
SHEAR STRENGTH OF CONTINUOUS 

LIGHTLY REINFORCED T·BEAMS 

BY 

GREGORY P. PASLEY 

SAMAR GOGOI 

DAVID DARWIN 

STEVEN L. McCABE 

A Report on Research Sponsored by 
THE NATIONAL SCIENCE FOUNDATION 

Research Grant 
MSM-8816158 

UNIVERSITY OF KANSAS 
LAWRENCE, KANSAS 

DECEMBER 1990 



i i 

ABSTRACT 

The shear strength of continuous lightly reinforced concrete T -beams is studied. Six two­

span T -beams with and without web reinforcement are tested. The primary variables are 

longitudinal reinforcement ratio (0.75% and 1.0%) and nominal stirrup strength (0 to 82 

psi). The test results are analyzed and compared with the shear design provisions of "Building 

Code Requirements for Reinforced Concrete (ACI 318-89)" and predictions of other 

investigators, including predictions obtained using the modified compression field theory. 

The tests indicate that ACI 318-89 overpredicts the concrete shear capacity of lightly 

reinforced beams without shear reinforcement. Little difference exists between shear cracking 

stresses in the negative and positive moment regions for beams in the current study. For both 

the negative and positive moment regions, the stirrup contribution to shear strength exceeds the 

value predicted by ACI 318-89. Stirrup contribution to shear strength increases with 

increasing flexural reinforcement ratio. Overall, the ACI 318-89 shear provisions are 

conservative for the beams tested in the current study. Two procedures based on the modified 

compression field theory are also conservative. ACI 318-89 better predicts the nominal shear 

strength of the beams in the current study than either of the modified compression field theory 

procedures. 
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Chapter 1 

INTRODUCTION 

1.1 General 

In spite of a large volume of experimental research devoted to the prediction of the shear 

capacity of reinforced concrete beams, much remains to be learned about the shear behavior of 

these members. The nature of shear failure of flexural members is such that it occurs 

suddenly, with little indication of distress, and is accompanied by a rapid reduction in the load 

carrying capacity of the member. This Is of particular concern because the present ACI 

Building Code (3) shear design provisions appear to be unconservative for lightly reinforced 

flexural members, especially in negative moment regions. Lightly reinforced flexural 

members are widely used In practice, and provide the most economical section in· most cases. 

Thus, a more reliable way of predicting the shear strength of such beams is necessary to insure 

adequate safety when these members are used. 

The ACI Building Code design equations for reinforced concrete beams subjected to shear 

and flexure are primarily based on tests of simply supported beams having flexural 

reinforcement ratios above 1% (12,13,19,24,32,33,41 ). However, previous research 

(11,14,27,28,34,35,36,37,41) has shown that the shear cracking load predicted by these 

equations is unconservative for beams having longitudinal reinforcement ratios, Pw. less than 

1%. Recent research (38,39,40) on lightly reinforced T-beams, with flexural reinforcement 

ratios less than 1%, provides evidence that concrete shear capacity is lower and shear 

reinforcement is less effective in negative moment regions 'than in positive moment regions. 

However, the ACI equations make no adjustments for the design of continuous beams in negative 

moment regions, based on the assumption that moment region has no effect on shear strength. 
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These deficiencies are accounted for, to some extent, by the ACI equations because they 

underestimate the contribution of shear reinforcement and require its use in beams where the 

shear load exceeds one-half of the design shear capacity of the concrete. The use of these 

equations, however, also results in non-uniform margins of safety in shear for structures 

designed with different percentages of flexural reinforcement. 

The purpose of this research is to study the shear strength of continuous, lightly 

reinforced T-beams and the effects of flexural reinforcement ratio and degree of shear 

reinforcement on shear capacity. The cracking and ultimate shears are compared with the shear 

provisions of ACI Building Code (3) and the predictive equations of other investigators. The 

predicted shear response of beams obtained using the modified compression field theory 

(18,21,22,23,31.43) is compared with experimental results. The safety of current design 

procedures is investigated. 

1.2 Background 

In a reinforced concrete beam, flexural and shear stresses give rise to principal tensile 

stresses oriented at some angle with the longitudinal axis of the beam. The effects of shear are 

greatest near supports and in regions of concentrated load. As the load increases, cracks begin to 

appear in a direction perpendicular to the local principal tensile stresses. In regions where 

shear stress is low, the cracks form perpendicular to the axis of the beam. In regions of high 

shear stress, the cracks form and propagate at a lower angle and are often referred to as 

diagonal tension or shear cracks. Before the formation of shear cracks, most of the shear is 

carried by the concrete. Once diagonal tension cracks form, a redistribution of internal force 

takes place and the load is carried by five different mechanisms, as noted by ACI-ASCE 

Committee 426 (5): 
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1. Shear Stress: Shear transfer by concrete shear stress occurs in uncracked members 

or uncracked portions of members. Shear stress interacts with compressive and tensile 

stresses producing principal stresses that may cause additional diagonal cracking or concrete 

crushing. 

2. Interface Shear Transfer: Interface shear transfer across a plane involves slippage 

along a preexisting crack. In monolithic concrete, a number of diagonal cracks may form, 

resulting in arch action and interface shear transfer across the crack planes. Other terms used 

for this mechanism include aggregate interlock, surface roughness shear transfer and shear 

friction. 

3. Dowel Shear: This is the shearing displacement resisted by the longitudinal steel 

when it Is intersected by a shear crack. This causes tension in the concrete surrounding the 

longitudinal steel, producing cracks along the steel. 

4. Arch Action: Arch action is mainly effective in deep beams where it transfers a 

vertical concentrated force to a reaction, reducing the contribution of other types of shear 

transfer. 

5. Shear Reinforcement: Shear reinforcing steel aids in carrying additional shear force 

after shear cracking; it contains the diagonal crack, thus delaying deep penetration of the 

diagonal crack into the compression zone; and slows down the decrease in interface shear 

transfer. It also helps to confine the longitudinal steel, thus increasing the shear contribution 

of the longitudinal steel by dowel action. 

A systematic study by ACI-ASCE Committee 326 (4) of more than 440 tests on beams 

without web reinforcement indicated that the concrete shear capacity of beams primarily 

depends on the percentage of flexural reinforcement, Pw. the shear span-to-depth ratio, aid, 

and the concrete compressive strength, f' 0 , with other variables, like aggregate interlock and 

shear friction, playing a minor role in concrete shear strength. The present ACI Building Code 



4 

(3) equations tor concrete shear capacity, which were first proposed by ACI-ASCE Committee 

326 (4), were based on research done on simply supported beams having flexural 

reinforcement, Pw• above 1%. However, studies (11, 14,27,28,34,35,36,37,41) have shown 

that the ACI shear equations overestimate the concrete shear capacity of beams having flexural 

reinforcement below 1%. However, since these studies (11, 14,27,28,34,35,36,37 ,41) have 

been carried out on simply supported beams, it is not clear whether they apply to continuous 

beams. Recent research (38,39,40) on the negative moment region shear strength of lightly 

reinforced T -beams has shown a lower concrete shear capacity and stirrup reinforcement 

effectiveness in negative moment regions than in positive moment regions. This lower negative 

moment region shear strength is felt to be caused by a smaller effective concrete section 

resulting from cracking of the flanges and a lower bond strength for negative flexural 

reinforcement due to the top-bar effect. The T-beams in this research (38,39,40), however, 

were not truly continuous for negative bending, since they were loaded on a simple span with a 5 

ft cantilever at one end to simulate continuity. In the case of truly continuous beams, with beam­

girder connections and formation of hinges in the negative moment regions due to yielding of 

flexural reinforcement, it is unclear as to how the beams would behave in shear. 

As reported by ACI-ASCE Committee 426 (5), the addition of web reinforcement helps 

in carrying additional shear force in three main ways: stirrups share a part of the shear force; 

stirrups restrict the groW1h of diagonal shear cracks, helping to increase interface shear 

transfer; and stirrups hold the flexural reinforcement in place, increasing the contribution of 

dowel action to shear strength. The ACI shear design provisions, however, consider only the 

direct stirrup contribution to shear strength and neglect the contributions of factors, like 

aggregate interlock, interface shear transfer, the stirrup confining effect on longitudinal steel. 

The ACI provisions tor the stirrup contribution to shear strength assume that the critical 

diagonal tension crack has a horizontal projection equal to the effective depth of the beam. In 
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beams where the critical diagonal tension crack has a greater horizontal projection, it 

intersects more stirrups then predicted by the ACI provisions and thus the shear strength is 

higher. As a result, the ACI shear equations often underestimate the contribution of web 

reinforcement to the shear strength of beams (11,20,25,34,35). 

To investigate these problems, an experimental study was conducted of the shear 

behavior of two-span continuous T -beams, with varying amounts of flexural and shear 

reinforcement. 

1.3 Current Shear Desjgn Proyjsjons 

The current design procedure employed by the ACI Building Code, ACI 318-89 (3), is to 

calculate the factored shear force of a member and to provide sufficient concrete and steel 

capacity to counter this load. This can be expressed as: 

( 1.1) 

in which Vu is the factored shear force at the section considered; V c is the nominal shear 

strength provided by the concrete; Vs is the nominal shear strength provided by the shear 

reinforcement; and q, is the strength reduction factor, taken equal to 0.85. 

The provisions in ACI 318 require the use of stirrups where the factored shear force, 

Vu, exceeds one-half the design shear strength of concrete, q,V0 • The equations for concrete shear 

capacity given by ACI 318 were established through experimental and analytical studies of 

typical flexural members (4) and represent the concrete shear strength in terms of concrete 

compressive strength, beam size, flexural reinforcement ratio, and the applied loads. The two 

equations presented in ACI 318 are: 
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( 1.2) 

and 

Vc = (1.9ITc + 2500pw Vu d )bw d S 3.5ITc bw d (1.3) 
Mu 

in which f' c Is the concrete compressive strength in psi; p w is the flexural reinforcement ratio 

based on the web area, As/(bwd); Mu is the factored moment; d is the effective depth; and bw is 

the width of the beam web. The values of ITo are limited to 100 psi unless minimum values of 

shear reinforcement are used. M ul (V u d) provides a measure of the ratio of flexural tension to 

shearing stresses. Mu/(Vud) is synonymous with the shear span-to-depth ratio, aid, of a 

simply supported beam with point loads; for a general loading or beam configuration the 

Mu/(Vud) ratio gives an equivalent aid ratio. Eq. 1.2 is a simplified form of Eq. 1.3. But due to 

the wide scatter of the data from which Eq. 1.3 was derived, it cannot be expected to give a true 

representation of concrete shear capacity. 

The ACI Building Code requires that shear reinforcement be added when the factored 

shear, Vu. exceeds <jlV0 /2 for beams. The shear force contribution by stirrups, as predicted by 

the ACI code, is: 

Vs = Avfvyd 
s 

( 1 .4) 

in which s is the shear reinforcement spacing; Av is the shear reinforcement area within a 

length, s, of the beam; and Ivy is the steel yield stress. Eq. 1.4 is based on the assumption that 

the critical diagonal shear crack is inclined at an angle of about 45 degrees and intersects 
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stirrups over a length equal to the effective depth of the beam. This makes Eq. 1.4 

underestimate the stirrup shear contribution in cases where the critical diagonal shear crack is 

flatter than 45 degrees. The ACI Building Code also specifies that the stirrup spacing, s, must 

not exceed one-half the effective depth, or 24 inches, and that the shear reinforcement, Av. 

must be at least: 

Av = 50bwS 
fvy 

( 1.5) 

which corresponds to a nominal shear reinforcement stress, Pv fvy = Avfv ylbws = V slbwd. of 50 

psi. Av in Eq. 1.5 must be multiplied by f'c/5000 ,; 3 for f'c;, 10000 psi to allow "{f'; to exceed 

100 psi in Eq. 1.2 and 1.3. Otherwise, "{f'; in Eq. 1.2 and 1.3 is limited to a maximum of 100 

psi. The requirement for the higher value of Av was added in 1989 (3). 

1.4 Preyjoys Research 

Eqs. 1.2 and 1.3, which were developed based on research (12,13,19,24,32,33,41) 

done on beams with flexural reinforcement ratios greater than 1%, are unconservative for 

beams without shear reinforcement, Pvfvy=O, and values of p w less than 1% 

(11,14,27,28,34,35,36,37,41). 

Kani (27) tested a series of simply supported rectangular beams with values of flexural 

reinforcement ratio, Pw. ranging from 0.5% to 2.8% and concrete compressive strength, r c. 

ranging from 2500 psi to 5000 psi. Shear span-to-effective depth ratios, a/d, ranged from 1 

to 5. He observed that the shear strength equation in the ACI Building Code (3) overestimates 

the actual strength of members with values of Pw below 1% and shear span-to-effective depth 
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ratios above 2.5. He also noted that a change in 1'0 produces a negligible variation in shear 

strength. 

Mathey and Watstein (30) tested rectangular beams with aid ratios ranging from 1.51 

to 3.78 and values of Pw ranging from 0.47% to 3.05%. They found that for aid ratios greater 

than 1.5 and values of Pw lower than 1%, the ACI (3) expressions for concrete shear strength 

are unconservative in some cases by as much as 47%. They suggested an expression for the 

nominal concrete shear stress, v0 : 

Vc = 3.1 'lf'";Vd + 4000 Pw 
M 

(1.6) 

in which V/M is the ratio of shear to maximum bending moment in the shear span in which the 

diagonal tension crack form. 

