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Abstract 

Subchondral cystic lesions (SCL), sometimes referred to as subchondral bone cysts (SBC) or 

subchondral lucencies, occur in the medial femoral condyle (MFC) of horses and can cause 

lameness. They are more common in horses ≤ 2 years of age, but can occur in older horses. The 

causes of SCL are not well understood, however, trauma and osteochondrosis are most 

commonly implicated. Radiographs of young horses that develop SCLs indicate a progression 

from sclerosis to MFC flattening, and then a defect (SCL) that enlarges. Treatments are directed 

at reducing local inflammation and promoting bone and cartilage healing, with approximately 

50-75% of horses becoming sound enough for work. However, bone healing after surgery is 

inconsistent, occurring  in <20% of patients. Recently, a treatment of MFC SCL using a lag 

screw was reported to improve the rate of lameness resolution and is the first study to report 

significant and consistent bone healing. This suggests a biomechanical approach can improve the 

treatment of equine SCL, but very little is known about the stresses within the equine stifle and 

how the surgical procedure may be optimized. The equine stifle is a complex biological system 

and direct collection of biomechanical data would be difficult, if not impossible. The objective of 

this current study is to investigate the stresses in the subchondral femoral bone at different stages 

of cyst progression using finite element analysis. This information can help us better understand 

the mechanics associated with SCLs that will allow clinicians to develop and implement rational 

treatment strategies. 
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1. Introduction 

 “It’s time… [to] take action to protect a species that has so loyally served humankind” – 

Jane Velez-Mitchell.  

1.1. Stifle Joint Anatomy 

 The equine stifle joint is complex and provides motion and load transfer between the 

femur, the tibia and patella of the horse. The stifle’s main functions are to allow flexion-

extension motion with little resistance, efficiently transfer loads between the femur and tibia, and 

provide the structural support and mobility to allow the hindquarter muscular energy to be 

converted into powerful locomotion. There are three separate joints in the stifle; a femoropatellar 

and two femorotibial joints (medial and lateral). The stifle is supported by musculature, tendons, 

ligaments, and a joint capsule. Its stability and strength, paired with a large range of motion, 

make it an anatomical wonder. And rightly so, the stifle can propel a 454 kg racehorse at rates 

approaching 15 m/sec, and provide the power to an 800 kg draft horse to move five times its 

body weight. Unfortunately, because of the mechanical demands on the equine stifle, it is often a 

site of injury causing lameness, which can be severe enough to cause serious concerns. Thus, for 

the viability of the animal, it is of great importance to fully understand the relationship between 

the structure and function of the stifle joint, how this relationship can become compromised, and 

what veterinarians can do to treat pathologic joints with the most rational approach. 
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Figure 1.1 Idealized illustration of an equine stifle joint created by Tim Vojt. Shown are the 

major structures such as the femur, tibia, patella, meniscus, patellar ligaments, and a collateral 

ligament.  

1.1.1. Anatomical Planes and Directions 

 Before each structure of the stifle is described, it’s important to understand anatomical 

terms that provide spatial reference. These terms describe:  

1) Two dimensional planes: these designations can be different for horses (and other 

quadrupeds) as compared to human anatomical planes. The three anatomical planes 
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are frontal (coronal for humans)), sagittal (lateral), and transverse (dorsal) (Figure 

1.2). 

 

2) Relative directions: For example, describing an anatomical structure as being to the 

“left” of another structure doesn’t provide enough information because “left” would 

change depending on your perspective. Instead, choose to describe that same structure 

relative to anatomical locations, such as being more medial, meaning more towards 

the middle of the body. This anatomical direction wouldn’t change depending on the 

point of reference. The most useful directional terms associated with the stifle joint 

are 1) cranial/caudal (anterior/posterior in human anatomy), which describes the 

direction from head to tail, 2) proximal/distal, which describes position relative to the 

spine with distal being further away and proximal being closer, 3) medial/lateral, 

where medial is closer to the middle of the horse, and finally 4) axial/abaxial, which 

refers to the central axis of the limb (Figure 1.2). 
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Figure 1.2 Diagram of a horse indicating all planes and directional terms for spatial reference. 

© Les Sellnow 

 

1.1.2. Bones 

 The three bones that make up the stifle joint are the femur, tibia, and patella. Colloquially 

known as the thigh bone, the femur is the largest bone in the horse (Figure 1.3). The distal end of 

the femur has two rounded condyles, the medial femoral condyle (MFC) and the lateral femoral 

condyle (LFC), which articulate with each side of the tibia forming the femorotibial joint. The 

medial femoral condyle is a common site for injury, more specifically, the most common site of 

bone cysts (see Equine Bone Lesions). Proximally and cranially on the femur are two trochlear 
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ridges that provide the articulation with the patella. Another important part of the femur, the 

trochlear ridges (especially the lateral) tends to be another common site of injury. These injuries 

typically include osteochondrosis (radiographically seen as a loose piece of broken off femur), 

and/or osteochondrotic lesions. 

 

Figure 1.3 Cranial view of the femur showing the two condyles and the two trochlear ridges on 

the cranial side of the bone. These four structures are common sites for bone defects, with the 

medial trochlear ridge and medial condyle being the most common. Some such defects can cause 

complete lameness. 

Colloquially known as the shin bone, the tibia, located distal to the femur, has a simpler 

geometry with two relatively flat plateaus at the proximal end, separated by two central ridges, 

the lateral and medial intercondylar eminences (Figure 1.4). Compared to the femur, the tibia 
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experiences less traumatic injury, yet is still subject to subchondral injury including bone cysts 

(sometimes in conjunction with a femoral cyst). 

 

Figure 1.4 Dorsal view of the tibia showing each tibial plateau and the medial intercondylar 

eminence on the tibia (MICET). 

 

 Colloquially known as the knee cap, the patella articulates with the femur to form the 

femoropatellar joint. The patella, via the quadriceps muscles and coupled with the distal patellar 

ligaments, provides powerful stability to the femur and stifle joint and increases the moment arm 

of the quadriceps. The patella is subject to fractures, usually as a result of the horse competing in 

a jumping discipline (i.e, Eventing, Hunter/Jumper). These horses often strike their stifles against 

fences causing a large variety of fractures. 
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1.1.3. Cartilage 

The articular cartilage of each bone is ~1-5 mm thick. This soft tissue provides some 

compliance under high force and protects the bones from shearing forces during motion under 

load. Cartilage with the synovial fluid has one of nature’s lowest coefficients of friction. The low 

friction arises from cartilage’s unique biological organization. Thus, cartilage allows two bones 

which it covers to move relative to each other without resistance (Figure 1.5). This unique 

biological organization also allows cartilage to handle the high load transfer across the joint. 

Articular cartilage is made up of water, Type II collagen, proteoglycans, chondrocytes, and other 

proteins. These components are organized differently depending on the depth through the 

thickness of the cartilage. To provide a frictionless, smooth surface, structures near the surface 

are organized perpendicular to the line of loading. Deeper to the articular surface, structures are 

organized parallel to the line of loading. The charge density of PGs, the water bound in PG, and 

intertwining of PG and collagen provide compressive strength to transfer load through the 

cartilage to the bone tissue. Cartilage is, for the most part, non-vascularized, which makes it a 

structure susceptible to slow healing in the event of trauma. It is common for veterinarians to 

observe cartilage defects in conjunction with bone defects. In adults, cartilage has a very limited 

capacity to heal as compared to bone. There is an intimate biomechanical interplay between 

cartilage and the bone that supports it (subchondral). Injury to one component almost always 

includes concomitant, or subsequent injury to the other. There is still debate whether OA starts in 

cartilage or subchondral bone. 
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Figure 1.5 Cross-sectional diagram showing the hierarchal structure of healthy articular 

cartilage. A: cellular organization; B: collagen organization. Reprinted from the Journal of the 

American Academy of Orthopaedic Surgeons, 1994; 2:192-201 with permission. 

1.1.4. Menisci 

Interposed between the femur and tibia on the abaxial surface of both femoro-tibial joints 

is a crescent-shaped meniscus (Figure 1.6). The primary function of the meniscus is to convert 

compressive forces into circumferential hoop stresses, dissipating a large fraction of the load 

coming from the femur before reaching the tibia. It also provides some geometric constraint in 

the transverse plane. The meniscus has a composition similar to that of cartilage, but it is 

arranged differently so as to allow it to effectively dissipate the load. The meniscus is mostly 

comprised of water (72%) with the remainder being organic matter (collagen and proteoglycans). 

However, the organic matter gives the meniscus its unique properties. Aligned circumferentially, 

collagen fibers within the meniscus provide strength and support to handle the resulting hoop 

stress. Proteoglycans provide compressive strength. Because of this highly organized, aligned 
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structure, the meniscus has different properties depending on the direction of force (axial, radial, 

or circumferential). This is an important aspect to consider for computational modeling. The 

meniscus is susceptible to tears, especially at the inner ring, and is also susceptible to damage 

from an irregular condylar surface.  

A common, emerging theme among veterinarians is that they often observe injuries that 

are concomitant or a result of another injury. The initial injury often goes untreated, as a horse 

may not show obvious lameness. This injury then leads to further injury in a cascade fashion, and 

a horse can quickly go from a slightly abnormal gait to complete lameness. Though it may seem 

like a chicken and egg dilemma, this cascading of injuries can be better understood by thorough 

study of more clinical cases by veterinarians, and also by computational modeling of the injuries. 

Through modeling an injury, one can examine how other anatomical structures are affected by 

the injury. 
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Figure 1.6 Dorsal view of each meniscus. Note that the cartilage and menisci look very similar 

outside of their geometry. This similarity is a result of being comprised of nearly identical 

components. 

1.1.5. Ligaments 

Ligaments connect bones together and are responsible for connecting the major components 

of the stifle, providing support and stability. The major stifle ligaments are:  

 the medial and lateral collateral ligaments, which fasten the femur to the tibia on each 

side of the joint and provide support during flexion and extension  

 the posterior and anterior cruciate ligaments (PCL and ACL), arranged like a letter “X” in 

the sagittal plane, connect the femur and tibia anteriorly/posteriorly. The PCL attaches to 

the posterior, proximal region of the tibia and connects to the anterior, distal portion of 

the femur. The ACL attaches to the anterior, proximal region of the tibia and connects to 
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the posterior, distal region of the femur. These ligaments are primarily responsible for  

constraining forward and backward slipping of the tibia.  

 three patellar ligaments that extend from the quadriceps and insert into the tibia on the 

cranial side of the joint. These ligaments keep the patella in place and provide connection 

for the quadriceps to extend the joint. These ligaments also assist in total joint stability as 

they provide additional support  to the femur to restrict forward translation. Additionally, 

the patellar ligaments give the stifle joint the unique ability to lock. This allows the horse   

to stand for many hours with minimal muscular effort. 

The last major structure that comprises the stifle joint is the joint capsule. Most notably, 

the connective tissue that wraps around the trochlear ridge of the femur provides substantial joint 

support. As a whole, the stifle joint is incredibly tight with little wiggle room. This characteristic 

makes surgical access quite difficult. 

1.1.6. Anatomical Similarity to Humans 

 The equine stifle joint is anatomically similar to humans both in structure and function. 

The horse stifle differs from the human knee in that it 1) lacks the ability to fully extend the joint 

(maximal equine extension is approximately 155°), 2) has more prominent intercondylar 

eminences, 3) a tighter connection between the tibia and femur resulting in reduced ease of 

surgical access, and 4) more patellar ligaments (three distinct ligaments versus ligament with two 

bundles).  

 Compared with other stifle joints, such as that in the canine, the equine stifle joint 

experiences closer loads to the human knee joint, is closer in size, and has similar thickness of 

articular cartilage, which is especially important when considering subchondral bone defects. 
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Because of the similarity between the two joints, humans experience many of the same injuries 

that horses do. This makes the equine stifle joint a robust animal model for translational research. 

1.2. Subchondral Bone Lesions 

1.2.1. Equine Bone Lesions 

 Equine subchondral bone is susceptible to cyst formation, particularly in growing horses, 

and the medial femoral condyle is the most common location. Research on equine subchondral 

bone cysts (SBCs), also referred to as subchondral cystic lesions (SCLs), began in 1968 with a 

study by Pettersson et al. that looked at radiolucent voids in the fetlock of the horse [1]. When 

sufficiently powerful portable radiograph machines were developed in the 1980’s, SBCs were 

described in the stifle of the horse [2-5]. This early research was focused on describing the 

physical aspects of SBCs, most of which were large in size, causing lameness. This was (and still 

is) an unfortunate problem for most SBC cases presented to veterinarians. They present at a point 

at which the horse is already lame, as a result of a large, developed cyst [6]. This lack of early 

detection and diagnosis makes it rather difficult to accurately assess its true pathologenesis and 

progression mechanisms. Even still, veterinarian researchers have worked tirelessly to fit all of 

the pieces together. With the development of more efficient and higher detail digital radiography, 

and the increased scrutiny applied to growing racehorses, the last two decades have proven to be 

more fruitful than the previous two in understanding this crippling defect. 

