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This work reports the first implementation of the frequency dependent linear response (LR) function
for the coupled cluster singles and doubles method (CCSD) combined with the polarizable continuum
model of solvation for the calculation of frequency dependent properties in solution. In particular,
values of static and dynamic polarizability as well as specific rotation are presented for various test
molecules. Model calculations of polarizability show that a common approximation used in the def-
inition of the LR function with solvation models recovers over 70% of the full response while main-
taining a computational cost comparable to gas phase LR-CCSD. Calculations of specific rotation for
three compounds for which gas phase methods predict the wrong sign of the rotation show that ac-
counting for the electronic response of the solvent may be essential to assign the correct absolute con-
figuration of chiral molecules. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821087]

I. INTRODUCTION

The inclusion of solvation effects in the calculation of
molecular properties is of paramount importance since most
chemistry happens in solution. However, the explicit consid-
eration of solvent molecules treated at the same level of the-
ory as the solute is impractical for computational reasons, and
some simplification must be introduced. Continuum models
replace the atomistic structure of the solvent with a polariz-
able medium that interacts with the solute through an effective
potential. Long range interactions (bulk solvation) are well
described with these models while maintaining a low compu-
tational cost, albeit at the price of losing the ability to account
for specific solute-solvent interactions (for instance, hydrogen
bonds). One of the most diffuse members of this family of
models is the polarizable continuum model (PCM), initially
developed by Tomasi and co-workers." PCM describes the
solvent as a dielectric characterized by its macroscopic per-
mittivity €. A cavity of molecular shape (usually, a series of
interlocking spheres centered on the solute nuclei) hosts the
solute. The dielectric polarization, which depends on the elec-
trostatic potential generated by the nuclei and electron density
of the solute, is represented by an apparent surface charge on
the cavity surface, and then discretized in finite elements (i.e.,
the PCM charges). Mutual solute-solvent polarization is ob-
tained by introducing a one-electron PCM operator into the
solute Hamiltonian that is used in quantum mechanical (QM)
methods.

PCM has been combined with a large variety of meth-
ods for the calculation of molecular energy and properties in
solution for ground and excited states.* In recent years, this
effort has been extended to methods belonging to coupled
cluster (CC) theory>® by this author and others.””'! In par-
ticular, Cammi’ presented the first theoretical development
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for the combination of PCM and the CC singles and dou-
bles (CCSD) method. However, previous work done by Chris-
tiansen and Mikkelsen on a different solvation model called
dielectric continuum (DC) should be mentioned.'>'* The
development of CCSD-PCM (with Hartree-Fock, HF, and
Brueckner orbitals)® !> includes energy and analytic energy
gradients, transition energies, and their analytic gradients
in the equilibrium and non-equilibrium regimes in a state-
specific (SS) formulation,'®!! so that both ground and excited
states potential energy surfaces can be explored and vertical
transition energy computed both in absorption and in emis-
sion. Furthermore, a variety of approximate schemes have
been proposed that reduce the computational cost to a level
comparable to gas phase calculations.””!" Christiansen and
Mikkelsen used a linear response (LR) formalism for com-
puting the solvent effect on excitation energies and frequency-
dependent properties for CCSD with the DC model,'>'* and
the same formalism was re-derived by Cammi for PCM. !¢ Re-
cently, I presented the first implementation of the LR-CCSD
approach with PCM for excited states, and compared the
LR and SS approaches formally and numerically.'” The SS
formalism provides a more complete account of the mutual
solute-solvent polarization in the excited state, but is compu-
tationally more demanding. On the other hand, the LR for-
malism lacks some interaction terms but is computationally
very efficient (i.e., comparable to the corresponding gas phase
method).

The frequency-dependent LR formalism has also been
applied in the framework of density functional theory (DFT)
with PCM,'® and in the context of DFT and CC theory with
explicit solvent models.'”->? In this work, I present the first
implementation of the frequency-dependent linear response
function for the CCSD-PCM method, and applications to the
calculation of molecular electric polarizability and specific ro-
tation. The numerical results for the polarizability are used
for theoretical comparisons between methods. For the specific

© 2013 AIP Publishing LLC
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rotation, on the other hand, a comparison with experimental
data in solution is presented.

