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ABSTRACT

Many dsDNA viruses encode DNA-packaging ter-
minases, each containing a nuclease domain that
resolves concatemeric DNA into genome-length
units. Terminase nucleases resemble the RNase
H-superfamily nucleotidyltransferases in folds, and
share a two-metal-ion catalytic mechanism. Here we
show that residue K428 of a bacteriophage terminase
gp2 nuclease domain mediates binding of the metal
cofactor Mg?*. A K428A mutation allows visualiza-
tion, at high resolution, of a metal ion binding mode
with a coupled-octahedral configuration at the ac-
tive site, exhibiting an unusually short metal-metal
distance of 2.42 A. Such proximity of the two metal
ions may play an essential role in catalysis by gener-
ating a highly positive electrostatic niche to enable
formation of the negatively charged pentacovalent
phosphate transition state, and provides the struc-
tural basis for distinguishing Mg?* from Ca?*. Using
a metal ion chelator p-thujaplicinol as a molecular
probe, we observed a second mode of metal ion bind-
ing at the active site, mimicking the DNA binding
state. Arrangement of the active site residues dif-
fers drastically from those in RNase H-like nucleases,
suggesting a drifting of the active site configuration
during evolution. The two distinct metal ion binding
modes unveiled mechanistic details of the two-metal-
ion catalysis at atomic resolution.

INTRODUCTION

Terminases are virally encoded multi-component, multi-
functional molecular machines employed by many tailed
double-stranded DNA (dsDNA) bacteriophages and her-
pesviruses to resolve newly synthesized concatemeric viral
DNA in the infected host cells into genome-length units
and package each into a preformed capsid precursor termed
procapsid (1-3). Phage terminases contain two fundamen-
tal proteinaceous components: a DNA-recognition subunit
and a catalytic subunit, also known as the ‘small’ and ‘large’
subunit, respectively. The terminase small subunit (TerS)
specifically binds to concatemeric viral DNA, and the ter-
minase catalytic subunit (TerL) cleaves the DNA to gener-
ate a new terminus, which is then threaded into the pro-
capsid in an ATP-dependent manner. The terminase cat-
alytic subunit consists of an N-terminal ATPase domain
that powers DNA translocation by translating the chem-
ical energy from ATP hydrolysis into physical movement
of DNA, and a C-terminal nuclease domain that processes
the DNA (4,5). Nuclease activity of the terminase catalytic
subunit nuclease domain is precisely controlled. The DNA
cleavage by TerL occurs only at certain steps of the DNA-
packaging process, typically at the beginning and comple-
tion of each DNA-packaging cycle, to avoid aberrant DNA
cutting. During DNA translocation, the nuclease activity
must be turned off. TerL on its own typically exhibits only
weak nuclease activity as observed in full-length proteins
(4,6) or isolated domains (7,8), consistent with the physio-
logical requirement that it may not randomly cut DNA in
infected host cells, and the nuclease activity may be stimu-
lated by the N-terminal ATPase domains (4,8).

TerL nuclease activity may be either sequence-specific,
e.g. in phages such as lambda which cuts at a sequence-
specific site in the cos region of the phage genome (9),
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or none sequence-specific, e.g. for phages that use head-
ful packaging mechanisms such as Sf6, T4, P22 and SPP1
(10). In those ‘headful’ phages, there is typically an initi-
ation cleavage as the first step of the concatemeric DNA
packaging process, followed by a series of ‘headful’ cleav-
age events, each occurring upon the completion of a pack-
aging cycle. The initiation cleavage shows some degree of
site specificity as it usually occurs within a specified region
in phage genome, but such site specificity is putatively con-
ferred by TerS. The headful cleavage is not sequence spe-
cific, resulting in variable sequence and length of the DNA
packaged into each capsid that is slightly longer than the
unit-length genome (10). In herpes simplex virus type I, the
terminase catalytic subunit pUL15 may cut at a sequence-
specific site within the DR motif in the ‘@’ sequence of the
viral genome, but this specificity is perhaps related to spatial
positioning of another terminase component pUL28.

Structural studies of terminase catalytic subunits in full
length (4,5) and their nuclease domains (7,11-13) revealed
core folds resembling those of RNase H-like endonucle-
ases, whose active site architecture is built around sev-
eral conserved acidic residues. RNase H-like nucleases
are a large class of enzymes that play diverse roles in
nucleic acid metabolism (14). Members of this class of
enzymes, such as RNases H, reverse transcriptases, in-
tegrases, topoisomerases, DNA and RNA polymerases,
transposases, Holliday-junction resolvases, RNAi slicer
Argonaute, CRISPR Cas nucleases and viral terminases,
are fundamental to an array of biological processes rang-
ing from DNA replication, recombination and repair, RNA
maturation, processing and interferencing, to host defense,
cell death (14) and virus DNA packaging. RNase H-like nu-
cleases share a common two-metal-ion catalytic mechanism
(14). In the mechanism proposed by Steitz and Steitz (15)
and well studied in RNase H (16-19), the two metal ions are
jointly coordinated by the scissile phosphate and two active-
site carboxylates, bisecting the scissile phosphate. Metal ion
A was thought to deprotonate a water molecule to form
OH, which is aligned for a nucleophilic attack on the scissile
phosphate. Metal ion B may play a role in stabilization of
the transition state pentacovalent phosphate (14,16). How-
ever, the detailed catalytic mechanism and the precise roles
of these metal ions in pentacovalent phosphate formation
remain to be established experimentally. The two metal ions
were ~3.4-4 A apart in previous structures of RNase H-
like nucleases, and were thought to have to move closer al-
lowing the nucleophile to access the scissile phosphate for
phosphodiester bond cleavage (16,19-21). However, such a
closer metal-metal distance has not been experimentally ob-
served. The two-metal-ion nucleases typically require Mg>*
or Mn?*, and in most cases Ca>* does not support the catal-
ysis although it supports nucleic acid substrate binding and
is abundant in cells. The mechanism underlying differentia-
tion against Ca’* remains to be established, although it was
attributed to different geometry of the Ca®* coordination
system.

Bacteriophage Sf6 belongs to the Podoviridae fam-
ily of tailed dsDNA bacteriophages (22,23). Sf6 infects
Shigella flexneri, an important human pathogen that causes
acute diarrhea and bacillary dysentery. Sf6 can alter the
host’s serotype and virulence through changing the host

lipopolysaccharide structure using a horizontal gene trans-
fer mechanism (24). The Sf6 terminase is composed of the
small subunit gpl (25,26) and the large subunit gp2 (4).
Like many other phages such as T4, P22 and SPPI1, Sf6
uses a headful DNA-packaging mechanism (22). Here we
show that residue K428 of the C-terminal nuclease domain
of the dsDNA bacteriophage Sf6 terminase catalytic sub-
unit gp2 (gp2C) mediates the binding of its metal cofac-
tor, which likely serves to regulate terminase nuclease ac-
tivity in a timely manner during viral genome packaging.
A K428A mutation has allowed us to capture two distinct
metal ion binding modes in the gp2C nuclease active site.
High resolution structures reveal a metal ion binding mode
with a unique coupled-octahedral configuration, exhibiting
an ultra-short metal-metal distance of 2.42 A. Such a dis-
tance is unusual given the 1.6 A atomic radius of Mg?* and
is among the shortest metal-metal distances in biological
systems thus far documented. This provides a structural ba-
sis for requirement of Mg?* or Mn?* in RNase H-like nucle-
ases and the well-known inability of Ca®* to support catal-
ysis. Such an ultra-short metal:metal distance may generate
a highly positive electrostatic niche that drives formation of
the pentacovalent phosphate transition state. Using a diva-
lent metal-sequestering a-hydroxytropolone as a molecular
probe, we have observed a second distinct mode of metal ion
binding, which reflects the DNA binding state. The arrange-
ment of the active site residues is altered drastically com-
pared to those in other RNase H-like nucleases, suggesting
a drifting of the active site configuration during evolution
despite of conserved protein folds. These results unveil the
atomic detail of the two-metal-ion catalytic mechanism.

