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This work presents an extention of the polarizable continuum model to explicitly describe the
time-dependent response of the solvent to a change in the solute charge distribution. Starting from
an initial situation in which solute and solvent are in equilibrium, we are interested in modeling the
time-dependent evolution of the solvent response, and consequently of the solute-solvent
interaction, after a perturbation in this equilibrium situation has been switched on. The model
introduces an explicit time-dependent treatment of the polarization by means of the linear-response
theory. Two strategies are tested to account for this time dependence: the first one employs the
Debye model for the dielectric relaxation, which assumes an exponential decay of the solvent
polarization; the second one is based on a fitting of the experimental data of the solvent complex
dielectric permittivity. The first approach is simpler and possibly less accurate but allows one to
write an analytic expression of the equations. By contrast, the second approach is closer to the
experimental evidence but it is limited to the availability of experimental data. The model is applied
to the ionization process ofN,N-dimethyl-aniline in both acetonitrile and water. The nonequilibrium
free-energy profile is studied both as a function of the solvent relaxation coordinate and as a function
of time. The solvent reorganization energy is evaluated as well. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1879952g

I. INTRODUCTION

In the modeling of time-dependent phenomena in solu-
tion, one of the open questions is how to take into account
the evolution of the interaction between solute and solvent.
In fast processes, such as electronic excitations, electron
transfers, or ionizations, the time scale of the change in the
charge density of the solute is usually much smaller than the
time scale in which a polar solvent fully relaxes to reach a
new equilibrium state. During this relaxation, the solvent
nuclear and molecular motions act as inertia on the solvation
response and a nonequilibrium regime is established. Due to
the mutual solute-solvent polarization, the new equilibrium
is reached through changes of both solute and solvent, and an
accurate description of the reorganization path should con-
sider the evolution of this interaction and, possibly, the solute
geometry relaxation.

The most straightforward way to describe this evolution
is represented by molecular-dynamicssMDd simulations of
the solute-solvent system.1–5 In this case, the time depen-
dence of the solvent polarization is obtained explicitly from
the simulated trajectories. In the methodology based on
molecular-dynamics simulations, the typical way5 to run
nonequilibrium simulations is to start from equilibrated tra-
jectories corresponding to the initial state and change the
solute partial charges, according to the final-state values.
Each simulation is then run and the results obtained for the
solvation energy are averaged over the full set of trajectories.

An alternative approach to MD simulations is the one
proposed by implicit solvation models. In these models the
polarization is determined by the dielectric function« of the
solvent, described as a continuum medium in which a cavity
hosts the solute. Continuum models developed to treat the
time-dependent solvation response can be classified into two
main classes. Models belonging to the first class introduce a
separation of the solvent polarization into a dynamical con-
tribution, associated with the electronic motion, and an iner-
tial sor orientationald contribution, due to the nuclear and
molecular motion.6–8 Models of the second class implicitly
take into account dynamical and inertial effects in a single
response.9–13When the nonequilibrium response is described
in terms of two contributions, the orientational component of
the polarization remains in equilibrium with the charge den-
sity of the initial state. On the other hand, the dynamical
component is assumed to equilibrate instantaneously to the
final state in the presence of the inertial part of the polariza-
tion. By contrast, when a single term in the solvent response
is considered,9–13 the transition is represented as a step
change in the solute charge density, and the solvent response
is modeled by introducing the complex dielectric permittivity
as a function of the frequency,«̂svd.

Besides the discrete and the continuum approaches, there
is a third alternative way to calculate the nonequilibrium
solvation energy. In this framework, a thermodynamic cycle
is defined in terms of a series of intermediate states in which
solute and solvent are in equilibrium. The properties of in-
terest are then calculated on the basis of modified-referenceadElectronic mail: m.caricato@sns.it
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interaction site modelsRISMd methodsfex-RISM sRef. 14d
and RISM-self-consistent-fieldsSCFd sRefs. 15 and 16dg.

The method presented here belongs to the family of con-
tinuum models and it is developed according to the strategy
in which the solvent response is a global response. It is based
on a continuum representation of the solvent within the po-
larizable continuum model17 sPCMd approach. This model
allows a realistic representation of the cavity in which the
solute is embedded as well as a quantum-mechanical de-
scription of the solute, and therefore it represents a tool to
accurately describe the effects of solvation on molecular phe-
nomena and properties. In particular, the interest here is on
the description of the solvent reorganization after sudden
changes in the solute charge distribution.