1.2.1.1. General Description 

SBCs that occur in the stifle of the horse manifest themselves in different shapes and sizes, 

but the vast majority are located in the medial femoral condyle (MFC). In the late 1980’s, White 

et al. described two types of SBCs: Type 1) a dome shaped cyst that was most commonly 
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coupled with a flattened femur, and Type 2) a circular cyst that articulated with the joint surface 

[7]. 

As radiographic technology improved, numerous SBC cases were presented to clinicians, and 

the diagnosis of SBCs evolved into more specific classifications. Since the field is still evolving, 

a universally accepted characterization scheme has not yet been established. However, most 

classification systems begin with a flattening of the femur and progress into a defect that is 

further characterized by its size. We have adopted the grading scheme of Santschi et al. [8] 

(Figure 1.7). 

 

Figure 1.7 Classification of subchondral cystic lesions of the medial femoral condyle as 

described by Santschi et al. Grade 1 = flattening or a small defect in the subchondral bone of the 

central MFC, Grade 2 = a <10 mm height dome-shaped lucency, Grade 3 = a condylar lucency 

with no evidence of a cloaca in the subchondral bone, Grade 4 > 10 mm large dome shape 
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extending to the articular defect, Grade 5 > 10 mm lucency with a narrow cloaca at the articular 

surface, Grade 6 = a combination of Grade 4 or Grade 5 SCL and other lucencies in the caudal 

MFC or proximal medial tibial plateau. Reprinted from The American College of Veterinary 

Surgeons, 2014; 44:281-288 with permission.  

1.2.1.2. Pathogenesis 

The two most implicated “dominant” mechanisms for cyst development are trauma and 

osteochondrosis [4, 9]. Osteochondrosis is caused by failure of endochondral ossification due to 

a local interruption of blood supply to the growth cartilage. This causes retained areas of 

cartilage within developing bone which are susceptible to injury causing osteochondral clefts and 

fragmentation. It occurs in young humans and in rapidly growing animals, such as the horse. 

However, osteochondrosis does not explain the occurrence of SBCs in adult horses, the 

enlargement of SBC, or how researchers have been able to induce SBCs with cartilage or 

subchondral defects alone [10, 11]. One of the first studies claiming to experimentally create one 

of these SBCs was performed by Kold et al., when the team of researchers created a defect in the 

articular cartilage in the central weight-bearing portion of the medial femoral condyle of a horse 

[12]. However, such defects have not been reproduced by other clinicians investigating SBC 

formation after cartilage damage [6, 13]. Experimental osteochondral defects have produced 

SBCs, suggesting that bone damage is involved with their formation [13]. This lends further 

support to the notion that traumatic bone injury (single or multiple) is responsible for cyst 

development. Another hypothesis of cyst progression places emphasis on high fluid pressures 

within the cyst that are pushed in from the surrounding joint space [14]. Initially hypothesized to 

increase intra-osseous stress, a finite element analysis investigating pressurized fluid in a cyst 

demonstrated that pressurized fluid actually reduced stresses around the void, serving as a means 
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of stress-shielding. Though reduced stresses may cause an increase in bone resorption, they do 

not explain initial defect formation. 

It is apparent from radiographs of lame horses afflicted with an SBC  that the cysts 

develop in the bone in the weight bearing portion of the medial femoral condyle in extension 

(Figure 1.8). This is a helpful clue into the pathology, since it’s known that this part of the femur 

experiences the highest stresses [15]. Trauma was considered a possible cause for these cystic 

lesions from their first description, and research began to critically examine the histological and 

clinical aspects of these cysts to uncover additional clues of its pathology [16]. 

 

Figure 1.8 Visual comparison between a radiograph of a cystic lesion (left) and the gross 

anatomy of a cyst (right). 

 Histological examination of SBC contents reveals fibroplasia, capillary proliferation, 

fibrous tissue, as well as degenerated bone, cartilage, and disorganized areas of granulation tissue 
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and woven bone [7, 16]. The defect has a defined lining, a key characteristic in its nomenclature 

as a cyst, and is surrounded by sclerotic bone. There has also been work done in identifying the 

biological molecules involved with SBCs and what role they may  play. Chemicals such as 

interleukin-6 and prostaglandin E3 are believed to be involved in an increase in bone resorption 

and slow-healing [17, 18]. These chemical factors may certainly have large influence on cyst 

progression. 

With close examination of SBC contents and characteristics, more clues appear to support the 

mechanical trauma hypothesis.  

 Sclerotic bone is generally a functional adaptation to over-loading of bone [19]. 

 The presence of cartilage suggests that the articular cartilage is collapsing (perhaps 

forcefully) into the void. 

 Woven bone in non-fetal bones is typically created as part of a fracture healing response. 

 Granulation tissue is present in healing wounds, suggesting the cyst is an externally 

influenced wound and not the result of an autoimmune disorder, or osteochondrosis 

without trauma. 

However, the pathogenesis of SBCs has been (and still is) largely debated. In all 

likelihood, cyst development is a multifaceted phenomenon, and there will always be weaknesses 

in a hypothesis that tries to implicate a single mechanism. With that being said, it stands to 

reason that mechanics (perhaps even a single, forceful event of overload and the resulting bone 

damage and stresses) is the most influential in driving the cascade of events that lead to cyst 

initiation and development.  
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1.2.1.3. Treatment 

Treatments for SBCs are focused on reducing local inflammation and promoting bone 

and cartilage healing. The first published work on treatment was by Kold et. al., as well as 

Stewart et al., when horses afflicted with a subchondral defect were given anti-inflammatory 

agents and assigned to periods of rest [2, 3]. While this method demonstrated some level of 

success, full radiographic recovery was rare, and older horses were not as responsive to the 

treatment. 

 When conservative treatments did not provide a high enough success rate for recovery, 

surgical treatments were resorted to in an attempt to expedite the recovery process. These 

surgical techniques tend to involve some variation of cyst debridement and refilling [20-22] 

(Figure 1.9). Arthroscopically, surgeons remove the articular cartilage at the distal aspect of the 

SBC and clean out the cyst. Once the cysts are debrided, the void is refilled with any 

combination of cancellous bone, bone substitutes, growth factors, chondrocyte grafts, 

mesenchymal stem cells, and fibrin glue [23, 24]. Treatment success rates range between 50% 

and 75%. However, there is little data about bone healing after debridement, and what data is 

available suggests that full radiographic healing occurs in less than 20% of patients [24]. Also, 

there is a scarcity of data examining the long-term resolution of lameness. 
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Figure 1.9 Surgical debridement and bone graft procedure [24]. Reprinted from the Equine 

Veterinary Journal, 2012; 44:606-613 with permission. 

Recently, a treatment that places a screw in lag fashion across the defect has been 

reported to have a high rate of success [25]. This surgical procedure is the first of its kind, and 

seems to address the mechanics of SBC unlike any previous technique. A reasonable assumption 

is that the bone around the cyst is less able to carry the resulting increase in stresses. The stress 

concentration around the cyst is analogous to the classic “plate with a hole” analysis. This type 

of analysis shows increases in tension and shear stress around the hole. If such abnormal, 

elevated stresses are present, the bone healing around the cyst will be inhibited. The screw may 

help to reduce high bone stresses around the cyst to acceptable levels and provide an opportunity 

for the bone to heal. In fact, in a recent study using finite element analysis, McErlain et al. 

showed that Von Mises stresses were elevated in the bone immediately surrounding cysts [26]. 

However, there is still the possibility that fluid within the cyst is also providing a means of 
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stress-shielding, as mentioned earlier [14]. If this is the case, the screw placed in a lag fashion 

would then serve to restore stresses in the bone surrounding the cyst. In either case, it seems 

plausible that the lag screw somehow addresses the mechanical aspects of cyst development and 

healing, a paradigm shift in current treatment strategies. 

1.2.2. Human Bone Lesions 

Subchondral bone cysts are not unique to the equine population. In fact, humans (and other 

animals) also develop subchondral cystic lesions in their joints [27-30]. As is true with equine 

SBCs, the etiology and pathology of SBCs in humans is still debated, but many 

investigators/physicians have proposed possible causes. Perhaps the most dominant hypothesis in 

the field is that high, irregular stress transfer occurs between the femoral (or tibial) cartilage into 

the subchondral bone and mechanical trauma occurs. This theory is further supported by: 

 Studies which have shown that high stresses in the subchondral bone can be a function of 

cartilage damage and irregularities [31]. 

 The clinical observation that SBCs are more common in osteoarthritic patients. In a 

study performed by Tanamas et al., it was found that in a sample population of 132 

subjects with knee osteoarthritis, subchondral bone cysts were present in nearly 50% of 

them [32]. 

While the underlying cause of mechanical trauma is implicated in both humans and horses, 

it’s the SBC in conjunction with osteoarthritis that differentiates the two, as equine SBCs 

commonly occur without osteoarthritis. This supports the bone trauma hypothesis. Because 

mechanical trauma is of great concern for both species, studies that investigate stresses 
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associated with SBCs  are relevant for both species. Thus, the equine model presents several 

advantages for studying SBCs in humans [33]: 

 Humans and horses have anatomically similar joints in which SBCs occur (see 

Anatomy). 

 Studying SBCs in horses isolates SBCs from osteoarthritis, allowing research to focus on 

the cysts and neglect the confounding effects of osteoarthritis and the related 

inflammatory response. 

 The mechanical loads experienced by both species when normalized to joint size are 

similar. 

1.3. Application of Finite Element Modeling in Biomechanics 

 The finite element method (FEM) is a class of numerical techniques to approximate 

solutions of boundary value partial differential equations (PDEs). Finite element analysis (FEA) 

is the practical application of the FEM, most commonly used in structural mechanics. 

Developing a finite element model using commercially available software consists of four 

distinct steps: Geometry construction, discretizing the geometry into elements, assigning material 

properties to each element, and applying boundary conditions. In the first step, recent advances 

in software have allowed the usage of medical image data, such as Magnetic Resonance (MR) 

imaging or Computed Tomography (CT), as the canvas for segmentation. The segmentation 

process yields the geometric boundaries for discretization. This critical advance in software 

enables finite element models to have an anatomically accurate geometry. In the second step, the 

choice of elements primarily depends on the geometry used. The two traditional element types 

are tetrahedra or hexahedra. While hexahedral elements are preferred in most cases, preferred for 
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their computational efficiency and accuracy, they have difficulty in conforming to complex 

geometry, such as the curved cartilage on the medial femoral condyle. Tetrahedral elements are 

not as restricted in their ability to conform to a surface, making them a desirable element choice 

in anatomical models. Loads and boundary conditions imposed on the mesh nodes in step four 

create a displacement response. From these displacements, variables of interest, such as stress 

and strain, may be computed based on the material properties issued to each element in step 

three. However, this four step process assumes that commercially available software is available 

to set up the finite element equations and perform the legwork of calculation. In reality, the finite 

element method itself has its own unique step-by-step process, handled by the software of choice 

(ABAQUS) in this presented work. The process is as follows: 

In the most general case of a static equilibrium finite element analysis, as is used in this 

thesis, we begin with an equilibrium statement (written in the classical form of the virtual work 

principle):  

 

Here, ε = strains σ = the Cauchy stress matrix (internal stresses), δ = the Kronecker delta, u = 

displacements, t = external surface tractions, and b = external body forces. In the current 

analysis, body forces (i.e, gravity) are not present in the model, so the body force integral can be 

omitted. However, the integral containing the traction vector, t, represents external loading (i.e, a 

force applied to the proximal face of the femur) and is not omitted. The equation then reduces to: 
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We can then redefine the terms on each side of the equation based on standard continuum 

mechanics principles. Strains can be expressed as B·a, where B is a matrix containing 

differentials of defined shape functions (element dependent), and a is a vector containing the 

virtual nodal displacements. Stresses can be defined as D·B·a, where D is the elasticity matrix 

defined by: 

 

Here, E and ν are material properties (elastic modulus and Poisson’s ratio) that can be defined for 

each element (see chapters 2 and 3 for values used in this study). u is the overall element 

displacement that can be approximated by summing all nodal displacements, defined as N·a, 

where N is an interpolation function based upon the choice of element used in the discretization 

of the geometric domain. In this study, 4 node tetrahedral elements were chosen that have an 

interpolation function of:  

N = (1 – g – h – r) u1 + g u2 + h u3 + r u4 

where g, h, and r are parametric (unit) coordinate directions, and u are nodal displacements. 

