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In this paper a novel approach to study the formation and relaxation of excited states in solution is
presented within the integral equation formalism version of the polarizable continuum model. Such
an approach uses the excited state relaxed density matrix to correct the time dependent density
functional theory excitation energies and it introduces a state-specific solvent response, which can
be further generalized within a time dependent formalism. This generalization is based on the use
of a complex dielectric permittivity as a function of the frequency, £(w). The approach is here
presented in its theoretical formulation and applied to the various steps involved in the formation
and relaxation of electronic excited states in solvated molecules. In particular, vertical excitations
(and emissions), as well as time dependent Stokes shift and complete relaxation from vertical
excited states back to ground state, can be obtained as different applications of the same theory.
Numerical results on two molecular systems are reported to better illustrate the features of the

model. © 2006 American Institute of Physics. [DOI: 10.1063/1.2183309]

I. INTRODUCTION

The accurate modeling of excited state formation and
relaxation of molecules in solution is a very important prob-
lem in many fields of chemistry and physics. Despite this
recognized importance and the numerous applications that
such a modeling might have not only in photochemical or
spectroscopic studies but also in material science and biol-
ogy, the progress achieved so far are not as successful as
those obtained for ground state phenomena. This delay in the
development of accurate but still computationally feasible
strategies to study excited states in solution is due to the
complexity of the problem in which the processes of forma-
tion and relaxation of the electronic state have to be coupled
with the dynamics of the solvent molecules.

The study of these phenomena is a research field in
which until now the main role has been played by molecular
simulation approaches and in particular molecular dynamics.
In these last years, however, it has been shown that an alter-
native and valid strategy is represented by continuum solva-
tion models.'™ In these models the solvent is described as a
polarizable continuum medium characterized by its dielectric
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permittivity & and the solute is represented as a charge dis-
tribution inside a cavity within the dielectric.

The formulations of continuum models which have al-
lowed to include a time dependent solvation response can be
classified into two main classes. Models belonging to the
first class introduce a separation of the solvent polarization
into a dynamic contribution, associated with the electronic
motion, and an orientational contribution, due to the nuclear
and molecular motions.*® Models of the second class im-
plicitly take into account the two contributions in a single
1response.7_I2

When the nonequilibrium response following a step
change in the solute has to be described, in the methods of
the first class the orientational component of the polarization
remains in equilibrium with the solute initial state. On the
other hand, the dynamic component is assumed to equilibrate
instantaneously to the final state. In parallel, methods of the
second class represent the solvent response to the step
change in the solute, introducing the complex dielectric per-
mittivity as a function of the frequency, é(w). The main dif-
ference between the two classes of methods is that the sec-
ond one can be more easily extended to explicitly include the
time dependent evolution of the solvent polarization, i.e., it
can be used to model solvation dynamics.

© 2006 American Institute of Physics
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The examples of applications of these time dependent
versions of continuum models (see references in Ref. 3) until
now have been generally limited to some minor aspects of
the selected phenomena and not always coupled to efficient
quantum-mechanical (QM) computational methods. The rea-
sons for this are strictly linked to a specific aspect of the QM
polarizable continuum models. In such models an effective
solute Hamiltonian is generally introduced, in which an ex-
plicit solvent operator (generally indicated as “reaction field”
operator) is added to the solute Hamiltonian. The complexity
in this procedure is given by the fact that the solvent reaction
field operator is a function of the solute charge distribution
and thus nonlinear effects are induced in the effective Hamil-
tonian. This aspect, which is specific of models in which the
solvent polarization explicitly depends on the charge density
of the state, introduces an additional complexity when a full
inclusion of the coupling between time dependent solvent
polarization and the relaxation of the solute electronic state is
desired. The consequences of this complexity can be seen in
all the steps of the QM description of the excited state for-
mation and relaxation. For example, they can be seen in the
calculation of vertical excitation energies, as shown in a re-
cent paper13 in which we have performed a formal compari-
son between two of the most widely used QM strategies,
namely, the state-specific (SS) method and the linear re-
sponse (LR) method. We recall that the former solves the
effective nonlinear Schrodinger equation for the states of in-
terest (the ground and the excited states) and assumes that
the excitation energies can be computed as differences be-
tween the corresponding values of the total solute-solvent
free energy. By contrast, the latter determines the excitation
energies as poles of the frequency dependent linear response
functions of the molecular system in the ground state, avoid-
ing explicit calculation of the excited state wave function.
The main conclusion of the mentioned paper, from the for-
mal point of view, was that, even in the limit of exact states,
the SS and the LR methods applied to polarizable continuum
models give different expressions for the excitation energy.
In such a comparative paper and in a following one,'" the
origin of the LR-SS difference was imputed to the incapabil-
ity of the nonlinear effective solute Hamiltonian used in
these solvation models to correctly describe energy expecta-
tion values of mixed solute states, i.e., states that are not
stationary. Since in a perturbation approach such as the LR
treatment the perturbed state can be seen as a linear combi-
nation of zeroth-order states, the inability of the effective
Hamiltonian approach to treat mixed states causes a wrong
redistribution of the solvent terms among the various pertur-
bation orders.

In this paper we present a simple but effective strategy
(which we shall indicate as “corrected” LR, or cLR) aimed at
overcoming this intrinsic limit of the nonlinear effective sol-
ute Hamiltonian when applied to LR approaches. With such
a strategy a state-specific solvent response is recovered by
using a linear response approach. As a result, the LR-SS
differences in vertical excitation energies are largely reduced
(still keeping the computational feasibility of LR schemes),
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and the formation and the relaxation of an electronically ex-
cited solute can be described in the presence of a time de-
pendent solvent reaction field.