MATERIALS AND METHODS
Protein expression, purification and crystallization

The coding sequence for the Sf6 gp2 C-terminal domain
(residue 213-470) was amplified by PCR from the phage
genomic DNA with the following primers: 5- CCA CAT
ATG GCA ATC ATC AAA CGT GAA -3, which contains
a Ndel site followed by the gp2C coding sequence and 5'-
GGC CTC GAG TTA CCA ACC GGA GGA TGA GGG
-3/, the latter of which harbors the gp2 C-terminus, a stop
codon and a Xhol site. The PCR product was digested with
the appropriate restriction enzymes, gel purified and cloned
into the vector pET28b (Novagen). The resulting construct
contained the gp2C DNA sequence with an N-terminal
His-tag and a thrombin cleavage site. The K428A muta-
tion was generated by site-directed mutagenesis using the
QuickChange Site-Directed Mutagenesis Kit (Stratagene).
Plasmids encoding the wild type gp2C and K428A mutant
were separately transformed in E. coli strain BL21(DE3)
(Novagen). The cells were grown at 37°C in LB media sup-
plemented with 30 pg/ml Kanamycin until OD600 reached
around 0.6, after which IPTG was added to a final con-
centration of 1 mM, the medium temperature was subse-
quently reduced to 16°C, and cells were grown overnight.
Cells were harvested by centrifugation for 10 min at 5000
rpm. Cell pellets were resuspended in buffer A (20 mM Tris-
HCIpH 8.5, 500 mM NaCl and 10 mM B-mercaptoethanol)
and frozen at —20°C. The cells were thawed at room tem-
perature, lysed by French press and centrifuged at 15 000



rpm with a Sorvall SS-34 rotor for 60 min at 4°C. The
supernatant was loaded on a Ni-NTA-Sepharose column
equilibrated in buffer B (buffer A with 20 mM imidazole),
washed with buffer B and eluted with buffer C (buffer A
with 200 mM imidazole). Fractions containing gp2C were
pooled and loaded onto a size exclusion chromatography
column (Sephacryl S-300, GE healthcare) pre-equilibrated
with a buffer containing 20 mM Tris-HCI pH 8.5, 150 mM
NaCl, ] mM EDTA and 1 mM DTT. The gp2C peak frac-
tions were pooled and concentrated with an Ultrafree con-
centrator (Milipore, MW cutoff 10 000) to ~24.5 mg/ml
and stored at —80°C. The Se-Met gp2C was expressed in
E. coli B834(DE3) in the M9 minimal medium with 30mg/1
L-selenomethionine. Purification was as described above.

Crystals were obtained by hanging drop vapor diffusion,
in which 1 ul protein was mixed with 1 ul well solution
containing 100 mM HEPES pH 7.5, 50 mM NaCl and 8%
PEGR8000. Crystals appeared after a few days and grew to
0.4 x 0.05 x 0.01 mm® within a week. Crystals were flash-
frozen in 30% ethylene glycol prior to X-ray data collection.
For structures complexed with metal ions or B-thujaplicinol
(BTP) (27), crystals were soaked with MgCl, or MnCl, at
various concentrations for various lengths of time prior to
flash freezing (Table 1).

X-ray data collection and structure determination

X-ray data for the Se-Met-gp2C were collected at the Na-
tional Synchrotron Light Source (NSLS), and were pro-
cessed with the program HKL2000 (28) (Table 1). The struc-
ture was determined at 2.44 A resolution using the single-
wavelength anomalous dispersion method with the pro-
gram SOLVE/RESOLVE (29). Automated model building
with the program PHENIX (30) resulted in a model cov-
ering ~80% of the protein (205 out of 258 residues). This
model was used in further model building and refinement
with the program COOT (31) and PHENIX.

X-ray data for the wild-type and mutants gp2C were col-
lected at the Advanced Photon Source (APS) and Stanford
Synchrotron Radiation Light source (SSRL), respectively.
Data were processed with the program HKL2000 (28).
Structures were determined with the molecular replacement
method with PHENIX, and models were manually rebuilt
with COOT and refined with the program PHENIX using
standard approaches. Refinement statistics are summarized
in Table 1. Residues 338-349 are disordered and not mod-
eled in structures of gp2C, gp2C-K428A:Mg>* and gp2C-
K428A:Mn**:BTP. Residues 337-350 are disordered and
not modeled in the structure of gp2C-K428A:Ca**. Addi-
tionally, residues 249-251 and 337-350 in the structure of
gp2C-K428A:Mn?* are disordered thus not modeled.

Fluorescence-based thermal shift assay

Thermal shift assays were performed with purified proteins
of gp2C or gp2C-K428A at a concentration of 3.5 uM alone
or in the presence of MgCl, in a buffer containing 20 mM
HEPES pH 7.5, 100 mM NaCl and SYPRO Orange (800-
folded diluted from the 5000X stock solution, Invitrogen)
using procedures essentially as described (32). Solution mix-
tures were prepared and pipetted into 96-well PCR plates
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at a final volume of 50 pl. Melting curves were measured
in the temperature range of 20°C to 80°C at 1°C/min on a
StepOnePlus real-time PCR machine (Applied Biosystems).
Melting temperatures were obtained at the maxima of the
derivatives of SYPRO Orange fluorescence curves with the
StepOne software v2.3. To test the effect of BTP on pro-
tein thermal stability, assays were performed in the presence
of 2%(v/v) dimethyl sulfoxide (DMSO), 2% DMSO plus
10 mM MgCl, or 10 mM MgCl, plus 20 uM BTP (BTP
was added from a DMSO stock solution, resulting in a fi-
nal DMSO concentration of 2%).

RESULTS

The side chain of residue K428 extends into the active site,
obstructing metal ion binding

The X-ray structure of gp2C was solved at 2.44 A using
the single-wavelength anomalous diffraction method and
refined at 1.55 A resolution (Table 1). Superimposition with
the B. halodurans RNase H structure (17) shows that, de-
spite lack of apparent sequence identity, the gp2C overall
fold resembles those of the RNase H-family endonucleases
(14), containing a characteristic five-stranded B-sheet sand-
wiched between a-helices (Figure 1). The five-stranded (-
sheet and the two a-helices on one side superimpose well
with the RNase H fold. There are seven a-helices on the
other side of the gp2C molecule, representing structural ele-
ments that may be unique to terminase nucleases (Figure 1).
The loop harboring an active site residue D192 in B. halo-
durans RNase H (17) is substituted by an a-helix near the
C-terminus in gp2C, and such an a-helix is also present in
human RNase H1 (18).

Three acidic residues, D244, D296 and D444, in gp2C
superimpose well with the active site residues D71, D132
and D192N in B. halodurans RNase H, respectively (D145,
D210 and D274 in human RNase H1) (Figure 1), although
the fourth active site residue E109 that coordinates the
metal ion B in B. halodurans RNase H is replaced by residue
A178 in gp2C. However, no metal ion was observed in
the structures of the native gp2C or gp2C soaked or co-
crystallized with MgCl, or MnCl,. Closer inspection of the
gp2C structure shows that the K428 side chain extends into
the active site. The K428 side chain is well defined in the
electron density map with strong density, whose conforma-
tion is immobilized by H-bonds to side chain oxygen atoms
of D244 and N441 (Figure 1). Such a K428 side chain con-
formation is essentially identical to that in the previously
reported full-length gp2 structure (4), whose nuclease do-
main is virtually superimposable to the present wild-type
gp2C structure and did not show metal ions bound to the
nuclease active site either. The gp2C K428 side chain amino
group NZ atom is within 2.5 A of the metal ion A in the su-
perimposed B. halodurans RNase H structure, which would
apparently generate steric hindrance for any bound metal
ion in addition to the expellant electrostatic interaction.