The paper is organized as follows. The theory of the LR-
CCSD-PCM method is reviewed in Sec. II. The results of the
numerical tests are presented in Sec. III, and Sec. IV contains
a discussion of the results and concluding remarks.

Il. THEORY

In this section, I review the theory for the calcula-
tion of the linear response function of the CCSD-PCM
method. A complete derivation of the formulas can be found
elsewhere.!2 16 Also, details about PCM can be found in the
literature.* The following implementation is limited to sym-
metric versions of PCM?*2* either with the integral equation
formalism (IEFPCM)%3 or the conductor-like (CPCM)%26
flavors.

The CC linear response function for an observable X to
the Y perturbation oscillating at frequency w in the presence
of a continuum model of solvation can be written as
= 1C*"’P(XY)[(<I>0|(1 +A)[eTXe,

UX5Y ) T.) ]| ®o)

+ —(@o|(1+M)[[e THE M, TX ] T.) ]| ®0)

+ —(Do|(1+M)[[e " Ve . TX ].T. ]I 20)-Qy

N = N = Nl'—‘

(@ol(1+ M) Vyel, T ]|)

(@ol(1+ M) TQYle”, TV 1@0)], (1)

where the permutation operator C* changes the sign of the
field frequency and takes the complex conjugate of the ex-
pression, while the symmetric permutation operator P(XY)
switches the X and Y operators at the corresponding frequency
X, —w) — (Y, w). ¥y is the reference wave function com-
puted in the presence of the reference PCM reaction field, and
T and A are the CC excitation and de-excitation operators.>%
The subscript N indicates the normal-product form of an op-
erator. The effective Hamiltonian HY“™ includes the PCM
operator with the reference charges:

HFYM = Hy 4+ Vy - Qq, 2)

where the overbar indicates the expectation value of the
charge operator Q, i.e., its trace with a proper one-particle
density matrix (IPDM). The operator Vy is the electrostatic
potential on the cavity surface and the bold font is used to
indicate the discretization of the apparent surface charge in fi-
nite elements. The correlation charges Qy are obtained from
the solution of the ground state CC-PCM equations. 7.8 The
reference and correlation charges, Q, and Qy, are computed
with the static dielectric constant ¢ since they represent the
solvent response before the electric field is turned on, and
the solute and solvent have had enough time to equilibrate.
On the other hand, the perturbed charges in the last term of
Eq. (1), indicated with the superscript || on the charge
operator, should be computed with a frequency-dependent
permittivity e(w) where w is the oscillation frequency of
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the impinging light. However, here I introduce the com-
mon approximation of using the optical dielectric constant
(e00) for frequency-dependent calculations and ¢ for the static
limit: 12 16,2729

for w # 0,
for w =0,

{ e(w) ~ e 3)

ew)y=¢

since accurate values of £(w) are not available in general. The
quality of this approximation depends on the solvent response
time and on the frequency used, although, it is usually rea-
sonable in the typical range of frequencies studied in exper-
iments. Note, however, that by computing the change in the
linear response function with this model at decreasing val-
ues of w one cannot recover the static limit since there is no
smooth switching from g, to €. A development of PCM in
this direction was proposed to study the solvent relaxation
after a sudden change in the solute electronic density (e.g.,
after a vertical electronic excitation),’*3! but further devel-
opment for frequency-dependent properties is still ongoing
and is beyond the scope of the present work. A further ap-
proximation in Eq. (1), introduced in the derivation of the CC
linear response function with continuum solvation models in
Refs. 12 and 16 and maintained in the present implementa-
tion, is that the PCM term quadratic in the perturbed A am-
plitudes is neglected. Such term would couple the equations
for the perturbed 7 and A amplitudes, similar to the correla-
tion energy equations. With this assumption, however, the per-
turbed A amplitudes are not necessary to compute the linear
response function as in gas phase. This approximation is also
used when CC methods are combined with explicit solvent
models.* Similar to CC response theory in gas phase, orbital
relaxation is neglected in the evaluation of the linear response
function since it would give rise to second order poles, con-
trary to the response function for exact states.