This strategy is based on the use of the integral equation
formalism'> (IEF) version of the polarizable continuum
model'® (PCM) to describe the solvent effects and of a first-
order perturbative approach to approximate the nonlinear
character of the problem within the time dependent density
functional theory (TDDFT). The method used to represent
the time dependent evolution of the solvent polarization that
follows the transition between two different electronic states
in the solute has been obtained as a generalization of the
model originally proposed to describe the ground state
charge-transfer phenomena within the PCM framework.'”'®
In such a generalization, the recent implementation of ana-
Iytical derivatives of TDDFT excitation energies is used to
calculate the change in the one-particle density matrix of the
solute due to an electronic transition and the corresponding
change in the solvent reaction field."

The paper is organized as follows. In Sec. II a descrip-
tion of the corrected LR model is presented for the calcula-
tion of vertical excitation energies. In Sec. III the approach is
extended to the evolution of an excited state from its forma-
tion (vertical excitation) to the following emission back to
the ground state, and the final relaxation of such a vertical
ground state until the initial solute-solvent equilibrium is re-
covered. For each theoretical section, numerical examples
are presented and discussed in Sec. IV. Concluding consid-
erations are reported in Sec. V.

Il. A LINEAR RESPONSE APPROACH TO A STATE-
SPECIFIC SOLVENT RESPONSE

A. The IEFPCM equations

In the PCM method">'® the solvent is represented by a
homogeneous continuum medium, which is polarized by the
solute placed in a cavity built in the bulk of the dielectric.
The solute-solvent electrostatic interactions are described in

terms of a solvent reaction potential ‘A/g, through which we
define the main energetic functional to be minimized as

G = (W|H + V,|¥) - 5(¥|V,|¥). (1)
Minimization of G[|W)] gives the following equation:
Ho W) = [A°+ V]| W) = E[W). 2

Within a self-consistent-field (SCF) framework, the solution
of this problem leads to the molecular Fock or Kohn-Sham
(KS) operator which here becomes

F=F'+V,, 3)

where FO collects the gas-phase operators including the one-
electron Hamiltonian, Coulomb and (scaled) exchange terms,
and possibly the exchange-correlation potential. The remain-

ing solvent induced term \70 is expressed as the electrostatic
interaction between an apparent charge density o on the cav-
ity surface, which describes the solvent polarization in the
presence of the solute nuclei and electrons. In the computa-
tional practice a boundary-element method (BEM) is applied
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by partitioning the cavity surface into Nts discrete elements,
called tesserae, and by substituting the apparent surface
charge density o by a collection of point charges ¢, placed
at the center of each ressera s,. We thus obtain

Nts Nts

Vy— 2 Vigls))  with gs) = 2 O V(s), (4)
k 1

where Vk indicates the electrostatic potential operator com-
puted on the surface element s; and V(s;) the corresponding
expectation value (including the nuclei contribution). The de-
tailed expression of the Q matrix in Eq. (4) depends on the
specific version of the PCM method being used and has been
previously published (see Ref. 3 for a complete survey) to-
gether with efficient ways to solve the associated linear
system.20 Here it is important to recall that Q is determined
by the form and shape of the cavity, by the partition of the
surface, and by the solvent permittivity .

The partition of the cavity surface allows us to write Eq.
(1) as

Gos=E® - %E Vis(s)qcs(si) (5)

where we have introduced the subscript GS to indicate that
the corresponding free energy and solvent charges refer to
the solute ground state.

B. Excited state free energy

The free energy expression given in Eq. (1) for a ground
state can be generalized to both an equilibrium and a non-
equilibrium excited state K. In the first case we assume that
the solvent reaction field has had time to completely relax
from the initial ground state value [determining VU(GS)] to
the final value representing a new solute-solvent equilibrium
[and determining \A/U(K)]. By contrast, in the nonequilibrium
regime, the solvent reaction field is represented by a Franck-
Condon-type term, sum of an electronic (or dynamic) contri-
bution \A/‘;y"(K) (in equilibrium with the excited state K) and
an orientational (or inertial) part still frozen in the initial
ground state value, \A/i;‘(GS). The expressions of the free en-
ergies corresponding to each regime are described here be-
low.

1. Equilibrium
By defining

e = (Wi 0+ (GS) + V() [ W) — (W

J. Chem. Phys. 124, 124520 (2006)

Efs = (WA + V,(GS)| W) = (W A°| W)
+ 2 Vi(si)gas(s) (6)

as the excited state energy in the presence of the fixed reac-

tion field of the ground state A% (GS)], the free energy be-
comes

G =W 80 + 10,00 W) = B~ S Vis)gs(s)

+ %E Vi(s)qk(s;) = Elés - %E [Vas(s)

+ Vi(si:Pa)lges(s) + %E Vas(s)gals;)

+ %2 V(s;Pa)ga(s;Py), (7)

where we have expressed the solute electronic density in
terms of the one-particle density matrix on a given basis set
and rewritten it as a sum of the GS and a relaxation term P,.
This partition automatically implies a parallel partition in the
electronic part of the electrostatic potential and in the result-
ing apparent charges, namely,

Vi(sy) = Vgs(sy) + V(s;sPa),

qk(s;) = qgs(s;) + qa(s;;Py).

A simplification in the notation can be obtained by exploiting
the following approximation:ZI

Vas(s:)qalsisPa) = Visi;Pa)gas(si), (8)
which allows to reduce the expression (7) into the following:

B=Egs— %2 Vis(s:)qcs(s;) + %2 V(s Pa)qa(sisPy).

