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CORROSION-RESISTANT STEEL REINFORCING BARS -INITIAL TESTS 

ABSTRACT 

The initial portion of the first phase of a five phase research effort to evaluate a corrosion­

resistant steel for reinforcing bars is descnoed. Rapid corrosion potential and time-to-corrosion 

(macrocell) tests are used. The test specimen consists of a No. 5 reinforcing bar embedded in a 30 

mm diameter, 102 nnn long cylinder of mortar. The mortar is made using portland cement, graded 

Ottawa sand, and deionized water. Four different steel types are evaluated: hot-rolled regular steel, 

Thermex treated (quenched and tempered) regular steel, hot-rolled corrosion resistant steel, and 

Thermex treated corrosion resistant steeL 

Corrosion potential tests are perlbrmed to determine the tendency of a steel to corrode. The 

results for these tests are fuirly consistent, with little scatter. There is no significant difference in 

potentials for the four steels. The use of different test solutions did not influence the potential of the 

four steels. 

The macrocell tests are perlbrmed to determine the time-to-corrosion and the corrosion rates. 

The results for some of these tests are not consistent and show considerable scatter. The macrocell 

test is sensitive to the quality in the specimen fabrication. Because the initial tests in Phase I did not 

perform as intended, it is difficult to determine for certain which steel has the best corrosion 

resistance based on the resUlts reported here. However, the hot-rolled regular steel specimens 

consistently exluoit the highest corrosion rate. 

The test solutions used at the anode and cathode in the macrocell tests appear to influence the 

corrosion rate and the difference in rates between the four steels. When the difference in pH of the 

anode and cathode solutions is decreased, the corrosion rates are reduced and the difference between 

the rates for the four steels is more pronounced. 

Based on the results of the Phase I initial tests, some modifications to the specimen fabrication 

procedure are reconnnended. The epoxy band should be applied in two coats. The reinforcing bar 

lengths should be heated after cleaning and after applying each coat in order to improve the bond 
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between the reinforcing bar and the first epoxy coat as well as between the two coats of epoxy. 

Special care should be exercised when applying the epoxy band. Addition work in Phase I includes 

an evaluation of the effects of changing the ratio of the number of cathode to anode specimens from 

3:3 to 2:1. Special care should also be exercised in the oversight of the corrosion potential and 

macrocell tests. 

Key words: Chlorides; concrete; corrosion; corrosion testing; corrosion potentials; macrocells; 

reinforcing bars 



INTRODUcriON 

The deterioration of reinfOrced concrete structures is a major problem. The cost of repairing 

or replacing deteriorated structures has become a major liability for highway agencies, estimated to 

be more than $20 billion and to be increasing at $500 million a year. The primary cause of this 

deterioration is the corrosion of steel reinforcing bars due to chlorides. The two main sources of 

chlorides are deicing chemicals or marine exposure. The winter weather maintenance, bare pavement 

policies of many highway agencies have resulted in extensive usage of salt-based deicing chemicals. 

The most common chemical used has been NaCl 

Several measures have been developed and implemented to prevent the chloride-induced 

corrosion of steel reinforcing bars and the resulting deterioration. Some of the early measures used 

included lowering the water-cement ratio and increasing the cover over the steel reinforcing bars. 

Concrete permeability can be reduced by the use of admixtures. Corrosion iolnoitors are also being 

used. The basic principle is to either prevent the chlorides from reaching the steel or increase the time 

needed to reach the steel While these measures generally do not stop corrosion from eventually 

initiating, they do improve durability and increase the service life of reinforced concrete structures. 

A new measure with potential to prevent deterioration of concrete structures due to the 

corrosion of steel reinforcing bars is a corrosion-resistant steel It was developed by the Tata Steel 

Company in India, and involves two ionovations: microalloying and heat treating the steel (Tata Steel 

199la, 1991b). The microalloying consists of adding small percentages of copper, chromium, and 

phosphorous to the steel Initial studies conducted by Tata Steel indicated that a combined minimum 

of0.9% by weight of the three elements is needed. Suggested maximum percentages by weight are 

0.50% for copper, 0.80% for chromium, and 0.12% for phosphorous. The research done by Tata 

Steel also showed that, if the steel is quenched and tempered after the rolling process, the corrosion 

resistance is improved. The quenching and tempering is known as the Temcor or Thermex process. 

Several corrosion resisting mechanisms contribute to make the new steel corrosion-resistant 

(Jha et al 1992). The iron and chromium react to form a spinel oxide (FeO · Cr20 3) which is a poor 
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conductor and acts to slow the rate of corrosion. In the presence of chlorides, a layer of copper 

chloride-copper hydroxide (Cu~ • 3Cu(OI:Ih) is formed, which is less soluble than the corrosion 

products formed when chlorides react with conventional steel and therefore acts to retard corrosion. 

Phosphorous oxides are furmed which serve as corrosion inln"bitors. The corrosion products for the 

new steeL CuCJ. · 3Cu(OH)2 and FeO · Crz03, form a compact dense layer that adheres to the steel 

reinforcing bar better than the corrosion products formed on conventional steel and reduces the 

amount of water and oxygen available at the uncorroded steel surface. 

The corrosion of steel reinforcing bars is an electrochemical process that requires a flow of 

electric current and several chemical reactions. An adequate supply of water and oxygen is necessary 

for the chemical reactions. The rate of corrosion is dependent on the availahility of oxygen and 

chloride ions, the ratio of steel surface area at the anode to that at the cathode, and the electrical 

resistivity of the concrete. The availahility of oxygen is a function of its rate of diffusion through the 

concrete, which is affected by how saturated the concrete is with water. When totally submerged, 

the diffusion rate is slowed because the oxygen nmst diffuse through the pore water. When the 

concrete is dry, the oxygen can freely move through the empty pore spaces. Alternating wet/dry 

cycles allows oxygen to diffuse more readily. Wet concrete has a lower resistivity, and the hydroxyl 

ions needed for the electrolyte are present. Dty concrete has a higher resistivity. It also does not have 

the electrolytes needed. 