The perturbed T amplitudes are computed by solving sys-
tems of linear equations of the type:

—(DyleYe | Do)
= (Dul[e " HYMe", T.) ]|®o) — (P| T, | Do)
+ (D, |[e )] ®o) - Qy
+ (Pule” Ve | Do)

(Dol(1+ M)[e TQYle”, T,

7TVN€T,

T, ]|®o) 4)

for X and Y, and +w. The expressions in Eqgs. (1) and (4) are
equivalent to those for gas phase except for the PCM terms.
Such terms are similar to those for the calculation of verti-
cal electronic excitation energies, and the reader is referred to
Ref. 17 for the explicit expressions and computational consid-
erations.

The linear response function in Eq. (1) can be used to
compute molecular electric polarizability when X and Y are
replaced by the electric dipole operator. The mixed elec-
tric dipole-magnetic dipole polarizability tensor (G’ tensor)
can be computed when X and Y are the electric and mag-
netic dipole operators. The G’ tensor is related to the specific



114103-3 Marco Caricato

rotation [«],, in deg dm™! (g/mL~") through the formula:*?

(72.0 x 109%2N s
[a]w =
cmiM

X [%Tr(G’)] , (5)

where N4 is Avogadro’s number, c is the speed of light in m/s,
m, is the rest mass of the electron in Kg, M is the molecular
mass in amu, and G’ and w are in atomic units. The specific
rotation can be computed with two choices of gauge for the
electric dipole operator: length or velocity gauge (LG or VG,
respectively). The former has the correct asymptotic behavior
(i.e., [a], — 0O for @ — 0) but the results are origin depen-
dent for truncated CC expansion and finite basis set. The latter
is intrinsically origin independent but has the wrong asymp-
totic behavior in the same conditions. Pedersen et al.** pro-
posed a modified VG (MVG) approach where the static limit
is subtracted from the VG G’ tensor, thus providing the correct
asymptotic behavior. MVG is, therefore, more computation-
ally demanding than LG since the static limit linear response
function must be computed as well. For a CCSD-PCM cal-
culation of specific rotation in the MVG approach, the per-
turbed charges in the unphysical static limit are computed
with €, rather than ¢ since this is an artifact introduced by the
truncated cluster expansion and finite basis set. Thus, the un-
physical static limit should be computed coherently with the
frequency dependent solvent response.

lll. NUMERICAL APPLICATIONS

This section reports the calculation of the linear response
of molecules in solution at CCSD-PCM level according to
Eq. (1). In particular, the properties considered here are
isotropic electric polarizability and specific rotation ([«],, in
Eq. (5)). The symmetric version of IEFPCM with the contin-
uum surface charge (CSC)?* scheme is used for all calcula-
tions. The cavity is built as a series of interlocking spheres
centered on atomic nuclei and using the solvation model
D (SMD) radii, unless otherwise specified. Core orbitals
are kept frozen when solving the CC equations. All cal-
culations are performed with a development version of the
GAUSSIAN suite of programs.*® The polarizability calcula-
tions in Sec. III A are discussed in terms of internal theoreti-
cal comparisons since experimental data for this property are
difficult to find. On the other hand, calculations of specific ro-
tation in Sec. III B are directly compared to experiment for
a sample of molecules where theoretical calculations in gas
phase provide the wrong sign of the rotation.

