AI P The Journal of

Chemical Physics
A time-dependent polarizable continuum model: Theory and application
Marco Caricato, Francesca Ingrosso, Benedetta Mennucci, and Jacopo Tomasi

Citation: The Journal of Chemical Physics 122, 154501 (2005); doi: 10.1063/1.1879952
View online: http://dx.doi.org/10.1063/1.1879952

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/122/15?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation
models

J. Chem. Phys. 143, 204104 (2015); 10.1063/1.4936357

Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic
polarization: Study of the optical and magnetic properties of diazines in water
J. Chem. Phys. 135, 144103 (2011); 10.1063/1.3644894

Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-
dependent density functional theory polarizable continuum model
J. Chem. Phys. 124, 094107 (2006); 10.1063/1.2173258

Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable
continuum model
J. Chem. Phys. 122, 244104 (2005); 10.1063/1.1944727

Polarizable continuum model study of solvent effects on electronic circular dichroism parameters
J. Chem. Phys. 122, 024106 (2005); 10.1063/1.1829046

—

pic Sections

NOW ONLINE T
Lithium Niobate Properties and Applications:
Reviews of Emerging Trends AlP Reviews



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1624400372/x01/AIP-PT/JCP_ArticleDL_091416/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Marco+Caricato&option1=author
http://scitation.aip.org/search?value1=Francesca+Ingrosso&option1=author
http://scitation.aip.org/search?value1=Benedetta+Mennucci&option1=author
http://scitation.aip.org/search?value1=Jacopo+Tomasi&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.1879952
http://scitation.aip.org/content/aip/journal/jcp/122/15?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/135/14/10.1063/1.3644894?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/135/14/10.1063/1.3644894?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/9/10.1063/1.2173258?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/9/10.1063/1.2173258?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/24/10.1063/1.1944727?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/24/10.1063/1.1944727?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/2/10.1063/1.1829046?ver=pdfcov

HTML AESTRACT * LINKEES

THE JOURNAL OF CHEMICAL PHYSICSL122 154501(2005

A time-dependent polarizable continuum model: Theory and application

Marco Caricato®
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Francesca Ingrosso, Benedetta Mennucci, and Jacopo Tomasi
Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, Via Risorgimento 35, 56126 Pisa, ltaly

(Received 6 January 2005; accepted 2 February 2005; published online 15 April 2005;
publisher error corrected 19 May 2005

This work presents an extention of the polarizable continuum model to explicitly describe the
time-dependent response of the solvent to a change in the solute charge distribution. Starting from
an initial situation in which solute and solvent are in equilibrium, we are interested in modeling the
time-dependent evolution of the solvent response, and consequently of the solute-solvent
interaction, after a perturbation in this equilibrium situation has been switched on. The model
introduces an explicit time-dependent treatment of the polarization by means of the linear-response
theory. Two strategies are tested to account for this time dependence: the first one employs the
Debye model for the dielectric relaxation, which assumes an exponential decay of the solvent
polarization; the second one is based on a fitting of the experimental data of the solvent complex
dielectric permittivity. The first approach is simpler and possibly less accurate but allows one to
write an analytic expression of the equations. By contrast, the second approach is closer to the
experimental evidence but it is limited to the availability of experimental data. The model is applied
to the ionization process &, N-dimethyl-aniline in both acetonitrile and water. The nonequilibrium
free-energy profile is studied both as a function of the solvent relaxation coordinate and as a function
of time. The solvent reorganization energy is evaluated as wel0@5 American Institute of
Physics[DOI: 10.1063/1.1879952

I. INTRODUCTION An alternative approach to MD simulations is the one
In the modeling of time-dependent phenomena in solyProposed by implicit solvation models. In these models the

