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Abstract Ionization of neutrals by precipitating electrons and ions is the main source of Titan’s nightside
ionosphere. This paper has two goals: (1) characterization of the role of electron impact ionization on the
nightside ionosphere for different magnetospheric conditions and (2) presentation of empirical ion production
rates determined using densities measured by the Cassini Ion and Neutral Mass Spectrometer on the
nightside. The ionosphere between 1000 and 1400 km is emphasized. We adopt electron fluxes measured
by the Cassini Plasma Spectrometer-Electron Spectrometer and the Magnetospheric Imaging Instrument
as classified by Rymer et al. (2009). The current paper follows an earlier paper (Paper I), in which we
investigated sources of Titan’s dayside ionosphere and demonstrated that the photoionization process is
well understood. The current paper (Paper II) demonstrates that modeled and empirical ionization rates on
the nightside are in agreement with an electron precipitation source above 1100 km. Ion production rate
profiles appropriate for different Saturnian magnetospheric conditions, as outlined by Rymer et al., are
constructed for various magnetic field topologies. Empirical production rate profiles are generated for deep
nightside flybys of Titan. The results also suggest that at lower altitudes (below 1100 km) another source,
such as ion precipitation, is probably needed.

1. Introduction

As a result of ionization of its neutral atmosphere [Waite et al., 2005, 2007; Vuitton et al., 2006, 2007; Magee
et al., 2009], Titan is surrounded by an ionosphere whose density peaks at altitudes between 900 and 1200 km
[Wahlund et al., 2005; Young et al., 2005; Keller et al., 1992;Gan et al., 1992; Cravens et al., 2004, 2005, 2008, 2009a,
2009b; Galand et al., 1999; Banaskiewicz et al., 2000; Molina-Cuberos et al., 2001; Lilensten et al., 2005a, 2005b;
Agren et al., 2007; Kliore et al., 2008] (see recent review by Galand et al. [2014]). The ionosphere has been
detected using the radio occultation technique by both the Voyager 1 and Cassini spacecraft [Bird et al., 1997;
Kliore et al., 2008; Cravens et al., 2009a]. In situ electron densitymeasurements were first made during the Cassini
Ta encounter [Wahlund et al., 2005], and ion density measurements were first made by the Cassini Ion and
Neutral Mass Spectrometer (INMS) during the T5 nightside flyby of Titan [Cravens et al., 2006].

Titan’s location in Saturn’s magnetosphere determines the superthermal electron populations that exist and
can precipitate along magnetic field lines into the ionosphere [Carbary and Krimigis, 1982; Arridge et al., 2006,
2008; Coates et al., 2007a; Carbary et al., 2007; Bertucci et al., 2008; Rymer et al., 2009; Sergis et al., 2009]. As Titan
lacks a significant intrinsic magnetic field [Hartle et al., 1982; Neubauer et al., 1984], the magnetic field line
topology is dictated by the draping of Saturnian magnetic field lines around Titan (cf. review by Sittler et al.
[2009]). Rymer et al. [2009] classified outer magnetospheric electron populations based on Titan’s location
using data from the Cassini Plasma Spectrometer-Electron Spectrometer (CAPS-ELS) and the Magnetospheric
Imaging Instrument (MIMI). Four classes of spectra were identified: (1) plasma sheet, (2) lobe like, (3)
magnetosheath, and (4) bimodal. Related to this, Kliore et al. [2011] emphasized the large variability in
electron densities in Titan’s ionosphere measured by the Cassini Radio Science Subsystem indicating wide
variations in the superthermal electron population of the same classification.
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Models of the ionosphere have shown that energetic magnetospheric electron and ion precipitation can
also take place and contribute to the ionization rate and atmospheric heating, particularly at lower
altitudes [cf. Galand et al., 2014; Agren et al., 2007; Cravens et al., 2008, 2009a, 2009b; Gronoff et al., 2009a,
2009b; Sillanpaa and Johnson, 2013]. Ionization sources on the nightside for the T5 encounter of Titan were
discussed by Agren et al. [2007], Cravens et al. [2009b], Robertson et al. [2009], and Gronoff et al. [2009b].
One conclusion was that the flux of magnetospheric electrons precipitating into the atmosphere needs
to be reduced by a factor of 10 in order to reproduce the electron densities measured by the RPWS-LP
(Radio Plasma Wave Science-Langmuir Probe) instruments aboard the Cassini spacecraft. The current
paper will come to different conclusions.

Snowden et al. [2013] and Gan et al. [1993] demonstrated that “erosion” of Saturnian magnetic flux tubes
(i.e., depletion of the electron content) caught up in Titan’s ionosphere can result in such attenuation of
incident superthermal electron fluxes. Gronoff et al. [2009b] specifically examined the ion production
of N2

+, N+, and CH4
+ using their TransTitan model [Gronoff et al., 2009a] in order to consider effects of

magnetic field line geometry on the ionization processes. This was similar to the work done by Cravens et al.
[2009b]. In situ magnetic field measurements [e.g., Neubauer et al., 1984; Bertucci et al., 2009] combined with
post-Cassini global MHD and hybrid models [Ma et al., 2009; Ledvina et al., 2012] demonstrated that the
magnetic field line topology is complex, particularly at lower altitudes. The magnetic fields produced by global
models do not generally agree with magnetometer data below 1300km or so [Ulusen et al., 2010].

Chemical models incorporating neutral and/or ion chemistry have been created to explain observed ion
densities at Titan [Keller et al., 1992; Krasnopolsky, 2009; Lavvas et al., 2008a, 2008b; Robertson et al., 2009;
Vuitton et al., 2007, 2008;Westlake et al., 2012;Wilson and Atreya, 2004]. Robertson et al. [2009] used a steady
state photochemical model of the ion-neutral chemistry that, coupled with a photoionization and two-stream
code, generated the primary (those caused by photoionization) and secondary (those caused by electron
impact ionization) ion production rates and calculated ion densities as a function of altitude as was done
in the model of Keller et al. [1992]. The model of Robertson et al. did not contain information about negative
ion chemistry which could be important in the lower ionosphere [Vuitton et al., 2008; Ågren et al., 2012;
Shebanits et al., 2013; Wellbrock et al., 2013; Vigren et al., 2014] or ion transport effects which limit the
applicability of this model above 1400 km or to very long lived ion species, where ion transport becomes
nonnegligible [Ma et al., 2006; Cui et al., 2010].