Residue K428 mediates the metal cofactor binding to gp2C

To test if residue K428 affects binding of Mg>* to gp2C, we
constructed and purified the gp2C K428A mutant (gp2C-
K428A). Fluorescence-based thermal shift assay was used
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Table 1. X-ray data collection and structure refinement statistics

gp2C-K428A:
Se-Met gp2C gp2C gp2C-K428A:Mg?* gp2C-K428A:Mn2* Mn2":BTP® 2p2C-K428A:Ca®*
Crystal ID Cl Al0 D8 D1 F12 E8
Radiation source NSLS APS 231D-B APS 231D-B APS 231D-B APS 231D-D APS 231D-B
Wavelength (A) 0.97920 1.03316 1.03316 1.03316 1.03330 1.03319
Resolution (A) 64.9-2.44 (2.57-2.44)* 29.69-1.55 (1.57-1.55) 29.54-1.52 (1.56-1.52) 50-1.57 (1.60-1.57) 28.79-1.86 (1.90-1.86) 29.6-1.59 (1.59-1.62)
Completeness(%) 98.7(97.2) 97.7(90.8) 93.1(97.6) 97.6(84.5) 95.4(85.2) 98.6(90.7)
Rmergeb(%) 14.9(80.4) 3.3(49.7) 7.3(38.5) 4.1(77.6) 4.1(52.9) 5.2(81.4)
1/o 11.0(3.3) 17.7(1.9) 9.6(1.8) 27.0(1.0) 17.1(2.0) 16.1(1.2)
Redundancy 7.2 3.7 33 3.1 35 3.0
Space group 2 2 2 2 P2 2
Unit cell (a, b, ¢, B) 131.82, 59.5, 46.61, 133.683, 57.734, 46.654, 132.645, 57.519, 46.598, 132.766, 57.365, 46.646, 46.59, 58.42, 53.38, 133.078, 57.437, 46.568,
100.02° 98.865° 98.761° 98.710° 96.43° 98.993°
Refinement statistics
Rwork/Rfree® - 0.14/0.16 0.16/0.18 0.16/0.19 0.17/0.21 0.16/0.19
Rmsd bond length/A - 0.009 0.009 0.009 0.007 0.006
Rmsd bond angle/° - 1.179 1.208 1.173 1.063 0.983
Metal - 10 mM MgCly 100 mM MgCl, 100 mM MnCly 100 mM MnCl, and 10 mM CaCl,
1mM BTP
Soaking time - 16 h 5 min 5 min 2h 1.5h
Metal ions/ligand in the - None Two Mg2* Two Mn2* Two Mn2* and one One Ca2*
active site BTP
Metal ion(s) occupancy - - 0.88/0.96 0.89/0.68 1.0/1.04 1.0d
B-factor(A2) - - 19.6/45.5 31.9/65.0 25.7/27.4 33.1

4Values in the parentheses are for the outermost resolution shells.

meerge = Zpi) Zjllj(hkl) — <I(hkl)>1/ Zpy) Z;1;(hkl), where I;(hkl) is the observed intensity of reflection hkl and <I(hkl)> is the averaged intensity of symmetry-equivalent measurements

©Ryork = Zhki |l Fobs! — Fealcll / ShiilFopsl. Where Fopg and Fgyye are structure factors of the observed reflections and those calculated from the refined model, respectively. Rypee has the same formula as
Ryork - except that it was calculated against a test set of the data that was not included in the refinement.

dQOccupancy not refined.

¢BTP, B-thujaplicinol.

Figure 1. Structure of wild-type gp2C. (A) and (B) The gp2C structure (ribbon diagram rainbow-colored from the N-terminus to the C-terminus) is
superimposed with that of B. halodurans RNase H (grey; RCSB PDB code 2G8H). Side chains of acidic residues in the active site of gp2C and K428 are
shown as stick models in magenta and blue, respectively. The active site residues of RNase H are shown as stick models in brown. One of the active site
residue of RNase H, E109, is indicated with a black arrow head. The two bound Mg?* in RNase H are shown as green spheres. (C) The 1.55 A resolution
2mFo-DFc electron density map of gp2C contoured at 1.0 sigma superimposed with the refined model. Water molecules, spheres in magenta. H-bonds,
dashed lines in red.



to monitor protein stability at various concentrations of
Mg?*. The gp2C-K428A exhibited reduced thermal stabil-
ity as evidenced by the drop of Tm from 49.3°C for the wild-
type protein to 45.4°C for the K428 A mutant (Figure 2A).
This would be consistent with loss of interactions of the
K428 side chain with neighboring residues such as D244
and N441 as described above (Figure 1C) caused by the
K428A mutation. Addition of 10 mM Mg?* increased the
Tm of gp2C-K428A by 3.9°C, but only a ~0.5°C increase
for the wild-type gp2C (Figure 2A). Dose-dependent exper-
iments with Mg”* concentrations ranging from 0.04 mM to
10 mM showed steady increase of Tm from 45.4°C at 0.2
mM Mg?* t049.3°C at 10 mM Mg>* (Figure 2B) for the mu-
tant protein. In contrast, the Tm of gp2C varied only within
a narrow range between 49°C and 50°C (Figure 2B). These
data indicate that Mg”* considerably enhances the thermal
stability of gp2C-K428A but has only marginal effect on
wild-type gp2C. Taken together with the absence of metal
ions in the metal-soaked wild-type gp2C structure, this is
consistent with the aforementioned plausible obstruction of
Mg?* binding at the gp2C nuclease active site by the K428
side chain.

The K428 A mutation allows visualization of metal ions bound
to the active site

To test if the K428A mutation eliminates the plausible
steric clash thus enables metal ion binding in the active site,
we soaked the gp2C-K428A crystal with Mg?* and solved
the structure at 1.52 A resolution (Table 1). The structure
showed superb clectron density for the active site, including
two Mg?* ions bound to acidic residue triad D244, D296
and D444 as well as coordinating water molecules (Fig-
ures 2C and 3A). Superimposing the Mg?*-complexed and
the wild-type gp2C structures shows no significant or global
structural alteration across the domain, with a root mean
square deviation for Ca atoms of as small as 0.241 A. Never-
theless, superimposing the Mg”*-complexed structure with
the wild-type gp2C structure shows that the nitrogen atom
of the K428 side chain is within 1.59 A and 2.28 A of the
metal ions A and B, respectively (Figure 2C), demonstrating
that the K428 side chain abrogates the metal ion binding in
the active site. Together with the thermal shift assay results
above, these data suggest that K428 mediates metal cofactor
binding to gp2C through obstructing the metal ion binding
in the active site.

