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ABSTRACT

The shear strength of continuous lightly reinforced concrete T-beams is studied. Six two-
span T-beams with and without web reinforcement are tested. The primary variables are
longitudinal reinforcement ratio (0.75% and 1.0%) and nominal stirrup strength (0 to 82
psi). The test results are analyzed and compared with the shear design provisions of "Building
Code Requirements for Reinforced Concrete (AC! 318-89)" and predictions of other
investigators, including predictions obtained using the modified compression field theory.

The tests indicate that ACI 318-89 overpredicts the concrete shear capacity of lightly
reinforced beams without shear reinforcement. Little difference exists beiween shear cracking
stresses in the negative and positive moment regions for beams in the current study. For both
the negative and pesitive moment regions, the stirrup coniribution fo shear strength exceeds the
value predicted by ACI 318-89. Sfirrup contribution to shear strength increases with
increasing flexural reinforcement ratio. Overali, the AC! 318-89 shear provisions are
conservative for the beams tested in the current study. Two procedures based on the modified
compression field theory are also conservative. AC| 318-89 better predicts the nominal shear
strength of the beams in the current study than either of the modified compression field theory

procedures.
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Chapter 1
INTRODUCTION

1.1 General

In spite of a large volume of experimental research devoted to the prediction of the shear
capacity of reinforced concrete beams, much remains to be learned about the shear behavior of
these members. The nature of shear failure of flexural members is such that it occurs
suddenly, with little indication of distress, and is accompanied by a rapid reduction in the load
carrying capacity of the member. This is of particular concern because the present ACI
Building Code (3) shear design provisions appear to be unconservative for lightly reinforced
flexural members, especially in negative moment regions. Lightly reinforced flexural
members are widely used in practice, and provide the most economical section i most cases.
Thus, a more reliable way of predicting the shear strength of such beams is necessary to insure
adequate safety when these members are used.

The AC! Building Code design equations for reinforced congrete beams subjected to shear
and flexure are primarily based on tests of simply supported beams having flexural
reinforcement ratios above 1% (12,13,19,24,32,33,41)., However, previcus research
(11,14,27,28,34,35,36,37,41) has shown that the shear cracking load predicted by these
equations is unconservative for beams having longitudinal reinforcement ratios, pyw, less than
1%. Recent research (38,39.40) on lightly reinforced T-beams, with flexural reinforcement
ratios less than 1%, provides evidence that concréte shear capacity is lower and shear
reinforcement is less effective in negative moment regions than in positive moment regions.

However, the AC1 equations make no adjustments for the design of continuous beams in negative

moment regions, based on the assumption that moment region has no effect on shear strength.
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These deficiencies are accounted for, to some extent, by the ACI equations because they
underestimate the contribution of shear reinforcement and require its use in beams where the
shear load exceeds one-half of the design shear capacity of the concrete. The use of these
equations, however, also results in non-uniform margins of safety in shear for structures
designed with different percentages of flexural reinforcement.

The purpose of this research is to study the shear sirength of continuous, lightly
reinforced T-beams and the effecis of flexural reinforcement ratic and degree of shear
reinforcement on shear capacity. The cracking and ultimate shears are compared with the shear
provisions of ACI Building Code (3) and the predictive equations of other investigators. The
predicted shear response of beams obtained using the modified compression field theory
(18,21,22,23,31,43) is compared with experimental results. The safety of currant design

procedurss is investigated.

1.2 Background

in a reinforced concrete beam, flexural and shear stresses give rise‘ to principal tensile
stresses oriented at some angle with the longitudinal axis of the beam. The effects of shear are
greatest near supports and in regions of concentrated load. As the load increases, cracks begin to
‘appear in a direction perpendicular to the local principal tensile siresses. In regions where
shear stress is low, the cracks form perpendicular to the axis of the beam. in regions of high
shear stress, the cracks form and propagate at a lower angle and are often referred to as
diagonal tension or shear cracks. Before the formation of shear cracks, most of the shear is
carried by the concrete. Once diagonal tension cracks forrh. a redistribution of internal force
takes place and the load is carried by five different mechanisms, as noted by ACI-ASCE

Committee 426 (5):
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1. Shear Stress: Shear transfer by concrete shear stress occurs in uncracked members
or uncracked portions of members. Shear stress interacts with compressive and tensile
stresses producing principal siresses that may cause additional diagonal cracking or concrete
crushing.

2. Interface Shear Transfer: Interface shear transfer across a plane involves slippage
along a preexisting crack. In monolithic concrete, a number of diagonal cracks may form,
resulting in arch action and interface shear transfer across the crack planes. Other terms used
for this mechanism include aggregate interliock, surface roughness shear transfer and shear
friction.

3. Dowel Shear: This is the shearing displacement resisted by the longitudinal steel
when it is intersected by a shear crack. This causes tension in the concrete surrounding the
longitudinal steel, producing cracks along the stesl.

4, Arch Action: Arch action is mainly effective in deep beams where it transfers a
vertical concentrated force to a reaction, reducing the contribution of other types of shear
transfer.

5. Shear Reinforcement: Shear reinforcing steel aids in carrying additional shear force
after shear cracking; it contains the diagonal crack, thus delaying deep penetration of the
diagonal crack into the compression zone; and slows down the decrease in interface shear
transfer. I also helps to confine the longitudinat steel, thus increasing the shear contribution
of the longitudinal steel by dowel action.

A systematic study by ACI-ASCE Committee 326 (4) of more than 440 tests on beams
without web reinforcement indicated that the concrete shear capacity of beams primarily
depends on the percentage of flexural reinforcement, py, the shear span-io-depth ratio, a/d,
and the concrete compressive strength, fs, with other variables, like aggregate interlock and

shear friction, playing a minor role in concrete shear strength. The present ACI Building Code
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(3) equations for concrete shear capacity, which were first proposed by ACI-ASCE Committee
326 (4), were based on research done on simply supported beams having flexural
reinforcement, py, above 1%. However,‘studies (11,14,27,28,34,35,36,37,41) have shown
that the AC! shear equations overestimate the concrete shear capacity of beams having flexural
reinforcement below 1%. However, since these studies (11,14,27,28,34,35,36,37,41) have
been carried out on simply supported beams, it is not clear whether they apply to continuous
beams. Recent research (38,39,40) on the negative moment region shear strength of lightly
reinforced T-beams has shown a lower concrete shear capacity and stirrup reinforcement
effectiveness in negative moment regions than in positive moment regions. This lower negative
moment region shear strength is felt to be caused by a smaller effective concrete section
resulting from cracking of the flanges and a lower bond sirength for negative flexural
reinforcement due to the top-bar effect. The T-beams in this research (38,39,40), however,
wera not truly continuous for negative bending, since they were loaded on a simple span with a 5
ft cantilever at one end to simulate continuity. In the case of truly continuous beams, with beam-
girder connections and formation of hinges in the negative moment regions due to yielding of
flexural reinforcement, it is unclear as fo how the beams would behave in shear.

As reported by ACI-ASCE Committee 426 (5), the addition of web reinforcement helps
in carrying additional shear force in three main ways: stirrups share a part of the shear force;
stirrups restrict the growth of diagonal shear cracks, helping to increase interface shear
transfer; and stirrups hold the flexural reinforcement in place, increasing the contribution of
dowel action to shear strength. The ACI shear design provisions, however, consider only the
direct stirrup contribution to shear strength and neglect the contributions of factors, like
aggregate interlock, interface shear transfer, the stirrup confining effect on longitudinal steel.
The AC! provisions for the stirrup contribution to shear strength assume that the critical

diagonal tension crack has a horizontal projection equal to the effective depth of the beam. In
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beams where the critical diagonal tension crack has a greater horizontal projection, it
intersects more stirrups then predicted by the ACI provisions and thus the shear strength is
higher. As a result, the ACI| shear equations often underestimate the contribution of web
reinforcement to the shear strength of beams (11,20,25,34,35).

To investigate these problems, an experimental study was conducted of the shear
behavior of two-span continuous T-beams, with varying amounts of flexural and shear

reinforcemant.

1.3 Qurrent Shear Design Provisions

The current design procedure employed by the AC! Building Code, ACI 318-89 (3), is to
calculate the factored shear force of a member and to provide sufficient concrete and steel

capacity to counter this load. This can be expressed as:

Vu s ¢(Ve + V) (1.1)

in which V, is the factored shear force at the section considered; V. is the nominal shear
strength provided by the concrete; V, is the nominal shear strength provided by the shear
reinforcement; and ¢ is the strength reduction factor, taken equal to 0.85,

The provisions in ACI 318 require the use of stirrups where the factored shear force,
Vy, exceeds one-half the design shear strength of concrete, ¢V The equations for concrete shear
capacity given by ACI 318 were established through experimental and analytical studies of
typical flexural members (4) and represent the concrete shear strength in terms of concrete
compressive strength, beam size, flexural reinforcement ratio, and the applied loads. The two

equations presented in ACl 318 are:



Vo = 2Yf hwd (1.2)
and
Ve = (1.9VFc + 2500pw%—q)bwd < 3.5YF, bw d (1.3)
13

in which f'; is the concrete compressive strength in psi; pw is the flexural reinforcement ratio
based on the web area, Ag/(byd); M, is the factored moment; d is the effective depth; and by, is
the width of the beam web. The values of Y. are limited to 100 psi unless minimum values of
shear reinforcement are used. My/(Vyd) provides a measure of the ratio of flexural tension to
shearing stresses. My/(Vyd) is synonymous with the shear span-to-depth ratio, a/d, of a
simply supported beam with point loads; for a general loading or beam configuration the
My/(Vyd) ratio gives an equivalent a/d ratio. Eqg. 1.2 is a simplified form of Eq. 1.3. But due to
the wide scatter of the data from which Eq. 1.3 was derived, it cannot be expected o give a true
representation of concrete shear capacity.

The AC! Building Code requires that shear reinforcement be added when the factored
shear, V, exceeds ¢Vo/2 for beams. The shear force contribution by stirrups, as predicted by

the ACI code, is:

Vs = Méﬁ’lﬂ (1.4)

in which s is the shear reinforcement spacing; Ay is the shear reinforcement area within a
length, s, of the beam; and fyy is the steel yield stress. Eq. 1.4 is based on the assumption that

the critical diagonal shear crack is inclined at an angle of about 45 degrees and intersects
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stirrups over a length equal to the effective depth of the beam. This makes Eg. 1.4
underestimate the stirrup shear contribution in cases where the critical diagonal shear crack is
flatter than 45 degrees. The AC! Building Code also specifies that the stirrup spacing, s, must
not exceed one-half the effective depth, or 24 inches, and that the shear reinforcement, Ay,

must be at least:

A = 50248 (1.5)
fvy

which corresponds to a nominal shear reinforcement stress, pyfyy = Ayfyy/bys = Vg/byd, of 50
psi. Ay in Eq. 1.5 must be multiplied by f'c/5000 < 3 for ¢ = 10000 psi to allow ¥ to exceed
100 psi in Eq. 1.2 and 1.3. Otherwise, Yf in Eq. 1.2 and 1.3 is limited to a maximum of 100

psi. The requirement for the higher value of Ay was added in 1989 (3).

1.4 Previous Research

Egs. 1.2 and 1.3, which were developed based on research (12,13,19,24,32,33,41)
done on beams with flexural reinforcement ratios greater than 1%, are unconservative for
beams without shear reinforcement, pyfyy=0, and values of py less than 1%
(11,14,27,28,34,35,36,37,41).

Kani (27) tested a series of simply supported rectangular beams with values of flexural
reinforcement ratio, pw, ranging from 0.5% to 2.8% and concrete compressive strength, f¢,
ranging from 2500 psi to 5000 psl. Shear span-to-effective depth ratios, a/d, ranged from 1
to 5. He observed that the shear strength equation in the ACI Building Code (3) overestimates

the actual strength of members with values of py below 1% and shear span-to-effective depth
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ratios above 2.5. He also noted that a change in f'« produces a negligible variation in shear
strength.

Mathey and Watstein {30) tested rectangular beams with a/d ratios ranging from 1.51
to 3.78 and values of pyw ranging from 0.47% fo 3.05%. They found that for a/d ratios greater
than 1.5 and values of py lower than 1%, the ACI (3) expressions for concrete shear strength
are unconservative in some cases by as much as 47%. They suggested an expression for the

nominal concrete shear siress, ve:

Ve = 3:1 ﬁ—Vd + 4000 py (1.6)

in which V/M is the ratio of shear to maximum bending moment in the shear span in which the
diagonal tension crack form.

Rajagopalan and Ferguson (37) combined their test data from 13 rectangular beams (10
without stirrups and 3 with stirrups), with a/d approximately equal to 4 and values of py
ranging from 0.25% to 1.73% and 27 other beams with values of py, less than 1.2%. They
verified that Eqgs. 1.2 and 1.3 overestimate the shear strength of concrete members. They also
observed that in two beams with stirrups, the AC! maximum stirrup spacing requirement of
d/2 was more restrictive than necessary. They proposed an expression for the nominal

concrete shear stress, vg!
Vo = Vo/(bwd) = (0.8 + 100pw) VFe < 2V (1.7

Zsutty (44) used dimensional and regression analyses of data from a large number of

tests performed by others and recommended a new shear equation to better predict the shear



strength of beams without stirrups:

1
ve = 59 (fe pw% )3 (1.8}

£q. 1.8 accurately accounts for concrete strength, flexural reinforcement ratio and
shear span-to-effective depth ratio for beams with a/d ratio greater than 2.5. However, Eq.
1.8 overpredicts v, for beams deeper than 12 in. Among others, Bazant and Kim (16) have
observed that the average shear siress at failure decreases with increasing beam depth. This
structural size effect is not modeled by Eq. 1.8.

Most of the studies cited above were concerned with rectangular cross sections; however,
other cross sections have been tested. Placas and Regan (36) measured the shear capacity of
sixty-three T, | and rectangular beams with a/d ratios ranging from 3.4 to 7.2 and py ranging
from 0.98% to 4.2%. To predict the shear capacity of these sections, they proposed a

semiempirical equation of the form:
s
Ver = 8 (fe 100 pw)3s (1.9)

They imposed an upper bound of 12(f‘c)§” o limit the effect of large values of py in T-
beams in which the main steel has only a limited effect on stress conditions in the web. Their
equation provides results similar to those of Eq. 1.8 for a/d approximately equal to 4.

Due to the extensive research (11,14,27,28,34,35,36,37,41) done on shear strength
of lightly reinforced concrete beams and the strong evidence for the lack of conservatism of Egs.

1.2 and 1.3 for low values of py, ACI-ASCE Committee 426 (6) proposed an expression for vg:
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fo S Vo = (0.8 + 120pw) Ve < 2.3YFo (1.10)

which is a modified version of the expression, £g. 1.7, presented by Rajagopalan and Ferguson
{37).

To investigate the feasibility of the use of Eq. 1.10, Batchelor and Kwun (14) tested 10
continucus and 4 simply supported beams, They also considered the test data for 262 additional
members. All beams had a shear span-to-depth ratio, a/d, greater than 2 and had no web
reinforcement. Based on their analysis, they proposed another, stili more conservative,

variation on Eg. 1.7.

ve = 1.10Vf; < (0.6 + 110pw) VFc < 225V (1.141)

in 1984, Bazant and Kim {17) introduced an expression for cracking shear based on

fracture mechanics concepis:

Ve = —10 Yow__[4F7 4+ 3000 2 (1.12)
A/1+ 004 4 (2)
da d

in which dy = maximum size aggregate.

With some sacrifice of simplicity, Eq. 1.12 Improves on the accuracy of Eg. 1.8 and
appears to accurately capture the "size effect". Bazant and Kim proposed a design expression
equal to 80% of Eq. 1.12.

Due to the insufficient shear capacity of lightly reinforced beams and also because of

whoily inadequate data on the effects of shear reinforcement on these members, Palaskas,
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Attiogbe and Darwin (11,34,35) tested 15 simply supported T-beams with low values of
flexural and shear reinforcement. The tests included 11 beams with stirrups and 4 beams
without stirrups. The shear span-to-depth ratio, a/d was 4 and the flexural reinforcement
ratio, pw, ranged from 0.5% 1o 1%. Well anchored, non-prestressed, prestressing strands
were used as flexural reinforcement o prevent a flexural failure. As found in earlier research,
their experimental data shows that the ACI Building Code (3) shear design provisions for v are
unhconservative for members with py less than one percent. Palaskas et al. (11,34,35)
observed that, for their beams, the stirrup shear contributions were about 50% greater than
predicted by the ACI Building Code design equation, Eq. 1.4. The added strength was due to the
fact that the critical shear cracks were flatter than 45 degrees, the value used in the
development of Eq. 1.4, and thus intercepted more stirrups. Based on their expsariments,
Palaskas et al. (11,34,35) came to the conclusion that, despite the low test values of v, the
shear provisions of the ACI Building Code (3) are safe for lightly reinforced beams, mainly
because of 1) significantly higher values of steel shear capacity actually obtained, and 2) beams
with V,, > ¢V /2 must have minimum shear reinforcement as defined by the code. Largely
because of this research, ACl Committee 318 did not adopt Eq. 1.11.

To account for th‘e behavior of continuous beams, Rodrigues and Darwin (38,39,40),
extended the research of Palaskas et al. {11,34,35) to lightly reinforced T-beams subjected to
negative bending. Test data from nine T-beams with py equal to 0.47% or 0.70% and with a/d
equal to 4 provided further evidence that the ACI (3) equations for V¢ and V4 are inaccurate for
lightly reinforced beams. In the positive moment regions, the shear cracking load was 13%
lower and the stirrup contribution was 50% higher than predicted by the ACI (3) equations,
while in the negative moment regions, the shear cracking load 29% lower and the stirrup
contribution was 20% higher than the ACI (3} predicted values. In all, the ACI Building Code

overestimated the value of the total shear strength in the positive moment regions and
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underestimated the total shear strength in the negative moment regions. Rodrigues and Darwin
inferred that the smaller effective concrete section at the negative moment region, caused by
cracking of the flanges, and lower bond strength for negative flexural reinforcement, due to the
top-bar effect, were the causes of the lower shear cracking loads in the negative moment
regions. The lower shear reinforcement effectiveness was due to the fact that critical shear
cracks were steeper in the negative moment regions and thus intercepted fewer stirrups than in
positive moment regions., Rodrigues and Darwin (38,39,40) observed that similar conciusions
also could be made about the more heavily reinforced members tested by Haddadin, Hong and
Mattock (25).