tion, one of the open questions is how to take into ac:Counpolarization is.determined by the dielecFric fyncti@rmf the .
the evolution of the interaction between solute and solventS°Vent, described as a continuum medium in which a cavity
In fast processes, such as electronic excitations, electrdfPSts the solute. Continuum models developed to treat the
transfers, or ionizations, the time scale of the change in théMe-dependent solvation response can be classified into two
charge density of the solute is usually much smaller than thEain classes. Models belonging to the first class introduce a
time scale in which a polar solvent fully relaxes to reach aseparation of the solvent polarization into a dynamical con-
new equilibrium state. During this relaxation, the solventtribution, associated with the electronic motion, and an iner-
nuclear and molecular motions act as inertia on the solvatiofi@! (or orientational contribution, due to the nuclear and
response and a nonequilibrium regime is established. Due t&olecular motior?~® Models of the second class implicitly
the mutual solute-solvent polarization, the new equilibriumtake into account dynamical and inertial effects in a single
is reached through changes of both solute and solvent, and &&spons€-**When the nonequilibrium response is described
accurate description of the reorganization path should conn terms of two contributions, the orientational component of
sider the evolution of this interaction and, possibly, the solutghe polarization remains in equilibrium with the charge den-
geometry relaxation. sity of the initial state. On the other hand, the dynamical
The most straightforward way to describe this evolutioncomponent is assumed to equilibrate instantaneously to the
is represented by molecular-dynami@®dD) simulations of final state in the presence of the inertial part of the polariza-
the solute-solvent systef’ In this case, the time depen- tion. By contrast, when a single term in the solvent response
dence of the solvent polarization is obtained explicitly fromis considered;*® the transition is represented as a step
the simulated trajectories. In the methodology based omhange in the solute charge density, and the solvent response
molecular-dynamics simulations, the typical Wat run  is modeled by introducing the complex dielectric permittivity
nonequilibrium simulations is to start from equilibrated tra- as a function of the frequency(w).
jectories corresponding to the initial state and change the Besides the discrete and the continuum approaches, there
solute partial charges, according to the final-state valuess a third alternative way to calculate the nonequilibrium
Each simulation is then run and the results obtained for thgglyation energy. In this framework, a thermodynamic cycle
solvation energy are averaged over the full set of trajectoriess defined in terms of a series of intermediate states in which
solute and solvent are in equilibrium. The properties of in-
¥Electronic mail: m.caricato@sns.it terest are then calculated on the basis of modified-reference
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interaction site mode{RISM) methods ex-RISM (Ref. 14 host the solute. The solute-solvent interaction is expressed in
and RISM-self-consistent-fiel(BCP (Refs. 15 and 14. terms of a solvent reaction field, which is obtained, for the
The method presented here belongs to the family of conelectrostatic polarization, solving the Poisson-Laplace equa-
tinuum models and it is developed according to the strategyions with the proper boundary conditiohsThis reaction
in which the solvent response is a global response. It is basdikld is thus represented by an apparent surface cHASE)
on a continuum representation of the solvent within the poplaced on the surface cavi§ The numerical solution of this
larizable continuum mod&l (PCM) approach. This model electrostatic problem is achieved by a boundary-element
allows a realistic representation of the cavity in which themethod (BEM) approach: the cavity surface is divided in
solute is embedded as well as a quantum-mechanical demall regions, called tesserae, and the ASC is rewritten in
scription of the solute, and therefore it represents a tool téerms of pointlike charges centered on the tesserae.
accurately describe the effects of solvation on molecular phe- In the last years, different formulations of the PCM
nomena and properties. In particular, the interest here is omodel have been present€d® They differ in the way the
the description of the solvent reorganization after sudde®CM equations determining the ASCs are defined. Here, in
changes in the solute charge distribution. particular, we shall adopt the recent iterative version of the
The procedure that we propose within the PCM formal-dielectric PCM(DPCM).?° In this case, for a solute enclosed
ism to model the solvent relaxation differs from the nonequi-in the molecular cavity, the solvent reaction field can be ex-
librium formulation already mentionetsee Refs. 68 In pressed in terms of the AS&(s) in a pointseS as
fact, here we adopt the strategy based on the inclusion of the +1 1 1
complex dielectric permittivity in order to take into account ( - —D*>a(s) =-—E,(s), (1)
the solvent motion activated as a consequence of the change ‘&~ 1 2m 2m
in the solute. This work therefore represents a further step igyheres is the static dielectric permittivity of the solvent and
the description of solute-solvent interaction in time-p* s an operator that accounts for the electric field generated
dependent processes, since it allows us to follow the evoluwyy ¢ itself. E, is the normal component of the electric field
tion of the solvent polarization in a straightforward way andgenerated by the solute on the cavity surface. As said above,
to maintain an accurate description of the solute. It is imporihe & charge distribution is approximated in terms of the

tant to remark that a full inclusion of the time-dependentpoint charges located at the center of each tessera. Equation
solute-solvent polarization would lead to an extremely com1) js thus tranformed into the expression

plex formulation, due to nonlinear effects induced by the
solvent reaction field on the solute charge distribution which e+l e N S PR

_ : 2r——A1-D"|q=-E,. (2)
can be seen as a function of such field. In the present ap- €~
proach, as in previous on&shis complexity is avoided by
assuming a linear approximation. In Sec. Il E we discuss thi
issue more in details.