Two metal ions concurrently bind to the gp2C—K428A active
site

Electron density for two metal ions is observed in the active
site of gp2C-K428A soaked with Mg?* (Figure 3A—C). This
is due to physical binding of two metal ions in the active site
of a single protein molecule, instead of an averaged effect in
the crystal, as evidenced by the following data. First, model-
ing metal ions into the two electron density peaks is strongly
supported by the stereochemistry of the coordination sys-
tems including bond lengths and bond angles characteris-
tic of Mg”* (see description in detail below). Second, in the
gp2C-K428A:Mg?* structure refined at 1.52 A resolution,

Metal ion A has an occupancy of 0.88 and a B-factor of 19.6
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A2, whereas Metal ion B has an occupancy of 0.96 and a B-
factor of45.5 A2 (Table 1). Third, located at the positions of
the two modeled metal ions are den51ty peaksof11.7and 5.7
o above background, respectively, in the Fo-Fc map (3.8 ¢
and 1.7 o above background in the 2mFo-DFc map) prior
to addition of solvent molecules and metal ions for refine-
ment (5.3 o and 2.1 ¢ above background in the 2mFo-DFc¢
map in the final refined structure). Such peak heights are
considerably larger than those of water molecules. Finally,
the spherical shapes of the two metal ions and the two water
molecules are clearly resolved in the electron density map,
and there is a hollow space in the electron density map mid-
way between the two water molecules that immediately co-
ordinate with the two metal ions, confirming the high qual-
ity of the map (Figure 3A-C).

To further verify the concurrent physical existence of two
metal ions in the active site, we soaked gp2C-K428A crys-
tals with Mn2* and solved the structure at 1.57 A resolution
(Table 1). The structure shows excellent electron density for
two Mn?"* ions in the active site, occupying essentially the
same positions as the Mg?* ions (Supplementary Figure
S1). The two Mn?* ions show peaks of 23.8 and 9.6 o above
background, respectively, in the Fo-Fcmap (8.9 and 3.1 ¢
above background in the 2mFo-DFc map) prior to addition
of solvent molecules and metal ions for refinement. We col-
lected anomalous diffraction data for the Mn?*-complexed
crystal at the wavelength of 1.89294 A near the absorp-
tion edge of manganese, and the anomalous difference map
shows two peaks at 24.0 and 10.2 o above background at lo-
cations corresponding to the two Mn?*, respectively (Figure
3A-B), unambiguously demonstrating that these are indeed
bound metal ions. In the Mn2+-complexed gp2C-K428A
structure refined at 1.57 A, the two metal ions have an occu-
pancy of 0.89 and 0.68 and a B-factor of 31.9 and 65.0 A2,
respectively (Table 1).

Taken together, these data demonstrate that two metal
ions concurrently occupy the active site.

The structures of gp2C—K428A in presence of Mg?* or Mn**
show ultra-short metal:metal distances

The high resolution structures of gp2C-K428A soaked with
Mg?* /Mn?* reveal a metal ion binding mode with a unique
coupled-octahedral configuration at the active site compris-
ing the acidic residue triad D244, D296 and D444 (Figure
3D; Supplementary Figure S1D). In the structure of ngC—
K428A soaked with Mg?* at 1.52 A resolution, Metal ion
A displays a nearly perfect 6-member octahedral coordina-
tion system, bonding to a side chain carboxyl oxygen atom
from residues D244 and D444, respectively, and four wa-
ter molecules. The distances between Metal ion A and co-
ordinating atoms range from 1.90 to 2.19 A, close to the
characteristic value of 2.07 A for the coordmatlng distances
for the inner shell ligands of Mg?*. Metal ion B is situated
in the center of a second octahedral coordination system,
whose ligands include a side chain carboxyl oxygen atom
from residues D244 and D296, respectively and four water
molecules. The two octahedral systems are coupled by shar-
ing two water ligands (W1 and W2 in Figure 3D), and these
two shared water ligands, together with the two metal ions,
assume a planar, tetragonal geometry. The distance from
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A 1400000 B 51
— —gp2C
— —gp2C Mg2+ 50
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20 40 5 60
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gp2C gp2C-K428A
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DMSO | - - + + + - - + + T

BTP - - - - + - - - - +
Tm(°C) |49.28|49.76|48.62|49.65(49.72(45.39(49.29|45.47|49.28|49.60
ATm(°C) - |[0.48 |-0.66|0.37|0.44| - 3.9 [0.08]|3.89|4.21

Figure 2. Residue K428 mediates Mg2" binding to gp2C. (A) Thermal stability of gp2C and gp2C-K428A in the presence and absence of Mg2", DMSO
and/or B-thujaplicinol (BTP). Shown in the upper panel are melting curves for gp2C (dashed curves) and gp2C-K428A (smooth curves). Shown in the
lower panel are Tm and ATm values compared to proteins alone. (B) A plot of Tm values measured in the presence of various concentrations of Mg?*
for gp2C (red) and gp2C-K428A (blue). (C) Superimposition of the structures of gp2C-K428A:Mg?* (orange) with the wild-type gp2C (green). Side

chains of acidic residues in the active site are shown as stick models in magenta and green for gp2C-K428A:Mg>*

and wt-gp2C, respectively. In the gp2C—

K428A:Mg?* structure, the two Mg2" ions are shown as green spheres labeled A and B, respectively, and water molecules are shown as red spheres. The
water molecule corresponding to the proposed nucleophile is in yellow. Coordinating bonds of the two metal ions are shown as dashed lines in purple.

Metal ion B is 1.91 and 1.69 A for water ligand W1 and
W2, respectively, considerably shorter than the character-
istic value of ~2.07 A for Mg?*. Such short distances are
unlikely formed by H-bonds between water molecules, pro-
viding additional evidence that Mg>* occupies position B.
The angle between the two bonds formed by Metal ion B
and the two water molecules W1 and W2 is 110.1°, which
deviates significantly from 90° for an ideal octahedral ge-
ometry and is in contrast to 92.9° formed by Metal ion A
and the same two water molecules. The distances between
Metal ion B and two of its ligands, a water molecule (W3
in Figure 3D) and a carboxyl oxygen of residue D244, are
2.85 and 3.26 A, respectively. Thus, the coordination sys-
tem of Metal ion B appears to be slightly deviated from the
standard octahedral geometry for Mg?*, perhaps reflecting
a stressed, more labile state.

The distance between the two Mg?* ions is as short as
242 A (2.64 A between the two manganese ions in the
Mn?*-complexed structure), which is unusual given the
atomic radii of 1.6 and 1.3 A for magnesium and man-
ganese, respectively. To the best of our knowledge, such an
ultra-short distance may represent the shortest metal:metal
distance that has been documented in any biological sys-
tem such as metallo- -enzymes (33,34), and is significantly
shorter than those observed in RNase H-family nucleases
which typically range from 3.4 to 4.0 A (14,19). Such an
ultra-short metal:metal distance may only be pos51ble for
magnesium or manganese ions, but not for calcium ions
because of the much larger atomic radius of 1.9 A. In-
deed, the structure of gp2C-K428A mutant soaked with

calcium ion shows a totally different active site configura-
tion (Figure 3E). Only a single calcium ion is observed in
the active site, which is located differently from magnesium,
has an eight-member coordination system with an average
metal: hgand distance of 2.48 A (ranging from 2.19 to 2.79
A), and is accompanied with different side chain confor-
mations of the active site residues D244 and D444 (Figure
3E). Our results provide a structural basis for distinguishing
magnesium from calcium for catalysis in RNase-H-family
nucleases (see Discussion).

These results suggest that the two metal ions in the ac-
tive site exhibits a unique coordinating architecture, which
is presumably made possible by the local chemical environ-
ment.