Al-Nahlawi and Wight (7) tested 25 lightly reinforced, simply supported beams using
two point and four point loading systems. Concrete compressive strength ranged from 5600 psi
to 10600 psi, with transverse reinforcement, pyfyy, varying from 0 to 170 psi. Stirrup
spacings of d, 0.75d, 0.5d and 0.33d were used. They observed that for a longitudinal
reinforcement ratio, pw, below 1%, Eqgs. 1.2 and 1.3 were unconservativg. They observed that
the conservativeness of Eq. 1.4 for beams with pf,y = 50 psi decreases as concrete strength
increases. The reduced conservaliveness of Eq. 1.4 was mainly attributed to diminished
aggregate interlock due to smooth failure planes for high strength concrete. Based on their

analysis, they recommended a minimum stirrup reinforcement value of:

Ay 5 fo psi > 50 psi (1.13)
wa—100p P

to counter the effect of diminished aggregate interlock in high strength concrete, and an increase
in the maximum stirrup spacing to 0.75dy, where dy is the distance between top and bottem

longitudinal steel. The recommendation in E£q. 1.13 closely matches the new provisions in ACI
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318-89 for increased minimum shear reinforcement, as described following Eq. 1.5,

5 Modified O lon Field Tt

The predictive equations for diagonal tension cracking and shear strength of reinforced
concrete beams presented in the preceding sections are based on experimental results. These
equations cannot predict the full shear response of a general reinforced concrete member
subjected to combined shear and bending, since their use is limited to specific classes of
members and they provide only limit loads, with no consideration of member deformation.
Obtaining the complete shear response of a member requires a msthod that accounts for the full
range of material and member behavior. The modified compression field theory, presented by
Vecchio and Collins (43} in 1986, is the basis of such a method. This theory was expanded from
the compression field theory for reinforced concrete in torsion and shear, introduced by Collins
and Mitchell (21,22,23).

The modified compression field theory (22,43) uses average stresses and average
strains to satisfy equilibrium and compatibility conditions and to formulate stress-strain
relationships. It takes into account tensile stresses in the concrete between cracks, and treats
the concrete as a new material once cracks form. Experimentally verified average stress-
average strain relationships are used for the cracked concrete.

A square membrane element of uniform thickness and relatively small size,
representing a part of a reinforced concrete member (Fig. 1.1}, is used as an analytical model
to predict the shear response (22,43). Reinforcement for the membrane element consists of an
orthogonal grid of reinforcement, coinciding with the longitudinal, x, and transverse, vy, axes.
Loads acting at the element's edges are assumed to consist of uniform axial stresses, fx and fy,

and uniform shear stress, vxy (Fig. 1.1). The deformed shape of the element is defined by
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normal strains, ex and ey, and the shear strain, yxy (Fig. 1.2). The complete response of the
element is obtained by predicting the three strain values and relating them to the corresponding
stresses.

The following assumptions are made while predicting the response of the element,
although, in practice, they need all not be completely satisfied to succéssfuily apply the mathod:

1. For every sirain state there exists only one state of stress.

2. Stresses and strains can be considered in terms of average valuss when areas are
large enough to include several cracks.

3. The concrete and the reinforcing bars are perfectly bonded together at the boundaries
of the element with no overall slip.

4. The longitudinal and transverse reinforcement is uniformly distributed over the
element.

Based on these assumptions, strain compatibility, stress equilibrium and siress-strain
relations of steel and concrete are developed. A brief explanation of the stress and strain
equations used to predict the shear response of a beam at any state of loading follows (22,43}):

Prior to cracking, most of the shear is carried by the concrete by equal diagonal tensile
and compressive stresses acting at 45 degrees. After cracking, the tensile stress is
substantially reduced, and it varies from zero at the cracks o a peak value between cracks. The
average value of the tensile stress is used to formulate the stress equilibrium equations. The
principal tensile stress in the concrete acting perpendicular to the crack plane, f{(Fig. 1.3}, is

given by the foilowing equations:

f1 = Eg €1, if 21 ¢€cr (114)
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fy = —oeefer e s (1.15)
1 + ¥500¢e+ “
fy = vg tane + 2 (f,, - f,) (1.16)
Sbv

in which E; is the modulus of elasticity of concrete; e is the cracking strain of concrete; g4 is
the principle tensile stress; a4 and oy are factors accounting for the bond characteristics of the
reinforcement and taken as unity for deformed bars; g, is the cracking strength of concrete; vy
is the local shear stress on the crack surface; s is the stirrup spacing; 8 is the crack angle; Ay is
the area of stirrup reinforcement within a length, s, of the beam; f,y is the yield stress of the
stirrup reinforcement; and fy is the stress in the stirrup reinforcement. The smallest value of
fi is taken from Egs. 1.14, 1.15 and 1.16. The ability of the concrete to carry a tensile stress
after diagonal cracking is the key difference between the modified compression theory (22,43)
and compression field theory (21,22,23,31}.

The principal compressive stress in the concrete, fp (Fig. 1.3), is derived from the

following reilationship:

fo = (tand + cotd)v - f4 {(1.17)

in which v is given by V/(bwijd); by is the web width of the beam; jd is the internal flexural

moment arm; and 9 is the crack angle. The value of fp cannot exceed fo/{0.8+170¢g;).

The unbalanced vertical component of diagonal compressive stresses and diagonal tensile

stresses is carried by tension in the web reinforcement. This equilibrium requirement can be

expressed as:
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Aty = (f2sin2e - fy cos?8)bys {(1.18)

Substituting {2 from Eg. 1.17 in Eq.1.18 and expressing v in Eq. 1.17 as V/(byid} gives

an equation for shear force V for a given principal tensile stress, f1, and crack angle, 6, as:
V = fibyjdcoté + Ayfyjdcote/s {1.19)

Eq. 1.19 expresses the shear resistance of a member as the sum of a concrete contribution and a
steel contribution, and, in that way, is similar to the ACl (3,5) nominal shear capacity
equation, Vy, = Vo + V. Howaever, it expresses shear resistance as a function of the principal
tensile stress in concrete, f1, the tensile stress in stirrup, fy, and the crack angle 9, rather
than Yf, and fy, and an assumed horizontal projection of the crack.

The principal compressive strain, ez, is given by the equation:
g2 = e'c(1-V1-fa/famax) (1.20)

in which ¢'c is the concrete compressive strain at its crushing strength; and fonax represents
the peak compressive strength of the concrete under combined biaxial tension-compression and
is given by '5/(0.8 + 170eq}.

The longitudinal strain in the web, &y, is given by the equation:

£1 tanze + £2 (1.21)
1 + tan®e

E€x =

The strain in the web reinforcement, g, is given by the equation:
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g = & +€2tal’;29 (1.22)
1 +tan"g

The stress in the stirrup is checked for yield.

To obtain the shear force in a section at a certain bending moment, equilibrium of forces
must be satisfied along the longitudinal axis of the member. The unbalanced longitudinai
component of the diagonal concrete stressas, for a certain crack angle and principal tensile
stress, Is balanced by tensile stresses in the longitudinal reinforcement and compressive

stresses in the concrete resulting from bending. This equilibrium condition can be expressed

by:
Axfs + Acfe = (f260520 - f;5in20)byjd (1.23)

in which A,f; is the force in the longitudinal steel and Aqfc is the force in the concrete (Fig.
1.4). (Note: Tensile stresses are taken as positive, and compressive stresses are taken as
negative.) Substituting for the principal compressive stress, fs, from Eq. 1.17 in Eq. 1.23

gives:
Ayxfy + Afe = Veote - fibyjd {1.24)

To obtain the forces Asfx and Acf,, the longitudinal strain in the web, ey from E£q. 1.21,
is assumed to occur at a specific level through the depth of the member. The strain distribution
corresponding o the value and location of ex and the moment acting at the section is determined

using plane section analysis. For members with web reinforcement, ¢y is assumed to occur at
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the midheight of the cross section, which results in higher tensile strains at the level of the
longitudinal steel and higher compressive sirains at the compressive face of the member. The
midheight of the section is chosen because of the load redistribution capacity of such members,
which results in the shear stresses being transferred from high strain regions of the cross-
section to low strain regions. Members that do not contain any web reinforcement have less
capacity for redistribution of load, and hence it is reasonable to assume that gx occurs at the
level of the flexural steel, resulting in smaller tensile and compressive strains.

To obtain the shear, V, and crack angle, 8, for a given moment to shear ratio, at a
particular principal tensile strain, e, an estimate of 0 is made first. Using Eq. 1.14-1.16, the
smallest value of principal tensile stress, fy, is calculated. The tensile stress in the stirrup
reinforcement, fy, is estimated. The shear, V, corresponding to the chosen ¢4 is then obtained
from Eq. 1.19. The principal compressive stress, fz, is then calculated from Eq. 1.17. The
calculated value of fo gives the principal compressive stress, gp, using Eq. 1.20. The
longitudinal strain in the web, g4, and the tensile strain in the stirrups, &, are ¢btained from
Egs. 1.21 and 1.22, respactively. The estimated value of f, Is checked using the calculated value
of ¢ and a new estimate is made, if necessary. With the calculated value of ey, the strain
distribution for the moment corresponding to the given moment to shear ratio Is found using
plane section analysis. The longitudinal forces at the section Ayxfx and A.f, corresponding to this
moment are used in Eq. 1.24 to check for equilibrium. A new estimate of 0 is made, if required,
and the process is repeated. The shear response of the section is obtained by plotting shear, V,
versus the principal tensile stress, 1. The shear capacity of the section, Vinax, Is the maximum
value of shear obtained from this plot.

Detailed procedures for predicting shear capacity and obtalning a shear response of a
reinforced concrete member using modified compression field theory are presented in Chapter

3.
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1.6 Qbject and Scope

The purpose of the proposed research is to study the shear strength of truly continuous,
lightly reinforced concrete flexural members with deformed bars as flexural steel and to
investigate possible modifications to the current design provisions (3). The research includes
tests of 6, continuous two-span T-beams, with beam-girder connections, to identify the effects
of flexural and shear reinforcement on shear capacity. Flexural reinforcement ratios of 0.75%
and 1% and levels of shear reinforcement ranging from O psi to 82 psi are used. The results of
these tests are compared with predictive equations developed in previous studies and used to
evaluate present shear design methods. These lests extend the work of Palaskas et al.

{11,34,35) and Rodrigues and Darwin (38,39,40).



Chapter 2
EXPERIMENTAL INVESTIGATICN

2.1 General

The experimental investigation was carried out 1o study the shear strength of continuous
T-beams with light flexural reinforcement. Primary emphasis was given to the behavior of the
negative momsent regions of the beams. Since the AC| Building Code (3) appears o
underestimate the shear strength of beams having flexural reinforcement below 1%, negative
moment region flexural reinforcement was chosen to be less than or equal to 1%. Shear
reinforcement with nominal strengths between 0 psi to 82 psi, l.e. up to 60% above the
minimum required by the ACI Building Code, was used. The details of the experimental work are

described in the following sections.

2.2 Test Specimens

The specimens were two-span continuous T-beams; each span was 20.5 ft long. To
simulate conditions in actual structures, a simply supported transverse girder with a span of
41 in. was provided as the middle support. The test regions in the beams extended from the
faces of the transverse girder to the peints of maximum positive bending in both spans; The
flanges of the T-beams were 24 in. wide and 4 in. thick. The beams were 18 in. deep, with a
web thickness of 7.5 in. Concrete cover for the reinforcement foliowed the provisions of the ACI
Code (3). The depth of the transverse girder was increased by 1 in. to provide adequate cover
for the bottom steel of that member. Beam dimensions and properties are shown in Figs. 2.1
through 2.3 and Table 2.1.

There were two series of beams, | and J, with negative moment region reinforcement
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ratios based on the area of the web, py, of 1.0% and 0.75%, respectively. For the | series
beams, the top longitudinal steel consisted of two No.6 bars and one No.5 bar. For the J series
beams, the top longitudinal steel consisted of iwo No.6 bars. The beams were designed to fail in
shear in the negative moment region and, in some cases, 1o yield in negative bending. To prevent
the formation of a mechanism prior to shear failure, adequate bottom steel was provided to
insure that the beams did not fail in positive bending. The [ series had equal steel at the bottom
and the top. The J series had positive moment region pw values of 0.75%, 1%, and 1.83% for
beams J-1, J-2 and J-3, respectively. Positive moment region py, values of 0.75% and 1%
were provided by the same bars as used in the negative moment regions at the same values of py,
while py of 1.83% was provided by four No.6 bars and one No.5 bar. In beams I-2, J-2 and J-
3, this combination of top and bottom sieel allowed for moment redistribution after the
formation of a plastic hinge at the middie support.

Class A splices (3) were used {o splice the longitudinal steel. Top bars had a splice
tength of 27 in. and were staggered as far away from the face of the transverse girder as
possible to limit congestion of steel in the test region. For the | series, the top-bar épiices
started 44 in. and, for the J series, 74 in. from the face of the transverse girder.

Bottom bars had a splice length of 19 in. For the 1 series, the two No. 6 bars were
spliced 41 in. and 161 in. from the face of the transverse girder, while the No. 5 bar was
spliced 13 in. from the face of the transverse girder. No. 8 bars for beams J-1 and J-2 were
spliced 41 in. and 161 in. from the face of the transverse girder. The No. 5 bar of beams J-2
was spliced 13 in. from the face of the transverse girder. The bottom bars for beam J-3 were
placed in two layers, with two No. 6 bars and one No. 5 bar in the lower tayer and two No. § bars
in the upper layer. The splices in the lower layer were identical to the splices used for the
bottom bars of beam J-2, while those in the upper layer were identical to the splices used for

the bottom bars of beam J-1.
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Two loading configurations were used for the tests: a single point load per span or two
point loads per span. Beams |-1, -2 and J-1 were subjected to the single point span loading,
while beams -3, J-2 and J-3 were subjected to the two point span loading. The loading systems
are described later in the chapter. Typical M/Vd ratios in the negative moment regions of the
beams ranged from 3.2 to 3.8. The higher values of M/Vd were obtained in beams tested under
single point span loading.

Smooth low carbon steel wire stirrups were used at a spacing of 7 in. to provide nominal
shear reinforcement values of 34, 57 and 82 psi and satisfy the AC! Code (3) maximum stirrup
spacing requirement of one-half the effective depth of the beam. These stirrups were used only
in the teét regions. To prevent a shear failure ouiside of the test region, No. 3 bar stirrups
were provided at a spacing of 7 in. The shear force between the two point loads, in case of the
beams with two point loads per span, did not require stirrups to carry the shear. In this
region, three No. 3 bar stirrups were provided at a spacing of 17.5 in. to hold the longitudinai
steel in place. The flanges of the beams were reinforced transversely with No.3 bars spaced at 7

in.
2.3 Materials

2.3.1 Congrete

The air-entrained concrete mixture used to cast the beams was supplied by a local ready-
mix plant and was made using Type 1 portland cement and 3/4 in. nominal maximum size coarse
aggregate. Kansas River sand was used as fine aggregate. During casting, air content and slump
were measured. The air content ranged between 3 and 4% and the slump measured about 3 in.

Standard 6 x 12 in. ASTM C 31-88 (8) compressive test cylinders were cast with each beam
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specimen and tested for compressive strength, as per ASTM C 38-86 (10). The comprassive
strength of the concrete, ¥;, ranged between 4400 psi and 4600 psi. Concrete mixiure

proportions and properties are presented in Table 2.2.

2.3.2 Steel

ASTM A 615 (8) Grade 60 No. 3, No. 5, and No. 6 deformed billet steel bars were used to
reinforce the specimens, except for the shear reinforcement in the test region.

Shear reinforcement in the test region was provided by low carbon smooth wires with
diameters of 0.165 and 0.222 in. The targeted values of p,fyy, were 25, 50 and 75 psi. Two
different types of 0.165 in. diameter wire were used. One of these had o be annealed to lower
its yield strength and gave a pyfyy value to 34 psi. As done in a previous research at the
University of Kansas (11,34,38), preyielding was necessary to give the other two wires a
distinct yield point. However, preyielding results in an increase in the yield strength of the
wires with time, due to strain aging. To obtain the actual yieid strength of these wires on the
day the beams were tested, three specimens of each wire were tested after failure of the beams.
The values of pyfyy obtained were 57 and 82 psi. Preyielding was not required for the annealed
wires, as they already had a sharp yield point after the annealing processes. Typical stress

versus strain curves for test stirrup steel and flexural steel are shown in Fig. 2.4.

2.4 Specimen Preparation

The test stirrups were fabricated in a jig and welded at the top over a lap length equal to
the width of the stirrup. The No. 3 bar stirrups were fabricated with 90 degree hooks in a

reinforcing bar bender. Typical reinforcement cages used for beams with and without test
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stirrups are shown in Figs. 2.1 through 2.3.

Micro-Measurements Type EA-08-060LZ-120 strain gages were used to measure
strains in the stirrups and flexural steel. These gages were installed following the procedures
used by Palaskas and Darwin {34) and polysulfide encapsulated with Micro-Measurements Type
M-Coat J protective coating for protection against water. The gages were located at the mid-
height on the test stirrups and at points of maximum bending on the flexure steel. Gage locations
are shown in Fig. 2.5.

Waterproof BB plyform was used to construct the forms, which were supported on tables
made of 2x4 in. studs. The forms were lacquered before casting each specimen to prevent water
damage. After the reinforcing cage was fabricated in place using commercially available ties and
steel chairs, and the strain gages were instalied, the forms were oiled with form release agent
and bolied in place. The lead wires from the strain gages were bound with plastic ties and passed
out through holes in the sides of the forms.

A one cubic yard bucket was used to cast the beams in two lifts; first the web and then the
flanges. Each layer was vibrated using internal vibrators. The initial and final discharge of
concrete from the concrete truck was used to pour the ends of the beams, away from the test
region. The test region was poured using concrete from the middie portion of the discharge. The
beams were hand screeded longitudinally after which the surface was floated, in the transverse
direction, using a magnesium bull float. Concrete samples were taken as per ASTM C 31-88
(9}).

Care was taken not to over-finish the surface of the beam so that minimum bleed water
was worked into the surface. About an hour was allowed to let the bleed water evaporate from
the surface of the beams, after which the beams and the 6 x 12 in. compressive test cylinders
were covered with polyethylene sheets. The forms were stripped when the concrete attained a

compressive strength of 3000 psi. The beams and the test cylinders were kept moist until a
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compressive strength of 4000 psi was aftained. The concrete was then allowed to air dry until
it attained the test strength of about 4500 psi. Tests were conducted 11 to 19 days after
casting.

Diluted white latex paint was applied within the test regions on one side of the beams.
All reinforcement locations were marked within this region to aid in establishing where the
cracks intersected the reinforcing steel. Stirrup locations were marked in beams without test
stirrups for the purpose of providing coordinates for comparison with beams with stirrups.

To measure concrete strains, Precision Type W240-120 paper-backed strain gages
were installed on the top and bottom surfaces of the beams, following the procedure used by

Palaskas and Darwin (34). Gage locations are shown in Figs. 2.5a and 2.5b..

2.5 Loading System

The test beams were supported at the ends by rollers. The transverse girder, which
served as the middle support for the beams, rested on pins at each end. These pins were oriented
longitudinally for the transverse girder, thus performing as pin supporis for the test beams and
partially restrained supports for the girder. A view of the transverse girder with its supporis
is presented in Fig. 2.6. Two layers of 1/32 In. thick teflon sheets were used between the
bearing surfaces of the pin supports to reduce friction.

Two configurations of the loading system were used; one point load per span and two point
loads per span. The two point loading system was used on beams |-3, J-2 and J-3. The two
point loading was used to reduce positive moment without reducing the shear near the supports.
With this lower moment, less positive flexural reinforcement was required to insure that
flexural strength would not govern for the beams reinforced with the stronger test stirrups.

The two point span loading system aiso had the advantage of producing M/Vd ratios very close to
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that obtained under uniform loading.

The loading systems are shown in Fig. 2.7. Four 1.5 in. diameter steel rods were used fo
load the beam; two for each span. The rods were strain gaged with full bridges to serve as load
cells. Each load rod had a loading capacity of 60 kips.