A. Polarizability

The first system under consideration for static polariz-
ability is molecular hydrogen, H,, in gas and in water. This
allows a quantitative assessment of the approximation of ne-
glecting the term quadratic in the perturbed A amplitudes
in the PCM LR function (see Eq. (1) and related discussion
in Sec. II). In fact, CCSD provides the exact wave function
for a two-electron system (within the non-relativistic, Born-
Oppenheimer, and finite basis set approximations). There-
fore, at least in gas phase, the static polarizability tensor
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TABLE I. Static isotropic polarizability (a.u.) for H, in gas phase and water
computed with the analytic LR formula and as numerical differentiation of
the electric dipole with various basis sets. The abbreviation (a)pVXZ is used
for (aug-)cc-pVXZ.

pVDZ apVDZ  pVTZ apVTZ  pVQZ apVQZ

Gas 3.62 6.42 4.83 6.57 5.48 6.56
Water

Numeric 4.62 8.16 6.13 8.35 7.01 8.34
Analytic 4.35 7.67 5.717 7.85 6.58 7.84
Shift

Numeric 1.00 1.74 1.30 1.78 1.53 1.78
Analytic 0.73 1.25 0.94 1.28 1.10 1.28

computed with the orbital-frozen analytic LR formalism co-
incides with that computed as numerical differentiation of the
electric dipole with respect to an external field. Such corre-
spondence is lost with PCM because of the approximation
mentioned above. The data computed with various basis sets
of the correlation-consistent family,?”- with and without dif-
fuse functions, are reported in Table I. The H, bond length
is kept at 0.9 A for all calculations. First, notice that dif-
fuse functions considerably improve basis set convergence,
both in gas phase and in solution, since the results with aug-
cc-pVDZ are much closer to those with aug-cc-pVQZ than
with the quadruple-¢ basis without diffuse functions. When
the solvent shift is considered, the analytic result with the ap-
proximation on the quadratic A term recovers 72% of the full
solvent effect consistently across the basis sets. This result
is accord with what found for a similar approximation in the
calculation of the ground state solvation free energy.’ This
can be considered a good compromise between accuracy and
computational effort since these calculations are already very
expensive when larger molecules are investigated. Also, other
sources of error are likely to be more relevant, starting from
the solvation model itself.

The next example is furan, which was studied in Ref. 12
where the CC linear response theory was developed with a
related continuum model, DC. This system thus allows for a
comparison between different solvation models, and the same
geometry is used here. Static and dynamic polarizability (at
632.8 nm) are computed in various solvents using a single
sphere cavity as in Ref. 12 (centered in the center of mass of
the molecule and with radius 3.3963 A) and the SMD cavity.
The same cavity is used across solvents (for SMD, the radii
for water are used). The solvents are water, methanol, ace-
tone, CCly, and cyclohexane. The corresponding values of ¢
are 78.54, 32.63, 20.7, 2.228, and 2.209, respectively.'> The
values of g4, are 1.778, 1.758, 1.841, 2.132, and 2.023, re-
spectively. The basis set used for the calculations is aug-cc-
pVDZ.

The values of polarizability are reported in Table II. The
solvent effect is quite large in the static limit, amounting to
10%-25% for DC, and 7%—-18% for PCM with the same
cavity (from cyclohexane to water). The larger solvent effect
with DC than with PCM is consistent with what found for
vertical electronic transition energies.I7 However, both solva-
tion models predict similar trends. The cavity is an important
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TABLE II. Static and dynamic (632.8 nm) isotropic polarizability (a.u.) for
furan in gas and in solution. The cavities are the same for all of the solvents:
the radius of the one-sphere cavity is 3.3963 A, as in Ref. 12; the SMD cavity
uses the radii for water.

DC-1Sph'? PCM-1Sph PCM-SMD
Static  Dynamic  Static  Dynamic  Static =~ Dynamic
Gas 48.27 49.61 48.27 49.61 48.27 49.61
Water 60.30 53.36 56.85 52.54 63.41 54.21

Methanol ~ 59.89 53.29 56.58 52.49 62.90 54.13

Acetone 59.50 53.58 56.33 52.69 62.41 54.51
CCly 53.09 54.46 51.87 53.28 54.41 55.85
Cyclohex  53.04 54.15 51.84 53.05 54.35 55.45

factor for this molecule as shown by the comparison between
the one-sphere and SMD results with PCM. This is reason-
able since one sphere is not a good representation of the
solute molecular boundary within the solvent for a planar
compound like furan. In fact, the increase in the value of po-
larizability with the SMD cavity is 13%—-31% since the sol-
vent is “closer” to the solute. In general, the large difference
between polar and non-polar solvents in the static limit indi-
cates that the electrostatic part of the solvent effect is very
important. The differences between solvents in the dynamic
case are much smaller, as expected since the the values of ¢,
are closer to each other. Also, the difference between DC and
PCM, and between cavities is much smaller for the dynamic
case. Note that the values obtained with CCl and cyclohex-
ane are now larger than those with polar solvents since the
values of e, are larger for the former solvents than for the
latter.