Rajagopalan and Ferguson (37) combined their test data from 13 rectangular beams (1 0 

without stirrups and 3 with stirrups), with a/d approximately equal to 4 and values of Pw 

ranging from 0.25% to 1. 73% and 27 other beams with values of Pw less than 1.2%. They 

verified that Eqs. 1.2 and 1.3 overestimate the shear strength of concrete members. They also 

observed that in two beams with stirrups, the ACI maximum stirrup spacing requirement of 

d/2 was more restrictive than necessary. They proposed an expression for the nominal 

concrete shear stress, v0 : 

Vc = Vc/(bwd) = (0.8 + 100pw) ffc::;; 2ffc (1.7) 

Zsutty (44) used dimensional and regression analyses of data from a large number of 

tests performed by others and recommended a new shear equation to better predict the shear 



strength of beams without stirrups: 

1 

Vc = 59 (f'c Pw ~ )S 

9 

{1.8) 

Eq. 1.8 accurately accounts for concrete strength, flexural reinforcement ratio and 

shear span-to-effective depth ratio for beams with a/d ratio greater than 2.5. However, Eq. 

1.8 overpredicts v0 for beams deeper than 12 in. Among others, Bazant and Kim (16) have 

observed that the average shear stress at failure decreases with increasing beam depth. This 

structural size effect is not modeled by Eq. 1.8. 

Most of the studies cited above were concerned with rectangular cross sections; however, 

other cross sections have been tested. Placas and Regan (36) measured the shear capacity of 

sixty-three T, I and rectangular beams with a/d ratios ranging from 3.4 to 7.2 and Pw ranging 

from 0.98% to 4.2%. To predict the shear capacity of these sections, they proposed a 

semiempirical equation of the form: 

1 
Vcr = 8 (rc 100 pw)3 {1.9) 

1 
They imposed an upper bound of 12 (f' o)3 to limit the effect of large values of Pw in T-

beams in which the main steel has only a limited effect on stress conditions in the web. Their 

equation provides results similar to those of Eq. 1.8 for a/d approximately equal to 4. 

Due to the extensive research (11,14,27,28,34,35,36,37,41) done on shear strength 

of lightly reinforced concrete beams and the strong evidence for the lack of conservatism of Eqs. 

1.2 and 1.3 for low values of Pw· ACI-ASCE Committee 426 (6) proposed an expression for v0 : 
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~ $; Vc = (0.8 + 120pw) ~ $ 2.3~ (1.1 0) 

which is a modified version of the expression, Eq. 1.7, presented by Rajagopalan and Ferguson 

( 3 7). 

To investigate the feasibility of the use of Eq. 1.10, Batchelor and Kwun (14) tested 10 

continuous and 4 simply supported beams. They also considered the test data for 262 additional 

members. All beams had a shear span-to-depth ratio, a/d, greater than 2 and had no web 

reinforcement. Based on their analysis, they proposed another, still more conservative, 

variation on Eq. 1. 7. 

Vc = 1.10~ $ (0.6 + 110pw) ~ $ 2.25~ {1.11) 

In 1984, Bazant and Kim (17) introduced an expression for cracking shear based on 

fracture mechanics concepts: 

Vc = 
10 'fPW [~ + 3000WPw ] 

~ 1 + 0.04 ..d.. ( g_ )
5 

da d 

(1.12) 

in which da = maximum size aggregate. 

With some sacrifice of simplicity, Eq. 1.12 improves on the accuracy of Eq. 1.8 and 

appears to accurately capture the "size effect". Bazant and Kim proposed a design expression 

equal to 80% of Eq. 1.12. 

Due to the insufficient shear capacity of lightly reinforced beams and also because of 

wholly inadequate data on the effects of shear reinforcement on these members, Palaskas, 
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Attiogbe and Darwin (11,34,35) tested 15 simply supported T-beams with low values of 

flexural and shear reinforcement. The tests included 11 beams with stirrups and 4 beams 

without stirrups. The shear span-to-depth ratio, aid was 4 and the flexural reinforcement 

ratio, Pw. ranged from 0.5% to 1%. Well anchored, non-prestressed, prestressing strands 

were used as flexural reinforcement to prevent a flexural failure. As found in earlier research, 

their experimental data shows that the ACI Building Code (3) shear design provisions for v 0 are 

unconservative for members with Pw less than one percent. Palaskas et al. (11 ,34,35) 

observed that, for their beams, the stirrup shear contributions were about 50% greater than 

predicted by the ACI Building Code design equation, Eq. 1.4. The added strength was due to the 

fact that the critical shear cracks were flatter than 45 degrees, the value used in the 

development of Eq. 1.4, and thus intercepted more stirrups. Based on their experiments, 

Palaskas at al. (11 ,34,35) came to the conclusion that, despite the low test values of v 0 , the 

shear provisions of the ACI Building Code (3) are safe for lightly reinforced beams, mainly 

because of 1) significantly higher values of steel shear capacity actually obtained, and 2) beams 

with Vu > $V0 /2 must have minimum shear reinforcement as defined by the code. Largely 

because of this research, ACI Committee 318 did not adopt Eq. 1.11. 

To account for the behavior of continuous beams, Rodrigues and Darwin (38,39,40), 

extended the research of Palaskas et al. (11 ,34,35) to lightly reinforced T -beams subjected to 

negative bending. Test data from nine T-beams with Pw equal to 0.47% or 0.70% and with aid 

equal to 4 provided further evidence that the ACI (3) equations for V 0 and V s are inaccurate for 

lightly reinforced beams. In the positive moment regions, the shear cracking load was 13% 

lower and the stirrup contribution was 50% higher than predicted by the ACI (3) equations, 

while In the negative moment regions, the shear cracking load 29% lower and the stirrup 

contribution was 20% higher than the ACI (3) predicted values. In all, the ACI Building Code 

overestimated the value of the total shear strength in the positive moment regions and 
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underestimated the total shear strength in the negative moment regions. Rodrigues and Darwin 

inferred that the smaller effective concrete section at the negative moment region, caused by 

cracking of the flanges, and lower bond strength for negative flexural reinforcement, due to the 

top-bar effect, were the causes of the lower shear cracking loads in the negative moment 

regions. The lower shear reinforcement effectiveness was due to the fact that critical shear 

cracks were steeper in the negative moment regions and thus intercepted fewer stirrups than in 

positive moment regions. Rodrigues and Darwin (38,39,40) observed that similar conclusions 

also could be made about the more heavily reinforced members tested by Haddadin, Hong and 

Mattock (25). 

AI-Nahlawi and Wight (7) tested 25 lightly reinforced, simply supported beams using 

two point and four point loading systems. Concrete compressive strength ranged from 5600 psi 

to 10600 psi, with transverse reinforcement, Pvfvy. varying from 0 to 170 psi. Stirrup 

spacings of d, 0.75d, 0.5d and 0.33d were used. They observed that for a longitudinal 

reinforcement ratio, pw. below 1%, Eqs. 1.2 and 1.3 were unconservative. They observed that 

the conservativeness of Eq. 1.4 for beams with Pvfvy = 50 psi decreases as concrete strength 

increases. The reduced conservativeness of Eq. 1.4 was mainly attributed to diminished 

aggregate interlock due to smooth failure planes for high strength concrete. Based on their 

analysis, they recommended a minimum stirrup reinforcement value of: 

Avfvy ~ _ll_ psi ~ 50 psi 
bws 1 oo 

(1.13) 

to counter the effect of diminished aggregate interlock in high strength concrete, and an increase 

in the maximum stirrup spacing to 0. 75dv. where dv is the distance between top and bottom 

longitudinal steel. The recommendation in Eq. 1.13 closely matches the new provisions in AC! 
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318-89 for increased minimum shear reinforcement, as described following Eq. 1.5. 

1.5 Modjfied Compression Fjeld Theory 

The predictive equations for diagonal tension cracking and shear strength of reinforced 

concrete beams presented in the preceding sections are based on experimental results. These 

equations cannot predict the full shear response of a general reinforced concrete member 

subjected to combined shear and bending, since their use is limited to specific classes of 

members and they provide only limit loads, with no consideration of member deformation. 

Obtaining the complete shear response of a member requires a method that accounts for the full 

range of material and member behavior. The modified compression field theory, presented by 

Vecchio and Collins (43) in 1986, is the basis of such a method. This theory was expanded from 

the compression field theory for reinforced concrete in torsion and shear, introduced by Collins 

and Mitchell (21,22,23). 

The modified compression field theory (22,43) uses average stresses and average 

strains to satisfy equilibrium and compatibility conditions and to formulate stress-strain 

relationships. It takes into account tensile stresses in the concrete between cracks, and treats 

the concrete as a new material once cracks form. Experimentally verified average stress­

average strain relationships are used for the cracked concrete. 

A square membrane element of uniform thickness and relatively small size, 

representing a part of a reinforced concrete member (Fig. 1.1), is used as an analytical model 

to predict the shear response (22,43). Reinforcement for the membrane element consists of an 

orthogonal grid of reinforcement, coinciding with the longitudinal, x, and transverse, y, axes. 

Loads acting at the element's edges are assumed to consist of uniform axial stresses, fx and fy, 

and uniform shear stress, Vxy (Fig. 1.1). The deformed shape of the element is defined by 
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normal strains, ex and ey, and the shear strain, Yxy (Fig. 1.2). The complete response of the 

element is obtained by predicting the three strain values and relating them to the corresponding 

stresses. 

The following assumptions are made while predicting the response of the element, 

although, in practice, they need all not be completely satisfied to successfully apply the method: 

1. For every strain state there exists only one state of stress. 

2. Stresses and strains can be considered in terms of average values when areas are 

large enough to include several cracks. 

3. The concrete and the reinforcing bars are perfectly bonded together at the boundaries 

of the element with no overall slip. 

4. The longitudinal and transverse reinforcement is uniformly distributed over the 

element. 

Based on these assumptions, strain compatibility, stress equilibrium and stress-strain 

relations of steel and concrete are developed. A brief explanation of the stress and strain 

equations used to predict the shear response of a beam at any state of loading follows (22,43): 

Prior to cracking, most of the shear is carried by the concrete by equal diagonal tensile 

and compressive stresses acting at 45 degrees. After cracking, the tensile stress is 

substantially reduced, and it varies from zero at the cracks to a peak value between cracks. The 

average value of the tensile stress is used to formulate the stress equilibrium equations. The 

principal tensile stress in the concrete acting perpendicular to the crack plane, f1 (Fig. 1.3), is 

given by the following equations: 

if e1 :> ecr (1.14) 
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if £1 ~ ecr 

f1 = Vel tane + Av (Ivy - fv) 
Sbv 

(1.15) 

(1.16) 

in which E0 is the modulus of elasticity of concrete; ecr is the cracking strain of concrete; e1 is 

the principle tensile stress; a:1 and a:2 are factors accounting for the bond characteristics of the 

reinforcement and taken as unity for deformed bars; fer is the cracking strength of concrete; Vci 

is the local shear stress on the crack surface; s is the stirrup spacing; e is the crack angle; Av is 

the area of stirrup reinforcement within a length, s, of the beam; fvy is the yield stress of the 

stirrup reinforcement; and f v is the stress in the stirrup reinforcement. The smallest value of 

f1 is taken from Eqs. 1.14, 1.15 and 1.16. The ability of the concrete to carry a tensile stress 

after diagonal cracking is the key difference between the modified compression theory (22,43) 

and compression field theory (21 ,22,23,31). 

The principal compressive stress in the concrete, f2 (Fig. 1.3}, is derived from the 

following relationship: 

f2 = (tane + cote)v - f1 (1.17) 

in which v is given by V/(bwid); bw is the web width of the beam; jd is the internal flexural 

moment arm; and e is the crack angle. The value of f2 cannot exceed f 0/(0.8+170e 1). 

The unbalanced vertical component of diagonal compressive stresses and diagonal tensile 

stresses is carried by tension in the web reinforcement. This equilibrium requirement can be 

expressed as: 
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(1.18} 

Substituting f2 from Eq. 1.17 in Eq.1.18 and expressing v in Eq. 1.17 as V/(bwid} gives 

an equation for shear force V for a given principal tensile stress, I;, and crack angle, 9, as: 

V = f; bwidcot9 + Av fvjdcot9/ s (1.19} 

Eq. 1.19 expresses the shear resistance of a member as the sum of a concrete contribution and a 

steel contribution, and, in that way, is similar to the ACI (3,5} nominal shear capacity 

equation, Vn = Vc + V 8 • However, it expresses shear resistance as a function of the principal 

tensile stress in concrete, f;, the tensile stress in stirrup, fv. and the crack angle a, rather 

than ffc, and fy, and an assumed horizontal projection of the crack. 

The principal compressive strain, ez, is given by the equation: 

e2 = e'c( 1 -'\"1-f2lfzmaxl (1.20} 

in which e'c is the concrete compressive strain at its crushing strength; and fzmax represents 

the peak compressive strength of the concrete under combined biaxial tension-compression and 

is given by f'0/(0.8 + 170e;} . 

The longitudinal strain in the web, ex, is given by the equation: 

ex = 
2 

e; tan 9 + e2 

1 + tan29 
(1.21} 

The strain in the web reinforcement, e1, is given by the equation: 



2 
et = f1 + e2tan a 

1 + tan2a 

The stress in the stirrup is checked for yield. 
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(1.22) 

To obtain the shear force in a section at a certain bending moment, equilibrium of forces 

must be satisfied along the longitudinal axis of the member. The unbalanced longitudinal 

component of the diagonal concrete stresses, for a certain crack angle and principal tensile 

stress, is balanced by tensile stresses in the longitudinal reinforcement and compressive 

stresses in the concrete resulting from bending. This equilibrium condition can be expressed 

by: 

(1.23) 

in which Axfs is the force in the longitudinal steel and Ac fc is the force in the concrete (Fig. 