The A matrix is a diagonal matrix with the areas of the
?esseraeéai) as elements. Introducing the vectors:

The time-dependent model is here applied to the study of  z(a)) = > Dj;aj, 3
the change of the solute-solvent interaction energy after an j#i
ionization  process. The solute studied isN,
N-dimethyl-aniline(DMA) and the solvents considered are  7(q;) = >, D, (4)
j#i

acetonitrile and water. This choice has been dictated by the
fact that it represents a simple, but still realistic, model fory, . expressioli2) can be rewritten 38

more complicated phenomena, such as electron transfer in
solution, and it also gives us the opportunity to compare with 1 ( Ame + ) £

. —| —=+z(@) | (gq-z(q)=-(E)). 5
a previous study based on the same solute-solvent system. al\e—1 2(@) | [0~z (q) == (EL), ®

This paper is organized as follows. In Sec. Il the mainF definiti fth trix el 4" for t
formal aspects of the model are presented: after a brief int-hOr ade m: lon ok2° € matrix element; andD; we refer to
troduction to the PCM formalism in Sec. Il A, the time- € g'gmt".’l V\(/g)r iterativel el sett
dependent theory is extensively treated in Secs. Il B-Il E. quation(-) 1S nteratively solved setting
Section Il F is devoted to a numerical test on a simplified m_J) 1 4me - [ (n-1)
system: a solute represented by a nonpolarizable point charge 4 = a 1" z(a) ) {-Ei+z[d" ]} (6

moving along the axis of a cylindric cavity immersed in

water. Section Il presents and analyzes the results of th&his particular formulation of the PCM equation is here pre-
study of the ionization of DMA in water and acetonitrile. ferred due to the direct relation between apparent charges

Finally, Sec. IV presents a summary with indication of some@nd electric field which is well suited for a linear-response
possible extensions and generalizations of the model. treatment of the solvation responsee Secs. Il B and Il P

Il. THEORY B. Treatment of the time evolution: The single-step
A. The PCM formalism change

In the PCM model, the solvent is represented by a con-  In this section we present the basic aspects of the model
tinuum dielectric medium within which a cavity is built to used to describe the time-dependent response of the solvent
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to a time evolution of the solute charge distribution, repre-of the polarization in Eq(12), the variation of the polariza-
sented by a single time step. A more general case involvingjon chargessq at timet can be written as a response to the

multiple steps will be presented in Sec. Il C. change in the electric field, namely,
We assume that the variation in the normal component of .
the electric field(E,); on a tessera from the initial to the SA(AE 1) :f dUR(t—t)6(t')AE , . (13)
final state is a step change of the type, - *
— init
(ELi()= (B + 6O(AE ), D This equation represents the time-dependent version of Eq.

in nit iterative procedure summarized in E§) for each timet.
(AE))i=(E);" —(E)i". (8)

If the electric field acting on the solute is not subject to
further changes after the step change, the time-depende@t A more general case: The multistep change
solvent polarization charges at a generic tincan be written

as When the solute charge distribution is subject to a mul-

N tistep time evolution, the solvent cannot establish an equilib-
q(t) = g™+ 8q(AE | 1), (9) rium situation with the solute at each step. We therefore
model the solvent response by considering the subsequent
step changes in the solute electric field, occurringt at
=0,t4,t,,...t,. Before the perturbation starts, EH§) applies
and, between=t,_, andt=t,, the change in the fieldEX"**

q(t — —o0) =g, is determined by Eq(7). The polarization charges at differ-
(100  enttimes then become

where g™ are the polarization charges when the initial
solute-solvent equilibrium is vali¢t— —) and the follow-
ing boundary conditions apply

&t — —»)=0, t
and m0=dm+J.dVRa—VﬂM3AEMy ost<t,,
a(t— =) =q™,
(11) init : ’ ’ ’ 0,1 ch ’
8q(t — %) = Aq = g — g™ q(t)=q +focdt R(t—t")6t")AEY +fm dt'R(t
In relations(9) and (11), the time at which the perturbation —t') 6t —t,) AEL2
starts is=0. Before the perturbation takes plate-—«) the ’
term &q is nil sinceAE , =0. g™ are the polarization charges
when the solute-solvent equilibrium has been reached in the
final state. .
Considering the solvent as a dielectric material polarized — init "B+ _ 1\ a4+ 0,1
by the presence of an external electric field, under the as- aw =g+ f_x dUR(t-t)E(t)AE, "+
sumption that the coupling between the field and the system —t
is weak, it is possible to apply the results of the linear- +J n_ldt’R(t—t’)b’(t’—t )AETLN
response theof;}.This means that the response of the system o UL
can be fully described in terms of time correlation functions
characteristic of the system in the absence of perturbation.

