4; 

HRMS calc’d for C33H26N2O2Na (M+Na)+: 505.1883, found 505.1886.

 Synthesis of compound 6—A solution of 3aaaa (390 mg, 0.99 mmol) and PCl3 (140 

mg, 1.02 mmol) in EtOAc is refluxed for 2 h. After the reaction mixture is allowed to cool 

down to rt, it is washed with NaHCO3 (15 mL) and water (2×15 mL). The solvent is then 

removed on the rotary evaporator and the residue is recrystallized from toluene to afford 266 

mg (0.74 mmol, 75%) of nitrile 6. m.p. = 146–147 °C (toluene); 1H NMR (400 MHz, 

DMSO) δ, ppm: 11.85 (br.s, 1H), 8.09-7.94 (m, 4H), 7.7 (dd, J = 8.5, 1.8 Hz, 1H) 7.61-7.57 

(m, 2H), 7.49 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.39-7.29 (m, 5H), 7.19 (ddd, J = 

8.1, 7.1, 1.07 Hz, 1H), 7.05 (ddd, J = 8.0, 7.1, 0.9 Hz, 1H), 6.08 (s, 1H); 13C NMR (100 

MHz, DMSO) δ, ppm: 136.6, 136.4, 136.3, 132.8, 132.5, 129.0 (2C), 128.8, 128.6, 128.2, 

127.7, 127.5, 126.8 (5C), 126.4, 126.1, 122.3, 120.0, 119.8, 118.8, 111.9, 105.0, 32.7; 

HRMS calc’d for C26H18N2Na (M+Na)+: 381.1362, found 381.1362.

 Synthesis of compound 7—A solution of nitrile 6 (360 mg, 1.00 mmol) is stirred in 

80% PPA (3 g) for 1 h at 80 °C. The reaction mixture is then allowed to cool down to rt, 

poured in water (15 mL) and neutralized with NH4OH. The obtained precipitate is collected 

by filtration and recrystallized from EtOAc to yield 369 mg (0.98 mmol, 98%) of amide 7. 

m.p. = 333–335 °C (EtOAc); 1H NMR (400 MHz, DMSO) δ, ppm: 11.49 (br. s., 1H), 

8.03-7.87 (m, 4H), 7.69 (dd, J = 8.6, 1.3 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.63-7.59 (m, 

2H), 7.41-7.36 (m, 2H), 7.29-7.16 (m, 5H), 7.09 (t, J = 7.8 Hz, 1H), 6.91 (t, 7.3 Hz, 1H), 

5.28 (s, 1H); 13C NMR (100 MHz, DMSO) δ, ppm: 173.6, 141.2, 136.5, 136.1, 132.8, 132.2, 

130.1, 128.5 (2C), 128.1 (3C), 127.9, 127.7, 127.4 (3C), 126.6, 126.4, 126.2, 121.5, 121.4, 

118.8, 111.2, 110.4, 49.1; HRMS calc’d for C26H20N2ONa (M+Na)+: 399.1468, found 

399.1478.
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 Cell culture

Human cancer cell lines were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA, USA), the European Collection of Cell Culture (ECACC, Salisbury, UK) and 

the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, 

Germany). Human cervical adenocarcinoma HeLa cells were cultured in DMEM 

supplemented with 10% fetal bovine serum (FBS). Human mammary carcinoma MCF-7 

cells were cultured in RPMI supplemented with 10% FBS. The U87 cells (ATCC HTB-14) 

were cultured in DMEM culture medium, while the A549 cells (DSMZ ACC107) were 

cultured in RPMI culture medium supplemented with 10% heat-inactivated FBS. The 

glioblastoma multiforme Hs683 (ATCC HTB-138) and the T98G (ATCC CRL-1690) cell 

lines were cultivated in DMEM supplemented with 10% FBS. The Human uterine sarcoma 

MES-SA and MES-SA/Dx5 cells were cultured in RPMI-1640 medium supplemented with 

10% FBS with MES SA/Dx5 maintained in the presence of 500 nM Doxorubicin (Sigma). 