Concrete is alkaline due to the presence of Ca(OH)2, KOH, and NaOH. Due to the high 

alkalinity, pH, of the concrete pore water, the steel reinforcing bars are passivated by an iron oxide 

film that protects the steel 

Chloride ions reach the reinforcing steel by penetrating the concrete via the pore water and 

through cracks in the concrete. The chloride ions dissolve the passive film by lowering the pH of the 

pore water and penetrate the passive film to react with iron to form a soluble iron-chloride complex 

(Frac2\(lk 1987). When the iron-chloride complex diffuses away from the bar .to an area with a higher 

pH and concentration of oxygen, it reacts with hydroxyl ions to form Fe(OH)2, which frees the 

chloride ions to continue the corrosion process, if the supply of available water and oxygen is 
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adequate (Dillard et al. 1993 ). 

To initiate corrosion, sevetal threshold levels for chlorides need to be exceeded. The ratio 

of chloride ions to the weight of cement needs to be greater than 0.4% and the concentration of 

chloride ions needs to be more tban 0. 71 kg/m3
. The ratio of chloride to hydroxyl ions also needs to 

be greater than 0.6 (Dillard et al. 1993). 

The distribution of chlorides in a reinforced concrete slab is not uniform. The chlorides 

typically enter the concrete from the top surfuce. The top mat of reinforcing steel is then exposed 

to higher concentrations of chlorides. The chlorides shift the potential of the top mat to a more 

negative (anodic) value. Since the potential of the bottom mat has a more positive (cathodic) value, 

the resulting difference in potentials sets up a galvanic type corrosion cell called a macrocell. An 

electric circuit is established. The concrete serves as the electrolyte and wire ties, metal chair 

supports, and steel bars serve as metallic conductors. 

The corrosion products resulting from the corrosion of steel reinforcing bars occupy a volume 

equal to three to four times the volume of the original steel This increase in volume induces stresses 

in the concrete that result in cracks, delaminations, and spalls. This accelerates the corrosion process 

by providing an easy pathway for the water and chlorides to reach the steel 

Tests performed by Tata Steel established that the new steel has improved corrosion 

resistance in the atmosphere, ie. the bars were not in contact with concrete. Only one series of tests 

with the steel embedded in concrete were performed. The test consisted of submerging a concrete 

block containing a single bar in salt water. This is not a recognized test procedure in the United 

States. The evaluation of a single bar is also not a true representation of the corrosion resistant 

properties of a steel, since it does not model the fottuation of a macrocell. Although the new steel 

has improved corrosion resistance in the atmosphere, it may or may not have improved corrosion 

resistance when in contact with concrete. This is because some metals perform differently when 

exposed to different environments. Therefore, there is a need to thoroughly evaluate the corrosion 

resistance of the new steel when embedded in concrete. 

This report descn"bes the initial effort in the first phase of a study to evaluate the corrosion 
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resistance of the new steel The study is being carried out in five overlapping phases. In Phase I, the 

evaluation of the corrosion resistant steel is done through the use of rapid tests: rapid corrosion 

potential tests and rapid time-to-corrosion (macrocell) tests. The rapid tests are procedures that were 

developed at the University ofKansas as part of the Strategic Highway Research Program to evaluate 

the effects of deicing chemicals on steel reinforcing bars in a relatively short time (Martinez et al. 

1990). Using the tests, the reinforcing bars can be evaluated in environments that simulate the 

environment in an actual concrete structure. The tests allow a large number of variables to be 

evaluated in three months or less, as compared to one year for more conventional tests. 

Four steel "types" were evaluated. These four types represent the possible combinations of 

two alloys and two heat treatment processes. The two types of alloys are the regular reinforcing steel 

currently used in reinforced concrete construction and the microalloyed steel used for the new 

corrosion resistant steel The reinforcing steel is hot-rolled without any heat treatment or is heat 

treated using the Thermex process. The hot-rolled regular reinforcing steel is denoted by H, the 

Therrnex treated regular reinforcing steel is denoted by T, the hot-rolled corrosion resistant 

reinforcing steel is denoted by CRSH, and the Thermex treated corrosion resistant reinforcing steel 

is denoted by CRST. 

The remaining efforts in the study include the completion of Phase I and the execution of the 

other four phases: the bench scale time-to-corrosion tests, an evaluation of the effects of deicer type 

and concentration, mechanical property tests, and data analysis. The bench scale tests are the 

southern exposure and cracked beam tests. Additional corrosion potential and macrocell test are 

being performed to evaluated the effects of different concentrations of NaCl and the effects of 

different deicers. The influence of the microalloying process on the mechanical properties (yield 

strength, tensile strength, elongation, and bendability) of the corrosion-resistant steel will be 

evaluated. Some macrocell tests were added to evaluate the effects of changing the ratio of anode 

to cathode specimens. Because of erratic results from the macrocell tests done in Phase I and because 

a visual examination of the reinforcing bars after the conclusion of the test period confirmed 

suspicions that the tests were not performing as intended, some retests of the Phase I macro cell tests 
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were added, and some modifications were made to the specimen fabrication procedure. 

EXPERIMENTAL WORK 

Test specimen 

The corrosion resistance of the four types of steels is evaluated using a "lollipop" test 

specimen (Fig. 1). It consists of a 127 mm length of steel reinforcing bar embedded 76 mm in a 

mortar cylinder. The length of the mortar cylinder is 102 mm. The overall specimen length is 152 

mm. The specimen configuration is based on the specimen used in a study to develop a rapid test for 

determining the effects of deicing chemicals on the corrosion behavior of steel reinforcing bars in 

concrete (Martinez et al 1990). 