Two cylindrical compression load cells were used below the supports of the transverse
beam to measure reactions. The compression load cells were strain gaged with a fuil bridge
using eight strain gages instead of the usual four. To compensate for eccentric loading, gages
diametrically opposite to each other on the load cells were connected in series, and located on
each arm of the full bridge.

Hydraulic jacks, located below the structural floor and powered by an Amsler hydraulic
testing machine, were used to pull down on the four load rods, which transferred the load to
short transverse loading beams. In the single point load system, load was transierred directly to
the test beam (Fig. 2.7), but in case of the two point load system, the transverse loading beams
rested on bolsters fixed to longitudinal loading beams. The loads were transmitted from the

longitudinal leading beam to the test beam by a bolster and a roller (Fig. 2.7).

2.6 |nstrumentation

Midspan deflections were monitored using linear variable differential transformers
(LVDTs). Concrete and steel strain gage readings and midspan deflections were recorded by a
Hewlett-Packard data acquisition system which was remotely controlled by a Hewlett-Packard
Vectra PC. The PC also controlled a Hewleit-Packard plotter which recorded the average load
versus midspan deflection on a continuous basis. Load and deflection readings were recorded in a

disc file and printed out at every load step.
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2.7 Test Procedure

The test procedure included an initial elastic test to determine if all equipment was in
working order. In this elastic test, the beam was loaded up to 30% of the cracking load,
approximately 6 Kips total load, and then unioaded. The actual test was then started by taking
initial readings of ail strain gages and LVDTs at zero total load and then taking the total load up to
& kips, after which the total load was incremented in steps of 2 kips until failure occurred in
the weaker span. At each load step, load, strain and deflection readings were taken while keeping
the load constant. Cracks were also marked at each load step, and the total load inscribed at the
end of each crack. This was done as quickly as possible to limit the effects of creep.

With the exception of beam I-2, after failure of one of the spans, the beams were
unloaded and external stirrups were used to clamp the failed span. The test was then continued.
The load was taken up to the load at which the weaker span failed and then incremented in steps
of 2 kips until failure of the second span. A test took about three hours. Fig. 2.8 shows the
external stirrups.

After completion of the beam test, the concrete cylinders and the stirrup tension

specimens were tested.

2.8 Results and Test Observations

Plots of average span load versus average midspan deflection for the beams are shown in
Figs. 2.9a-2.91. The load point and load cell forces at failure are presented in Table 2.3. The
values do not account for the weight of the beam but do account for the weight of the load system.
The nominal shear forces, Vp(lest), and stresses, vn(test), at failure are presented in Table

2.4. The failure shears correspond to the shear at the face of the middie support at the peak
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recorded loads. Typical load-stirrup strain and load-concrete strain plots are shown in Figs.
2.10 and 2.11. Crack patterns for the beams are shown in Fig. 2.12. The bending moment and
shear force diagrams for all beams at failure are presented in Figs. 2.13a-2.13m.

As the load was increased, flexure cracks appeared first in sections of maximum bending
moment, at the load points and at the center support. At higher loads, the cracks appeared
further away from these sections. The cracks began as flexure cracks and, as they were
subjected to increasing shear, travelled toward the load points and supporis. The angle of crack
inclination was flatter, the greater the distance of the starting point from the point of maximum
bending. All beams experienced shear failures in the negative shear span, near the girder. The
crack patterns for the test beams are shown in Fig. 2.12. Summaries of the loading and failure
sequences of the beams follow:

1. Beam I-1: A single point load was used per span, Neither span had shear
reinforcement. No positive shear span failures occurred. The east negative shear span failed
first, at a shear of 15.3 kips. After clamping the east span with external stirrups, the test was
continued. The west negative shear span falled at a shear of 14.9 kips.

2. Beam {-2: A single point load was used per span. Both spans had shear
reinforcement, pyfyy, of 34.1 psi. The beam failed in shear in the east negative shear span at a
shear of 23.5 kips. The test was not continued.

3. Beam 1-3: Two point loads were used per span. The west span had shear
reinforcement, pyfyy, of 33.9 psi, while the east span had no shear reinforcement. The east
negative shear span failed at g shear of 16.7 kips. External stirrups were installed on the east
span and upon reloading, the west negative shear span failed at a shear of 21.0 kips.

4. Beam J-1: A single point load was used per span. Nelther span had shear
reinforcement. This beam underwent four shear failures, as external stirrups were used

following each of the first three failures. The east positive shear span failed first, at a shear of
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12.0 kips. This was followed by failure of the west negative shear span at a shear of 15.0 kips.
The third shear failure occured at the west positive shear span at a shear of 14.5 kips. The last
shear failure occurred at the east negative sﬁear span at a shear of 14.9 kips.

5. Beam J-2: Two point loads were used per span. The east span had no shear
reinforcement, while the west span had shear reinforcement, pyfyy, of 34.0 psi. This beam
underwent two shear failures. The east shear span failed first, at a shear of 15.5 kips.
External stirups were added and, upon reloading, the west negative shear span failed at a shear
of 21.6 kips.

6. Beam J-3: Two point loads were used per span. The east span had shear
reinforcement of 57.3 psi, while the west span had shear reinforcement of 82.0 psi. Two shear
failures occured. The east negative shear span failed at a shear of 24.6 kips. External stirrips
were added and, upon reloading, the west negative shear span failed at a shear of 31.2 kips.

Fewer cracks appeared in the negative shear spans than in the positive shear spans. The
initial cracks in the negative shear spans were flexure cracks, which appeared at the top of the
flange near the face of the transverse beam and travelled vertically downwards. At higher loads,
cracks appeared further away from the face of the transverse beam, extended verticaily
downwards until they met the web, and then propagated at an angle until they met the face of the
transverse girder near the level of the bottom flexural steel. The angle of inclination of the
cracks changed gradually and became flatter as a crack approched the face of the transverse
girder. When the beams were near shear failure in the negative moment region, a crack would
propagate along the bottom of the flange, moving away from the face of the transverse beam,
intersecting two or three stirrups before passing diagonaily through the flange, causing a shear
failure. This is amply illustrated in the east negative shear span of beam J-1 (Fig. 2.12).

Shear failure in a positive shear span was observed only in beam J-1, although shear

cracking was observed in positive moment regions on all beams. Cracks in this region first
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appeared in the positive moment region at the bottom of the beam. As the loads increased, more
cracks appeared at the bottom of the beam. The cracks near the maximum positive moment
region propagated vertically and stopped at the base of the flange. The cracks further away
propagated at an angle, and moved towards the point of maximum moment, stopping at the base of
the flange. The shear c¢racking loads for the positive moment regions werg identified using the
same criteria as used for the negative moment regions (discussed in detail in chapter 3). Like
the shear failure cracks in the negative shear spans, the failure cracks in the positive shear
spans were cracks which started away from the point of maximum positive bending and
propagated at a flat angle. After reaching the base of the flange in the maximum moment region,
failure crack travelled horizontally and intersected two or three stirrups before passing
through the flange to cause failure. This can be seen in the east positive shear span of beam J-1
{Fig. 2.12). Just before shear failure in the positive shear span, some short inclined parallel
cracks formed away from the load points at the level of the bottom steel. These cracks can be
seen at the positive shear spans of beams J-1 (Fig. 2.12).

From Fig. 2.12, it can be seen that the negative moment regions had fewer cracks than
the positive moment regions. The lower number of cracks may be due to lower bond strength of
the top-cast flexural reinforcement compared to that of the bottom-cast flexural
reinforcement.

Fig. 2.10 shows a typical total load versus stirrup strain curve. Load versus stirrup
strain curves initially show no strain, but as cracks appear, the curves show progressively
more stirrup strain. The increase in stirrup strain is gradual for flexure cracks, but as the
flexure cracks turn into shear cracks, the curves show a sharp increase in strain.

A typical total load versus concrete compressive strain curve is presented in Fig. 2.11.
The curve shows low strains initially, but as cracks appear, the slope of the curve increases.

The increase results from a reduction in the effective concrete compressive area due to
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cracking. At shear cracking, the curves show a reversal in concrete sirain as the stresses are

redistributed in response to the change in the configuration of the member.



Chapter 3

ANALYSIS OF TEST RESULTS

3.1 Geperal

This chapter contains an analysis of the shear cracking loads and stresses determined
from the test results described in Chapter 2. Based on the analysis, the effectiveness of
stirrups in carrying shear is estimated. Member shear cracking siresses and failure loads are
compared fo values predicted by ACI 318-89 (3), ACI-ASCE Committee 426 (6), Batchelor and
Kwun (14), Bazant and Kim (16), Rajagopalan and Ferguson (37), and Zsutly {44). Modified
compression field theory (18,22,23,43), as introduced in Chapter 1, is used to predict the
shear capacity of the test members. Comparisons are made between the predicted values from

the modified compression field theory and the measured capacities of the members.

3.2 Determining the Shear Cracking Load

The shear cracking load is often described by investigators (11,28,30,34,35,36,38,
39,40,41) as the load at which diagonal cracks, caused by shear and flexural stresses, cause
significant changes in the load carrying mechanisms of a member, resulting in a redistribution
of stresses within the beam. Three techniques are used to determine the loads at which shear
cracking occurs. The techniques are based on the crack patterns, the stirrup strain, and the
concrete strain at the top and bottom of the section. These three techniques are described

individually in the following sections.
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3.2.1 Crack Pattern Analysis

Several definitions have be_en proposed fo define the shear cracking load based on crack
patterns. Haddadin, Hong, and Mattock (25) defined the shear cracking load as the load at which
the diagonal tension crack makes an angle of 45 degrees with the transformed neutral axis of the
beam. Batchelor and Kwun {14} described the shear cracking load as the load at which an
inclined crack extends from the iongitudinai tension reinforcement into the compression zone
and makes an angle of 45 degrees with the flexural reinforcement.

Palaskas, Attiogbe, and Darwin (11,34,35) defined the shear cracking load as the load at
which a shear crack makes an angle of 45 degrees or flatter at, or above, the transformed
neutral axis of the beam. Rodrigues and Darwin (38,39,40) extended this definition to
continuous beams and defined the shear cracking load as the load at which a diagonal tension
crack first makes an angle of 45 degrees or less, at or above the neutral axis in the positive
momeant region, or at or below the neutral axis in the negative moment region. The current
research uses the definition of shear cracking load presented by Rodrigues and Darwin
(38,39,40). The crack patterns for the test specimens are shown in Figs. é.123 and 2.12b.

in the current study, cracks firsi appeared as flexure cracks at locations of maximum
bending moment. These cracks formed first at the top of the flange at the beam-girder
intarsection in the negative moment region and at the bottom of the web underneath a load point
in the positive moment region. As the load was increased, cracks began to form progressively
further away from the point of maximum moment. These cracks would then propagate toward
the load point in the positive moment region, or toward the support in the negative moment
region. For cracks that initiated at points progressively removed from points of maximum
moment, the cracks became flatter as they grew due to shear. More cracks were observed in the

positive moment region than in the negative moment region. Usually, the negative moment
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region would contain only one flexure crack until the time this crack turned flatter than 45
degrees, becoming a shear crack. After this initial shear crack formed, more cracks would
appear in the negative moment region. Fbr beams containing stirrups, more load could be
carried than in beams without stirrups, resulting in an increase in cracking compared to beams
without stirrups. The added cracks in the negative moment region were longer and generally
flatter than the initial shear crack.

During a test, the crack locations were marked on the exterior of the beam after each
load step, along with the corresponding total load. After failure of the specimen, photographs
were taken of the crack patterns. The photographs were used to determine the load at which
shear cracking occurred. The shear cracking stress, v, was determined by setting v, equal to

V./(bwd). Shear cracking ioads and stresses are listed in Tables 3.1 and 3.2, respectively.

3.2.2 Stirrup Strain Analysis

The shear cracking load based on stirrup strain is taken from the load-stirrup strain
curves; a typical load-stirrup strain curve is shown in Fig. 2.10. The shear cracking load is
defined as the load at which a sharp Increase in stirrup strain is observed, indicating that the
load carrying mechanisms have changed.

A review of test data typically shows relatively small strains in the stirrups until
gither a flexure crack or a shear crack intercepts the stirrup. A sharp increase In stirrup
strain indicates that a shear crack has intercepted the stirrup, while a gradual increase in
stirrup sirain indicates that a flexure crack has intercepted the sfirrup. A sharp increase is
seen because the diagonal tension crack transfers more force to the stirrup than a flexure crack
due to the flatter angle of inclination of the diagonal tension crack. Load-stirrup strain curves

from gages located In the reglons of high moment and shear are analyzed using the above
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criterion to determine if shear cracking has occurred.

The method described above to determine the shear cracking load from stirrup strain
was used by Rodrigues and Darwin (38,3.9,40). They found that the shear cracking load
obtained from stirrup strain was higher than that obtained from crack patterns for all negative
moment cases in their study. However, as shown in Tables 3.1 and 3.2, the current research
shows that the shear cracking load obtained from stirrup strain data is lower in eleven out of
twelve cases, in both positive and negative moment regions, than that obtained using crack

patterns.

3.2.3 Congrete Strain Analysis

The shear cracking load determined using concrete strain data Is obtained from strain
gages located along the compressive face of the beam. Strain gage locations are shown in Figs.
2.5a and 2.5b. A typical load-concrete sirain curve is shown in Fig. 2.11. As the beam is
loaded, the concrete strain on the compressive face increases until shear cracking cccurs and
there is a change in the load carrying mechanisms within the beam. When these load carrying
mechanisms change, the stresses are redistributed within the section and stress along the face of
the member decreases sharply, sometimes even changing from compreésion o tension. Because
of this, the shear cracking load is taken as the load at which a reduction in the concrete
compressive strain occurs. The shear cracking load for a particular region of the beam is based
on the strain gage readings from the locations of maximum moment in that region.

This method was used with success by both Rodrigues and Darwin (38,39,40) and
Palaskas, Attiogbe, and Darwin (11,34,35). Rodrigues and Darwin observed that the shear
cracking load obtained from the concrete strain was greater than or equal to that obtained using

crack patterns in ten out of seventeen cases. In the current study, the shear cracking load from
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concrete strain is greater than or equal to the shear cracking load obtained from crack patterns

in ten out of 22 cases, as is shown in Tables 3.1 and 3.2.

3.3 Comparison of Measured and Predicted Strengths

The results obtained from the current research were combined with the resuits obtained
by Rodrigues and Darwin (38,39,40) and Palaskas, Attiogbe, and Darwin {11,34,35) to have a
broader data base from which to work, Values for nominal shear stress and shear cracking
stress will be compared with predicted values obtained using equations from other
investigators, as well as the current design code, AC! 318-89 (3). Because the beams tested by
Rodrigues and Darwin and Palaskas et al. did not use deformed bars for flexural reinforcement,
the beams in those studies are éxpected to have relatively lower shear cracking stresses and
shear strengths than the beams in the current study, which use deformed bars as flexural
reinforcement. The use of prestressing strands as flexural reinforcement results in a decreased
bond strength between the reinforcement and the concrete. This decrease in bond strength
causes fewer cracks to form. This is especially true in the negative moment region where the
top-bar effect causes the reinforcement to have a lower bond strength than is obtained for
bottom-cast bars.

The six beams tested in the present study produced thirteen shear failures, of which
eleven were in the negative momeni region. Combining this data with the previous research, a
total of 35 failures are studied in all. Seventeen of these failures occurred in a negative moment
region.

Shear ¢racking stresses are given in Table 3.2. Rodrigues and Darwin (38,39,40)
found that the shear cracking stresses obtained using the crack patterns were lower in most

cases than those obtained using the other two methods. They also found that the shear cracking
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stresses obtained from crack patterns were higher in the positive moment region than in the
negative moment region for five out of eight beams. In the current study, the shear cracking
stresses from crack patterns are higher In the positive moment region in half of the twelve
cases. In three of these cases, no shear cracking was observed in the positive moment regions.
Averaging the shear cracking stresses obtained from crack patterns shows a difference of less
than 1% between the average shear cracking stresses In the positive moment regions and
negative moment regions. Thus, the current research shows no trend in the level of cracking
stress based on the sign of the bending moment. The previous research used prestressing
strands for reinforcement, and the earlier analysis results were thought to be conservative
because of the lower bond strength of strands compared to deformed reinforcement.

Shear cracking stresses calculated using equations in ACI 318-89 (3}, and by ACI-ASCE
Committee 426 (6), Batchelor and Kwun (14), Bazant and Kim (16), Rajagopalan and
Ferguson (37), and Zsutty (44) are given in Table 3.3. Zsutty's equation, Eq. 1.8, and Bazant
and Kim's equation, Eq. 1.12, require a value for the shear span-to-depth ratio. The shear
span, a, is approximated by the ratio of the maximum moment to the maximum shear, M/V, in a
moment region. Thus, M/(Vd) is used to approximate the shear span-to-depth ratio, a/d.
Values for the shear spans in the current research, as well as shear span-to-depth ratios are
given in Tables 3.4 and 3.5, respectively. Shear cracking stresses obtained in this study using
the three methods are compared with the values obtained from the equations in Tables 3.6
through 3.8 and Figs. 3.1 through 3.6.

The caiculated values of the shear cracking stresses are compared with the measured
values of the positive moment region shear cracking stresses obtained from the three analysis
techniques in Tables 3.6a, 3.7a, and 3.8a. The shear cracking stress, normalized against
concrete compressive strength, vc/m, is plotted versus the longitudinal reinforcement ratio

in Figs. 3.1, 3.2, and 3.3. These figures inciude lines representing the equations in AC! 318-
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89 (3), and by ACI-ASCE Committee 426 (), Batchelor and Kwun (14), and Rajagopaian and
Ferguson (37). The comparisons with the lowest cosefficients of variation in the positive
moment region were those comparisons made using crack pattern analysis to determine the
shear cracking load. Therefore, the comparisons that follow are taken from Table 3.6a, which
compares shear cracking stresses obtained from crack patterns to various predictive equations
described in Chapter 1.

For the positive momaent regions, the average measured shear cracking stress is 90% of
the value predicted by ACI 318-89 (3) in Eq. 1.2. The coefficient of variation is 20.8%. The
average measured cracking stress is 87%, 90%, and 93% of the values predicted by Zsutty
(44), ACI-ASCE 426 (8), and Bazant and Kim (16), respectively. The corresponding
coefficients of variation are 11.7%, 12.9%, and 12.4%. The average cracking stress is 101%
and 103% of the siresses predicted by Rajagopalan and Ferguson (37) and Batchelor and Kwun
{14), respectively, with coefficients of variation of 14.0% and 11.0%.

For the negative moment regions, the calculated values of the shear cracking stresses are
compared to the measured values of the shear cracking stresses obtained from the three analysis
techniques in Tables 3.6b, 3.7b, and 3.8b. The concrete shear cracking stress in the negative
moment regions, normalized against concrete compressive strength, ve/ 1fe , is plotted versus
reinforcement ratio, py, for the three methods of shear crack analysis in Figs. 3.4, 3.5, and
3.6. The comparisons made using the shear cracking load determined from crack patterns once
again have the lowest coefficients of variation. Therefore, the comparisons that follow are taken
from Table 3.6b, which compares shear cracking stresses in the negative moment regions
obtained from crack patterns to the predicted results.

