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Brueckner doubles coupled cluster method with the polarizable continuum

model of solvation

Marco Caricato,® Giovanni Scalmani, and Michael J. Frisch
Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA

(Received 22 April 2011; accepted 7 June 2011; published online 28 June 2011)

We present the theory and implementation for computing the (free) energy and its analytical gra-
dients with the Brueckner doubles (BD) coupled cluster method in solution, in combination with
the polarizable continuum model of solvation (PCM). The complete model, called PTED, and an
efficient approximation, called PTE, are introduced and tested with numerical examples. Implemen-
tation details are also discussed. A comparison with the coupled-cluster singles and doubles CCSD-
PCM-PTED and CCSD-PCM-PTE schemes, which use Hartree-Fock (HF) orbitals, is presented. The
results show that the two PTED approaches are mostly equivalent, while BD-PCM-PTE is shown to
be superior to the corresponding CCSD scheme when the HF reference wave function is unstable.
The BD-PCM-PTE scheme, whose computational cost is equivalent to gas phase BD, is therefore
a promising approach to study molecular systems with complicated electronic structure in solution.
© 2011 American Institute of Physics. [doi:10.1063/1.3604560]

. INTRODUCTION

A reliable account of the solvent effect in electronic
structure calculations is essential not only for energetics (from
solvation energies to reaction barriers), but also for the de-
scription of molecular structures and properties, from ground
and excited state spectroscopies to dynamical processes. At
the same time, an accurate representation of the electronic
structure of the solute (or supra-molecular aggregate) requires
quantum mechanical (QM) methods of possibly high compu-
tational cost. The goal of combining the requirements above
can be achieved by focusing on what part of the interaction
with the solvent has the largest impact on the solute. This,
obviously, depends on the type of property of interest: for
charge transfer between solute and solvent or other dynam-
ical processes, the electronic structure calculation should be
extended at least to some solvent molecules. For other prop-
erties, however, the electronic structure of the solvent may not
be necessary and a classical description of it as point charges
(polarizable or not) may suffice. Even further, the solvent may
be described as a bulk material with no atomistic structure
when the interaction is mainly long range.

Various models have been presented over the years that
describe the solvent at the various levels of approximation
mentioned above, coupled with various (quantum or classi-
cal) methods to describe the solute. For the latter, coupled
cluster (CC) (Refs. 1 and 2) theory has emerged as the pre-
ferred choice when an accurate description of the electronic
wave function is sought. The CC wave function is obtained
by applying an exponential excitation operator on a reference
wave function. The excitation manifold is often truncated for
practical purposes at a certain level of excitation, and the most
widely used truncation includes single and double excitations
(CCSD).? The exponential expansion ensures size-extensivity
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at any level of truncation, and includes higher order excited
determinants than the corresponding configuration interaction
wave function. These features have contributed to the suc-
cess of CC theory. On the other hand, the computational ef-
fort of this approach increases very rapidly with the size of
the system (CCSD already scales as O(N %), where N is the
number of basis functions), limiting the range of systems that
can be treated at this level of theory. This is evidently even
more problematic when a system is in solution. As mentioned
above, a number of approaches have been proposed to com-
bine a CC wave function for the solute with an approximate
description of the solvent. Of particular interest is the work of
Kongsted et al.,*® where the solvent is described through a
polarizable force field (thus keeping an atomistic description
of the solvent); of Slipchenko et al.,>'? who used effective
fragment potentials; of Christiansen and Mikkelsen,'!*!> who
first introduced the coupling with a polarizable continuum de-
scription of the solvent. Recently, Cammi'? revisited the lat-
ter approach within the framework of the polarizable contin-
uum model (PCM),'*!5 and extended such approach to the
symmetry adapted cluster-configuration interaction approach
with Nakatsuji and co-workers.'®!” We have also investigated
the possibility of combining CC wave function and PCM for
ground and excited states.'$ 1

Discrete and continuum models have their advantages
and disadvantages. The former maintain a more realistic de-
scription of the solvent, thus allowing for specific solute-
solvent interactions (i.e., hydrogen bond), but imply many
possible configurations of the solvent molecules, which may
require many QM calculations for the solute. Continuum
models such as PCM do not require conformational sampling
since it is implicit in the solvent macroscopic dielectric con-
stant, and automatically provide mutual solute-solvent polar-
ization. Therefore, they are computationally very efficient, but
cannot account for specific solute-solvent interactions. Most
likely, the best approach involves the simultaneous use of both

© 2011 American Institute of Physics
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models. Before that, however, further investigation on how
they work independently is still necessary.

