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The combination of the coupled cluster (CC) method with the polarizable continuum model (PCM)
of solvation requires a much larger computational effort than gas phase CC calculations, since the
PCM contribution depends nonlinearly on the CC reduced density: perturbation theory energy and
density (PTED) scheme. An approximation can be introduced that neglects the “correlation” PCM
contribution and only considers the “reference” PCM contribution to the free energy: PTE scheme.
The PTE scheme is a computationally efficient strategy, since the cost is comparable to gas phase
CC, but the difference in the free energy with respect to the PTED scheme can be significant. In
this work, two intermediate approximations are presented, PTE(S) and PTES (where S stands for
singles), which retain the computational efficiency of the PTE scheme while reducing the energy
gap with the PTED scheme. PTE(S) only introduces an energy correction to the PTE free energy,
while PTES introduces explicit PCM terms in the iterative solution of the CC equations. PTE(S)
improves the PTE free energy, although such correction is small. PTES recovers 50%–80% of the
PTE-PTED difference and represents a promising approach to perform calculations in solution of CC
quality at a cost comparable to gas phase CC. The expressions for the CC-PTE(S) and -PTES wave
functions, free energy, and free energy analytical gradients are presented, and the methods are tested
with numerical examples. © 2011 American Institute of Physics. [doi:10.1063/1.3624373]

I. INTRODUCTION

Single reference coupled cluster (CC) theory1, 2 repre-
sents one of the most successful and widely used approaches
to study properties of isolated molecules. The exponential
ansatz for the cluster expansion recovers most of the dynam-
ical electron correlation even for truncated excitation expan-
sions. Also, approximated CC methods are size consistent and
can be systematically improved. A limitation of the theory is
its computational cost, which makes it routinely affordable
only for medium size molecules.

When the system of interest is in solution, the issue of
computational cost becomes even more significant. A number
of approaches have been proposed to introduce the solvent
effect in an approximate way in CC calculations.3–13 Among
these, the approach of Cammi11 is particularly appealing. It
is based on the polarizable continuum model of solvation
(PCM),14, 15 where the solvent is represented as a polarizable
dielectric characterized by its dielectric constant. A cavity of
molecular shape hosts the solute, and the solvent polarization
is modeled as an apparent surface charge on the cavity sur-
face. The electrostatic solute-solvent interaction is introduced
in the solute Hamiltonian as an interaction operator, so that
solute and solvent mutually polarize. PCM is computation-
ally very efficient and is usually able to properly describe the
solvent effect as long as there is no direct interaction between
the solvent molecules and the solute (for instance, strong hy-
drogen bonds).

In his extension of PCM to CC theory, called PCM-PTED
(perturbation theory energy and density) scheme for histori-

a)Electronic mail: marco@gaussian.com.

cal reasons,16, 17 Cammi separates the solvent interaction with
the reference function from the “correlation” interaction. The
latter depends on the CC reduced one particle density ma-
trix (1PDM). To compute the reduced 1PDM, the auxiliary �

vector from CC gradient theory is necessary,1, 2, 18, 19 and this
makes the calculation of the PCM-PTED free energy compu-
tationally expensive compared to a gas phase energy calcu-
lation. This is somewhat mitigated in property calculations,
for example in geometry optimizations, since the 1PDM is
required even in the gas phase. However, the mutual polariza-
tion between solute and solvent requires several PCM macroi-
terations; thus, several evaluations of the 1PDM for each free
energy calculation, until convergence is reached.

An approximation can be introduced, where the “correla-
tion” interaction is neglected: PTE scheme.11, 16, 17 In this ap-
proach, the CC wave function and the � vector are decoupled
as in the gas phase, and the solute-solvent polarization is only
introduced through the polarization of the molecular orbitals
(MOs). The PTE scheme is computationally equivalent to gas
phase CC, since the extra work in the reference wave function
calculation is negligible compared to the CC part. The im-
plementation and testing of the PTE and PTED schemes13, 20

showed that while the difference between the two approaches
can be minor for small systems, it increases for larger systems
and can become significant.