The current paper will use the two-streammethod to handle suprathermal electron transport in the atmosphere.
This method was originally used to calculate electron fluxes in the terrestrial ionosphere [Nagy and Banks, 1970]
and has been used in models of both the energetics and composition of Titan’s ionosphere [Gan et al., 1992;
Cravens et al., 2009b; Robertson et al., 2009; Snowden et al., 2013]. This method derives from a gyrotropic distribution
function averaged over a gyroperiod [cf. Schunk and Nagy, 2009]. As photoelectrons andmagnetospheric electrons
move along field lines, they may scatter in a new direction or ionize a neutral thus creating another electron.
This secondary electron must then also be tracked along the field line. Monte Carlo simulations have shown that
considering only two streams, one up and one down [cf. Schunk and Nagy, 2009, and references therein], is usually
sufficient in the ionosphere. Once “primary” ion production rates are determined (due to solar radiation, particle
precipitation, etc.), chemistry alters the ion composition, as discussed in Paper I for the dayside.

First, comparisons between nightside INMS measurements and modeled ion densities will be made for a few
passes (similar to what was done for the dayside in Paper I) [Richard et al., 2015]. Empirical ion production rates
will be constructed from INMS data using the methods of Paper I. Next, generic ion production profiles for the
canonical cases discussed by Rymer et al. [2009] will be generated for three magnetic field line topologies
(horizontal (nested), parabolic, and radial fields). The goal of this endeavor is to produce ion production rate
profiles to enable future modeling efforts to combine the solar ion production profiles with the ion production
caused by magnetospheric electrons when Titan is located in an area of Saturn’s magnetosphere characterized
by Rymer et al. to predict the ion production and density profiles for future flybys of Titan.

2. Methodology

Electron impact ionization appears to be themain in situ ionization source of the nightside of Titan above≈1000km
[cf. Agren et al., 2007; Cravens et al., 2009a, 2009b; Robertson et al., 2009]. In this section we provide more
information on the methods used.
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2.1. Neutral Densities

The neutral densities required in the
model are those measured by INMS
for N2, CH4, and H2. Figure 1 shows
densities for ingress of the T5 and T57
flybys. The densities all include a factor
of 3.15 increase associated with the
recalibration of the instrument [cf.
Westlake et al., 2012;Mandt et al., 2012].
Continuing calibration efforts (J. H.
Waite Jr., manuscript in preparation,
2015) indicate that the INMS closed
source neutral density calibration
factor might be closer to 2.5 and
that the factor for open source ion
measurements might be a factor of 1.5
higher than values used in this paper
(which are consistent with Mandt
et al.). As our empirical ion production
rates are obtained from the product of
neutral and ion densities, the actual

values could potentially be 20% larger. This 20% modification is within statistical error bars of the data, and
the conclusions of the paper are unaffected.

Neutral densities for the remaining 35 neutral species in the model are determined using the mixing ratio
profiles of Krasnopolsky [2009] or Lavvas et al. [2011] for the case of CH2NH, anchored to mixing ratios
reported byMagee et al. [2009], Cui et al. [2009], and Robertson et al. [2009]. This method is described in detail
in Paper I [Richard et al., 2015].

Another set of neutral density profiles was used in our determination of “generic” ion production rates
associated with precipitation of different magnetospheric electron populations as outlined by Rymer et al.
[2009]. The global average model of the neutral atmosphere discussed in Paper I (Richard et al.) was
implemented and was based on INMS [Magee et al., 2009] data from 40 Titan flybys and on the Huygens
Atmospheric Structure Instrument data below 960 km [Fulchignoni et al., 2005], fromwhich profiles of N2, CH4,
and H2 are derived (Figure 1).

2.2. Two-Stream Equations for
Suprathermal Electron Flux

Electron fluxes as a function of energy
and ion production rates are calculated
by solving two-stream equations [Nagy
and Banks, 1970; Schunk and Nagy, 2009]
using Saturn’s magnetospheric electron
flux (i.e., Figure 2). Discussion of the
application of this method to Titan can
be found in Gan et al. [1992, 1993],
Cravens et al. [2009b], and Richard et al.
[2011]. Given the complexity of the
magnetic field topology and at least
partial disagreement of global
plasma/field models (e.g., MHD) with
magnetometer data, we follow the
lead of Gan et al. and adopt parabolic
field lines in addition to radial field
lines. The apex altitude determines the

Figure 1. Number density of major neutral species derived from INMS
measurements for the global average (solid lines), T5 (dashed lines), and
T57 (dotted lines) flybys of Titan. N2, CH4, and H2 are indicated by the black,
red, and blue lines, respectively. The number densities have been multiplied
by a factor of 3.15 in this figure in order to account for a potential recalibration
of the INMS instrument.

Figure 2. Superthermal electron fluxes measured by the Cassini CAPS and
MIMI instruments in Saturn’s outer magnetosphere plotted against energy
for the four magnetospheric plasma environments presented by Rymer
et al. [2009].
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dip angle of the field lines at ionospheric
altitudes. For example, for T5 putting the
apex at the surface results in field lines that
have a dip angle of about 45° near 1100 km,
in agreement with Cassini magnetometer
data shown by Richard et al. [2011] and
discussed by Cravens et al. [2009b]. These
papers show that the magnetic field vectors
have large radial and horizontal components
throughout the T5 flyby. Parabolic field
lines are shown in Figure 3.