B. Specific rotation

The calculation of specific rotation is a very useful tool
to assist experimentalists in assigning the absolute configura-
tion of a chiral sample. This is usually accomplished by com-
puting the G’ tensor as discussed in Sec. II at the minimum
equilibrium geometry in gas phase. In this context, accurate
theoretical methods such as CCSD become extremely impor-
tant to properly account for the electronic contributions to this
property.’3 However, other effects come into play that influ-
ence the value of the specific rotation, and may even change
its sign. Such effects include vibrational averaging and, obvi-
ously, solvation. The latter is usually ignored, even if the vast
majority of measurements is performed in liquid phase. PCM
provides a very efficient approach to explore the electronic ef-
fect of the solvent, albeit with the limitations discussed in the
Introduction.

In this section, three compounds are used as test ex-
amples: 1 (1R,3R,5R,7R)-bisnoradamantan-2-one, 2 (1R,5S)-
nopinone, and 3 (1S,4R)-norbornanone, shown in Figure 1.
These are a subset of the molecules studied by Crawford and
Stephens,* who compared results at B3LYP**** and CCSD
level against experimental data. These molecules are cho-
sen in this work because the calculated CCSD results in gas
phase yield the wrong sign compared to measured values of
specific rotation in solution. Therefore, they represent a very
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J

(c)

FIG. 1. Structures of the compounds studied in Sec. III B: (a)
1 (1R,3R,5R,7R)-bisnoradamantan-2-one; (b) 2 (1R,5S)-nopinone; and
(c) (1S,4R)-norbornanone.

indicative test set to assess the effect of solvation on this prop-
erty. In particular, measurements were performed in ethanol
for 1, methanol for 2, and chloroform for 3 at the sodium-
D line wavelength (589.3 nm). The measured and calculated
data are reported in Table III. The optimized geometries are
obtained at B3LYP/6-31G(d) level as in Ref. 39 in gas and
in solution (PCM with SMD cavity). In order to differentiate
the effect of solvation on the geometry and on the electronic
density of the solute, CCSD-PCM calculations are also re-
peated at the gas phase optimized geometry (reported in the
PCM(G) column in Table IIT). The LR-CCSD calculations are
performed using the cc-pVDZ basis set for hydrogen centers
and the aug-cc-pVDZ basis set for carbon and oxygen centers
as in Ref. 39. LR calculations are reported with both choices
of gauge (LG and MVG) discussed in Sec. II.

For compound 1, the experimental rotation is negative
(—78.4 deg dm~! (g/mL)~") while the gas phase results are
positive with both approaches (4-50.3 deg dm~' (g/mL)~! for
MVG and +19.8 deg dm~! (g/mL)~! for LG). The calculated
data in solution, however, recover the correct sign (—3.8 deg

TABLE III. Specific Rotation (deg dm~! (g/mL)~") at 589.3 nm. The ex-
perimental values are measured in solution (see text for details). The theoreti-
cal values are computed at the equilibrium geometry in gas (Gas and PCM(G)
columns) and in solution (PCM column).