Finally, we can rewrite the virtual work equation as:  

 

 δa can be removed from each side, which reduces the equation to: 
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Note this equation is applied at every element. Thus, the equations can be assembled globally to 

account for each element and written in matrix form as:  

[K]{a} = {f} 

by setting [K] equal to BTDB and recognizing that the second integral represents a nodal force 

vector. This global set of nonlinear equations is then solved by an implicit solver in ABAQUS 

that utilizes the Newton method. Iterative steps also allow contact constraints, such as the penalty 

method (see chapter 2) or spring forces, to be applied as an additional surface force to specific 

nodes as the solution history progresses when appropriate. While this is the general process used 

by ABAQUS to formulate and solve the finite element equations, certain details of the ABAQUS 

solver are not addressed here in this introduction. For a more comprehensive review of the solver 

implemented in ABAQUS, see the ABAQUS theory manual. 

It’s difficult to track an exact origin to the finite element method, but it’s often cited that the 

method was first developed by Courant in a 1942 address to the American Mathematical Society 

[34]. The aerospace field first adopted the method and it was quickly adapted into use by civil 

engineers in the 1950’s [35]. By demonstrating near-perfect solutions, compared with analytical 

solutions, as well as experimental observation, FEA became an incredibly powerful tool, opening 

the door to a new breadth of research possibilities. As long as appropriate steps are taken to 

ensure the accuracy of the computational model (see 1.3.3. Verification and 1.3.4. Validation), 

there’s little doubt in the validity of the results obtained through FEA. 
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1.3.1. Advantages of Finite Element Modeling 

 Wide applicability  

 Many different material properties can be incorporated, which is especially useful in a 

complex biological model with many different structures. 

 Element size can be adaptively refined/coarsened to match any geometry. 

 Commercial software is available to facilitate all necessary set-up, calculation, and post-

processing 

 Phenomena that would be otherwise impossible to examine with physical experiments 

can be analyzed. 

 Nearly perfect solutions to problems with known analytical solutions have been 

demonstrated. 

 Parameters can be quickly changed to perform a parametric study. 

1.3.2. Disadvantages of Finite Element Modeling 

 The solution is still an approximation. 

 Assumptions are often made to simplify the problem, or to estimate an unknown quantity. 

 Solutions are only calculated at mesh nodes. 

 Validation can be difficult. 

1.3.3. Verification 

 The American Society of Mechanical Engineers defines verification as, “the process of 

determining that a computational model accurately represents the underlying mathematical 

model and its solution” [36]. In other words, proper verification ensures that the equations are 

being solved correctly (remember that FEA is an approximation using numerical methods). A 
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large part of this process is verifying that the FEM algorithm, written as code, is accurate. A code 

can be verified by comparing its solution to a known analytical solution for a given problem. 

Most engineering researchers who use FEA implement it in commercially available software that 

has already been verified by the software developers. However, formulations are sometimes not 

clearly described, or disclosed (e.g, reduced integration), and the accuracy can be affected. 

 The other part of verification deals with the proper discretization of the domain. Since the 

finite element method provides solutions only at prescribed discrete locations, the solution of the 

rest of the domain is interpolated. Thus, enough degrees of freedom must be present in the model 

to accurately represent the solution for the entire domain. There should be negligible error from 

the interpolations. However, there’s a delicate trade-off with discretization because the more 

degrees of freedom present in a model, the more expensive the computational cost. A trade-off 

then exists between efficiency and accuracy (Figure 1.10). One normally uses a model with the 

lowest number of degrees of freedom that provide an accurate solution. A mesh refinement 

convergence study is typically used to identify this model. 
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Figure 1.10 Representation of the trade-off between efficiency and accuracy. Consider a 

displacement solution that analytically looks like the curve through the dots. If nodes are 

prescribed at the yellow locations, the curvature of the solution will not be realized. However, if 

nodes are prescribed at the red locations, many redundancies are present, costing much more 

computational time to converge on a solution. Alternatively, if nodes are prescribed at the green 

locations, the accuracy of the red discretization is maintained, yet at a fraction of the 

computational cost. 

As mentioned earlier, the proper way to deal with the accuracy/efficiency trade-off is to 

perform a convergence analysis. A convergence analysis will help to determine the minimum 

number of nodes needed to produce a result similar to that of a hypothetical infinite number of 

nodes. Beginning with a very coarse mesh, the model is analyzed to determine the desired output 
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variable(s) (maximum principal stress accurately, for example). The mesh is then refined by a 

reasonable increment (making the new element size approximately half of the previous element 

is common, although smaller increments may be used). The comparison output variable is again 

generated, and the results are compared with the previous iteration. If a <5% difference occurs in 

the two solutions, the mesh for the previous iteration is accepted [37]. If not, the mesh is refined 

again, and the comparison is repeated. 

1.3.4. Validation 

Validation is defined as, “the process of determining the degree to which a model is an 

accurate representation of the real world from the perspective of the intended uses of the model” 

[36]. In other words, are the right equations being solved? Do the physics of the system represent 

reality? Validation is perhaps the most difficult part of computational modeling, as there is no 

definitive way to guarantee the answers to these two questions are with 100% certainty. 

However, as Henninger et al. state: 

The “truth” about the system is a statistically meaningful prediction that can be made for 

a specific set of boundary conditions [38]. 

Therefore, the goal is not to model in vivo reality with absolute certainty, but to take necessary 

actions that develop a statistically meaningful result.  

The typical approach in validation of a model is to perform physical experiments that 

determine a meaningful variable in a system and compare that with the model’s output. 

Depending on the research goal, validation may take a number of forms. For example, a direct 

form of validation would be to experimentally test the material properties of each structure 

represented in the model and then determine a governing equation for the given behavior. These 
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equations would then be introduced into the model for each structure present. The next step 

would be performing an experiment, for example, looking at tibial contact pressure with 500 

Newtons of compressive force applied to the proximal femur (assuming a knee model is being 

developed). Then, the same task would be performed with the computational model, and the 

contact pressures would be compared. If the two are in accord, there is now concrete validity in 

the model’s physical behavior for that specific task. Remember, models are typically developed 

for a very specific research goal. Unfortunately, this direct form of validation is not always 

feasible. In many preliminary or investigational studies material properties are not explicitly 

determined, and one must find appropriate material properties and boundary conditions based on 

what is available in the literature. Different experiments in the literature may yield different 

material properties for the same biological structure which is a consequence of different testing 

procedures or specimen-to-specimen differences. If this is the case, a sensitivity analysis is 

performed. A sensitivity analysis is the process of using a wide range of available material 

properties, say for cartilage, and investigating the impact it has on the output parameter such as 

contact pressure on the tibial plateau. If the result does not change with varying that property, the 

model is not sensitive to that property. Thus, any reasonable value available is justified. If the 

output changes significantly with varying properties, then the behavior may be bounded by using 

the max/min property values and/or the property value can be judiciously chosen based on the 

model application (like instantaneous or relaxation modulus).  

One of the problems with validation is that experimental methods also have a level of 

uncertainty. If indirect validation is all that the researcher has available, they compare their 

model’s kinetic and/or kinematic results to what other validated models and/or related 

experiments have demonstrated. 
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1.3.5. Biomechanics 

It was no surprise that two decades after its initial development, finite element analysis was 

integrated into biomechanics research, a field replete with unanswered questions. Its popularity 

snowballed, with more and more researchers understanding that FEA provided a means of 

performing biological research that would otherwise be difficult, or even impossible, to do 

experimentally. Because of this, just as it did in the civil engineering discipline, FEA opened the 

door to countless research opportunities. In particular, the medical community has reaped 

invaluable rewards from the application of FEA to biomechanics, such as the development of 

safer, more efficient stents, more robust orthopedic implants, a deeper insight into some of our 

body’s mechanics, and the consequences when these mechanics become compromised [28, 39-

45].  

Since its adaptation into biomechanics, a rapid increase in computational power and 

improved modeling techniques have paved the way for more complex finite element models. Led 

by landmark studies [44, 46-50], the road eventually led to accurate models of complex joints, 

such as the knee (or stifle). Representing the kinetics and kinematics with high fidelity is no easy 

task, considering just how complex the knee really is. Yet, researchers have shown time and time 

again that it is possible [40-44, 48, 50-53]. For example, Mootanah et al. developed a 

computational knee model to evaluate the efficacy of surgical treatments of osteoarthritis [43]. 

They were able to successfully compare the kinematic data of their model to an in vitro result. 

Halloran et al. created a knee model that investigated the mechanics of total knee replacements. 

They were able to match the kinematic data of their model with data taken experimentally from a 

knee simulator [40]. The advances made in computational modeling have been nothing short of 

monumental. Now, practically anyone with a foundational understanding of FEA and a 
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knowledge of their biomechanical application can stand on the shoulders of giants and create a 

robust, validated model tailored to their research needs. 

1.4. Putting It All Together 

Literature regarding equine bone cysts reveals an interesting trend; research has been 

largely devoted to possible treatments and treatment efficacy. It seems a gap has developed 

between pathological understanding and treatment strategies, most likely a result of the difficulty 

in examining subchondral defects in a living horse. A problem concerning intra-osseous stresses 

would be difficult, if not impossible, to examine with experimental technologies available. Finite 

element analysis provides the essential research tool needed to help fill this gap that has 

developed. This work will be the first of its kind to use equine medical image data, construct a 

finite element model, and analyze the stresses of the medial femoral condyle with and without 

subchondral defects. 

Ultimately, both the equine and human communities want the same thing: the full 

understanding of subchondral bone cysts and the best way to treat them with available 

technologies. David Hume famously said that truth is made known through argument amongst 

friends. Research from the last five decades put us closer than ever to the truth regarding the 

pathogenesis of SCLs (SBCs). Researchers from across the world continue to publish 

hypothesis-driven research, uncovering more and more clues behind this mystery. Discovering 

the mechanical consequences of subchondral bone cysts will be another step toward 

understanding this disease and finding a reliable treatment. 
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2. Effects of Mesh Refinement, Meniscal Attachment, and Material 

Properties on the Accuracy of a Model of the Equine Stifle Joint 

2.1. Abstract 

In this paper, several finite element models of an equine stifle joint are compared to determine 

the most appropriate model for investigating bone cysts in future work, as well as to understand 

the effects of meniscal attachment complexity and material property changes on the accuracy of 

the model. We found that the complexity in the meniscal attachment is critical when evaluating 

maximum principal stresses in the bone. We also demonstrate that convergence for one output 

variable does not assure convergence for other output variables. Lastly, we illustrate that 

simplified material properties can be justified when the relationship between each material 

property and the desired output variables is understood. 

Keywords: knee; meniscus; numerical convergence; contact model; stifle 

2.2. Introduction 

In the rapidly-growing field of computational biomechanics, it can become easy to overlook the 

basic essentials that give this tool real-world validity [1]. With the desire of obtaining 

information about biological systems and tissues that would otherwise be difficult or impossible 

to experimentally test, the level of complexity of each problem is generally high, and thus, 

subject to various errors and pitfalls. Therefore, it is the investigator’s responsibility to verify and 

validate their model in order to convince themselves and their peers that the results have real-

world meaning. 
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One of the most critical advancements in the field of computational mechanics was the 

adoption of finite element analysis into the field of engineering in the 1950’s, although the 

original invention of the finite element method was presented in a 1942 address to the American 

Mathematical Society [2, 3]. However, it wasn’t until the 1970’s when finite element analysis 

was applied to and became the mainstay in computational biomechanics [4-6]. Since then, 

countless studies have used this method to investigate biological systems and reveal findings that 

may be nearly impossible to acquire experimentally.  

With a rapid increase in computational power, the complexity of these finite element 

models has also increased over the past 40 years. In particular, models of the knee joint have 

become ubiquitous in the field [7-9]. With a wealth of literature investigating different material 

properties, boundary conditions, and behavior of the joint, researchers have an abundance of 

examples of how to (and not to) validate their model. Unfortunately, many neglect the 

verification process in computational modeling, most specifically sensitivity and convergence 

analyses. Weiss et al. succinctly describes these analyses and their importance in computational 

biomechanics [1]. When considering computational knee models, the verification process is 

perhaps more important as it is one of the body’s most complex joints [10].  

 Material properties and boundary condition parameters derived experimentally are 

subject to error, especially since biological tissues are not identical within or across species [11]. 