Our long experience with continuum models, PCMs in
particular, led us to investigate how PCM can be efficiently
combined with CC wave functions. We originally followed
Cammi’s approach for CCSD. Contrary to Christiansen and
Mikkelsen,'"*'? whose model used a gas phase reference
function (unpolarized orbitals), Cammi proposed to separate
the PCM interaction (the solvent reaction field) with the ref-
erence function (Hartree-Fock, HF) from that with the post-
HF expansion. This model, called for historical reasons PTED
(Ref. 13) (because it was first proposed in the context of per-
turbation theory and uses the density to correct the energy),
uses polarized orbitals. The post-HF reaction field does not in-
fluence the orbitals, similar to gas phase CCSD. The CCSD-
PCM-PTED model is computationally more expensive than
gas phase CCSD, since it requires the knowledge of the one-
particle reduced density. However, the PTED model can be
approximated by neglecting the post-HF reaction field: PTE
model. This leads to CCSD equations that are formally the
same as those for the gas phase, although, the reference en-
ergy contains the PCM contribution and the orbitals are polar-
ized. Our implementation and testing of the PTED and PTE
models for CCSD (energy and its first derivatives)'” clearly
showed that PTE is a very effective approximation of PTED
when HF is a reliable reference. We investigated several sys-
tems, including zwitterions, and for all of them the PTE re-
sults were very close to those of PTED, at a computational
cost comparable to a gas phase CCSD calculation.

However, the obvious question arises: What happens
when HF is not a reliable reference? CCSD has shown large
sensitivity to the choice of the reference function, which may
be problematic when systems such as metal complexes are
studied and multiple HF solutions are available. Before re-
sorting to multi-reference approaches (for which there are
multiple options in CC theory, without a preferred choice
yet!2), there is a variant of CCSD that has shown larger sta-
bility with respect to the choice of the reference function:
Brueckner doubles (BD).2%2! The BD reference function is
built such that the amplitudes for the single excitations are
all zero. Starting from a guess reference (HF or other), the
orbitals are rotated until the above condition is satisfied. BD
thus introduces an orbital relaxation that is coupled with the
CC expansion (which includes now only double excitations).
Although there is not a formal proof for such behavior, in
practice, BD provides a unique (and thus more reliable) elec-
tronic wave function in many cases where CCSD provides
multiple solutions (in some cases even when starting from the
same reference??).

The goal of this paper is to introduce the theory for the
combination of the BD wave function and PCM. We define
the free energy functional for the PTED approach and the PTE
approximation, and its analytic gradients. The working equa-
tions are presented and some details of their implementation
are discussed in Sec. II. The BD-PCM equations are slightly
more complicated than the corresponding CCSD ones, due to
the inclusion of the orbital rotation. In Sec. III, we present a
numerical evidence of the advantage of using BD in difficult
cases. We also show that BD works as well as CCSD when
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HF is a good reference, by considering some of the systems
from our previous study.'® More importantly, these examples
show how PTE is an even better approximation of PTED for
BD than for CCSD. BD-PCM-PTE thus represents a promis-
ing approach to study coordination chemistry in solution, and
other systems where CCSD may suffer from ambiguity in the
choice of the most appropriate reference function. Conclud-
ing remarks and perspectives on future developments are dis-
cussed in Sec. IV.

Il. THEORY

The definition of the BD wave function in the presence
of the solvent reaction field (modeled by a polarizable contin-
uum dielectric) strictly follows the development presented by
Cammi'? for a general coupled cluster wave function. There-
fore, we adopt the conventions defined in Ref. 13 for the PCM
terms, and refer the reader to Cammi’s work for more details.
We only report the fundamental quantities from Ref. 13 that
are necessary for the development of the present theory, and
outline the differences with respect to the BD wave function.
The details on how to compute the solvent reaction field can
also be found in Refs. 15 and 23, as the theory presented in the
following can be applied to different versions of PCM. Our
implementation includes the integral equation formalism and
conductor-like flavors of PCM (IEF-PCM (Refs. 24 and 25)
and CPCM,?%?7 respectively), and makes use of the smooth
cavity definition proposed by some of us,>* and based on the
work of York and Karplus.28 Additionally, since, in practice,
the presence of the reaction field only adds a few terms to the
gas phase BD equations, we do not consider it necessary to
repeat the latter here. Consequently, we will only report the
explicit PCM terms to be added to the gas phase BD equa-
tions as reported by Kobayashi ez al. in Ref. 21.

A. PTED free energy functional

The fundamental quantity is the BD-PCM-PTED free en-
ergy functional:?’

Gap(A, T) = (@5 |(1 4+ A)e™" Hoe | ;)
1. )
+5V(A, T)-Q(A, T), )

where Hj is the solute Hamiltonian, ®3, is the BD reference
function, T = T is the excitation operator (corresponding to
double excitations-only for BD), A is the Z vector from gra-
dient theory.?! Q(A, T) and V(A, T) are the PCM reaction
field and the solute electrostatic potential on the cavity sur-
face, respectively.'® Since both depend on the total BD den-
sity, the reaction field couples the T and A equations, in con-
trast to the gas phase case, where A is not required for the
calculation of the energy.”! The scalar product in the PCM
term indicates that the reaction field and the potential on the
cavity surface are discretized in surface elements, and the bold
font is used to remind the reader that the operators are vectors
of dimension equal to the number of surface elements.
Before reporting the working equations to compute Ggp,
let us introduce some useful expressions. In the following, we
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will use Einstein’s convention for the summation over com-
mon indexes. The Fock matrix in the presence of the PCM
operator is

fPCM_qu+qu Q (2)

where f,, is the solute Fock matrix (but with polarized or-
bitals), v,, is the electronic potential on the cavity surface,
and QO is the reaction field from the reference function and
the nuclei. The indexes pgr ... refer to generic molecular or-
bitals (MOs), while the letters i jk ... refer to occupied MOs
and abc . .. to virtual MOs. The reference free energy is