)

2. Nonequilibrium

The excited state energy in the presence of the fixed
reaction field defined in Eq. (6) is now rewritten as

(WIS EO 4 7 (GS) W) = (piss| 0] grnca)
+ 2 Ks)[gds(s) + g3 (s)], (10)

EK neq _

while the free energy becomes

Pn(GS)|Wes)

= EG3 ™ = 2 V() 50 + 22 Vi) () = 2 3Vas(s)gds(s)

Vas(s; )qdy“(s )+ V(s,,P“eq)qdy"(s )

B LY

7L+ Vas(s)gy (s PR + V(s PR gy (s PR

- E [ Vos(s)g38(s)) + V(s PA9gE0(s,) + 3 Vis(s)giis(s)) ], (11)
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where the dynamic and the inertial charges are

" = Q(e) Vi = Q(e) Vos + Q(e) V(PY) = 455 + 43",

qx = 4. (12)
By noting that ‘le"' qGS =(qgs We obtain the following:

neq Egsneq+ 12 V(sl’Pneq)qdyn(si;Pzeq)
#3220 [Vos(s)a" (5P - V(s P )

- %E Vis(5:)qas(sy). (13)

Once again the notation can be simplified if we assume that
Vas(sgs (s P = V(s PYOges (s),

we in fact obtain

neq EK"eq 12 VGS(Si)CIGs(Si)
‘E V(s PRYg (s, PY9), (14)

which is parallel to what has been obtained for the equilib-
rium case but this time the last term is calculated using the
dynamic charges ¢%".

The vertical transition (free) energy to the excited state
K is finally obtained by subtracting the ground state free
energy QGS of Eq. (5) from G of Eq. (14):

q_ gneq gGS — AEKO neq

12 V(s PY9 gy (s, PY). (15)

C. The corrected linear response approximation

In Eq. (9) [or equivalently in Eq. (14) for the nonequi-
librium case] we have shown that excited state free energies
can be obtained by calculating the frozen PCM energy E’és
and the relaxation term of the density matrix, P, (or P3™).
As said in the Introduction, the calculation of the relaxed
density matrices requires the solution of a nonlinear problem
being the solvent reaction field dependent on such densities.

If we introduce a perturbative scheme and we limit our-
selves to the first order, an approximate but effective way to
obtain such quantities is represented by the TDDFT as shown
in the following equations.

Using a TDDFT scheme, in fact, we can obtain an esti-
mate of AEgg:EIéS—EGS, which represents the difference in
the excited and ground state energies in the presence of a
frozen ground state solvent as the eigenvalue of the follow-
ing non-Hermitian eigensystem:

= wg , (16)
B Allv, 0 —1]| v,

where the orbitals and the corresponding orbital energies
used to build A and B matrices have been obtained by solv-
ing the SCF problem for the effective Fock or KS operator

J. Chem. Phys. 124, 124520 (2006)

(3), i.e., in the presence of a ground state solvent. The result-
ing eigenvalue w% is a good approximation of AE’éS in the
sense that it correctly represents an excitation energy ob-
tained in the presence of a PCM reaction field kept frozen in
its GS situation, but still it cannot account for the wave func-
tion polarization. The consequence is that we cannot distin-
guish between equilibrium and nonequilibrium wave func-
tions and thus in this approximation AESS™=AESS =Y. By
using this approximation, the equilibrium and nonequilib-
rium free energies for the excited state K become

G =Ggs + wp + 12 V(s;3Pa)qalsisPy), (17)

Grl=Ggs+ wk +5 E V(s,,Pneq)qdyn(s,,Pneq ) (18)

The only unknown term of Egs. (17) and (18) is the relax-
ation part of the density matrix, PA (or PX*Y) (and the corre-
sponding apparent charges g, or q ™). These quantities can
be obtained through the extension of the TDDFT approach to
analytical energy gradients.zz’23 Very recently19 this exten-
sion has been presented also within the PCM scheme. In this
extension the so-called Z-vector ** (or relaxed-density) ap-
proach is used. The solution of the Z-vector equation as well
as the knowledge of eigenvectors |Xg,Yg) of the TDDFT
linear system allow one to calculate P, for each state K as

Py=Ty+Zg, (19)

where Ty is the unrelaxed density matrix with elements
given in terms of the vectors |X x.Yy), whereas the Z-vector
contribution Z accounts for orbital relaxation effects.

Once P, is known we can straightforwardly calculate the
corresponding apparent charges as

93 =Q(e)V(PY), (20)
where

( €.=¢€
P, =P, if an equilibrium regime is assumed

(A =da

( €, =€,
P, =PY? if a nonequilibrium regime is assumed
(qr = quyn.

By introducing the TDDFT relaxed density (19) and the cor-
responding charges (20) into Egs. (17) and (18) we obtain
the first-order approximation to the “exact” free energy of
the excited state by using a linear response scheme. This is
exactly what we have called corrected linear response ap-
proach (cLR).

We have efficiently implemented the cLR approach in
the development version of the GAUSSIAN program25 by solv-
ing twice the TDDFT equations. First, the explicit solvent
contribution is left out from such equations and thus the wy
excitation energies are computed. Then these solutions are
used as a guess to solve the TDDFT equations again, but this
time the explicit solvent contribution is included and the cor-
responding relaxed density is computed and used as detailed
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above. This procedure thus allows to compute the cLR exci-
tation energies in a single calculation.

As a final comment, we note that the theory has been
here presented for a DFT description, but the same formula-
tion can be equivalently applied to the parallel Hartree-Fock
approach either in the complete (random phase approxima-
tion) or approximated [Tamm-Dancoff approximation or
configuration interaction (CI) singles, CIS] version.

lll. TIME DEPENDENT SOLVATION

In this section we extend the corrected LR model de-
scribed in the previous section to explicitly account for the
time dependent (TD) evolution of the solvent polarization.
The basic idea beyond this extension is that in a linear re-
sponse approximation the solvent polarization at a given
time due to a TD electric field can be expressed as a convo-
lution integral on previous times as”®

P(1) = f ar'x(t—1")E(t"),

where x(7) is the solvent response function.

If we apply this scheme to the time dependent evolution
of the solvent polarization after a vertical excitation from an
equilibrated ground state to an excited state K and we refor-
mulate the problem within the PCM framework, the equation
to consider is that defining the TD apparent charges, namely,

61(t)=f di' R(t =" )V(t') = qg(t) = qgs + dqx(1), (21)

where we have rewritten the time dependence of the poten-
tial as the sum of the ground state potential and a time de-
pendent term: V(£)=Vgg+AV (7).