Specimen-to-specimen error, as well as differences in experimental testing protocol can manifest 

itself in the model, whether recognized or not [12].  Without properly addressing each source of 

error, the statistical and clinical relevance of the results will consequently be compromised. 

Our lab is currently investigating bone cysts that develop in young, racing horses. Medial 

femoral condyle (MFC) subchondral bone cysts (SBC) develop in the trabecular and subchondral 
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bone of the MFC of young horses, and can cause lameness and limit performance [13]. Current 

treatments result in mediocre success (~66%), are expensive, require long healing times, and 

have poor radiographic improvement. Recent clinical evidence in the horse indicates that lag 

screw placement across the MFC (ideally aimed through the SBC) promotes bone healing and 

lameness resolution [14], but little is known about the biomechanics of an intact or damaged 

MFC, or how the mechanics can be used to optimize healing. In future studies, we aim to 

develop a finite element model to investigate the mechanics behind cyst growth and the effects 

of an implanted screw. 

In this paper, a controlled verification study on an equine stifle (knee) joint model is 

performed for two reasons: 1) determine the most appropriate model for our current applications, 

as well as 2) to investigate and discuss a few pertinent findings in the general context of the 

verification process. 

2.3. Methods 

2.3.1. Model Development 

This study involved the development of multiple knee models in light of different published 

approaches. First, a convergence analysis was performed and comparisons were made by looking 

at different output parameters (Tables 2.4-2.6). Secondly, comparisons were made between 

relative complexities of the model, focused mainly on the meniscal properties, meniscal 

attachment to and interaction with the tibial plateau, and how these parameters affects the results 

(Table 2.1). Lastly, comparisons were made between specific material properties (cartilage, 

meniscus, and bone property changes) and how these properties affected the desired output 

parameter (e.g, bone stresses, or cartilage stresses) (Table 2.8).  
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 CT data of an equine stifle joint was obtained from a young Thoroughbred and imported 

into ScanIP v7.0 (Simpleware, United Kingdom) (247x247x130 voxels, 0.7, 0.7, 1.0 mm 

spacing). The 3D geometry was generated by semi-automatically segmenting joint structures, 

under the supervision of a Professor of Veterinary Surgery. An example of this segmentation to 

mesh transition is demonstrated in Figure 2.1. The joint geometry was subsequently converted 

into solid, four-node tetrahedral elements (C3D4) using FE Free (Simpleware) to create the finite 

element mesh. The mesh was then imported into the ABAQUS FE package v6.14 (Dassault 

Systems, France) for finite element analysis.  

Five distinct models were created to form the basis of this study (Merged, Tied, Tied with 

Anisotropy, Springs, Springs with Anisotropy), which are individually described below. To 

create each model used in this study, four separate mesh sections constituting the stifle joint were 

generated (Simpleware) and assembled/completed in ABAQUS (Figures 2.1-2.3). A spherical 

region of interest was created at the articulating surface of the femur for data extraction (Figure 

2.2). 
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Figure 2.1 Coronal slice of the manually segmented masks for both the lateral and medial 

femoral cartilages (left). The full femoral cartilage meshes (right) having passed through the 

meshing algorithm (Simpleware). 
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Figure 2.2 Mesh images generated in Simpleware, from left to right: (1) The femoral bone mesh 

consisting of the femoral bone (gray) and (2) the femoral bone region of interest (ROI) (green), 

(3) The tibia/patella mesh consisting of the tibia (grey), tibial and patellar cartialges (red), and 

the patellar/posteroir cruciate ligaments (brown). The PCL was included as a natural constraint, 

and the ACL was omitted, as it would not be loaded under the BC’s used in this study. (4) The 

meniscal mesh consisting of the medial (blue) and lateral (yellow) meniscus, as well as the 

lateral meniscal/femoral ligament (orange). 
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Figure 2.3 Posterior view of all four mesh sections (shown in different colors) assembled in 

ABAQUS into a complete model. 

Separate meshes were generated in order to preserve mesh quality (dihedral angle 

10<Θ<160 for each element) for each anatomical structure. When small gaps are present 

between segmented masks, the meshing algorithm attempts to preserve these gaps, however the 

smoothness and element quality are compromised in this process (Figure 2.4). To avoid poor 

mesh surface quality (dihedral angles outside of the acceptable range or visible surface 

roughness), we separated and grouped structures with continuous boundaries and meshed them 

separately. 
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Figure 2.4 Axial slice of the segmentation process with all knee structures shown. Voxel gaps, or 

holes between contacting surfaces, have been circled in black. In vivo, these gaps would most 

likely be filled with synovial fluid, however synovial fluid was not directly modeled in this 

study. 

To determine what material properties and boundary conditions/tissue interactions to use for 

each soft tissue/model, the literature was reviewed, and appropriate values were determined. 

However, to implement the bone properties, a unique bone mapping feature within ScanIP was 

used to create a spectrum of properties based on Hounsfield units.  

Hounsfield units were related to mass density using Equation 1. The mass density was then 

related to Young’s Modulus using Equation 2. 

Mass Density =  (1.067*10-3)*GrayScale (1) 

Young's Modulus = (6.0*103)*MassDensity2.5 (2) 
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The power of 2.5 for the modulus equation accounted for the wide range of bone densities, where 

E α ρ3 for high density bone and E α ρ2 for low density bone. This resulted in Young’s Modulus 

ranging from 50 MPa to 21,000 MPa. 

2.3.1.1. Merged Model 

To create the Merged model, the meniscus was combined with the tibial cartilage in the pre-

processor (Simpleware) prior to meshing and given a single material property (Figure 2.5). Thus, 

the nodes between the meniscus and tibial cartilage are shared, and no other constraint was 

between these two structures was implemented in ABAQUS. The Merged model is the only 

model that has shared nodes between the two structures, and all other models used a separate 

meniscus mesh with manually created constraints in ABAQUS. 

 

Figure 2.5 Tibia/patella mesh used for the merged model, which combines meshes 2 and 3 from 

Figure 2.2 
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2.3.1.2. Tied Model 

The Tied model was made by manually creating tie constraints between the inferior meniscal 

face and the superior tibial cartilage (Figure 2.6). 

 

Figure 2.6 Tie constraints (yellow) between the menisci (left) and the tibial cartilage (right). Note 

that the tie constraints of the meniscal horns are also shown. Although the tibial cartilage tie 

surface extends beyond the meniscal surface, ABAQUS ignores tie constraints beyond a set 

tolerance distance, consequently making the prescription of tied surfaces easier. 

2.3.1.3. Tied Anisotropy Model 

The Tied Anisotropy model was identical to the Tied model, except anisotropic properties (Table 

2.2) were used for the meniscus. 

2.3.1.4. Springs Model 

The Springs model introduced the allowance of meniscal translation on the tibia that is restrained 

by using springs (Table 2.2) to model the meniscal/tibial cartilage relationship (Figure 2.7). This 

arrangement is often used to account for capsular attachments/restriction on the meniscus.  
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Figure 2.7 Spring interactions between meniscus and tibial cartilage implemented in ABAQUS. 

Spring attachments are shown in yellow with the menisci on the left and the tibial cartilage on 

the right. Note that the tie constraints of the meniscal horns are also shown in yellow. The 

springs apply a force constraint governed by Hooke's Law in assigned directions (in this case, in 

the medial/lateral directions, as well as in the anterior/posterior directions) between the nodes at 

each end of the spring. Spring displacement is measured as the relative displacement between the 

two nodes of the spring, and the force in the enforced directions is proportional to the 

displacement. 

2.3.1.5. Springs Anisotropy 

The Springs Anisotropy model was identical to the Springs model, however, the meniscus was 

given anisotropic properties (Table 2.2), identical to those of the Tied Anisotropy model. A 

summary of model properties and parameters can be found in Tables 2.1-2.3. 
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Table 2.1 Meniscus models used in this study and the interaction of each with the tibial plateau 

cartilage from least complex (Merged) to most complex (Springs/Anisotropic). 

Model Meniscus Interaction Used Prior 

Merged 

Meniscus merged with tibial cartilage to form one 

structure (Figure 5)  McErlain 

Tied 

Meniscus manually tied to tibial cartilage  

(Figure 6)  Pena 

Tied/Anistropic 

Meniscus tied and given anistropic properties 

 (Figure 6) Papaioannou 

Springs 

Meniscus constrained to tibial cartilage by springs  

(Figure 7) 

McErlain, 

Pena   

Springs/Anisotropic 

Springs model but with meniscal anistropic 

properties  

(Figure 7)  Kiapour  

 

Table 2.2 Meniscus material properties, as well as the spring stiffness used in the spring 

interaction models. 

Model 
Modulus 

(MPa) 

Poisson's 

Ratio 

Spring Constant 

(N/mm) 
Reference 

Merged 40 0.45 - Donahue 

Tied 40 0.45 - Donahue 

Tied/Anisotropic 
E1,E3 = 20 and 

E2 = 120 

v1,v3 = 0.3 

and v2 = 0.45 
- 

Mootanah, 

Kiapour 

Springs 40 0.45 20  Donahue 

Springs/Anisotropic 
E1,E3 = 20 and 

E2 = 120 

v1,v3 = 0.3 

and v2 = 0.45 
20 

Mootanah, 

Kiapour 

 

Table 2.3 Summary of all the material properties used in each model. 

Structure Young's Modulus (MPa) Poisson's Ratio Reference 

Bone 50 - 21000 0.3 Wirtz 

Cartilage 25 0.45 Mootanah 

Meniscus See Table 2 See Table 2 -  

Ligaments 345 0.45 Butler 
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For each model, the meniscal horns were tied to the tibia, and the PCL was tied to the femur. All 

other structures either had shared nodes from the mesh generation, or were unconstrained and 

were included in the ABAQUS general contact formulation. 

 The loading boundary condition for each model was a uniform surface pressure placed on 

the proximal femur, equivalent to a 3000 N force. The distal tibia was completely constrained 

(U1, U2, U3, UR1, UR2, UR3 = 0), and the femur was constrained to allow all three translations, 

but no rotations (UR1, UR2, UR3 = 0). Contact was modeled as frictionless and a "penalty" was 

enforced for overclosure. The penalty is a force acting against the penetrating surface and is 

governed by Hooke's Law. The stiffness is chosen automatically by the ABAQUS solver and is 

based on the underlying element stiffness (overclosure stiffness defaults to ten times larger than 

the stiffness in ABAQUS). Therefore, the force applied is equal to the stiffness generated 

multiplied by the penetration distance (averaged across the surface if multiple nodes have 

penetrated) 

2.3.2. Convergence Study 

We performed a convergence analysis to verify the numerical accuracy of the model (adequate 

mesh density). Jones et al. demonstrated in a finite element study of the spine that an appropriate 

convergence criteria is a <5% difference in PDE solution from one mesh density to the next [10]. 

In our study, our convergence percentages are based on the difference from the highest 

resolution, as we assume this value to be the most accurate. In most knee models, bone element 

size is held constant, and the soft tissues are made finer and finer until convergence has been 

demonstrated for stress in soft tissues of interest. However, bone stresses, more specifically those 

in our region of interest, are a desired output variable. Therefore, the bone mesh in the region of 

interest was refined along with the cartilage and menisci meshes for this part of the study. 
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Beginning with an element edge length of 1.75 mm for the aforementioned structures, a mesh 

refinement of 0.25 mm edge length was made down to an edge length of 0.75 mm. The models 

were analyzed with the same boundary conditions as those done in the first study. Von Mises 

stresses (from each element), average maximum principal stresses, as well as the top 5% 

maximum principal stresses were obtained and compared for each model and for each mesh 

refinement. The solution from a single model, Springs Anisotropy, with quadratic elements 

(C3D10) was also analysed to investigate error associated with strain locking in linear tetrahedral 

elements. 

2.3.3. Meniscal Attachment Complexity Comparisons 

Using the converged states for each output variable, Von Mises stresses and maximum principal 

bone stresses for the femoral region of interest were obtained from each model. These stresses 

were compared between the levels of meniscal attachment complexity. Also tracked was the wall 

clock time taken for each analysis. 

2.3.4. Material Property Sensitivity Analysis 

We also investigated the effects of changing the material properties (bone, femoral cartilage, or 

meniscus) on the output stress in the bone (MFC) region of interest and the stress in the medial 

femoral cartilage. Using the Springs Anisotropy model described above, the bone material 

properties was significantly simplified by using only two material properties (trabecular E = 400 

MPa, cortical E = 20,000 MPa) [9] (Figure 2.8) and then made more complex with 50 material 

properties. The cartilage was also changed to encompass a broader range of possible values 

(changed from 25 MPa to 7 MPa) [21], and the meniscus was changed from anisotropic to a 

softer, isotropic property (see Table 2.2, Springs vs. Springs Anisotropy). The same 
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load/displacement boundary conditions as previously described were implemented with these 

models, but only Von Mises stresses were evaluated as the output variable. This part of the study 

illustrated the importance of understanding the relationship between input variables and output 

variables. More specifically, the goal was to illustrate the importance of material properties, 

depending on the desired output. 