SKMEL-28 cells (ATCC HTB72) and U373 glioblastoma cells (ECACC 08061901) were 

cultured in RPMI culture medium supplemented with 10% heat-inactivated FBS. Cell 

culture media were supplemented with 4 mM glutamine (Lonza code BE17-605E), 100 

μg/mL gentamicin (Lonza code 17-5182), and penicillin-streptomycin (200 units/ml and 200 

μg/ml) (Lonza code 17-602E). Neurosphere culture GBM 031810 was established using 

known methods47 and maintained in Neurobasal medium (Invitrogen Carlsbad, CA) with 

B27 supplement (20ul/ml; Invitrogen), Glutamax (10ul/ml; Invitrogen), fibroblast growth 

factor-2 (20 ng/ml; Peprotech, Rocky Hill, NJ, USA), epidermal growth factor (20 ng/ml; 

Peprotech), heparin (32 IE/ml; Sigma Aldrich, St. Louis, MO), and penicillin-streptomycin 

(1X, Invitrogen). Growth factors and heparin were renewed twice weekly. NHDF (code 

CC-2509) and NHLF (code CC-2512) cells lines were purchased from Lonza and were 

cultivated in FGM™-2 BulletKit™ culture medium (Lonza). All cell lines were cultured in 

T25 flasks, maintained and grown at 37° C, 95% humidity, 5% CO2.

 Antiproliferative Properties

Antiproliferative properties of the synthesized compounds were evaluated by MTT assay 

was used. All compounds were dissolved in DMSO at a concentration of either 100 mM or 

50 mM prior to cell treatment. The cells were trypsinized and seeded at 4 × 103 cells per 

well into 96-well plates. The cells were grown for 24 h, treated with compounds at 

concentrations ranging from 0.001 to 100 μM and incubated for 48 h in 200 μL media. 20 μL 

of MTT reagent in serum free medium (5 mg/mL) was added to each well and incubated 

further for 2 h. Media was removed and the resulting formazan crystals were re-solubilized 

in 200 μL of DMSO. A490 was measured using a Molecular Devices Thermomax plate 

reader. The experiments were performed in quadruplicate and repeated at least twice for 

each compound per cell line. Cells treated with 0.1% DMSO were used as a negative 

control; 1 μM phenyl arsine oxide (PAO) was used as a positive control.

 Selection of Doxorubicin Resistant Cells

Selection of Doxorubicin Resistant Cells. Selection of the MES-SA/Dx5 cell line was done 

according to Harker et al.48 The cells were split and allowed to adhere overnight. The next 

day cells were initially exposed to a DOX concentration of 100 nM, which represented the 
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GI50 concentration. The cells were maintained at this DOX concentration until their growth 

rate reached that of the untreated cells. The DOX concentration was then increased in two-

fold increments following the same growth criteria at each concentration to a final DOX 

concentration of 500 nM. Each new DOX concentration required approximately 2 passages 

to reach the growth rate of the untreated cells.

 Quantitative videomicroscopy

The effects of 3aafa on the viability of human U373 glioblastoma and SKMEL melanoma 

cells were characterized in vitro using computer-assisted phase contrast video microscopy, 

as described elsewhere.49

 Redifferentiation of malignant U87 cells to an astrocytic phenotype

U87 cells were plated at a density of 5 × 104 cells per well in 24-well plate in DMEM 

supplemented with 10% FBS. The following day, the cells in each well were re-fed with 1 

mL of fresh DMEM/10% FBS, and treated with 3aafa to a final concentration between 15 

and 5 μM. Cells were placed into the CO2 incubator and media not replaced for the duration 

of the experiment.

 LogP calculations

The log P values were determined theoretically using three different programs and the data 

was then used to find the mean log P and standard deviation. These programs included 

ChemAxon’s Marvin sketch50,51 the Molinspiration software52 and VCCLAB’s ALOGPS 

software.53,54

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations Used

ATCC American Type Culture Collection

DAPI 4′,6-diamidino-2-phenylindole

DMEM Dulbecco’s modified Eagle’s medium

DMSO dimethyl sulfoxide

DSMZ Deutsche Sammlung von Mikroorganismen and Zellkulturen

DOX doxorubicin
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ECACC European Collection of Cell Culture