The specimen mold (Fig. 2) is made up ofPVC pipe and fittings. Laboratory grade rubber 

stoppers are used to hold the reinforcing bars in place and maintain uniform cover. The specimen 

fabrication :fixture consists of two pieces of 2 x 8 CCA pressure treated lmnber. Holes and recesses 

are bored into the 1lat surfaces to accept the specimen mold assembly and facilitate mortar placement. 

Threaded steel rods with nuts and wingnuts are used to clamp the specimen molds in the :fixture. 

Tension in the rods is adjusted to hold the PVC mold together and apply sufficient pressure to the 

rubber stoppers to prevent the bars from moving. Each fixture can accept eight specimen assemblies 

and two fixtures are used. This allows the fabrication of 16 specimens at one time. 

Specimen preparation starts with cutting 127 mm length sections of steel reinforcing bar. One 

end of each section is drilled and tapped to provide for an electrical connection. The bar is then 

cleaned with acetone to remove dirt and grease. A 15 mm wide epoxy band is applied around the bar 

51 mm from the tapped end. This epoxy band is used to prevent crevice corrosion at the interface 

between the steel bar and the mortar and to ensure that corrosion occurs on the portion of the bar that 

is embedded in the mortar cylinder. The epoxy is mixed and applied according to the manufacturer's 

instructions. 

The completed bar and mold assembly is illustrated in Fig. 2. Assembly into the mold is 

accomplished in several steps. The first step consists of inserting the tapped end of the bar into the 
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small stopper (A) so that the wider end is centered on the epoxy band. This rubber stopper is then 

inserted into the machined PVC connector (B), with the wider end of the stopper in contact with a 

small ridge located on the inside surface of the connector. The large rubber stopper (C) is placed in 

the end of the large connector (D) that has the larger inside diameter. The wider end of the stopper 

is placed flush with the end of the connector. The connector containing the rubber stopper and bar 

assembly is then placed into the other end of the large connector. The tapped end of the bar is 

inserted into the large rubber stopper. The section of PVC pipe (E) is then placed into the other end 

of this assembly. 

Modifications are needed for several of the components to filcilitate assembly and disassembly. 

The holes in the rubber stoppers nmst be enlarged to accommodate the reinforcing bar, and the PVC 

pipe is slit to ease removal of the completed specimen. The pipe is taped closed prior to assembly. 

The completed mold assembly is then inserted into the recesses in the top and bottom wooden 

pieces (F) of the fixture. The entire fixture assembly is tightened by using the wingnuts and the 

threaded rods (G). The tension in the rods is adjusted to control the position of the bar. 

Materials 

Reiriforcing steel- Four different types of reinforcing steel are used. The hot-rolled regnlar 

reinforcing steel meets the requirements for ASTM A 615 Grade 40 reinforcement. The Thermex 

treated regnlar reinforcing steel is quenched and tempered innnediately after the rolling process is 

completed and meets the requirements for ASTM A 615 Grade 60 reinforcement. The corrosion 

resistant reinforcing steels contain small percentages of copper, chromium, and phosphorons. The 

Thermex treated corrosion resistant steel is quenched and tempered innnediately after the rolling 

process and the hot-rolled corrosion resistant steel is not. 

The recommended, actual, and allowable percentages for the three microalloying elements 

in the corrosion resistant steel are summarized in Table 1. The microalloying does not meet the 

current ASTM A 615 specification because the recommended maximum percentage of phosphorous 

for the corrosion-resistant steel, 0.12%, exceeds the maxinnnn percentage presently allowed in 

conventional reinforcing steel, 0.06%. The current ASTM A 615 specification does not restrict the 
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amount of copper and chromium. 

The actual amounts of the three alloying elements in the heat of corrosion-resistant steel used 

for the Phase I bars are documented in a March 9, 1994 Chemical and Physical Test Report provided 

by the Florida Steel Corporation and are less than the maximums reconnnended by Tata Steel The 

amount of copper is close to the recommended maximum, 0.44% compared to 0.50%. The amounts 

of chromium and phosphorous are significantly less than the reconnnended maximums, 0.53% 

compared to 0.80% for chromium, and 0.08% compared to 0.12% for phosphorous. 

Mortar- The mortar was made with Type I portland cement and graded Ottawa sand meeting 

the requirements of AS1M C 778. The mortar was proportioned to have a water-cement ratio of 0.5 

and a sand to cement ratio of2.0 by weight. These proportions were chosen to represent the mortar 

constituent of a 4000 psi concrete mix.. 

Epoxy - The liquid epoxy coating used was Scotchkote 306 manufactured by the 3M 

Company. 

Water - Deionized water was used to minimize the effect of any impurities in tap water, 

primarily chlorides. 

Specimen fabrication 

The mortar was mixed by hand and placed in the specimen mold in three layers. Each layer 

was rodded 25 times with a 300 nnnlong, 3 nnn diameter "mini" rod made from a coat/pants hanger 

and vibrated for 15 secondsonvibratingtable at a frequency of60 Hz and an amplitude of0.15 mm. 

The specimens were initially cured by covering the PVC molds and the wood fixture with water 

saturated towels. After 24 hours, the PVC molds were taken out of the fixtures and disassembled. 

The specimens were then cured for 13 days in saturated lime water. After curing for a total of 14 

days, the bars were in a passive (non-corroding) condition. 

Test procedures 

Two tests, the corrosion potential and macrocell tests, were performed. Both are rapid 

corrosion tests and were performed to evaluate the corrosion resistance of the four steels. 