It is convenient to report here the boundary conditions
for the charge qg(7):

qx(-) = qgs,

qx(+ %) =qx = qgs + qa, (22)

where at (— —0) the solvent is in equilibrium with a ground
state solute and at t— a new equilibrium is reached be-
tween solvent and an excited state solute.

A. The TDPCM model

In two recent papers”’18 we have shown that the general

linear response equation (21) can be transformed into a
working equation by introducing a simplified expression for
the potential time dependence [AV(z)], namely, as a step
function, AV(1)=6(t)AV, where AV=VZ-V5s=V(P,). In
this approximation, in fact, the variation of the polarization
charges oqx at time ¢ due to a change in the electrostatic
potential at time =0 becomes

6qi(AV,1) =Aq+ &' qg(AV,1), (23)

J. Chem. Phys. 124, 124520 (2006)

8 qi(AV,1) =- %f do Im[R(w)]cos(w?)AV, (24)
T)y o

where Ay =(qx—qgs) and R is the PCM response matrix (in
the following, for simplicity’s sake we shall omit the explicit
dependence of dqg on AV). This expression is obtained pass-
ing from the time domain to the frequency domain as re-
quired by the form of the dielectric response of the solvent,
given in terms of its complex dielectric permittivity € as a
function of the frequency w. The w dependence of & can
either be modeled using pure diffusive expressions (as in the
Debye relaxation expression) or calculated on the basis of
experimental measurements of the absorption in the far-
infrared region, combined with the diffusive relaxation at
low frequencies. The latter methodology has the advantage
of a more correct representation of the short time scale of the
solvent response.

If we apply a reversible (in the thermodynamic sense)
charging process that leads to the proper solute density in the
excited state K and to the proper time dependent solvent
charges we can reformulate the expression given in Eq. (11)
within the present TDPCM formalism; the resulting time de-
pendent free energy expression becomes

Gilr) = Ex+ 32, Vil Pl Da(sis0)
- %E V(s;)8' qx(s;s1), (25)

where we have neglected the time dependence of the polar-
ization of the excited state wave function as in the vacuum
term  (namely, (W [rJ|FW ({r]) = (W ([+==]| A|W [ +22])
=E(1)( for all ¢). In Eq. (25) we have also introduced the square
parentheses to indicate a parametric dependence on time. In
our first-order model, in fact, the variable time is present
only in the constitutive equation of the PCM charges (23).
These charges are then used as fixed external charges (but
changing with time) in the various calculations (one for each
time) giving PA[¢], which has thus only a parametric depen-
dence on time.

In Eq. (25) the last term on the right hand side accounts
for the energy spent to polarize the orientational degrees of

freedom of the solvent and V(z) is the potential that would
generate the orientational part of the PCM charges [V(t=0)

=Vgs and V(r=+%)=Vg]. We note that the function G(r)
satisfies the following conditions:

t—0
Gilt) —— Gx4,

1—+%

Gl(t) —— G¢,

where G¢? is defined in Eq. (14) and Gy is defined in Eq.
(9). The first relation can be justified considering that at ¢
=0, the charges defined in Eq. (21) become

t—0
&' qglt) —— qds - qx,
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t—0
i d
qx(1) —— qgs—qx". (26)

From a practical point of view it is useful to rewrite Eq. (25)
in an alternative form by introducing a time dependent tran-
sition energy AUg(f), namely,

G(t) = Ggs + AUx(1), (27)

where Ggq is the equilibrium free energy of the ground state
given in Eq. (1) and

AUg(1) = AEé‘é + %E V(s;;PaltDga(s;0)
+ 330 [Vas(s) = Visis018 qlsi:0), (28)

where AEIégszK (see Sec. II C) and qx(1)=qp+ &' qkl(2).

B. Time dependent Stokes shift

One of the applications of the dielectric relaxation model
that we propose is the calculation of the solvation response
related to an experimentally accessible observable, the time
dependent Stokes shift S(z) (TDSS). In experiments, the time
evolution of the solvent orientational response is evaluated
from the time dependent shift of the solute maximum fluo-

rescence signal »(r) with respect to its equilibrium value
27
v(0):

s( = 2=

GRS >

where v(0) is the value corresponding to the vertical transi-
tion.

During dielectric relaxation, the fluorescence shift is in-
fluenced by the solvent due to the presence of electrostatic,
time dependent solute-solvent interactions. The shift of the
solute fluorescence therefore contains information about the
solvent reorganization process. If the geometry of the solute
is subject to negligible changes during the transition, it is
possible to express S(¢) in terms of the difference between
the time dependent solvation energy in the excited state and
in the ground state.

According to our description of the phenomenon, the
evolution with time of the excited state energy and the PCM
charges can be obtained as shown in the previous section and
for each time ¢ we model a vertical ground state as

Ges'(1) = E°+ 32 V(s i Pas[r)gs (s)

=32 V(ss0)gg(siin) + 2 V(s Pas Dk (sis0),
(30)
where

E®=(V|H°|W),

Qi () = qx(r) — g™,
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q*"=Q(e,)V(P,) with x=GS,K. (31

In Egs. (30) and (31) we have used the same notation used in
Eq. (25) to indicate a parametric dependence on time through
square parentheses. Here such a parametric dependence ap-
plies not only to the excited state but also to the vertical
ground state: the energy of such a state in fact is obtained by
using fixed (but changing with time) orientational PCM
charges q'() in the proper Fock (or KS)operator. It is worth
noting that these charges qi(z) in Eq. (31), which represent
the orientational part of the polarization, do not derive from
an equilibrium situation, as in usual absorption processes,
but at each time ¢ the emission starts from a nonequilibrated
excited state.

The time dependent emission frequency is finally ob-
tained by subtracting from Gyie'(¢) the corresponding values
of Gg(t), defined in Eq. (27), calculated at the same ¢.