For the negative moment region, the average measured shear cracking stress is 91% of
the value predicted by ACI 318-88 (3) in Eq. 1.2. The coefficient of variation is 8.4%. The

average measured cracking stress is 93% and 99% of the values predicted by Zsutty (44) and
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ACI-ASCE 426 (6), respectively, with coefficients of variation of 7.8% and 12.4%. The
average cracking stress is 109%, 117%, and 102% of the stresses predicted by Rajagopalan
and Ferguson (37), Baichelor and Kwun (14}, and Bazant and Kim (16), respectively. The
corresponding coefficients of variation are 12.0%, 12.9%, and 8.8%.

The ratios of measured cracking stresses to calculated cracking stresses are averaged for
both the negative and positive moment regions in Tables 3.6b, 3.7b, and 3.8b. Overali, the
average measured cracking stress Is 91% of the stress predicted by ACI 318-89 (3) in Eq. 1.2.
The coefficient of variation is 14.5%. The average cracking stress is 90%, 95%, and 98% of
the values predicted by Zsutty (44), ACI-ASCE 426 (6), and Bazant and Kim (16),
respectively, with coefficients of variation of 9.6%, 13.1%, and 10.9%. The average cracking
stress is 105% and 111% of the values predicted by Rajagopalan and Ferguson (37) and
Batchelor and Kwun (14), respectively, with coefficients of variation of 13.0% and 13.5%.

The comparisons made using shear cracking stresses obtained from crack patterns in
Tables 3.6a and 3.6b show that comparisons made in the negative moment regions have lower
coefficients of variation than the same comparisons made in the positive moment regions.
Higher coefficients of variation in the positive moment regions indicate more scatter with
respect to the predictive equations. The greater scatter is likely due to the widely varying shear
span-to-depth ratios in the positive moment regions, which are not accounted for by Egs. 1.2,
1.7, 1.10, and 1.11. Eqgs. 1.8 and 1.12 do account for varying M/(Vd} ratios, but are not valid
for the full range of M/(Vd) ratios, 1.60 to 3.83, obtained in the positive moment regions. The
values for shear span-to-depih ratios in the negative moment regions ranged only from 3.28 to
3.81. Another interesting contrast between the positive and negative moment regions is that in
the poslitive moment region, comparisons to the ACI 318-89 (3) equation, Eq. 1.2, show the
highest coefficients of variation for any comparison made. This is true for all methods of

determining shear cracking load in the positive moment regions. In the negative moment
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regions, however, the coefficients of variation for comparisons made to Eq. 1.2 are lower than
almost all other comparisons, regardiess of the method used to determine the shear cracking
load. For the combined negative and positive moment regions, the coefficient of variation for
comparisons to Eq. 1.2 is the highest of any comparison. The comparison with the lowest
coefficient of variation for the combined moment regions is the comparison made to Zsutty's Eq.

1.8.

3.3.1 Stirrup Effectiveness

As the load is increased above the shear cracking load, additional load is carried by the
stirrups. Thus, the Increase In total shear stress, vp, beyond the shear cracking stress, v¢, can
be used as a measure of the effectiveness of the shear reinforcement. The shear reinforcement
effactiveness, v, - Ve, includes the shear stress carried by the stirrups, as well as the shear
stress carried by dowel action and aggregate interlock. The values of shear reinforcement
effectiveness from this study, as well as those from Rodrigues and Darwin (38,38,40) and
Palaskas, Attiogbe, and Darwin (11,34,35), are presented in Table 3.9.

The evaluation of stirrup effectiveness for beams in the current study is based on
failures in the negative moment region, because only two failures were observed in the positive
moment region and both of these failures occurred in beam J-1 which had no stirrups. The
shear reinforcement effectiveness is plotted versus the nominal stirrup capacity, pyfyy, for the
current research, in Fig. 3.7. Using regression analysis, the relationship for shear

reinforcement effectiveness in terms of nominal stirrup capacity is:

Vn - Vo = 1.35pyfyy + 12,26 (3.1)
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with a correlation coefficient, r, of 0.87. This relationship is obtalned considering only those
beams which contained stirrups.
Rodrigues and Darwin (38,39,40) performed a regression analysis on the negative

moment region data from their research and found the following relationship:

Vp - Vg = 1,19pvay + 4.70 (3.2)

with a correlation coefficient, r, of 0.96.

The test results for the eleven negative moment region failures are combined with the
negative moment region failure resuits obtained by Rodrigues and Darwin (38,38,40). This
data is plotted in Fig. 3.8. A regression analysis of the combine data yields the following

relationship:

Vg - Vg = 128pvay + 8.28 (3-3)

with a correlation coefficient, r, of 0.89.

[t can be seen from this analysis that, overall, the contribution of shear reinforcement
to shear strength is approximately 30% greater in the negative moment regions of the beams
studied than predicted by Eq. 1.4 from AC! 318-89 (3).

Care must be taken when grouping these iwo sets of results together because of the
differences in the two studies. The correlation coefficients from the regression analyses show
that the scatter in the data was small. The line which is fit for the data from Rodrigues and
Darwin (38,39,40) has a lower slope than the line based on the results from the current study.
This shows that the study by Rodrigues and Darwin did indeed give conservative results

compared to regular reinforced concrete members. This is expected because of the differences
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in the two studies. The use of lower reinforcement ratios and prestressing strands as flexural
reinforcement by Rodrigues and Darwin cause the section to experience more flexural tensile
strain than if a higher reinforcement ratio ahd deformed bars had been used. The higher strain
results in steeper shear cracks, The steeper cracks intercept fewer stirrups, and thus the
stirrup contribution to shear strength is less.

For the positive moment reglon, the test results of Rodrigues and Darwin (38,39,40)
and Palaskas, Attiogbe, and Darwin {11,34,35) were combined. The linear regression analysis
for the combined data shows that the web reinforcement in the positive moment region was 59%
more offective than predicted by ACI 318-89 (3) using Eq. 1.4. The higher than predicted
stirrup contribution was obtained for beams using prestressing strands as flexural
reinforcement which yields a more conservative shear strengih. Rodrigues and Darwin
{38,39,40) concluded this difference in shear reinforcement contribution between the positive
and negative moment regions could be due fo the top bar effect. It is not clear if this behavior
would be observed for the beams in the current study since no beams with stirrups failed in the

positive moment region.

3.3.2 Horizontal Crack Projection

The differences observed in the stirrup contributions in the negative and positive
moment regions are due to the differences in the horizontal projection of the critical shear
crack, defined as the shear crack which causes the failure of the beam. ACI 318-89 (3}
predicts the stirrup contribution to shear sirength in Eq. 1.4 based on the assumption that the
horizontal crack projection is equal to the effective depth of the beam, d. Table 3.10 shows that
the horizontal projection of the critical shear crack is greater in the positive moment region

than in the negative moment region for the combined resuits of Rodrigues and Darwin
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(38,39,40), Palaskas, Attiogbe, and Darwin (11,34,35) and the current study.

The average horizontal projection of the critical shear crack in the negative moment
region from the current research is 1.38d. Rodrigues and Darwin (38,39,40) observed an
average horizontal projection of the critical shear crack in the negative moment region of 1.0d.
Differencas in the type of flexural reinforcement used, as well as differing shear span-to-depth
ratios likely caused the differences in the horizontal crack projections. When the results of the
currant research are combined with results from the research of Rodrigues and Darwin
(38,39,40), the average horizontal projection of the critical shear crack in the negative
moment region is 1.23d. The average horizontai critical shear crack projection in the positive
moment region from Rodrigues and Darwin (38,39,40) and Paiaskas, Attiogbe, and Darwin
(11,34,35) (the current research did not experience any positive moment region failures in
beams containing stirrups) is 1.74d.

Rodrigues and Darwin (38,39,40) observed that the positive moment region had a
longer horizontal crack projection due to a shallower crack angle and the fact that the crack
propagates along the underside of the flange before it enters the flange. Because of this longer
horizontal crack projection, more stirrups are intercepted by the critical crack. Therefore,
the stirrups take more ioad, and the stirrup effectiveness, v - V¢, is greater in the positive
moment region. In the current study, the critical shear cracks in the negative moment region
also propagated along the flange-web intersection as the beam approached failure. This explains
the relatively greater negative moment region stirrup effectiveness observed in the current
research than observed in the research of Rodrigues and Darwin (38,39,40).

The increase in shear stress at ultimate above the shear cracking stress, v - V¢,
measures the amount of shear carried by dowel action and aggregate interlock, as well as that

carried by the stirrups. The shear stress carried by the stirrups alone can be expressed as
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Vgi = nAvayibwd (3 .4 )

in which n = number of stirrups intarceptéd by the critical shear crack. It is the number of
stirrups intercepted, not the horizontal projection of the crack, that actually determines the
stirrup contribution to shear strength.

Because the number of stirrups which the critical shear crack intercepts Is known based
on the crack maps, Figs. 2.12a and 2.12b, it is possible to calculate the shear carried by the
stirrups, vs;. These values are presented in Table 3.10.

A regression analysis performed on the negative moment results from the current

research gives the relationship between v and nominal stirrup capacity, pyfyy as:
Vgi = 1.23pvay + 7.97 (3.5)
with a correlation coefficient, r, of 0.97. These results are illustrated in Fig. 3.9.
Eqg. 3.5 contrasis with the results obtained by Redrigues and Darwin (38,39,40) in the
negative moment region:
Vsi = 1.00pvay - 8.00 (3-6)
with a correlation coefficient, r, of 0.96.
The regression analysis performed by Rodrigues and Darwin (38,39,40) based on their

data for the positive moment region resulted in a relationship:

v = 1.41pfyy - 4.2 (3.8)
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with a correlation coefficient, r, of 0.99.

The relationship for the positive moment region in Eg. 3.8 shows that approximately
40% more stirrups were intercepted by the critical shear crack than predicted by Eq. 1.4, ACI
318-89 (3). The relationship from the results of Rodrigues and Darwin (38,39,40) show
that the number of stirrups intercepted by the critical shear crack in the negative moment
region is approximately equal to the number predicted by Eq. 1.4. The relationship from the
current study shows that approximately 23% more stirrups were Intercepted in the negative
moment region than predicted by Eq. 1.4. These percentages contrast with what might be higher
expected values based on the horizontal projections of the cracks. Clearly, crack projection

alone is not a reliable guide to the contribution of shear reinforcement to shear strength.

3.3.4 Nominai Shear Stress

The measured nominal shear siresses, v,(test), from the current research and for the
six beams with negative moment region shear failures from the study by Rodrigues and Darwin
(38,39,40) are compared to the calculated nominal shear stresses based on ACI 318-89 (3),
vp({ACl), in Table 3.11 and Figs. 3.10 and 3.11. ACI 318-89 (3) is unconservative in
approximately half of the comparisons in the negative moment region. Of the beams with
stirrups, four out of ten had a nominal shear capacity below that predicted by ACI 318-89 (3).
The four spans with the measured nominal shear strength in the negative moment region less
than that predicted by ACl| 318-89 (3) for those beams with stirrups were all tested by
Rodrigues and Darwin (38,39,40). All beams with stirrups in the current study failed at a
higher load than predicted by AC! 318-89 (3). This contrast once again points to the
differances between the current study and the study performed by Rodrigues and Darwin

(38,39,40). In addition to the use of deformed bars as flexural reinforcement for the current
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research compared to the use of prestressing strands by Rodrigues and Darwin (38,39,40), the
beams in the current study were statically indeterminate with a varying shear span-to-depth
ratio due to moment redistribution, while Rodrigues and Darwin tested statically determinate
beams with a constant shear span-to-depth ratio. Rodrigues and Darwin also tested beams with
lower flexural reinforcement ratios, which should give even lower nominal shear strengths.

For the negative moment region, Rodrigues and Darwin (38,39,40) obtained an average
of v (test)/va(ACI) equal to 0.91, with a coefficient of variation of 8.4%. The average value of
va(test)/va (ACI) in the negative moment region for baams from the current study Is 1.04 with
a coefficient of variation of 9.5%. For beams with stirrups, the average of vp(test)/vy (ACH) in
the negaﬁve moment region is 1.13 with a coefficient of variation of 7.0% for beams in the
current study, and 0.89 with a coefficient of variation of 11.0% for beams tested by Rodrigues
and Darwin (38,39,40). The results of the current study indicate that AC! 318-8% (3}
adequately predicts the nominal shear capacity of the beams studied. However, AC! 318-89 (3)
does not appear to adequately predict the nominal shear capacily in the negative moment regions
of the beams tested by Rodrigues and Darwin (38,39,40). This disagreement is due to the
differences between the two studies, discussed previously. The beams with the lowest relative
strengths in the Rodrigues and Darwin study had reinforcement ratios, pw, of only 0.47%,
considerably lower than the low value of 0.75% used in the current study.

Rodrigues and Darwin (38,39,40) found that the average value of v,(testiv,(ACH In
the positive moment region for all beams was 1.04, with a coefficient of variation of 8.3%.
Rodrigues and Darwin (38,39,40) found that the ACI provisions were conservative for twelve
of the eighteen beams with positive moment region shear failures. For those beams with
stirrups, Rodrigues and Darwin (38,39,40) found that the ACI provisions were conservative In
eleven of fourteen positive moment region cases. The average value of vu(test)/vo(ACH) in the

positive moment region for those beams with stirrups was 1.07 with a coefficient of variation
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of 8.4%.

Both positive and negative moment regions with py g 1.0% have been shown to have a
shear cracking stress that is less than that predicted by ACI 318-89 (3) in Eq. 1.2. However,
the actual stirrup contribution determined from testing is greater than that predicted by ACI
318-89 (3) in Eq. 1.4 due to a critical shear crack that is flafter than assumed. This higher-
than-predicted stirrup contribution appears to compensate for the lower concrete shear

capacity in both the negative and positive moment regions.

3.3.5 Qther Qbservations

in order 1o visualize the effects of py on the nominal shear capacity of reinforced
concrete beams in the negative moment region, v, is normalized to eliminate the effects of

concrete strength using the following equation (38):

vp(norm) = ve{test)Y{4000/f') + [va{test) - ve(test)] (3.9)

Eq. 3.9 normalizes the portion of v, which is dependent of concrete strength, v¢, to a concrete
compressive strength of 4000 psi.

vn(norm)/m is plotted versus pyfyy in Fig. 3.12. This figure illustrates that, for
each beam configuration and failure region, stirrup effectiveness increases with increasing pyw.
This is seen by observing that the slopes of the best fit lines for each group of tests increase
with increasing reinforcement ratio. The nominal shear strengths of the beams increase with
increasing pyw. The best fit lines for the current research lie weil above the best fit lines
obtained using the negative moment region data of Rodrigues and Darwin (38,39,40).

Fig. 3.12 can be used to evaluate the ACI minimum shear reinforcement requirements
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(pvfyy = 50 psi). The lines shown on Fig. 3.12 are best fit lines for the normalized data of each
group of specimens representing different reinforcement ratios from the tests of the current
study and the combined results of Palaskas, Attlogbe, and Darwin {11,34,35) and Rodrigues and
Darwin (38,39,40). Fig. 3.12 illustrates that beams without stirrups have a nominal shear

capacity of less than 2¥f'e. However, the nominal shear capacity of beams with no stirrups is

above Yf'c, the effective usable shear strength of beams without stirrups (3). The resulis in
Fig. 3.12 indicate that the use of as little as 26 psi of shear reinforcement will raise the
nominal shear capacity, v, to 2Yf'; for all beams with pw = 0.47%. Fig. 3.12 shows that if
minimum shear reinforcement, pyfyy = 50 psi, is used, the nominal shear capacity of the
concrete, Ve, is safely predicted by ACI 318-89 for both the negative and the positive moment
regions.

To lock at the overall ability of ACI 318-89 (3} to predfct the nominal shear capacity of
the test specimens, the best fit lines from Fig. 3.12 are divided by the nominal shear strength
predicted by ACI 318-89 (3) and plotted versus the nominal stirrup capacity, pyfyy, in Fig.
3.13. The first observation made about Fig. 3.13 is that for the beams with py = 0.47% in the
negative moment region {38), ACI 318-89 (3) will never predict an adequate shear strength,
no matter how much shear reinforcement is used. This is aiso true for py = 0.70% in the
negative moment region. These two reinforcement ratios come from the test results of
Rodrigues and Darwin (38,39,40) which have already been shown to behave differently than
the beams in the current research. The negative moment region data from the current research
shows that AC! 318-89 (3) safely predicts the shear capacily when shear reinforcement is
provided. This is seen quite easily by observing the upward slope of the curve for the beams
with reinforcement ratios of 0.75% and 1.0%. These curves cross the line representing

vp{norm) = vn(ACI) at pyvfyy < 10 psi.
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3.4 Modified Compression Field Theory

Two procedures were developed using the modified compression field theory
(18,22,23,43), MCFT, to predict the shear capacity of the test beams. These procedures are
cutlined in this section. The first procedure, called the response procedurs, gives the full force-
stress-strain response of the member subjected to moment and shear. The procedure uses an
iterative process to reach a solution. The second procedure, called the design procedure, is
based on the response procedure; however, simplifying assumptions are made which allow the
use of design tables presented by Collins and Mitchell (22} to obtain the shear capacity of the

member. The design procedure is ailso iterative, but is simpler than the response procedure.

3.4.1 Besponse Procedure Using MCFT

The relationships from the modified compression field theory, presented in Chapter 1,
are used to obtain the shear response of a member. The shear response is‘expressed in terms of
principal tensile strain, g4, and the shear force corresponding to e4. Values of & are gradually
increased to obtain the behavior. With the exception of those steps marked with an asterisk, *,
the iterative procedure used to obtain the response is as outlined by Collins and Mitchell (22).
The additions to the steps outlined in reference 22 were made because additional information
was needed to perform the analysis, which was not specifically addressed in the steps outlined

(22). The procedure is :

Step 1: Choose a value of g1 at which to find the corresponding shear, V.

Step 2: Make an estimate of the crack angie, 6.



Step 3:

Step 4:
Step 5:

Step 6:
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Calculate crack width, w, from:

W = £15ma (3.10)
in which smg is the crack spacing parameter, defined as:

Sme = 1/ (ﬁéﬂﬂ-&@ﬁﬁ—)

mx sI'I'W'

(3.11)
in which smx and sy are crack spacings along the longitudinal and shear

reinforcement and are defined as:

Smx = 2o + -85} + 0.25kq Gox.
mx = 20 m) ! ox (3.12)

Smy = 2(cy + -5} + 0.25k; Gbv
mv 2(”10)*0 lrs (3.13)

in which ¢y is the vertical distance from the neutral axis of the uncracked
section to the inside edge of the tension steel,

Cy is the horizental distance from the center of the web to the Inside edge of the
stirrup,

dpx is the diameter of the longitudinal steel,

doy is the diameter of the stirrups,

sy is the horizontal clear space between the longitudinal bars,

$ is the slirrup spacing,

px = Ag/A¢, and

kq is 0.4 for deformed bars and 0.8 for smooth bars.

Estimate the stress in the stirrups, f.
Calculate the principal tensile stress, f1, from Egs. 1.14, 1.15, and 1.16, using the
smallest value.

Calculate the shear load on the section, V, using Eqg. 1.18.

in which the flexural lever arm, [d, is determined from section equilibrium as:



Step 7:

Step 8:
Step 9:

Step 10:
Step 11:

Step 12™:

Step 12a8*
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id = d - (MAid - V,cot6)
1.70fcb (3.14)

Calculate the principal comprassive stress, fp, from Eq. 1.17. If fo exceeds fomax
presented in Chapter 1, the iteration is terminated because &1 is too large.