The procedure that we propose within the PCM formal-
ism to model the solvent relaxation differs from the nonequi-
librium formulation already mentionedssee Refs. 6–8d. In
fact, here we adopt the strategy based on the inclusion of the
complex dielectric permittivity in order to take into account
the solvent motion activated as a consequence of the change
in the solute. This work therefore represents a further step in
the description of solute-solvent interaction in time-
dependent processes, since it allows us to follow the evolu-
tion of the solvent polarization in a straightforward way and
to maintain an accurate description of the solute. It is impor-
tant to remark that a full inclusion of the time-dependent
solute-solvent polarization would lead to an extremely com-
plex formulation, due to nonlinear effects induced by the
solvent reaction field on the solute charge distribution which
can be seen as a function of such field. In the present ap-
proach, as in previous ones,9 this complexity is avoided by
assuming a linear approximation. In Sec. II E we discuss this
issue more in details.

The time-dependent model is here applied to the study of
the change of the solute-solvent interaction energy after an
ionization process. The solute studied isN,
N-dimethyl-anilinesDMA d and the solvents considered are
acetonitrile and water. This choice has been dictated by the
fact that it represents a simple, but still realistic, model for
more complicated phenomena, such as electron transfer in
solution, and it also gives us the opportunity to compare with
a previous study15 based on the same solute-solvent system.

This paper is organized as follows. In Sec. II the main
formal aspects of the model are presented: after a brief in-
troduction to the PCM formalism in Sec. II A, the time-
dependent theory is extensively treated in Secs. II B–II E.
Section II F is devoted to a numerical test on a simplified
system: a solute represented by a nonpolarizable point charge
moving along the axis of a cylindric cavity immersed in
water. Section III presents and analyzes the results of the
study of the ionization of DMA in water and acetonitrile.
Finally, Sec. IV presents a summary with indication of some
possible extensions and generalizations of the model.

II. THEORY

A. The PCM formalism

In the PCM model, the solvent is represented by a con-
tinuum dielectric medium within which a cavity is built to

host the solute. The solute-solvent interaction is expressed in
terms of a solvent reaction field, which is obtained, for the
electrostatic polarization, solving the Poisson–Laplace equa-
tions with the proper boundary conditions.17 This reaction
field is thus represented by an apparent surface chargesASCd
placed on the surface cavityS. The numerical solution of this
electrostatic problem is achieved by a boundary-element
method sBEMd approach: the cavity surface is divided in
small regions, called tesserae, and the ASC is rewritten in
terms of pointlike charges centered on the tesserae.

In the last years, different formulations of the PCM
model have been presented.18,19 They differ in the way the
PCM equations determining the ASCs are defined. Here, in
particular, we shall adopt the recent iterative version of the
dielectric PCMsDPCMd.20 In this case, for a solute enclosed
in the molecular cavity, the solvent reaction field can be ex-
pressed in terms of the ASCsssd in a points«S as

S« + 1

« − 1
−

1

2p
D*Dsssd = −

1

2p
E'ssd, s1d

where« is the static dielectric permittivity of the solvent and
D* is an operator that accounts for the electric field generated
by s itself. E' is the normal component of the electric field
generated by the solute on the cavity surface. As said above,
the s charge distribution is approximated in terms of the
point charges located at the center of each tessera. Equation
s1d is thus tranformed into the expression

S2p
« + 1

« − 1
A−1 − D*Dq = − E'. s2d

The A matrix is a diagonal matrix with the areas of the
tesseraesaid as elements. Introducing the vectors:

zisajd = o
jÞi

Dijaj , s3d

zi
*sqjd = o

jÞi

Dij
* qj , s4d

the expressions2d can be rewritten as20

H 1

ai
S 4p«

« − 1
+ zisajdDJqi − zi

*sqjd = − sE'di . s5d

For a definition of the matrix elementsDij andDij
* we refer to

the original work.20

Equations5d is iteratively solved20 setting

qi
snd = H 1

ai
S 4p«

« − 1
+ zisajdDJ−1

h− sE'di + zi
*fqj

sn−1dgj . s6d

This particular formulation of the PCM equation is here pre-
ferred due to the direct relation between apparent charges
and electric field which is well suited for a linear-response
treatment of the solvation responsessee Secs. II B and II Dd.

B. Treatment of the time evolution: The single-step
change

In this section we present the basic aspects of the model
used to describe the time-dependent response of the solvent

154501-2 Caricato et al. J. Chem. Phys. 122, 154501 ~2005!
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to a time evolution of the solute charge distribution, repre-
sented by a single time step. A more general case involving
multiple steps will be presented in Sec. II C.

We assume that the variation in the normal component of
the electric fieldsE'di on a tesserai from the initial to the
final state is a step change of the type,

sE'distd = sE'di
init + ustdsDE'di , s7d

where the functionustd is the step function and

sDE'di = sE'di
fin − sE'di

init . s8d

If the electric field acting on the solute is not subject to
further changes after the step change, the time-dependent
solvent polarization charges at a generic timet can be written
as

qstd = qinit + dqsDE',td, s9d

where qinit are the polarization charges when the initial
solute-solvent equilibrium is validst→−`d and the follow-
ing boundary conditions apply

qst → − `d = qinit ,

s10d
dqst → − `d = 0,

and

qst → `d = qfin ,

s11d
dqst → `d = Dq = qfin − qinit .