The corrosion potential test was performed to determine the relative tendency of the steels 
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to corrode. A schematic of the test configuration is shown in Fig. 3. Two plastic containers were 

used in the test. In one container, a single specimen was exposed to either a deicer or a simulated 

pore solution. A saturated calomel reference electrode was placed in a concentrated KCl solution 

(15 g ofKCI per 100 cc of water) in the other container. A salt bridge was placed between the two 

containers to provide for an ionic path. Both containers were sealed to prevent evaporation and 

carbon dioxide from affecting the pore solution. Holes were provided in the container lids for the 

wire from the test specimen, the salt bridge, and the wire from saturated calomel electrode. 

The time-to-corrosion or macrocell test was performed to detennine the time to initiation of 

corrosion and the corrosion rate of the steels. A schematic of the test configuration is shown in Fig. 

4. Two plastic containers were used: one for the anode and one for the cathode. Three specimens 

were placed in each container along with mortar :fill One set of specimens setved as the cathode and 

was exposed to a pore solution. The other set of specimens setved as the anode and was exposed 

to a deicer solution. A salt bridge was used to provide an ionic path between the two containers. 

Both containers were sealed for the same reasons as for the potential tests. The three specimens were 

positioned to maintain at least 25 mm clearance between them. The specimens were wired in parallel 

To provide oxygen to the cathode, compressed air was bubbled through a saturated solution ofNaOH 

to remove C02 to prevent carbonation. Water was added as needed to compensate for evaporation. 

Holes were provided in the container lids for the wires from the test specimens, the salt bridge, and 

the oxygen supply. The specimens in the two containers were electrically connected across a I 0 ohm 

resistor. 

In both tests, five litre plastic containers were used to hold the test specimens, mortar fill, 

deicers, pore solutions, and saturated KCl solutions. Pore solution was used to simulate the 

environment found in hardened concrete. A mortar fill was used as a buffer and to simulate the 

relative amount of cementitious material in an actual concrete structure. The mortar fill used the 

same mortar mixture as the specimens. The fill was cast in 19 mm metal cookie sheets at the same 

time as the specimens. The mortar sheets were broken into pieces of 19 to 38 mm nominal size prior 

to use. 
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Salt bridges were used to make an ionic path between containers. The procedure for making 

the salt bridges is descnoed by Martinez et a1. ( 1990 ). The materials used to make four 900 mm long 

salt bridges consist of4.5 g of agar, 30 g of potassium chloride (KCl), 100 ml of distilled water, and 

3.6 m of plastic tubing with an inside diameter of 5 mm. The agar and KCI were first dissolved in the 

distilled water. The mixture was then poured into sections of the tubing, and the filled sections were 

innnersed in boiling water for 20 minutes or until the mixture gels. The completed salt bridges were 

then cooled prior to use. The gel in the tubing needs to be continuous, without air bubbles, for an 

ionic path to be established and maintained. 

The composition of the deicer and pore solutions used are summarized in Table 2. The 

chemical composition of the pore solution is based on that used by Martinez et a1 ( 1990). The pore 

solution used consists of 18.81 g ofKOH and 18.87 g ofNaOH per litre of deionized water. Due 

to an error in preparing the pore solution, the first macrocell tests were performed with pore solutions 

deficient in the amount ofNaOH. Only 8.87 g ofNaOH was used, compared to the 18.87 g that 

should have been nsed. This error was detected and corrected shortly after the macrocell tests 

started. 

The deicer used in the Phase I evaluation is NaCl Laboratory grade NaCI was used initially. 

Shortly after the tests were started, a commercial grade ofN aCI was substituted for the laboratory 

grade. The commercial grade was considered to be pure enough. The test concentration was set at 

15% by weight which provides a 6.04 molal ion concentration. The molal ion concentration is 

important in that the ice melting capacity of a deicer is controlled by the ion concentration. 

Expressing the concentration in this way allows different deicers to be compared using a common 

frame of reference. The 6.04 m ion deicer concentration was made using 176.5 g ofNaCI per liter 

of water. A 6.04 m ion concentration of deicer in a simulated pore solution consisted of 18.81 g of 

KOH and 18.87 g ofNaOH along with 176.5 g ofNaClperlitre of deionized water. 

After 14 days of curing, the specimens were removed from the saturated lime water. 

Compressed air was used to thoroughly dry the tapped end of the bar. A 16 AWG wire was 

connected to the bar with a screw placed in the tapped end of the bar. The connection was then 
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covered with epoxy to prevent corrosion from occuning at the connection point. The test specimens 

were placed bar end up in a container and fill material was added. The specimens were positioned 

in the containers so that the top of the mortar cylinders remained 25 mm above the surface of the 

deicer or pore solution. This was done to prevent solutions from entering the specimen from the top 

at the interface between the epoxy band and the mortar. 

Corrosion potential tests - The corrosion potential tests were ruu for 40 days, with voltages 

between the specimen and the reference electrode measured daily. The readings constitute the 

corrosion potential for the steel being tested in a specific deicer or pore solution. 

The corrosion potential tests were performed under three different test conditions, which are 

summarized in Table 3. In test condition A, the specimens were exposed to a 6.04 mion (15%) 

NaCl solution. In test condition B, the specimens were exposed to a 6. 04 m ion ( 15%) concentration 

ofNaCl in a simulated pore solution. In test condition C, the specimens were exposed to a simulated 

pore solution. 

Macrocell tests- The macrocell tests were ruu for 100 days. The voltage drop across the 10 

ohm resistor was measured and recorded on a daily basis. The measured voltage drop and the actual 

resistance of the resistor were used to calculate the corrosion current. The corrosion current and the 

area of the anode are used to calculate a corrosion rate based on Faraday's Law (Jones 1992). 