1 1
Gop = hii + = S N7+ Vin + Vi Q°+2V -Q°

i Q4 3V, Q" @
where /;; are the one-electron integrals, (ij||ij) are the anti-
symmetrized two-electron integrals, V,,, is the nuclear repul-
sion energy, and %Vn - Q" is the energy contribution from the
interaction of the potential generated by the solute nuclei (V)
with the solvent reaction field. Introducing now the normal-
product form of an operator,”

:E3D+

Xy =X — (@pp|X|Ppp) = X — X°, )
we have, for the potential,
V(A T) = (@hp|(1 + Ae T Ve |)
=Vy+V°
= ypVpg + VO )

where V? includes the contribution from the solute nuclei. y*
is the reduced one-particle density, whose components are (in
symmetrized form)

1 h b
)/UA' = _Ekfk 7k’
A 1 ac bc
yab = 2)" ij > (6)
b b
Via =M + Aty

where ¢ and A are the amplitudes corresponding to the 7' and
A operators, respectively. y# differs from the total BD den-
sity in Eqs. (2.32)—(2.34) of Ref. 21 only for the reference
density (§;; term in Eq. (2.32) in Ref. 21). Similarly, for the
reaction field:

QA T)

Finally, we define

= QN + QO = Vlﬁlqpq + Q0~ (7)

AEgp = (®hp|e " Hone | DY) = (z Jllab)i, (8)

which has the same form of the correlation energy for the gas

phase BD method. Thus, we can write
Egp = (®Yple™" Hoe" |®Yp) = Ep + AEpp, ©)

which, in turn, has the same form of the gas phase BD energy
in Eq. (2.1) in Ref. 21. Note, however, that since the reaction
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field depends on the total density,'!

(@pp|(1 + A)e™" Hoe |pp) # (Ppp|e™" Hoe' [@pp),
(10)
contrary to the gas phase case.

In the following, we will use the terminology: polarized
reference BD expressions, to refer to those expressions that
are formally identical to gas phase BD, but where the Fock
operator includes the PCM operator (f*“M, Eq. (2)) and the
orbitals are polarized by the solvent. In order to compute Ggp,
we need to find the T and A amplitudes, and the BD reference
function ®%,. This can be achieved by imposing that Ggp is
stationary with respect to variations of ¢, A, and the MOs. The
condition on the MOs ensures that the single excitation am-
plitudes ¢/ are zero under the perturbation (the reaction field),
which is the characteristic of the Brueckner coupled cluster
wave function. The partial derivatives of Gpp with respect to
the singles and doubles A amplitudes provide the equations
for @9, and ti"jl’ :

9G _ _

T = b v Qu v Qu =0, ()
i

8GBD ab ch A ac ~

o bij (1 Vac - Qu + £ Ve - Qu)

— (i - Qu + 18- Qu) =0, (12)

where b and bl“/” are the polarized reference BD single and
double amplitude expressions (left hand side of Egs. (2.2) and
(2.3) in Ref. 21). Equation (11) is used to compute CDOBD by
rotating the orbitals until the equation is satisfied. This is ac-
complished by taking the derivative of Eq. (11) with respect
to the orbital rotation and solving the corresponding coupled
perturbed BD equations, as reported by Raghavachari et al.
in Ref. 30 (Egs. (29) and (30)). The presence of the PCM op-
erators only adds few more terms to the polarized reference
equations:

b + Vi - Qn + lf}ijb -Qy
ab?

,k Vb() QN

+(5acvik - 6ikvac + ll-aijk

=2(Via + V) - (Apevpr — qpky,ﬁ.)] =0. (13)

Equation (13) is the BD-PCM-PTED equivalent of Eq. (29)
of Ref. 30. U, k(au ‘) contains the polarized reference terms
from Eq. (30) of Ref. 30. Equation (12) is solved to compute
the ti’/’ amplitudes. As for the gas phase case, Egs. (11)—(13)
are solved iteratively until convergence.