Expt.? Gas PCM(G) PCM

Modified velocity gauge

1 —78.4 50.3 5.3 —-3.8
2 39.9 -84 36.0 444
3 29.8 5.0 —8.0 -59
Length gauge

1 —78.4 19.8 —13.8 —23.6
2 39.9 —-8.0 30.4 38.7
3 29.8 -79 —-17.6 —-49
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dm™! (g/mL)’1 for MVG and —23.6 deg dm™! (g/mL)’1 for
LG). The agreement is not quantitative, indicating that other
effects are missing (for instance, hydrogen bonds with the car-
bonyl group or vibrational effects). Nevertheless, the solvent
effect is crucial to obtain the correct sign of the rotation. Addi-
tionally, the effect of solvation on the geometry is important
to obtain the correct sign with the MVG approach (see the
PCM(G) column in Table III). The gas phase calculations for
compound 2 provide negative values of [«]p, albeit in better
agreement between the two gauges (—8.4 and —8.0 deg dm™!
(g/mL)~! for MVG and LG, respectively), while the experi-
mental value has a positive sign (+39.9 deg dm~! (g¢/mL)™!).
The effect of solvation through PCM changes the sign of the
calculated value, bringing it to an almost quantitative agree-
ment with experiment (11% and —3% deviations from exper-
iment for MVG and LG, respectively). This seems to indicate
that the solvent electronic response has a major contribution
for this system. The geometry effect is less important in this
case, although it accounts for a change of 23% in the MVG
and 27% in the LG results (compare the PCM(G) and PCM
columns in Table III), and makes the LG agreement with ex-
periment considerably better when the geometry optimized in
solution is used. For the last case, compound 3, the gas phase
MVG approach provides the correct (positive) sign, while the
LG result has the wrong (negative) sign. This difference is an
indication that CCSD with this basis set is not at convergence
with respect to the exact wave function (for which the two
choices of gauge are equivalent). The effect of the solvent is
to provide a negative sign for the specific rotation with both
approaches (and for both geometries). This may be an indica-
tion that the electronic response of the solvent is not the cause
of the disagreement with experiment, and other effects should
be considered (as vibrational averaging).

IV. DISCUSSION AND CONCLUSIONS

This work reports the first implementation of the fre-
quency dependent linear response function at coupled clus-
ter level with the polarizable continuum model of solvation.
The method is applied to the calculation of static and dynamic
polarizability, and specific rotation. Details of the approxima-
tions introduced in the definition of the response function for
frequency-dependent properties are discussed in Sec. II.

Calculations of static polarizability for the H, molecule
in solution, reported in Sec. III A, show that neglecting the
solvent term quadratic in the perturbed A amplitudes allows
to recover more than 70% of the total solvent effect. This is a
good compromise between accuracy and computational cost
since the expression of the LR function takes a form simi-
lar to gas phase with this approximation, and the computa-
tional effort becomes almost equivalent to that for an isolated
molecule.

A comparison with the DC model is shown in Table II for
static and dynamic polarizability of furan in gas and various
solvents. PCM calculations are repeated using the same one-
sphere cavity as DC and a more realistic molecular-shaped
cavity. The one-sphere results show the same trends between
the two solvation models, although the solvent effect obtained
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with DC is considerably larger than with PCM, at least for the
static values. Differences are smaller for the dynamic polariz-
ability since the values of e, are small. A large cavity effect
is found when a standard PCM cavity is used, which shows
the importance of a realistic cavity shape.

The calculations on specific rotation, reported in
Sec. III B, are possibly more interesting since a direct compar-
ison with experimental data is available. Calculations in gas
phase for the three compounds chosen, see Figure 1, predict
the wrong sign of the rotation compared to experimental data
in solution. The results reported in Table III with CCSD-PCM
recover the correct sign for two of these compounds, indicat-
ing the importance of solvation on this property. The agree-
ment is quantitative for compound 2 while it is only qualita-
tive for compound 1, which suggests that effects other than the
solvent electronic response are missing for the latter (for in-
stance, vibrational effects). For compound 3, the calculations
in solution do not provide the correct sign of the rotation, in-
dicating that other effects are missing.

In conclusion, these results show that the coupling of
CCSD and PCM for the calculation of frequency-dependent
linear response properties is a promising tool that allows the
efficient extension of high level calculations of molecular
properties to the condensed phase. The natural development
is now the coupling of this approach to an explicit polarizable
solvent model® that allows the description of specific solute-
solvent interactions while PCM can be employed to account
for bulk solvent effects.
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