We report here the results of the theory when applied to th%quat|on(14) can be cast in a more compact form as
properties we are interested in. More details on the theory

t<t<t,
(14

o <t<t,.

can be found in Ref. 21. The polarizatidh induced in a q(t) = q'”'t+5q(AEo y, ost=t,,
pointr inside the medium at timedue to an electric fieldE
inr att’ can be written as q(t) = g™t + Sq(AE®Lt) + Sq(AEL2t —t,),
t
P(r,t):fdr’J X(r =t/ t=tHE(r' t")dt’, (12) hstst,

(15

where y represents the medium response function. The

physical meaning of Eq.12) is that the response at timg .

i.e., the change in the value of the polarization, is a superim- (1) =g + Sq(AESLt) + -+ SQ(AET "t

position of delayed effects, and that the response at titne —tq), ti<t<t,

a unit, 6 function-shaped external electric field appliedt at

=0 is simply the medium response functign®® In the  where the termsq (except the last onerepresent a sort of
present case, since the medium is assumed to be local, hmemory of the polarization in the preceeding steps. These
mogeneous, and isotropic, the result is a spatial average ¢frms act as inertia on the chargestgt;<t<t,(2<m

Eqg. (12). In this scheme and by analogy with the expression<n) and they rapidly decrease as time increases.
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= -t0 (equilibrium). t=0
-.0g2 _ -0.002
W -0.008 &N 1 -0.008
0.014 -0.014
+00Ed -0.020
-0.025 :0.025
-0.031 0.031
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0055 -0.055
O position of the solute (point charge)
t=05ps t=1ps

FIG. 1. Time evolution of the apparent charges located on the cavity surface after a step change in the solute position. Four main snapshotdiof the evolu
are shown.

D. Time-dependent variation of the polarization t
charges gi(t) :f dt'R(t—t")et’). 17

The theoretical model outlined in Sec. 11 B and 1l C is ) .
transformed in a numerical procedure by passing from the BY applying a procedure originally developed by Hiu
time domain to the frequency domain. This change is re@l. and successively modified for the PCM approétthe
quired as the dielectric response of the solvent is described #(t) function in Eq.(17) becomes

terms of its complex dielectric permittivity as a function of

the frequencyw. The v dependence of can either be mod- 2 (Pdw 1~ ~ ~
eled using pure diffusive expressiof@s in the Debye relax- gi(t) = ;f ;'m[Ri(w)]COSmt +R(0) =g () +Ri(0),
ation expressio2r'f), or calculated on the basis of the experi- 0

mental measurements of the absorption. The use of the (18

Laplace-transformed equations to pass from the time to the

frequency domain has the effect of simplifying the formalismbeing

and of allowing the straightforward use of the function

&(w)."*To understand this procedure let us go back to the { 1[ ame 1)
basic Eq.(13), defining the time evolution of the charge, and Ri(0) = —[—H (19
let us revert it in the iterative form. Using E(L3) the varia- gle-1

tion of the charge on each tesséra expressed as q
an

&"(AE, )1 = g(0f- (AE, ) +7 [ s ']}

~ 1] 4m(w) |7
- M&‘i(n—l), (16) Rle) = { 8 {é(w) - 1}} . 20
g

A simple expression for thé(w) is provided by the Debye
where we have defined model for the solvent relaxation
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-3.5M =

FIG. 2. Time evolution of the solute-
L 4 solvent interaction energys,(t) after

a sudden change in the position of the
solute charge.

P
n
I
|

(t) (atomic units)
5
I
|

solv
q
T
1

2 54 &
5.5 _]
| , | . | f | s | !
% 2 4 6 8 10
t(ps)
R . e—el, dure is more time consuming, but in principle it should pro-
e(w)=e, + (21) vide a more realistic description of the nondiffusive portion

l+ior
of the solvent response.

wheree is the static dielectric permittivitys., is related to
the optical dielectric permittivity, and is the Debye relax- E. Time-dependent solute-solvent interaction
ation time. Equatiori21) is a particular case of more general
expressions (see, for example, the Havrilak-Negami
equatio) and it is found to be appropriate for polar sol-
vents, such as water and acetonitrile.