The macrocell tests were performed under three different test conditions which are 

summarized in Table 4. In test condition A, the cathode specimens were exposed to a simulated pore 

solution that was deficient in the amount ofNaOH, and the anode specimens were exposed to a 6.04 

mion (15%) NaCl solution. In test condition B, the cathode specimens were exposed to a simulated 

pore solution, and the anode specimens were exposed to a 6.04 m ion (15%) NaCl solution. In test 

condition C, the cathode specimens were exposed to the simulated pore solution, and the anode 

specimens were exposed to a 6.04 mion (15%) concentration ofNaCl in simulated pore solution. 
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RESULTS AND EVALUATION 

The combination of the high water-cement ratio of the mortar, 0.5, the low mortar cover over 

the reinforcing bar, 7 mm, and the deicer concentration used, 6.04 m ion concentration ofNaCl, 

creates an environment at the steel surlilce that is significantly more corrosive than in most reinforced 

concrete structures. In addition, the high concentration of chlorides at the steel surface is reached 

in a relatively short time, 1 to 3 days. As a result, the potentials and corrosion rates determined in 

these tests are not representative of those that would occur in a typical structure exposed to deicing 

chemicals or a marine environment. 

Corrosion potential tests 

The results of the corrosion potential tests are illustrated in Figs. 5 through 20. The tests 

started immediately after the end of the 14 day curing period. The corrosion potentials are all given 

with respect to a saturated calomel electrode. 

The results fur the H, T, CRSH, and CRST specimens exposed to a 6. 04 m ion concentration 

ofNaCl, test condition A, are illustrated in Figs. 5 through 8. At the end of 40 days, the potentials 

fur the H specimens are between -0.550 and -0.600 volts, the potentials for the T specimens are all 

about -0.575 volts, the potentials fur the CRSH specimens are between -0.500 and -0.575 volts, and 

the potentials for the CRST specimens are between -0.525 and -0.575 volts. A considerable amount 

of scatter is present in the data for the CRSH and CRST specimens. 

The average corrosion potentials for the four steels when exposed to test condition A are 

illustrated in Fig. 9. There does not appear to be any significant difference in the average corrosion 

potentials for the four steels. 

The results for the H and CRST specimens exposed to a 6. 04 m ion concentration ofNaCl 

in a simulated pore solution, test condition B, are illustrated in Figs. 10 and 11, respectively. At the 

end of 40 days, the potentials are about -0.525 volts for the H specimens and are between -0.400 and 

-0.575 volts for the CRST specimens. 

The average corrosion potentials fur the two steels exposed to test condition B are illustrated 

in Fig. 12. During the initial stages of the tests, the H specimens exln"bited a more positive potential 
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than the CRST specimens. However, near the end of the tests, the corrosion potential of the H 

specimens shifted dramatically. This resulted in the CRST specimens having a slightly more positive 

potential at the end of 40 days. 

The results for the T, CRSH, and CRST specimens exposed to a simulated pore solution, test 

condition C, are illustrated in Figs. 13 through 15. This test condition was used to evaluate the 

corrosion potential of the specimens in a noncorrosive environment. At the end of 40 days the 

potentials for the T specimens are about -0.450 volts, the potentials for the CRSH specimens are 

between -0.225 and -0.275 volts, and the potentials for the CRST specimens are about -0.475 volts. 

The average corrosion potentials for the three steels exposed to test condition C are illustrated 

in Fig. 16. The T and CRST specimens have about the same potential, with the CRSH specimens 

having a more positive potential for the entire 40 day test period. 

The average corrosion potentials for H specimens exposed to a 6.04 m ion concentration of 

NaCl and a 6.04 m ion concentration ofNaCl in simulated pore solution are compared in Fig. 17. 

The specimens exposed to the NaCI in simulated pore solution have a less negative potential than 

those specimens exposed to the NaCl alone. 

The average corrosion potentials for T specimens exposed to a 6. 04 m ion concentration of 

NaCl and a simulated pore solution are compared in Fig. 18. The specimens exposed to a simulated 

pore solution have a less negative potential than those specimens exposed to the NaCl in a simulated 

pore solution. 

The average corrosion potentials for CRSH specimens exposed to a 6. 04 m ion concentration 

ofNaCl and a simulated pore solution are compared in Fig. 19. Once again the specimens exposed 

to the simulated pore solution have a less negative potential than those specimens exposed to the 

NaCI in simulated pore solution. 

The average corrosion potentials for CRST specimens exposed to a 6.04 m ion concentration 

ofNaCI, a 6.04 m ion concentration ofNaCI in a simulated pore solution, and a simulated pore 

solution are compared in Fig. 20. fu this case, the specimens exposed to the simulated pore solution 

have a less negative potential than those specimens exposed to NaCI in simulated pore solution, 



13 

which, in tum, have a less negative potential than those specimens exposed to only NaCl 

Macrocell tests 

The results of the macrocell tests are illustrated in F~gs. 21 through 37. As with the corrosion 

potential tests, the macrocell tests started immediately after the end of the 14 day curing period. The 

corrosion rates are given in 11m per year (25.4 11m per year= 0.001 in. per year). 

The results for the H, T, CRSH, and CRST specimens exposed to a simulated pore solution 

that was deficient in the amount ofNaOH at the cathode and a 6. 04 m ion concentration ofNaCl at 

the anode, test condition A, are illnstrated in Figs. 21 through 24. For the H specimens, the corrosion 

rate at the end of 100 days is 12 to 14 11m per year. For the T specimens, the corrosion rate at the 

end oflOO days is 10 to 12 f1mperyear. For the CRSH specimens, the corrosion rates forthetwo 

specimens at the end of 100 days are significantly different. One specimen has a rate of about 5 flm 

per year, while the other specimen has a rate of about 16 f1m per year, more than three times as much. 