C. Cyclic relaxation

By applying the TDPCM model, we can follow the com-
plete evolution of an electronic excitation in the solute start-
ing from the vertical transition from an initial solute-solvent
equilibrium situation in the ground state, and going back to
the ground state, considering the relaxation of both solute
geometry and solvent polarization. The overall process can
be represented as a six-step cycle as follows:

e Step 1: Electronic excitation of the solute. Solute and
solvent are in a nonequilibrium situation, where the sol-
vent is only partially equilibrated with the new charge
distribution of the excited solute.

» Step 2: The solvent relaxes towards a new equilibrium,
with the solute electronic excited state still maintaining
the ground state geometry.

e Step 3: The geometry of the solute relaxes towards its
new equilibrium structure together with the solvent.

e Step 4: The solute emits, returning to the electronic
ground state. The solvent is again in a (reversed) non-
equilibrium situation.

» Step 5: The solvent relaxes towards a new equilibrium,
with the solute electronic ground state frozen in the ex-
cited state geometry.

e Step 6: The solute geometry relaxes towards the ground
state equilibrium structure together with the solvent
reaching again the initial equilibrium situation.

In our model, the explicit time evolution of the solvent
relaxation is separated (or decoupled) from the relaxation of
the solute geometry; the latter thus has to be evaluated in the
presence of a completely equilibrated solvent or alternatively
in a nonequilibrium solvent. Here, in particular, we shall as-
sume that the geometry relaxation is a process which occurs
in a sufficiently long time for the solvent to be always in
equilibrium.

The first three steps represent the evolution of the solute
excited state. Steps 1 and 2 are described following the time
evolution of Gg(7) in Eq. (27), where the electronic excitation
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occurs at r=0, whereas step 3 is described by a geometry
optimization of the excited state solute in the presence of an
equilibrated solvent, which is equivalent to considering the
dielectric relaxation to be faster than the solute geometry
relaxation. Such an assumption has to be verified for the
system of interest, and, in all cases where it is not valid, steps
2 and 3 need to be inverted.

Steps 4—6 describe the evolution of the system when the
solute returns to the ground state. For steps 4 and 5 we in-
troduce the ground state analog of the time dependent energy
function (25) as [see also the definition of U™9(¢) in the
reference paperls]:

Gas(t) =E° + %2 V(si;PgsltDgags(s;i1)
- %E Vas(5) 8 gas(sii1), (32)

where

qes(t) = qx + 8qcs(1) = g + [Aqgs + 8'qgs(1)] = qgs
+8'qgs(?) (33)

and the charges 8qgs(#) are calculated with the step potential
AV=-V(P,), thus 8qgs(t)=—05qk(r). In Eq. (32) the last
term has the same origin of the analogous term in Eq. (25),
but in this case Vgs(r=0)=Vy and Vgg(r=+%)=Vs.

The free energy Ggs(#) in Eq. (32) is different from Gyiq,
defined in Eq. (30), since the former represents the time de-
pendent evolution of an initial nonequilibrium ground state
following the emission from an equilibrated excited state,
whereas the latter always represents a vertical ground state
following from the instantaneous emission from a time de-
pendent excited state. We also note that at =0, both the
charges in Eq. (33) and the energy in Eq. (32) reduce to PCM
nonequilibrium charges and free energy, respectively, e.g.,

t—0
as(t) — (qis +qy) + 8

and

t—0

gGs(t) E— gnGesqz E%+ %E V(Si;PGs[O])quysn(si)
1S V6D (g(5) + gls(s,)

+ V(s:;Pas[0]) (g (s;) + gés(s:)],

where we have used the following relation:

V??(S,-)qié‘s(si) = V(SﬁPGs[O])qicr;ls(Si) + V(Si;PA)qgs(Si)
= V(s;3Pss 0] ggs(s)
+ V(53 Pss[0Dgh (s)).

Finally, step 6 represents the relaxation of the solute geom-
etry to the initial equilibrium situation (once again the relax-
ation of the solvent is considered faster than the solute ge-
ometry relaxation).
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By making use of steps 1-6 we complete the description
of electronic excitation and emission of a molecule in solu-
tion accounting for the real dynamics of the solvent re-
sponse.

IV. NUMERICAL EXAMPLES

In this section we present some applications of the cor-
rected linear response and its generalization to time depen-
dent solvation described in Secs. II and III, respectively. For
this study we have used the same physical systems
[methylen-cyclopropene (MCP) and acrolein (ACRO) in two
solvents, an apolar (dioxane) and a polar one (acetonitrile)]
studied in the already quoted paper on the differences be-
tween LR and SS approaches for effective Hamiltonian
methods."

The selected transitions can be seen as representative
examples of different types of electronic transitions for
which different solvent responses can be studied: the first
7— " transition for MCP, and the first n— 7 and 77— 7
transitions for ACRO. We note that in MCP the resulting
excited state is characterized by a dipole moment which has
an opposite direction with respect to that of the ground state,
whereas in ACRO, the n— 7" and m— 7 transitions are
characterized by a decrease and an increase in the dipole
moment passing from the ground state to the excited state,
respectively.

To compare with the results reported in the reference
paper, calculations have been performed using the same basis
set, namely, the Dunning double { basis set with additional
d(0.2) function for C, N, and O (the number in parentheses is
the exponent of the extra function) and the same molecular
cavity for all the systems. The sphere radii used to build the
molecular cavity were 1.9 for CH, 2.0 for CH, (n=2,3), 1.7
for other C, 1.52 for O, 1.6 for N, and 1.2 for H when
bonded to N, all multiplied by a cavity size factor of 1.2.

For the first part of the study, focused on vertical (non-
equilibrium) absorptions, both TDDFT and CIS calculations
have been used, whereas in the successive applications to
TDSS and cyclic relaxation processes, the results refer to
TDDFT only; in all cases the B3LYP hybrid functional has
been used.