The structure of gp2C-K428A in complex with manganese
and (-thujaplicinol

The gp2C nuclease activity requires binding of the dsSDNA
substrate. However, such binding appears transient, as the
effort to observe and isolate the gp2C:DNA complex has
not been successful thus far. BTP is a natural product iso-
lated from the bark of the Western red cedar and belongs to
a group of small molecules called hydroxytropolones (35).
These compounds can chelate the two divalent metal ions in
the active site of RNase H-like nucleases, were shown to in-
hibit HIV reverse transcriptase (HIV-RT) through binding
to the RNase H domain active site (36,37), and were im-
plicated as candidates for development of antivirals against
HIV (27,36-39), herpes simplex viruses (40) and hepatitis
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Figure 3. The active site of gp2C-K428A:Mg2*. (A and B) The 1.52 A resolution 2mFo-DFc electron density map of the gp2C-K428A:Mg2* structure
(blue mesh) contoured at 1.4 o above background superimposed with the refined model. Green mesh, the anomalous difference map of gp2C-K428A:Mn**
at 2.47 A resolution contoured at 8.0 o above background. Water molecules, spheres in magenta. H-bonds, dashed lines in red. (B) is 90° about the vertical
axis from (A). (C) The mFo-DFec difference map (magenta mesh) prior to addition of water and metal ions into the model for refinement, contoured at
3.3 o above background. The refined structure (stick model) is superimposed. (D) Binding of the two metal ions (green spheres) in the active site of the
2p2C-K428A:Mg?* structure (orange ribbon diagram). Side chains of residues D244, D296, D444 and N441 in the active site are shown as stick models in
magenta. Water molecules, red spheres. The coordination bonds of the metal ions are shown as dashed lines in purple with lengths indicated. The distance
between the two metal ions is indicated with a red dashed line. The inset shows the location of the figure in the protein. (E) Superimposition of the structures
of gp2C-K428A:Mg>* with gp2C-K428A:Ca’" (grey). Side chains of residues D244, D296, D444 and N441 in the Ca?*-complexed structure are shown
as stick models in grey. The bound Ca®* is shown as a sphere in dark grey. The coordinating water molecules are shown as grey spheres, with interactions

indicated with red dashed lines. The color scheme for the Mg2*-complexed structure is the same as in (D).

B virus (41,42). In a comparative study of the structures
of HIV-RT in complex with BTP and human RNase HI
complexed with RNA:DNA hybrid and Ca?* (18), BTP was
shown to occupy the positions of the scissile phosphate of
the nucleic acid substrate and the water molecule thought
to serve as the nucleophile during catalysis (37). Such bind-
ing of hydroxytropolone molecules is also confirmed in the
structure of HIV-RT complexed with manicol, a natural
product related to BTP (36). We therefore used BTP as a
molecular probe as an effort to gain insight into the active
site architecture and the DNA-binding state of gp2C.

The crystal of gp2C-K428A was soaked with Mn?* and
BTP, and the structure was determined at 1.86 A resolution
(Table 1). The structure showed superior electron density
for BTP and two Mn?* ions as well as four water ligands
(Figure 4; Supplementary Figure S2). The hole in the mid-
dle of the tropolone ring is clearly visible, confirming the

high quality of the structure. Each Mn?* ion is both situated
at the center of a nearly perfect 6-member octahedral coor-
dination system. Metal ion A is coordinated with two water
molecules, BTP oxygen atoms O1 and O2 emanating from
the tropolone ring, and side chain oxygen atoms OD1 from
residues D244 and N441, respectively. Metal ion B is coordi-
nated with two water molecules, BTP oxygen atoms O7 and
01, and side chain oxygen atoms OD2 from residues D244
and D296, respectively. The BTP tropolone ring exhibits an
excellent planar structure, and is nearly coplanar with the
two Mn”" ions, with a small deviation of 7° (Figure 4C).
Overall, BTP is nearly planar with the two Mn”*, the side
chain carboxyl groups of residues D244 and D296, and the
side chain carboxamide group of residue N441 (Figure 4C).

BTP is located in the pocket of the nuclease active site,
but does not have extensive direct interactions with the
protein, except that its O2 atom is H-bonded to the side
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A N441

Figure 4. The metal jon binding mode in 2p2C-K428A:Mn?*:BTP. (A and B) The gp2C-K428A:Mn>*:BTP structure (ribbon diagram in gold) superim-
posed with the 1.86 A resolution 2mFo-DFc¢ electron density map contoured at 1.0 o (blue mesh) and 5.4 o (magenta mesh) to show location of the two
metal ions. Side chains of the active site residues as well as S439 and V429 are shown as stick models. BTP, red stick model. The two Mn?*, purple spheres.
The four coordinating water molecules, gold spheres. (C) The local structure of gp2C-K428A:Mn>*:BTP showing planarity of the BTP tropolone ring
and the slight deviation of the BTP plane with respect to the two metal ions. (D) and (E) Superimposition of structures of gp2C—K428A:Mn?*:BTP (gold)
and gp2C-K428A:Mg?" (cyan), where the bound metal ions are shown as purple and yellow spheres and water molecules in gold and cyan, respectively.
Metal:ligand bonds in gp2C-K428A:Mn2*:BTP are indicated with red dashed lines. The view in (E) is 90° about the vertical axis from that in (D). Notice

the change in position and coordination interactions for Metal ion A.

chain oxygen of residue S439 and the isopropyl group at the
C4 atom of BTP forms non-polar interaction with residue
V429 (Figure 4C). Instead, abundant indirect interactions
exist between BTP and the protein via the two metal ions
and coordinating water molecules. These coordinating wa-
ter molecules are H-bonded with a side chain carboxyl oxy-
gen of residue D444, the main chain oxygen atom of A252,
and the main chain oxygen atom of P245, respectively. Thus,
binding of BTP is mainly mediated by interactions with the
metal ions but involves minimal direct compound:protein
interactions. This is in agreement with the thermal shift data
(Figure 2A). For gp2C-K428A in the presence of DMSO,
addition of 10 mM Mg”" resulted in an increase of 3.8°C in
Tm, while addition of Mg?*:BTP led to a slightly larger in-
crease of 4.1°C (Figure 2A; compare melting curves and Tm
values for proteins with DMSO, with Mg”* plus DMSO,
and with Mg”>* plus BTP), suggesting that the contribu-
tion of BTP to the increased thermal stability is much less
than that of Mg®* and that BTP binding largely depends on
Mg?* binding. For wild-type gp2C, addition of Mg?* and
Mg?*:BTP caused only a small increase in Tm by approxi-
mately 1.0 and 1.1°C, respectively (Figure 2A; compare Tm
values for proteins with DMSO, with Mg?* plus DMSO and
with Mg?* plus BTP). This is consistent with unsuccessful,

or at least much less efficient, binding of BTP and Mg>* to
wild-type gp2C. It is worth pointing out that these data do
not rule out the possibility that Mg?*:BTP can displace the
K428 side chain and bind to the active site in the wild-type
gp2C, but the chance of such a binding mode is low for the
case of BTP because (i) BTP has minimal direct interactions
with the protein as shown in the gp2C-K428A:Mn>":BTP
structure, which may not be energetically sufficient to drive
such a binding mode, and (ii) the space in the active site is
limited and may not be adequate to accommodate the dis-
placed K428 side chain, which is further restricted by ro-
tamer conformations. For such a binding mode to occur,
significant conformational change in the protein might be
required, e.g. potential movement of the hairpin structure
where K428 is located (see Discussion), in order to move the
K428 side chain away to make room for metal ions. Further
studies are needed to test such possibility by using chemi-
cally modified forms of BTP (35,36), which might provide
more profound compound:protein interaction that is suffi-
cient to drive the required conformational change thus en-
able such a binding mode.