 

 

Figure 2.8 Slice of the segmented femur (Simpleware) used to create the simplified bone 

properties. Trabecular bone is shown in blue and cortical bone is shown in light yellow. 

2.4. Results 

2.4.1. Convergence Study 

For the average max principal stress data, convergence was achieved at 1.25 mm edge length 

resolution (Table 2.4). For the top 5% max principal stress data, convergence was achieved at 1 

mm edge length resolution (Table 2.5). Lastly, convergence was achieved at 1.5 mm edge length 

resolution for Von Mises stress data (Table 2.6). 
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Table 2.4 Convergence analysis results for average maximum principal stress values taken from 

the femoral bone region of interest. Except for a slight discrepancy in the Springs model, for 

average stresses, convergence was achieved at an edge length of 1.25 mm. 

 Average Tension  Average Compression 

Model / 

Edge Length 

(mm) 

1.75 1.5 1.25 1 0.75 1.75 1.5 1.25 1 0.75 

Merged 35% 7% 4% 1% - 30% 0% 1% 1% - 

Tied 7% 6% 3% 2% - 1% 1% 0% 0% - 

Tied 

Anisotropy 
7% 6% 4% 2% - 0% 1% 0% 1% - 

Springs 2% 2% 6% 3% - 1% 1% 1% 2% - 

Springs 

Anisotropy 
5% 4% 5% 2% - 3% 0% 1% 0% - 

 

Table 2.5 Convergence analysis results for the top 5% maximum principal stress values taken 

from the femoral bone region of interest. Except for a discrepancy in the Springs model, 

convergence was achieved at an edge length of 1.00 mm. 

 Top 5% Tension Top 5% Compression 

Model / 

Edge 

Length 

(mm) 

1.75 1.5 1.25 1 0.75 1.75 1.5 1.25 1 0.75 

Merged 51% 7% 9% 2% - 24% 3% 4% 2% - 

Tied 15% 6% 7% 4% - 5% 2% 4% 2% - 

Tied 

Anisotropy 
13% 6% 7% 4% - 7% 3% 4% 3% - 

Springs 9% 3% 7% 3% - 5% 3% 8% 6% - 

Springs 

Anisotropy 
11% 5% 8% 2% - 6% 4% 6% 3% - 
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Table 2.6 Convergence analysis for average Von Mises stresses taken from the femoral bone 

region of interest. Convergence was achieved at 1.5 mm average edge length. 

  Average Von Mises 

 Model / Edge Length 

(mm) 
1.75 1.5 1.25 1 0.75 

Merged 31% 0% 0% 1% - 

Tied 0% 1% 0% 0% - 

Tied Anisotropy 0% 0% 1% 1% - 

Springs 1% 4% 2% 4% - 

Springs Anisotropy 2% 1% 1% 0% - 

 

In addition, use of quadratic elements with the Springs Anisotropy model resulted in only a 1% 

change in all output parameters, while wall clock time increased nearly tenfold. 

2.4.2. Complexity of Meniscal Attachment 

Average of the maximum (tensile) principal stress data taken from the femoral region of interest 

shows that the addition of springs made the only significant difference in output stresses (Table 

2.7). Tensile stress values increased by ~20%, though compressive stresses remained about the 

same (~2% change), with Tied Anisotropy showing an 8% error (Table 2.7). The top 5% of 

maximum (tensile) principal stress data from the femoral region of interest again showed that the 

addition of springs created changes in the tensile stress values, and these values were increased 

by ~25% (Table 2.7). However, when looking at the Von Mises stress data, with the exception of 

the Tied Anisotropy model, we observe a less than 5% difference in average stress between all 

models, most notably nearly identical average stresses between the most basic (Merged) and the 

most complex (Springs Anisotropy) (Table 2.7). The wall clock time for the Merged model was 

substantially lower than the other models (~30%), while there was no notable difference between 

wallclock times for the other models.  
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Table 2.7 Stress data (MPa) from the femoral bone region of interest using the 1.00 mm edge 

length resolution (converged for all outputs). 

  Avg. Tension 
Avg. 

Compression 

Top 5% 

Tension 

Top 5% 

Compression 

Avg. Von 

Mises 

Merged 0.2238 1.7564 0.5726 3.4099 1.7243 

Tied 0.2315 1.7658 0.5892 3.6205 1.761 

Tied 

Anisotropy 
0.2185 1.5911 0.6017 3.0538 1.5725 

Springs 0.3148 1.6931 0.8417 3.3441 1.7917 

Springs 

Anisotropy 
0.2816 1.7329 0.7745 3.2309 1.7283 

 

2.4.3. Material Properties Sensitivity Analysis 

When bone stresses are the desired output variable, specifically Von Mises for this study, 

changing the bone properties from a complex, mapped spectrum to simple two-level properties 

of trabecular and cortical bone has a substantial impact on the results (67%). However, 

increasing the number of levels bone properties resulted in an insignificant change (~1%) (Table 

2.8). Changing the meniscus or cartilage properties results in a <5% change in bone stresses 

(Table 2.8). However, when stresses in the femoral cartilage are the desired output variable, the 

change in cartilage properties from 25 MPa to 7 MPa resulted in an 11% change in average 

stress. Changing the meniscus properties from stiff, anisotropic to soft, isotropic properties and 

changing the bone properties to the two-level definition resulted in a <5% change in cartilage 

stress (Table 2.8). 
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Table 2.8 Results from the material properties sensitivity analysis. The structure column 

indicates the structure undergoing a change from the Springs Anisotropy model. The Change 

column describes the specific change being made. The percentages shown are the differences in 

Von Mises (VM) stress that resulted from material property change, when compared with the 

Springs Anisotropy model. 

Structure Change 
Bone 

VM 
Femoral Cartilage VM 

Meniscus E = 40 MPa 4% 1% 

Bone 2 levels of bone properties 67% 3% 

Bone 
50 levels of bone 

properties 
 1% 2%  

Cartilage E = 7 MPa 1% 11% 

 

2.5. Discussion 

With computational power continually increasing, the use of computation in biological 

phenomena continues to increase, and the complexity and size of models is also increasing. With 

higher complexity comes better model fidelity, but also an increased probability for errors, 

typically arising from the solver taking shortcuts to handle the added complexity (i.e, 

approximating a nonsymmetric Jacobian matrix with a symmetric matrix). The computational 

investigator has the duty to perform necessary verification and validation studies to ensure that 

the results are accurate and meaningful.  

This study examined several aspects of complexity for a model of the equine stifle joint, 

and established preferred levels of mesh refinement, meniscal restraint, and material property 

complexity. We have shown that for medial femoral condyle bone stresses, the most complex 

meniscal attachment is important (as other methods underestimate), accurate bone material 
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properties are crucial, and soft tissue properties have only a small effect on the results of the 

model. 

We have clearly illustrated that the output variables should dictate the accuracy and 

complexity of input variables/parameters. Sensitivity to these inputs should be verified and the 

model validated for each study. For example, our data shows that our hierarchy of model 

complexity for meniscal attachment presents additional tensile max principal stresses in the 

femur with the introduction of springs connecting the meniscus to the tibial cartilage (Table 2.7), 

yet compressive stresses remain relatively unchanged. Because our objective is to investigate 

bone damage, the tensile stresses are thus incredibly important. Therefore, future work on our 

equine stifle model will include a spring interaction between the meniscus and tibial cartilage. 

However, one could easily use a much simpler model, such as the Merged model, if compressive 

stresses or Von Mises stresses were the primary concern, and both model preparation time and 

computational time would be drastically reduced. The Merged model eliminates the need for 

proper delineation of tibial cartilage and meniscus, thus the segmentation process becomes less 

tedious and indirectly less prone to geometric error since the geometry of the combined part is 

simplified. However, combining parts can create severe curvature, resulting in error. The 

transition between the meniscus and the tibial cartilage along the periphery creates this severe 

curvature. This error, prominently seen in the 1.75 mm edge length model, can be attenuated by 

finding an appropriate element size that smooths the geometry of the part. 

We also observed that mesh convergence depends on the output variable used. This 

finding is consistent with Tseng’s recent findings in their convergence research of a skull model 

[22]. It may seem plausible that if convergence is achieved at a certain mesh density when 

looking at Von Mises stresses, the same mesh density would then work for other output 
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parameters such as max principal stresses. As shown in Tables 2.4-2.6, this is not a safe 

assumption to make. The implication then is that convergence must be shown for each desired 

output variable, and a mesh density should then be selected to obtain accuracy in all output 

variables. Based on this study, we will use an edge length of 1.00 mm for future studies as this 

edge length is converged for all parameters. 

This emphasis on output parameter is also important. With our focus on bone stresses, we 

see that meniscal and cartilage changes have little effect on the measured bone stress (Table 2.8). 

If we were to look at femoral cartilage stress, or contact pressure, the accuracy of cartilage 

properties would greatly affect the results (Table 2.8). We also showed that increasing the 

number of bone properties from 20 to 50 (evenly distributed between 50 MPa-21,000 MPa) 

resulted in an insignificant change, thus the use of 20 properties is sufficient. This finding is 

interesting in light of other studies that put great emphasis on the number of bone properties. 

McErlain et al. used theoretical approaches in selecting the number of bone properties used, 

resulting in more than 600 levels of properties [23]. 

For analysing bone stresses, errors in the bone properties will greatly influence our results 

(Table 2.8). It’s important to note that the bone property mapping is subject to error from the CT 

data itself. Ideally, a phantom would be present in the scan as a means of scaling the Hounsfield 

units [24]. Unfortunately, our working data set (as with many clinical images) does not contain 

such a phantom. 

In our meniscal attachment study, we demonstrated that computational time is only 

reduced by using linear elements, and by using the Merged model (though it should be noted that 

we did not investigate the effects of reducing the number of quadratic elements used). This may 

be partially explained by ABAQUS not having to track any user-defined constraint. In both the 
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Tied and Springs models, manual constraints were made in ABAQUS CAE, whereas the Merged 

model simply had shared nodes between the meniscus and tibial cartilage (and it is modeled as 

one structure). Because the nodes were shared, no constraint had to be created. Computational 

time is impacted the same way whether a tie constraint is being tracked, or a spring interaction, 

indicating that there is no computational time advantage in using a tied constraint over a spring 

constraint.  

We acknowledge that this study has limited scope and several limitations. All models 

were based on one CT scan of one stifle joint. Thus, there is some possibility that certain results 

may not be generalizable. In addition, the study of material property sensitivity was limited to a 

few levels of material properties, and a more complete analysis may yield further insight. 

2.6. Conclusion 

This paper was intended for the primary goal of establishing and verifying the proper mesh 

refinement and complexity of the stifle joint. The results indicate the importance of a thorough 

mesh convergence study, selecting appropriate meniscal attachment in a knee model, and the 

importance of material properties for obtaining accurate data from a model. 
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3. Stresses Associated with Subchondral Bone Cysts in an Extended Equine Stifle 

3.1. Introduction 

Subchondral lucencies (SCL) occur in the medial femoral condyle (MFC) of horses and 

can cause lameness [1-4] (Figure 3.1).  They are more common in horses ≤ 2 years of age, but 

can occur in older horses. The causes of SCL are not well understood, however, trauma and 

osteochondrosis are most commonly implicated [3, 4]. Serial radiographs of young horses that 

develop SCLs indicate initial trabecular bone sclerosis at the central area of femoro-tibial contact 

in extension followed quickly by MFC flattening, and then progressive loss of subchondral 

trabecular bone resulting in a SCL. Histologic examination of SCL contents reveals fibroplasia 

and capillary proliferation as well as fibrous tissue, degenerated bone and cartilage and 

disorganized areas of granulation tissue and woven bone [5, 6]. Biochemical analysis of the 

tissue lining the SCL removed arthroscopically reveals that inflammatory cytokines associated 

with bone resorption are present, and likely play a role in SCL formation and lameness [7, 8]. 

 

Figure 3.1 Radiograph of a grade 3 MFC SCL from a young Thoroughbred [9]. 