Ground state geometries have been taken from the refer-
ence paper, while TDDFT analytical gradients (at the B3LYP
level with the modified Dunning basis set) have been used to
obtain excited state geometries.

All the calculations have been carried out using a devel-
opment version of GAUSSIAN.”

A. Vertical excitations

In this section we compare the results obtained for the
vertical (nonequilibrium) absorption process with the stan-
dard linear response and its corrected version with respect to
those obtained with the reference state-specific approach.

As it is not possible to obtain TDDFT-SS results, the
simplest, yet meaningful, possibility is to revert to the CIS
method. In fact, this method can be obtained from two points
of view: one is to consider the method as a standard CI, in
which the wave function of the excited state is constructed
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TABLE 1. Absorption energies (eV) at HF/CIS level obtained using linear
response (LR), state specific (SS), and correlated linear response (cLR) ap-

proaches. SS data are taken from Ref. 13.
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tention should be paid to the presence of specific solute-
solvent interactions, which are not correctly described by a

continuum solvation model but require hybrid discrete/
continuum methods.”® Results are shown in Table L. AEEY is

MCP (mr7) ACRO (n") ACRO (77")
AESS 5.65 4.30 6.91
Dioxane ACN Dioxane ACN Dioxane ACN
AEEYnea 5.75 5.89 4.47 4.63 6.91 6.83
LR 5.70 5.85 4.46 4.63 6.63 6.61
cLR 5.62 5.79 4.40 4.58 6.90 6.81
SS 5.51 5.70 4.37 4.57 6.88 6.80

by single excitations from the HF determinant and thus a SS
solvent response can be obtained; the other is to consider
CIS as the result of the Tamm-Dancoff approximation ap-
plied to the linear response equation based on the HF wave
function. The two ways of looking at the CIS method give
the same equations in vacuo, but, as we have discussed in the
Introduction, they differ for molecules in solution due to the
nature of the effective Hamiltonian.

We remark that the scope of this first analysis is the
comparison between LR and cLR with respect to the corre-
sponding SS approach and thus even low to medium level
calculations such as CIS can be sufficient. By contrast, when
the aim of the calculations is different (e.g., to compare com-
puted excitation energies with experimental data), more ad-
vanced QM methods should be used as well as a larger at-

435

. *
43 MCP:n-n 429 428
ABKOY, "=
425 ‘\‘
s % 420
cLR
4.16 @
415 AEKot 4.14
‘\‘ O)LR
2.1 ] 4
4.06 i
405 B 4.03
(DCLR
4 . . : .
Vac Diox ACN

calculated as reported in Sec. II C, whereas SS values have
been taken from the same reference.'

As already discussed in such a paper, the three excita-
tions show a different behavior passing from a LR to a SS
approach. The nature of this behavior can be correlated with
the differences between the changes in the dipole moment
passing from the ground state to the excited state (Au=|ug
- igs|) and the transition dipole moment ugg k. In the same
paper, the conclusion of such analysis confirmed that if
2ugsx is larger than A’ the LR excitation energy is
smaller than the SS one, and vice versa.

As shown in Table I, for all excitations, the cLR values
represent a change of the LR result towards a better agree-
ment with SS, and in one case (MCP in dioxane) the cLR
model is able to recover the red solvatochromism found with
the SS model which was lost in the LR scheme, where a
blueshift was obtained. It is important to note that the incre-
ment in the computational effort of the cLR approach with

respect to the standard LR calculation is almost negligible.

For the parallel analysis on TDDFT, we report a graphi-
cal representation (Fig. 1) as this can be directly compared
with the graphs reported in the reference paper.13

Here we cannot refer to SS results as reference, but still
we can estimate the accuracy of the cLR method with respect
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FIG. 1. Graphical representation of the TDDFT results obtained using either the linear response (LR) or the corrected linear response (cLR) approach for the
absorption energies of MCP and ACRO in gas phase, in dioxane, and in acetonitrile. Values are in eV.
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FIG. 2. TDSS functions for MCP calculated at the TDDFT level using the
Debye (black) and the fit (red) models for é(w).

to LR by comparing with the CIS results. Indeed, the behav-
ior found passing from LR to cLR is equivalent to that ob-
tained at the CIS level. The correction introduced in the cLR
approach with respect to the standard LR leads to a decrease
in the excitation energies of both the 7— 7" transition of
MCP (and in dioxane this implies a redshift with respect to a
blueshift) and the n— 7" transition of ACRO and an increase
in the second 77— 7" transition of ACRO. Once again, this is
the result one expects from the analysis of the differences
between the changes in the dipole moment of each state and
the transition dipole moments; in fact, for MCP 77— 7 and
for ACRO n— " the dipole moment difference A is large,
while the transition dipole moment wugg x is small (or null);
the opposite behavior is valid for the 7— 7" transition in
ACRO.

B. Time dependent Stokes shift

In this section we report the results obtained for TDSS
quantities defined in Sec. III B. For this study, two alterna-
tive expressions of €(w) have been tested, one taken from a
combination of fitted experimental data in the high frequency
region and of the Debye-type relaxation in the low frequency
region (from now on indicated as fit), and one modeled on a
purely diffusive Debye relaxation (from now on indicated as
Debye). Differences between the two £(w) are reported in
Fig. 2, where the results obtained for the TDSS defined in
Eq. (29) are displayed for MCP transition. By definition, the
TDSS values vary from 1 to O.