Calculate the principal compressive strain, g, from Eq. 1.20.

Calculate the longitudinal strain in the web, ex, using Eq. 1.21, and the strain in the
web reinforcement, e, using Eq. 1.22. Note, ¢ is calculated at the midheight for
members which contain stirrups, and at the lsvel of the tension stesl In
members which contain no stirrups.

Calculate fy = etEs 5 fuy

Check to see if the calculated value of f, in step 10 equals the value of f, estimated in
step 4. If it does not, go back to step 4 and revise the estimate of f,.

Find axial forces due to the moment which occurs at the shear, V, calculated in step 8.

This is done using moment-curvature relationships in the following procedure:

:  Set moment equal to the shear, V, times the ratio M/V. This ratio will be

constant throughout the loading of the beam for these cases, and is dependant upon

the loading and beam geometry.

Step 12b*: Assume a linear sirain disiribution across the concrete section, and choose a

Step 12¢"

strain at the extreme compressive fiber of the concrete, eg.

:  The distribution of compressive stress in the concrete can be represented by an

equivalent stress block with an average stress of «4f'c and a depth of B4¢, in
which ¢ is the distance from the exireme compressive fiber to the neutral axis of
the section. The equations used for §1 and a4 B¢ are:

4 - Eet
B1= £0
ot
6 - 222 (3.15)



Step 12d*:

Step 12e™

Step 12f":

Step 12g™
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o = Ek - %(%‘;3-)2

(3.186)
in which g5 is the strain at f';.
Calculate the distance from the compression face o the neutral axis, ¢, using
the flexural lever arm, jd, calculated in step 6.
¢ = (d- jdf2) - x (for beams with stirrups) (3.17a)
c=d-x (for beams without stirrups) {(3.17b)

in which x is the distance from the point where ex is measured to the neutral axis

and is given by:

x = Ex(d - jd/2)
By + €g1 (for beams with stirrups) (3.18a)
X = .—-ﬂg__
Ex + Egy (for beams without stirrups) (3.18b)

Calculate the tension force, T, and compression force, C, in the concrete.

T =esEsAs 5 Aly (3.19)
in which g¢ is the strain in the tension steel, which is given by:

€s = 8"‘%0‘ (for beams with stirrups) (3.20a)

Eg = Ex {for beams without stirrups) (3.20b)
and

C = a4B1bwefe (3.21)

Calculate the moment about the point that is jd/2 from the tensile steel.

- i . BiC
M = T(jd/2) + C(d - jd2 ,_-;_;_, (3.22)

The moments due to f; and V are equal to zero about this point due to the
symmetry of these forces in the cross-section.

Check to see if the moment in step 12f equals the moment obtained in step 12a.
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not, go back to step 12b and choose a new eq.
Step 13*: Calculate the net axial load, N, at the cross-section using:
N =T + fibyjd - (C + Veoto) (3.23)
Step 14: Check to see if the section is in equilibrium, N=0. If not, return to step 2 and
reestimate 0. If N does equal zero, then the shear calculated in step 6 corresponds to
the vaiue of ey chosen in step 1. To obtain the entire response for the member,

return to step 1 and choose a new g4.

Once a complete response is obtained, the nominal shear capacily of the member is taken
as the peak shear attained on the response curve. A typical beam response is given in Table

3.12, and a typical response curve is shown in Fig. 3.14.

3.4.2 Design Procedure Using MCFT

The design procedure is based on the response procedure. As presented by Collins and
Mitchell (22), the design procedure uses several assumptions o develop a design table which
can be used to predict the capacity of a member. Portions of the design tables developed by
Collins and Mitchell are given in Table 3.13. These tables were developed using the assumptions
that the maximum size of aggregate, used to calculate vg in Eq. 1.16, Is 0.75 inches and, for the

beams with stirrups, sme is equal to 12 inches. For all beams, gy Is taken at the level of the
flexural reinforcement. These assumptions are made to give conservative results. The design

procedure is an iterative process and proceeds as follows for a fixed value of M/V = r:

Step 1: Estimate the nominal shear capacity, Vn, and the crack angle, 6.

Step 2: Caiculate the height of the compressive stress block, a. The following equation is



Step 3:

Step 4:

Step 5:

Step 6:

Step 7:
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used for the current study:

Vu(-f- - cote)

A )

0.85f'cb (3.24)
in which jd = d - &/2.
Calculate ex using the equation given by Collins and Mitchell (22):
Vu(j"— - O.SGOtB)

- d

EsAs (3.25)

€&x S fy/Es

€x

For beams with stirrups, calculate v/f's, in which v = Vu/(bwjd).
Use the design tables to determine B and 0. Partial listings of the design tabies are
shown in Table 3.13.

Determine the nominal shear capacity of the member using the following equations:

Vo= Vg +Vs (3.26}
In which,

Ve = BYfcbwid (3.27)

Vs = pyivybyjdcote (3.28)

Compare the V,, and 8 from step 7 to the V, and 6 estimated in step 1. [f they are not

equal, go back 1o step 1 and reestimate V, and 6.

This procedurg continues until the V, and 9 estimated match those which are obtained

from the tables. This procedure gives the nominal shear capacity of the member, not a full

shear response of the member.
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3.4.3 Comparison of Resuils

Tables 3.14 and 3.15 compare the nominal shear capacities of the beams from the
current study with the nominal shear capacities predicted using the two MCFT procedures.

When using the response procedure, the average value of v,(test)/va(MCFT) for all
beams from the current study is 1.26, with a coefficient of variation of 11.8%. For beams
without stirrups the average is 1.31, with a coefficient of variation of 7.6%, while for beams
with stirrups, the average value of v,{test)/va(MCFT) is 1.18, with a coefficient of variation
of 16.1%. A plot of vy(test) versus v4(MCFT) is shown in Fig. 3.15. This plot shows that the
difference between the level of the predicted and test strengths is relatively constant for the
response procedure, i.e. the data points lie roughly parallel to the vo{MCFT)=vy{test) line. The
modified compression field theory, as used in the response procedure, appears to be quite
conservative when applied to all beams from the current study. Although the response
procedure predicis the nominal shear capacities of beams which contain stirrups better than
beams which contain no stirrups {in terms of v,y{test)/v,(MCFT)}], the predicted values for
beams containing stirrups are still quite conservative.

A modification can be made to step 3 of the response procedure by using ky = 0.4 instead
of ks = 0.8. This represents an increased bond strength between the stirrups and the concrete.
Table 3.14 shows the resulis obtained from the current research using this modification. For
beams with stirrups, the average value of vp(test)/v,(MCFT)} drops slightly with this
modification; 1.15 is obtained for ki = 0.4 compared to 1.18 for ky = 0.8. Changing the bond
strength of the stirrups to the concrete has only a small effect on the predicted resuilts,
especially for beams with a flexural reinforcement ratio of 0.75%, as seen in Table 3.14.

The horizontal projection of the critical shear crack predicted by the modified

compression field theory is a measure of the predicted stirrup contribution to shear strength.
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Fig. 3.16 compares the horizontal projection of the critical shear crack measured after testing
{Table 3.10) and the horizontal projection obtained using the response procedure (ky = 0.8),
listed in Table 3.14. The average experimental horizontal critical shear crack projection for
beams containing stirrups in the current study is 1.38d. The average predicted critical shear
crack projection for the same beams is 1.11d. As shown in Fig. 3.186, the horizontal projection
of the critical shear crack predicted by the response precedure is less than the measured
horizontal projection for all but one of the beams (beam I-3, west span) from the current
study. The difference between the measured and predicted horizontal projection of the critical
shear crack shows that the response procedure underestimated the stirrup contribution for
most of the beams in this study.

The results obtained using the response procedure can be compared to the values of
nominal shear capacily predicted by AC! 318-89 (3), for the beams in the current study. The
values of nominal shear capacity predicted by AC! 318-89, and comparisons of these values fo
the experimental shear capacities are given in Table 3.16 for all beams in the current study.
This table contains the same information as Table 3.11, plus the two positive moment region
failures from beam J-1. For all of the beams in the current study, the average value of
vn(test)/vy (ACI) is 1.01, compared to the average value of v,(test)/v,(MCFT), 1.26. The
coefficient of variation obtained for vp(test)/vh{ACl) is 12.4% compared to 11.8% for
vn(test)/vn (MCFT). For beams in the current study containing stirrups, the average value of
vn(test)/v, (ACH) is 1.13, with a coefficient of variation of 7.0%, compared to an average value
of vh{test)/v(MCFT) of 1.18, with a coefficient of variation of 16.1%. For beams in the
current study which contain no stirrups, the average vaiue of vy(test)/v,(ACH) is 0.94, with a
coefficient of variation of 9.0%, while the average value of vy{testy/vo(MCFT) is 1.31, with a
coefficlent of variation of 7.6%.

Overall, the comparisons made between the modified compression field theory response
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procedure and ACI 318-89 (3) show that AC| 318-89 predicts the nominal shear strength of
the beams in the current study better than the MCFT response procedure. [t should be notsd that
the comparisons made above represent only thirteen failures of lightly reinforced beams, and
therefore do not represent a comprehensive comparison between AC! 318-89 (3) and the MCFT
response procedure.

Next, the resuits obtained with the MCFT design procedure are compared with the test
results. The nominal shear capacities, as well as the horizontal crack projections, predicied by
the design procedure for the beams from the current study are listed in Table 3.15.

Comparisons are made between the experimental and predicted nominal shear capacities.
A plot of vu(test) versus v, (MCFT)} is shown in Fig. 38.17. This plot shows that as nominal shear
strength increases, the difference between the predicted and test strengths also increases, i.e. as
nominal shear strength increases, the data points shift farther above the line representing
va{MCFT)=v,(test}). The average value of v,(test)/v,(MCFT) for all beams in the current
study Is 1.32, with a coefficient of variation of 9.56%. For beams with no stirrups, the average
value of v, (test)iv(MCFT) is 1.27, with a coefficient of variation of 8.4%, and for beams with
stirrups, the average value of vy{test)/v,(MCFT) is 1.40, with a coefficient of variation of
8.4%. The design procedure appears to present a very conservative prediction of shear capacity
for the beams in the current study. The prediction is better for the beams without stirrups
than for the beams with stirrups. This could be due, in part, to a lack of sensitivity in Tabie
3.13 to beams containing stirrups with v,/f'; < 0.050, which covers beams with low
reinforcement ratios and low amounts of shear reinforcement, and, in part, to the placement of
gy at the level of the tension reinforcement rather than at the midheight of the beam, as done in
the response procedure. The position of gx at the level of the tension reinforcement is
conservative when stirrups are not present, and is even more conservative when stirrups are

present.
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Like the response procedure, the design procedure gives a prediction of the horizontal
projection of the critical shear crack. A plot of the experimental horizontal projection of the
critical shear crack versus the predicted horizontal projection of the critical shear crack is
shown in Fig. 3.18. The average horizontal projection of the critical shear crack predicted by
the modified compression field theory for beams with stirrups, using the design procedure, Is
1.03d. This compares with the average measured horizontal projection of the critical shear
crack, 1.38d. Fig. 3.18 shows that the horizontal projection predicted by the design procedure
is less than the measured horizontal projection for all but one of the beams (beam I-3, west
span) from the current study. The differences between the predicted and measured horizontal
projections show that the procedure underestimates the stirrup contribution to shear strength.

The results obtained using the design procedure (in Table 3.15) are compared with the
predicted nominal shear capacities obtained using ACI 318-88 (3) in Table 3.16. The average
value of vy(test)/va(MCFT) for all beams in the current study is 1.32 [versus 1.01 for
va(test)/va (ACH], with a coefficient of variation of 9.5% (versus 12.4%). For beams without
stirrups, the average value of vp(test)/v,(MCFT) is 1.27 (versus 0.94), with a coefficient of
variation of 8.4% (versus 9.0%). For beams with stirrups, the average value of
vn(test)/v, (MCFT) is 1.40 (versus 1.13), with a coefficient of variation of 8.4% {versus
7.0%). As with the response procedurs, the design procedure is not as accurate as AC! 318-89
(3) in predicting the nominal shear capacity of the members in the current study. The average
value of v, (test)/vy{ACI} is closer to 1.00 than the average value of vy(test)/v,(MCFT) for all
three combinations. The coefficients of variation, however, are relatively small, and show no
clear advantage for either procedure. Once again, it should be noted that these comparisons
represent only thirteen failure cases.

Before comparisons can be made between the response procedure and the design

procedure, it is necessary to point out the differences between these two procedures. As
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mentioned before, the response procedure is the basic application of the modified compression
field theory to predict the shear response of a member, while the design procedure includes
several assumptions to simplify the process of obtaining the nominal shear capacity. The first
assumption made in the design procedure is that the crack spacing parameter, sme, is equal to
twelve inches, a conservative estimate. No such assumption is required for the response
procedure. A second major difference between the design procedure and the response procedure
is the level at which e, is calculated. The design procedure takes ¢, at the level of the tensile
steel in all cases. The response procedure takes ey at the level of the tensile steel only for
beams without stirrups and at the midheight of the member for beams with stirrups.

When comparing the performance of the two modified compression field theory
procedures, it is easiest to begin with the similarities. The obvious similarity is that both
procedures are conservative and in some cases very conservative. Perhaps not as obvious, both
procedures are particularly time consuming and somewhat confusing to use initially.

When looking at the average values of v,(iest)/vy (MCFT) for both procedures (Tables
3.14 and 3.15), it is clear that the procedures work better for the beams with the higher value
of pw, the l-series beams. For both procedures, the average value of vp(test)/vo(MCFT) is
closer to 1.00 for the I-series beams than for the J-series beams, 1.16 versus 1.32 for the
response method and 1.28 versus 1.34 for the design method.

In terms of differences in performance, the response procedure gives better predictions
of the nominal shear capacities of beams with stirrups. The design procedure gives better
predictions of the nominal shear capacities of beams without stirrups. As noted previously, the
difference between the predicted and measured strengths appears to be nearly constant with
increasing shear capacity for the response procedure, while it increases with increasing
nominal shear capacity for the design procedure.

For the members tested during the current study, ACI 318-89 (3} provides a better
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prediction of nominal shear capacity than either of the modified compression field theory

procedures.



Chapter 4

SUMMARY AND CONCLUSIONS

4.1 Summary

The objective of this research is to study the shear strength of continuous lightly
reinforced concrete T-beams. Six two-span T-beams with and without web reinforcement were
tested. The primary variables in this investigation were the longitudinal reinforcement ratio,
pw (0.75% and 1.0%), and nominal stirrup strength, p.fyy (0 to 82 psi). Variations in shear
span-to-depth ratio were experienced due to moment redistribution in some test members.
Shear cracking loads are determined using three analysis techniques: c¢rack pattern analysis,
stirrup strain analysis, and concrete strain analysis. Stirrup effectiveness is evaluated based
on the increase in load from shear cracking to failure of the member.

The test results are compared to the shear provisions of AC] 318-89 (3) and with the
predictive equations developed by several investigators (6,14,16,37,44). For some
comparisons, the results of the current research are combined with the results of Palaskas,
Attiogbe, and Darwin (11,34,35) and Rodrigues and Darwin (38,39,40). The results from the
current study are also compared to the results predicted by two procedures based on the

modified compression field theory.

4.2 Conclusions

The following conclusions are made based on the test results and analyses performed in

the current study.

1.  AC! 318-89 (3) overpredicts the concrete shear capacity of lightly reinforced
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beams without shear reinforcement.

2. There Is little difference between shear cracking stresses in the negative and
positive moment regions for beams in the current study.

3. Negative moment regions experience fewer cracks at wider spacings than positive
moment regions, likely due to the top-bar effect.

4. For both the negative and positive moment regions, the stirrup contribution to shear
sirength exceeds the value predicted by ACI 318-89 (3).

5.  Stirrup contribution to shear strength increases with increasing reinforcement
ratio, pw.

6. Because of the requirement to use minimum shear reinforcement when the factored
shear is greater than one-half of the design shear capacity of the concrete, the ACI 318-89 (3)
shear provisions are conservative for the beams tested in the current study, pw = 0.75% and
1.0%.

7. The itwo procedures based on the modified compression field theory are conservative
for the beams tested in the current study.

8. The MCFT response procedure appears to underpredict the value of nominal shear
strength by a consistent margin for the beams tested in the current study.

9. The MCFT design procedure appears to become more conservative as nominal shear
strength increases.

10. AClI 318-89 (3) better predicts the nominal shear strength of the beams in the

current study than elther of the MCFT procedures.

4.3 Future Work

The current study represents the only existing data for the negative moment region
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shear strength of lightly reinforced continuous beams using deformed bars as flexural
reinforcement. Additional data is needed for beams with reinforcement ratios less than 0.75%.
Studies are also needed to further evaluate the effect of shear span-to-depth ratio on the shear
strength of similar beams.