The partial derivatives of the free energy functional with
respect to the orbital rotation U,; and the t,-“jb amplitudes pro-
vide the equations for the A{ and Aj‘}’ amplitudes:

9Gep ., [ ObE
= )"k
8[Jai 8[Jai

> + 25\2ch . qia

l,~.
+_()‘4;Vc'a -

5 szik) : QN
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N(_ 1 hz
2k (pa¥ i = i Vpa) + 4)""(3UJ ‘

1
5 O D[AG (1] Vae = 17 Vu) - @]

1 . . -
— 570 O[AE(1Vie + 15Via) - Q]

1 c
+2kk; (16 vap — 17 Via) - (dpa¥pi — ApiVpe)
oE - _
” ( 8UB].)> = Via + Qv = £'Vjp - Qv =0,
(14)

9Gen _ ., ( ot
arab atab
ij ij

) + ()L?Vj}, — )\.ija — )\.?V,’b =+ )\.I;»V,'a) . QN

1 cd ab;j ad db ab
+Z)\k1 379b + ()\,‘j Vap + )‘ij Vad — )‘kj Vik
ij

_ o0E
_A%VM)'QN4‘( BD>==0, (15)

areb

where )»;((ab‘ ) 1 k(BUM) (8EB”) are the terms of the
polarized reference BD equations for the A, amplitudes, and

b abd
A (s 3[”,;’ , 4)»27( atﬁ’h) (3;;5‘,,’)) are the terms of the polarized

iefeience BD equatlons for the A, amplitudes (Egs. (2.13)-
(2.26) in Ref. 21). In Eq. (14) we used

Mo=yh =0+ 20 (16)

and the permutation symmetrization operator

SO y) = flxy)+ f(y,x). a7

By using Egs. (3)and(8) with the conditions in
Egs. (11) and (12), after simple algebra, Eq. (1) can be recast
in a simpler form (which does not require the calculation of
the two-particle density):

1- _
Ggp = Gy + AEgp — EVN Q. (18)

A comment is also in order concerning the derivative of
the PCM energy contribution with respect to a generic param-
eter £. In the above equations, we implicitly assumed

d _ _

9% ( V) - Q(S)) = Vi) - Q®). (19)
This is correct in operator form (i.e., before discretization of
the cavity surface) since the reaction field is related to the
solute potential by

U™ ) =V (£) (20)

and UPM is self-adjoint.'>3? This is not the case, however, in
the discretized form of the IEF equations as usually reported
in the literature (i.e., the matrix U™ is not symmetric'®). We
avoided this problem by employing the symmetrized version
of the IEF equations as suggested by Lipparini et al.,*? so that
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Eq. (19) also applies in the discretized form. Additionally, this
problem does not arise for the conductor-like version of PCM
(CPCM) since the UM matrix is intrinsically symmetric.

B. PTE approximation

As for CCSD, it is possible to introduce a PTE approx-
imation by neglecting the correlation reaction field Q. This
corresponds to considering the solvent contribution only in
the reference function through the PCM operator in the Fock
operator (Eq. (2)). This approximation has several computa-
tional advantages, as the part of the reaction field that depends
on the reduced density y* is neglected. Since y* is no longer
needed, the equality in Eq. (10) is restored and the A vector
is not necessary to compute Gpp. Indeed, Eqgs. (1) and (18)
reduce to the following:

Gpp' = Gyp + AEgp. (21)

Also, Egs. (11)and (12) reduce to the polarized reference
case:

aGPTE
MB;D =b" =0, (22)
0GEL b
= bif =0. (23)
1y

However, the presence of the PCM operator in the Fock op-
erator implies that, when the derivative of Eq. (22) with re-
spect to the orbital rotation to compute ®% is taken, the
proper derivative of the PCM operator must be included.
Thus, Eq. (13) becomes

b
b + U(-k[ (GU:‘k) — 2(Via + 1V j) - qm} =0. (24

The PTE approximation de facto reduces the com-
putational cost of each step in the iterative solution of
Egs. (11)and (12) to the gas phase actual cost, as the ex-
tra computational effort introduced by the PCM terms in
Egs. (2) and (24) is negligible, as shown in Sec. II D. Nonethe-
less, the PTE model maintains the attractive feature of the BD-
PCM approach, that is the more direct coupling of the solvent
effect on the MOs with the CC expansion.

C. Free energy analytical gradients

The analytical gradient expression of the PTED free en-
ergy functional in Eq. (1) with respect to an external pertur-
bation directly follows Cammi’s derivation for the CCSD free
energy functional.'> The extra terms due to the PCM oper-
ators are the same for CCSD and BD; therefore, we do not
find necessary to repeat the same equations again. We only
point out that, as for the gas phase case, in BD the orbital re-
laxation is coupled with the T amplitudes relaxation through
Eqgs. (14) and (15). Thus, y2 (Eq. (6)) already includes the or-
bital response.

Although, some comments are necessary for the PTE ap-
proximation. As in the case of CCSD, BD-PCM-PTE does
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not require the A vector for the calculation of the free energy,
but this vector is necessary for the evaluation of the free en-
ergy analytical gradients. Contrary to CCSD, however, the A{

equation for BD-PCM-PTE is slightly different than that for
the gas phase:

IGen .. ( b < 1., [9b%
BD _ )\2< k )—}—ZAZV/“. Qi + _Abc Jk

E)U,,i 8Ua,' 4 i aUai
1 . .
57 O DA (1 Vae = 157 Vur) - ia]

dEpp
=0. 25
* < aUai ) ( )

The PCM terms in Eq. (25) come from the derivative of the
PCM term in the Fock operator, Eq. (2).