ESI electrospray ionization

FBS fetal bovine serum

FITC fluorescein isothiocyanate

GGR global growth ratio

HPLC high performance liquid chromatography

HRMS high resolution mass spectrometry

MDR multidrug resistance

MGMT O6-methylguanine-DNA-methyltransferase

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NSCLC non-small-cell lung cancer

PAO phenyl arsine oxide

NMR nuclear magnetic resonance

P-gp P-glycoprotein

SAR structure-activity relationship

PODO podophyllotoxin

PPA polyphosphoric acid

SD standard deviation

TLC thin layer chromatography

TMS tetramethylsilane
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Figure 1. 
Two synthetic approaches toward 2-aryl-2-(3-indolyl)acetohydroxamates 3
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Figure 2. 
Synthesis of non-hydroxamate analogues of 3
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Figure 3. 
Activity of 3aafp and 3aafa against cell populations resistant to proapoptotic agents.

Aksenov et al. Page 26

J Med Chem. Author manuscript; available in PMC 2016 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Cellular imaging of 3aafa against SKMEL-28 melanoma and U373 glioblastoma cells 

illustrating the cytostatic antiproliferative mechanism.
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Figure 5. 
Redifferentiation of growth-inhibited malignant U87 cells to an astrocytic phenotype. (A) 

Three day old glioblastoma cancer cells. (B) Untreated, these grow into mini-tumors during 

the following three days. (C) After a 33-day treatment with 7 μM 3aafa.
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Figure 6. 
Activity of selected analogues toward non-cancerous and cancerous cell lines. The results 

were obtained using two independent experiments (both shown in Figure) in sextuplicates. 

Non-cancerous fibroblast cell lines are presented with open symbols, while cancer cell lines 

are presented with filled symbols.
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Table 3

Antiproliferative properties of potent hydroxamates against cancer cell lines displaying apoptosis resistance 

and representing cancers with dismal prognoses

compound

GI50 in vitro values (μM)a

glioma lung carcinoma

Hs683 U87 T98G A549

3aafa 8.9 ± 0.4 9.5 ± 0.3 36.4 ± 1.9 2.8 ± 0.4

3aafe 6.1 ± 1.0 5.0 ± 0.5 8.8 ± 0.5 3.3 ± 0.6

3aafk 4.7 ± 1.0 6.7 ± 1.5 7.5 ± 0.8 2.9 ± 0.6

3cafa 10.8 ± 0.5 6.7 ± 0.3 12.3 ± 0.8 5.7 ± 0.5

3eafa 11.2 ± 0.9 9.1 ± 0.3 10.6 ± 0.4 5.8 ± 0.8

3aafp 5.1 ± 0.5 21.3 ± 1.6 1.9 ± 0.2 1.5 ± 0.3

a
Concentration required to reduce the viability of cells by 50% after a 48 h treatment with the indicated compounds relative to a DMSO control ± 

SD from two independent experiments, each performed in 4 replicates, as determined by the MTT assay.

J Med Chem. Author manuscript; available in PMC 2016 July 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aksenov et al. Page 36

Table 4

Antiproliferative effect of selected compounds against MDR cells and patient-derived GBM neurosphere cells

compound GI50 in vitro values (μM)

MES-SAa MES-SA/Dx5a GBM 031810b

Taxol 0.007 ± 0.001 9.8 ± 0.3

Vinblastine 0.006 ± 0.001 5.0 ± 1.4

Temozolomide > 1000

3aafa 2.0 ± 0.2 4.0 ± 1.1 0.8 ± 0.6

3aafp 0.8 ± 0.1 1.6 ± 0.6 5.6 ± 0.8

3aafe 1.7 ± 0.4 4.9 ± 1.9 3.4 ± 0.7

3aafk 1.8 ± 0.4 2.2 ± 0.8

3cafa 5.9 ± 1.7 2.7 ± 0.3

3eafa 7.1 ± 0.1 8.5 ± 0.9

a
Concentration required to reduce the viability of cells by 50% after a 48 h treatment with the indicated compounds relative to a DMSO control ± 

SD from two independent experiments, each performed in 4 replicates, as determined by the MTT assay.

b
Average GI50 ± SD from three GI50 determinations.
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