Reinforced concrete joist construction deserves special attention. AC! 318-89 (3)
allows a 10% increase in concrete shear capacity in joists due to the presumed load-sharing
capabilities of multi-stem members. There is no published experimental data to support these
provisions. In addition, joists are lightly reinforced members, seldom contain stirrups, and
are not covered by the minimum shear reinforcement requirements imposed on relnforced
concrete beams with Vy > ¢Vn/2. This causes particular concern since the current research
demonstrates that the shear provisions in ACl 318-89 (3) are safe for lightly reinforced
beams only because of the minimum shear reinforcement criteria. A follow-on study at the
University of Kansas will specifically address both the load-sharing capabilities and the

concrete contribution to shear strength of multispan joist systems.
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Table 2.1 Beam Properties

Positive Moment Region

West Span
Beamn d Ag pw=As/bwd  py=Ay/bys pfvy
in, in.2 psi
1-1 16.05 1.1¢ 0.00%9 0.0000 0.0
-2 158.82 1.19 0.0100 0.0008 34.1
{-3 15.99 1.18 0.0089 0.0008 33.38
J-1 16.00 0.88 0.0073 0.0000 00.0
J-2 16.02 1.19 0.0099 0.0008 34.0
J-3 1E.03 2.07 0.0184 0.0015 82.0
East Span
Baam d Ag pw=As/byd  pymAy/bys pvivy
in. in.2 psi
P-1 16.05 1.19 0.0099 ¢.c000 00.0
[-2 15.96 1.19 0.00839 0.0008 34.1
1-3 16.08 1.19 0.0099 0.0000 00.0
J-1 16.00 0.88 9.0073 0.000¢0 00.0
J-2 16.02 1.19 0.0099 0.0000 00.0
J-3 15.18 2.07 0.0182 0.0008 57.3
Negative Moment Region
West Span
Beam d Ag pﬁAgfbwd pva\ﬂ"bws pvay
in. in.2 psi
-1 15.52 1.19 0.0102 0.0000 00.0
1-2 15.89 1.18 0.0100 0.0008 34 .1
-3 15.89 1.18 0.0100 0.0008 33.9
J-1 15.50 ¢.88 0.0078 0.0000 00.0
J-2 15.88 0.88 0.0074 0.0008 34.0
J-3 15.78 0.88 0.0074 0.0015 82.0
East Span
Beam d Ag pszq!bwd pvaw!wa Pvay
in. in.2 psi
i-1 15.52 1.18 0.0102 0.0000 00.0
1-2 15.89 1.19 0.0100 0.0008 34.1
-3 15.89 1,19 0.0100 0.0000 00.0
Jg-1 15.50 0.88 0.0078 0.0000 00.0
J-2 15.88 0.88 0.0074 0.0000 00.0
J-3 15.63 0.88 0.0075 0.0008 57.3
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Table 2.2 Concrete Properties

Beamn Mix. Prop. per yard" Slump Alr - Temp. fle® " Age at test
ibs. in. % F psi days
1-1 517:2687:1480:1490 31/, 3.3 686 4620 11
1-2 517:267:1430:1480 3, 3.8 64 4420 11
1-3 517:267:14980:1480 3t/s 3.5 67 4470 13
Jd-1 517:2687:1490:1490 41/s 4.3 62 4510 15
J-2 517:267:1480:1480 31/ 4.8 56 44390 19
J-3 517:267:1480:1480 21/ 4.0 8o 4430 12

* Cament : water : fing aggregats : coarse aggregate

** Compressive strength of 12 x 6 In. test ¢ylinders

Table 2.2 Point Loads and Middle Support Reaction at Faiiure

Beam  Failure region loadpoinis Total lcad per span, kips Middle support reaction

per span West East reaction, kips*™
i-1 east negative 1 18.79 18.61 24.23
1-1 west negative 1 18.29 18.11 23.58
1-2 gast negative 1 30.60 30.55 39.90
1-3 gast negative 2 21.53 20.55 26,15
-3 west negative 2 27.37 26.54 33.44
$-1 gast positive 1 17.18 16.83 23.20
Jd-1 west negative 1 17.81 17.54 24.02
J-1 west positive 1 20.70 20.58 27.32
J-1 east negative 1 18.08 17.94 24.60
J-2 east negative 2 18.35% 18.85 23.68
J-2 west negative 2 28.18 28.22 34.42
J-3 east negative 2 38.13 37.97 46.92
J-3 west negative 2 51.49 50.58 61.35
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Table 2.4 Measured Shear Strength

Beam Va{test) vn(lest) Fallure

kips psi region
1-1 15.3 131 east negative
b-1 14.9 128 west negative
1-2 23.5 187 aast negative
-3 16.7 140 gast negative
P-3 21.0 178 west nagative
J-1 12.0 100 east positive
J-1 15.0 129 west negative
J-1 14.5 121 west positive
J-1 14.9 128 east negative
J-2 18.5 130 east negative
J-2 21.6 181 wast negative
J-3 24.6 208 gast negative
J-3 31.2 2686 west negative



Table 3.1 Shear Cracking loads, Ve (kips)

Positive Moment Region

Bearmn

11

-2
-3
J-1
J-2
J-3

Beam

i1
-2
i-3
J-1
J-2
43

Negative Moment Region

Beam

-1

-2
-3
J-1
4-2
-3

Beam

i1

-2
-3
J-1
J-2
J-3

- - no stirrups used
xx method produced no results

Crack
Patterns

12.9
17.3
XX
2.2
14.3
17.7

Crack
Patterns

xx
12.8
*
11.4
12.1
17.8

Crack
Patterns

14.3
14.8
15.1
123
15.5
15.8

Crack
Pattemns

14.9
13.5
14.2
12.8
129
15.8

71

West Span
Stirrup
Strain

11.5
12.4
11.0
17.4

East Span
Stirrup
Strain

8.7

4.7

Woest Span
Stirrup
Sirain

- -

11.5
15.0
18.5
158.3

East Span
Stirmup
Strain

1.5

14.2

Concrete
Strain

XX
12.8
XX
1.8
13.4
17.7

Concrete
Strain

12.1
12.1
XX
10.8
12.7
17.1

Conecrete
Strain

14.3
13.8
18.8
13.0
13.5
18.4

Concrete
Strain

12.8
13.0
13.5
13.8
13.3
17.8



Taple 3.2 Shear cracking stresses, ve (psi)

Positive Moment Region

Beam

-1

-2
3
dJ-1
J-2
43

Beam

1-1
-2
-3
J-1
J-2
J-3

Negative Moment Region

Beam

-1
-2
-3
-1
J-2
J-3

Beam

i1

-2
-3
-1
J-2
J-3

- - no stirrups used

xx method produced no results

72

West Span
Crack Stimup
Patterns Strain
106.8 .-
144.5 85.9
®X 1031
101.5 .-
11841 g1.8
157.5 154.2
East Span
Crack Stirrup
Patterns Strain
XX .-
107.0 72.8
XX -
95.0 .-
100.7 .
185.0 128.1
West Span
Crack Stirrup
Patterns Strain
122.5 -
128.2 28.7
126.5 126.2
105.5 -
130.8 130.5
134.8 129.4
East Span
Crack Stirmup
Paiterns Strain
128.0 -
113.6 868.7
118.2 -
110.5 .-
108.4 .-
134.9 1211

Concrate
Strain

b +4
107.4
XX
8.9
111.9
157.5

Concrete
Strain

100.9
101.4
xx
g9.8
106.0
150.4

Concrate
Strain

1225
118.7
132.6
1115
113.4
158.5

Concrete
Sirain

110.6
108.9
113.1
118.0
1121
151.5
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Taple 3.3 Calculated Shear Cracking Stresses, v¢ (psi)

Fosilive Moment Region

West Span
Beam Eg.1.2 Eq.18* Eg. 1.7 Eg.1.10 Eg. 1.11 Eq. 1.12"
-1 135.9 134.9 121.7 135.1 . 114.8 123.0
-2 133.6 133.2 118.7 133.0 113.0 122.2
-3 133.7 bl 118.7 132.8 112.9 -
J-1 134.3 120.5 102.7 1126 94.2 108.2
J-2 134.0 b 1189 133.2 113.2 -
J-3 1331 154.2 133.1 183.1 148.8 184.0
East Span
Beamn Egq. 1.2 Eqg. 1.8* Eq 1.7 Eg. 1.10 Eq 1.1 Eqg. 1.12"
-1 135.9 135.0 121.7 138.1 114.8 123.6
-2 133.0 132.4 119.0 132.2 112.3 121.3
-3 133.7 bl 119.7 132.8 112.9 >
J-1 134.3 120.8 102.7 1128 84.2 108.4
J-2 134.0 b 119.9 133.2 113.2 -
J-3 133.1 1825 1331 183.1 149.8 178.5
Negative Moment Region
West Span
Beam kEq. 1.2 Eq. 1.8" Eq. 1.7 Eg. 1.10 Eq. 1.11 Eg. 1.12°
-1 135.8 136.6 123.7 137.8 117.0 126.4
-2 133.0 135.0 118.7 133.0 113.0 123.3
-3 133.7 138.6 120.3 133.7 113.7 127.5
J-1 134.3 123.4 104.8 115.0 96.4 111.8
42 134.0 126.4 103.2 1131 94.7 114.2
J-3 133.1 128.9 102.5 1124 94.1 115.2
East Span
Beam Eq. 1.2 Eg. 1.8* Eq. 1.7 Eq. 1.10 Eq. 1.11 Eg. 1.12°
-1 135.9 136.6 123.7 1378 117.0 126.2
-2 133.0 1351 118.7 133.0 113.0 1236
-3 133.7 137.7 120.3 133.7 113.7 126.4
J-1 134.3 122.8 104.8 115.0 98.4 1113
J-2 134.0 124.9 103.2 113.1 94.7 1121
J-3 133.1 128.1 103.2 1134 94.8 115.3
Eq. 1.2 ve=2{fc ACI 318-83 (3)
1
Eq. 1.8 ve= se(f'cpwg) 3 Zsutty (44)
Eq. 1.7 v.={08 +1 QOPw)ﬁT: Raiagopalan and Ferguson
Eq. 1.10 ve={0.8 + 120pw){Tc ACI-ASCE 426 (8)
Eq. 1.11 ve=(0.6 + 110pw)¥fec Batchelor and Kwun (14)
i . .
Eq. 1.12 ve= 20003 _I4Fc . [P Bazant and Kim (16)
J1 + 0.04d (3-)
dy b d

*

use M/Vd from crack pattern analysis {except beam I-1 east, use M/Vd from concrete
strain)
Y MVd <25
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Iabie 3.4 Approximate Shear Span, M/V, inches, at Shear Cracking Load
Fositive Moment Region

West Span
Beam Crack Stirrup Congrete
Patterns Strain Strain
[-1 681.4C -~ XX
2 £0.48 81.59 61.25
-3 pod 26.95 XX
J-1 81.73 -- 81.80
J-2 28.35 26.84 28.78
J-3 44.47 32.50 44,47
East Span
Beam Crack Stirrup Congrete
Patterns Strain Strain
i-1 XX -- §1.29
-2 61.16 82.78 §1.34
-3 XX . xX
J-1 61.23 -- £1.42
J-2 258.57 - 25.57
J-3 44.08 34.72 35.08
Negative Moment Region
West Span
Beam Crack Stirrup Concrete
Paitterns Strain Strain
i1 5847 -- 58.87
-2 58.93 5813 £8.72
-3 54.79 54.79 54.83
J-1 57.97 .- 58.23
J-2 53.05 £3.08 54.86
J-3 51.08 52.63 44.99
East Span
Beam Crack Stimup Concrete
Patterns Strain Strain
i1 £3.15 - 58.88
-2 58.69 58.10 54.55
i3 55.88 .- §5.79
J-1 58.81 -- 59.04
J-2 B5.70 -- 5558
-3 51.47 55.55 4817
- - Ne stirrups used

xx Method produced no results
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Iable 3.5 Approximaticn Shear span-io-Depth Ratio, M/{(Vd), at Shear Cracking Load
Positive Moment Region

West Span
Beam Crack Stirrup Conicrete
Patterns Strain Strain
1 3.83 - X%
-2 3.80 3.87 3.85
-3 XX 1.68 =
J-1 3.88 .- 3.86
J¢-2 1.77 1.68 1.87
J-3 2.96 2.18 2.88
East Span
Beam Crack Stirrup Concrete
Patterns Strain Strain
-1 xX .- 3.82
-2 3.83 3.93 3.84
-3 XX . XX
Jei 3.83 . 3.84
J-2 1.60 . 1.60
J-3 2.9 2.29 2
Negative Moment Region
West Span
Beam Crack Stirrup Concrete
Pattamns Strain Strain
-1 3.78 -- 3.79
-2 3.7 3.66 .70
1-3 3.45 3.45 3.45
J-1 3.74 -- 3.76
J-2 3.24 3.34 3.45
J-3 3.24 3.34 2.86
East Span
Beam Crack Stirrup Concrete
Patierns Strain Strain
I-1 3.81 -- 3.78
.2 3.69 3.66 3.68
-3 3.52 . e 3.51
J-1 3.79 -- 3.81
J-2 a.51 - 3.50
w3 3.28 3.55 2.89

- - no stirrups used
*x method produced no resulls



76

Iable 3,82 Comparison of test and calculated shear cracking stresses:
values represent ve{tesi)/ve{eq) where v, is calculated from crack patierns

Positive Moment Regicn
West Span

Beam Eg. 1.2 Eg. 1.8 Eg. 1.7 Eq.1.10 Eq. 1.1 Eg.1.12

I-1 079 0.79 0.88 0.79 0.93 0.87

-2 1.09 1.08 1.21 1.08 1.28 1.18

-3 XX XX XX XX XX %X

J-1 0.76 0.84 0.99 0.90 1.08 0.94

J-2 0.89 il 0.98 0.88 1.05 il

J-3 1.18 0.88 1.18 1.03 1.05 0.86
East Span

Beam Eg.1.2 Egq. 1.8 Eq. 1.7 Eq.1.10 Eq. 1.11 Eg.1.12

-1 XX XX X% XX b +4 XX
-2 0.80 0.81 0.80 0.81 0.95 0.88
-3 xx% XX XX XX XX X
J-1 0.7 0.79 g.e2 0.84 1.01 0.88
J-2 0.75 v 0.84 0.78 0.88 il
J-3 1.18 0.87 1.16 1.01 1.03 0.87
mean 0.90 0.87 1.01 0.80 1.03 0.93
standard deviation 0.19 3.10 0.14 012 0.11 0.12
coef, of variation, % 20.80 11.68 13.85 12.9 10.97 12.44
Eq. 12 vo=2VFc ACI 318-82 (3)
1
Eg.-1.8 vg= Se(f'apwg)ﬂ Zsutty (44)
EQ. 1.7 ve= {0.8 + 100@.)‘@? Rajagopalan and Fergusen
£q. 1.10 Ve ={0.8 + 120pw e AC1-ASCE 426 (6)
Eg. 111 vo= {08 + 1Topw)ﬁ7: Batchelor and Kwun {14}

1 -
Eq. 112 vem — (0w 7T, [0 Bazant and Kim (16)
A/t + 0048 (ﬁ)
da - d

xx no shear cracking observed
** MVd <25
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Iable 3.6b Comparison of test and calculated shear cracking stresses:
values represent ve(test)/ve(eq) where v, is caiculated from crack patterns

Negative Moment Region
West Span

Seam  Eq.12  Eq18  Eq.17 Eq140 Egq i1 Eq 1.12

-1 0.80 0.80 0.99 0.88 1.05 0.97

-2 0.94 0.33 1.08 0.94 1.1 1.02

-3 0.95 0.9 1.08 0.85 1.1 0.99

J-1 6.79 0.88 1.01 0.92 1.08 0.94

J-2 0.97 1.01 1.26 1.15 1.38 1.14

J4-3 1.0 1.05 1.32 1.20 1.43 1.17
East Span

Beam Egq. 1.2 Eg. 1.8 Eq. 1.7 Eg. 1.10 Eq. 1.1 Eq. 1.12

-1 0.94 0.94 1.08 0.83 1.08 1.0

-2 0.88 0.84 0.85 0.88 1.01 0.82

-3 0.88 0.87 0.89 0.82 1.05 0.24

J-1 0.82 0.90 1.08 0.98 1.18 0.99

J-2 6.81 0.87 1.05 0.86 1.14 0.97

J-3 1.01 1.05 1.31 1.18 1.42 1147

mean o.M 0.e3 1.09 0.99 1.17 1.02

standard dsviation 0.08 0.07 0.13 0.12 0.1 0.09
coef. of variation, % 8.38 7.80 11.85 12.37 12.89 8.83

All beams, both positive and negative moment region

mean  0.91 0.90 1.08 0.95 1.11 0.98
standard deviation 0.13 0.08 0.14 0.12 Q.15 0.11
coef. of variation, % 14.53 9.60 13.04 13.06 13.54 10.80
Eq. 1.2 ve=21Fc ACl 318-89 (3)
1
Eq. 1.8 ve= 59(f'cpw~g—)3 Zsutty (44)
EqQ. 1.7 ve=(0.8 + 100pwi¥f'e Rajagopalan and Ferguson
Eq. 1.10 ve={0.8 + 120pw)¥fc ACI-ASCE 426 (6)
£q. 1.11 ve ={0.6 + 110pw)YTe Batchelor and Kwun {14)
1. .
Eq. 112 Vo= —0Ba3 Ty [ Po Bazant and Kim (16)
A1+ 0044 (i)
dal d
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Iable 3.73 Comparison of test and calculated shear cracking stresses:
values reprasent ve{test)/vq(eq) where v, is calculated from stirup strain
Positive Moment Regicn
West Span

Beam Eg 1.2 Eg. 1.8 Eq. 1.7 Eq. 1.10 Eg. 1.11 Eq.1.12

12 0.72 0.72 0.80 0.72 0.85 0.78
-3 0.77 . 0.88 0.78 0.91 b

J-2 0.89 v 0.77 0.59 0.81 v
J-3 1.16 0.87 1.16 1.01 1.03 0.70

East Span

Beam Eg. 1.2 Eqg. 1.8 Eq. 1.7 Eq. 1.10 Eg. 1.11 Eq. 112

-2 0.55 0.55 0.61 0.55 0.65 0.60
&3 0.97 0.72 0.97 0.84 0.85 0.72
mean  0.81 0.72 0.86 0.77 0.85 0.70
standard deviation 0.22 0.13 .19 0.18 .12 0.07
coef. of variation, % 27.03 18.29 21.79 20.23 14.64 10.69
Eq. 1.2 ve = 2Yfc AC!1 318-88 (3)
1
Eq. 1.8 vc=59(f'cpw—g-)3 Zsutly (44)
EqQ. 1.7 vo={0.8 + 100pw)¥f: Rajagopatan and Ferguson
Eq. 1.10 v ={0.8 + 120pw)¥fc ACI-ASCE 428 (6)
Eq. 1.11 ve=(0.5 + 110puwl¥ic Batchaior and Kwun (14)
1 -
EqQ. 1.12 ve=—10 (ewls Iy, 4 -3‘15- Bazant and Kim (16)
alt + 0.044 (-‘%)
gat d

- - no stirrups present
Tt MVd <25
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Tzble 3.76 Comparison of test and calculated shear cracking stressas:
values represent ve(lest)/ve(eg) where v, is calculated from stirrup strain

Negative Moment Region

West Span

Beam £gq. 1.2 kg 1.8 Eg. 1.7 Eg. 1.10 Eg. 1.11 Eg. 112
-1 - --

- - - - - - -

-2 0.73 0.72 0.81 0.73 0.86 0.78
-3 0.94 0.91 1.08 0.84 1.11 0.89
J-1 .- - .- - - -
42 0.97 1.03 1.26 1.15 1.38 1.14
J-3 0.97 1.00 1.28 1.18 1.38

East Span

Beam £q. 1.2 Eqg. 1.8 Eq.1.7 Eg. 1.10 Eg.1.11 Eg. 1.12

-2 0.73 Q.72 0.81 0.73 0.88 0.78
-3 -- . -- - .- -~
J-1 -- -- .- -- .- -
J-2 .- .e .- .- . -
&3 0.91 0.95 117 1.67 1.28 1.08
mean 0.88 0.8% 1.08 0.96 1.15 0.98
standard deviation 0.1 0.14 0.21 0.20 0.24 0.16
coef, of variation, % 13.08 15.39 19.66 20.30 21.12 18.52

All beams, both positive and negative moment region

mean  0.84 0.82 0.96 0.86 1.00 0.87
standard deviation ~ 0.17 0.16 0.22 0.20 0.24 0.18
coef. of variation, % 20.18 18.95 22.44 22.80 23.94 22.13
Eg. 1.2 ve=21fs ACl 318-89 (3)
1
Eq. 1.8 ve= SS(f'cpw-gw)s Zsutty (44)
Bg. 1.7 wv= {0.8 + 100pw)m Rajagopalan and Ferguson
Eq. 1.10 ve =(0.8 + 120pu)¥T'c ACI-ASCE 426 (8)
Q. 1.11 ve={(0.8 + 110pw)¥Tc Batchelor and Kwun (14)
1 .
Eq. 1.12 ve = —100wlS_IyFo s [P Bazant and Kim (16)
A1+ 0.048d (ﬁ)
it d

- - no siirups pressnt



80

Table 3.84 Comparison of test and calculated shear cracking stresses:
values represent veltest)/ve{eq) where v¢ is calculated from concrete strain