In relationss9d and s11d, the time at which the perturbation
starts ist=0. Before the perturbation takes placest→−`d the
termdq is nil sinceDE'=0. qfin are the polarization charges
when the solute-solvent equilibrium has been reached in the
final state.

Considering the solvent as a dielectric material polarized
by the presence of an external electric field, under the as-
sumption that the coupling between the field and the system
is weak, it is possible to apply the results of the linear-
response theory.21 This means that the response of the system
can be fully described in terms of time correlation functions
characteristic of the system in the absence of perturbation.
We report here the results of the theory when applied to the
properties we are interested in. More details on the theory
can be found in Ref. 21. The polarizationP induced in a
point r inside the medium at timet due to an electric fieldE
in r at t8 can be written as

Psr,td =E dr8E
−`

t

xsr − r8,t − t8dEsr8,t8ddt8, s12d

where x represents the medium response function. The
physical meaning of Eq.s12d is that the response at timet,
i.e., the change in the value of the polarization, is a superim-
position of delayed effects, and that the response at timet to
a unit, d function-shaped external electric field applied att
=0 is simply the medium response functionx.22 In the
present case, since the medium is assumed to be local, ho-
mogeneous, and isotropic, the result is a spatial average of
Eq. s12d. In this scheme and by analogy with the expression

of the polarization in Eq.s12d, the variation of the polariza-
tion chargesdq at time t can be written as a response to the
change in the electric field, namely,

dqsDE',td =E
−`

t

dt8Rst − t8dust8dDE'. s13d

This equation represents the time-dependent version of Eq.
s2d for the field change. We can solve Eq.s13d using the
iterative procedure summarized in Eq.s6d for each timet.

C. A more general case: The multistep change

When the solute charge distribution is subject to a mul-
tistep time evolution, the solvent cannot establish an equilib-
rium situation with the solute at each step. We therefore
model the solvent response by considering the subsequent
step changes in the solute electric field, occurring att
=0,t1,t2,…tn. Before the perturbation starts, Eq.s9d applies
and, betweent= tk−1 andt= tk, the change in the fieldDE'

k−1,k

is determined by Eq.s7d. The polarization charges at differ-
ent times then become

qstd = qinit +E
−`

t

dt8Rst − t8dust8dDE'
0,1, 0 ø t , t1,

qstd = qinit +E
−`

t

dt8Rst − t8dust8dDE'
0,1+E

−`

t−t1

dt8Rst

− t8dust8 − t1dDE'
1,2, t1 ø t , t2,

s14d
¯

qstd = qinit +E
−`

t

dt8Rst − t8dust8dDE'
0,1+ ¯

+E
−`

t−tn−1

dt8Rst − t8dust8 − tn−1dDE'
n−1,n,

tn−1 ø t , tn.

Equations14d can be cast in a more compact form as

qstd = qinit + dqsDE'
0,1,td, 0 ø t ø t1,

qstd = qinit + dqsDE'
0,1,td + dqsDE'

1,2,t − t1d,

t1 ø t ø t2,

s15d
¯

qstd = qinit + dqsDE'
0,1,td + ¯ + dqsDE'

n−1,n,t

− tn−1d, tn−1 ø t ø tn,

where the termsdq sexcept the last oned represent a sort of
memory of the polarization in the preceeding steps. These
terms act as inertia on the charges attm−1ø t, tm s2øm
ønd and they rapidly decrease as time increases.

154501-3 Polarizable continuum model J. Chem. Phys. 122, 154501 ~2005!
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D. Time-dependent variation of the polarization
charges

The theoretical model outlined in Sec. II B and II C is
transformed in a numerical procedure by passing from the
time domain to the frequency domain. This change is re-
quired as the dielectric response of the solvent is described in
terms of its complex dielectric permittivity as a function of
the frequencyv. Thev dependence of«̂ can either be mod-
eled using pure diffusive expressionssas in the Debye relax-
ation expression23d, or calculated on the basis of the experi-
mental measurements of the absorption. The use of the
Laplace-transformed equations to pass from the time to the
frequency domain has the effect of simplifying the formalism
and of allowing the straightforward use of the function
«̂svd.13,24 To understand this procedure let us go back to the
basic Eq.s13d, defining the time evolution of the charge, and
let us revert it in the iterative form. Using Eq.s13d the varia-
tion of the charge on each tesserai is expressed as

dqi
sndfsDE'di,tg = gistdh− sDE'di + zi

*fdqj
sn−1dgj

−
zifajg

ai
dqi

sn−1d, s16d

where we have defined

gistd =E
−`

t

dt8Rist − t8dust8d. s17d

By applying a procedure originally developed by Hsuet
al.13 and successively modified for the PCM approach,24 the
gistd function in Eq.s17d becomes

gistd .
2

p
E

0

` dv

v
ImfR̃isvdgcosvt + R̃is0d = gi8std + R̃is0d,

s18d

being

R̃is0d = H 1

ai
F 4p«

« − 1
GJ−1

s19d

and

R̃isvd = H 1

ai
F 4p«̂svd

«̂svd − 1
GJ−1

. s20d

A simple expression for the«̂svd is provided by the Debye
model for the solvent relaxation