D. Implementation of the PCM terms

Although the PTED model couples Egs. (11)—(15), and
thus the evaluation of the free energy is more expensive than
the gas phase energy, the added computational cost of the in-
dividual PCM terms is small. In fact, the calculation of the
reaction field (Qn or Q°) has been shown to be fast com-
pared to the Fock matrix formation.?3 Also, the terms in these
equations reuse intermediates that are already evaluated for
the polarized reference part of the equations. For example,
for the term in Eq. (14),

1 , , 3
- 770 DAt vie + 15 via) - Qu ] (26)

the expensive intermediates A{’#(? and A’} (which scale as
0?v3 and 0v?, respectively, where o is the number of occu-
pied MOs and v is the number of virtual MOs) are also needed
for the polarized reference equations. Thus, the contraction
with the PCM operator is performed when these intermedi-

ates become available. While, for other terms like in Eq. (12),

t,';'bvac : QN ) (27)

the PCM element v, - Qy can be added to an intermediate
of the polarized reference equation (in particular, to the in-
termediate in Q?;’(I, a x a) in Eq. (2.3). in Ref. 21), so that
the contraction with the tff” amplitudes (0*v? scaling) is per-
formed only once. The terms where the A intermediate (al-
ready available) is completely contracted with the potential
as, for instance, in Eq. (14),

1. .
+ EK}},’ (t6vap — 157 Vi) - (Apa¥ i — Api V) (28)

can be rearranged by considering the intermediate as a
pseudo-density (A,i? t,ff = Ppq and A,i;’ tfj” = Pu), and using the
symmetry of the PCM operator with respect to the potential

(as in Egs. (19) and (20)) to give

1 - _
+ Q) = Q) - (Ypa¥pi = Voi¥pa), (29)
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so that the scaling of this term is O (0*v + ov?). Similarly, a
term like

1 . )
5 G D[AG (17 Vae = 157 Vi) - ia] (30)

from Eqs. (14) and (25) can be rearranged as

| ~
5 QW) = Q¥+ Via, €1V

where

S DM = Vea: a2
v

70, 0?) =

The evaluation of ¥y (Eq. (6)) requires O(N’) work.
However, ¥ can be updated every few iterative cycles during
the solution of Egs. (11)—(15), thus keeping the computational
cost of its evaluation in the noise.

Since the leading terms in Egs. (11)—(15), which scale as
O (0*v* 4 0*v?) and need to be evaluated at each iterative cy-
cle, are the same as in gas phase BD, the evaluation of the
extra PCM terms is basically free compared to gas phase BD.
No appreciable difference can be detected in an iterative step
of a gas phase or PCM calculation. For the PTE approxima-
tion, which simplifies most of the equations as discussed in
Sec. II B, the computational cost difference between PCM
and gas phase BD is virtually eliminated. Additionally, the
extra work for the PCM terms in the analytical gradients is
negligible compared to the solution of the 7 and A equations
and the evaluation of the BD two-particle density matrix. We
tested the correctness of the analytical gradients implementa-
tion for both PTED and PTE models by comparing the forces
on the nuclei with those calculated with numerical gradients.

Finally, our implementation makes use of the Abelian
point group symmetry>® and can handle restricted closed shell
and unrestricted wave functions. The methods presented in
these sections were implemented in a development version of
the GAUSSIAN suite of programs.>*

lll. RESULTS

In this section we present various tests to demonstrate
the efficacy of the methods presented above. We start with
some examples from our previous work on the implementa-
tion and testing of the CCSD-PCM-PTED and CCSD-PCM-
PTE methods.'” In particular, we investigate the calculation
of solvation free energies for five organic molecules in various
solvents of increasing polarity, and the stabilization energy of
the zwitterionic form of glycine in water. For one of these
molecules (pyridine), we also show convergence trends for
the BD-PCM-PTED and -PTE schemes. Next, we analyze an
extremely simple model: HY, for which gas phase CCSD and
BD are equivalent to the full configuration interaction (CI)
method. Finally, a more realistic model system is studied: a
dihydrogen complex of Fet. These examples are used to com-
pare the performance of BD-PCM with CCSD-PCM for the
two PTED and PTE approaches. The PCM cavity was built of
interlocking spheres centered on each nucleus with Universal
Force Field (UFF) radii.® No extra spheres were added unless
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TABLE I. Solvation free energy (kcal/mol).