Positive Moment Region
West Span

Beam Eq.1.2 Eq. 1.8 Eq.17  Eg.110  Egq.1.11  Eq 1.12

-1 XX XX XX x xx XX

-2 0.81 0.81 0.80 0.81 0.95 0.88

-3 %X XX XX XX XX XX

J-1 0.74 p.82 0.96 0.88 1.08 0.91

J-2 0.84 T (.93 0.84 0.98 i

J-3 1.18 0.88 1.18 1.03 1.05 (.86
East Span

Bearn Eq.1.2  Eq. 1.8 Eg 1.7 Eg.1.10 Eq. 1.1 Eq. 1.12

-1 0.74 0.75 0.83 0.78 0.88 0.82
i-2 0.78 .77 0.85 0.77 0.80 0.84
-3 xx xx xx XX b+ xx
+1 0.57 0.74 0.87 0.80 0.895 0.83
w2 0.79 v 0.88 0.80 0.94 i
J-3 1.13 0.84 1,13 .88 1.00 0.84
mean 0.85 0.80 0.85 0.85 0.97 0.85
standard deviation 0.18 .05 0.12 C.10 0.06 0.03
coef. of varigtion, %  21.07 8.34 13.13 11.28 6.18 3.69
Eq. 1.2 v = 2ffc AC1318-89 (3)
i
Eq. 1.8 v = 59(]"4%«%}3 Zsutty (44)
Eq. 1.7 ve=(0.8 + 100py)¥fc Rajagopalan and Fergusen
Eq. 1.10 ve = (0.8 + 120pw)Vfec ACI-ASCE 426 {6)
Eq. 1.11 ve={0.8 + 110pw)m Batchelor and Kwun (14)

r .
Eq. 112 ve = —-JQ—QML»: e + -&"? Bazant and Kim {16}
) 1+ O.D&L (.%)
V da d

X% no shear cracking observed
*r o MVd < 2.5
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Iable 3.80 Comparison of test and calculated snear cracking stresses:
values represent ve{test)/ve(eq) where vg is calculated from concrete strain

Negative Moment Region
West Span

Beam  £q.12  Eq18  Eq17  Eq 110 Eq 141 Eq 142

-1 0.90 0.80 0.98 0.88 1.08 0.97

-2 0.88 0.8 0.98 0.88 1.03 0.95

-3 0.99 0.96 1.10 0.89 1.17 1.04

W-1 0.83 0.80 1.06 0.87 1.16 1.00

J-2 0.85 0.80 1.10 1.00 1.20 0.98

J-3 1.17 1.21 1.52 1.38 1.85 1.35
East Span

Beam Eg. 1.2 Eq. 1.8 Eg 1.7 Eg. 1.10 Baq. 1.11 Eq. 1.12

-1 0.81 0.81 0.89 Q.80 0.84 0.88

-2 .0.82 0.8t 0.91 0.82 0.96 g.a8

-3 0.85 0.82 0.94 0.88 1.00 0.83

J-1 0.89 0497 1.14 1.04 1.23 1.07

J-2 0.84 0.50 1.8 0.8 1.18 1.00

43 1.14 1.18 1.47 1.34 1.680 1.31

mean 0.91 £.94 1.10 1.00 1.18 1.03

standard deviation 0.12 0.13 0.20 0.18 0.23 0.15
coef. of variation, %  13.38 14.15 18.38 18.76 19.42 14.97

All beams, both positive and negative mement region

mean 0.89 0.89 1.03 0.83 1.08 0.88
standard deviation  0.15 0.13 0.19 0.17 0.21 0.15
coel. of variation, % 16.77 14.25 17.97 18.00 18.82 15.45
Eq. 1.2 ve=2Yfc AC1 318-89 (3)
1
EQ. 1.8 Vo= SS(f'cpwg—)a Zsutty (44)
Eq. 1.7 ve={0.8 + 100pw)¥f: Rajagopalan and Ferguson
Eq. 110 vo=(0.8 + 120pw)¥fe ACI-ASCE 426 {6)
EQ. 1.11 ve=(0.6 + 110pu)¥Fc Batchelor and Kwun (14)
.
Eq. 1.12 Ve = 10 (E""')—-—-—:3 | {f-;: + -Pl5 Bazant and Kim (16)
Al1 + 0.048 (ﬁ)
da b d
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Jable 2.9 Stirrup effectiveness, vp-ve (psi)

Current Study
Beam . Va-vg {psi) pvivy (psi) Pw
I 3.0 6.0 0.0102
i1 58 Q.0 0.0102
-2 83.4 34.1 0.0100
1-3 20.8 0.0 0.0100
-3 48.5 33.9 0.0100
J-1* 5.0 0.0 0.0073
J-1 23.5 C.0 0.0078
J-1* 19.5 0.0 0.0073
J-1 17.5 0.0 0.007%
J-2 218 0.0 0.0074
+2 50.3 34.0 0.0074
J-3 73.1 57.3 0.0075
J-3 1312 82.0 0.0074

Resuits of Rodrigues and Darwin (38,39,40) and Palaskas, Attiogbe, and Darwin (11,34,35)

Beam Vn - Ve (psi) pylvy (psi) Pw
A-0" 13.9 0.0 0.0068
A-25T 55.1 31.8 0.0066
A25a" 67.5 , 31.8 0.0067
A-50 103.0 74.0 : 0.0068
A-50a* 983 75.0 0.0066
A-75* 184.0 97.0 0.0068
B-0" 471 0.0 0.004%
B-25" 43.1 32.4 0.0049
B-50" 110.4 78.2 0.0080
C-0* 18.8 0.0 0.0094
C-25 52.0 324 0.0005
C-50" 146.0 76.2 0.0094
c-75* 172.0 103.0 0.0093
D-0 18.4 0.0 0.0068
D-20 37.0 21.8 0.0071
D-40 34.7 37.0 £.0070
D-80(1)" 134.6 82.9 0.0063
D-30(2) 999 73.1 £.0070
E-0* 19.0 0.0 0.0047
£-20 34.8 222 0.0047
B-40* 547 36.8 0.0048
E-80 88.6 73.5 0.0048

* Positive Moment Region Failure
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Iable 3.10 Horizontal Crack Projection and Stirrup Contribution to Shear Strength at Failure

Negative Moment Region
# of stirrups Horizontal  Vei=NAylyy/byd

Beam Location **  intercepted  Projection {psi) pyfvy (psi)

-2 east 4 1.8d 80.1 344

-3 west 3 1.0d 44.8 33.9

J-2 west 3 1.5d 45,0 34.0

J-3 east 3 1.5d 77.0 57.3

J-3 west 3 1.3d 108.3 82.0
D-s0(2)* n'a 2 1.1d 66.8 73.1
D40 n/a 1 0.ed 16.8 37.0
D20 n‘a 2 1.1d 20.0 21.6
E-8g* n/a 2 0.9d 68.3 73.5
E-20" n'a 2 1.4d 202 2.2

Positive Moment Region
# of stirups Horizontal  Vsi=NAyfyy/byd

Beam Location ™  intercepted  Proiection {psh) pyfvy (psi)
A-257 wa 3 1.7d 43.4 31.8
A-28a" wa 3 2.2d 43.8 3.8
A-B0” nva 3 1.8d 100.6 74
A-50a" n/a 3 2.0d 101.7 75
A-TS" na 3 1.8d 131.1 97
B.25" E 2 1.8d 2.2 324
B-50" wa 3 1.5d 104 76.2
C-25° n/a 3 1.7d 444 32.4
c-50" n/a 3 1.7d 103.4 78.2
c-75" wa 3 1.7d 13@ 103
D-80(1)" va 3 1.4d 116 82.9
E-40" na 3 1.6d 49.7 36.8

- Test results of Rodrigues and Darwin (38,39,40) and Palaskas et al. {11,34,35)
** In order of failure :
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Table 3.11 Comparison of Test and Calculated Nominal Shear Strasses from Currant Study and
Results of Hodrigues and Darwin (38,38,40)

Negative Moment Region Failures

Beam Span Vo (test} vy (ACH™ vn (test)
psi psi Va (AChH

-1 aast 131 136 0.96
-1 west 128 136 0.54
-2 east 197 1687 1.18
-3 east 140 134 1.04
-3 west 176 188 1.05
J-1 west 129 134 0.95
J-1 east 128 134 0.98
J-2 east 130 134 0.97
2 west 181 168 1.08
3 east 208 180 1.08
J-3 west 266 215 1.24
D-g* n/a 138 135 1.02
D-20* na 143 153 0.97
D-40° na 148 167 0.87
D-80(2)" nfa 200 201 1.00
E-20* n/a 127 152 0.84
_ E-80" wa 162 200 Q.76

Mean (all beams from the current study) 1.04

Coefficient of Variation 9.5%

Mean (beams with stirups from the current study) 1.13

Coefficlent of Variation 7.0%

Mean (all beams from Rodrigues and Darwin) .41

Coefficient of Varigtion 8.4%

Mesn (beams with stirrups from Rodrigues and Darwin) 0.89

Coeflicient of Variation 11.0%

Mean (all beams from combined results) 1.00

Coefficient of Variation 11.7%

Mean (beams with stirrups from combined resuits) 1.01

Coefficient of Variation 156.2%

*  Test hesults of Rodrigues and Darwin {38,39,40)
Vo= pvay -+ 2‘1‘?7:



Table 312 Sample Beam Response {using MCFT response procedure on beam 1-2)

&1
% 10,000

£.00
5.50
6.00
8.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50
14.00
14.50
16.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
18.00
19.50
20.00

8
degrees

£6.9
£5.6
54.5
83.4
52.4
51.6
50.7
49.9
49.2
48.5
47.8
47.2
46.6
48.1
45.8
45.1
44.6
44.2
43.8
43.4
43.0
42,6
42.3
41.8
41.86
41.3
41.0
40.7
40.1
38.5
39.0

X

€2
100,000

-2.72
-2.97
-3.21
-3.44
-3.68
-3.81
-4.13
-4.36
-4.57
-4.80
-5.01
-5.22
-5.42
-5.63
-5.86
-6.11
-6.36
-8.61
-6.86
-7.12
-7.38
-7.64
-7.89
-8.16
-8.42
-3.68
-8.96
-g.22
-9.41
-8.61
-8.79

85

x 10,000

£x

3.43
3.85
3.87
4.07
4.26
4.45
4.62
4.79
4.96
5.11
526
541
£.58
5.70
5.83
598
6.09
8.21
8.34
£.46
8.57
6.69
6.81
£.91
7.03
7.34
7.24
7.35
7.34
7.32
7.31

£y

x 10,000

1.30
1.58
1.81
2.08
2.37
2.66
256
3.27
3.58
3.91
4.24
4,57
4.80
5.24
5.89
5.83
6.28
8.63
6.38
7.33
7.69
8.08
8.41
8,77
8.13
9.50
9.87
10.23
10.72
11.22
11.71

v
kips

134

13.9
14.3
14.7
15.1
18.5
15.8
16.1
16.5
16.8
17.1
17.3
17.86
17.8
18.1
18.4
18.8
18.8
18.1
18.3
18.5
18.7
18.9
20.1
20.3
20.5
20.8
20.8
20.7
20.5
20.3

k-in.

699
723
745
768
787
805
823
840
858
572
887
902
g5
929
843
985
288
280
g81
1603
1015
1028
1036
1048
10588
1068
1078
1088
1077
1068
1083
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Iable 3,13 Partial Design Tables from Collins and Mitcheil (22)
Beams with Stinups
Longitudinal Strain, £x x 1000
vit'e 1.00 1,50 2.00 2.50 3.00
8 38 41 43 45 48
0.050
B 2.33 1.95 1,72 1.54 1.38
8 36 40 42 43 43
0.875
8 2.15 1.90 1.65 1.44 1.25
Beams without Stirrups
Longitudinal Strain, exx 1000
d, inches 1.00 1.50 2.00 2.55 3.00
8 45 48 50 52 53
18.0
B 1.99 1.67 1.45 1.30 1.17
) 51 54 57 58 61
25.0
B 1.70 1.39 1.18 1.05 0.94




Beam

-4

J-1*

J-1
J-1
J-2
J-2

J-3
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Iable 3,14 Results Obtained from MCFT Response Procedurs

ki from Step 3 equal to 0.8 for shear reinforcement

Span

east
west
egast **
east
west ™
east
west
west
east
east
west **
east ™
west ™

]

B0
L]
40.7
50.1
40.4
57.8
54.1
§7.8
54.1
84.1
434
411
442

Her. Proj.

0.84d
0.84d
1.16d
0.84d
1.17d
0.83d
0.72d
0.63d
0.72d
o.72d
1.0&d
1.13d
1.08d

Vp(test)
Vo(MCFT)

Mean (I-series beams, py=1.00%): 1.16
Coefficient of Variation: 11.1%

Mean (J-series beams, py,=0.75%): 1.32
Coefficient of Variation; 10.2%

Beam
-2
J-2

43
J-3

Va(MCFT) Va(MCFT)  _Vn{test

vo(MCFT)
12.5 107 1.22
12.5 107 1.20
21.1 177 1.11
12.8 107 1.31
217 182 0.97
10.3 86 1.16
10.8 93 1.39
10.3 86 1.41
10.8 93 1.38
11.2 94 1.38
19.2 161 112
20.3 173 1.20
21.3 180 1.48
Vn(test)
Vo(MCFT)

Mean (all beamns): 1.28
Coefficient of Varation: 11.8%

Mean (beams without stimips): 1.31
Coefficient of Variation: 7.6%

Mean (beams with stirups): 1.18
Coefficient of Variation; 16.1%

kq from Step 3 equal to 0.4 for shear reinforcemant

Span

east ™
west "
west ™
egast ™
west ™

8

38.3
38.9
43.2
413
45

Hor. Proj,

1.22d
1.24d
1.0&d
1.14d
1.00d

* - positive moment region failure
* heams containing stimups

Vo(MCFT})  va(MCFT)}  _Va(test)

| Va{MCFT)
222 186 1.06
22.8 191 0.92
19.3 182 142
20.3 173 1.20
21.4 181 1.47
y(test)
Va(MCFT)

Mean (beams with stirups): 1.15
Coefficient of Variation: 17.7%
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Tzble 3,15 Results Obtained from MCFT Design Procedure

va(test)
Beam Span 8 Hor. Praj, Vi(MCFT) Vo (MCFT) vo(MCFT)
I-1 east 48 0.gcd 12.3 108 1.24
j-1 wast 48 0.80d 12.3 106 1.21
-2 sast ™ 43 1.07d 16.6 139 1.42
-3 east 48 0.87d 12.6 106 . 1.32
-3 west ™ 43 1.07d 17.0 143 1.23
J-1* east B0 0.84d 11.5 88 1.04
J-1 west 50 0.84d 11.1 85 1.26
J-1* west 50 0.844 1.5 98 1.26
J-1 east 50 0.84d 111 95 1.35
J-2 east 50 0.84d 11.5 g7 < 1.34
J-2 wast ** 45 1.00d 188 121 1.38
J-3 east ™ 45 1.00d 17.5 149 1.40
w3 west ™" 45 1.00d 20.2 171 1.56
Vo (MCFT) Vo(MCFT)
Mean (i-series beams, py=1.00%): 1.28 Mean {all beams): 1.32
Coefficient of Variation: 6.8% Coefficiant of Variation: 9.5%
Mean (J-series beams, py=0.75%) 1.34 Mean (heams without stirups): 1.27
Coefficient of Variation: 11.0% Coefficient of Variation; 8.4%

Mean (beams with stirups):  1.40
Coefficient of Variation: 8.4%

* - positive moment region failure
** beams containing stirmups
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able 3.16 Comparison of Test and Calculated Nominal Shear Stress from Current Study

RBeam Span vq (test) vnp {AGH™ Va {test)
psi psi vn (ACH

f-1 east 131 138 0.96
[-1 west 128 136 0.94
-2 east 197 187 1.18
-3 gast 140 134 1.04
-3 west 176 168 1.05
1 east 100 134 0.78
J-1 west 129 134 0.6
J-1 west 121 134 Q.90
J-1 east 128 134 3.96
J-2 east 130 134 0.97
€2 west 181 188 1.08
J-3 east 208 180 1.08
J-3 wast 268 215 1.24

Mean (ail beams) 1.01

Cosfficient of Variation 12.4%

Mean (beams without stirrups) 0.84

Coefficient of Variation 9.0%

Mean {beams with stirmups) 1.13

Coefficient of Variation 7.0%

" positi;/e moment region faillure
™ Vp= pvay + 2‘1’?2'
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25.0

Load, Kips

12.5.

00.0 , ,
0.000 0.001  0.002

Strain

Fig. 24 a Load-strain curve for No.5 bar

37.5,

25.0]

Load, Kips

12.5

00.0 i ;
0.000 0.001 0.002

Strain

Fig. 2.4 b load-strain curve for No.8 bar



Load, Ibs

t.oad, Ibs
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0.005

1200
800 |
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| i [ 1
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Sirain
Fig. 2.4 ¢ Load-strain curve for test stimup, pyfyy=34 psi
1800 —
— e
1200 .
800
0 1 i i t i
0.000 0.001 0.002 0.003 O 0.004

Sirain

Fig. 2.4 d Load-strain curve for test stirrup, pyfyy=57 psi
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Two point loading system

W8X48
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Structural Ficaer

% 'T’W Hydraulic Jack

Single point loading system

Fig. 2.7 ¢ Loading system - End view
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Fig. 2.9 a Averags load-avarage midspan deflection curve for beam }-1

(east negative shear span fallure)
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Fig. 2.9 b Average load-average midspan deflection curve for beam I-1

{west negatlve shear span fallure)

1.0

901



Averoge Load, Kips
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Fig. 2.9 ¢ Average load-average midspan deflection curve for beam i-2

(east negative shear span fallure)
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Fig. 2.9 d Average load-average midspan deflection curve for beam I-3

(east and west negative shear span fallures)

BO1L



Averoge Load, Kips

ee -
20
18 -
16
14 -
12
10 -
8 |

6 -

L) ¥ ) 1 J T ¥ T ¥

0.1 02 03 04 65 06 0.7 08 0.9

Average Mid—Span Deflection, inches

Flg. 2.9 e Average load-average midspan deflection curve for beam J-1

(east positive shear span failure}

1.0

6014



Average load, Kips

22

20

18

16 |

14

12

10

8

Shear Span Failure

Shear Span Failure

0Lt

Average Mid—Span Deflection, inches

- West Positive
- West Negative
00 01 02 03 04 05 06 07 08 09 1.0

Fig. 2.9 { Average load-average midspan deflection curve for beam J-1

(west positive and negative shear span fallure)



Average Looad, Kips

20 ]

18

16 .

14

12

10

8 |

Average Mid—Span Deflection, inches

Fig. 2.9 g Average load-average midspan deflection curve for beam J-1i

(east negative shear span failure)

bEL



Averagge Lood, Kips

24 West Negative
Shear Span Failure
20,
16
12
East Negative
8. : Shear Span Failure
4.
0 T v ¥ | L L ¥
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Average Mid—Span Deflection, inches

Fig. 2.9 h Average load-average midspan deflection curve for beam J-2

(east and wast negative shear span failure)

cht



Total Lood, Kips

90 |
80 |
70
60 |
50 ]
40 J
30
20

10

0.0

T ¥ 1 T ¥ t

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Average Mid—Span Deflection, inches

Fig. 2.9 1 Average load-average midspan deflection curve for beam J-3

(east positive and negative shear span failure)

West Negative
Shear Span Foailure

East Negative
Shear Span Failure

0



—_— . D .

oo™

2B = I Y

60 T

30 -

20 —>

10 -f

i

Q -
0.00E+00

} }
5.00E-04 1.00E-03
Strain

Fig. 210 Total Load versus stirrup strain curve

{third stirrup from face of transverse girder in west span of beam [-3}

1.50E-03

vil



oo —_— N o~ O -

oY -

80 -

60 -|-

40 -}

30

20 -

10 -

0
-2.00E-03

¥ H F
-1.50E-03 -1.00E-03 -5.00E-04
Concrete Strain

Fig. 2.11 Toltal Load versus concrete strain curve

(first bottom gage from face of \ransverse girder in east span of beam J-3}

0.00E+00

Gil



.