We now briefly describe how the inelastic
electron impact cross sections, σ, for a
species j with an electron of energy E are
calculated using the parametric formula of
Green and Dutta [1967]. For the differential
ionization cross section the expression
developed by Green and Sawada [1972] is
implemented. Elastic electron differential
cross sections are calculated from the values
of Trajmar et al. [1983] and Solomon et al.
[1988] and have been integrated by Gan
et al. [1992] in order to obtain the backscatter

probabilities and the elastic cross section as a function of energy for electron-N2 collisions. The sum of
vibrational excitations of molecular nitrogen through inelastic collisions was taken from Porter et al. [1976]. For
the cross section of the A, B, B′, C, a, a′, and W states the revised cross sections of Cartwright et al. [1977] by
Trajmar et al. [1983] were used. The cross sections of the b′ and 1Πu were obtained from Zipf and McLaughlin
[1978]. The sum of the Rydberg states was derived by normalizing the values from Green and Stolarski [1972] to
the total dissociation cross sections of Zipf and McLaughlin when they are added to the cross sections
of the b′ and 1Πu states.

The ionization cross sections of Tabata et al. [2006] and Itikawa [2006] are used in the current work. Differential
elastic electron impact cross sections of methane have been taken from the theoretical work of Jain [1986]
over energy ranges from 0.1–1 eV, 2.5–20 eV, and 30–400 eV. Backscattering probabilities, integrated cross
sections, andmomentum transfer cross sections have been calculated from these results. The results of Tanaka
et al. [1983] are used for the differential cross sections above 2eV. Measurements are provided between 3
and 20eV, and extrapolations are used for energies above 20eV. Vibrational excitation cross sections at 2 eV are
taken from those of Rohr [1980], and for energies below 2eV cross sections are used from the measurements of
Sohn et al. [1983].

The electronic excitation cross sections of methane are derived from the measurements of Vuskovic and
Trajmar [1983]. Rotational excitation cross sections for methane are taken from the theoretical work of Jain
and Thompson [1983] and multiplied by a factor of 2 in order to bring their work into better agreement
with measurements of Muller et al. [1985], Brescansin et al. [1989], and Shimamura [1983]. Ionization cross
sections for CH4 are taken from the work of Straub et al. [1997] as revised by Lindsay and Mangan [2003] and
reviewed by Liu and Shemansky [2006].

The two-stream equations require the downward flux at the upper boundary. We use a variety of downward
electron fluxes based on magnetospheric electron fluxes measured by Cassini in the nearby Saturnian
magnetosphere. For example, in modeling electron precipitation for T5, Cravens et al. [2009b] used the CAPS-ELS
fluxes which are reproduced here in Figure 4 with a factor of 3.15 increase in the neutral densities to
account for INMS recalibration. Also shown are the CAPS-ELS electron fluxes measured at 1200 km, near the
ionospheric peak, and our calculated fluxes are within 5–20% of the CAPS-ELS fluxes up to energies of
200 eV using parabolic magnetic field lines anchored at the surface of Titan (Figure 3). Between 200 and
1000 eV the CAPS-ELS data are at the one-count level, which is the statistical error bound of the instrument,
and our model differs from these fluxes by as much as a factor of 2, which could be the result of modest

Figure 3. Parabolic magnetic field line topology used in the model.
The apex altitude of each field line is indicated on the graph.
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attenuation of the electron fluxes
[Snowden et al., 2013]. The CAPS-ELS
instrument was pointed in the ram
direction, and as a result the pitch angle
of the instrument was approximately
90° [cf. Cravens et al., 2009b].

2.3. Ion Chemistry and Empirical
Modeling

The photochemical model we use here
was described in Paper I [Richard et al.,
2015] and was derived from the earlier
photochemical models of Keller et al. [1992,
1998], Cravens et al. [2004], and Robertson
et al. [2009]. This time-independent
model does not include ion transport
between altitudes or horizontal locations
as a result of bulk plasma flow, an
assumption valid below≈ 1350 km
[Ma et al., 2006, 2009; Cravens et al.,
2010]. In addition to adopting the
primary ion production rates, the
model includes a large number of
ion-neutral and electron-ion dissociative
recombination chemical reactions.
Reaction rate coefficients are taken from
Keller et al. [1992, 1998], Anicich [2003],
Anicich and McEwan [1997], Cravens et al.
[2005], Vuitton et al. [2006, 2007],McEwan
and Anicich [2007], Edwards et al. [2008],
Zabka et al. [2009], Robertson et al. [2009],
and Westlake et al. [2012]. We use 10 km
intervals between 725 and 2715 km but
only show results below about 1700 km.

As discussed in Paper I (Richard et al.),
a measured density of N2

+ cannot be
determined by INMS ion measurements
because HCNH+ is a more abundant
mass 28 species due to ion-neutral
chemistry. The overwhelming majority

of N2
+ on the nightside is produced by electron impact ionization, and about 60–85% of this N2

+ is lost via
chemical reactions with methane, producing CH3

+. A small amount of CH3
+ is produced by dissociative

ionization of methane. Roughly 90–99% of the CH3
+ is lost via reaction with methane to produce CH4

+. Thus,
the production of CH3

+ serves as a good indicator (or proxy) of the primary production of N2
+.