FIG. 1. Time evolution of the apparent charges located on the cavity surface after a step change in the solute position. Four main snapshots of the evolution
are shown.
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«̂svd = «8̀ +
« − «8̀

1 + ivt
, s21d

where« is the static dielectric permittivity,«8̀ is related to
the optical dielectric permittivity, andt is the Debye relax-
ation time. Equations21d is a particular case of more general
expressions ssee, for example, the Havrilak–Negami
equation23d and it is found to be appropriate for polar sol-
vents, such as water and acetonitrile.

Inserting expressions21d for «̂svd in Eq. s18d we obtain
for gi8std the integral,

gi8
Dstd =

2ai

p

A

t
E

0

`

dv
1

B2 + v2 cosvt, s22d

where the constantsA andB are

A =
− 4ps« − «8̀ d

f4p«8̀ g2 ,

s23d

B =
1

t

«

«8̀
.

The solution of the integral in Eq.s22d leads to

gi8
Dstd =

Aai

Bt
e−Bt, s24d

where the exponential decay is due to the use of the Debye
model. We note, however, that the decay time of the solvent
responsest8d is different sand smallerd from the Debye re-
laxation timet; namely,t8~t«8̀ /«.

When a combined approach is applied, including a fit of
the experimental data for the high-frequency portion of the
complex dielectric permittivity, the integral in Eq.s18d is
solved numerically. We used the treatment of the experimen-
tal data fully described in Ref. 24 and there applied to the
calculation of the time-dependent Stokes shift. This proce-

dure is more time consuming, but in principle it should pro-
vide a more realistic description of the nondiffusive portion
of the solvent response.

E. Time-dependent solute-solvent interaction

According to the PCM model, in which solute and sol-
vent mutually polarize, the time evolution of the solvent
charges should be coupled to the time evolution of the solute
charges and of their potentialVstd on the cavity.

As anticipated in the introduction and clearly explained
by Basilevskyet al.,9 this coupling would lead to nonlinear
effects on the solute polarization. In that case, both the sol-
vent and the solute charges would necessarily become com-
plex valued. To avoid this complication, in the model pre-
sented in Sec. II, we have assumed that the time variation of
the solute charge and thus of the electric field determining
the solvent charge can be approximated with the step func-
tion ustd. In this way the purely linear response is recovered.

Still keeping this approximation, it is possible to intro-
duce the effects that the time-dependent evolution of the sol-
vent charges has on the solute by including these charges,
calculated at timet through Eq.s9d, into the Hamiltonian of
the solute, as fixed charges.

The resulting wave function and the corresponding den-
sity will thus account for the effects of the solventqstd and,
as a response, it will give origin to a time-dependent poten-
tial Vstd and to a time-dependent interaction energyUsolvstd,

Usolvstd =
1

2
fVstdg†qstd. s25d

F. Application to a simple system

To test the model described in the previous sections, a
very simple solute was considered, namely, a point, nonpo-
larizable charge, moving inside a spherocylindric cavity in a
dielectric medium with the same characteristics of liquid wa-
ter. As for this example, we used the Debye expressions21d

FIG. 2. Time evolution of the solute-
solvent interaction energyUsolvstd after
a sudden change in the position of the
solute charge.

154501-5 Polarizable continuum model J. Chem. Phys. 122, 154501 ~2005!
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to model the frequency dependence of the complex dielectric
permittivity s«=78.30,«8`=4.21,t=8.20 psd. Two extreme
cases were chosen to test the model:sid a solute which in-
stantaneously reaches the end of the cylindersfast soluted;
sii d a solute which moves so slowly that the solvent is always
in equilibrium with it sslow soluted.

1. Fast solute

The step variation is described as a change in the posi-
tion of the point charge on the axis of the cylinder att=−`,
corresponding to the starting solute-solvent equilibrium, the
charge is located at one end of the cylinder, while it is lo-
cated at the opposite end att=0. After that, we follow the
time evolution of the apparent charges on the cavity surface,
as we display in Fig. 1.

We chose a representation based on a color scale, quali-
tatively showing the values of the apparent surface charges.
We noticed that, as a consequence of the sudden change in
the position of the solute, the solvent rearranges towards a
new equilibrium sin this particular case symmetric to the
initial oned.