Inserting expressiof®1) for £(w) in Eq. (18) we obtain
for g/ (t) the integral,

According to the PCM model, in which solute and sol-
vent mutually polarize, the time evolution of the solvent
charges should be coupled to the time evolution of the solute
charges and of their potentil(t) on the cavity.

As anticipated in the introduction and clearly explained
by Basilevskyet al.’ this coupling would lead to nonlinear
2a Afoc effects on the solute polarization. In that case, both the sol-

1 :
dw—5—— cosat, (22 vent and the solute charges would necessarily become com-
w

'D —
gi (t) - 0 BZ+

mT plex valued. To avoid this complication, in the model pre-
sented in Sec. Il, we have assumed that the time variation of
the solute charge and thus of the electric field determining

the solvent charge can be approximated with the step func-

where the constantd andB are

= M tion 6(t). In this way the purely linear response is recovered.
[47e..]? Still keeping this approximation, it is possible to intro-
(23 duce the effects that the time-dependent evolution of the sol-
B= le vent charges has on the solute by including these charges,
B el calculated at time through Eq.(9), into the Hamiltonian of
the solute, as fixed charges.
The solution of the integral in E422) leads to The resulting wave function and the corresponding den-
sity will thus account for the effects of the solvegit) and,
g'°(t) = A_aie—Bt (24) as a response, it will give origin to a time-dependent poten-
! Br ' tial V() and to a time-dependent interaction eneldyy(1),
where the exponential decay is due to the use of the Debye y_ (t)= %[V(t)]*q(t). (25)

model. We note, however, that the decay time of the solvent
responsg7’) is different (and smaller from the Debye re-
laxation timer; namely, 7' « 7./ «.

When a combined approach is applied, including a fit of
the experimental data for the high-frequency portion of the  To test the model described in the previous sections, a
complex dielectric permittivity, the integral in Eq18) is  very simple solute was considered, namely, a point, nonpo-
solved numerically. We used the treatment of the experimerlarizable charge, moving inside a spherocylindric cavity in a
tal data fully described in Ref. 24 and there applied to thedielectric medium with the same characteristics of liquid wa-
calculation of the time-dependent Stokes shift. This proceter. As for this example, we used the Debye expres&din

F. Application to a simple system
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t=0 t=3ps

J -0.002

| .0.008
-0.017
0,023
C 0032
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-0.045
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j -0.002
" -0.008
-0.017
. -0.023
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t=10 ps

-0.002
- -0.008
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- -0.023
| -0.032

-0.039
-0.045
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FIG. 3. Time evolution of the apparent charges located on the cavity surface during the slow solute motion. Four main snapshots of the evolwtion are sho

to model the frequency dependence of the complex dielectriDebye model of relaxation. Since the system is symmetric,
permittivity (¢=78.30¢’,,=4.21,7=8.20 p3. Two extreme the interaction energy tends to the initial equilibrium value
cases were chosen to test the modila solute which in-  for long times.

stantaneously reaches the end of the cylindast solute;

(i) a solute which moves so slowly that the solvent is always?. Sjow solute

in equilibrium with it (slow solute. Starting from the same equilibrium situation tat—cc,

the charge moves with a constant velocity along the cylinder
axis. The velocity was chosen in such a way that the solvent
1. Fast solute reaches the equilibrium before a new displacement of the
solute takes place. We report in Fig. 3 the time evolution of

~ The step variation is described as a change in the posig ojarization chargesve omit the snapshot of the initial
tion of the point charge on the axis of the cylindettat-oo, equilibrium att=—c, shown in Fig. 1

corresponding to the starting solute-solvent equilibrium, the * \ysth respect to the previous case, the surface charges
charge is located at one end of the cylinder, while it is 10-¢5|15\y the position of the solute during its motion. The result
cated at the opposite end & 0. After that, we follow the  gpained for the functiorUg(t) is not shown, since the
time evolution of the apparent charges on the cavity surfaCneraction energy is subject to very small variations, which

as we display in Fig. 1. are only related to the position of the solute charge on the
We chose a representation based on a color scale, quall;

tatively showing the values of the apparent surface charges. S

We notpgd that, as a consequence of the sudden changelm IONIZATION OF DMA

the position of the solute, the solvent rearranges towards a

new equilibrium (in this particular case symmetric to the In this section we present a study on the variation of the

initial one). solvation energy profile after an ionization process. As probe
In Fig. 2 we also show the evolution of the solute- system we chose DMAN, N-dimethyl-aniline, shown in

solvent interaction energyg,.(t) defined in Eq.(25). An  Fig. 4) in acetonitrile and in water.

instantaneous step change li,,(t) is shown att=0, fol- We consider both the direct DMADMA™ and the re-

lowed by an exponential decay, related to the use of theerse DMA — DMA processes. In addition to the property
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TABLE |. Parameters in Eq21) used for water and acetonitrile.