 

Treatments of SCL are directed at reducing local inflammation and promoting bone and 

cartilage healing. Injection of the SCL lining with corticosteroids can be used to reduce 
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inflammation [10], however arthroscopic SCL debridement of articular cartilage, disorganized 

SCL tissue including the lining is considered the treatment of choice [11-13]. After debridement, 

SCL voids can be left open, or filled with cancellous bone, osteochondral grafts [14], or a 

combination of bone substitutes, growth factors, chondrocyte grafts and mesenchymal stem cells 

in fibrin glue [15]. Treatment success rates range between slightly >50% to slightly <75%, with a 

tendency for surgical procedures to provide a somewhat better result than conservative treatment 

[1, 2, 6, 9-16]. However, there is little data about bone healing after debridement, and what is 

available suggests it occurs in < 20% of patients [15]. Given this poor rate of radiographic 

healing, the lack of data on the long-term resolution of lameness leaves doubt about the efficacy 

of this treatment approach. 

  Recently, treatment of MFC SCL using a lag screw has been reported that improves the 

rate of lameness resolution, and is the first treatment to report significant and consistent bone 

healing [9]. This suggests that a biomechanical approach can improve the treatment of equine 

SCL, but very little is known about the stresses within the medial femoral condyle, and how the 

procedure may be optimized. The equine stifle is a complex biological system and direct 

collection of biomechanical data would be difficult, if not impossible. Computational 

biomechanics provides a unique and powerful approach in overcoming this hurdle. The objective 

of the present study is to investigate the stresses in the medial femoral condyle at three different 

grades of SCL progression using finite element analysis. This information can help us better 

understand the mechanics associated with SCL that will allow clinicians to develop and 

implement rational treatment strategies. For this study, the grading scale of SCL defect presented 

in the introduction has been slightly modified to clearly distinguish cystic models from pre-cystic 

models, as well as generalizing the cystic development process into three stages. G1 in this study 
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correlates to a Grade 1-Grade 2 defect, G2 correlates to a Grade 3 defect, and G3 correlates to a 

Grade 5 defect. 

3.2. Methods 

 There is no available cross-sectional imaging data (CT and/or MRI) of MFC SCL 

progression from the intact condition to development of a large defect, and this presents a 

challenge for the creation of a MFC SCL model. Fortunately, descriptive literature (including 

radiographs) is available detailing SCL progression, which has resulted in a grading scale of SCL 

progression. Therefore, this study is able to take advantage of universally recognized clinical 

aspects of subchondral bone lesions. By creating an anatomically accurate model of a healthy 

stifle joint, manipulations can be made that mimic the stages of SCL progression, and the 

biomechanics associated with stifle injury (SBCs in this study) can be modeled and analyzed. 

This study incorporates a total of 11 models, separated into two model trees (one with a flattened 

femur, and one without) that represent clinically apparent aspects of SCL development. The lack 

of literature addressing flattened femurs make it an interesting aspect of MFC injury to isolate. 

3.2.1. Segmentation and Meshing 

 Computerized tomography (CT) images (247x247x130 voxels, 0.5, 0.5, 0.5 mm spacing) 

of an extended equine stifle joint were used as the canvas to segment both bony and soft tissue 

structures using ScanIP v7.0 (Simpleware, United Kingdom). The CT scan used in this study was 

resampled to a finer resolution than was used in Chapter 2 in order to have finer control over 

model manipulations (making the femur flat, for example). 

To correctly segment soft tissues without MRI data, reasonable assumptions were made 

for soft tissue boundaries. For example, it is known that the articular cartilage in the stifle joint 
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has a thickness of about two mm [17]. Therefore, the segmented bone can be dilated by two 

millimeters, and the original bone can be subtracted from the dilated structure, creating an even 

articular cartilage surface around each bone. An example of the segmentation process can be 

seen in Figure 3.2.  

 

 

Figure 3.2 Segmentation pictures from the MFC sagittal plane. A) Unsegmented image revealing 

original CT data. B) Femur and tibia (tan) segmented using an automatic grayscale threshold 

tool. C) Cartilage (dark blue) added to the periphery of the bone using a dilation technique. D) 

Fully segmented slice with the region of interest (green), SCL (red), and the medial meniscus 

(light blue) added. 

Furthermore, segmentation was performed under the supervision of a professor of 

veterinary surgery with detailed emphasis on clinical observations of stifle anatomy and 

pathology. Figure 3.3a is a frontal section of the cranial MFC that reveals that the axial MFC 

cartilage (articulates with the medial tibial eminence) is thicker than the abaxial cartilage 

(contacts the meniscus). This anatomy was reflected in the model (Figure 3.3b).  
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Figure 3.3 A) Frontal section of the medial condyle illustrating the thickened cartilage that 

articulates with the tibial eminence and B) the same frontal section of our finite element model 

with cartilage shown in blue.  

Included structures in the finalized 3D geometry were the femur, tibia, articular cartilage, 

menisci, patella, distal patellar ligaments, and the posterior cruciate ligament (PCL). This 

geometry was then divided into piecewise linear tetrahedral elements using the FE Free meshing 

algorithm in ScanIP and subsequently exported into ABAQUS v6.14 (SIMULIA, Providence, 

RI) to fully develop a finite element model (Figure 3.4). 
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Figure 3.4 Finite element meshes generated from ScanIP and full assembly in ABAQUS. A) 

Distal femur (not shown is the femoral cartilage to reveal green region of interest in the MFC). 

B) Menisci and meniscal ligament attachment. C) Tibia, patella, patellar ligaments, and the PCL. 

D) Full model assembly. 

 

3.2.2. Material Properties 

 For the present study, instantaneous stress responses were of primary concern, which 

allows for simplified material property formulations. With soft tissues such as cartilage having a 

viscoelastic time constant of 1500 seconds, the elastic solution does not differ from the biphasic 

solution in short loading times. Thus, linear elastic formulations that neglect viscoelasticity are 

appropriate for both accuracy and computational efficiency.  



77 

 

It has been shown that bone’s moduli is dependent on its mass density [18-21]. Bone is a 

heterogenous structure and was therefore modeled with 20 levels of material properties. 20 levels 

were selected as a result of an investigational study our lab did to determine the amount at which 

output stresses became stable. Bone moduli were correlated with Hounsfield units from the CT 

scan using the following equations:  

𝑀𝑎𝑠𝑠 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  (1.067 ∗ 10−3) ∗ 𝐺𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒 (1) 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = (6.0 ∗ 103) ∗ 𝑀𝑎𝑠𝑠𝐷𝑒𝑛𝑠𝑖𝑡𝑦2.5 (2) 

The power of 2.5 for the modulus equation accounts for the wide range of bone densities, 

where E α ρ3 for high density bone and E α ρ2 for low density bone [19]. This resulted in 

Young’s Modulus ranging from 50 MPa to 21,000 MPa. The cartilage was modeled as linear and 

isotropic with near incompressible behavior (Table 3.1). The meniscus was modeled as linear, 

anisotropic with different properties assigned to the circumferential, radial, and axial directions 

to account for its aligned collagen structure. Each meniscus was tied to their anatomical insertion 

points (meniscotibial ligaments), and the peripheral rim was attached to the tibial plateau using 

springs (k = 10 N/mm), which partially constrains meniscal motion similar to the joint capsule 

but allows for appropriate meniscal translation on the tibial plateau. The ligaments were modeled 

as linear and isotropic. Under our loading scheme, the collateral ligaments would not take on any 

compression, and the compressive resistance in the model would be inappropriate. The SCL was 

modeled as linear, isotropic and assigned a low Young’s Modulus relative to the surrounding 

tissue, as well as a high Poisson’s ratio to account for the incompressibility of the cystic contents. 

All material properties have been utilized in previous studies and are consistent with values 
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determined experimentally [22-28]. A summary of the material properties used can be found in 

Table 3.1. 

 

3.2.3. Verification  

By using commercially available finite element code (ABAQUS), verification of the code 

was unnecessary, as the developers have already done this. However, appropriate verification 

was performed to demonstrate appropriate mesh convergence. Demonstrating mesh convergence 

is a critical component to verifying the mathematical accuracy of a finite element model and 

shows that the model is not prone to errors from the mesh itself [29-32].  We used the benchmark 

of a <5% change in solution resolution between two successive meshes as an appropriate 

standard for convergence as described in a spine finite element model [33]. All structures were 

modeled initially with having an average element edge length of 2.00 mm. Soft tissues and the 

MFC ROI were refined by 0.25 mm increments until a <3% change was observed for all relevant 

output variables at an edge length of 1.00 mm. Use of quadratic elements in the model produced 

only a 1% deviation from linear elements. 

3.2.4. Validation  

Finite element models can be difficult to validate, especially when investigating 

phenomena that cannot be tested experimentally. While the bone stresses in the MFC cannot be 

validated with absolute certainty, a meaningful result can still be obtained through forms of 

indirect validation. We compared tibial contact pressure in the model with experimental data 

from a cadaveric stifle joint loaded in simple compression (Figure 3.5). Using the same boundary 

conditions, our model exhibited the same magnitude and distribution of stresses across the 
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medial plateau as the ex vivo results [34]. The femoral ROI for which we wish to generate bone 

stresses is immediately proximal to the medial tibial plateau. Therefore, it is reasonable to 

assume the load exerted on this region is accurate, and with the right material formulation, the 

bone stresses obtained should be valid. 

 

Figure 3.5 A) Ex vivo pressure distribution on the tibial plateau with cranial on the left of the 

image and caudal to the right [34]. B) Finite element model pressure distribution using the same 

boundary conditions as those used in A, as well as the same contact pressure scale on the left. 

The area immediately below the region of interest has been outlined in black in both images. 

Adapted from Veterinary Surgery, 2014;44:289-296 with permission. 
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Table 3.1 Summary of the material properties used in the current model. 

Structure Type Young's Modulus (MPa) Poisson's Ratio 

Bone Isotropic 50-21,000 0.3 

Menisci Anisotropic 
Radial and Axial = 20  

Circumferential = 120 

Radial and Axial = 0.3  

Circumferential = 0.45 

Cartilage Isotropic 25 0.45 

Ligaments Isotropic 300 0.3 

SCL Isotropic 1 0.49 

 

3.2.5. Boundary Conditions  

In order to accurately represent the contact mechanics of the stifle joint during loading, 

frictionless, nonlinear (surface-to-surface) contact formulations were defined between all 

articulating surfaces using the general contact formulation in ABAQUS. The femur was able to 

translate in all three anatomical planes but was constrained in flexion/extension as well as 

internal and external rotation (UR2, UR3 = 0). The distal tibia was fully constrained (encastre). 

A surface pressure was applied to the proximal femur, resulting in a total 3000 N force in the 

distal direction. This load approximates the load on a stifle joint during a walking task [35]. A 

175 N tensile force was applied to the proximal patella to simulate the action of the quadriceps 

apparatus. 

3.2.6. Analysis  

All quantitative analysis of stress data from FEA was performed using customized scripts 

in Matlab R2014b (MathWorks) (Appendix). Stress data was extracted from the region of 

interest and exported to an excel spreadsheet, which was then read into Matlab. This data 
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included the maximum principal stresses, minimum principal stresses, Von Mises stresses, and 

maximum Tresca stresses (shear). All values reported are an average of the top 5% for each 

output, as the bone is most likely to fail in areas of significantly higher stresses. Included 

parenthetically in the results tables are the percent differences when compared with the Normal 

model. 

During SCL development, a lucency occurs centrally at the joint surface in the sclerotic 

trabecular bone and the articular cartilage collapses [9]. Therefore, modeling the initial defect as 

a void with low modulus elements may be an inaccurate representation of the defect. In light of 

this, we performed a preliminary investigation of the effects of changing the grade 1 SCL into an 

area of collapsed bone and cartilage. Table 2 shows the changes in stress between the two 

methods of modeling the defect. 

Table 3.2 Comparative stresses (MPa) between the collapsed bone model and the G1 model. 

Both have the same area of defect, but the G1 model retains the same model geometry with 

elements in the defect having low properties, whereas in the collapsed bone model, cartilage has 

been collapsed into the defect to retain its integration with the bone. Though a 5% change in 

stress was found in compression between the two models, this is an acceptable difference and 

both models compared to the Normal model had a lower difference (<3%). 

  Tension (MPa) Shear (MPa) Von Mises (MPa) Compression(MPa) 

G1 0.8396 4.3042 3.7862 4.491 

Collapsed 0.8434 4.4793 3.9453 4.729 

% Change 0% 4% 4% 5% 
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Because the G1 model had a negligible effect on stresses compared to the collapsed bone 

model, it was used in further analyses, as it is much easier to implement. The small increases in 

stress in the collapsed model expected because the SCL of the G1 model was assigned a modulus 

of 1 MPa. Very little load is conveyed through the SCL, but enough is transferred to slightly 

lower the stresses in the ROI. However, creating models with idealized SCL structures was much 

less time-intensive than collapsing the bone and re-segmenting the cartilage. Also, the element 

quality around sharp bends may have lower quality, and the geometry of collapsed cartilage in 

Grade 2 or 3 cysts is less clear and may vary substantially. 