One feature of the fit curve obtained with a combined
Debye+exp, not observed in the Debye-only model, is the
initial Gaussian decay and the following oscillations.”” " At
sufficiently short times, the motions of molecules can be
considered as independent of intermolecular interactions; the
frequency which characterizes the initial Gaussian decay of
the solvation energy thus reflects the “free streaming” of sol-
vent molecules uncoupled from one another. This free-
streaming motion represents the first phase of solvation. The
oscillations, on the other hand, represent collective dynamics
occurring in an intermediate time regime. Within this phase
of solvation molecules are colliding with their neighbors
(and the solute) and rebounding in a relatively coherent fash-
ion for some length of time, exhibiting a behavior similar to
that of an underdamped oscillator. However, these oscilla-
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FIG. 3. TDSS functions for MCP and for the two transitions of ACRO
calculated at the TDDFT level using the Debye model for £(w).

tions die out relatively quickly and the diffusive contribution
to the overall response becomes predominant. In this time
scale, the two curves follow similar decay rates.

Figure 3 shows the TDSS for MCP and for the two tran-
sitions of ACRO in acetonitrile obtained using the Debye
model in all cases. The perfect equivalence of three plots
reported in the figure shows that the TDSS is a property of
the solvent and thus is almost independent on the solute.

Although the plots in Figs. 2 and 3 can be used as an
internal check for the reliability of the relaxation model pre-
sented in Sec. III B, they carry less information than the
explicit consideration of the excited and ground state curves,
as defined in Egs. (27) and (30), respectively. This becomes
evident when Figs. 4-6 are considered. They show the time
evolution of the excited state free energy G(f) and the cor-
responding emission energies to the vertical ground state
(represented as arrows) for MCP and for the two transitions
in ACRO, respectively. All the energies are referred to the
ground state equilibrium free energy of the corresponding
molecule. The Gg(¢) curves for MCP are computed using
both the Debye and fit models for the frequency dependent
permittivity é(w), while those for the two ACRO transitions
are obtained using the Debye model only.

For all the systems the excited state free energy curves
[Gk(2)] are similar; in all systems in fact the initial time ¢
=0 corresponds to a vertical excitation from the ground state
to a nonequilibrium excited state that then relaxes towards a
new equilibrium characterized by a lower energy. For MCP,
when using the fit model we can observe the same pattern
found for the TDSS function, in which at short times the
decay is of Gaussian type, followed by oscillations, and fi-
nally, assuming the typical diffusive character. The equiva-
lence of the excited state curves is also reflected in the cor-
responding vertical ground state curves. For these latter, the
definition of the proper free energy function is given in Eq.
(30).

Passing to describe the behavior of the emission ener-
gies, we observe different results for the three transitions.
For MCP, the emission energies vary by 0.3 eV from =0 to
t=o, while for ACRO a much smaller variation is found,
namely, 0.11 and 0.065 eV for the n— 7" and 7— 7" tran-
sitions, respectively. This behavior can be explained consid-
ering the different character of the electronic states involved.
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FIG. 4. Time dependent evolution of the excited state free energy Gg(r) (in
eV) of MCP calculated at the TDDFT level using the Debye (dotted) and the
fit models for é(w). For the latter, we also report the transition energies
towards the vertical ground state at the various times. All the energies are
referred to the ground state equilibrium free energy.

In the excited state of MCP (Fig. 4) the dipole moment
points in the opposite direction with respect to the ground
state, while its intensity is not subject to significative varia-
tions. At short times, when the inertial charges qi,?(t) deter-
mining the energy of the vertical ground state [see Eq. (30)]
have had not time to relax but still resemble the initial
ground state, the vertical state is close to the equilibrium
value Ggg. At longer times, the solvent charges qi,'(“(t) have
had time to change according to the excited state charge
distribution of the solute, and the vertical ground state be-
comes more and more different from the equilibrium value
Ggs- This net variation of the solvent reaction field in the two
states is thus reflected in the significant decrease of the emis-
sion energy with the solvent relaxation.

For the n— 7" transition of ACRO (Fig. 5), the excited
state is less polar than the ground state, but the direction of
the dipole moment remains the same. At short times, the
influence of the more polar ground state, still dominant in the
inertial part of the solvent charges, makes the energy of the
vertical ground state close to Ggg, while the difference be-
tween the two functions increases as the solvent charges re-
lax towards the solute excited state charge distribution. How-
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FIG. 5. Time dependent evolution of the n— 7" excited state free energy
Gk(r) (in eV) of ACRO calculated at the TDDFT level using the Debye
model for é(w). The arrows indicate transition energies towards the vertical
ground state at various times. All the energies are referred to the ground
state equilibrium free energy.
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FIG. 6. Time dependent evolution of the 7— 7" excited state free energy
Gk(t) (in eV) of ACRO calculated at the TDDFT level using the Debye
model for £(w). The arrows indicate transition energies towards the vertical
ground state at various times. All the energies are referred to the ground
state equilibrium free energy of the corresponding molecule.

ever, in this case, the change in the solvent effect on the
emission is significantly smaller than in MCP.

Finally, for the 7— 7" transition of ACRO (Fig. 6), the
two states have a similar charge distribution (with the excited
state being slightly more polar than the ground state). As a
consequence, the energy of both excited state and vertical
ground state will not significantly change with the relaxation
of the solvent.

Through all the examples reported in this section we
showed that, by explicitly considering the PCM time depen-
dent charges, one can obtain information about the effects of
the solvent relaxation on the solute electronic states. By con-
trast, the standard analysis of the TDSS function will only
give information on the solvent relaxation independently of
the solute.

A further example of the potentialities of the TDPCM
model will be given in the following section.

C. Cyclic relaxation

In this section we present the results for the cyclic relax-
ation process of MCP, as discussed in Sec. III C.

Figure 7 shows the six steps in which we have divided
the process. For this analysis the solvent relaxation has been
described using the Debye model for the frequency depen-
dent permittivity. The range of ¢ in which we have followed
the solvent relaxation (3 ps for the excited state and 3 ps for
the ground state) is arbitrary, and it represents a time interval
which is large enough to ensure that the relaxation of the
solvent is complete. In the figure the energy changes due to
solute geometry relaxation are indicated as dotted arrows;
this is just a graphical simplification as these changes happen
in a different time scale with respect to that represented by
the solvent relaxation and a three-dimensional (3D) plot
should be used.