Solvent & £, el 7 (p9
Water 78.30 1.776 4.210 8.20
Acetonitrile 35.84 1.806 3.510 3.37

d _ | qinit,neq_  jinit
)\s - UsoIv Usolv'

(28)

r —(fin,neq_ y fin
)\s - Usolv Usolw

whereUnned and UiNitned gre the nonequilibrium interaction

energies in the final and in the initial states, respecti%ly.

A. Computational details

As we already pointed out, here we neglect the time-
dependent evolution of the solute geometry during the sol-
vent relaxation. We have therefore considered the geometry
corresponding to the neutral species and the one correspond-
ing to the charged species, both in equilibrium with the sol-

FIG. 4. Structure oN, N-dimethyl-aniline(DMA). vent. However, as the differences that we have obtained for

the time evolution of the solvent response in these two cases

of providing a single-step variation of the solute charge denare negligible, we therefore present the results obtained for

sity (exactly as requested by the simple version of the modethe geometry of the neutral species only. This conclusion is

presented in Sec.)lthis particular system was chosen due toin qualitative agreement with the behavior observed by Sato
the availability of a recent pap@rstudying the same process. et al.*®

We determine the nonequilibrium free-energy changes as We performed geometry optimization at density func-
functions of time and in terms of a solvent reaction coordi-tional theory(DFT) level using the nonlocal exchange corre-
nate, and we calculate the solvent reorganization efigrgylation functional by Becke, Lee, Parr, and YAhgB3LYP)
associated with the ionization. By analogy with the definitionwith the Dunning/Huzinaga d95u#, p) (Ref. 30 basis set
in Refs. 15, 26, and 27, we define the electrostatic nonequin the presence of the solvefwater, acetonitrile with the
librium solvation free energAF(t) within the harmonic ap- PCM model implemented intcAussian.>' The cavity sur-

proximation a&® rounding the solute was the result of the superimposition of
interlocking spheres centered on atomic sites or groups of
AF(t) = Ugg(t) = UM V(1) = VM Tq(t), (26) atoms. The radii of the spheres weR(C)=1.925 A,

R(CH)=2.125 A R(CH;)=2.525 A, andR(N)=1.840 A. We
where the superscript init refers to values corresponding toised the same basis set and the same cavity to perform the
the equilibrium situation before the charging process take§me-dependent calculation of the polarization charges.

place. We also define a solvent reaction coordine®&) as As for the use of the Debye relaxation expression in Eq.
(21), we used the value corresponding to the optical dielec-
AS(t) =[V(t) = V" Tq(t). (27)  tric constant.,.~n? instead of the parametef.. This choice

was made to have consistence with the tim@ calculation.
The definitions for the solvent reorganization enengy A different calculation was also run by including the fit of
which derive from the— o limit of Eq. (26) for the direct experimental data af(w): the Debye expression was used in
(superscripd) and the reversésuperscrips) processes are the low-frequency portion of the spectrum, while the fit was

‘30 l T I T | T I T 50 I T T I T I T
DMA ->DMA" | 0 i DMA” ->DMA 7|
4 FIG. 5. Evolution of the solvent reac-
_ tion coordinate as defined in EQR7)
for (direct, reversg ionization of
DMA in acetonitrile. The open circles,
dotted line refer to the procedure
based on the Debye expression in Eq.
7 (21) and the full squares, full line refer
A to the procedure based on fit of the
— experimental data.
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S L D L B R B
DMA->DMA" | .46 DMA" -> DMA-]

FIG. 6. Time evolution of the interac-
— tion energy[see Eq.(25)] for (direct
and reversgionization of DMA in ac-
etonitrile. The open circles, dotted line
— refer to the procedure based on the De-
bye expression in Eq21) and the full
squares, full line refer to the procedure
Y based on fit of the experimental data.