CH3
+ densities from the model are compared with the densities measured by INMS in Figure 5. This illustrates

that the production rate of N2
+ (the major source of CH3

+) in the model is reasonable. The drop in ion
densities near 1200 km will be discussed later. In the companion Paper 1, an empirical production rate of N2

+

was derived from densities of CH3
+ and CH4measured by INMS bymeans of a simple two-reactionmodel and

the assumption of photochemical equilibrium (which is valid below ≈ 1350 [Ma et al., 2006, 2009; Cravens
et al., 2010]). The main loss process for CH3

+ is through reaction with methane. Not quite all of N2
+ reacts

with CH4 to produce CH3
+, so the full photochemical model was used to derive a branching ratio of CH3

+

produced to the total amount of N2
+ produced (Figure 6). This ratio only varies about 20% over the extent of

the ionosphere. Using this model-derived branching ratio, the derived empirical production rate (reasonable

Figure 4. Suprathermal magnetospheric electron fluxes measured by CAPS
during the T5 encounter as reported by Cravens et al. [2009b] at 1200 km
(above) and 2730 km (below). The downward flux comes from suprathermal
electron transport along the field line from the magnetosphere to the
ionosphere. These CAPS-ELS fluxes for T5 were adopted as the boundary
condition for the two-stream code, and model fluxes are also shown. The
upward electron fluxes appearing at higher energies are calculated from
the model and are the results of backscattering and at lower energies
are escaping secondary electrons produced by ionization deeper in
the atmosphere.
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to within 40%) of N2
+ determined by setting the production rate of N2

+ equal to the loss rate from the
reaction between CH3

+ and CH4 is given by

ProductionNþ
2
¼ kCHþ

3 ; CH4
CHþ

3

� �
INMS CH4½ �INMS

Branching Ratio
(1)

Similarly, an empirical primary production rate of CH4
+ due to ionization of CH4 can be derived. Note that

about 90% of the CH4
+ loss is due to reaction with methane to produce CH5

+ but that other sources (besides
primary ionization) exist (e.g., CH4 reacting with H2

+, H+, or N+). Therefore, this production rate is the loss
rate of CH4

+ (via reaction with CH4) modified by a branching ratio (Figure 6) to account for alternative
production pathways (see Paper I (Richard et al.)). The empirical primary production rate (including the
model-derived branching ratio) is

ProductionCHþ
4
¼ kCHþ

4 ;CH4
CH4½ �INMS CHþ

4

� �
INMS

Branching Ratio
(2)

3. Verification of Nightside Ion Production Rates via Simple Empirical Methods

In this section, the model ionization rates (from electron impact) are compared with the empirical production
rates, just as was done in Paper 1 for solar radiation. We start with data from the T5 flyby, as this case has
been previously discussed in the literature [i.e., Cravens et al., 2009b; Robertson et al., 2009; Gronoff et al.,
2009b; Agren et al., 2007], and then we discuss the T57 flyby. For the T5 case, Titan was in the plasma sheet
and T57 corresponds to what Rymer et al. [2009] call “bimodal” magnetospheric electron distributions. We
find that overall, the model production rates of the primary ion species are in reasonable agreement with the
production rates derived from INMS density measurements, as will be discussed below for the canonical
cases of Rymer et al. (lobe like, plasma sheet, bimodal, and magnetosheath) and for three magnetic field line
topologies (radial, single parabola, and nested parabolas simulating horizontal field lines).

3.1. T5: Plasma Sheet Electron Populations

TheT5 flyby of Titan occurred on the deep nightside of Titan, and the Cassini Orbiter reached a closest approach
altitude of 1027 km where the solar zenith angle was 137°. The neutral density profiles we used to analyze this
pass were shown in Figure 1. Magnetometer data from the T5 encounter indicate that the dip angle of the
magnetic field during the entire outbound leg of the T5 encounter was approximately 45° [Cravens et al., 2009b;
Ulusen et al., 2010]. Using a parabolic magnetic field line anchored at the surface generates a field line dip angle
in agreement with these observations between 1000 and 1400 km. The magnetospheric electron fluxes used
as inputs for this case were discussed earlier (i.e., the plasma sheet case shown in Figure 4).

Figure 5. CH3
+ density produced by the full photochemical model (green triangles) using the full T5magnetospheric electron

fluxmeasured by CAPS-ELS [Cravens et al., 2009b] as an input (Figure 4) compared to INMSdata from the T5-Outbound flyby of
Titan. INMS data are indicated by the blue diamonds. This model uses the magnetic field topology of a single parabola
anchored at the surface of Titan to simulate a curved field line with a large radial component.
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Figure 5 shows the CH3
+ densities

produced by the full photochemical
model, and the model CH3

+ densities
are in good agreement with densities
measured by INMS to within 20% for
altitudes below 1160 km and above
1280 km. Between 1160 and 1275 km
INMS and modeled CH3

+ densities
differ by about a factor of 2. This feature
was noticed by both Agren et al. [2007]
and Cravens et al. [2009b]. Cravens et al.
demonstrated that the CAPS-ELS 4 eV
electron flux, corresponding to
secondary electrons, correlates well
with the INMS density of CH5

+, the
product of the chemical reaction
between CH4

+ and methane, with a
noticeable dip between 155 and 205 s
after closest approach corresponding
to altitudes of 1140 and 1220 km,
respectively. Cravens et al. also noted

that the density profiles of longer-lived ions (such as HCNH+) do not exhibit such a profound drop in
density at these altitudes. As the drop in density was only prevalent in shorter-lived ion species, Cravens
et al. concluded that the production rate of ions, and hence the magnetospheric electron flux at the end of
the flux tube connected to this region, was passing throughmore of the neutral atmosphere and was being
depleted of its electron content [Gronoff et al., 2009b; Snowden et al., 2013]. This effect has been noted
in several previous works [Gan et al., 1992; Agren et al., 2007; Cravens et al., 2009b; Ma et al., 2006, 2009;
Snowden et al., 2013]. Cui et al. [2010] suggested that transport from the dayside can also contribute to the
densities of long-lived ions on the nightside.