For the CRST specimens, the corrosion rate at the end oflOO days is 11 to 15 f1mperyear. 

The average corrosion rates fur the four steels subjected to test condition A are illustrated in 

Fig. 25. For this particnlar test con1iguration the CRSH specimens exlnOit the lowest corrosion rate. 

The T specimens exhibit the next lowest rate followed by the CRST specimens. The H specimens 

exhibit the highest corrosion rate. However, the diffilrence in the average corrosion rates for the four 

steels does not appear to be significant. 

The resnlts for H, T, CRSH, and CRST specimens exposed to a simulated pore solution at 

the cathode and a 6.04 m ion concentration ofNaCl at the anode, test condition B, are illustrated in 

Figs. 26 through 29. For the H specimens, the corrosion rate at the end of 100 days ranges between 

15 and 20 11m per year. For the T specimens, the corrosion rate at the end of 100 days is between 

10 and 12 11m per year. For the CRSH specimens, the corrosion rate at the end of 100 days is 

between 14 and 16 ftmperyear. For the CRST specimens, the rates the rates for the two specimens 

at the end of 100 days are someWhat different. For one specimen, the rate is about 11 flm per year, 

while for the other specimen, the rate is slightly higher, at 15 to 16 11m per year. 

The average corrosion rates for the four steels exposed to test condition B are illustrated in 
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Fig. 30. For this particular test cotrliguration the T specimens exln"bit the lowest corrosion rate. The 

CRST specimens exhibit the next lowest rate followed by the CRSH specimens. The H specimens 

once again exln"bit the highest corrosion rate. The difference in average corrosion rates is more 

pronounced. 

The results for H and CRST specimens exposed to a simulated pore solution at the cathode 

and a 6.04 m ion concentration ofNaCl in sinmlated pore solution at the anode, test condition C, are 

illustrated in Figs. 31 and 32. The rates for the two H specimens are significantly different. The rate 

for one of the specimens is highly erratic and ranges from essentially no corrosion to as high as 21 

IIDl per year during the course of the test. The rate for the other specimen is more consistent, with 

the corrosion rate at the end of 100 days between 12 and 14 11m per year. The rates for the two 

CRST specimens are somewhat different. For one specimen, the rate is about 3 11m per year, while 

for the other specimen, the rate is 8 to 10 11m per year, about three times as much. 

The average corrosion rates for the two steels subjected to test condition C are illustrated in 

Fig. 33. In general, the CRST specimens exln"bit a lower corrosion rate than the H specimens. 

The average corrosion rates for H specimens exposed to a simulated pore solution that is 

deficient in the amount ofNaOH at the cathode and a 6.04 mion concentration ofNaCl at the anode, 

test condition A; a simulated pore solution at the cathode and a 6. 04 m ion concentration ofNaCl 

at the anode, test condition B; and a simulated pore solution at the cathode and a 6.04 m ion 

concentration ofNaCl in a simulated pore solution at the anode, test condition C, are compared in 

Fig. 34. In general, the specimens exposed to test condition C exhibit the lowest corrosion rate. The 

specimens exposed to test condition A exhibit the next lowest corrosion rate. The specimens exposed 

to test condition B exhibit the highest corrosion rate. Although the results for test condition C are 

fairly erratic, there is enough difference in the average corrosion rates to be able to make a 

comparison. 

The average corrosion rates for T specimens exposed to a simulated pore solution that is 

deficient in the amount ofNaOH at the cathode and a 6.04 mion concentration ofNaCl at the anode, 

test condition A, and a simulated pore solution at the cathode and a 6. 04 m ion concentration ofNaCI 
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at the anode, test condition B, are compared in Fig. 35. The specimens exposed to test condition B 

appear to have the lower average corrosion rate. However, the results are somewhat erratic with no 

significant difference between the two test conditions. 

The average corrosion rates for CRSH specimens exposed to a simulated pore solution that 

is deficient in the amount ofNaOH at the cathode and a 6.04 m ion concentration ofNaCl at the 

anode, test condition A, and a simulated pore solution at the cathode and a 6.04 m ion concentration 

ofNaCI at the anode, test condition B, are compared in Fig. 36. Once again the specimens exposed 

to test condition B appear to have the lower average corrosion rate. Although the results are 

somewhat erratic, the difference between the two test conditions is fairly constant. 

The average corrosion rates for CRST specimens exposed to a simulated pore solution that 

is deficient in the amount ofNaOH at the cathode and a 6.04 m ion concentration ofNaCl at the 

anode, test condition A; a simulated pore solution at the cathode and a 6. 04 m ion concentration of 

NaCI at the anode, test condition B; and a simulated pore solution at the cathode and a 6. 04 m ion 

concentration ofNaCI in simulated pore solution at the anode, test condition C, are compared in Fig. 

37. The specimens exposed to test condition C exln"bit the lowest corrosion rate. Although the 

specimens exposed to test conditions A and B are too close to accurately determine which have the 

higher rate, the corrosion rate for both conditions is higher than for test condition C. 

Although the erratic results for some of the specimens make it difficult to be certain, it appears 

that differences in solutions at the anode and cathode influence the corrosion rates. When the 

difference in pH of the solutions decreases, the corrosion rates are lower and the difference in 

corrosion rates for the four steels is reduced. Since the cathode solution for test condition A does 

not contain as much NaOH as the cathode solution for test condition B and the anode solution for 

both test conditions is the same, a larger difference in pH results for test condition B. The corrosion 

rates for test condition B are generally higher and have a more pronounced difference in rates for the 

four steels. In test condition C, a simulated pore solution is added to the anode solution. As a result 

of this addition, the difference in pH is less than test conditions A and B and the corrosion rates for 

test condition C are lower. 
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Evaluation of Specimen Fabrication 

The results of many of the macrocell tests are highly erratic, with an excessive amount of 

scatter in the test data. This led to a close visual examination of the steel reinforcing bars after the 

conclusion of the tests. The visual inspection consisted of dismantling the test set up and physically 

removing the mortar from the steel reinforcing bars. The examination revealed that the macrocell 

tests were not performing as intended. Instead of corrosion taking place on the portion of the steel 

reinforcing bar embedded in the mortar cylinder, corrosion was taking place underneath the epoxy 

band. 