Cyc/ Dce/ H,0O/ Cyc/ Dce/ H,0O/

IEF* IEF* IEF* SMD* SMD* SMD*
Pyridine
Expt.P —-430 =553 —-470 —-430 =553 —-4.70
PTE —1.79 —410 —-479 —-447 —-6.76 —4095
PTED —1.80 —4.11 —480 —448 —-6.77 —4.96
Aniline
Expt.P -552 -739 549 552 -739 549
PTE —194 —454 -535 =515 —-822 —473
PTED —194 —455 -536 -5.16 —823 —4.74
Phenol
Expt.P —-5.57 -—-748 —6.62 —-557 —-748 —6.62
PTE —-2.17 —-498 -583 -538 —-8.10 —6.23
PTED —-2.17 —499 584 538 —8.10 —6.24
P-bromophenol
Expt.P -7.14 -9.10 -7.13 -7.14 -9.10 -7.13
PTE —242 544 —-633 -670 —-949 -7.03
PTED —242 —-545 —-634 -6.70 —-9.50 —-7.04
Chlorobenzene
Expt.P —5.10 —-1.12 =510 —1.12
PTE -097 =219 =255 -520 -631 —1.10
PTED -098 -2.19 =255 =521 -632 —1.11

2Cyc: cyclohexane; Dce: dichloroethane; IEF: electrostatic-only, UFF radii; SMD: SMD
nonelectrostatic and radii.
bReference 36.

otherwise specified. The continuous surface charge (CSC)
scheme described in Ref. 23 was employed.

A. Solvation AG and glycine

As in Ref. 19, we compute the solvation free energies
(AG) (Ref. 37) for five aromatic molecules: pyridine, ani-
line, phenol, p-bromophenol, and chlorobenzene, in three sol-
vents of increasing polarity: cyclohexane (cyc, ¢ = 2.02),
dichloroethane (dce, ¢ = 10.13), and water (H,0, ¢ = 78.36).
The calculations are carried out in the same conditions as in
Ref. 19: 6-31+G(d,p) basis set, geometry optimized in the cor-
responding medium, IEF version of PCM. Since IEF-PCM
only accounts for electrostatic interactions with the solvent,
we also use the Solvation Model Density (SMD) model of
Truhlar and co-workers>® to consider nonelectrostatic effects,
which are important for low polar solvents. The results for
BD-PCM-PTED and BD-PCM-PTE are reported in Table I.
The agreement with the experimental data is very good, con-
sidering the small basis set used (the effect of the basis set was
analyzed in Ref. 19, and is beyond the scope of this work).
The importance of nonelectrostatic contributions to the sol-
vation free energy is evident from the results in cyclohexane
and dichloroethane, with differences of about 4.5 kcal/mol in
some cases. SMD recovers most of these effects, even if it
was not parameterized for this level of theory. However, here
we are more interested in the comparison between the vari-
ous methods. BD-PCM-PTED and CCSD-PCM-PTED pro-
vide very similar results (compare with Table 1 in Ref. 19),
the largest difference being 0.04 kcal/mol for aniline and p-
bromophenol in water. The equilibrium geometries from the
two levels of theory are also basically the same. The agree-
ment of the PTE approximation with the PTED model is
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FIG. 1. Convergence of the BD-PCM-PTED scheme for pyridine in differ-
ent solvents. The first column (“gas”) reports the convergence of the gas
phase BD calculation. The red bar in the second column (“1”) reports the
convergence of the BD-PCM-PTE approximation, which is the first step of
the PTED scheme.

remarkable, always within 0.01 kcal/mol. This is even better
than for CCSD, where the difference between PTE and PTED
could reach 0.09 kcal/mol.

The convergence of the PTED scheme is shown for pyri-
dine in the three solvents (IEF-PCM) in Fig. 1. The conver-
gence thresholds are 107° for the wave function and 10~% a.u.
for the energy. The red bars report the number of iterations
to compute the T amplitudes, and are divided in sections for
each BD iteration necessary to compute the reference function
@Y. The number of T iterations for the gas phase calcula-
tions is also reported as reference. The red bar of the first itera-
tion of the PTED scheme (column “1” in each plot) is the PTE
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TABLE II. Stabilization free energy (kcal/mol) of the zwitterionic form of
glycine with respect to the neutral form in water.

Expt.? PTE PTED

=72 —2.07 —2.08

“Reference 38.

approximation. The latter is almost equivalent to a gas phase
calculation. On the other hand, PTED requires several itera-
tions to converge. However, since PTE is already very close to
the PTED solution, the number of steps to compute the 7 and
A vectors for each PCM iteration decreases rapidly after the
first iteration. Summing all the iterations for T and A, PTED
roughly requires twice the computational effort compared to
the PTE approximation (although, a A iteration is more ex-
pensive than a T iteration’!).

The second example that we take from Ref. 19 is the sta-
bilization of the zwitterionic form of glycine in water with
respect to the neutral form. The results for BD are reported in
Table II (the 6-31+G(d,p) basis set was used for the calcula-
tion). The model here is very crude, since it ignores specific
solute-solvent interactions and only one conformer for each
glycine form is considered. However, also in this case we are
only interested in the relative performance of the methods. A
bare PCM approach already provides a qualitatively correct
picture, with the zwitterionic form more stable than the neu-
tral form in solution (the zwitterion is not a stable structure in
gas phase). The difference between BD and CCSD is on the
order of 0.2 kcal/mol, much smaller than the error with the
experiment. Also, the difference between PTE and PTED is
very small, 0.01 kcal/mol, similar to the CCSD case.