1.4). (Note: Tensile stresses are taken as positive, and compressive stresses are taken as 

negative.) Substituting for the principal compressive stress, f2, from Eq. 1.17 in Eq. 1.23 

gives: 

(1.24) 

To obtain the forces Axfx and Acf0 , the longitudinal strain in the web, ex from Eq. 1.21, 

is assumed to occur at a specific level through the depth of the member. The strain distribution 

corresponding to the value and location of ex and the moment acting at the section is determined 

using plane section analysis. For members with web reinforcement, ex is assumed to occur at 



1 8 

the midheight of the cross section, which results in higher tensile strains at the level of the 

longitudinal steel and higher compressive strains at the compressive face of the member. The 

midheight of the section is chosen because of the load redistribution capacity of such members, 

which results in the shear stresses being transferred from high strain regions of the cross­

section to low strain regions. Members that do not contain any web reinforcement have less 

capacity for redistribution of load, and hence it is reasonable to assume that ex occurs at the 

level of the flexural steel, resulting in smaller tensile and compressive strains. 

To obtain the shear, V, and crack angle, a, for a given moment to shear ratio, at a 

particular principal tensile strain, e1, an estimate of a is made first. Using Eq. 1.14-1.16, the 

smallest value of principal tensile stress, f 1, is calculated. The tensile stress in the stirrup 

reinforcement, fv. Is estimated. The shear, V, corresponding to the chosen e1 is then obtained 

from Eq. 1.19. The principal compressive stress, f2, is then calculated from Eq. 1.17. The 

calculated value of f2 gives the principal compressive stress, e2, using Eq. 1.20. The 

longitudinal strain in the web, ex. and the tensile strain in the stirrups, et. are obtained from 

Eqs. 1.21 and 1.22, respectively. The estimated value of fv is checked using the calculated value 

of e1 and a new estimate is made, if necessary. With the calculated value of ex, the strain 

distribution for the moment corresponding to the given moment to shear ratio Is found using 

plane section analysis. The longitudinal forces at the section Ax fx and Acfc corresponding to this 

moment are used in Eq. 1.24 to check for equilibrium. A new estimate of e is made, if required, 

and the process is repeated. The shear response of the section is obtained by plotting shear, V, 

versus the principal tensile stress, e1 . The shear capacity of the section, Vmax• is the maximum 

value of shear obtained from this plot. 

Detailed procedures for predicting shear capacity and obtaining a shear response of a 

reinforced concrete member using modified compression field theory are presented In Chapter 

3. 
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1 .6 Object and Scope 

The purpose of the proposed research is to study the shear strength of truly continuous, 

lightly reinforced concrete flexural members with deformed bars as flexural steel and to 

investigate possible modifications to the current design provisions {3). The research includes 

tests of 6, continuous two-span T-beams, with beam-girder connections, to identify the effects 

of flexural and shear reinforcement on shear capacity. Flexural reinforcement ratios of 0. 75% 

and 1 o/o and levels of shear reinforcement ranging from 0 psi to 82 psi are used. The results of 

these tests are compared with predictive equations developed in previous studies and used to 

evaluate present shear design methods. These tests extend the work of Palaskas at al. 

{11,34,35) and Rodrigues and Darwin {38,39,40). 



Chapter 2 

EXPERIMENTAL INVESTIGATION 

2.1 General 

The experimental investigation was carried out to study the shear strength of continuous 

T-beams with light flexural reinforcement. Primary emphasis was given to the behavior of the 

negative moment regions of the beams. Since the ACI Building Code (3) appears to 

underestimate the shear strength of beams having flexural reinforcement below 1 o/o, negative 

moment region flexural reinforcement was chosen to be less than or equal to 1 o/o. Shear 

reinforcement with nominal strengths between 0 psi to 82 psi, i.e. up to 60% above the 

minimum required by the ACI Building Code, was used. The details of the experimental work are 

described in the following sections. 

2.2 Test Specimens 

The specimens were two-span continuous T-beams; each span was 20.5 ft long. To 

simulate conditions in actual structures, a simply supported transverse girder with a span of 

41 in. was provided as the middle support. The test regions in the beams extended from the 

faces of the transverse girder to the points of maximum positive bending in both spans. The 

flanges of the T-beams were 24 in. wide and 4 in. thick. The beams were 18 in. deep, with a 

web thickness of 7.5 in. Concrete cover for the reinforcement followed the provisions of the ACI 

Code (3). The depth of the transverse girder was increased by 1 in. to provide adequate cover 

for the bottom steel of that member. Beam dimensions and properties are shown in Figs. 2.1 

through 2.3 and Table 2.1. 

There were two series of beams, I and J, with negative moment region reinforcement 
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ratios based on the area of the web, Pw. of 1.0% and 0.75%, respectively. For the I series 

beams, the top longitudinal steel consisted of two No.6 bars and one No.5 bar. For the J series 

beams, the top longitudinal steel consisted of two No.6 bars. The beams were designed to fail in 

shear in the negative moment region and, in some cases, to yield in negative bending. To prevent 

the formation of a mechanism prior to shear failure, adequate bottom steel was provided to 

insure that the beams did not fail in positive bending. The I series had equal steel at the bottom 

and the top. The J series had positive moment region Pw values of 0.75%, 1%, and 1.83% for 

beams J-1, J-2 and J-3, respectively. Positive moment region Pw values of 0.75% and 1% 

were provided by the same bars as used in the negative moment regions at the same values of Pw· 

while Pw of 1.83% was provided by four No.6 bars and one No.5 bar. In beams 1-2, J-2 and J-

3, this combination of top and bottom steel allowed for moment redistribution after the 

formation of a plastic hinge at the middle support. 

Class A splices {3) were used to splice the longitudinal steel. Top bars had a splice 

length of 27 in. and were staggered as far away from the face of the transverse girder as 

possible to limit congestion of steel in the test region. For the I series, the top-bar splices 

started 44 in. and, for the J series, 74 in. from the face of the transverse girder. 

Bottom bars had a splice length of 19 in. For the I series, the two No. 6 bars were 

spliced 41 in. and 161 in. from the face of the transverse girder, while the No. 5 bar was 

spliced 13 in. from the face of the transverse girder. No. 6 bars for beams J-1 and J-2 were 

spliced 41 in. and 161 in. from the face of the transverse girder. The No. 5 bar of beams J-2 

was spliced 13 in. from the face of the transverse girder. The bottom bars for beam J-3 were 

placed in two layers, with two No. 6 bars and one No. 5 bar in the lower layer and two No. 6 bars 

in the upper layer. The splices in the lower layer were identical to the splices used for the 

bottom bars of beam J-2, while those in the upper layer were identical to the splices used for 

the bottom bars of beam J-1. 
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Two loading configurations were used for the tests: a single point load per span or two 

point loads per span. Beams 1-1, 1-2 and J-1 were subjected to the single point span loading, 

while beams 1-3, J-2 and J-3 were subjected to the two point span loading. The loading systems 

are described later in the chapter. Typical M/Vd ratios in the negative moment regions of the 

beams ranged from 3.2 to 3.8. The higher values of M/Vd were obtained in beams tested under 

single point span loading. 

Smooth low carbon steel wire stirrups were used at a spacing of 7 in. to provide nominal 

shear reinforcement values of 34, 57 and 82 psi and satisfy the ACI Code (3) maximum stirrup 

spacing requirement of one-half the effective depth of the beam. These stirrups were used only 

in the test regions. To prevent a shear failure outside of the test region, No. 3 bar stirrups 

were provided at a spacing of 7 in. The shear force between the two point loads, in case of the 

beams with two point loads per span, did not require stirrups to carry the shear. In this 

region, three No. 3 bar stirrups were provided at a spacing of 17.5 in. to hold the longitudinal 

steel in place. The flanges of the beams were reinforced transversely with No.3 bars spaced at 7 

in. 

2.3 Materials 

2.3.1 Concrete 

The air-entrained concrete mixture used to cast the beams was supplied by a local ready­

mix plant and was made using Type I portland cement and 3/4 in. nominal maximum size coarse 

aggregate. Kansas River sand was used as fine aggregate. During casting, air content and slump 

were measured. The air content ranged between 3 and 4% and the slump measured about 3 in. 

Standard 6 x 12 in. ASTM C 31-88 (9) compressive test cylinders were cast with each beam 
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specimen and tested for compressive strength, as per ASTM C 39-86 (1 0). The compressive 

strength of the concrete, f'0 , ranged between 4400 psi and 4600 psi. Concrete mixture 

proportions and properties are presented in Table 2.2. 

2.3.2 .Q1ruil 

ASTM A 615 (8) Grade 60 No. 3, No. 5, and No. 6 deformed billet steel bars were used to 

reinforce the specimens, except for the shear reinforcement in the test region. 

Shear reinforcement in the test region was provided by low carbon smooth wires with 

diameters of 0.165 and 0.222 in. The targeted values of Pvfvy were 25, 50 and 75 psi. Two 

different types of 0.165 in. diameter wire were used. One of these had to be annealed to lower 

its yield strength and gave a Pv fvy value to 34 psi. As done in a previous research at the 

University of Kansas (11 ,34,38), preyielding was necessary to give the other two wires a 

distinct yield point. However, preyielding results in an increase in the yield strength of the 

wires with time, due to strain aging. To obtain the actual yield strength of these wires on the 

day the beams were tested, three specimens of each wire were tested after failure of the beams. 

The values of Pvfvy obtained were 57 and 82 psi. Preyielding was not required for the annealed 

wires, as they already had a sharp yield point after the annealing processes. Typical stress 

versus strain curves for test stirrup steel and flexural steel are shown in Fig. 2.4. 

2.4 Specjmen preparatjon 

The test stirrups were fabricated in a jig and welded at the top over a lap length equal to 

the width of the stirrup. The No. 3 bar stirrups were fabricated with 90 degree hooks in a 

reinforcing bar bender. Typical reinforcement cages used for beams with and without test 
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stirrups are shown in Figs. 2.1 through 2.3. 

Micro-Measurements Type EA-06-060LZ-120 strain gages were used to measure 

strains in the stirrups and flexural steel. These gages were installed following the procedures 

used by Palaskas and Darwin (34) and polysulfide encapsulated with Micro-Measurements Type 

M-Coat J protective coating for protection against water. The gages were located at the mid­

height on the test stirrups and at points of maximum bending on the flexure steel. Gage locations 

are shown in Fig. 2.5. 

Waterproof BB plyform was used to construct the forms, which were supported on tables 

made of 2x4 in. studs. The forms were lacquered before casting each specimen to prevent water 

damage. After the reinforcing cage was fabricated in place using commercially available ties and 

steel chairs, and the strain gages were installed, the forms were oiled with form release agent 

and bolted in place. The lead wires from the strain gages were bound with plastic ties and passed 

out through holes in the sides of the forms. 

A one cubic yard bucket was used to cast the beams in two lifts; first the web and then the 

flanges. Each layer was vibrated using internal vibrators. The initial and final discharge of 

concrete from the concrete truck was used to pour the ends of the beams, away from the test 

region. The test region was poured using concrete from the middle portion of the discharge. The 

beams were hand screeded longitudinally after which the surface was floated, in the transverse 

direction, using a magnesium bull float. Concrete samples were taken as per ASTM C 31-88 

( 9). 

Care was taken not to over-finish the surface of the beam so that minimum bleed water 

was worked into the surface. About an hour was allowed to let the bleed water evaporate from 

the surface of the beams, after which the beams and the 6 x 12 in. compressive test cylinders 

were covered with polyethylene sheets. The forms were stripped when the concrete attained a 

compressive strength of 3000 psi. The beams and the test cylinders were kept moist until a 
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compressive strength of 4000 psi was attained. The concrete was then allowed to air dry until 

it attained the test strength of about 4500 psi. Tests were conducted 11 to 19 days after 

casting. 

Diluted white latex paint was applied within the test regions on one side of the beams. 

All reinforcement locations were marked within this region to aid in establishing where the 

cracks intersected the reinforcing steel. Stirrup locations were marked in beams without test 

stirrups for the purpose of providing coordinates for comparison with beams with stirrups. 

To measure concrete strains, Precision Type W240-120 paper-backed strain gages 

were installed on the top and bottom surfaces of the beams, following the procedure used by 

Palaskas and Darwin (34). Gage locations are shown in Figs. 2.5a and 2.5b .. 

2.5 Loadjng System 

The test beams were supported at the ends by rollers. The transverse girder, which 

served as the middle support for the beams, rested on pins at each end. These pins were oriented 

longitudinally for the transverse girder, thus performing as pin supports for the test beams and 

partially restrained supports for the girder. A view of the transverse girder with its supports 

is presented in Fig. 2.6. Two layers of 1/32 in. thick teflon sheets were used between the 

bearing surfaces of the pin supports to reduce friction. 

Two configurations of the loading system were used; one point load per span and two point 

loads per span. The two point loading system was used on beams 1-3, J-2 and J-3. The two 

point loading was used to reduce positive moment without reducing the shear near the supports. 

With this lower moment, less positive flexural reinforcement was required to insure that 

flexural strength would not govern for the beams reinforced with the stronger test stirrups. 

The two point span loading system also had the advantage of producing M!Vd ratios very close to 
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that obtained under uniform loading. 

The loading systems are shown in Fig. 2.7. Four 1.5 in. diameter steel rods were used to 

load the beam; two for each span. The rods were strain gaged with full bridges to serve as load 

cells. Each load rod had a loading capacity of 60 kips. 

Two cylindrical compression load cells were used below the supports of the transverse 

beam to measure reactions. The compression load cells were strain gaged with a full bridge 

using eight strain gages instead of the usual four. To compensate for eccentric loading, gages 

diametrically opposite to each other on the load cells were connected in series, and located on 

each arm of the full bridge. 