In Fig. 2 we also show the evolution of the solute-
solvent interaction energyUsolvstd defined in Eq.s25d. An
instantaneous step change inUsolvstd is shown att=0, fol-
lowed by an exponential decay, related to the use of the

Debye model of relaxation. Since the system is symmetric,
the interaction energy tends to the initial equilibrium value
for long times.

2. Slow solute

Starting from the same equilibrium situation att=−`,
the charge moves with a constant velocity along the cylinder
axis. The velocity was chosen in such a way that the solvent
reaches the equilibrium before a new displacement of the
solute takes place. We report in Fig. 3 the time evolution of
the polarization chargesswe omit the snapshot of the initial
equilibrium att=−`, shown in Fig. 1d.

With respect to the previous case, the surface charges
follow the position of the solute during its motion. The result
obtained for the functionUsolvstd is not shown, since the
interaction energy is subject to very small variations, which
are only related to the position of the solute charge on the
axis.

III. IONIZATION OF DMA

In this section we present a study on the variation of the
solvation energy profile after an ionization process. As probe
system we chose DMAsN, N-dimethyl-aniline, shown in
Fig. 4d in acetonitrile and in water.

We consider both the direct DMA→DMA+ and the re-
verse DMA+→DMA processes. In addition to the property

FIG. 3. Time evolution of the apparent charges located on the cavity surface during the slow solute motion. Four main snapshots of the evolution are shown.

154501-6 Caricato et al. J. Chem. Phys. 122, 154501 ~2005!
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of providing a single-step variation of the solute charge den-
sity sexactly as requested by the simple version of the model
presented in Sec. IId this particular system was chosen due to
the availability of a recent paper15 studying the same process.

We determine the nonequilibrium free-energy changes as
functions of time and in terms of a solvent reaction coordi-
nate, and we calculate the solvent reorganization energy25

associated with the ionization. By analogy with the definition
in Refs. 15, 26, and 27, we define the electrostatic nonequi-
librium solvation free energyDFstd within the harmonic ap-
proximation as28

DFstd = Usolvstd − Usolv
init − fVstd − V initg†qstd, s26d

where the superscript init refers to values corresponding to
the equilibrium situation before the charging process takes
place. We also define a solvent reaction coordinateDSstd as

DSstd = fVstd − V initg†qstd. s27d

The definitions for the solvent reorganization energyls

which derive from thet→` limit of Eq. s26d for the direct
ssuperscriptdd and the reversessuperscriptsd processes are

ls
d = Usolv

init,neq− Usolv
init ,

s28d
ls

r = Usolv
fin,neq− Usolv

fin ,

whereUsolv
fin,neq andUsolv

init,neq are the nonequilibrium interaction
energies in the final and in the initial states, respectively.6,9

A. Computational details

As we already pointed out, here we neglect the time-
dependent evolution of the solute geometry during the sol-
vent relaxation. We have therefore considered the geometry
corresponding to the neutral species and the one correspond-
ing to the charged species, both in equilibrium with the sol-
vent. However, as the differences that we have obtained for
the time evolution of the solvent response in these two cases
are negligible, we therefore present the results obtained for
the geometry of the neutral species only. This conclusion is
in qualitative agreement with the behavior observed by Sato
et al..15

We performed geometry optimization at density func-
tional theorysDFTd level using the nonlocal exchange corre-
lation functional by Becke, Lee, Parr, and Yang29 sB3LYPd
with the Dunning/Huzinaga d95v+sd,pd sRef. 30d basis set
in the presence of the solventswater, acetonitriled with the
PCM model implemented intoGAUSSIAN.31 The cavity sur-
rounding the solute was the result of the superimposition of
interlocking spheres centered on atomic sites or groups of
atoms. The radii of the spheres wereRsCd=1.925 Å,
RsCHd=2.125 Å,RsCH3d=2.525 Å, andRsNd=1.840 Å. We
used the same basis set and the same cavity to perform the
time-dependent calculation of the polarization charges.

As for the use of the Debye relaxation expression in Eq.
s21d, we used the value corresponding to the optical dielec-
tric constant«`<n2 instead of the parameter«8̀ . This choice
was made to have consistence with the timet=0 calculation.
A different calculation was also run by including the fit of
experimental data of«̂svd: the Debye expression was used in
the low-frequency portion of the spectrum, while the fit was

TABLE I. Parameters in Eq.s21d used for water and acetonitrile.

Solvent « «` «8̀ t spsd

Water 78.30 1.776 4.210 8.20
Acetonitrile 35.84 1.806 3.510 3.37

FIG. 4. Structure ofN, N-dimethyl-anilinesDMA d.