MFC finite element models were tested on two geometries, normal and flattened. Both 

normal and flattened geometries were tested because many MFC with radiographic abnormalities 

have flattening at the area of MFC and tibial contact in extension. In the flattened model, the 

MFC was flattened ~1 mm (depth) and 10mm (width) to mimic observed radiographic and post-

mortem flattening (Figures 3.6-3.7). The first trials were of normal MFC geometry. Sclerosis is 

the first radiographic abnormality detected in young horses and was added to normal geometry 

by increasing the bone modulus 12.8% [36]. Sclerosis was retained in further trials in normal 

geometry including G1, G2 and G3 defects. Defect size was chosen to depict conservative 

estimates of naturally occurring voids. In this study, grade 1 (G1) is a small central MFC 

depression (~0.03 cm3) in subchondral bone, grade 2 (G2) is a larger domed (~0.5 cm3) defect 

with a large articular opening, and grade 3 (G3) is a larger bone defect (~1.00 cm3) with a 

smaller articular footprint. Radiographic images for each defect can be seen in Figure 3.8. Defect 

size and location, and the region of interest (ROI) is schematically represented in Figure 3.9. The 

second set of trials was performed with sclerosis and flattened MFC geometry and with G1-3 

defects.  



83 

 

 

Figure 3.6 A) Normal contour generated by ScanIP showing the surface used by the meshing 

algorithm. B) Flattened contour to the right (distal). Note the flattening at the articulation site as 

well as the articulation site with the medial tibial eminence (lower right).  

 

Figure 3.7 A) Flattened MFC. B) Model preview after implementing the flattening in ScanIP. 

Note the “rim” around the flattening in the actual femur and the model preview. Though the rim 

is exaggerated in the preview tool, it is appropriately smoothed in the actual mesh. 



84 

 

 

Figure 3.8 Caudo-cranial radiographic images of six conditions tested in the finite element 

model. 

 

Figure 3.9 Isometric projections of three SCL models with the femoral region of interest shown 

in green and the SCL in red. For the purpose of this study, a grading scheme of 1-3 was utilized 

to simulate SCLs representing a small shallow defect (G1), a mid-size defect (G2), and a larger 

(G3) SCL.  



85 

 

3.3. Results 

 Each finite element model required approximately three hours to converge on a solution 

using 8 cores of an i7-3960X CPU @ 3.30 GHz. Predicted stresses and the percentage change 

from the normal condition (healthy MFC) were calculated for a MFC with normal geometry 

(Table 3) and with central MFC flattening (Table 4).  

3.3.1. Stress measurements 

  Compressive, tensile, shear, and von Mises stress in the top 5% of elements in each MFC 

model varied with MFC condition (Table 3.3). The addition of sclerosis to normal MFC 

geometry increased all predicted stresses approximately 14%. Compared to the normal model, 

flattening caused a decrease in predicted compressive, shear and von Mises stresses by 27%, and 

an increase of 9% in tensile forces. A G1 defect without a flattened condyle decreased predicted 

compressive, shear and von Mises stress in the normal MFC approximately 20% but did not 

affect tension any more than the sclerotic model. In the flattened MFC (Table 3.4), a G1 defect 

compared to the normal geometry decreased compressive, shear and von Mises stress 

approximately 15%, and tensile stress rose 29%. A G2 defect in the normal MFC still had a 

decrease in predicted stress for compression, shear and von Mises, yet tensile stress increased 

further to 37% above what is seen in a normal MFC. A G2 defect in the flattened MFC increased 

compressive, shear and von Mises stress approximately 3%, and tensile stress increased to 45% 

higher than normal. A G3 defect in the normal MFC increased compression, shear and von Mises 

stress approximately 5% above normal, and tension 74%. A G3 defect in the flattened MFC 

increased compressive, shear and von Mises stress approximately 25%, and tensile stress 

increased 102% compared to a normal geometry. Although all predicted stresses decreased in an 
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intact MFC when flattened, all stresses for all defects were increased in a flattened MFC as 

compared to a normal MFC.    

Table 3.3 Compression, tension, shear and von Mises stresses in the top 5% of all elements by 

condition in a medial femoral condyle with normal geometry. G1-G3 are increasing sizes of 

defects. Parenthetically shown is the percentage change when compared with the normal MFC. 

 

Compression MPa 

(% change) 

Tension MPa 

(% change) 

Shear MPa 

(% change) 

von Mises MPa 

(% change) 

Normal 5.3187 0.6519 4.9669 4.529 

Sclerotic 6.11 (15%) 0.76 (17%) 5.54 (11%) 5.08 (12%) 

G1 4.23 (-21%) 0.76 (17%) 4.05 (-18%) 3.65 (-19%) 

G2 4.55 (-15%) 0.89 (37%) 4.47 (-10%) 3.97 (-12%) 

G3 5.56 (4%) 1.13 (74%) 5.30 (7%) 4.82 (6%) 

 

Table 3.4 Comparison of compression, tension, shear and von Mises stresses in the top 5% of all 

elements by condition in a medial femoral condyle with normal and flattened femur geometry.  

G1-G3 are increasing sizes of defects. 

 
Compression 

(% change) 

Tension 

MPa 

(% change) 

Shear MPa 

(% change) 

von Mises MPa 

(% change) 

Normal 5.3187 0.6519  4.9669 4.529  

Sclerotic 6.11 (15%) 0.76 (17%) 5.54 (11%) 5.08 (12%) 

Flattened 3.91 (-27%) 0.71 (9%) 3.65 (-27%) 3.33 (-27%) 

G1 4.49 (-16%) 0.84 (29%) 4.30 (-13%) 3.79 (-16%) 

G2 5.37 (1%) 0.95 (45%) 5.28 (6%) 4.64 (2%) 

G3 6.31 (19%) 1.32 (102%) 6.44 (30%) 5.85 (29%) 
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3.3.2. Stress mapping 

 Stress mapping was performed for flattened MFC geometry for compression, tension, and 

shear stresses in the frontal and sagittal planes. The frontal plane was located at the site of 

femoral-tibial contact and the sagittal plane was the center of the MFC. Tensile stress was low 

for the normal, sclerotic and flattened conditions in both the frontal and sagittal planes (Figure 

3.10). However, focal areas of tensile stress were predicted for all three defects (primarily in the 

frontal plane), enlarged with defect size, and for the G3 defect, were largest at the proximal-

medial and distal-lateral aspects (Figure 3.10). Shear stress was elevated in the normal and 

sclerotic conditions at the femoro-tibial contact zone and were highest in the sagittal plane. Shear 

stress decreased with flattening and the G1 defect, increased with G2 and G3 defects in both 

planes, and were largest distally and laterally (Figures 3.11-3.12). Compression demonstrated a 

similar pattern as shear, elevated at the contact zone in both the frontal and sagittal planes in 

normal and sclerotic models and decreasing with flattening and the G1 defect (Figures 3.13-

3.14). High compressive stress was predicted with G2 and G3 defects distally at the contact zone 

in both planes. Both shear and compressive stress were very low at the proximal aspect of the G3 

defect.    
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Figure 3.10 Tension stress maps in MPa for MFC. The first six maps are for frontal plane 

tension, and the last three for sagittal plane tension. The first three conditions (normal, sclerosis 

and flattening) for the sagittal plane were almost identical to the frontal plane and are omitted. 

The point of view for the frontal plane is caudal to cranial (medial is right of image) and for the 

sagittal plane is medial to lateral (cranial is right of image). Tensions are significantly elevated in 

the G2 and G3 defects compared with the Normal condition. 
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Figure 3.11 Shear stress maps in MPa for MFC for all six conditions in the frontal plane. The 

point of view is caudal to cranial (medial is right of image). Shear stresses are high at the 

articulation site with the Normal and Sclerotic conditions. Shear stresses are lowered in the 

Flattening and G1 conditions. Shear stresses are then elevated cranial and lateral with G2 and G3 

defects.  
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Figure 3.12 Shear stress maps in MPa for MFC for all six conditions in the sagittal plane. The 

point of view is medial to lateral (cranial is right of image). High shear stress is observed at the 

articulation region in the Normal and Sclerotic conditions. Shear stresses decreased in the 

Flattened and the G1 defect conditions. Shear stresses are then increased substantially in the G2 

and G3 defects lateral to the cyst.   
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Figure 3.13 Compression stress maps in MPa for all six conditions in the frontal plane. The point 

of view is caudal to cranial (medial is right of image). Compressions are high at the articulation 

region in the Normal and Sclerotic conditions. A decrease is observed in the Flattened and G1 

conditions. Compressive stresses are then elevated cranial and lateral to the cystic structures in 

the G2 and G3 conditions. 
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Figure 3.14 Compression stress maps in MPa for all six conditions in the sagittal plane. The 

point of view is medial to lateral (cranial is right of image). High compressions are observed at 

the articulation site in the Normal and Sclerotic conditions. Compressive stresses decrease in the 

Flattened and G1 conditions. Increases in compressive stress (over normal) occur in the G2 and 

G3 conditions, most notably lateral to the cyst and in the necking region of the G3 defect. 
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3.4. Discussion 

 Finite element models can provide researchers and clinicians alike with a powerful tool to 

study biological phenomena that would otherwise be impossible to study. With careful 

implementation of appropriate boundary conditions and material properties, finite element 

analysis provides an accurate representation of what is likely to be found experimentally, if we 

had the necessary equipment to do so. The purpose of this study was to utilize a finite element 

model of an equine stifle joint to better understand the biomechanical consequences of SCL in 

the MFC. 

 In a previous finite element study, McErlain et al. demonstrated that von Mises stresses 

are elevated in bone adjacent to an idealized spherical SCL (cyst) in knees of osteoarthritis 

patients [24]. However, von Mises stresses do not provide a full mechanical picture, especially in 

biological tissue such as bone. Our study investigated the tensile, compressive, shear stresses, as 

well as von Mises stresses associated with SCL in the equine stifle. We also expanded the region 

of interest to encapsulate changes for several millimeters on the periphery of the SCL, whereas 

Mcerlain only considered a 1 mm layer for the stresses. Also worth noting, compared with 

McErlain et al.’s findings, we found that von Mises stresses, along with compressive and shear 

stresses, actually decreased in defects of smaller size (<0.5 cm3) (Table 3.3). This has 

implications on treatment strategies depending on the severity of the defect. 

 The stress data presented in this study offer new insight into subchondral lesion 

development. The large increases in tension, especially with the G2 and G3 defects, are startling 

when considering that trabecular bone is weak in tension and shear, and that in vivo loads at a 

galloping pace are higher than those tested in this model.  This increase in tension, coupled with 

continued loading, would not provide an environment conducive to healthy bone 
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healing/remodeling. However, increased tension also indicates an increase in strain (leading to 

microfractures and damage that must be healed). 

Perhaps the most surprising finding is the significant drop in compressive and shear 

stresses with the flattened and G1 condition. However, considering that flattening the femur 

increases the contact area with the tibial plateau, peak stresses should decrease as the load can 

now be transferred across a greater surface. Bone resorption may explain how a defect forms 

after a flattening of the femur. The significant drop in stresses at the articulation site may lead to 

a bone adaptation. However, it is more likely that bone damage is present after a flattening 

occurs, and a defect forms as a response to this trabecular damage, which cannot be healed under 

continued loading. 

 To the author’s knowledge, this is the first study that examined the mechanical impact of 

a flattened articular surface on the MFC and of various sizes of SCLs. Flattening the MFC 

increased stress in all three SCL models, most notably tension. It should be noted that only the 

bone on the medial femoral condyle was flattened. This resulted in a gap between the femur and 

the tibia not present in the non-flattened models. It took roughly 400 N of force to fully close the 

gap, thus transmitting more of the force to the lateral tibial plateau. Stresses may have been 

further exacerbated if the two bones began in contact. Unfortunately, the lack of data available 

make this idealized flattening the most reasonable assumption. When high-resolution 3D image 

data of a flattened femur become available, future models will incorporate that geometry. 