These two sets of examples show that BD-PCM is ba-
sically equivalent to CCSD-PCM for well behaved cases.
PTE is a very good approximation of PTED even in poten-
tially difficult cases such as the zwitterion, and the difference
PTE—PTED is even smaller for BD than for CCSD.

B. A very simple system: H;

HI can be considered the smallest example of 3 center-
2 electron bond (3c-2e).* Obviously, it does not represent a
physically meaningful system, especially in water solution.
However, it is an interesting model system for this study since
both gas phase CCSD and BD are equivalent to the exact
(within the finite basis set expansion and Born-Oppenheimer
approximation) full CI wave function. Therefore, their energy
does not depend on the choice of the reference function. This
applies also to the PCM-PTED model, but not to the PTE ap-
proximation, since the PCM operators in the CC expansion
are neglected.

We optimized the geometry of the system in water, main-
taining the H centers symmetrically distributed around the
center of mass (c.m.) (r’ ;= 0.4966 A, He.H = 120°).
All the calculations were performed with the aug-cc-pVTZ
basis set.*” The optimizations with all methods provided the
same equilibrium geometry. From this conformation, we com-
pute the free energy in solution at various points by increas-

ing the distance from the center of mass (Rxr?__,, where
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FIG. 2. Free energy change (kcal/mol) in water at various r¢m—H
(er?‘m._H, where R is a scaling factor).

R is a scaling factor). In order to avoid “solvent pockets” at
larger distances, an extra sphere is added at all points cen-
tered at the center of mass and with a radius equal to the dis-
tance to the H nuclei. The free energy profile is reported in
Fig. 2 (the reference energy is that at the equilibrium geome-
try). The four methods agree up to a scaling factor of 2.5. At
R = 3, CCSD-PCM-PTE differs from the other methods by
about 4 kcal/mol, and such difference increases at longer dis-
tances. The HF reference has a restricted-unrestricted (RHF-
UHF) instability at factors between 2.5-3, since the exact
wave function has a growing contribution from the same-spin
configuration. This is not a problem for the PTED method, as
mentioned above, but it is for PTE. CCSD with the restricted
closed-shell reference is not able to correct for this behavior,
and the situation worsens at longer distances. On the other
hand, the coupling of the reference function with the config-
uration expansion in BD compensates for the deficiencies of
the starting reference function, and the BD-PCM-PTE curve
agrees with the PTED curves even starting from the unstable
RHF wave function.

C. A more realistic system: Fe—H, complex

The H;r example in Sec. III B is a model for o-bond
coordination chemistry, where dihydrogen bonds to a metal
center.*® This chemistry is of large interest for hydrogen stor-
age applications, and detailed discussions can be found in ex-
cellent review articles.?*#'=*3 Briefly, the H-H bond can split
to give a dihydride complex or remain nearly intact, giving a
dihydrogen complex, see Fig. 3.

The stability of the n?> complex depends on the relative
strength of o donation vs. backdonation, i.e., donation of elec-

H _H
L,M— LaMZ

n IL n H

(a) (b)

FIG. 3. Metal-dihydrogen and metal-dihydride complexes. (a) n%-H; (b) di-
hydride complex.
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FIG. 4. Structure of the Hy[FeH(PP),]* complex.

trons from metal d orbitals to the H, o* orbital. Too strong
backdonation leads to homolytic cleavage of the H-H bond to
form the dihydride complex. The balance between these two
competing factors depends on the nature of the metal and the
ligands, especially to that trans to H,. Elongated dihydrogen
complexes also exist, where H, has large mobility. Most of
these reactions happen in solution, and the complexity of the
electronic structure of these compounds often requires high
level theoretical calculations for the interpretation of exper-
iments. Thus, we choose a model system from this class of
complexes to further test the BD-PCM method. We are not
(yet) interested in studying real chemical problems, but rather
in comparing the BD and CCSD results.

We consider a trans-hydride complex of Fe™:
H,[FeH(PP),]*, as a model for the phenyl diphosphines
complex, known to be stable in tetrahydrofuran (THF)
solution.**! The geometry, shown in Fig. 4, was optimized
at B3LYP (Refs. 44 and 45) level using the Stuttgart/Dresden
pseudopotential®® for Fe, the 6-31G(d,p) basis set for the
dihydrogen and the hydrogen in trans position, and the
6-31G(d) basis for the rest of the atoms (the same basis sets
are used in the following single point calculations), imposing
C,, symmetry. The optimized geometry is available in the
supplementary material.*’ The H-H equilibrium distance is
0.8105 A, in reasonable agreement with the reported experi-
mental value (0.86-0.97 A),>*' while the Fe—H, distance is
1.6219 A. Single point energy calculations were then carried
out for the isolated molecule and in THF by increasing the
H-H bond distance. As for the Hj case, an extra sphere is
included along the Fe—H; bond to avoid “solvent pockets” at
longer H-H distances (the sphere diameter being equal to the
Fe—H, distance). This scan can be considered a very crude
model for the H-H bond cleavage.