FIG. 5. Evolution of the solvent reac-
tion coordinate as defined in Eq.s27d
for sdirect, reversed ionization of
DMA in acetonitrile. The open circles,
dotted line refer to the procedure
based on the Debye expression in Eq.
s21d and the full squares, full line refer
to the procedure based on fit of the
experimental data.
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employed in the high-frequency portion, in which the libra-
tional and inertial motions of the solvent are active. In this
case, the values of«8̀ in Table I were used, according to the
procedure used in Ref. 13. We report in Table I the param-
eters used for water and acetonitrile.

B. Results and discussion

By using Eq.s28d, the average values of the reorganiza-
tion energysls

d+ls
rd /2 obtained here arels=1.02 eV in ac-

etonitrile andls=1.06 eV in water. The result obtained in
Ref. 15 was 1.85 eVsacetonitriled. In the same paper the
authors present an estimate for the experimental value of the
reorganization energy of the redox pair DMA-duroquinone in
a similar solventsC3H7CNd, namely,ls=1.39 eV.

We turn now to discuss the time-dependent properties
which characterize the solvent reorganization. We describe in
more details the case of acetonitrile as solvent, for which we
have a comparison in Ref. 15. It is, however, important to
point out that this is a qualitative comparison, being the mod-
els employed in the two cases quite different. In fact, the
attention of the present study is focused on the solvent relax-
ation after a step change in the solute charge density, while in
Ref. 15 the authors follow a hypothetical linear change in the
solute charge density.

1. Acetonitrile

In Fig. 5 we report the time evolution of the solvent
reaction coordinateDSstd fdefined in Eq.s27dg. Both the De-
bye and the experimental«̂svd were used.

We notice a different feature in the short time scale in
the two cases. The decay related to the Debye expression is

exponential, according to the diffusive relaxation model,
while an oscillation is observed in the case of the inclusion
of the experimental data. This behavior is the same observed
for the solvent response function of acetonitrile calculated
with a similar approach,24 and it has been related to the li-
brational motion of the molecules.

In the direct processsDMA →DMA+d, DS is negative
for all times and its absolute value increases with time,
reaching a plateau quite rapidly. We anticipate that this be-
havior is common to all time-dependent properties that we
calculated. On the other hand, in the reverse process
sDMA+→DMA d, DS starts with highly positive values and
is positive before reaching the plateau, when it becomes
slightly negative. The interpretation of this behavior is based
on Eq. s27d: sid in the direct case,DS has negative values
because the dominant term is the negativefVstdg†qstd, being
V init as the potential corresponding to the neutral molecule,
which is conceivably negligible with respect toVstd. sii d By
contrast, in the reverse case, the dominant term issV initd†qstd,
being V init as the potential of the charged molecule; in this
caseDS decreases with increasingt, since the values ofqstd
approach the ones induced by the neutral moleculeswhich
are very smalld.

In Fig. 6 we report a plot, the time dependence ofUsolv

defined in Eq.s25d, which confirms the considerations we
have just exposed.

Although the shape of the relaxation is the same in the
direct and in the reverse case, in the latter the global varia-
tion of Usolv is much smaller than in the former. In fact, in the
reverse case, att=0, Usolv is determined by the potential
Vs0d of the neutral DMA and the values ofqstd decrease
toward the corresponding equilibrium charges. On the con-

FIG. 7. Nonequilibrium free-energy
profile fsee Eq.s26dg as a function of
the solvent reaction coordinate, de-
fined in Eq.s27d, aftersdirect, reversed
ionization of DMA in acetonitrile. The
open circles, dotted line refer to the
procedure based on the Debye expres-
sion in Eq.s21d and the full squares,
full line refer to the procedure based
on fit of the experimental data.

FIG. 6. Time evolution of the interac-
tion energyfsee Eq.s25dg for sdirect
and reversed ionization of DMA in ac-
etonitrile. The open circles, dotted line
refer to the procedure based on the De-
bye expression in Eq.s21d and the full
squares, full line refer to the procedure
based on fit of the experimental data.
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trary, in the direct process,Usolvs0d is determined by the
potentialVs0d of the charged species and this time the values
of qstd increase toward those corresponding to DMA+.

The comparison of the functions plotted in Figs. 5 and 6
with the corresponding onessFig. 3d in Ref. 15 is not
straightforward, as we already mentioned. The variation of
the solvent reaction coordinate follows a linear dependence
on the parameter which characterizes the evolution from the
neutral to the charged moleculesand vice versad. In the
present case, we observe a decay, being the reaction coordi-
nate, the expression of the solvent rearrangement after the
chargedsneutrald state has been reached. This decay reflects
the exponential decay of the solvent polarization, as de-
scribed by the Debye expression in Eq.s21d.

The dependence ofDF on the solvent reaction coordi-
nateDS is shown in Fig. 7, while in Fig. 8 the time depen-
dence of this function is displayed.