The metal ion binding mode in gp2C-K428A:Mn**:BTP is
distinct from that in the gp2C—K428A:metal structures

The metal ion binding mode in the gp2C-
K428A:Mn?*:BTP ternary complex structure is remarkably
distinct from that observed in the gp2C-K428A complexed
with metal ions alone described above (Figure 4D-E;
Supplementary Figure S1D). Firstly, Metal ion B in both
cases occupies approximately the same position, but Metal
ion A displays a positional difference of 2.43 A between the
two states. As a result, the distance between the two metal
ions is 3.75 A in the gp2C-K428A:Mn>*:BTP structure,
a value that is far more than the ultra-short distance
observed in the gp2C-K428A complexed with metal ions
alone and falls in the 3.4-4.0 A range frequently observed
in other RNase H-like nucleases (19,20). Secondly, in the
BTP-complex structure, D444 is not coordinated with any
of the two metal ions, whereas in the gp2C-K428A:metal
complex structures it coordinates with Metal ion A (Fig-
ure 4D-E; Supplementary Figure S1D), although the
conformation of D444 remains virtually unchanged. Third,
in the gp2C-K428A:Mn”>":BTP structure, the side chain
carboxyl group of D244 undergoes a ~70° rotation from
the conformation in the gp2C-K428A:metal complex
structures (Figure 4D-E). As a result, the two carboxyl
oxygen atoms are coordinated with the two Mn** ions
respectively with approximately equal distance.

Side chain flipping of residue N441

The side chain of residue N441 adopts different ro-
tamer conformations in the gp2C-K428A:Mn?>*, gp2C-
K428A:Mg?* and gp2C-K428A:Mn?*:BTP structures
(Figure 4D-E; Supplementary Figure S1D). In gp2C-
K428A:Mg>*, the N441 side chain oxygen atom is
H-bonded to a water molecule with a distance of 2.55
A (Figure 3D). This water molecule is coordinated with
Metal ion A with a distance of 2.08 A, which precisely
matches the standard value for the octahedral coor-
dination system of Mg?* (Figure 3D). In contrast, in
gp2C-K428A:Mn?*, the N441 side chain flips toward
Metal ion A and the oxygen atom is coordinated to Metal
ion A with a distance of 2.59 A, and the metal:water bond
deviates from perpendicular to the central plane of the
octahedron (Supplementary Figure SI1D). The presence
and absence of a water ligand between N441 and Metal
ion A in gp2C-K428A complexed with Mg?>* and Mn*",
respectively suggests the less stringent requirement for
standard coordinating distances and angles in Mn?* than
in Mg?". In the gp2C-K428A:Mn>":BTP structure, the
N441 side chain oxygen is coordinated with Metal ion A
with a distance of 2.26 A, and its rotamer conformation is
nearly identical to that in gp2C-K428A:Mg?* (Figure 4D).
These observations suggest that the N441 side chain can
adopt different conformations as needed to accommodate
different configurations and types of the two bound metal
ions.
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DISCUSSION

A regulatory role of residue K428 in the TerL function
through mediating metal cofactor binding

Our structural analysis shows that the gp2C K428 side
chain extends into the nuclease active site, obstructing the
metal ion binding, while thermal shift assay results support
the notion that K428 mediates the metal cofactor binding to
gp2C. As metal cofactors are required for the enzymatic ac-
tivities of RNase H-like nucleases and terminase nuclease
domains, these data suggest that residue K428 could play
a regulatory role in gp2 nuclease function. This is consis-
tent with the physiological requirement that the TerL nucle-
ase activity must be carefully regulated so that it does not
cut random DNA in the infected cells which includes viral
DNA but instead only catalyzes DNA processing at spec-
ified steps during packaging. It is likely that the K428 side
chain may restrict or turn off the nuclease activity by adopt-
ing the conformation observed in the wild-type gp2C struc-
ture, that is, by extending into the nuclease activity site and
thus preventing metal ion binding. This would render the
nuclease inactive, thus avoiding aberrant cutting of DNA.
‘When nuclease activity is needed, e.g. at the initiation cleav-
age step or upon completion of a single packaging cycle,
the K428 side chain may be retracted from the active site
to allow metal ion binding, thus enabling catalysis. Such
an activation mechanism for the gp2 nuclease activity may
be accomplished through specific molecular interactions in-
volved in assembly with TerS during the initiation cleavage
or in oligomerization of TerL and/or assembly of TerLL with
the procapsid during the headful cleavage.

Primary sequence identity among TerL nucleases is low,
typically below 15%. However, comparative analysis at the
3D structure level shows that a lysine residue of TerL pro-
teins from phage P22 and SPP1 occupies a similar position
in a hairpin structure that is reasonably close to the nucle-
ase active site (Supplementary Figure S3). These data sup-
port the idea that such a lysine-mediated mechanism might
be common among TerL proteins. In phage T4 TerL, no
lysine residue exists at a same position, except for a lysine
residue K529 that is located in the similar hairpin structure
but is less close to the active site and is not known to play
such a role (Supplementary Figure S3). These observations
are consistent with the fact that phage P22 is a close rela-
tive to Sf6 while T4 is more distantly related as shown in a
recent comparative structural study (11). The distances of
those lysine residues to the active site vary in these phage
proteins, with that in Sf6 gp2 the shortest and that in SPP1
G2P the longest, and, interestingly, these appear to coincide
with the distances of the hairpins from the active site (Sup-
plementary Figure S3). It was shown that the hairpin struc-
ture was conformationally dynamic or disordered in SPP1
G2P (7) and was completely disordered in the gp17 nucle-
ase structure from phage RB49, a close relative to T4 (5) and
in herpesvirus TerL nucleases (11,12). These hairpins were
suggested to interact with the DNA substrate (4,6,7,11-13),
and were proposed to undergo conformational motion that
contributed to control of nuclease activity and/or DNA
translocation (6,7). It is tempting to speculate that the hair-
pin may undergo large-scale movement to allow it to swing
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close to or away from the nuclease core, which would po-
sition the lysine residue close to or away from the active
site, thus down- or up-regulating the nuclease activity, re-
spectively. Such movement could be triggered by, e.g. inter-
action with the ATPase domain. This model could explain
previous observations that the N-terminal ATPase domain
can stimulate the nuclease activity in the context of the full-
length TerL proteins (4,6), as the hairpins are located be-
tween the nuclease and ATPase domains as observed in the
structures of full-length TerL from Sf6 and T4 although the
details of domain arrangements differ (4,5). Nevertheless,
the hairpins in the Sf6 gp2C structures in the present study
and in previous structures of full-length TerL from Sf6 and
T4 are well ordered (4,5), and it has not been possible to ex-
perimentally observe two conformations for the hairpin in
any single TerL nuclease. Further studies are needed to test
the viability of this hypothesis.

An ultra-short metal:metal distance in the active site

Formation of the pentacovalent phosphate transition state
is the critical step during the two-metal-ion catalytic mech-
anism shared by RNase H-like nucleases. However, how the
two metal ions drive formation of the pentacovalent phos-
phate transition state remained unclear. It was thought that
Metal ion A deprotonates a water molecule, which serves as
the nucleophile that attacks on the scissile phosphate, while
Metal ion B may contribute to stabilization of the tran-
sition state pentacovalent phosphate (14,16). To form the
pentacovalent phosphate transition state, the oxygen atom
from the nucleophile must move by >1 A so that it would
be within <2 A of the phosphorous atom for formation of
a covalent linkage (16,19). However, the nucleophilic wa-
ter is unlikely to move over 1A by itself because this would
require it to dissociate from Metal ion A, representing re-
moval of an inner-shell ligand from the metal ion, which
is highly costly in energy. Moreover, repulsion between the
negatively charged nucleophile and the scissile phosphate
also increases energy cost. Thus, it was thought that Metal
ion A might move toward Metal ion B within a very short
distance, thus bringing the nucleophile closer enough to the
phosphorous (16,19).