The comparison of Figs. 7 and 4 shows the differences
between the ground states involved in the two processes.
Here the ground state energy curve is completely determined
by the solvent relaxation from the initial vertical nonequilib-
rium state (at 7=3 ps) towards the final equilibrium ground
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state at =6 ps, while in Fig. 4 the ground state reached at
each time 7 was represented by the vertical (or nonequilib-
rium) Gig'() of Eq. (30). We note that also at =3 ps, i..,
the only point at which the ground states in the two figures
should be equivalent (they both represent a vertical state
from an equilibrated excited state), the Ggg value in Fig. 7
is different (higher) from the corresponding Gjg value in
Fig. 4; the two energies are in fact calculated at different
geometries, the geometry of the excited state and of the
ground state, respectively.

The analysis of the curves in Fig. 7 also shows the rela-
tive importance of the solute geometry relaxation and the
solvent dielectric relaxation. In fact, even for a quite rigid
system as the MCP, the dielectric relaxation accounts for few
tenths of eV, while the relaxation of the solute geometry
accounts for more than 1 eV for the excited state and more
than 1.5 eV for the ground state.

To better appreciate these geometry effects, we give here
some more details on such calculations. The geometry opti-
mization for the excited state has been performed using the
TDDFT energy gradients recently implemented in the devel-
opment version of the GAUSSIAN package.19

As already noted the dipole moments of the ground state
and of the excited state lie along the C;—C, bond (see Fig. 8

D4

1 2 9

FIG. 8. Structure of MCP with an indication of the numeration used to
distinguish the carbon atoms.

for the numeration of atoms), have similar magnitude (when
computed at the geometry of the ground state they are 2.498
and 3.090 D, respectively), but they point towards opposite
directions. This characteristic behavior of MCP is also re-
flected in the main geometry changes passing from the
ground to the excited state. The C;—C, and C;—C, double
bonds become larger in the excited state (A;,=+0.21 A and
A3,=+0.10 A, respectively), while the C,—C; bond be-
comes shorter (A,;=—0.08 A), indicating that in the excited
state there is a partial charge transfer towards the ring. More-
over, the hydrogens bonded to C; and C, go out of the mo-
lecular plane.

As noted at the end of the previous section, the TDPCM
not only allows the evaluation of the changes in the energies
of the electronic states, but it can also be used to study the
evolution of the solute properties. As a simple but indicative
example, in Fig. 9 we report the time dependent evolution of
the Mulliken charges on the carbon atoms for both the ex-
cited state and the ground state (the charges are calculated
with respect to the corresponding initial states, namely, the
vertical excited state a t=0 and the vertical ground state after
excited state geometry relaxation).

The graphs reported in figure clearly show the contribu-
tion of the solvent to the redistribution of the charge density
in the two electronic states following vertical absorption and
emission, respectively. As observed for the geometry
changes, the excited state is characterized by a flux of elec-
tronic charge from the C;—C, bond towards the ring; the
effect of the solvent relaxation is to amplify such a flux, as
shown by the positive values of the change in the C, and C;
charges which increase with time, and the parallel increase of
negative charge on the C, and C,; atoms. For the ground
state, a reversed phenomenon is observed, with a net time
dependent increase of the electronic charge in the C, atom.

V. CONCLUDING REMARKS

In this paper a novel approach to study the formation and
relaxation of excited states in solution is presented within the
IEF version of the polarizable continuum model. Such an
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FIG. 9. Graphical representation of the time dependent evolution of the Mulliken atomic charges (in a.u.) on the carbons of MCP for the excited (left) and the
ground (right) states. All the values are referred to the nonequilibrium values, i.e., the values calculated in the vertical excited and ground states, respectively.

approach uses the excited state relaxed density matrix to cor-
rect the TDDFT excitation energies and it introduces a state-
specific (SS) solvent response which can be further general-
ized within a time dependent formalism. This generalization
is based on the use of a complex dielectric permittivity as a
function of the frequency, &é(w).

The approach is here presented in its theoretical formu-
lation and applied to the various steps involved in the forma-
tion and relaxation of electronic excited states in solvated
molecules, starting from the vertical excitation from an
equilibrated solute-solvent system and considering the fol-
lowing relaxation in both the solute geometry and the solvent
polarization. In particular, two applications have been pre-
sented: (1) the time dependent Stokes shift (TDSS), as a
quantity experimentally measurable and which gives infor-
mation on the decay of the inertial polarization of the sol-
vent; and (2) the cyclic process beginning with a vertical
excitation from an equilibrated solute-solvent system and ter-
minating back to the same system, passing through solvent
and solute relaxation.

These two applications have been selected to show the
potentialities of the method. In fact, the first one involves the
solvent internal modes activated by a perturbation, as a con-
sequence of electrostatic solute-solvent interactions. In our
model, the definition of TDSS only depends on the way we
describe the solvent response and it is therefore a property of
the solvent, in the approximation that the solute geometry
relaxation is much slower than the solvent one. In fact, by
performing calculations on different probe solutes in the
same solvent, the same TDSS function has to be obtained.
On the other hand, the cyclic process (starting from an
equilibrated GS, passing through an excited state, and then
going back to the initial equilibrium) involves both the solute
and the solvent, and it strongly depends on their interactions.
In this case, an important role can be played by solute ge-
ometry relaxation effects. In our model, these effects have
been completely decoupled from those of the solvent relax-
ation, however, an estimation of the relative magnitude of the
two contributions to the overall time dependent interaction
has been given.

As can be seen, the corrected LR model and its exten-
sion to time dependent solvation open a wide range of pos-

sible studies going from spectroscopies to photochemistry.
This large set of applications however also leads to many
specific aspects to be accounted for and thus to the necessity
to extend the basic model we have presented here along dif-
ferent directions: some of these extensions are at present un-
der elaboration,™'® but many others will require longer peri-
ods to reach maturity.
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