As a result of this finding, some revisions were instituted in the specimen fabrication 

procednre for the specimens that follow those descnoed in this report. A different liquid epoxy 

coating was used (Morton Powder Coatings). The epoxy was also applied in two coats. After each 

coat was applied, the specimens were heated in an oven for 24 hours to bake the coating onto the bar 

and improve the bond between the coating and the bar, as well as between the two coats. The results 

obtained with the improved fabrication procedure will be presented in a later report. 

SUMMARY AND CONCLUSIONS 

This report descnoes the initial effurts in the first phase of a five phase study to evaluate a 

corrosion-resistant steel for reinforcing bars. Rapid corrosion potential and rapid time-to-corrosion 

(macrocell) tests are used. The test specimen consists of a No. 5 reinforcing bar embedded in a 30 

mm diameter, I 02 mm long cylinder of mortar. The mortar is made using portland cement, graded 

Ottawa sand, and deionized water. Four diflerent steel types are evaluated: a hot rolled regular steel, 

H, a Thennex treated (quenched and tempered) regular steel, T, a hot-rolled corrosion resistant steel, 

CRSH, and a Thermex treated corrosion resistant steel, CRST. 

Corrosion potential tests are performed to determine the tendency of a steel to corrode. The 

results for these tests are fairly consistent, with little scatter. There is no significant difference in 

potentials for the four steels. The use of different test solutions did not influence the potential of any 

of the four steels. 
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The macrocell tests are pelformed to determine the time-to-corrosion and the corrosion rates. 

The results for some of these tests are not consistent and show considerable scatter. The macrocell 

test is sensitive to the quality of specimen fabrication. The macrocell tests did not perform as 

intended; most of the corrosion occurred under the epoxy band and not on the portion of the steel 

bar embedded in the mortar. Therefore, it is difficult to determine for certain Which steel has the best 

corrosion resistance. However, the H specimens consistently exluoited the highest corrosion rate. 

The test solutions used at the anode and cathode in the macrocell tests appear to influence the 

corrosion rate and the difference between the rates for the four steels. When the difference in pH of 

the anode and cathode solutions is decreased, the corrosion rates are reduced and the difference 

between the rates for the four steels is more pronounced. Specimens exposed to a simulated pore 

solution at the cathode and a 6.04 m NaCl concentration in a simulated pore solution at the anode 

generally have the lowest corrosion rates, While specimens exposed to a simulated pore solution at 

the cathode and a 6.04 m NaCl solution at the anode have the highest corrosion rates. 

Both the potential and macrocell tests use a 6.04 m concentration ofNaCl in the deicer 

solution, a high water-cement ratio of the mortar, 0. 50, and a low mortar cover over the reinforcing 

bar, 7 mm As a result, a high concentration of chlorides at the steel surface is reached in a relatively 

short time, 1 to 3 days. This creates an environment at the steel surface that is signjficantly more 

corrosive than in an actual reinforced concrete structure throughout its service life. Therefore, the 

potentials and corrosion rates determined in these tests are not representative of those that would 

occur in a typical structure exposed to deicing chemicals or a marine environment. 

FUTURE WORK 

As discussed in previous sections, this report descnoes the initial portion of the :first phase of 

a five phase study to evaluate a corrosion-resistant steel for reinforcing bars. The results for the 

balance of the study will be presented in later reports. The remaining work includes completion of 

Phase I, along with bench scale tests, potential and macrocell tests to evaluate the effect of different 

deicers and deicer concentrations, and mechanical property tests. The additional work in Phase I 
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includes an evaluation of the effects of changing the ratio of the number of cathode to anode 

specimens from 3:3 to 2:1. 

Although some refinements have been made to the specimen fabrication procedures, further 

enhancements may be possible. Special care should be exercised in the application of the epoxy band. 

Some enhancements to the specimen curing procedure may also be possible. These items should be 

pursued in a future study. Special care should also be exercised in the oversight of the corrosion 

potential and macrocell tests. 

The actual amounts of phosphorous and chrominm in the corrosion-resistant steel are 

significantly less than the maximums recommended by Tata Steel (199la, 199lb). Future work 

should investigate the corrosion resistance of steel reinforcing bars made with phosphorous and 

chrominm alloying levels at or near the recommended maximums. 
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Table 1. Summary of corrosion-resistant steel chemistry 

Element Recommended AS1MA615 Actual Percentage 
Maximum Percentage Allowable Percentage 

Copper 0.50 NA 0.44 

Chromium 0.80 NA 0.53 

Phosphorous 0.12 0.06 0.08 

Table 2. Quantities of chemicals in test solutions in grams per liter of deionized water 

Chemical Test Solution 

Deficient Pore Pore 6.04m 6.04 m (15%) NaCl in 
Solution Solution (15%)NaCl Simulated Pore 

Solution Solution 

NaCl 0 0 176.5 176.5 

KOH 18.81 18.81 0 18.81 

NaOH 7.87* 17.87 0 17.87 

* Insufficient amount ofNaOH used in error 

Table 3. Summary of potential test conditions 

Test Solution Steels Evaluated 

A 6. 04 m ( 15%) NaCl Solution H, T, CRSH, CRST 

B 6.04 m (15%) NaCl in Simulated Pore Solution H, CRST 

c Pore Solution T, CRSH, CRST 
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Table 4. Summary ofmacrocell test conditions 