In the present studies we have observed ultra-short
metal:metal distances in the active site. Such ultra-short dis-
tances are to the best of our knowledge among the shortest
documented in biological systems such as metallo-enzymes
(33,34), and are close to metal:metal bond lengths in mul-
timetallic complexes in inorganic systems such as the Mo-
Mo distance of 2.12 A (43) and the Co-Zr distances rang-
ing from 2.33 to 2.44 A (44, 45). A Ni-Fe distance of 2.5
A was reported in the 2.15 A resolution X-ray structure
of the reduced state of a [NiFeSe] hydrogenase (46), and
the 1.36 A structure of a carbon monoxide dehydrogenase
showed a Ni-Fe distance of 2.56 A (47). In the P-clusters
and the FeMo cofactors of nitrogenases, metal:metal dis-
tances can be as short as 2.50 and 2.58 A, respectively (48—
50). The oxygen-evolving complex of photosystem II is a
Mn,CaOs cluster, in which the shortest Mn-Mn distance
was 2.68 A (51). The ultra-short metal:metal distances ob-
served in the present work are significantly shorter than
those reported for RNase H-family nucleases which typi-

cally range from 3.4 to 4.0 A or longer (14,16 19) It was
reported that two Mg?* ions were as close as 3 A in the 2.88
A resolution structure of the phage T7 RNA polymerase
complexed with substrate, which belongs to the RNase H-
family enzymes (52). Previous TerL nuclease structures were
at much lower resolution and failed to reveal such an ultra-
short metal:metal distance. In the 2.5 A resolution structure
of phage SPP1 G2P soaked with Mn?*, the two metal ions
were 3.9 A apart (7). In the 3.2 A resolution structure of
human cytomegalovirus TerL pUL89 nuclease domain, two
Mn?** were observed in the active site with a metal:metal dis-
tance of 3.4 A (12). The structure of phage P22 TerL gp2 nu-
clease domain at 2.02 A resolution was reported to contain
an Mg?* with octahedral coordination and a second Mg>*
with a non-canonical tetrahedral coordination as far as 7.9
A apart, which were not confirmed with anomalous diffrac-
tion (13). Only one Mg?* was observed in the active site of
the isolated nuclease domain of TerL from phage RB49, a
close relative of phage T4 (5), and no metal ions were re-
ported in the TerL nuclease active sites of phage T4 (5), Sf6
(4) and herpes simplex virus type 1 (11).

The effect of the ultra-close proximity of the two metal
ions is 2-fold. First, it would generate a highly positive elec-
trostatic niche in the active site, which may be essential
for destabilizing the scissile phosphate and neutralizing the
abundant negative charges in the pentacovalent phosphate,
thus promoting the formation of the pentacovalent phos-
phate transition state. Second, it would bring one of its co-
ordinating water molecules toward the scissile phosphate
within a distance from the phosphorous atom that is short
enough for formation of a covalent linkage (see below and
Figure 6). Hence, the close metal:metal distance observed
here may represent a critical state during the two-metal-ion
catalysis, that is, a state that is poised for the formation of
the pentacovalent phosphate prior to P-O bond breaking.

The binding mode of BTP and Mn?* mimics the DNA-
binding state of gp2C

The gp2C-K428A:Mn>*:BTP structure reveals a metal
ion binding mode distinct form that observed in the
structures complexed with metal ions alone. Compara-
tive studies with the HIV-RT:BTP and the human RNase
H1:RNA/DNA:Ca’* complex structures showed that BTP
usurped the positions of the nucleic acid scissile phos-
phate and the nucleophilic water molecule (37). Thus, the
location of BTP would reflect that of bound DNA sub-
strate with respect to the nuclease active site. To gain in-
sight into the DNA binding in gp2C, we first superim-
posed the HIV-RT:BTP complex structure onto the gp2C-
K428A:Mn?*:BTP structure by matching the positions and
orientations of the bound BTP and the two metal ions
(Supplementary Figure S4A-C). Subsequently, we super-
imposed the human RNase HI:RNA/DNA:Ca’* complex
structure onto the resultant HIV-RT:BTP complex struc-
ture based on highly conserved protein folds and configura-
tions of active site residues between RNase H1 and the HIV-
RT RNase H domain (Supplementary Figure S4D). The re-
sultant RNA:DNA hybrid from the superimposed human
RNase HI:RNA/DNA:Ca?" structure thus reflects the ap-
proximate location of the DNA substrate with respect to the
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Figure 5. The metal ion binding mode of gp2C-K428A:Mn?*:BTP mimics the DNA-binding state. (A) The gp2C-K428A:Mn2":BTP structure (gold) is
superimposed onto human RNase HI in complex with an RNA/DNA hybrid and Ca?* (RCSB PDB code 2G8H) (green) assuming the metal ion binding
modes are conserved and the bound BTP reflects the DNA scissile phosphate (see text). Side chains of active side residues are shown as stick models. Each
superimposed pair of active site residues are indicated with the residue numbers in gp2C on the top and in RNase H1 on the bottom, respectively. The
two Mn>* in gp2C-K428A structure are shown as purple spheres and labeled with A and B, respectively. The two Ca?" ions in RNase H1 are shown as
green spheres. The RNA strand of the RNA/DNA hybrid in the RNase H1 structure is shown as stick models in grey. For clarity, only two nucleotides are
shown. The scissile phosphate is in magenta. The leaving 3’-OH group is indicated with a black arrowhead in (B). The nucleophilic water in the RNase H1
structure is indicated with a black arrow and labeled Wn. The oxygen atoms O1, O2 and O7 of BTP are indicated. (B) 90° about the vertical axis from (A).

gp2C nuclease active site (Figure 5). This notion is also sup-
ported by the observations that the two Mn?* ions in gp2C
structure occupy essentially the same positions as the two
Ca’* ions in the superimposed human RNase H1 structure,
and that the carboxyl/carboxamide groups of D244, N441
and D296 in the gp2C structure superimpose nicely with
the carboxyl groups of D145, D274 and E186 in the RNase
HI structure, respectively (Figure 5). Despite the small posi-
tional difference, the carboxyl groups of D444 in gp2C and
D210N in RNase H1 also have approximately the same lo-
cations (Figure 5). This superimposition aligns the RNA
strand of the RNA/DNA hybrid along the crevice of the
gp2C active site. The water molecule proposed as the nucle-
ophile in the RNase HI structure (18) is close to the BTP
02 atom in the gp2C structure (Figure 5). The Ol and O7
atoms of BTP are superimposable with a non-bridging oxy-
gen atom of the scissile phosphate and the oxygen atom of
the leaving 3'-OH group, respectively (Figure 5). Thus, the
structure of gp2C-K428A:Mn>*:BTP mimics the state of
DNA substrate binding, shedding light on the architecture
of the active site and the spatial arrangement of the scissile
phosphate with respect to the two metal ions and the active
site residues.

A model for the two metal ion catalytic mechanism

Observations of the two distinct metal ion binding modes,
one for DNA substrate binding and the other putatively
for the pentacovalent phosphate formation, suggest a tran-
sition between the two states during catalysis, which in-
volves a ~2.43 A positional change of Metal ion A from
N441 to D444 (Figure 4D-E). What triggers such a posi-
tional change? It is likely that the negatively charged D444
side chain carboxyl favors a charge—charge interaction with

Metal ion A, which is unavailable for the uncharged N441
side chain, thus an acidic residue at position 444 may be im-
portant for triggering the plausible movement of Metal ion
A. D444 in gp2C corresponds to D210 in human RNase
HI1 and, interestingly, the human RNase HI D210N mu-
tant lost nuclease activity (18), supporting the importance
of the negative charge of the D210 side chain. Addition-
ally, it could be that the energy barrier for such movement
is small enough to allow such a movement to occur, owing
to the architecture of the active site.