The change in energy when scaling the H-H distance by a
factor R is shown in Fig. 5. The energy increases at longer H—
H bond lengths (the reference energies are those at the equi-
librium distance in gas phase at the corresponding level of
theory), which is consistent with the experimentally known
stability of the Fe—H, complex. The solvation free energies,
calculated as the THF-gas phase energy differences for each
H-H bond length and level of theory, are reported in Fig. 6.
The RHF reference is used as a starting point in all the calcu-
lations. The solvent stabilizes more the elongated structures,
probably because the electron density is more polarizable.
The results show a very good agreement between BD- and
CCSD-PCM-PTED at all distances. On the other hand, only
BD-PCM-PTE is able to follow the same trend, while CCSD-
PCM-PTE is always about 1-1.5 kcal/mol higher in energy.

At R = 2 the RHF wave function becomes unstable. The
RHF-UHF instability is again due to the constraint of double
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FIG. 5. Energy change (kcal/mol) in the Hy[FeH(PP),]" complex, in gas
and in THF, at various H-H bond distances. R is a scaling factor from the
equilibrium bond distance.

occupancy of the orbitals in RHF, as in the H;r case. How-
ever, now CCSD and BD are not equivalent to the full CI
solution, and the results may vary considerably. BD is not
affected by this instability, and the (free) energies are un-
changed when starting from the UHF reference both in gas
phase and in THE, at all of the geometries. This is not the
case for CCSD, where both the gas phase and solution (free)
energies depend on the choice of the reference. The change in
energies with the UHF and RHF references, both in gas phase
and in THF, are reported in the supplementary material.*’ The
solvation free energies computed starting from the RHF and
UHF wave functions are shown in Fig. 7. For the PTED ap-
proach, the solvation AG does not vary considerably (the
largest difference, for R = 3, is 0.3 kcal/mol), but a CCSD
with UHF reference calculation is ~3 times more expen-
sive than a CCSD with RHF reference one. The PTE model,
on the other hand, provides very different results with the
two reference functions, emphasizing the difficulty of CCSD
in this case. A comparison between Figs. 6 and 7 shows

[Fe-]—lzr complex

38 - . :
5-0 CCSD PTE
=8 BD PTE
39 A-ACCSD PTED
: »x BD PTED
F 40 J
ERL
=
]
O 41F _
<
42 il
43—

1 1.5 25 3

S

FIG. 6. Solvation free energy (kcal/mol) for the H,[FeH(PP),]* complex at
various H-H bond distances. R is a scaling factor from the equilibrium bond
distance.
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FIG. 7. Solvation free energy (kcal/mol) for the Hy[FeH(PP),]* complex at
various H-H bond distances for CCSD with the unstable and stable HF refer-
ences (RHF and UHF, respectively). R is a scaling factor from the equilibrium
bond distance.

that reliable solvation free energies can be obtained with the
computationally efficient BD-PCM-PTE approach. Note also
that we chose a complex with a relatively simple electronic
structure, in the sense that it is a stable closed shell system at
the equilibrium geometry. The situation may be far more com-
plicated for metals with unpaired d electrons, so that multiple
HF solutions may be found. In those cases, the BD insensi-
tivity to the choice of the reference may become even more
important.

IV. CONCLUSIONS

In this work, we present the theory, the implementation,
and numerical tests for the BD-PCM method. The free energy
functional and its analytical gradients are introduced, and de-
tails of the implementation are discussed. BD-PCM allows for
the study of molecular systems in solution by treating the so-
lute wave function at a high level of theory while taking into
account the bulk effect of the solvent in a computationally ef-
ficient manner. The complete scheme, PTED, and its approx-
imation, PTE, which includes the PCM contribution only in
the reference function, are tested and compared to their corre-
sponding CCSD approaches.'>!”

The results reported in this paper show that BD-PCM is
equivalent to CCSD-PCM when the HF wave function is a
good reference. However, BD-PCM is superior when HF has
instabilities that affect the CCSD results, similar to gas phase.
The more direct coupling of the reference function with the
cluster expansion in BD also makes the PTE results almost in-
distinguishable from those of the PTED scheme. PTE is prac-
tically equivalent to the gas phase method from the computa-
tional effort point of view. Therefore, this approach introduces
the often essential solvent effect at almost no cost.

Some caution must be exercised when using electrostatic
continuum solvation models if specific interactions between
solute and solvent occur, as for the glycine case in Sec. III A,
where hydrogen bond interactions are obviously missing. An-
other case is when low polar solvents are considered, as for
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the solvation free energy of aromatic compounds in Sec. I1I A,
where nonelectrostatic contributions are necessary to repro-
duce the experimental trends. Keeping such considerations in
mind, BD-PCM, especially with the PTE scheme, represents
a promising method to study systems in solution with a com-
plicated electronic structure, such as coordination chemistry
of metals and other open shell species.
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