There are a number of limitations associated with the study. Only one CT image set was 

used, and thus we cannot determine if some of our results are specific to the stifle geometry used 

to create our model. Also, the flattening of the femur and the SCL placement was idealized based 
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on clinical observations. Ideally, a horse stifle would be imaged over a course of time to capture 

the healthy and damaged states, and model geometries would be made accordingly. We have also 

artificially constrained the model by not allowing internal and external rotation. Lastly, the 

model does not include any damaged bone, something that is likely present after flattening and 

before subchondral lesions begin to manifest, especially if the trabecular bone is collapsing to 

allow for a flattened femur. With the lack of data available on bone quality around SCLs, it did 

not seem reasonable to include changes in bone properties outside of sclerosis. Future studies 

will address these limitations. 

SCL development in the MFC is likely a multifaceted phenomenon. However, the 

mechanical data from this model suggests that altered stresses in the MFC is a major factor in 

SCL development. It also suggests that treatment of a SCL in the MFC should address alterations 

in  MFC biomechanics as proposed by Santschi et al.[9]. This study also has significant 

implications for human orthopedic disease. Humans develop SCLs, most typically as a bone 

“adaptation” during the onset of osteoarthritis [37-39]. Gregory et al. discuss the relevance of 

certain animal models, such as the horse, functioning as a reliable platform to translate animal 

research into human implications [40]. Typically, mouse models are used, but they lack the 

anatomical similarity to humans [41]. With horse stifles being anatomically similar to human 

knees, and because equine SCLs occur without the confounding effects of osteoarthritis, our 

model has advantages for the study of human SCLs.  

 In conclusion, a finite element model of an equine stifle joint was developed in order to 

study the biomechanical consequences of SCL in the MFC. We found that significant stress 

changes occur in the MFC during SCL development, resulting in a positive feedback loop that 

perpetuates and grows the SCL. Appropriate treatments of SCLs that restore the mechanical 
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environment of the MFC should help to promote bone healing. Future models will add a 

transcondylar screw to the model to investigate the impact of the screw and its placement on 

MFC biomechanics. 
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Conclusion / Future Work 

 Chapter one of this Thesis addressed the severity of subchondral bone cysts in the medial 

femoral condyle of the horse. Both the large population affected, as well as the implications on 

horse health make the full understanding of SBC pathogenesis high priority. With an 

understanding of its pathology, rational treatment strategies can be implemented, ultimately 

raising the low percentage of success rates in current treatment strategies. Interestingly enough, 

humans suffer from the same cystic lesions, most often in conjunction with osteoarthritis. With 

horses having an anatomically similar joint compared to the human knee, experiencing the 

proportional loads as a human knee, and having SBCs without osteoarthritis, the horse model is 

advantageous to the study of human SBCs, as well.  

 A critical obstacle facing clinicians in the study of SBCs is that the defect is subchondral, 

making it incredibly difficult to study in a live horse. Chapter one discussed the advantage of 

using finite element analysis to overcome this obstacle.  

 It is hypothesized that SBCs create serious mechanical consequences in the surrounding 

bone, providing an unfavorable environment for the bone to undergo healthy remodeling. This 

constant state of elevated stresses coupled with constant loading may explain cyst growth and 

development. Thus, this work aimed to test that hypothesis by creating a finite element model of 

an equine stifle joint and investigating stresses at each stage of cystic progression. 

 Chapter two focused on the development of an equine stifle model, as well as providing 

insight into the general process of computational modeling. This insight focused on the 

importance of understanding how the desired output of a model dictates what assumptions can be 

made in the inputs (material properties, boundary conditions, structure omissions, etc). For 
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example, the equine stifle joint needed to produce accurate stresses within the bone of the medial 

femoral condyle. Thus, the way the condyle interacts with the tibial plateau is especially 

important as this is the site of load transfer. Accordingly, the way the meniscus interacts with the 

tibial plateau has significant effect on the stresses recorded. Thus, spring attachments were 

utilized to allow for semi-constrained interaction, as opposed to a simpler tie interaction. On the 

other hand, a reported range of cartilage properties in the literature had little effect on the Von 

Mises stresses within the bone of the condyle. This insensitivity of cartilage properties on Von 

Mises stresses could allow for any reported value to be used, as long as Von Mises stresses were 

of primary concern. Chapter two also demonstrates the importance of mesh convergence and 

how convergence for one variable does not guarantee convergence for another variable. For 

example, it was found that for an output of Von Mises stresses, convergence was demonstrated at 

a much coarser mesh than was demonstrated for maximum principal stress. Therefore, a mesh 

refinement should be made in light of convergence for every output. Ultimately, a verified model 

of the equine stifle joint was developed. Validation, beyond proper selection of material 

properties, was demonstrated in chapter three. 

Chapter three implemented the equine stifle model to address the biomechanics 

associated with subchondral bone cysts. It was found that significant changes in the femoral bone 

occur in each stage of cystic progression (beginning with bone sclerosis and ending in a severe 

defect). Most notably, tensions increase in a severe defect by more than 100% compared to a 

healthy, intact femur. Increased tension alongside continued loading may prevent the bone from 

healing properly, and ultimately resulting in further growth of the defect. Other modes of stress 

such as shear and compression decreased with smaller defects. This may suggest an adaptation 

could occur in which an increase in bone resorption further destroys the bone. However, it is 
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more likely that a defect occurs after flattening due to a damage repair response. This work has 

provided new, critical insight into the role that biomechanics have in SBCs, and provide rationale 

in implementing treatments that address the mechanical changes in the bone.  

 Though this work has a significant impact in the clinical sciences, several limitations 

exist and can be addressed in future work. These limitations and how future work can address 

them include: 

Limitation: A single CT image set was used to create all models used in this work. The image 

data belonged to a healthy stifle joint, and thus all stages of the cystic development process were 

idealized. 

Future Work: Additional image sets can be obtained to create more models. With more models 

analyzed, the possibility of subject-specific geometries having a significant impact on femoral 

bone stresses can be examined. Also, if image data of a horse with a SBC is obtained, a defect 

model can be made based on the native geometry. 

Limitation: The current model is only able to provide an instantaneous stress response in one 

orientation (full extension), neglecting the effect of long-term, repetitive loading with multiple 

stifle orientations. 

Future Work: Kinematic data of an equine stifle in a moving horse could be used as 

loading/boundary conditions to create a dynamic model. Material properties could be changed 

accordingly. This process could also be idealized by analyzing quasi-static models in other joint 

orientations. Creating an axis of rotation in the femur, the joint can be flexed and extended to 

different flexion angles for the loaded part of gait. At each flexion angle, the appropriate load 
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could then be applied, and the process could be repeated several times. ABAQUS can handle this 

type of loading using multiple loading steps.  

Limitation: Bone damage was not addressed in this model, nor was there a criteria set to create 

bone damage. 

Future Work: A critical examination of literature could be performed to gain any insight into the 

quality of the bone surrounding a subchondral lesion and/or the quality of bone in flattened 

femurs. Lowering the properties of the bone to account for damage might be more realistic for of 

SBC modeling the flattened femur and cyst development. Also, using a criteria for bone 

adaptation, such as Wolff’s Law, an iterative modeling scheme could be employed to predict the 

response of bone to damage and stresses leading to cyst growth or healing. 

 Beyond the future work highlighted to address the study limitations, future models should 

examine cyst stress before and after a screw is inserted into the model. These will help us 

understand the efficacy of this surgical treatment that is mechanically focused. In summary, 

treatments such as that proposed by Santschi et al. should be thoroughly investigated.  
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Appendix  

%% Lance Frazer 
% m.file used for Master's work 
% April 29th, 2016 

  
%% Extracting Data from ABAQUS 
% 1. Under the report tab, create rpt. file 
% 2. Open rpt. file in Excel 
% 3. Move dividers so that: 
    % C Column is Von Mises stress 
    % D Column is maximum principal stress 
    % G Column is minimum principal stress 
    % H Column is Tresca stress 
% 4. Save as Excel file 

  
%% Reading in Data 
clear all; 
clc; 

  
WorkBook = 'Normal-EN'; % CHANGE Excel file name 
disp(WorkBook) 

  
%% Obtaining Tensions (Positive Maximum Principal Stresses) 

  
[D Y A] = xlsread(WorkBook,1,'A20:A1000000'); % Change range if nec. 
[C X Data] = xlsread(WorkBook,1,'D20:D1000000'); % Change range if nec. 

  
for i = 20:1000000 % Change range if nec. 
    if ischar(A{i-19}) == 1 % If cell in A column is a string 
        Data{i-19} = 0; % Changes the corresponding C cell to 0 
    end 
end 

  
emptycells = cellfun(@isempty,Data); % Finds empty cells 
Data(emptycells) = []; % Deletes empty cells 

  
b = cellfun(@isnan,Data); % Finds NaN entries 
idx = find(b(:,1)); 
Data(idx,:) = []; % Deletes NaN entries 

  
Data = cell2mat(Data); % Converts cell array to matrix 
Data(Data == 0) = []; % Deletes zeroes made from the above for loop 

  
Signs = sign(Data); 
for j = 1:length(Signs) % Finds positives and negatives 
    if Signs(j) == 1 
        Tensions(j) = Data(j); % Positives = Tensions 
    else 
        Compressions(j) = Data(j); % Negatives = Compressions 
    end 
end 

  
Tensions(Tensions == 0) = []; % Deletes zeroes created from sign for loop 
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Top5Tension = prctile(Tensions,95) 
clearvars -except WorkBook 

  
%% Obtaining Compressions (Negative Minimum Principal Stresses) 

  
[D Y A] = xlsread(WorkBook,1,'A20:A1000000'); % Change range if nec. 
[C X Data] = xlsread(WorkBook,1,'G20:G1000000'); % Change range if nec. 

  
for i = 20:1000000 % Change range if nec. 
    if ischar(A{i-19}) == 1 % If cell in A column is a string 
        Data{i-19} = 0; % Changes the corresponding C cell to 0 
    end 
end 

  
emptycells = cellfun(@isempty,Data); % Finds empty cells 
Data(emptycells) = []; % Deletes empty cells 

  
b = cellfun(@isnan,Data); % Finds NaN entries 
idx = find(b(:,1)); 
Data(idx,:) = []; % Deletes NaN entries 

  
Data = cell2mat(Data); % Converts cell array to matrix 
Data(Data == 0) = []; % Deletes zeroes made from the above for loop 

  
Signs = sign(Data); 
for j = 1:length(Signs) % Finds positives and negatives 
    if Signs(j) == 1 
        Tensions(j) = Data(j); % Positives = Tensions 
    else 
        Compressions(j) = Data(j); % Negatives = Compressions 
    end 
end 

  
Compressions(Compressions == 0) = []; 

  
Top5Compression = -prctile(-Compressions,95) 

 
clearvars -except WorkBook 

  
%% Obtaining Von Mises Stresses 

  
[D Y A] = xlsread(WorkBook,1,'A20:A1000000'); % Change range if nec. 
[C X Data] = xlsread(WorkBook,1,'C20:C1000000'); % Change range if nec. 

  
for i = 20:1000000 % Change range if nec. 
    if ischar(A{i-19}) == 1 % If cell in A column is a string 
        Data{i-19} = 0; % Changes the corresponding C cell to 0 
    end 
end 

  
emptycells = cellfun(@isempty,Data); % Finds empty cells 
Data(emptycells) = []; % Deletes empty cells 
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b = cellfun(@isnan,Data); % Finds NaN entries 
idx = find(b(:,1)); 
Data(idx,:) = []; % Deletes NaN entries 

  
Data = cell2mat(Data); % Converts cell array to matrix 
Data(Data == 0) = []; % Deletes zeroes made from the above for loop 

  
VM = Data; 

  
Top5VM = prctile(VM,95) 
clearvars -except WorkBook 
%% Obtaining Tresca Stresses (Maximum Shear Stresses) 

  
[D Y A] = xlsread(WorkBook,1,'A20:A1000000'); % Change range if nec. 
[C X Data] = xlsread(WorkBook,1,'H20:H1000000'); % Change range if nec. 

  
for i = 20:1000000 % Change range if nec. 
    if ischar(A{i-19}) == 1 % If cell in A column is a string 
        Data{i-19} = 0; % Changes the corresponding C cell to 0 
    end 
end 

  
emptycells = cellfun(@isempty,Data); % Finds empty cells 
Data(emptycells) = []; % Deletes empty cells 

  
b = cellfun(@isnan,Data); % Finds NaN entries 
idx = find(b(:,1)); 
Data(idx,:) = []; % Deletes NaN entries 

  
Data = cell2mat(Data); % Converts cell array to matrix 
Data(Data == 0) = []; % Deletes zeroes made from the above for loop 

  
Tresca = Data; 

  
Top5Tresca = prctile(Tresca,95) 

 

 

 