By re-examining the CC-PCM-PTED equations, I have
realized that two intermediate approximations between the
PTE and PTED schemes can be invoked. These approxima-
tions, called PTE(S) and PTES, only consider the part of
the reduced 1PDM that does not depend on the � vector,
that is the single CC amplitudes (the “S” stands for singles).

0021-9606/2011/135(7)/074113/7/$30.00 © 2011 American Institute of Physics135, 074113-1
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Therefore, in the PTE(S) and PTES schemes, the CC equa-
tions are decoupled from the � equations as for PTE. In
PTE(S), the correlation contribution is introduced as an
energy correction to the PTE free energy, while in PTES,
explicit PCM terms enter the iterative solution of the CC
equations. Both PTE(S) and PTES are still computationally
equivalent to CC-PCM-PTE, since the extra work for the
PCM terms is negligible.

In this paper, I introduce the expressions for the free en-
ergy in the CC-PCM-PTE(S) and -PTES schemes and the
free energy analytical gradients. Numerical tests are also pre-
sented, in order to assess the efficacy of the two approaches.
These tests show that both schemes reduce the difference be-
tween PTE and PTED. The improvement of PTE(S) is usually
small, while PTES is able to recover 50%–80% of the “corre-
lation” PCM contribution. Thus, PTES represents an efficient
approach to perform CC calculations in solution at a compu-
tational cost comparable to the gas phase CC.

This paper is organized as follows. The theory is de-
scribed in Sec. II. The numerical tests are presented and dis-
cussed in Sec. III, and Sec. IV contains concluding remarks.

II. THEORY

A review of the theory and implementation of the family
of polarizable continuum models of solvation can be found
in the available literature,14, 15, 21–25 and will not be repeated
here. Additionally, I will follow the notation introduced by
Cammi11 for consistency in the PCM expressions and refer
the interested reader to Ref. 11 for more details.

The CC-PCM-PTED free energy functional is11, 26, 37

G(�, T ) = 〈�0|(1 + �)e−T H0e
T |�0〉

+ 1

2
V̄(�, T ) · Q̄(�, T ), (1)

where H0 is the molecular Hamiltonian, �0 is the reference
function (usually the Hartree-Fock wave function, HF), T is
the excitation operator, and � is the Z vector from gradi-
ent theory.18, 19 Q̄(�, T ) and V̄(�, T ) are the PCM reaction
field and solute electrostatic potential on the cavity surface,
respectively,11

Q̄(�, T ) = 〈�0|(1 + �)e−T QeT |�0〉, (2)

V̄(�, T ) = 〈�0|(1 + �)e−T VeT |�0〉. (3)

Since both depend on the total (frozen orbitals) CC density,
the reaction field couples the T and � equations, in contrast to
the gas phase case where � is not required for the calculation
of the energy. The scalar product in the PCM term indicates
that the reaction field and the potential on the cavity surface
are discretized in surface elements, and the bold font is used
to indicate that these are vectors of dimension equal to the
number of surface elements.27

By introducing the normal-product form of an operator2

XN = X − 〈�0|X|�0〉 = X − X̄0. (4)

Equation (1) can be rewritten as

G(�, T ) = G0 + 〈�0|(1 + �)e−T H PCM
0N eT |�0〉

+ 1

2
V̄N (�, T ) · Q̄N (�, T ), (5)

where G0 is the reference free energy:

G0 = 〈�0|H0|�0〉 + 1

2
V̄0 · Q̄0, (6)

and H PCM
0N contains the PCM operator with the reference re-

action field

H PCM
0N = H0N + VN · Q̄0. (7)

In Eq. (5) as in Eq. (1), the coupling between the T and �

equations is due to the PCM term since both V̄N and Q̄N de-
pend on T and �.