As it can be seen from Fig. 7, a linear dependence ofDF
on DS is obtained: we note that this linearity comes from the
combination of the two termssDUsolv and DSd which show
the same time-dependent behavior. In fact, as displayed in
Fig. 8, the nonequilibrium free-energy profile as a function
of t features a similar shape to those obtained forUsolv and
DS.

In Fig. 7, the slope of the two lines is different and the
two graphs are not symmetric. This is due to the fact that,
even though the extent of the changefDE in Eq. s7dg is the
same in the two processes, the situation in which it takes
place is different. In the first case, the solvent is in equilib-
rium with the neutral solute, while in the second case it is in
equilibrium with the charged solute. As already commented,

DS is negative and its absolute value increases with increas-
ing t in the direct process, while it becomes smaller in the
reverse process.

2. Water

In Figs. 9 and 10 we report the time-dependent behavior
of Usolv and ofDFsDSd obtained in water.

Being similar to the corresponding ones in acetonitrile,
we omit a detailed description of the behavior of the func-
tions considered and onlyUsolvstd and the dependence ofDF
on the solvent reaction coordinateDS are discussed. Differ-
ences of the order of only a few Kcal/mol are found between
the two solvents as for the initial and the finalsequilibriumd
states. These small differences are due to the fact that both
solvents are highly polarsas shown by the high static value
of the dielectric constantd and thus in an electrostatic model
as that considered here their effects are quite similar.

We note, however, that the time evolution in water is
slightly slower than in acetonitrile either in the result based
on the Debye expression and in one based on the experimen-
tal data. Solvation dynamics in acetonitrile is faster than in
water, as it can be noticed from the smaller relaxation timet
in the Debye expressions21d. In water, the relaxation related
to the fit of the experimental data is faster in the shorter time
scale. It has been already pointed out13,24 on the basis of the
comparison of the calculated solvation relaxation function
with the experimental Stokes shift that the procedure based
on the experimental data allows a better description of the
inertial portion of the decay.

In addition, by including a more realistic description of

FIG. 8. Time evolution of the non-
equilibrium free-energy profile as de-
fined in Eq.s26d after sdirect, reversed
ionization of DMA in acetonitrile. The
open circles, dotted line refer to the
procedure based on the Debye expres-
sion in Eq.s21d and the full squares,
full line refer to the procedure based
on fit of the experimental data.

FIG. 9. Time evolution of the interac-
tion energyfsee Eq.s25dg for sdirect
and reversed ionization of DMA in wa-
ter. The open circles, dotted line refer
to the procedure based on the Debye
expression in Eq.s21d and the full
squares, full line refer to the procedure
based on fit of the experimental data.
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the dielectric properties of the solvents, it is possible to ob-
serve more differences in the time-dependent properties of
the solvation response. The same cannot be said in the case
of the Debye-based results, which tend to be very similar in
shape.

IV. SUMMARY AND CONCLUSIONS

In this paper we presented a methodology designed to
follow the time evolution of the solvent polarization after a
change in the solute charge density. We worked within a
continuum representation of the solvent in which we in-
cluded its dynamics through the complex dielectric permit-
tivity «̂svd as a function of the frequency.

We applied the model to a quantum-mechanical solute
and to a process in which the time scale of the solute change
is much smaller than the one of the solvent response. How-
ever, we note that the model can be generalized to more
complex situations, for which we have presented the neces-
sary theoretical backgroundssee Sec. IId.

The process that we analyzed is the ionization of DMA,
and its reverse decharging process, in acetonitrile and in wa-
ter. Starting from the initial equilibrium state, we followed
the solvent relaxation through the definition of a solvent re-
action coordinate until the new equilibrium state was
reached. The behavior of the two solvents was quite similar,
since their polarization response rapidly decay, as expected.
We observed some differences in the shape of the decay
through the results obtained with variants of the method. The
first one was based on the Debye theory of relaxation, which
emphasizes the diffusive portion of the relaxation, while the
second one took advantage of the experimental data of ab-
sorption in order to achieve a better description of the short-
time, inertial portion. In this second case, the acetonitrile
response was characterized by an oscillation, which is due to
the librational motions: the second procedure therefore al-
lows a more specific description of each particular solvent. In
fact, the correspondent feature related to libration in water
has the shape of a broad shoulder. On the other hand, this
methodology is more expensive from a computational point
of view, since it requires to process thev-dependent expres-
sions through a numericalsantid-Fourier transform, while the
Debye theory provides an analytical expression for«̂svd.

This work represents a first step towards the description
of a real time-dependent evolution of the solvent, in which

the solute relaxation is included as well. Some important
developments are still to be completed following two main
directions.

On the one hand, we can define a strategy to properly
treat the time-dependent evolution of the solute-solvent mu-
tual polarization. This strategy could in fact resort to a dis-
cretization of the solute time-dependent change in terms of
multiple stepsssee Sec. II Cd. A similar extension of the
model would, for example, permit to study the coupling of
the solvent relaxation with that of a solute excited state.