Although some depletion of the
incident electron flux is apparently
needed near 1200 km as discussed by
Gan et al. [1992] and Snowden et al.
[2013], at other altitudes the model
agrees very well with INMS data. This
indicates that overall for T5, the
magnetospheric electron flux tube
content appears to be depleted less
than originally thought. This has
significant consequences for our
understanding of Titan’s interaction
with Saturn’s magnetosphere. Earlier
modelers [Agren et al., 2007; Cravens
et al., 2009b] concluded that the
overabundance of ions in chemical
models was the result of using incident
electron fluxes that were too large and
thus the incident fluxes needed to be
reduced by a factor between 8 and 10.
This conclusion was the result of the
lack of a recent recalibration of the
neutral density profile and a focus on
modeled total ion and electron

Figure 6. Branching ratio used to adjust the production rate of N2
+ and

CH4
+ derived from the simple two-reaction model using INMS data for

the outbound leg of the T5 and T57 flybys. This is the ratio of the
production rate of CH3

+ to N2
+ (below) and of the primary production of

CH4
+ to the total production of CH4

+ from the full photochemical
model (above).

Figure 7. Modeled electron impact production rates of N2
+ (green triangles)

compared to the production rate of N2
+ derived from INMS data using a

simple two-reaction model adjusted by dividing the loss rate of CH3
+

via reaction with methane by the branching ratio shown in Figure 6
(blue diamonds) for the outbound leg of the T5 flyby of Titan. The
modeled production rates of Gronoff et al. [2009b] for a radial field line
with flux attenuation are also shown (red dashes). A single parabolic field
line anchored at the surface of Titan is used for the magnetic field
line topology.
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densities, instead of examining individual
ion species. As will be shown below, our
current model also produces electron
densities that are too high, but we
think that the explanation (as discussed
in Paper 1) is missing loss processes for
major ion species (but not for CH3

+), as
occurs on the dayside. This will be
discussed further later in the paper.

Next, we use CH3
+ and CH4 densities

measured by INMS to obtain empirical
N2

+ production rates (methods
discussed earlier and in Paper 1), which
are shown in Figure 7 and compared
with the two-stream model with the
full T5 CAPS-ELS magnetospheric
electron fluxes as input. The agreement
between this model and the CAPS-ELS
measurement and the model of

Gronoff et al. [2009b] for their radial field line with attenuation is within 10–20% near the ionospheric peak
with the exception of the “bite-out” feature between 1140 and 1220 km. At higher altitudes the
discrepancy between our model and the model of Gronoff et al. increases due to our use of a parabolic
instead of radial field line. This, in conjunction with the agreement between modeled and measured CH3

+

densities, suggests that the two-stream model is producing adequate amounts of N2
+ for the measured

inputs.

The abovemethodswere also applied to T5 for CH4 ionization producing CH4
+. Figure 8 shows the CH4

+ densities
from the full model compared with INMS densities. Again, the agreement is good overall, but the bite out is not
reproduced by the model. Empirical ion production rates derived from INMS data are shown in Figure 9.

CH4
+ production rates modeled using only magnetospheric electron impact ionization with the two-stream

code and those derived empirically from INMS data agree between 1350 and 1200 km but are a factor of 2
lower between 1150 and 1000 km.
However, this model’s production rate is
found to be in agreement with the
radial case presented by Gronoff et al.
[2009b] with a value of 0.04 cm�3 s�1

between 1100 and 1000 km.

3.2. T57: Bimodal Electron
Populations

The T57 flyby of Titan occurred on 22
June 2009, and the spacecraft reached a
closest approach altitude of 955 km.
During the inbound leg the solar zenith
angle went from 165° at an altitude of
nearly 2000 km to 128° at closest
approach, indicating that this is an
entirely nightside situation. Rymer et al.
[2009] classified the magnetospheric
electron flux for this pass as a bimodal
case (Figure 10).

For T57 we compare our calculated
electron fluxes with fluxes measured by

Figure 8. CH4
+ density produced with the full photochemical model

(green triangles) compared to INMS data (blue diamonds) from the
T5-Outbound flyby of Titan. A single parabolic field line anchored at the
surface of Titan is used for the magnetic field line topology.

Figure 9. Shown here are modeled production rates (green triangles) of
CH4

+ compared to the empirical production rate of CH4
+ derived from

INMS data (blue diamonds) using the simple two-reaction chemical model
for the T5-Outbound flyby of Titan and adjusted by dividing the loss rate
of CH4

+ via reaction with methane by the branching ratio shown in
Figure 6. Themodeled production rates of Gronoff et al. [2009b] for a radial
field line with flux attenuation are also shown (red dashes).

Journal of Geophysical Research: Space Physics 10.1002/2014JA020343

RICHARD ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1288



CAPS-ELS anode 2 at several altitudes
and for different model cases (Figure 10).
Results from several CAPS-ELS anodes
(i.e., different directions) are shown.
Note that anodes 3–6 point in or near
the ram direction and see negative ions
(or traces) [e.g., Coates et al., 2007b;
Wellbrock et al., 2013] as well as
electrons, so we will not comment on
these. Out of the remaining anodes,
anode 2 is least affected by spacecraft
obscuration effects [Lewis et al., 2008]
so we compare our results with
measurements made by anode 2.
Throughout the flyby the CAPS pitch
angle was near 90° as was the case for
the T5 flyby.

The following observations can be made
by examining Figure 10. At 995 km only
the more energetic electrons can
penetrate the atmosphere, although
locally produced secondary electrons at
low energies (0–30 eV) are also present.
Assuming a negative spacecraft potential
between 2 and 3 eV would improve the
model’s agreement with the data for
10 eV electrons. The model’s maximum
electron flux above 1100 km near
10 eV (secondary electrons from
primary electron impact ionization)
is in reasonable agreement with
measurements at higher altitudes, but
at 995 km the model flux is somewhat
too high, suggesting some possible
attenuation (factor of 2–3) of the
precipitation magnetospheric electron

fluxes. For energies between about 20 eV and 300 eV the model fluxes along a surface-anchored parabolic
magnetic field agree better with the CAPS data than thosemodeled using a parabolic field anchored at 725 km,
which are too low by a factor of 2 or so. At 1064 km both model cases compare well with data, although model
fluxes are somewhat too high near 5–10 eV and too low for energies above 1 keV (though the CAPS fluxes
are close to the one-count level there). But the more draped 725 km magnetic field parabola gives somewhat
better agreement overall. At 1163 km and higher for T57, both models agree rather well with the measured
fluxes, although are maybe somewhat too large for energies greater than 1 keV or so.