In the PTE approximation, the 1/2 V̄N · Q̄N term in Eq.
(5) is neglected. Therefore, the coupling between the T and
� equations is eliminated. The CC-PTE equations for the T

and � amplitudes (t and λ, respectively) are formally identi-
cal to those for the gas phase, and the solvent effect is intro-
duced only through the polarized MOs and orbital energies.
The PTE model is computationally equivalent to a gas phase
calculation, since the extra work introduced by PCM in the
computation of �0 and G0 is negligible compared to the so-
lution of the CC equations.

However, expanding the 1/2 V̄N · Q̄N term

1

2
V̄N (�, T ) · Q̄N (�, T ) = 1

2
〈�0|(1 + �)e−T VNeT |�0〉 · 〈�0|(1 + �)e−T QNeT |�0〉

= 1

2
〈�0|e−T VNeT |�0〉 · 〈�0|e−T QNeT |�0〉 + 1

2
〈�0|�e−T VNeT |�0〉 · 〈�0|e−T QNeT |�0〉

+1

2
〈�0|e−T VNeT |�0〉 · 〈�0|�e−T QNeT |�0〉 + 1

2
〈�0|�e−T VNeT |�0〉 · 〈�0|�e−T QNeT |�0〉, (8)

one notices that the T/� coupling is only due to the
last term. Therefore, the two approximations that are the
focus of this work are based on the neglect of this
term.

In the following, I implicitly assume that the reaction
field is computed by using the symmetric version of the PCM

equations, either for the integral equation formalism PCM
(IEF-PCM)21, 22, 25 or the conductor-like PCM,23, 24 so that the
following relations apply:

∂

∂ξ

(
1

2
V̄(ξ ) · Q̄(ξ )

)
= V̄ξ (ξ ) · Q̄(ξ ), (9)
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1

2
V̄(ξ1) · Q̄(ξ2) = 1

2
V̄(ξ2) · Q̄(ξ1), (10)

where the parameter ξ refers to the T or � amplitudes.

A. PTE(S) scheme

In this approximation, all VN · QN terms that depend on
� are neglected (last three terms in Eq. (8)). Thus, the PTE(S)
free energy functional is

GPTE(S) = G0 + 〈�0|(1 + �)e−T H PCM
0N eT |�0〉

+ 1

2
V̄N (T ) · Q̄N (T ), (11)

where I introduced the notation

Q̄N (T ) = 〈�0|e−T QNeT |�0〉, (12)

to outline that the apparent surface charges only depend on
the T amplitudes. Another way to view this approximation
is to consider that the correlation reaction field is only deter-
mined by that part of the CC reduced 1PDM (γpq in Table I
of Ref. 11) that does not depend on the � amplitudes

γpq � tai . (13)

Here and in the following, the usual notation is used for the
MO labels: ijk . . . for occupied MOs, abc . . . for virtual MOs,
and pqr . . . for generic MOs, and Einstein’s convention for
the summation over common indexes is used.

Imposing the stationarity of GPTE(S) with respect to vari-
ations of the � amplitudes, one obtains the equations for t

∂GPTE(S)

∂λ
= 〈�|e−T H PCM

0N eT |�0〉 = 0

≡ ∂GPTE

∂λ
, (14)

where � is an excited determinant with respect to the ref-
erence wave function. It is understood that there is a set of
equations for each order of excitations.

Since the V̄N (T ) · Q̄N (T ) energy term in Eq. (11) does
not depend on �, it does not contribute to the T equations, and
the PTE(S) T equations are equivalent to the PTE equations.
Once Eq. (14) is solved, Eq. (11) reduces to

GPTE(S) = G0 + 〈�0|e−T H PCM
0N eT |�0〉

+ 1

2
V̄N (T ) · Q̄N (T ). (15)

Hence, in the PTE(S) approximation, the correlation PCM
contribution is only a correction to the PTE free energy and

can be computed after solving the T equations:

1

2
〈�0|e−T VNeT |�0〉 · 〈�0|e−T QNeT |�0〉

= 1

2
tai viaQ̄N (T ). (16)

B. PTES scheme

In the PTES scheme, only the last term in Eq. (8) is ne-
glected. The free energy functional thus becomes

GPTES = G0 + 〈�0|(1 + �)e−T H PCM
0N eT |�0〉

+ V̄N (�, T ) · Q̄N (T )

− 1

2
V̄N (T ) · Q̄N (T ), (17)

where I used the relation in Eq. (10) to rearrange the remain-
ing terms.