Hydraulic jacks, located below the structural floor and powered by an Amsler hydraulic 

testing machine, were used to pull down on the four load rods, which transferred the load to 

short transverse loading beams. In the single point load system, load was transferred directly to 

the test beam (Fig. 2.7), but in case of the two point load system, the transverse loading beams 

rested on bolsters fixed to longitudinal loading beams. The loads were transmitted from the 

longitudinal loading beam to the test beam by a bolster and a roller (Fig. 2. 7). 

2.6 Instrumentation 

Midspan deflections were monitored using linear variable differential transformers 

(LVDTs). Concrete and steel strain gage readings and midspan deflections were recorded by a 

Hewlett-Packard data acquisition system which was remotely controlled by a Hewlett-Packard 

Vectra PC. The PC also controlled a Hewlett-Packard plotter which recorded the average load 

versus midspan deflection on a continuous basis. Load and deflection readings were recorded in a 

disc file and printed out at every load step. 
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2. 7 Test Procedure 

The test procedure included an initial elastic test to determine if all equipment was in 

working order. In this elastic test, the beam was loaded up to 30% of the cracking load, 

approximately 6 kips total load, and then unloaded. The actual test was then started by taking 

initial readings of all strain gages and LVDTs at zero total load and then taking the total load up to 

6 kips, after which the total load was incremented in steps of 2 kips until failure occurred in 

the weaker span. At each load step, load, strain and deflection readings were taken while keeping 

the load constant. Cracks were also marked at each load step, and the total load inscribed at the 

end of each crack. This was done as quickly as possible to limit the effects of creep. 

With the exception of beam 1-2, after failure of one of the spans, the beams were 

unloaded and external stirrups were used to clamp the failed span. The test was then continued. 

The load was taken up to the load at which the weaker span failed and then incremented in steps 

of 2 kips until failure of the second span. A test took about three hours. Fig. 2.8 shows the 

external stirrups. 

After completion of the beam test, the concrete cylinders and the stirrup tension 

specimens were tested. 

2.8 Results and Test Observations 

Plots of average span load versus average midspan deflection for the beams are shown in 

Figs. 2.9a-2.9i. The load point and load cell forces at failure are presented in Table 2.3. The 

values do not account for the weight of the beam but do account for the weight of the load system. 

The nominal shear forces, V 0 (test), and stresses, v0 (test), at failure are presented in Table 

2.4. The failure shears correspond to the shear at the face of the middle support at the peak 
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recorded loads. Typical load-stirrup strain and load-concrete strain plots are shown in Figs. 

2.10 and 2.11. Crack patterns for the beams are shown in Fig. 2.12. The bending moment and 

shear force diagrams for all beams at failure are presented in Figs. 2.13a-2.13m. 

As the load was increased, flexure cracks appeared first in sections of maximum bending 

moment, at the load points and at the center support. At higher loads, the cracks appeared 

further away from these sections. The cracks began as flexure cracks and, as they were 

subjected to increasing shear, travelled toward the load points and supports. The angle of crack 

inclination was flatter, the greater the distance of the starting point from the point of maximum 

bending. All beams experienced shear failures in the negative shear span, near the girder. The 

crack patterns for the test beams are shown in Fig. 2.12. Summaries of the loading and failure 

sequences of the beams follow: 

1. Beam 1-1: A single point load was used per span. Neither span had shear 

reinforcement. No positive shear span failures occurred. The east negative shear span failed 

first, at a shear of 15.3 kips. After clamping the east span with external stirrups, the test was 

continued. The west negative shear span failed at a shear of 14.9 kips. 

2. Beam 1-2: A single point load was used per span. Both spans had shear 

reinforcement, Pvfvy, of 34.1 psi. The beam failed in shear in the east negative shear span at a 

shear of 23.5 kips. The test was not continued. 

3. Beam 1-3: Two point loads were used per span. The west span had shear 

reinforcement, Pv Ivy. of 33.9 psi, while the east span had no shear reinforcement. The east 

negative shear span failed at a shear of 16.7 kips. External stirrups were installed on the east 

span and upon reloading, the west negative shear span failed at a shear of 21.0 kips. 

4. Beam J-1: A single point load was used per span. Neither span had shear 

reinforcement. This beam underwent four shear failures, as external stirrups were used 

following each of the first three failures. The east positive shear span failed first, at a shear of 
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12.0 kips. This was followed by failure of the west negative shear span at a shear of 15.0 kips. 

The third shear failure occured at the west positive shear span at a shear of 14.5 kips. The last 

shear failure occurred at the east negative shear span at a shear of 14.9 kips. 

5. Beam J-2: Two point loads were used per span. The east span had no shear 

reinforcement, while the west span had shear reinforcement, Pvfvy. of 34.0 psi. This beam 

underwent two shear failures. The east shear span failed first, at a shear of 15.5 kips. 

External stirrups were added and, upon reloading, the west negative shear span failed at a shear 

of 21.6 kips. 

6. Beam J-3: Two point loads were used per span. The east span had shear 

reinforcement of 57.3 psi, while the west span had shear reinforcement of 82.0 psi. Two shear 

failures occured. The east negative shear span failed at a shear of 24.6 kips. External stirrips 

were added and, upon reloading, the west negative shear span failed at a shear of 31.2 kips. 

Fewer cracks appeared in the negative shear spans than in the positive shear spans. The 

initial cracks in the negative shear spans were flexure cracks, which appeared at the top of the 

flange near the face of the transverse beam and travelled vertically downwards. At higher loads, 

cracks appeared further away from the face of the transverse beam, extended vertically 

downwards until they met the web, and then propagated at an angle until they met the face of the 

transverse girder near the level of the bottom flexural steel. The angle of inclination of the 

cracks changed gradually and became flatter as a crack approched the face of the transverse 

girder. When the beams were near shear failure in the negative moment region, a crack would 

propagate along the bottom of the flange, moving away from the face of the transverse beam, 

intersecting two or three stirrups before passing diagonally through the flange, causing a shear 

failure. This is amply illustrated in the east negative shear span of beam J-1 (Fig. 2.12). 

Shear failure in a positive shear span was observed only in beam J-1, although shear 

cracking was observed in positive moment regions on all beams. Cracks in this region first 
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appeared in the positive moment region at the bottom of the beam. As the loads increased, more 

cracks appeared at the bottom of the beam. The cracks near the maximum positive moment 

region propagated vertically and stopped at the base of the flange. The cracks further away 

propagated at an angle, and moved towards the point of maximum moment, stopping at the base of 

the flange. The shear cracking loads for the positive moment regions were identified using the 

same criteria as used for the negative moment regions (discussed in detail in chapter 3). Like 

the shear failure cracks in the negative shear spans, the failure cracks in the positive shear 

spans were cracks which started away from the point of maximum positive bending and 

propagated at a flat angle. After reaching the base of the flange in the maximum moment region, 

failure crack travelled horizontally and intersected two or three stirrups before passing 

through the flange to cause failure. This can be seen in the east positive shear span of beam J-1 

(Fig. 2.12). Just before shear failure in the positive shear span, some short inclined parallel 

cracks formed away from the load points at the level of the bottom steel. These cracks can be 

seen at the positive shear spans of beams J-1 (Fig. 2.12). 

From Fig. 2.12, it can be seen that the negative moment regions had fewer cracks than 

the positive moment regions. The lower number of cracks may be due to lower bond strength of 

the top-cast flexural reinforcement compared to that of the bottom-cast flexural 

reinforcement. 

Fig. 2.1 o shows a typical total load versus stirrup strain curve. Load versus stirrup 

strain curves initially show no strain, but as cracks appear, the curves show progressively 

more stirrup strain. The increase in stirrup strain is gradual for flexure cracks, but as the 

flexure cracks turn into shear cracks, the curves show a sharp increase in strain. 

A typical total load versus concrete compressive strain curve is presented in Fig. 2.11. 

The curve shows low strains initially, but as cracks appear, the slope of the curve Increases. 

The increase results from a reduction in the effective concrete compressive area due to 
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cracking. At shear cracking, the curves show a reversal in concrete strain as the stresses are 

redistributed in response to the change in the configuration of the member. 



Chapter 3 

ANALYSIS OF TEST RESULTS 

3.1 General 

This chapter contains an analysis of the shear cracking loads and stresses determined 

from the test results described in Chapter 2. Based on the analysis, the effectiveness of 

stirrups in carrying shear is estimated. Member shear cracking stresses and failure loads are 

compared to values predicted by ACI 318-89 (3), ACI-ASCE Committee 426 (6), Batchelor and 

Kwun (14), Bazan! and Kim (16), Rajagopalan and Ferguson (37), and Zsutty (44). Modified 

compression field theory (18,22,23,43), as Introduced in Chapter 1, Is used to predict the 

shear capacity of the test members. Comparisons are made between the predicted values from 

the modified compression field theory and the measured capacities of the members. 

3.2 Determjnjng the Shear Cracking Load 

The shear cracking load is often described by investigators (11 ,28,30,34,35,36,38, 

39,40,41) as the load at which diagonal cracks, caused by shear and flexural stresses, cause 

significant changes in the load carrying mechanisms of a member, resulting in a redistribution 

of stresses within the beam. Three techniques are used to determine the loads at which shear 

cracking occurs. The techniques are based on the crack patterns, the stirrup strain, and the 

concrete strain at the top and bottorn of the section. These three techniques are described 

individually in the following sections. 
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3.2.1 Crack Pattern Analysis 

Several definitions have been proposed to define the shear cracking load based on crack 

patterns. Haddadin, Hong, and Mattock (25) defined the shear cracking load as the load at which 

the diagonal tension crack makes an angle of 45 degrees with the transformed neutral axis of the 

beam. Batchelor and Kwun (14) described the shear cracking load as the load at which an 

inclined crack extends from the longitudinal tension reinforcement into the compression zone 

and makes an angle of 45 degrees with the flexural reinforcement. 

Palaskas, Attiogbe, and Darwin (11 ,34,35) defined the shear cracking load as the load at 

which a shear crack makes an angle of 45 degrees or flatter at, or above, the transformed 

neutral axis of the beam. Rodrigues and Darwin (38,39,40) extended this definition to 

continuous beams and defined the shear cracking load as the load at which a diagonal tension 

crack first makes an angle of 45 degrees or less, at or above the neutral axis in the positive 

moment region, or at or below the neutral axis In the negative moment region. The current 

research uses the definition of shear cracking load presented by Rodrigues and Darwin 

(38,39,40). The crack patterns for the test specimens are shown in Figs. 2.12a and 2.12b. 

In the current study, cracks first appeared as flexure cracks at locations of maximum 

bending moment. These cracks formed first at the top of the flange at the beam-girder 

intersection in the negative moment region and at the bottom of the web underneath a load point 

in the positive moment region. As the load was increased, cracks began to form progressively 

further away from the point of maximum moment. These cracks would then propagate toward 

the load point in the positive moment region, or toward the support in the negative moment 

region. For cracks that initiated at points progressively removed from points of maximum 

moment, the cracks became flatter as they grew due to shear. More cracks were observed in the 

positive moment region than in the negative moment region. Usually, the negative moment 
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region would contain only one flexure crack until the time this crack turned flatter than 45 

degrees, becoming a shear crack. After this initial shear crack formed, more cracks would 

appear In the negative moment region. For beams containing stirrups, more load could be 

carried than in beams without stirrups, resulting in an increase in cracking compared to beams 

without stirrups. The added cracks in the negative moment region were longer and generally 

flatter than the initial shear crack. 

During a test, the crack locations were marked on the exterior of the beam after each 

load step, along with the corresponding total load. After failure of the specimen, photographs 

were taken of the crack patterns. The photographs were used to determine the load at which 

shear cracking occurred. The shear cracking stress, Vc, was determined by setting Vc equal to 

Vc/(bwd). Shear cracking loads and stresses are listed in Tables 3.1 and 3.2, respectively. 

3.2.2 Stirrup Strajn Analysjs 

The shear cracking load based on stirrup strain is taken from the load-stirrup strain 

curves; a typical load-stirrup strain curve is shown in Fig. 2.1 0. The shear cracking load is 

defined as the load at which a sharp increase in stirrup strain is observed, indicating that the 

load carrying mechanisms have changed. 

A review .of test data typically shows relatively small strains in the stirrups until 

either a flexure crack or a shear crack intercepts the stirrup. A sharp increase in stirrup 

strain indicates that a shear crack has intercepted the stirrup, while a gradual increase in 

stirrup strain indicates that a flexure crack has intercepted the stirrup. A sharp increase is 

seen because the diagonal tension crack transfers more force to the stirrup than a flexure crack 

due to the flatter angle of inclination of the diagonal tension crack. Load-stirrup strain curves 

from gages located in the regions of high moment and shear are analyzed using the above 
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criterion to determine if shear cracking has occurred. 

The method described above to determine the shear cracking load from stirrup strain 

was used by Rodrigues and Darwin (38,39,40). They found that the shear cracking load 

obtained from stirrup strain was higher than that obtained from crack patterns for all negative 

moment cases in their study. However, as shown in Tables 3.1 and 3.2, the current research 

shows that the shear cracking load obtained from stirrup strain data is lower in eleven out of 

twelve cases, in both positive and negative moment regions, than that obtained using crack 

patterns. 

3.2.3 Concrete Strain Analysjs 

The shear cracking load determined using concrete strain data is obtained from strain 

gages located along the compressive face of the beam. Strain gage locations are shown in Figs. 

2.5a and 2.5b. A typical load-concrete strain curve is shown in Fig. 2.11. As the beam is 

loaded, the concrete strain on the compressive face increases until shear cracking occurs and 

there is a change in the load carrying mechanisms within the beam. When these load carrying 

mechanisms change, the stresses are redistributed within the section and stress along the face of 

the member decreases sharply, sometimes even changing from compression to tension. Because 

of this, the shear cracking load is taken as the load at which a reduction in the concrete 

compressive strain occurs. The shear cracking load for a particular region of the beam is based 

on the strain gage readings from the locations of maximum moment in that region. 