Magnetometer data (Figure 11) show (C. Bertucci, private communication, 2012) that the magnetic field line
topology for T57 has both radial and horizontal (parallel to the surface of Titan) components near the
ionospheric peak. Near closest approach (between 950 and 1000 km), the magnetic field exhibits the
strongest radial components with a magnitude of 75% of the total field magnitude. Between 1000 and
1100 km the radial component gradually diminishes to 25% of the total field’s magnitude and the horizontal
component increases. We ran the model with three different magnetic field line topologies (nested, single
parabola anchored at the surface, and single parabola anchored at 725 km). The nested case represents
completely horizontal field lines at all altitudes “sampled.” The parabola anchored at the surface has field
lines with a 45° angle with respect to Titan near 1200 km, and the parabola anchored at 725 km has a larger
horizontal field component near 1200 km.

Figure 10. Comparisons between modeled electron fluxes and those
measured by CAPS during the T57 encounter at (top) 995 km, (middle)
1290 km, and (bottom) 1619 km. Measurements taken by CAPS-ELS
anode 2 are shown in red; modeled fluxes up (black) and down (blue)
are shown for parabolic field lines anchored at 725 km (solid) and the
surface of Titan (dashed). The CAPS-ELS one-count level is shown with a
green line.
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The CH3
+ density profile produced by

the full photochemical model with the
surface-anchored parabolic field line
agrees best with the measured INMS
density profile between 1130 and
1350 km (Figure 12). In particular, the
peak CH3

+ densities agree well. But
below 1100 km, better agreement
with data is obtained with a parabolic
magnetic field line anchored at 725 km
(that is, more horizontal, or highly
draped, magnetic field). As the
magnetometer observed larger radial
components of the magnetic field
near closest approach (Figure 11),
which is consistent with a parabolic
magnetic field line anchored at the
surface of Titan, this could indicate a
modest attenuation. Overall, the
model generates reasonable primary
ionization rates (i.e., N2

+ production
rates) and, unlike Cravens et al. [2009b],
Gronoff et al. [2009b], or Agren et al.
[2007] for T5, without requiring
attenuation of the magnetospheric
electron fluxes from their full
magnetospheric values.

Figure 13 shows the empirical N2
+

production rate derived from CH3
+ and

CH4 densities measured by INMS for T57.
For comparison, the production rate
from the full model is shown for the
surface-anchored parabola case and
725 km anchored parabola case.

Primary production of CH4
+ from electron impact ionization of methane was also calculated for T57. Again,

the modeled and INMS-measured densities of CH4
+ agree best for the surface-anchored parabola case

above 1150 km and the 725 km anchored parabola case below 1140 km. The modeled densities of CH4
+ are

within 20% of the measured values. Figure 14 shows the empirical primary CH4
+ production rates derived

from densities of CH4
+ and CH4 measured by INMS.

3.3. Generic Nightside Ion Production Rates for Different Inputs

In this section the full two-stream plus chemical model is used to generate ion production rate profiles for all
four “Rymer cases” [Rymer et al., 2009] for the magnetospheric electron populations and for all the magnetic
field configurations. The global average neutral density model presented in Paper 1 is used. No attenuation of
magnetospheric electron fluxes (Figure 2) is assumed. Electron fluxes are shown for the following cases: (1)
lobe like from the T8 flyby, (2) plasma sheet from the T13 flyby, (3) bimodal from the T31 flyby, and (4)
magnetosheath from the T32 flyby. The results are shown in Figure 15 for N2

+ production and in Figure 16 for

CH4
+ production resulting from electron impact ionization. Table 1 shows relative production rates of the other

ion species produced by electron impact so that the results of Figures 15 and 16 can be extended to other
primary ion species. Note that these branching ratios for the ionization products are rather insensitive to
electron energies above about 20–30 eV or so (Table 1). These energies are above the ionization threshold for
these products and do not affect their relative production rates.

Figure 11. (top) Magnetometer data taken by the MAG instrument
aboard Cassini during the T57 flyby. Titan is indicated in red, while the
inbound (green) and outbound (blue) field vectors are indicated with
arrows. Magnetic field components are given in Titan Ionospheric
Interaction System (TIIS) coordinates. In TIIS coordinates, the x axis is in
the direction of ideal corotation flow and the y direction is toward Saturn.
Closest approach is on Titan’s nightside. (bottom) The ratio of the radial
component to the total magnitude of the magnetic field and the radial
components of parabolic magnetic field lines anchored at Titan’s surface
and at an altitude of 725 km are also shown.
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Figures 15 and 16 illustrate that, in general,
higher-energy electrons penetrate deeper
into the ionosphere generating ion
production at lower altitudes. This is why
the lobe-like, plasma sheet, and bimodal
electron flux cases produce production
rate profiles peaking at lower altitudes in
comparison with the lower energy
electrons from the magnetosheath.
Higher-energy electrons also produce
secondary electrons that can generate
further ionization, and obviously, higher
incident electron fluxes result in higher ion
production rates.

As illustrated earlier for T5 and T57, the
magnetic field line topology is also
important in determining where incident
electrons will deposit their energy [cf.
Galand et al., 2010; Gronoff et al., 2009b;
Robertson et al., 2009; Richard et al., 2011].
In general, the nested magnetic field line
case, horizontal magnetic field lines,
produces peak production rates 8–10
times lower than the parabola anchored

at 725 km and 20–30 times lower than the radial magnetic field line. The peak altitude of the production rates
generated with the nested magnetic field line is between approximately 150 (200) km higher than the peak
altitude obtained with the parabolic magnetic field line anchored at 725 km (radial magnetic field line) for the
lobe, bimodal, and plasma sheet cases and 200 (300) km higher for the magnetosheath case. These results are to
be expected as the lower energy electronsmore readily impact the neutral ions, and thus, the flux will decaymore
rapidly than that of a higher-energy electron population moving through the same amount of atmosphere.