The T amplitudes are again computed by imposing the
stationarity of GPTES with respect to changes in λ

∂GPTES

∂λ
= 〈�|e−T H PCM

0N eT |�0〉

+ 〈�|e−T VNeT |�0〉 · Q̄N (T ) = 0. (18)

Note that the PTES T equations in Eq. (18) are formally
identical to the PTED equations11 with the substitution
Q̄N (�, T ) → Q̄N (T ).

Also in this approximation, the T equations are decou-
pled from the � equations since there is no explicit depen-
dence on � in Eq. (18). Contrary to the PTE(S) scheme, here
correlation PCM terms explicitly appear in the iterative so-
lution of the CC equations. However, the computational cost
of such terms is negligible. In fact, the most expensive PCM
terms in Eq. (18), which formally scale as O(N5) for CC sin-
gles and doubles11 (CCSD, where N is the number of basis
functions) can be folded in intermediates that are common
to the gas phase equations, so that no extra O(N5) work is
actually performed. Hence, the cost of each iteration in the
PTES scheme is still computationally equivalent to that of a
gas phase CC calculation.

When the T amplitudes are computed by solving
Eq. (18), GPTES in Eq. (17) reduces to

GPTES = G0 + 〈�0|e−T H PCM
0N eT |�0〉

+ 1

2
V̄N (T ) · Q̄N (T ), (19)

which is formally equivalent to GPTE(S) in Eq. (15).

C. Analytical free energy gradients

The derivation of the analytical gradients of the PTE(S)
and PTES free energy functionals closely follows Cammi’s
derivation for the PTED scheme11 and need not be repeated
here. PCM only adds a few extra terms to the gas phase CC
analytical energy gradient expressions, which can be found in
Refs. 18 and 19. Consequently, here I report only the differ-
ent expressions for the PTE(S) and PTES terms compared to
PTED.
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The calculation of the analytical gradients of the free en-
ergy functional requires the evaluation of the � vector, for
both the PTE(S) and PTES schemes. In either case, the equa-
tions for the λ amplitudes can be obtained by imposing the
stationarity of the free energy functionals, Eqs. (11) and (17),
with respect to variations of t . For PTE(S), one has

∂GPTE(S)

∂t
= 〈�0|[�, e−T H PCM

0N eT ]|�〉

+ 〈�0|e−T H PCM
0N eT |�̃〉〈�̃|�|�〉

+ 〈�0|e−T H PCM
0N eT |�〉

+ 〈�0|e−T VNeT |�〉 · Q̄N (T ) = 0. (20)

Equation (20) is formally equivalent to the PTE � equations11

except for the constant term

〈�0|e−T VNeT |�〉 · Q̄N (T ) = via · Q̄N (T ), (21)

which only appears in the singles amplitudes equations.
The � equations for PTES are

∂GPTES

∂t
= 〈�0|[�, e−T H PCM

0N eT
]|�〉

+ 〈�0|[�, e−T VNeT
]|�〉 · Q̄N (T )

+ (〈
�0|e−T H PCM

0N eT |�̃〉
+ 〈�0|e−T VNeT |�̃〉 · Q̄N (T )

)〈�̃|�|�〉
+ 〈�0|e−T H PCM

0N eT |�〉
+ 〈�0|e−T VNeT |�〉 · Q̄N (�, T ) = 0. (22)

Equation (22) is very similar to the � equations for PTED,11

with the substitution Q̄N (�, T ) → Q̄N (T ) for all of the PCM
terms except the last one. For the explicit expressions of the
PTED � equations for CCSD, see Table IV in Ref. 11 and
note 18 in Ref. 13.