This method was used with success by both Rodrigues and Darwin (38,39,40) and 

Palaskas, Attiogbe, and Darwin (11 ,34,35). Rodrigues and Darwin observed that the shear 

cracking load obtained from the concrete strain was greater than or equal to that obtained using 

crack patterns in ten out of seventeen cases. In the current study, the shear cracking load from 
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concrete strain is greater than or equal to the shear cracking load obtained from crack patterns 

in ten out of 22 cases, as is shown in Tables 3.1 and 3.2. 

3.3 Comparjson of Measured and Predjcted Strengths 

The results obtained from the current research were combined with the results obtained 

by Rodrigues and Darwin (38,39,40) and Palaskas, Attiogbe, and Darwin (11,34,35) to have a 

broader data base from which to work. Values for nominal shear stress and shear cracking 

stress will be compared with predicted values obtained using equations from other 

investigators, as well as the current design code, ACI 318-89 (3). Because the beams tested by 

Rodrigues and Darwin and Palaskas et al. did not use deformed bars for flexural reinforcement, 

the beams in those studies are expected to have relatively lower shear cracking stresses and 

shear strengths than the beams in the current study, which use deformed bars as flexural 

reinforcement. The use of prestressing strands as flexural reinforcement results in a decreased 

bond strength between the reinforcement and the concrete. This decrease In bond strength 

causes fewer cracks to form. This is especially true in the negative moment region where the 

top-bar effect causes the reinforcement to have a lower bond strength than is obtained for 

bottom-cast bars. 

The six beams tested in the present study produced thirteen shear failures, of which 

eleven were in the negative moment region. Combining this data with the previous research, a 

total of 35 failures are studied in all. Seventeen of these failures occurred in a negative moment 

region. 

Shear cracking stresses are given in Table 3.2. Rodrigues and Darwin (38,39,40) 

found that the shear cracking stresses obtained using the crack patterns were lower in most 

cases than those obtained using the other two methods. They also found that the shear cracking 
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stresses obtained from crack patterns were higher in the positive moment region than in the 

negative moment region for five out of eight beams. In the current study, the shear cracking 

stresses from crack patterns are higher in the positive moment region in half of the twelve 

cases. In three of these cases, no shear cracking was observed in the positive moment regions. 

Averaging the shear cracking stresses obtained from crack patterns shows a difference of less 

than 1% between the average shear cracking stresses in the positive moment regions and 

negative moment regions. Thus, the current research shows no trend in the level of cracking 

stress based on the sign of the bending moment. The previous research used prestressing 

strands for reinforcement, and the earlier analysis results were thought to be conservative 

because of the lower bond strength of strands compared to deformed reinforcement. 

Shear cracking stresses calculated using equations in ACI 318-89 (3), and by ACI-ASCE 

Committee 426 (6), Batchelor and Kwun (14), Bazan! and Kim (16), Rajagopalan and 

Ferguson (37), and Zsutty (44) are given in Table 3.3. Zsutty's equation, Eq. 1.8, and Bazan! 

and Kim's equation, Eq. 1.12, require a value for the shear span-to-depth ratio. The shear 

span, a, is approximated by the ratio of the maximum moment to the maximum shear, MIV, in a 

moment region. Thus, M/(Vd) is used to approximate the shear span-to-depth ratio, a/d. 

Values for the shear spans in the current research, as well as shear span-to-depth ratios are 

given in Tables 3.4 and 3.5, respectively. Shear cracking stresses obtained in this study using 

the three methods are compared with the values obtained from the equations in Tables 3.6 

through 3.8 and Figs. 3.1 through 3.6. 

The calculated values of the shear cracking stresses are compared with the measured 

values of the positive moment region shear cracking stresses obtained from the three analysis 

techniques in Tables 3.6a, 3. 7a, and 3.8a. The shear cracking stress, normalized against 

concrete compressive strength, vcf'{f';,, is plotted versus the longitudinal reinforcement ratio 

in Figs. 3.1, 3.2, and 3.3. These figures include lines representing the equations in ACI 318-
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89 (3), and by ACI-ASCE Committee 426 (6), Batchelor and Kwun (14), and Rajagopalan and 

Ferguson (37). The comparisons with the lowest coefficients of variation in the positive 

moment region were those comparisons made using crack pattern analysis to determine the 

shear cracking load. Therefore, the comparisons that follow are taken from Table 3.6a, which 

compares shear cracking stresses obtained from crack patterns to various predictive equations 

described in Chapter 1. 

For the positive moment regions, the average measured shear cracking stress is 90% of 

the value predicted by ACI 318-89 (3) in Eq. 1.2. The coefficient of variation is 20.8%. The 

average measured cracking stress is 87%, 90%, and 93% of the values predicted by Zsutty 

(44), ACI-ASCE 426 (6), and Bazant and Kim (16), respectively. The corresponding 

coefficients of variation are 11.7%, 12.9%, and 12.4%. The average cracking stress is 101% 

and 1 03% of the stresses predicted by Rajagopalan and Ferguson (37) and Batchelor and Kwun 

(14), respectively, with coefficients of variation of 14.0% and 11.0%. 

For the negative moment regions, the calculated values of the shear cracking stresses are 

compared to the measured values of the shear cracking stresses obtained from the three analysis 

techniques in Tables 3.6b, 3.7b, and 3.8b. The concrete shear cracking stress in the negative 

moment regions, normalized against concrete compressive strength, v0 / ~ , is plotted versus 

reinforcement ratio, Pw. for the three methods of shear crack analysis in Figs. 3.4, 3.5, and 

3.6. The comparisons made using the shear cracking load determined from crack patterns once 

again have the lowest coefficients of variation. Therefore, the comparisons that follow are taken 

from Table 3.6b, which compares shear cracking stresses in the negative moment regions 

obtained from crack patterns to the predicted results. 

For the negative moment region, the average measured shear cracking stress is 91% of 

the value predicted by ACI 318-89 (3) in Eq. 1.2. The coefficient of variation is 8.4%. The 

average measured cracking stress is 93% and 99% of the values predicted by Zsutty (44) and 
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ACI-ASCE 426 (6), respectively, with coefficients of variation of 7.8% and 12.4%. The 

average cracking stress is 109%, 117%, and 102% of the stresses predicted by Rajagopalan 

and Ferguson (37), Batchelor and Kwun (14), and Bazant and Kim (16), respectively. The 

corresponding coefficients of variation are 12.0%, 12.9%, and 8.8%. 

The ratios of measured cracking stresses to calculated cracking stresses are averaged for 

both the negative and positive moment regions in Tables 3.6b, 3.7b, and 3.8b. Overall, the 

average measured cracking stress is 91% of the stress predicted by ACI 318-89 (3) in Eq. 1.2. 

The coefficient of variation is 14.5%. The average cracking stress is 90%, 95%, and 98% of 

the values predicted by Zsutty (44), ACI-ASCE 426 (6), and Bazant and Kim (16), 

respectively, with coefficients of variation of 9.6%, 13.1%, and 10.9%. The average cracking 

stress is 105% and 111% of the values predicted by Rajagopalan and Ferguson (37) and 

Batchelor and Kwun (14), respectively, with coefficients of variation of 13.0% and 13.5%. 

The comparisons made using shear cracking stresses obtained from crack patterns in 

Tables 3.6a and 3.6b show that comparisons made in the negative moment regions have lower 

coefficients of variation than the same comparisons made in the positive moment regions. 

Higher coefficients of variation in the positive moment regions indicate more scatter with 

respect to the predictive equations. The greater scatter is likely due to the widely varying shear 

span-to-depth ratios in the positive moment regions, which are not accounted for by Eqs. 1.2, 

1.7, 1.10, and 1.11. Eqs. 1.8 and 1.12 do account for varying M/(Vd) ratios, but are not valid 

for the full range of M/(Vd) ratios, 1.60 to 3.83, obtained in the positive moment regions. The 

values for shear span-to-depth ratios in the negative moment regions ranged only from 3.28 to 

3.81. Another interesting contrast between the positive and negative moment regions is that in 

the positive moment region, comparisons to the ACI 318-89 (3) equation, Eq. 1.2, show the 

highest coefficients of variation for any comparison made. This is true for all methods of 

determining shear cracking load in the positive moment regions. In the negative moment 
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regions, however, the coefficients of variation for comparisons made to Eq. 1.2 are lower than 

almost all other comparisons, regardless of the method used to determine the shear cracking 

load. For the combined negative and positive moment regions, the coefficient of variation for 

comparisons to Eq. 1.2 is the highest of any comparison. The comparison with the lowest 

coefficient of variation for the combined moment regions is the comparison made to Zsutty's Eq. 

1.8. 

3.3.1 Stjrrup Effectiveness 

As the load is increased above the shear cracking load, additional load is carried by the 

stirrups. Thus, the increase in total shear stress, Vn, beyond the shear cracking stress, v0 , can 

be used as a measure of the effectiveness of the shear reinforcement. The shear reinforcement 

effectiveness, Vn - v0, includes the shear stress carried by the stirrups, as well as the shear 

stress carried by dowel action and aggregate interlock. The values of shear reinforcement 

effectiveness from this study, as well as those from Rodrigues and Darwin (38,39,40) and 

Palaskas, Attiogbe, and Darwin (11,34,35), are presented in Table 3.9. 

The evaluation of stirrup effectiveness for beams in the current study is based on 

failures in the negative moment region, because only two failures were observed in the positive 

moment region and both of these failures occurred in beam J-1 which had no stirrups. The 

shear reinforcement effectiveness is plotted versus the nominal stirrup capacity, Pvfvy. for the 

current research, in Fig. 3.7. Using regression analysis, the relationship for shear 

reinforcement effectiveness in terms of nominal stirrup capacity is: 

Vn - Vc = 1.35pvfvy + 12.26 ( 3. 1) 
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with a correlation coefficient, r, of 0.87. This relationship is obtained considering only those 

beams which contained stirrups. 

Rodrigues and Darwin (38,39,40) performed a regression analysis on the negative 

moment region data from their research and found the following relationship: 

Vn- Vc = 1.19pvfvy + 4.70 (3.2) 

with a correlation coefficient, r, of 0.96. 

The test results for the eleven negative moment region failures are combined with the 

negative moment region failure results obtained by Rodrigues and Darwin (38,39,40). This 

data is plotted in Fig. 3.8. A regression analysis of the combine data yields the following 

relationship: 

Vn - Vc = 1.28pvfvy + 8.28 ( 3. 3) 

with a correlation coefficient, r, of 0.89. 

It can be seen from this analysis that, overall, the contribution of shear reinforcement 

to shear strength is approximately 30% greater in the negative moment regions of the beams 

studied than predicted by Eq. 1.4 from ACI 318-89 (3). 

Care must be taken when grouping these two sets of results together because of the 

differences in the two studies. The correlation coefficients from the regression analyses show 

that the scatter in the data was small. The line which is fit for the data from Rodrigues and 

Darwin (38,39,40) has a lower slope than the line based on the results from the current study. 

This shows that the study by Rodrigues and Darwin did indeed give conservative results 

compared to regular reinforced concrete members. This is expected because of the differences 
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in the two studies. The use of lower reinforcement ratios and prestressing strands as flexural 

reinforcement by Rodrigues and Darwin cause the section to experience more flexural tensile 

strain than if a higher reinforcement ratio and deformed bars had been used. The higher strain 

results in steeper shear cracks. The steeper cracks intercept fewer stirrups, and thus the 

stirrup contribution to shear strength is less. 

For the positive moment region, the test results of Rodrigues and Darwin (38,39,40) 

and Palaskas, Attiogbe, and Darwin (11 ,34,35) were combined. The linear regression analysis 

for the combined data shows that the web reinforcement in the positive moment region was 59% 

more effective than predicted by ACI 318·89 (3) using Eq. 1.4. The higher than predicted 

stirrup contribution was obtained for beams using prestressing strands as flexural 

reinforcement which yields a more conservative shear strength. Rodrigues and Darwin 

(38,39,40) concluded this difference in shear reinforcement contribution between the positive 

and negative moment regions could be due to the top bar effect. It is not clear if this behavior 

would be observed for the beams in the current study since no beams with stirrups failed in the 

positive moment region. 

3.3.2 Horjzontal Crack Projectjon 

The differences observed in the stirrup contributions in the negative and positive 

moment regions are due to the differences in the horizontal projection of the critical shear 

crack, defined as the shear crack which causes the failure of the beam. ACI 318·89 (3) 

predicts the stirrup contribution to shear strength in Eq. 1.4 based on the assumption that the 

horizontal crack projection is equal to the effective depth of the beam, d. Table 3.10 shows that 

the horizontal projection of the critical shear crack is greater in the positive moment region 

than in the negative moment region for the combined results of Rodrigues and Darwin 
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(38,39.40), Palaskas, Attiogbe, and Darwin (11,34,35) and the current study. 

The average horizontal projection of the critical shear crack in the negative moment 

region from the current research is 1.38d. Rodrigues and Darwin (38,39,40) observed an 

average horizontal projection of the critical shear crack in the negative moment region of 1.0d. 

Differences in the type of flexural reinforcement used, as well as differing shear span-to-depth 

ratios likely caused the differences in the horizontal crack projections. When the results of the 

current research are combined with results from the research of Rodrigues and Darwin 

(38,39.40), the average horizontal projection of the critical shear crack in the negative 

moment region is 1.23d. The average horizontal critical shear crack projection in the positive 

moment region from Rodrigues and Darwin (38,39,40) and Palaskas, Attiogbe, and Darwin 

(11,34,35) (the current research did not experience any positive moment region failures in 

beams containing stirrups) is 1.74d. 