On the other hand, the multistep version of the model
can be interfaced with real time-dependent methodologies as,
for example, molecular-dynamics simulations.

1J. D. Simon, Acc. Chem. Res.21, 128 s1988d.
2M. Maroncelli, J. Mol. Liq. 57, 1 s1993d.
3R. M. Stratt and M. Maroncelli, J. Phys. Chem.100, 12981s1996d.
4B. Bagchi, Annu. Rev. Phys. Chem.40, 115 s1989d.
5B. M. Ladanyi Theoretical methods in condensed phase chemistrysKlu-
wer, Dordrecht, the Netherlands, 2000d, Chap. 7.

6B. Mennucci, R. Cammi, and J. Tomasi, J. Chem. Phys.109, 2798s1998d.
7R. Cammi and B. Mennucci, J. Chem. Phys.110, 9877s1999d.
8R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A104, 6531
s2000d.

9M. V. Basilevsky, D. F. Parsons, and M. V. Vener, J. Chem. Phys.108,
1103 s1998d.

10I. V. Rostov, M. V. Basilevsky, and M. D. Newton,Simulation and Theory
of Electrostatic Interactions in Solution, edited by L. R. Pratt and G.
HummersAmerican Institute of Physics, New York, 1999d.

11P. G. Wolynes, J. Chem. Phys.86, 5133s1987d.
12M. D. Newton and H. L. Friedman, J. Chem. Phys.88, 4460s1988d.
13C. P. Hsu, X. Song, and R. A. Marcus, J. Phys. Chem. B101, 2546

s1997d.
14S. Chong, S. Miura, G. Basu, and F. Hirata, J. Phys. Chem.99, 10526

s1995d.
15H. Sato, Y. Kobori, S. Tero-Kubota, and F. Hirata, J. Chem. Phys.119,

2753 s2003d.
16H. Sato, Y. Kobori, S. Tero-Kubota, and F. Hirata, J. Phys. Chem. B108,

11709s2004d.
17J. Tomasi and M. Persico, Chem. Rev.94, 2027s1994d.
18V. Barone and M. Cossi, J. Phys. Chem. A102, 1995s1998d.
19B. Mennucci, E. Cancès, and J. Tomasi, J. Chem. Phys.101, 10506

s1997d.
20G. Scalmani, V. Barone, K. N. Kudin, C. S. Pomelli, G. E. Scuseria, and

M. J. Frisch, Theor. Chem. Acc.111, 90 s2004d.
21J. P. Hansen and I. R. McDonald,Theory of Simple LiquidssAcademic,

London, 1976d.
22R. Kubo, J. Phys. Soc. Jpn.12, 570 s1957d.
23C. J. F. Böttcher,Theory of Electric PolarizationsElsevier, Amsterdam,

1952d.
24F. Ingrosso, B. Mennucci, and J. Tomasi, J. Mol. Liq.108, 21 s2003d.
25R. A. Marcus, Rev. Mod. Phys.65, 599 s1993d.
26M. V. Vener, I. V. Leontyev, Y. A. Dyakov, M. V. Basilevsky, and M. D.

FIG. 10. Nonequilibrium free-energy
profile fsee Eq.s26dg as a function of
the solvent reaction coordinate, de-
fined in Eq.s27d, aftersdirect, reversed
ionization of DMA in water. The open
circles, dotted line refer to the proce-
dure based on the Debye expression in
Eq. s21d and the full squares, full line
refer to the procedure based on fit of
the experimental data.

154501-10 Caricato et al. J. Chem. Phys. 122, 154501 ~2005!

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.237.46.8 On: Mon, 19 Sep 2016

17:20:34



Newton, J. Phys. Chem. B106, 13078s2002d.
27S. Chong and F. Hirata, J. Chem. Phys.106, 5225s1997d.
28We note that in Eq.s26d we have omitted a time independent term, namely

Usolv
init,dyn+Usolv

fin,dyn−sV initd†qfin,dyn, where the labeldyn indicates that the cor-
responding quantitiessV or qd are obtained using«` instead of«.

29A. Becke, J. Chem. Phys.98, 5648s1993d.
30T. H. Dunning, Jr. and P. J. Hay,Modern Theoretical Chemistry, edited by

H. F. Shaefer IIIsPlenum, New York, 1976d, Vol. 3.
31M. J. Frisch, G. W. Trucks, H. B. Schlegelet al., GAUSSIAN 2003, Revision

B.03, Gaussian, Inc., Pittsburgh, PA, 2003.

154501-11 Polarizable continuum model J. Chem. Phys. 122, 154501 ~2005!

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.237.46.8 On: Mon, 19 Sep 2016

17:20:34