The charges Q̄N (T ) do not change during the iterative
solution of Eqs. (20) and (22), but the Q̄N (�, T ) in Eq. (22)
do. This does not add a significant amount of work compared
to the PTE case, since the evaluation of Q̄N (�, T ) requires
the 1PDM, which is relatively inexpensive to compute. For
instance, for CCSD the evaluation of the 1PDM scales as
O(N5), while the evaluation of the leading terms in the �

equations scales as O(N6).
Once the � vector is computed, there are few extra terms

that must be added to the gas phase CC energy gradient ex-
pressions. The following are the terms that differ between
the PTE(S)/PTES schemes and PTED.11 The PTE(S) skele-
ton terms are

PTE(S):

(
1

2
V̄N (T ) · Q̄N (T )

)[α]

= tai v
[α]
ia · Q̄N (T ), (23)

while for PTES they are

PTES:

(
V̄N (�, T ) · Q̄N (T ) − 1

2
V̄N (T ) · Q̄N (T )

)[α]

=(
γpqv

[α]
pq −tai v

[α]
ia

) · Q̄N (T )+ tai v
[α]
ia · Q̄N (�, T ).

(24)

The remaining terms that need be added to the gas phase CC
expressions are (following the notation in Table VI of Ref. 11
and note 18 in Ref. 13)

PTE(S): I ′
km = −1

2
t ck vcm · Q̄N (T ),

I ′
ea = −1

2
t ej vja · Q̄N (T ),

I ′
em = −1

2
t ej vjm · Q̄N (T ),

I ′
me = 1

2
t cmvce · Q̄N (T ). (25)

PTES: I ′
km = −γkqvqm · Q̄N (T ) − 1

2
t ck vmc · Q̄N (�, T )

+ 1

2
t ck vmc · Q̄N (T ),

I ′
ea = −γeqvqa · Q̄N (T ) − 1

2
t ej vja · Q̄N (�, T )

+ 1

2
t ej vja · Q̄N (T ),

I ′
em = −γeqvqm · Q̄N (T ) − 1

2
t ej vjm · Q̄N (�, T )

+ 1

2
t ej vjm · Q̄N (T ),

I ′
me = γmqvqe · Q̄N (T ) + 1

2
t cmvce · Q̄N (�, T )

− 1

2
t cmvce · Q̄N (T ). (26)

As in the case of the PTED scheme, the work added by
the PTE(S) and PTES PCM terms to the gas phase CC gradi-
ent terms is also negligible.

III. RESULTS

The PTE(S) and PTES methods described in Secs. I
and II were implemented for the CCSD method in a devel-
opment version of the Gaussian suite of programs.28 The im-
plementation includes the restricted closed shell and the unre-
stricted wave function and makes use of Abelian point group
symmetry.19

In this section, I present a series of tests that compare the
performance of the PTE(S) and PTES schemes with PTE and
PTED. The tests include solvation free energies, defined as
the difference between the free energy in solution and the gas
phase energy, for five organic molecules in water: pyridine,
aniline, phenol, p-bromophenol, and chlorobenzene. For this
molecules, convergence and timing are also discussed. An-
other example is the interaction energy of a stacked uracil
dimer in water. The last test case is a dihydrogen complex
of Fe+ in tetrahydrofuran (THF). The PCM cavity is built
from interlocking spheres centered on each nucleus and using
the universal force field (UFF) radii.29 The symmetric version
of IEF-PCM25 is used, and Scalmani and Frisch’s continuous
surface charge scheme27 is employed.
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TABLE I. Solvation free energy (kcal/mol) for five organic molecules in
water with the IEF-PCM method.

PTE PTE(S) PTES PTED

Pyridine −4.73 −4.74 −4.77 −4.80
Aniline −5.32 −5.32 −5.35 −5.38
Phenol −5.79 −5.79 −5.82 −5.85
p-Br-phenol −6.29 −6.30 −6.33 −6.36
Cl-benzene −2.50 −2.51 −2.53 −2.57

For the five organic molecules, the 6-31+G(d,p) basis set
is used, and the geometries are optimized at the correspond-
ing level of theory. The solvation free energies are reported in
Table I. No comparison with experiment or basis set effects
are reported, as in Ref. 13, since I am only interested in the
relative performance of the methods.