Rodrigues and Darwin (38,39,40) observed that the positive moment region had a 

longer horizontal crack projection due to a shallower crack angle and the fact that the crack 

propagates along the underside of the flange before it enters the flange. Because of this longer 

horizontal crack projection, more stirrups are intercepted by the critical crack. Therefore, 

the stirrups take more load, and the stirrup effectiveness, v0 - Vc, is greater in the positive 

moment region. In the current study, the critical shear cracks in the negative moment region 

also propagated along the flange-web intersection as the beam approached failure. This explains 

the relatively greater negative moment region stirrup effectiveness observed in the current 

research than observed in the research of Rodrigues and Darwin (38,39,40). 

The increase In shear stress at ultimate above the shear cracking stress, v0 - Vc, 

measures the amount of shear carried by dowel action and aggregate interlock, as well as that 

carried by the stirrups. The shear stress carried by the stirrups alone can be expressed as 
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V si = nAvfvylbwd (3.4) 

in which n = number of stirrups intercepted by the critical shear crack. It Is the number of 

stirrups intercepted, not the horizontal projection of the crack, that actually determines the 

stirrup contribution to shear strength. 

Because the number of stirrups which the critical shear crack intercepts is known based 

on the crack maps, Figs. 2.12a and 2.12b, it is possible to calculate the shear carried by the 

stirrups, Vsi· These values are presented in Table 3.1 0. 

A regression analysis performed on the negative moment results from the current 

research gives the relationship between Vsi and nominal stirrup capacity, Pvfvy as: 

Vsi = 1.23pvfvy + 7.97 (3.5) 

with a correlation coefficient, r, of 0.97. These results are illustrated in Fig. 3.9. 

Eq. 3.5 contrasts with the results obtained by Rodrigues and Darwin (38,39,40) in the 

negative moment region: 

V si = 1.00pvfvy - 6.00 (3.6) 

with a correlation coefficient, r, of 0.96. 

The regression analysis performed by Rodrigues and Darwin (38,39,40) based on their 

data for the positive moment region resulted in a relationship: 

Vsi = 1.41pvfvy - 4.2 (3 .8) 
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with a correlation coefficient, r, of 0.99. 

The relationship for the positive moment region in Eq. 3.8 shows that approximately 

40% more stirrups were intercepted by the critical shear crack than predicted by Eq. 1.4, ACI 

318-89 (3). The relationship from the results of Rodrigues and Darwin (38,39,40) show 

that the number of stirrups intercepted by the critical shear crack in the negative moment 

region is approximately equal to the number predicted by Eq. 1.4. The relationship from the 

current study shows that approximately 23% more stirrups were intercepted in the negative 

moment region than predicted by Eq. 1.4. These percentages contrast with what might be higher 

expected values based on the horizontal projections of the cracks. Clearly, crack projection 

alone is not a reliable guide to the contribution of shear reinforcement to shear strength. 

3.3.4 Nominal Shear Stress 

The measured nominal shear stresses, Vn(test), from the current research and for the 

six beams with negative moment region shear failures from the study by Rodrigues and Darwin 

(38,39,40) are compared to the calculated nominal shear stresses based on ACI 318-89 (3), 

Vn(ACI), in Table 3.11 and Figs. 3.10 and 3.11. ACI 318-89 (3) is unconservative in 

approximately half of the comparisons in the negative moment region. Of the beams with 

stirrups, four out of ten had a nominal shear capacity below that predicted by ACI 318-89 (3). 

The four spans with the measured nominal shear strength in the negative moment region less 

than that predicted by ACI 318-89 (3) for those beams with stirrups were all tested by 

Rodrigues and Darwin (38,39,40). All beams with stirrups in the current study failed at a 

higher load than predicted by ACI 318-89 (3). This contrast once again points to the 

differences between the current study and the study performed by Rodrigues and Darwin 

(38,39,40). In addition to the use of deformed bars as flexural reinforcement for the current 
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research compared to the use of prestressing strands by Rodrigues and Darwin (38,39,40), the 

beams in the current study were statically indeterminate with a varying shear span-to-depth 

ratio due to moment redistribution, while Rodrigues and Darwin tested statically determinate 

beams with a constant shear span-to-depth ratio. Rodrigues and Darwin also tested beams with 

lower flexural reinforcement ratios, which should give even lower nominal shear strengths. 

For the negative moment region, Rodrigues and Darwin (38,39,40) obtained an average 

of Vn(test)lvn(ACI) equal to 0.91, with a coefficient of variation of 8.4%. The average value of 

Vn(test)lvn (ACI) in the negative moment region for beams from the current study is 1.04 with 

a coefficient of variation of 9.5%. For beams with stirrups, the average of Vn(test)lvn (ACI) in 

the negative moment region is 1.13 with a coefficient of variation of 7.0% for beams in the 

current study, and 0.89 with a coefficient of variation of 11.0% for beams tested by Rodrigues 

and Darwin (38,39,40). The results of the current study Indicate that ACI 318-89 (3) 

adequately predicts the nominal shear capacity of the beams studied. However, ACI 318-89 (3) 

does not appear to adequately predict the nominal shear capacity in the negative moment regions 

of the beams tested by Rodrigues and Darwin (38,39,40). This disagreement is due to the 

differences between the two studies, discussed previously. The beams with the lowest relative 

strengths In the Rodrigues and Darwin study had reinforcement ratios, Pw· of only 0.47%, 

considerably lower than the low value of 0. 75% used In the current study. 

Rodrigues and Darwin (38,39,40) found that the average value of Vn(test)lvn (ACI) In 

the positive moment region for all beams was 1.04, with a coefficient of variation of 9.3%. 

Rodrigues and Darwin (38,39.40) found that the ACi provisions were conservative for twelve 

of the eighteen beams with positive moment region shear failures. For those beams with 

stirrups, Rodrigues and Darwin (38,39,40) found that the ACI provisions were conservative In 

eleven of fourteen positive moment region cases. The average value of Vn(test)Jv0 (ACI) in the 

positive moment region for those beams with stirrups was 1.07 with a coefficient of variation 
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of 8.4%. 

Both positive and negative moment regions with Pw ::;. 1.0% have been shown to have a 

shear cracking stress that is less than that predicted by ACI 318·89 (3) in Eq. 1.2. However, 

the actual stirrup contribution determined from testing is greater than that predicted by ACI 

318-89 (3) in Eq. 1.4 due to a critical shear crack that is flatter than assumed. This higher­

than-predicted stirrup contribution appears to compensate for the lower concrete shear 

capacity In both the negative and positive moment regions. 

3.3.5 Other Observations 

In order to visualize the effects of Pw on the nominal shear capacity of reinforced 

concrete beams in the negative moment region, v0 is normalized to eliminate the effects of 

concrete strength using the following equation (38): 

v0 (norm) = v0 (test)Y{4000/f'c) + [v0 (test) • v0 (test)] (3.9) 

Eq. 3.9 normalizes the portion of v0 which is dependent of concrete strength, v0 , to a concrete 

compressive strength of 4000 psi. 

v 0 (norm)tY4000 Is plotted versus Pvfvy in Fig. 3.12. This figure illustrates that, for 

each beam configuration and failure region, stirrup effectiveness increases with increasing Pw· 

This is seen by observing that the slopes of the best fit lines for each group of tests increase 

with Increasing reinforcement ratio. The nominal shear strengths of the beams increase with 

increasing Pw· The best fit lines for the current research lie well above the best fit lines 

obtained using the negative moment region data of Rodrigues and Darwin (38,39,40). 

Fig. 3.12 can be used to evaluate the ACI minimum shear reinforcement requirements 
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(pvfv y • 50 psi). The lines shown on Fig. 3.12 are best fit lines for the normalized data of each 

group of specimens representing different reinforcement ratios from the tests of the current 

study and the combined results of Palaskas, Attiogbe, and Darwin (11,34,35) and Rodrigues and 

Darwin (38,39,40). Fig. 3.12 illustrates that beams without stirrups have a nominal shear 

capacity of less than 2~. However, the nominal shear capacity of beams with no stirrups is 

above ~. the effective usable shear strength of beams without stirrups (3). The results in 

Fig. 3.12 indicate that the use of as little as 26 psi of shear reinforcement will raise the 

nominal shear capacity, vn. to 2~ for all beams with Pw 2 0.47%. Fig. 3.12 shows that if 

minimum shear reinforcement, Pv fvy = 50 psi, is used, the nominal shear capacity of the 

concrete, v 0 , is safely predicted by ACI 318-89 for both the negative and the positive moment 

regions. 

To look at the overall ability of ACI 318-89 (3) to predict the nominal shear capacity of 

the test specimens, the best fit lines from Fig. 3.12 are divided by the nominal shear strength 

predicted by ACI 318-89 (3) and plotted versus the nominal stirrup capacity, Pvfvy. in Fig. 

3.13. The first observation made about Fig. 3.13 is that for the beams with Pw = 0.47% in the 

negative moment region (38), ACI 318-89 (3) will never predict an adequate shear strength, 

no matter how much shear reinforcement is used. This is also true for Pw = 0.70% in the 

negative moment region. These two reinforcement ratios come from the test results of 

Rodrigues and Darwin (38,39,40) which have already been shown to behave differently than 

the beams in the current research. The negative moment region data from the current research 

shows that ACI 318-89 (3) safely predicts the shear capacity when shear reinforcement is 

provided. This is seen quite easily by observing the upward slope of the curve for the beams 

with reinforcement ratios of 0. 75% and 1.0%. These curves cross the line representing 

Vn(norm) = Vn (ACI) at Pvfvy < 10 psi. 
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3.4 Modjtjed Compressjon Fjeld Theor:y 

Two procedures were developed using the modified compression field theory 

(18,22,23,43), MCET, to predict the shear capacity of the test beams. These procedures are 

outlined in this section. The first procedure, called the response procedure, gives the full force­

stress-strain response of the member subjected to moment and shear. The procedure uses an 

iterative process to reach a solution. The second procedure, called the design procedure, is 

based on the response procedure; however, simplifying assumptions are made which allow the 

use of design tables presented by Collins and Mitchell (22) to obtain the shear capacity of the 

member. The design procedure is also iterative, but is simpler than the response procedure. 

3.4.1 Response Procedure llsjng MCET 

The relationships from the modified compression field theory, presented in Chapter 1, 

are used to obtain the shear response of a member. The shear response is expressed in terms of 

principal tensile strain, e1, and the shear force corresponding to e1• Values of e1 are gradually 

increased to obtain the behavior. With the exception of those steps marked with an asterisk, •, 

the iterative procedure used to obtain the response is as outlined by Collins and Mitchell (22). 

The additions to the steps outlined in reference 22 were made because additional information 

was needed to perform the analysis, which was not specifically addressed in the steps outlined 

(22). The procedure is : 

Step 1: Choose a value of e1 at which to find the corresponding shear, V. 

Step 2: Make an estimate of the crack angle, e. 
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Step 3: Calculate crack width, w, from: 

w = e1Sma (3.1 0) 

in which Sme is the crack spacing parameter, defined as: 

Smo = 1/ (~+~) 
Smx Smv (3.11) 

in which Smx and Smv are crack spacings along the longitudinal and shear 

reinforcement and are defined as: 

Smx = 2fcx + k) + 0.25k1 dbx 
\ 10 Px (3.12) 

Smv = 2fcv + _s_) + 0.25k1 Qm,_ 
\ 10 Pv (3.13) 

in which Cx is the vertical distance from the neutral axis of the uncracked 

section to the inside edge of the tension steel, 

Cv is the horizontal distance from the center of the web to the Inside edge of the 

stirrup, 

dbx is the diameter of the longitudinal steel, 

dby is the diameter. of the stirrups, 

Sx is the horizontal clear space between the longitudinal bars, 

s is the stirrup spacing, 

Px = As/ Ac, and 

k1 is 0.4 for deformed bars and 0.8 for smooth bars. 

Step 4: Estimate the stress in the stirrups, fv. 

Step 5: Calculate the principal tensile stress, !1 , from Eqs. 1.14, 1.15, and 1.16, using the 

smallest value. 

Step 6: Calculate the shear load on the section, V, using Eq. 1.19. 

in which the flexural lever arm, jd, is determined from section equilibrium as: 



jd = d - (M/jd - Vucote) 
1. 70f'cb 
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(3.14) 

Step 7: Calculate the principal compressive stress, f2, from Eq. 1.17. If f2 exceeds f2max 

presented in Chapter 1, the iteration is terminated because e1 is too large. 

Step 8: Calculate the principal compressive strain, e2, from Eq. 1.20. 

Step 9: Calculate the longitudinal strain in the web, ex, using Eq. 1.21, and the strain in the 

web reinforcement, e1, using Eq. 1.22. Note, ex is calculated at the midheight for 

members which contain stirrups, and at the level of the tension steel in 

members which contain no stirrups. 

Step 1 0: Calculate fv = Et Es .$ fvy 

Step 11 : Check to see if the calculated value of fv in step 1 o equals the value of fv estimated in 

step 4. If it does not, go back to step 4 and revise the estimate of fv. 

Step 12*: Find axial forces due to the moment which occurs at the shear, V, calculated in step 6. 

This is done using moment-curvature relationships in the following procedure: 

Step 12a*: Set moment equal to the shear, V, times the ratio M/V. This ratio will be 

constant throughout the loading of the beam for these cases, and is dependant upon 

the loading and beam geometry. 