(t) (Kcal/mol)

solv

U
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employed in the high-frequency portion, in which the libra- exponential, according to the diffusive relaxation model,
tional and inertial motions of the solvent are active. In thiswhile an oscillation is observed in the case of the inclusion
case, the values af, in Table | were used, according to the of the experimental data. This behavior is the same observed
procedure used in Ref. 13. We report in Table | the paramfor the solvent response function of acetonitrile calculated

eters used for water and acetonitrile. with a similar approach? and it has been related to the li-
brational motion of the molecules.
B. Results and discussion In the direct proces$DMA —DMA™Y), AS is negative

for all times and its absolute value increases with time,
reaching a plateau quite rapidly. We anticipate that this be-

. d r . _ .
tion _er?lergy(gs+zxsl)/026ok\);qmed hereTa;]rEeS— 1'O|2 eg/ n ag-_ havior is common to all time-dependent properties that we
etonitrile andis=1.06 eV in water. The result obtained In .50 jateq. On the other hand, in the reverse process

Ref. 15 was 1.85 eV(acetonitrilg. In the same paper the (DMA*—DMA), AS starts with highly positive values and

authors_pre_sent an estimate for the experimental va_lue of thg positive before reaching the plateau, when it becomes
reorganization energy of the redox pair DMA-duroguinone Inslightly negative. The interpretation of this behavior is based

a similar solven(C4H,CN), namely,As=1.39 eV. on Eq.(27): (i) in the direct caseAS has negative values

_We turn now to discuss the time-_dep_endent prOpertie.%ecause the dominant term is the negafivé)]'q(t), being
which characterize the solvent reorganization. We describe iQinit 55 the potential corresponding to the neutral molecule

more details the case of acetonitrile as solvent, for which we , . . . . . .
. . ) ) which is conceivably negligible with respect ¥t). (ii) By
have a comparison in Ref. 15. It is, however, important to . . init\
. T o . . contrast, in the reverse case, the dominant terfx¥)q(t),
point out that this is a qualitative comparison, being the mod-_". init . o .
. . ; beingVV'"" as the potential of the charged molecule; in this
els employed in the two cases quite different. In fact, the o T
. . caseAS decreases with increasingsince the values dj(t)
attention of the present study is focused on the solvent relax= . .
. . . . _.approach the ones induced by the neutral mole¢wigich
ation after a step change in the solute charge density, while in o very small
Ref. 15 the authors follow a hypothetical linear change in the : .
yp 9 In Fig. 6 we report a plot, the time dependenceJgf,,

solute charge density. defined in EQq.(25), which confirms the considerations we
have just exposed.
Although the shape of the relaxation is the same in the
In Fig. 5 we report the time evolution of the solvent direct and in the reverse case, in the latter the global varia-
reaction coordinatdS(t) [defined in Eq(27)]. Both the De- tion of Uy, is much smaller than in the former. In fact, in the
bye and the experimentalw) were used. reverse case, &t=0, Ug,, is determined by the potential
We notice a different feature in the short time scale inV(0) of the neutral DMA and the values af(t) decrease
the two cases. The decay related to the Debye expressiontisward the corresponding equilibrium charges. On the con-

By using Eq.(28), the average values of the reorganiza-

1. Acetonitrile

50 T T T T T T T T T 50 I T T | i | T | T
ol DMA ->DMA" | 20l DMA" -> DMA |
| | | | FIG. 7. Nonequilibrium free-energy
% 30 - | 30 | profile [see Eq.26)] as a function of
= L i L i the solvent reaction coordinate, de-
% 20 L a 20 - a fined in Eq.(27), after(direct, reverse
Q i | i i ionization of DMA in acetonitrile. The
~ open circles, dotted line refer to the
% 10~ n 10~ B procedure based on the Debye expres-
i ] i ] sion in Eq.(21) and the full squares,
or — or ] full line refer to the procedure based
10 B Dl L L L 7 B Loyl L L 7 on fit of the experimental data.
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50

40
E FIG. 8. Time evolution of the non-
— equilibrium free-energy profile as de-
fined in Eq.(26) after (direct, reverse
ionization of DMA in acetonitrile. The
open circles, dotted line refer to the
procedure based on the Debye expres-
— sion in Eg.(21) and the full squares,

. E full line refer to the procedure based
- DMA ->DMA ok DMA" -> DMA - on fit of the experimental data.
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trary, in the direct procesdJq,(0) is determined by the ASis negative and its absolute value increases with increas-
potentialV (0) of the charged species and this time the valuesng t in the direct process, while it becomes smaller in the
of g(t) increase toward those corresponding to DMA reverse process.