The results in Table I show that in the PTED model, the
solvent stabilizes each molecule more than the other schemes.
PTE is already a very good approximation of PTED, as the
largest difference is 0.07 kcal/mol. However, this difference
is still significant in that it may become larger for larger sys-
tems, as shown by the following examples. The PTE(S) model
moves the PTE results in the right direction, but the correction
is very small, usually around 0.01 kcal/mol. The improve-
ment of PTES is much larger, usually around 50% of the
PTE-PTED difference. This result indicates that the Q̄N (T )
charges recover half of the correlation reaction field effect,
while keeping the T and � equations decoupled as in gas
phase CCSD.

The number of iterations for the convergence of the T

equations for these five molecules are shown in Table II. The
convergence thresholds are 10−6 for the wave function and
10−8 a.u. for the energy. Only PTE and PTES are compared,
since the two schemes are directly related. PTE(S) only adds
an energy correction that scales as O(N2) at the end of the
PTE calculation (see Eq. (16)) and therefore it is negligible.
For a comparison of the convergence of the PTE and PTED
schemes, see Ref. 13. As evident from Table II, the same
number of iterations are necessary in solution with the two
schemes as in the gas phase. The computational time is the
same for all the calculations, since the extra work introduced
by the PCM terms is negligible in the reference function cal-
culation, and in the CCSD part of the PTES scheme. Similar
results can be expected for the other examples.

TABLE II. Number of iterations for the solution of the T equations for five
organic molecules in gas phase and water with the PTE and PTES schemes.

IEF

Gas PTE PTES

Pyridine 16 16 16
Aniline 16 16 16
Phenol 16 16 16
p-Br-phenol 17 17 17
Cl-benzene 15 15 15

TABLE III. Interaction energies and energy shifts relative to PTED
(kcal/mol) for the stacked uracil dimer. The interaction energies include a
BSSE correction. PTED is the reference for the relative energies.

Gas PTE PTE(S) PTES PTED

Interaction energy
6-31G(d) − 2.43 0.30 0.33 0.39 0.42
6-31+G(d,p) − 3.67 − 0.41 − 0.38 − 0.33 − 0.31

Energy shifts relative to PTED
Dimer

6-31G(d) − 0.46 − 0.30 − 0.09 0.00
6-31+G(d,p) − 0.36 − 0.24 − 0.08 0.00

Monomer
6-31G(d) − 0.29 − 0.19 − 0.06 0.00
6-31+G(d,p) − 0.23 − 0.16 − 0.05 0.00

Table III reports the interaction energies for the stacked
uracil dimer in water, and the energy shifts relative to PTED
for the dimer and the monomer. The relative energies are
defined as the PTED energy minus that of the other meth-
ods. The geometry of the dimer is taken from Ref. 30. The
monomers have the same geometry and are 3.3 Å apart. The
single point calculations are performed with two basis sets:
6-31G(d) and 6-31+G(d,p). These basis sets are too small
for quantitative results, as outlined by the gas phase inter-
action energies in Table III, which are too small compared
to the reference –7.5 kcal/mol.30 However, the focus of this
paper is the comparison of the methods presented in Sec. II.
All the interaction energies are corrected for the basis set su-
perposition error (BSSE) using the counter poise method.31, 32

The same BSSE correction is used for the gas phase and
PCM calculations, since there is not a well defined procedure
to compute this quantity with continuum solvation models.
The solvent competes with the stacking interaction, which
is greatly reduced in water. For the smaller basis set, the
dimer is even less stable than the non-interacting monomers.
The decrease of interaction energy due to the solvent, ∼2–
3 kcal/mol, is consistent with previous results.33 The dif-
ference between PTE and PTED for the interaction energy
is already small: ∼0.10−0.12 kcal/mol. However, PTE(S)
and PTES reduce it (for PTES the difference with PTED is
∼0.02–0.03 kcal/mol). The potentiality of the corrections in-
troduced in this work are more evident when one looks at the
relative energies of the dimer and the monomer separately. For
the dimer, the difference between PTE and PTED reaches half
a kcal/mol, while for one monomer the difference is of the
order of 0.2–0.3 kcal/mol. In both cases, PTES reduces this
difference by ∼80% without increasing the computational