Step 12b•: Assume a linear strain distribution across the concrete section, and choose a 

strain at the extreme compressive fiber of the concrete, Ect· 

Step 12c*: The distribution of compressive stress in the concrete can be represented by an 

equivalent stress block with an average stress of a1f'0 and a depth of l31c, in 

which c is the distance from the extreme compressive fiber to the neutral axis of 

the section. The equations used for !31 and a1l31 are: 

(3.15) 
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(3.16) 

in which e0 is the strain at r 0 • 

Step 12d*: Calculate the distance from the compression face to the neutral axis, c, using 

the flexural lever arm, jd, calculated in step 6. 

c = (d - jd/2) - x (for beams with stirrups) 

c = d - x (for beams without stirrups) 

(3.17a) 

(3.17b) 

in which x is the distance from the point where ex is measured to the neutral axis 

and is given by: 

X = Ex(d - jd/2) 
Ex + ect (for beams with stirrups) (3.18a) 

(for beams without stirrups) (3.18b) 

Step 12e*: Calculate the tension force, T, and compression force, C, in the concrete. 

T = esEsAs.sAsfy 

in which e8 is the strain in the tension steel, which is given by: 

and 

Es = Ect li..:...Q c 

Es = Ex 

(for beams with stirrups) 

(for beams without stirrups) 

(3.19) 

(3.20a) 

(3.20b) 

(3.21) 

Step 121*: Calculate the moment about the point that is jd/2 from the tensile steel. 

M = T(jd/2) + C(d - jd/2 - ~.i£:L) 
2 (3.22) 

The moments due to t1 and V are equal to zero about this point due to the 

symmetry of these forces in the cross-section. 

Step 12g*: Check to see if the moment in step 12f equals the moment obtained in step 12a. If 
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not, go back to step 12b and choose a new Eel· 

Step 13*: Calculate the net axial load, N, at the cross-section using: 

N = T + f1bwid - (C + Vcote) (3.23) 

Step 14: Check to see if the section is in equilibrium, N=O. If not, return to step 2 and 

reestimate e. If N does equal zero, then the shear calculated In step 6 corresponds to 

the value of e1 chosen in step 1. To obtain the entire response for the member, 

return to step 1 and choose a new e1. 

Once a complete response is obtained, the nominal shear capacity of the member is taken 

as the peak shear attained on the response curve. A typical beam response is given in Table 

3.12, and a typical response curve is shown in Fig. 3.14. 

3.4.2 Desjgn Procedure Usjng MCFI 

The design procedure is based on the response procedure. As presented by Collins and 

Mitchell (22), the design procedure uses several assumptions to develop a design table which 

can be used to predict the capacity of a member. Portions of the design tables developed by 

Collins and Mitchell are given in Table 3.13. These tables were developed using the assumptions 

that the maximum size of aggregate, used to calculate Vsi in Eq. 1.16, is 0.75 inches and, for the 

beams with stirrups, Sma is equal to 12 inches. For all beams, ex Is taken at the level of the 

flexural reinforcement. These assumptions are made to give conservative results. The design 

procedure is an iterative process and proceeds as follows for a fixed value of MIV = r: 

Step 1: Estimate the nominal shear capacity, Vn. and the crack angle, e. 

Step 2: Calculate the height of the compressive stress block, a. The following equation is 
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used for the current study: 

Vu(L ·cote) 
a= Jd 

0.85f'cb (3.24) 

in which jd = d • a/2. 

Step 3: Calculate ex using the equation given by Collins and Mitchell {22): 

Vutrd • 0.5cota) 
ex = --"'-"----..1..-

E.A. {3.25) 

ex S fy/Es 

Step 4: For beams with stirrups, calculate v/f'0 , in which v = V0 /{bwid). 

Step 5: Use the design tables to determine ~ and a. Partial listings of the design tables are 

shown in Table 3.13. 

Step 6: Determine the nominal shear capacity of the member using the following equations: 

In which, 

V s = Pv fvybw jdcota 

{3.26) 

{3.27) 

(3.28) 

Step 7: Compare the V n and a from step 7 to the V n and a estimated in step 1. If they are not 

equal, go back to step 1 and reestimate V n and a. 

This procedure continues until the Vn and a estimated match those which are obtained 

from the tables. This procedure gives the nominal shear capacity of the member, not a full 

shear response of the member. 
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3.4.3 Comparjson of Results 

Tables 3.14 and 3.15 compare the nominal shear capacities of the beams from the 

current study with the nominal shear capacities predicted using the two MCFT procedures. 

When using the response procedure, the average value of Vn(test)/v 0 (MCFT) for all 

beams from the current study is 1.26, with a coefficient of variation of 11.8%. For beams 

without stirrups the average is 1.31, with a coefficient of variation of 7.6%, while for beams 

with stirrups, the average value of v0 (test)/v0 (MCFT) is 1.18, with a coefficient of variation 

of 16.1%. A plot of v0 (test) versus v0 (MCFT) is shown in Fig. 3.15. This plot shows that the 

difference between the level of the predicted and test strengths is relatively constant for the 

response procedure, i.e. the data points lie roughly parallel to the v0 (MCFT)=vn(test) line. The 

modified compression field theory, as used in the response procedure, appears to be quite 

conservative when applied to all beams from the current study. Although the response 

procedure predicts the nominal shear capacities of beams which contain stirrups better than 

beams which contain no stirrups [in terms of v 0 (test)/v 0 (MCFT)), the predicted values for 

beams containing stirrups are still quite conservative. 

A modification can be made to step 3 of the response procedure by using k1 = 0.4 instead 

of k 1 • 0.8. This represents an increased bond strength between the stirrups and the concrete. 

Table 3.14 shows the results obtained from the current research using this modification. For 

beams with stirrups, the average value of v0 (test)/v0 (MCFT) drops slightly with this 

modification; 1.15 is obtained for k1 = 0.4 compared to 1.18 for k1 = 0.8. Changing the bond 

strength of the stirrups to the concrete has only a small effect on the predicted results, 

especially for beams with a flexural reinforcement ratio of 0.75%, as seen in Table 3.14. 

The horizontal projection of the critical shear crack predicted by the modified 

compression field theory is a measure of the predicted stirrup contribution to shear strength. 
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Fig. 3.16 compares the horizontal projection of the critical shear crack measured after testing 

(Table 3.1 0) and the horizontal projection obtained using the response procedure (k1 = 0.8), 

listed in Table 3.14. The average experimental horizontal critical shear crack projection for 

beams containing stirrups in the current study is 1.38d. The average predicted critical shear 

crack projection for the same beams is 1.11 d. As shown in Fig. 3.16, the horizontal projection 

of the critical shear crack predicted by the response procedure is less than the measured 

horizontal projection for all but one of the beams (beam 1-3, west span) from the current 

study. The difference between the measured and predicted horizontal projection of the critical 

shear crack shows that the response procedure underestimated the stirrup contribution for 

most of the beams in this study. 

The results obtained using the response procedure can be compared to the values of 

nominal shear capacity predicted by ACI 318-89 (3), for the beams In the current study. The 

values of nominal shear capacity predicted by ACI 318·89, and comparisons of these values to 

the experimental shear capacities are given in Table 3.16 for all beams in the current study. 

This table contains the same information as Table 3.11, plus the two positive moment region 

failures from beam J-1. For all of the beams in the current study, the average value of 

vn(test)lvn (ACI) is 1.01, compared to the average value of Vn(test)lvn (MCFT), 1.26. The 

coefficient of variation obtained for Vn(test)lvn (ACI) is 12.4% compared to 11.8% for 

vn(test)lvn (MCFT). For beams in the current study containing stirrups, the average value of 

vn(test)lvn(ACI) is 1.13, with a coefficient of variation of 7.0%, compared to an average value 

of Vn(test)lvn(MCFT) of 1.18, with a coefficient of variation of 16.1%. For beams in the 

current study which contain no stirrups, the average value of Vn (test)/vn(ACI) is 0.94, with a 

coefficient of variation of 9.0%, while the average value of vn(test)/Vn (MCFT) is 1.31, with a 

coefficient of variation of 7 .6%. 

Overall, the comparisons made between the modified compression field theory response 



57 

procedure and ACI 318-89 (3) show that ACI 318-89 predicts the nominal shear strength of 

the beams in the current study better than the MCFT response procedure. It should be noted that 

the comparisons made above represent only thirteen failures of lightly reinforced beams, and 

therefore do not represent a comprehensive comparison between ACI 318-89 (3) and the MCFT 

response procedure. 

Next, the results obtained with the MCFT design procedure are compared with the test 

results. The nominal shear capacities, as well as the horizontal crack projections, predicted by 

the design procedure for the beams from the current study are listed in Table 3.15. 

Comparisons are made between the experimental and predicted nominal shear capacities. 

A plot of Vn(test) versus Vn (MCFT) is shown in Fig. 3.17. This plot shows that as nominal shear 

strength increases, the difference between the predicted and test strengths also increases, i.e. as 

nominal shear strength increases, the data points shift farther above the line representing 

Vn(MCFT)=Vn(test). The average value of Vn (test)lvn(MCFT) for all beams in the current 

study is 1.32, with a coefficient of variation of 9.5%. For beams with no stirrups, the average 

value of Vn(test)lvn(MCFT) Is 1.27, with a coefficient of variation of 8.4%, and for beams with 

stirrups, the average value of Vn(test)/vn (MCFT) is 1.40, with a coefficient of variation of 

8.4%. The design procedure appears to present a very conservative prediction of shear capacity 

for the beams in the current study. The prediction is better for the beams without stirrups 

than for the beams with stirrups. This could be due, in part, to a lack of sensitivity in Table 

3.13 to beams containing stirrups with Vn/f' c s. 0.050, which covers beams with low 

reinforcement ratios and low amounts of shear reinforcement, and, in part, to the placement of 

ex at the level of the tension reinforcement rather than at the midheight of the beam, as done in 

the response procedure. The position of ex at the level of the tension reinforcement is 

conservative when stirrups are not present, and is even more conservative when stirrups are 

present. 
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Like the response procedure, the design procedure gives a prediction of the horizontal 

projection of the critical shear crack. A plot of the experimental horizontal projection of the 

critical shear crack versus the predicted horizontal projection of the critical shear crack is 

shown in Fig. 3.18. The average horizontal projection of the critical shear crack predicted by 

the modified compression field theory for beams with stirrups, using the design procedure, is 

1.03d. This compares with the average measured horizontal projection of the critical shear 

crack, 1.38d. Fig. 3.18 shows that the horizontal projection predicted by the design procedure 

is less than the measured horizontal projection for all but one of the beams (beam 1-3, west 

span) from the current study. The differences between the predicted and measured horizontal 

projections show that the procedure underestimates the stirrup contribution to shear strength. 

The results obtained using the design procedure (in Table 3.15) are compared with the 

predicted nominal shear capacities obtained using ACI 318-89 (3) in Table 3.16. The average 

value of Vn(test)lvn(MCFT) for all beams in the current study is 1.32 [versus 1.01 for 

Vn(test)lvn(ACI)], with a coefficient of variation of 9.5% (versus 12.4%). For beams without 

stirrups, the average value of Vn(test)/vn(MCFT) is 1.27 (versus 0.94), with a coefficient of 

variation of 8.4% (versus 9.0%). For beams with stirrups, the average value of 

Vn(test)lvn(MCFT) is 1.40 (versus 1.13), with a coefficient of variation of 8.4% (versus 

7.0%). As with the response procedure, the design procedure is not as accurate as ACI 318-89 

(3) in predicting the nominal shear capacity of the members in the current study. The average 

value of Vn(test)lvn(ACI) is closer to 1.00 than the average value of Vn(test)/vn(MCFT) for all 

three combinations. The coefficients of variation, however, are relatively small, and show no 

clear advantage for either procedure. Once again, it should be noted that these comparisons 

represent only thirteen failure cases. 

Before comparisons can be made between the response procedure and the design 

procedure, it is necessary to point out the differences between these two procedures. As 
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mentioned before, the response procedure is the basic application of the modified compression 

field theory to predict the shear response of a member, while the design procedure Includes 

several assumptions to simplify the process of obtaining the nominal shear capacity. The first 

assumption made in the design procedure is that the crack spacing parameter, Sma. is equal to 

twelve Inches, a conservative estimate. No such assumption is required tor the response 

procedure. A second major difference between the design procedure and the response procedure 

is the level at which Ex is calculated. The design procedure takes Ex at the level of the tensile 

steel in all cases. The response procedure takes Ex at the level of the tensile steel only for 

beams without stirrups and at the midheight of the member for beams with stirrups. 

When comparing the performance of the two modified compression field theory 

procedures, it is easiest to begin with the similarities. The obvious similarity is that both 

procedures are conservative and in some cases very conservative. Perhaps not as obvious, both 

procedures are particularly time consuming and somewhat confusing to use initially. 

When looking at the average values of vn(test)lvn (MCFT) for both procedures (Tables 

3.14 and 3.15), it is clear that the procedures work better for the beams with the higher value 

of Pw• the !-series beams. For both procedures, the average value of v0 (test)fv 0 (MCFT) is 

closer to 1.00 for the !-series beams than for the J-series beams, 1.16 versus 1.32 for the 

response method and 1.28 versus 1.34 for the design method. 

In terms of differences in performance, the response procedure gives better predictions 

of the nominal shear capacities of beams with stirrups. The design procedure gives better 

predictions of the nominal shear capacities of beams without stirrups. As noted previously, the 

difference between the predicted and measured strengths appears to be nearly constant with 

increasing shear capacity for the response procedure, while it increases with increasing 

nominal shear capacity for the design procedure. 

For the members tested during the current study, ACI 318-89 (3) provides a better 



60 

prediction of nominal shear capacity than either of the modified compression field theory 

procedures. 



Chapter 4 

SUMMARY AND CONCLUSIONS 

4.1 Symmary 

The objective of this research Is to study the shear strength of continuous lightly 

reinforced concrete T-beams. Six two-span T-beams with and without web reinforcement were 

tested. The primary variables in this investigation were the longitudinal reinforcement ratio, 

Pw (0.75% and 1.0%), and nominal stirrup strength, Pvfvy (0 to 82 psi). Variations in shear 

span-to-depth ratio were experienced due to moment redistribution in some test members. 