West Beam 1-2 East
RS SREEEE D i R T o7 ame e et e
CHWNINSRG TN At |
West" Beam |[-1 East"
l r"'"'l""'!—-v"‘T-"r";'-r‘-r'——'"

"'"""""\""‘"!""t""'!'-V—P*F'ﬁ—ﬁ“ﬂr?”r"irmr’rﬁ—h‘{ﬁ—-ﬁ'—--- 7 ol i iy & s I A= T
1
1

i

%

g 51
J—

_
: \h PO AT
3 E& Lol | 1Y AT (YL

West* Beam J-1 East’

Fig. 2.12 a Crack Patterns, Beams I-1, 1-2, J-1 (* Indicates span without stirrups)

oLt



117

(sdnups noyum ueds sejeoipu; ) g-f ‘g-r ‘-] sweeq ‘suielied oI q 212 Oid

1se] e weoag 1SOM

e ey e v s T b ad R e e =
AT R TN
_ B [ i1 L

b Bl fol St ot O T o g U

1Se3 ¢ wesg 1ISeM
mw_ 333333 T
! ]

1seq £-] weog 1S8M

_

T e - T - e
T TR,
wm_“"“uum.ﬁmn\\u L. peydomnd, &+ 0.1 ] i

-

kgl pa b o e et Lok} b o o e b e R o SR VO S e

| |




118

P=18.0 kips
/\/—w=0.017 kips/in.

bbb T T T T TR
| |

b= 72 in. =t=— 90 in, —=

fe 246 in. - |
789.7 kip in.
| 240 in. \\
Face of Support
873.3 kip in.—
—= 7.6 kips
i
Pl
f— 240 in.
12.8 kips —— ] Face of Support
J

- 14.9 kips

Fig. 2.13 a Bending moment and shear force diagrams at peak load for beam [-1

(negative moment region shear failure in east span)



119

P=18.5 kips
l 'A/—GJ=G,017 kips/in.
o N O R O T O T O

T

jo—— Q0 in, ~=te 72 in. =]
| 246 in. |

800.0 kips

| / 240 in. '

e
Face of Support L

908.0 kips

7.7 kips ™

240 in. —=]

Face of Support l--—-—-—-—-—"“"‘"""'— 13.2 kips

— 18.3 kips

Fig. 2.13 b Bending moment and shear force diagrams at peak load for beam I-1

(negative moment region shear failure in west span)



120

P=30.8 kips
//—mx0.017 kips/in.
3 R

F— 80 in. —=f= 72 in. =
| 246 in, E

1289.3 kip in.

gl 240 in. ‘

v

Face of Support -~ 1408.6 kip in.

11.8 kips =™

et

240 in. —

Face of Support b————m—m"" 21.4 kips

—— 23.5 kips

Fig. 2.13 ¢ Bending moment and shear force diagrams at peak load for beam -2

(negative moment region shear failure in east span)



121
P=10.3 kips

P=10.3 k'i@S//—w--:O.m? kips/in.
S T T T 1T T T T 1T 1T T

I

o 90 in. === 72 in. =~
E 246 in. {

740.1 kip in.

367.2 kip in.

f / 240 in. }
Face of Support i
943.7 kip in.

B.8 kips
7.2 kips
| B 240 in. —=
Face of Support | 14.6 kips
16.7 kips

Fig. 2.13 d Bending moment and shear force diagrams at peak load for beam [-3

{negative moment region shear failure in east span)



122
P=13.7 kips

P=13.7 kips/d—w::o.ow kips/in.

N T T T T T T O O R A

b= 72 in. =t— 80 in, —
| 246 in. |

949.0 kip in.
509.6 kip in.

| 240 in. \ B

o

‘ Face of Support

1165.4 kip in—
——11.3 kips
9.7 kips
le— 240 in. - |
18.9 kips Face of Support
21.0 kips

Fig. 2.13 e Bending moment and shear force diagrams at peak lead for beam 1-3

{negative moment region shear fajlure in west spanj



123

P=16.8 kips
/‘wmo.m 7 kips/in.

F— 90 in. === 72 in. =
| 248 in. |

735.2 kip in,

oy /
240 in. ’

e

Face of Support L 836.1 kip in.

7.2 kips —

240 in. —

Face of Support b——e—e——m—""""" 12 kips

141 kips

Fig. 2.13 f Bending moment and shear force diagrams at peak load for beam J-1

(positive moment region shear failure in east span)



124
P=18.1 kips

[w=0.017 kips/in.
S N T T T T O T

b= 72 in. =— 90 in. —=
: 246 in. ]

792.3 kip in,

240 in. \ B

—f Face of Support
878.4 kip in.
— 7.7 kips
i
-
fa—on 240 in.
12.8 kips-m—-\ Face of Support
J
15.0 kips

Fig. 2.13 g Bending moment and shear force diagrams at peak load for beam J-1

(negative moment region shear failure in west span)



125
P=20.6 kips
//—GJ:O.GV] kips/in.
R T

T |

= 72 in. =t Q0 in, —=]
} 246 in. |

888.6 kip in.

240 in. \ -

<
881.6 kip in.__,

Face of Support

— 8.5 kips

|o— 240 in.

14.5 kips

Face of Support

16.6 kips

Fig. 2.13 h Bending moment and shear force diagrams at peak load for beam J-1

(positive moment region shear failure in west span)



126

P=17.9 kips
/\/—&J=0.0i7 kips/in.
gl v v b T T

T !

b 80 in. —=t= 72 in. =]

| 246 in. |

779.4 kip in.

g

v 240 in. |
Face of Support L

878.9 kip in.

7.5 kips —

240 in, -—-—-—%

Face of Support " 12.8 kips

“—— 14.9 kips

Fig. 2.13 i Bending moment and shear force diagrams at peak load for beam J-1

(negative moment region shear failure in east span)



127

P=3.4 kips

PFQA Kips //-w=0.017 kips/in.

g T 1 T 1T VI T 7 17

f=— 90 in. —=}= 72 in. =}
i 246 in. |

964.4 kips in.

351.1 kip in.

l_—.. / 240 in. |

Face of Support i
885.9 kip in.

B.4 kips
7.0 kips -
1 ' 240 in. ———1
Face of Support 1 13.7 kips
—15.8 kips

Fig. 2.13 ] Bending moment and shear force diagrams at peak load for beam J-2

{negative moment region shear failure in east span)



128
P=14.1 kips

P=14.1 kips . ,20.017 Kips/in.

S R N O T T T O U N N -

!

f 72 in. == S0 in. —=i
| 246 in. |

1087.9 kips
718.3 kips

| 240 in. \ B

oy

Face of Support

885.9 kip in.—-
— 13.0 kips
[ 11.5 kips
[-————— 240 in.
20.0 kips Face of Support
1
21.6 kips

Fig. 2.13 k Bending moment and shear force diagrams at peak load for beam J-2

(negative moment region shear failure in west span)



129

P=19.0 kips

A=19.0 kips/,—wo.ow Kips/in.
g 1T T T T 111171

F— 90 in. —=f= 72 in. =
| 246 in. |

1535.6 kip in.

1217.0 kip in.

! / 240 in. |

Face of Support :
820.3 kip in.

18.3 kips
16.9 kips
I 240 in. —
Face of Support 23.1 kips
24.6 kips

Fig. 2.13 | Bending moment and shear force diagrams at peak load for beam J-3

(negative moment region shear failure in east span)



130
P=25.7 kips

P=23.7 kips  _,=0.017 kips/in.

SN N N OO Y O RN

= 72 in. =t— 90 in, —=
| 246 in. |

2113.6 kip in.
1810.7 kip in.

| 240 in. \

w

Face of Support

819.7 kip in——
—— 25.2 kips
| ~— 23.8 kips
e
I-—-—- 240 in.
29.8 kips Faoce of Support
1
31.2 kips

Fig. 2.13 m Bending moment and shear force diagrams at peak load for beam J-3

{(negative moment region shear failure in west span)



2.5

0.5

- ST i :““:49_*:
0o -
+ ACl 318-89 ——
M - -~ - ﬁ» |_1
» L. - - - A' .7
/ -
B o 9 12
T  ACI-ASCE 426 .-~ g.-'
Rajagopalan . — .- 4 1-3
I and Ferguson .-~
1 Batchelor - NEa
and Kwun & J-2
A J-3
: : : % = : : ——rt :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 3.1 Shear Cracking Stress from Crack Patiems in the Positive Moment Region

et



25

1.5

0.5

- SO T T T L T A" LT
: P I
T ACl 318-89 —— — e - A
7 POt B -1
- . -~ - ‘,'
- .
.-///'f." £11-2
+ ACIASCE 426 .-~ ~".-"" &
Rajagopalan _ -~ .-~ A ' 4 1-3
5 and Ferguson .-~
Batchelor | < J-1
T and Kwun A J-2
i A J-3
i | E i i } f E % E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100pw

Fig. 3.2 Shear Cracking Stress from Stirrup Sirain in the Positive Moment Region

¢t



2.5

0.5

A
8 e 4 W
r/-
T ACl 318-89 e
./ -~ ."
j e 11
. - -
-7 /","S 012
-~ =
T ACI-ASCE 426_-" ~"0.-~ *
i Rajagopalan -~ .- -3
and Ferguson _.- & J-1
+ Batchelor
and Kwun #& J-2
' A J-3
: a : ; ; : : i i !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100pw

Fig. 3.3 Shear Cracking Stress from Concrete Strain in the Positive Moment Region

get



2.5

1.5

0.5

A LS T T IImliTIIITIIIT
-/’ J"‘
Jra\ - et
+ AC! 318-89 =
- /? M -1
. - .
. P -
R | 112
1+ ACI-ASCE 426 ..~ -7 .-
Rajagopalan -~ .-~ ¢ -3
- and Ferguson .-~
Batchelor O J-1
T and Kwun A J-2
‘ A J-3
} f } } } ; ; f } {
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 3.4 Shear Cracking Stress from Crack Patterns in the Negative Momeni Region

vEl



2.5

0.5

s T T -
- / ’
T ACI 318-89 <
- Ja\ ’ —T
NI B -1
_ - P e
T T 012
+  ACHASCE 426 .-~ 7=
Hajagopalan PP ‘ 4 |-3
and Ferguson .-~
Batchelor N
T and Kwun A J-2
A J-3
} ; f ; ; } } } ; !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100pw

Fig. 3.5 Shear Cracking Stress from Stirrup Strain in the Negative Moment Region

Set



2.5

0.5

T
[ % ST e LT LT LI
- / ’ - :
T AClI 318-89 —= — o
T T IR
5 O, - P d. -
/“/AE/./'"' Cit-2
T ACI-ASCE 426 - -~ PR
i L ¢ 1.3
i Rajagopalan —
and Feraguson. -~ O I
A Baichelor
and Kwun A J-2
— A J-3
I ] ] I [ [l H i i i
i ¥ 1 ] T I I ¥ 1 t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100[)w

Fig. 3.6 Shear Cracking Stress from Concrete Strain in the Negative Moment Reglon

9¢1



140

120

100

Vp - Ve, pSi

80

60

40

.20

4 B -1
{12

T ¢ -3

1 < J1
A J-2

1 A J-3

| Vg - Vg = 1.36pyfyy + 12.26
Correlation Coefficient, r = 0.87
0 10 20 30 40 50 60 70 80 90
pvfvy, psi

Fig. 3.7 Stirrup Effectiveness in the Negalive Moment Region (from current study)

LEL



140 +

B |-
| A -1
120 12
¢ I-3
100 O J-1
80 A J-2
Vp = Vg, psi A J-3
60 X D-80(2)
40 X D-40
- D-20
20 Va-Vg = 1.28pvf\;y + 8.28 = 3-{)
Correlation Coefficient, r = 0.89
B E-80
0 10 20 30 40 50 60 70 80 go LIE20

pyfyy, psi

Fig. 3.8 Stirrup Effectiveness in the Negative Moment Region (from current study and results
of Rodrigues and Darwin (38,39,40))

8E1



120
100
80
60
Vsi, psi

40

20

& -1
{112
4 1-3
<& J-
A J-2

A J-3

Vgi = 1.23 pvay + 7.97
Correlation Coefficient, r = 0.97

i { i ] [} | i i

20 30 40 50 60 70 80 90
pvfvy, psi

Fig. 3.9 Shear Carried by Stirrups Alone in the Negative Moment Region (from current study)

6EL



300 +
A
250 +
A
200 + [l
vy (test), psi ¢

150 - . O

B
100 +
50 -+ a ; % : :

50 100 150 200 250 300
vy {ACI), psi

Fig. 3.10 Comparison of Negative Moment Reglon Nominal Shear Strength, Test vs. ACI {from
current study and results of Rodrigues and Darwin (38,39,40))

B |1
012
¢ 13
O I
A J2
A J-3
X D-0
X D-20
—~ D-40
— D-80(2)
8 E-20
1 E-80

ovi



300 -r

A

250 + 11
112
A ¢ |-3

200 -+ 0
< J-1
vn (test), psi $ A J-2
150 + .
o A J-3

100 + <&
50 100 150 200 250 300
Vn (ACI)s pS[

Fig. 3.11 Comparlson of Negative Moment Region Nominal Shear Strength, Test vs. ACI {from
current study)

Lt



vp{norm)/14000

55
B 10 -ve

(current study) pw=1.00% -ve

-
-
-

©l - pw=0.94% +ve

5 .. [0.75-ve

¢ 0.70 -ve (current study} pw=0.75% -ve

45 pw=0.70% +ve

< 0.47 ~ve
4 + A 0.70 +ve
A 0.50 +ve

X 0.94 +ve

3
P wa"’ﬁ‘o.47°/0 -Ve
2.5
2
1.5 ’ p— -+ : : — :
0 20 40 60 80 100 120

pvivy, psi

Fig. 3.12 Normalized Nominal Shear Strength versus Nominal Stirrup Strength, Best Fit Lines
(from current study and results of Rodrigues and Darwin (38,39,40))

crl



15+ o 0.70 -ve B 1.0 ve

<& 0.47 -ve 3 0.75 -ve

A 0.70 +ve (current study) pw=1.00% -ve

. (current study) pw=0.75% -ve
A 0.50 +ve e py=0.94% ve
X 0.94 +ve pw=0.70% +ve

pwzo.so‘%b +vVe

vﬂ(norm)/m

0.5 = e ‘ E— | : | i
0 20 40 60 80 100 120
pvivy, psi

Fig. 3.13 Ralio of Normalized Nominal Shear Strength to Value Predicted by ACI 318-89 (3)
versus Nominal Stirrup Strengihs

EVI



V, kips

25.0 +

20.0 +

15.0 +

10.0 -

5.0 +

0.0
0.00e+00

5.00e-04

1.00e-03

€4

1.60e-03

2.00e-03

Fig. 3.14 Sample Member Response Using MCFT Response Procedure

2.500-03

Yyi



300 —+

N
250 -+ B -1
{112
FA ¢ -3
200 -} 0
< J-1
vp(test), psi A &
A J-2
150 + ]
E A J-3
O@
100 -+ <&
50 } f } } }
50 100 150 200 250 300

Vo{MCFT), ps

Fig. 3.15 Comparison of Measured Nominal Shear Strength to Nominal Shear Strength from

MCFT Response Procedure

St



Horizontal Projection (test) + d

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Fig. 3.16 Comparison of Measured Horizontal Crack Projection to Predicted Horizontal

] AN
< A
o -1
O B
-2
A ¢ ¢ -3
O
< -1
A J-2
A J-3

i
1 i T 4 ¥ T 1 L}

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Horizontal Projection {MCFT) + d

Crack Projection from MCFT Response Procedura

Sv1L



300

A

250 +

B i1
A

200 + 02
vy (test), psi A o ¢ 13
< J-1

150 -+
4 A J-2

%ﬂ

A J-3

100 +

50 —+ % | f i
50 100 150 200 250 300

vo(MCFT), psi

Fig. 3.17 Comparison of Measured Nominal Shear Sirength to Nominal Shear Strength from
MCFT Dasign Procedure

Lyl



Horizontal Projection (test) + d

1.6

1.4

1.2

0.8

0.6

0.4

0.2

B

L2
¢ |-3
< J-1
A J-2
A J-3

{ 1 1 H —) }
} } 1 ¥ i ¥ 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Horizontal Projection (MCFT) + d

Fig. 3.18 Comparison of Measured Horizontal Crack Projection to Predicted Horizomtal Crack
Projection from MCFT Daeslgn Procedure

BY I



‘;’

Cy

Cx

]

#

148

APPENDIX A

NOTATION

area of concrete cross-section

area of flexural reinforcement

area of web reinforcement

area of longitudinal (flexural) reinforcement

shear-span, distance from maximum moment section o zerc moment section,
or height of equivalent compressive stress block on concrete cross-section

web width of T-beam

compression force oh concrete cross-section

distance from compression face to neutral axis of the cross-section
horizontal distance from center of the web to inside edge of the stirrup

vertical distance from neutral axis of the uncracked section to inside edge of the tension
steel

distance from exireme compression fiber to centroid of flexural reinforcement
diameter of maximum size aggregate

diameter of transverse reinforcement (stirrups)

diameter of longitudinal reinforcing bars

modulus of elasticity of concrete

moduius of elasticity of reinforcement

average principal tensile stress in concrete

principal compressive stress in concrete

compressive stress in concrete outside of the area byjd

cracking strength of concrete
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NOTATION (continuad)

compressive strength of concrete measured on 6 x 12 in. cylinders
tensile stress in web reinforcement

yield stress of web reinforcement

stress applied in x-direction

stress applied in y-direction, or
yield stress of flexural reinforcement

flexural lever arm

applied moment on concrete cross-section
factored bending moment at section

axial tensile force on concrete cross-section

coefficient of variation, or
ratio of moment to shear, M/V

spacing of transverse reinforcement

horizontal clear space between longitudinal bars

average spacing of cracks perpendicular to the transverse reinforcement
average spacing of cracks perpendicular to the longitudinal reinforcement
average spacing of cracks inclined at 8 to the longitudinal reinforcement
tensile force on concrete cross-section

shear force

shear strength provided by tensile stresses in concrete

nominal shear strength (ultimate strength)

nominal shear stress carried by concrete, Vo/byd

shear stress on crack surfaces
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NOTATION (continued)

nominal shear stress, Vn/byd

nominal stirrup siress

shear stress carried by stirrup alone

crack width

distance from point where ey is measured to neutral axis
principal tensile strain in concrete

principal compressive strain in concrete

concrete strain at fo

concrete strain at f'¢

strain in concrete at cracking

strain at extreme compression fiber of concrete cross-section
strain in flexural reinforcement

strain in web reinforcement

fongitudinal strain

transverse strain

shear strain relative to x, y axes

angle of inclination of principal compressive stresses in concrete, measured with
respect to longitudinal axis

ratio of web reinforcement, Ay/bys
ratio of reinforcement area to concrele area
ratio of flexural reinforcement, Ag/byd

strength reduction factor