Jagged peaks appear in radial cases in
Figure 15. This is an artifact of the model
resolution as the radial field linemodel has
a resolution of 35 km where the nested
and parabolic magnetic field line
geometries have 10km altitude resolution.

The shapes of the production rate
profiles of CH4

+ are similar to those of
N2

+ (Figure 16). The production rate
profiles generated in this section can be
used in conjunction with the production
rate profiles for the solar cases in order
to create generic ion production profiles
for a variety of solar zenith angles and
magnetospheric electron conditions.

3.4. Empirical Production Rates
for Other Nightside Flybys

Other than T5 and T57, other nightside
Titan flybys we examined with INMS ion
and neutral data suitable for obtaining
empirical ion production rates are T26,
T32, T36, T50, and T51. The N2

+ empirical

Figure 12. CH3
+ density produced by the full photochemical model with

magnetic field line topologies of a parabola anchored at the surface of
Titan (green triangles), a parabola anchored at 725 km (purple crosses),
and nested parabola (red stars) using the T57 magnetospheric electron
flux measured by CAPS-ELS [Kliore et al., 2011] as an input (Figure 10)
compared to INMS data from the T57-Outbound flyby of Titan. INMS
data are indicated with the blue diamonds. Note that although the
surface-anchored parabola is more favored above 1100 km, the 725 km
parabola appears to give better agreement below that altitude.

Figure 13. Modeled photoionization production rates of N2
+ with

magnetic field line topologies of a parabola anchored at the surface of
Titan (green triangles), a parabola anchored at 725 km (purple crosses),
and nested parabola (red stars) compared to the production rate of N2

+

derived from INMS data using a simple two-reaction model adjusted by
dividing the loss rate of CH3

+ via reaction with methane by the branching
factor shown in Figure 6 (blue diamonds) for the inbound leg of the T57
flyby of Titan.
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production rates, organized according
to plasma sheet, lobe-like, and bimodal
nightside flybys, are shown in Figure 17
using equation (1) and an adjustment
factor of 0.67 from Paper I [Richard et al.,
2015] and Figure 6 in the current paper
to account for the amount of N2

+ that
does not react to form CH3

+. Only deep
nightside flybys containing INMS data
are included, which is why there is not a
curve for the lobe-like electron flux. The
error bars represent the uncertainties
in the production rates associated with
the measured CH3

+ and CH4 densities.
Comparison of Figures 15 and 17
confirms that the modeled electron
precipitation reasonably represents the
empirical production rates in shape and
magnitude; however, for the plasma
sheet and magnetosheath cases, radial
field line topology must be used.
Also, the theoretical electron impact
production rates are falling short of

the empirical production rates below altitudes of about 1050 km. Perhaps there is a missing, nonelectron
precipitation, ionization source such as energetic ion precipitation [e.g., Cravens et al., 2008; Edberg et al.,
2013; Sillanpaa and Johnson, 2013] or ion transport from the dayside for the case of longer-lived ions
[Cui et al., 2010].

Figure 14. Modeled production rates of CH4
+ with magnetic field line

topologies of a parabola anchored at the surface of Titan (green triangles),
a parabola anchored at 725 km (purple crosses), and nested parabola (red
stars) using the full photochemical model compared to the empirical
production rate of CH4

+ derived from INMS data (blue diamonds) calculated
by dividing the loss rate of CH4

+ via reaction withmethane by the branching
ratio shown in Figure 6 for the T57-Inbound flyby of Titan.

Figure 15. Production of N2
+ using nested (dotted grey), parabolic (dashed), and radial (solid) magnetic field lines and the

magnetospheric electron fluxes of the Rymer et al. [2009] classifications. Results are shown for model runs using the T8
lobe-like, T13 plasma sheet, T31 bimodal, and the T32 magnetosheath electron fluxes measured by CAPS-ELS. The
magnetospheric electron flux profiles are shown in Figure 2.
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4. Discussion

The model N2
+ production rates agree well with the empirical INMS production rates for the surface parabola

case for the T5 flyby at all altitudes except between 1175 and 1300 km, where model production rates exceed
empirical rates by a factor of 2–3. The surface parabola magnetic field configuration gives a magnetic
field orientation that agrees with Cassini magnetometer data. Figure 18 shows our electron impact-based
model results for HCNH+, C2H5

+, and the thermal electron density for T5. Just as on the dayside, the modeled
densities of these major species are too high, even though the primary production rates are fine, leading
to the conclusion that the model is missing chemical sinks. Similar comparisons for other flybys (e.g., T57)
lead to the same conclusions.

For T57, the agreement of our model N2
+ production rates with the INMS empirical production rates is good

above an altitude of 1125 km, particularly with the surface parabola magnetic field model (i.e., the less draped
magnetic field). But the surface parabola model ion production rates become a factor of 2 too large below
1125km, and the 725km parabola model (more draped field lines) provides better agreement.

For T57, the orientation of the measured magnetic field agrees overall with the surface parabola for higher
altitudes. However, at lower altitudes the measured field has a large radial component, whereas the more
highly draped magnetic field model was in better agreement with empirical production rates, which
is puzzling.

Figure 16. Primary production of CH4
+ using nested (dotted grey), parabolic (dashed), and radial (black) magnetic field

lines and the magnetospheric electron fluxes of the Rymer et al. [2009] classifications. Results are shown for model runs
using the T8 lobe-like, the T13 plasma sheet, the T31 bimodal, and the T32 magnetosheath electron fluxes measured by
CAPS-ELS. The magnetospheric electron flux profiles are shown in Figure 2.