We propose a catalytic mechanism for gp2C based on a
transition between the two metal ion binding modes ob-
served here (Figure 6). The DNA substrate docks onto the
active site adopting an architecture as shown in the gp2C—
K428A:Mn?*:BTP structure in which the two metal ions are
3.75 A apart. The two metal ions are jointly coordinated
by a non-bridging oxygen atom of the scissile phosphate,
bisecting the scissile phosphate. Metal ion B is also coor-
dinated with the oxygen atom of the leaving 3’-OH group.
The presumed nucleophilic water molecule, occupying a po-
sition similar to that of the O2 of BTP, is coordinated to
Metal ion A. In such a DNA-binding state, Metal ion A is
coordinated with N441 side chain, but not D444, as shown
in the gp2C-K428A:Mn>*:BTP structure. Metal ion A then
shifts to the position as shown in the structures of gp2C-
K428A complexed with metal ions alone. Such movement
may be triggered by more favorable interactions of Metal
ion A with D444 side chain than N441 due to the nega-
tive charge of D444, and may be facilitated by flipping of
the N441 side chain. This would bring the two metal ions
into proximity, generating a positively charged niche that
neutralizes and thus stabilizes the highly negatively charged
pentacovalent phosphate. Meanwhile, movement of Metal
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Figure 6. A proposed catalytic mechanism for gp2C. The active site archi-
tecture of the DNA-binding state based on the gp2C-K428A:Mn>*:BTP
structure (ribbon diagram in gold), in which BTP has been replaced with
the DNA substrate fitted as in Figure 5 (stick model in grey) and the nu-
cleophilic water (cyan) that takes the position of the O2 atom of BTP in
the gp2C-K428A:Mn2":BTP structure shown in Figures 4 and 5. For clar-
ity, only the backbone of a strand of the DNA is schematically shown, in
which the scissile phosphate is in magenta and the leaving 3’-OH group
is indicated with a black arrowhead. Side chains of active side residues are
shown as stick models. The two metal ions are shown as purple spheres and
are labeled with A and B, respectively. The nucleophilic water is in cyan.
Other water molecules, red spheres. Coordination bonds of the metal ions
are shown as green dashed lines. The proposed movement of Metal ion A
(red arrow) brings the two metal ions closer, generating a positively charged
niche that neutralizes, thus helps to stabilize, the highly negatively charged
pentacovalent phosphate. The movement of Metal ion A also brings the
nucleophilic water (cyan) closer to the scissile phosphate (black arrow)
within a distance from the phosphorous that is short enough for forma-
tion of a covalent bond. As a result, the nucleophilic attack occurs and the
pentacovalent phosphate transition state is formed.

ion A would bring the nucleophilic water closer to the scis-
sile phosphate so that it is within a distance from the phos-
phorous that is short enough for formation of a covalent
linkage. As a result, the nucleophilic attack occurs and the
pentacovalent phosphate is formed. This mechanism sheds
light on the intricate steps during the catalysis and how the
two metal ions cooperate to drive formation of the penta-
covalent phosphate transition state.

Distinguishing Mg?* from CaZ* in the two-metal-ion cataly-
sis

The two-metal-ion nucleases typically require Mg>* or
Mn?*, and in most cases Ca®* does not support cataly-
sis although it supports nucleic acid binding. Distinguish-
ing Mg?* from Ca’* for catalysis is physiologically nec-
essary, given comparable biological abundance of the two
types of metal ions. The ultra-short metal:metal distances
observed in the gp2C-K428A:metal structures may only
be possible for magnesium or manganese ions due to their
small atomic radii of 1.6 and 1.3 A, respectively, but not
for calcium ions because of the much larger atomic radius

of 1.9 A, as evidenced by the gp2C-K428A:Ca?* structure
which shows a totally different metal ion binding in the ac-
tive site (Figure 3). Only a single calcium ion is observed
in the active site, which not only results in non-productive
stereochemistry but also insufficient positive charges. Two
Ca”" were observed in the active site of human RNase
H1 D210N mutant in complex with an RNA/DNA hy-
brid (18). However, such a complex was not productive, pre-
sumably because the two Ca”* ions failed to adopt a short
enough metal:metal distance. Therefore, the requirement
for an ultra-short metal:metal distance provides a structural
basis for distinguishing magnesium from calcium for catal-
ysis in these nucleases.

Drifting of the nuclease active sites in viral terminases

Superimposing the gp2C-K428A:Mn>*:BTP structure with
those of the human RNase HI:RNA/DNA:Ca?* and the
HIV-RT:BTP complexes according to the bound metal ions
and BTP as described above shows that residues D244,
N441, D296 and D444 in the gp2C structure overlie residues
D145, D274, E186 and D210N in the RNase H1 struc-
ture (D443, D549, E478 and D498 in HIV-RT), respectively
(Figure 5; Supplementary Figure S4), indicating concor-
dance in their functional roles. However, superimposition
according to the overall protein folds shows that residues
D244, D296 and D444 in gp2C fit well with the active site
residues D145, D210N and D274 in human RNase H1, re-
spectively (Figure 5; Supplementary Figure S4). In gp2C,
residue A178 replaces the fourth active site residue E109
that coordinates Metal ion B in RNase H1, while residue
N441 in gp2C occupies the position of residue V552 in
RNase HI1. Overall, it appears as if the configuration of the
active site, that is, the spatial arrangement of active residues
D145, D274, E186 and D210 in the RNase H1 with respect
to the protein fold, underwent a translation into residues
D244, N441, D296 and D444 in the gp2C. Such rearrange-
ment of active site residues built upon a conserved protein
fold might occur during evolution through, e.g. acquisition
of N441 as in gp2C which gains the function of metal ion
binding followed by loss of the acidic residue at position
178 (corresponding to E109 in RNase H1), maintaining the
ability to bind two metal ions as required for catalysis, al-
though the two bound metal ions adopt different orienta-
tions with respect to the protein fold. Therefore, these re-
sults suggest a drifting or migration of the active site config-
uration on a conserved protein fold. Active site drifting may
reflect an intrinsic feature of two-metal-ion catalytic nucle-
ases, which may possess structural and functional plastic-
ity that makes it more amenable for these enzymes to un-
dergo such drifting, as the minimal requirement for cataly-
sis would only include the ability to bind to two metal ions
in a defined configuration to form the active site and the
accessibility of the active site to the nucleic acid substrate.
Previous comparative structural studies of herpes simplex
virus Type 1 terminase catalytic subunit pUL15 C-terminal
nuclease domain showed an evolutionary lineage for the nu-
clease domains of virus terminases and RNase H-like nucle-
ases, and the arrangements of the active site acidic residues
in terminase nuclease domains exhibit high variability de-
spite retaining a highly conserved protein fold core, i.c. lo-



cations of those active site residues on the protein folds dif-
fer remarkably (11). Such variability appears to frequently
occur in viruses and phages (11), consistent with their fast
mutation rates. The present structural analysis has provided
further structural evidence to support active site drifting of
virus terminase nucleases. Our structural studies show that
BTP is capable of chelating the two metal ions in the nucle-
ase active site, thus blocking catalysis, which conceptually
suggests that hydroxytropolones can be used to target ter-
minase nuclease domains in human herpesviruses, a group
of clinically important human pathogens. A benefit of hy-
droxytropolones is that they target an essential chemical
feature in two-metal-ion catalysis. Nevertheless, given the
active site plasticity of those terminase nucleases, it would
be interesting to assess if additional active site drifting arises
in response to hydroxytropolones, in which case contiguous
redesign of the compounds will be needed.
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