Test Cathode Solntion Anode Solntion Steels Evalnated 

A Deficient Pore 6.04 m ion (15%) NaCl H, T, CRSH, CRST 
So Inti on Solntion 

B Pore Solntion 6.04 mion (15%) NaCl H, T, CRSH ,CRST 
Solntion 

c Pore Solution 6.04 m ion (15%) NaCI in H,CRST 
Simulated Pore Solution 
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to a simulated pore solution 
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Fig. 21 Corrosion rate versus time for macrocell test specimens with hot-rolled regular steel, H, subjected 
to a simulated pore solution deficient in NaOH, cathode, and a 6.04 m ion (15%) solution ofNaCI, 
anode (25.4 J.1D1 per year= 1 mil per year= 0.001 in. per year) 
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Fig. 22 Corrosion rate versus time for macrocell test specimens with Thermex treated regular steel, T, 
subjected to a simulated pore solution deficient in NaOH, cathode, and a 6.04 mion (15%) solution 
ofNaCI, anode (25.4!lmperyear= 1 mil per year= 0.001 in. per year) 
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Fig. 23 Corrosion rate versus time for macrocell test specimens with hot-rolled corrosion resistant steel, 
CRSH, subjected to a simulated pore solution deficient ind NaOH, cathode, and a 6.04 m ion (15%) 
solution ofNaCl, anode (25.4 Jlmperyear = 1 mil per year= 0.001 in. per year) 
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Fig. 24 Corrosion rate versus time for macrocell test specimens with Thermex treated corrosion resistant 
steel, CRST, subjected to a simulated pore solution deficient in NaOH, cathode, and a 6.04 m ion 
(15%) solution ofNaCl, anode (25.4 Jlmperyear= 1 mil per year= 0.001 in. per year) 
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Fig. 25 Average corrosion rate versus time for macrocell test speciments with hot-rolled and Thermex 
treated regular steels, Hand T, and hot-rolled and Thermex treated corrosion resistant steels, CRSH 
and CRST, subjected to sinmlated pore solution deficient in NaOH, cathode, and a 6.04 m ion 
(15%) solution ofNaCl, anode (25.4 f1II1 per year= 1 mil per year= 0.001 in. per year) 
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Fig. 26 Corrosion rate versus time for macrocell test specimens with hot-rolled regular steel, H, subjected 
to a sinmlated pore solution, cathode, and a 6.04mion (15%) solution ofNaCl, anode (25.4 11m 
per year= I mil per year= 0.001 in. per year) 
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Fig. 27 Corrosion rate versus time for macrocell test specimens with Thermex treated regular steel, T, 
subjected to a simulated pore solution, cathode, and a 6.04 m ion (15%) solution ofNaCI, anode 
(25.4 11m per year= 1 mil per year= 0.001 in. per year) 
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Fig. 28 Corrosion rate versus time for macrocell test specimens with hot-rolled corrosion resistant steel, 
CRSH, subjected to a simulated pore solution, cathode, and a 6.04 mion (15%) solution ofNaCI, 
anode (25.4 11m per year= 1 mil per year= 0.001 in. per year) 
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Fig. 31 Corrosion rate versus time for macrocell test specimens with hot-rolled regular stee~ H, subjected 
to a simulated pore solution, cathode, and a 6.04 m ion (15%) concentration ofNaCl in a simulated 
pore solution, anode (25.4 JUD.peryear= 1 mil per year= 0.001 in. per year) 
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Fig. 32 Corrosionn rate versus time for macrocell test specimens with Therrnex treated corrosion resistant 
stee~ CRST, subjected to a simulated pore solution, cathode, and a 6.04 m ion ( 15%) concentration 
ofNaCl in a simulated pore solution, anode (25.4 JUD. per year= 1 mil per year= 0.001 in. per year) 
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Fig. 33 Average corrosion rate versus time for macrocell test specimens with hot-rolled regular steel, H, 
and Thermex treated corrosion resistant steel, CRST, subjected to a simulated pore solution, 
cathode, and a 6.04 mion (15%) concentration ofNaClin a simulated pore solution, anode (25.4 
11m per year= 1 mil per year= 0.001 in. per year) 
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Fig. 34 Average corrosion rate versus time for macrocell test specimens with hot-rolled regular steel, H, 
subjected to (A) a simulated pore solution deficient in NaOH, cathode, and a 6.04 m ion (15%) 
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Fig. 35 Average corrosion rate versus time fur macrocell test specimens with Thennex treated regular steel, 
T, subjected to (A) a simulated pore solution deficient in NaOH, cathode, and a 6.04 mion (15%) 
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Fig. 36 Average corrosion rate versus time for macrocell test specimens with hot-rolled corrosion resistant 
steel, CRSH, subjected to (A) a simulated pore solution deficient in NaOH, cathode, and a 6.04 m 
ion (15%) solution ofNaCl, anode, and (B) a simulated pore solution, cathode, and a 6.04 mion 
(15%) solutionofNaCl, anode (25.4 f.UD.per year= 1 mil per year= 0.001 in. per year) 
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Fig. 37 Average corrosion rate versus time for macrocell test specimens with Thennex treated corrosion 
resistant steel, CRST, subjected to (A) a simulated pore solution deficient in NaOH, cathode, and 
a 6.04 mion (15%) solution ofNaCl, anode, (B) a simulated pore solution, cathode, and a 6.04 m 
ion (15%) solution ofNaCl, anode, and (C) a simulated pore solution, cathode, and a 6.04mion 
(15%) concentration ofNaCl in a simulated pore solution, anode (25.4 Jlffi per year= 1 mil per year 
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