The comparison of the functions plotted in Figs. 5 and 6
with the corresponding onefFig. 3 in Ref. 15 is not
straightforward, as we already mentioned. The variation o
the solvent reaction coordinate follows a linear dependence In Figs. 9 and 10 we report the time-dependent behavior
on the parameter which characterizes the evolution from thef Uy, and of AF(AS) obtained in water.
neutral to the charged moleculand vice versp In the Being similar to the corresponding ones in acetonitrile,
present case, we observe a decay, being the reaction coorgie omit a detailed description of the behavior of the func-
nate, the expression of the solvent rearrangement after th®ns considered and only,,(t) and the dependence af
charged(neutra) state has been reached. This decay reflectsn the solvent reaction coordinaS are discussed. Differ-
the exponential decay of the solvent polarization, as deences of the order of only a few Kcal/mol are found between
scribed by the Debye expression in E1). the two solvents as for the initial and the finauilibrium)

The dependence afF on the solvent reaction coordi- states. These small differences are due to the fact that both
nate AS is shown in Fig. 7, while in Fig. 8 the time depen- solvents are highly polaras shown by the high static value
dence of this function is displayed. of the dielectric constapand thus in an electrostatic model

As it can be seen from Fig. 7, a linear dependencé&fof as that considered here their effects are quite similar.
on ASis obtained: we note that this linearity comes from the ~ We note, however, that the time evolution in water is
combination of the two term&Ug,, and AS) which show  slightly slower than in acetonitrile either in the result based
the same time-dependent behavior. In fact, as displayed ion the Debye expression and in one based on the experimen-
Fig. 8, the nonequilibrium free-energy profile as a functiontal data. Solvation dynamics in acetonitrile is faster than in
of t features a similar shape to those obtainedUgy, and  water, as it can be noticed from the smaller relaxation time
AS. in the Debye expressiof21). In water, the relaxation related

In Fig. 7, the slope of the two lines is different and the to the fit of the experimental data is faster in the shorter time
two graphs are not symmetric. This is due to the fact thatscale. It has been already pointed’ddf on the basis of the
even though the extent of the char@¢E in Eq. (7)] is the  comparison of the calculated solvation relaxation function
same in the two processes, the situation in which it takesvith the experimental Stokes shift that the procedure based
place is different. In the first case, the solvent is in equilib-on the experimental data allows a better description of the
rium with the neutral solute, while in the second case it is ininertial portion of the decay.
equilibrium with the charged solute. As already commented, In addition, by including a more realistic description of

?' Water

'20 I T T ] T T T I T
DMA ->DMA™ T

DMA" -> DMA

FIG. 9. Time evolution of the interac-
S — tion energy[see Eq.(25)] for (direct

¥ and reversgionization of DMA in wa-
ter. The open circles, dotted line refer
to the procedure based on the Debye
expression in Eq(21) and the full
squares, full line refer to the procedure
based on fit of the experimental data.
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50 T T T l T | T I T 50 | T T l T I T I T
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| d L i FIG. 10. Nonequilibrium free-energy
%‘ 30 _ 30k | profile [see Eq.(26)] as a function of
=) L | | | the solvent reaction coordinate, de-
= 20 1 ok N fined in Eq.(27), after(direct, reversp
<M) i i i i ionization of DMA in water. The open
~ circles, dotted line refer to the proce-
% 10— N 10— N dure based on the Debye expression in
i 7 i ) Eqg. (21) and the full squares, full line
0 1 Un B refer to the procedure based on fit of
B | | | I | 7 B 7 the experimental data.
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the dielectric properties of the solvents, it is possible to obthe solute relaxation is included as well. Some important
serve more differences in the time-dependent properties afevelopments are still to be completed following two main
the solvation response. The same cannot be said in the cadiections.
of the Debye-based results, which tend to be very similar in  On the one hand, we can define a strategy to properly
shape. treat the time-dependent evolution of the solute-solvent mu-
tual polarization. This strategy could in fact resort to a dis-
cretization of the solute time-dependent change in terms of
IV. SUMMARY AND CONCLUSIONS multiple steps(see Sec. Il & A similar extension of the
model would, for example, permit to study the coupling of
follow the time evolution of the solvent polarization after agne solvent relaxation with that of a solute excited state.

change in the solute charge density. We worked within a ?)n .trle fothecrj hi?]d’ trluiz_ mulc';lstep (;/ertsmntgf éh? model
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