Table 1. Ratios of Minor Ion Primary Production Rate to Major Ion Primary Production Rate at the Ionospheric Peak due to
Electron Impact

Flyby Altitude (km) N+ to N2
+ CH3

+ to CH4
+ CH2

+ to CH4
+ CH+ to CH4

+ H2
+ to CH4

+ H+ to CH4
+

T8 1045 0.262 0.758 0.124 0.055 0.080 0.126
T13 1025 0.228 0.765 0.141 0.066 0.056 0.156
T31 1045 0.257 0.758 0.125 0.055 0.080 0.128
T32 1355 0.155 0.748 0.134 0.061 0.088 0.118
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Figure 17. Empirical production rates for N2
+ derived using the simple two-reaction model (equation (1)), INMS-measured

densities, and an adjustment factor of 0.67. Production rates are generated for nightside flybys classified as (top) plasma
sheet, (middle) magnetosheath, and (bottom) bimodal electron fluxes. Error bars represent uncertainties in INMS-measured
densities.
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As we discussed earlier in the paper,
Cravens et al. [2009b] and Agren et al.
[2007] assumed that the boundary
electron fluxes into the electron
transport model had to be reduced from
fluxes in the outer magnetosphere by a
factor of≈ 10 in order to bring model
electron densities into agreement with
electron densities measured by the
RPWS-LP or total ion density measured
by INMS. As discussed earlier the
suggestion was made that this
attenuation is due to the electron
content of a magnetic flux tube in
Saturn’s magnetosphere being depleted
over time as it is “hung up” in Titan’s
ionosphere [cf. Gan et al., 1992; Snowden
et al., 2013]. However, in the intervening
time period, INMS neutral densities
have increased by a factor of 2–3

[Robertson et al., 2009; Westlake et al., 2012; Mandt et al., 2012], affecting the model energy deposition, and
there has been a growing recognition [Galand et al., 2014; Westlake et al., 2012; Richard et al., 2015] that
photochemical models of Titan’s ionosphere are missing loss processes for higher mass ion species.

The current paper’s nightside ionosphere empirical ion production rate determinations (from INMS primary
ion species) and model calculations indicate that factor of 10 magnetospheric electron flux attenuation is
no longer needed. However, for the time period (or locations) on the outbound T5 pass, when Cassini
was in the 1175–1300 km altitude range, a factor of 2–3 upper boundary electron flux reduction appears to
be required, suggesting that at least for those flux tubes attenuation/depletion could be taking place. For
T57, a large factor of 10 attenuation is not needed, but a factor of 2 incident electron flux attenuation
would improve model-data comparisons in places. The model runs show that a more drapedmagnetic field
configuration could accomplish this, but the measured magnetic field below 1125 km (Figure 11) is actually
more radial (i.e., less draped), indicating that a factor of 2–3 electron flux attenuation is probably necessary for
that time period (or location on Titan). It should be noted that negative ions also contribute to the overall
charge density of the ionosphere [Coates et al., 2007a; Ågren et al., 2012; Shebanits et al., 2013; Wellbrock et al.,
2013; Vigren et al., 2014].

Model-data comparisons in the current paper indicate that attenuation is not needed overall. If a major
attenuation is no longer needed, the problem then becomes how to explain the overabundance of electrons
in the models. An interesting feature in the ion densities measured by INMS during T5, first pointed out by
Cravens et al. [2009b], has some bearing on this issue as mentioned earlier in the current paper (see the
discussion in section 3.1). That is, the empirical production rates do show that in some locations there must
be lower magnetospheric electron fluxes, perhaps due to the aforementioned attenuation. However, the
chemically longer lived species (e.g., HCNH+) show smoother profiles than do the primary species (Figure 18),
indicating that time history of a flux tube is also important and also indicating that transport of ionospheric
plasma from the dayside could be playing a role [Cui et al., 2010]. More work is needed on this topic.

5. Conclusions

In conclusion, the key findings of this study are the following:

1. Theoretically modeled electron-ion production rates are found to be within 25% of production rates
derived empirically from INMS measurements for the T5 and the T57 nightside flybys of Titan.

2. The cause of the discrepancy between modeled and measured (data taken by INMS, RSS, and RPWS-LP)
electron and ion densities is not due to overproduction of the primary ion species and therefore must
be caused by insufficient electron-ion recombination.

Figure 18. Comparisons between RPWS-LP measured (blue diamonds)
and modeled electron densities (blue line) and INMS-measured (lines)
and modeled densities of HCNH+ (green triangles) and C2H5

+ (red
squares).
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3. Attenuation of the magnetospheric electron fluxes to the extent proposed by Agren et al. [2007] and
Cravens et al. [2009b] is not needed to reproduce the primary production rates of the primary ion species
on the nightside of Titan, although Snowden et al. [2013] have shown that flux tube erosion can lower
ionization rates below 1300 km. If there is a large attenuation to the electron flux, additional ionization
sources (i.e., ion precipitation) may be responsible.

4. Globally averaged ion production profiles have been generated for the ionization products of N2 and CH4

resulting from magnetospheric electron precipitation using the magnetospheric electron conditions
described by Rymer et al. [2009] for a radial, a nested, and a parabolic magnetic field line anchored at 725 km.
These production rates can be combined with the solar zenith angle-dependent production rates shown in
Paper I to account for various conditions of Titan’s ionosphere.

5. Empirical production rates have been derived from INMS measurements on the nightside of Titan for the
plasma sheet, bimodal, and magnetosheath superthermal electron fluxes. These indicate that electron
precipitation from the external plasma environment can account for most of the nightside ionosphere
(and perhaps make a contribution on the dayside ionosphere, although it would be hard to observe due
to large solar photoionization rates). However, our results show that below 1050 km or so, ionization by
another source (i.e., ion precipitation)might be needed and that transport of plasma from the dayside could
also be important for longer-lived ion species [cf. Cui et al., 2010].
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