FIG. 1. Structure of the H2[FeH(PP)2]+ complex.
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FIG. 2. Solvation free energy (kcal/mol) in the H2[FeH(PP)2]+ complex, in
gas and in THF, at various H–H bond distances. R is a scaling factor from the
equilibrium bond distance.

time compared to the PTE scheme. Also, in this case, the
stabilization due to PTED is larger than that of the various
approximations.

The last system considered is a trans-hydride complex
of Fe+: H2[FeH(PP)2]+ (see Fig. 1). The results in Fig. 2
show the change in solvation free energy at various H–H bond
lengths (R is a scaling factor for the equilibrium distance).20

The calculations are performed using the Stuttgart/Dresden
pseudopotential34 for Fe, the 6-31G(d,p) basis set for the
dihydrogen and the hydrogen in trans position, and the
6-31G(d) basis for the rest of the atoms. The initial geometry
was obtained by optimization with the B3LYP (Ref. 35 and
36) hybrid functional and can be found in the supporting ma-
terial of Ref. 20. An extra sphere is included along the Fe–H2

bond to avoid “solvent pockets” at longer H–H distances (the
sphere diameter being equal to the Fe–H2 distance: 1.6219 Å).
In this case, the PTE-PTED difference is much larger, be-

tween 1.1 and 1.4 kcal/mol. PTE(S) again improves upon the
PTE approximation, but the magnitude of the improvement
is small: 0.2–0.3 kcal/mol. The PTES results, on the other
hand, are much closer to those of PTED, with a 65%–70% im-
provement of the agreement compared to PTE. The iterative
PCM contribution to the CCSD equations through the PTES
scheme, thus, recovers most of the correlation solvent effect
at a computational cost equivalent to the PTE scheme. It is
interesting to note that both approximations still suffer from
the CCSD sensitivity to the choice of the reference function,
and in cases where the HF wave function may be unstable
an approach such as the Brueckner doubles method may be
preferable.20 Such effect is the subject of ongoing research.

IV. CONCLUSIONS

In this work, I present two approaches that improve the
reference reaction field approximation (PTE) for the CC wave
function computed within the framework of the polarizable
continuum model. The PCM-PTE approximation is compu-
tational equivalent to a gas phase CC calculation, since the
solvent effect is folded in the polarized orbitals and orbital

energies from the reference wave function calculation. How-
ever, the correlation PCM contributions (neglected in the PTE
scheme) can be significant and tend to further stabilize the so-
lute. Including such correlation effects, called PTED scheme,
requires the CC reduced 1PDM, which is not necessary in
gas phase calculations. The PTED scheme is, therefore, much
more computationally demanding than gas phase CC.

The schemes proposed in this work, called PTE(S) and
PTES, try to recover part of the correlation PCM contribution
without evaluating the complete reduced 1PDM. Only the part
of the CC 1PDM that depends on the t amplitudes is used to
compute the correlation PCM effect. In the PTE(S) scheme,
such contribution is introduced as an energy correction after
that the CC equations for the t amplitudes are solved. In the
PTES scheme, the PCM terms derived from the t part of the
1PDM are included in the iterative solution of the CC equa-
tions. The extra work required by these terms is negligible
compared to gas phase CC.

The results reported in Sec. III show that both PTE(S) and
PTES schemes improve the PTE approximation towards the
PTED results. Such improvement is very small for the PTE(S)
scheme, while it is significant for PTES. In fact, PTES recov-
ers 50%–80% of the correlation PCM contribution. Therefore,
the PTES scheme is an efficient way to perform CC calcu-
lations in solution without significantly increasing the com-
putational burden compared to gas phase. Additionally, the
CC amplitudes computed with the PTES scheme represent a
much better starting point for calculations with the complete
PTED scheme.
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