Shear cracking loads are determined using three analysis techniques: crack pattern analysis, 

stirrup strain analysis, and concrete strain analysis. Stirrup effectiveness is evaluated based 

on the increase in load from shear cracking to failure of the member. 

The test results are compared to the shear provisions of ACI 318-89 (3) and with the 

predictive equations developed by several Investigators (6, 14, 16,37,44). For some 

comparisons, the results of the current research are combined with the results of Palaskas, 

Attiogbe, and Darwin (11 ,34,35) and Rodrigues and Darwin (38,39,40). The results from the 

current study are also compared to the results predicted by two procedures based on the 

modified compression field theory. 

4.2 Conc!usjons 

The following conclusions are made based on the test results and analyses performed in 

the current study. 

1. ACI 318-89 (3) overpredicts the concrete shear capacity of lightly reinforced 
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beams without shear reinforcement. 

2. There is little difference between shear cracking stresses in the negative and 

positive moment regions for beams in the current study. 

3. Negative moment regions experience fewer cracks at wider spacings than positive 

moment regions, likely due to the top-bar effect. 

4. For both the negative and positive moment regions, the stirrup contribution to shear 

strength exceeds the value predicted by ACI 318-89 (3). 

5. Stirrup contribution to shear strength increases with increasing reinforcement 

ratio, Pw· 

6. Because of the requirement to use minimum shear reinforcement when the factored 

shear is greater than one-half of the design shear capacity of the concrete, the ACI 318-89 (3) 

shear provisions are conservative for the beams tested in the current study, Pw = 0.75% and 

1.0%. 

7. The two procedures based on the modified compression field theory are conservative 

for the beams tested in the current study. 

8. The MCFT response procedure appears to underpredict the value of nominal shear 

strength by a consistent margin for the beams tested in the current study. 

9. The MCFT design procedure appears to become more conservative as nominal shear 

strength increases. 

10. ACI 318-89 (3) better predicts the nominal shear strength of the beams in the 

current study than either of the MCFT procedures. 

4.3 Future Work 

The current study represents the only existing data for the negative moment region 
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shear strength of lightly reinforced continuous beams using deformed bars as flexural 

reinforcement. Additional data is needed for beams with reinforcement ratios less than 0. 75%. 

Studies are also needed to further evaluate the effect of shear span·to-depth ratio on the shear 

strength of similar beams. 

Reinforced concrete joist construction deserves special attention. ACI 318-89 (3) 

allows a 10% increase in concrete shear capacity in joists due to the presumed load-sharing 

capabilities of multi-stem members. There is no published experimental data to support these 

provisions. In addition, joists are lightly reinforced members, seldom contain stirrups, and 

are not covered by the minimum shear reinforcement requirements imposed on reinforced 

concrete beams with Vu > (pV n/2. This causes particular concern since the current research 

demonstrates that the shear provisions in ACI 318-89 (3) are safe for lightly reinforced 

beams only because of the minimum shear reinforcement criteria. A follow-on study at the 

University of Kansas will specifically address both the load-sharing capabilities and the 

concrete contribution to shear strength of multispan joist systems. 



64 

REFERENCES 

1. ACI Committee 318, Commentaf}' of Building Code Requirements for Reinforced Concrete 
(ACI 318-63), SP-10 American Concrete Institute, Detroit, 1963, 91 pp. 

2. ACI Committee 318, "Proposed Revisions to: Building Code Requirements for Reinforced 
Concrete (ACI 318-77) and Commentary on Building Code Requirements for Reinforced 
Concrete," Concrete International, V. 4, No. 12, December 1982, pp. 38-i 27. 

3. ACI Committee 318, Building Code Requirements for Reinforced Concrete (ACI 318-89) 
and Commentaf}'- ACI 318R-89, American Concrete Institute, Detroit, 1989, pp.140-
144. 

4. ACI-ASCE Committee 326, "Shear and Diagonal Tension," ACI Journal, Proceedings V. 
59, No. 2, February, 1962, pp. 277-333. 

5. Joint ACI-ASCE Committee 426 on shear and Diagonal Tension, "The Shear Strength of 
Reinforced Concrete Members," Journal of the Structural Division, ASCE, V. 99, No. ST6, 
June 1973, pp. 1091-1187. 

6. ACI-ASCE Committee 426, "Suggested Revisions to Shear Provisions of ACI Code 318-
71 ," ACI Journal, Proceedings V. 74, No. 9, September 1977, pp. 458-469. 

7. AI-Nahlawl, M. K. A., and Wight, J. K., "An Experimental and Analytical Study of Shear 
Strength of Lightly Reinforced Concrete Beams," Report No. UMCE 89-7, Ann Arbor, 
Michigan, July 1989, 232 pp. 

8. ASTM. "Standard Specification for Deformed and Plain Billet-Steel Bars for 
Concrete Reinforcement," (ASTM A 615-89) 1990 Annual Book of ASTM Standards, Vol. 
1 .04, American Society for Testing and Materials, Philadelphia, PA, pp. 388-391. 

9. ASTM. "Standard Practice for Making and Curing Concrete Test Specimens in the Field" 
{ASTM C 31-90) 1990 Annual Book of ASTM Standards, Vol. 4.02, American Society for 
Testing and Materials, Philadelphia, PA, pp. 5-9. 

1 0. ASTM. "Standard Test Method for Compressive Strength of Cylindrical Concrete 
Specimens," (ASTM C 39-86) 1990 Annual Book of ASTM Standards, Vol. 4.02, 
American Society for Testing and Materials, Philadelphia, PA, pp. 20-24. 

1 1. Attiogbe, E. K., Palaskas, M. N., and Darwin, D., "Shear Cracking and Stirrup 
Effectiveness of Lightly Reinforced Concrete Beams," SM Report No.1, University of 
Kansas Center for Research, Lawrence, Kansas, July 1980, 138 pp. 

12. Baldwin, J. W., and Vies!, I. M., "Effect of Axial Compression on Shear Strength of 
Reinforced Concrete Frame Members," ACI Journal, Proceedings V. 55, No. 5, November 
1958, pp. 635-654. 



65 

13. Baron, M. J., and Siess, C. P., "Effect of Axial Load on the Shear Strength of Reinforced 
Concrete Beams," Structural Research Series No. 121, Civil Engineering Studies, 
University of Illinois at Urbana, Champaign, June 1956. 

14. Batchelor, B. deV., and Kwun, M. K., "Shear in RC Beams Without Web Reinforcement," 
Journal of the Structural Division, ASCE, V. 107, No. ST5, May 1981, pp. 907-921. 

15. Bazant, Z. P., "Size Effect in Blunt Fracture: Concrete, Rock, Metal," Journal of 
Engineering Mechanics, ASCE, V. 110, No. 4, April 1984, pp. 518-535. 

16. Bazant, Z. P., and Kim, J. K., "Size Effect in Shear Failure of Longitudinally Reinforced 
Beams," ACI Journal, Proceedings V. 81, No. 5, September-October 1984, pp. 456-
468. 

17. Bernaert, S., and Siess, C. P ., "Strength in Shear of Reinforced Concrete Beams under 
Uniform Load," Structural Research Series, No.120, Civil Engineering Studies, 
University of Illinois at Urbana, Champaign, June 1956. 

18. Bhide, S. B., and Collins, M. P., "Influence of Axial Tension on the Shear Capacity of 
Reinforced Concrete Members" ACI Structural Journal, V. 86, No. 5, September-October 
1989, pp. 89-101. 

19. Bower, J. E., and Vies!, I. M., "Shear Strength of Restrained Concrete Beams without Web 
Reinforcement," ACI Journal, Proceedings V. 57, No. 1, July 1960, pp. 73-98. 

20. Bresler, B., and Scordelis, A. C., "Shear Strength of Reinforced Concrete Beams," ACI 
Journal, Proceedings V. 60, No. 1, January 1963, pp. 51-72. 

21. Collins, M. P., "Towards a Rational Theory for Reinforced Concrete Members in Shear," 
Journal of the Structural Engineering Division, ASCE, V. 104, No. ST 4, April 1978, pp. 
649-666. 

22. Collins, M. P., and Mitchell, D., (1990), Prestressed Concrete Structures, Prentice 
Hall, Englewood Cliffs, New Jersey 07632, 751 pp. 

23. Collins, M. P., and Mitchell, D., "A Rational Approach to Shear Design-The 1984 
Canadian Code Provisions,'' ACI Journal, Proceedings V. 83, No. 6, November­
December 1986, pp. 925-933. 

24. Dlaz de Cosslo, R., and Siess, C. P., "Behavior and Strength in Shear of Beams and Frames 
Without Web Reinforcement," ACI Journal, Proceedings V. 56, No.8, February 1960, 
pp. 695-735. 

25. Haddadin, M. J., Hong, S., and Mattock, A. H., "Stirrup Effectiveness in Reinforced 
Concrete Beams with Axial Force," Journal of the Structural Division, ASCE, V. 97, No. 
ST9, September 1971, pp. 2277-2297. 



66 

26. Hanson, J. W., "Square Openings in Webs of Continuous Joists," Research and 
Development Bulletin RD 001 .01 D, Portland Cement Association, Skokie, IL, 1969, 14 
pp. 

27. Kani, G. N. J., "Basic Facts Concerning Shear Failure," ACI Journal, Proceedings V. 63, 
No. 63, June 1966, pp. 675-692. 

28. Krefeld, W. J., and Thurston, C. W., "Studies of the Shear and Diagonal Tension of 
Strength of Simply Supported Reinforced Concrete Beams," Report, Columbia University, 
New York, NY, June 1962, 96 pp. 

29. MacGregor, J. G., and Gergely, P., "Suggested Revision to ACI Building Code Clauses 
Dealing with Shear in Beams," ACI Journal, Proceedings V. 74, No. 10, October 1977, 
pp. 493-500. 

30. Mathey, R. G., and Watstein, D., "Shear Strength of Beams Without Web Reinforcement 
Containing Deformed Bars of Different Yield Strengths," ACI Journal, Proceedings V. 60, 
No. 2, February 1963, pp. 183-208. 

31. Mitchell, D., and Collins, M. P., "Diagonal Compression Field Theory-A Rational Model 
for Structural Concrete in Pure Torsion," ACI Journal, Proceedings V. 71, No. 8, Aug. 
1974, pp. 396-408. 

32. Moody, K. G., Vies!, I. M., Elstner, R. C., and Hognestad, E., "Shear Strength of Reinforced 
Concrete Beams-Parts 1 and 2," ACI Journal, Proceedings V. 51, No. 4, December 1954, 
pp. 317-332, No. 5, January 1955, pp. 417-434. 

33. Morrow, J., and Vies!, I. M., "Shear Strength of Reinforced Concrete Frame Members 
Without Web Reinforcement," ACI Journal, Proceedings V. 53, No. 9, March 1957, pp. 
833-869. 

34. Palaskas, M. N., and Darwin, D., "Shear Strength of Lightly Reinforced T-Beams," SM 
Report No.3, University of Kansas Center for Research, Lawrence, Kansas, September 
1980, 198 pp. 

35. Palaskas, M. N., Attiogbe, E. K., and Darwin, D., "Shear Strength of Ughtly Reinforced 
Concrete Beams," ACI Journal, Proceedings V. 78, No.6, November-December 1981, pp. 
447-455. 

36. Placas, A., and Regan, P. E., "Shear Failure of Reinforced Concrete Beams,'' ACI Journal, 
Proceedings V. 68, No. 10, October 1971, pp. 763-773. 

37. Rajagopalan, K. S., and Ferguson, P. M.,"Exploratory Shear Tests Emphasizing Percentage 
of Longitudinal Steel," ACI Journal, Proceedings V. 65, No. 8, August 1968, pp. 634-
638. 

38. Rodrigues, C. P., and Darwin, D., "Negative Moment Region Shear Strength of Lightly 



67 

Reinforced T-Beams," SM Report No. 13, University of Kansas Center for 
Research,Lawrence, Kansas, June 1984, 111 pp. 

39. Rodrigues, C. P., and Darwin, D., "Shear Strength of Lightly Reinforced T-Beams in 
Negative Bending," ACI Structural Journal, V. 84, No. 1, January-February 1987, pp. 
77-85. 

40. Rodrigues, C. P., and Darwin, D., Closure to discussion, "Shear Strength of Lightly 
Reinforced T-Beams in Negative Bending," ACI Structural Journal, V. 84, No. 6, 
November-December 1987, pp. 548-550. 

41. Rodriguez, J. J., Bianchini, A. C., Viest, I. M., and Kesler, C. E., "Shear Strength of Two­
Span Continuous Reinforced Concrete Beams," ACI Journal, Proceedings V.55, No.10, 
April 1959, pp.1 089-1130. 

42. Somes, N. F., and Corley, W. G., "Circular Openings in Webs of Continuous Beams," Shear 
and Reinforced Concrete, SP 42, V. 1, American Concrete Institute, Detroit, Ml, 1974, 
pp. 359-398. 

43. Vecchio, F. J., and Collins, M. P., "The Modified Compression-Field Theory for Reinforced 
Concrete Elements Subjected to Shear,'' ACI Journal, Proceedings V. 83, No. 2, March­
April 1986, pp. 219-231. 

44. Zsutty, T. C., "Beam Shear Strength Prediction by Analysis of Existing Data," ACI 
Journal, Proceedings V. 65, No. 11, November 1968, pp. 943-951. 



68 

Table 2 1 Seam Properties 

Positive Moment Region 

West Span 
Seam d A. Pw"'Aslbwd Pv=Avlbws Pvfvy 

in. ln.2 psi 
1-1 16.05 1.19 0.0099 0.0000 00.0 
I· 2 15.92 1.1 9 0.0100 0.0008 34.1 
I· 3 15.99 1.19 0.0099 0.0008 33.9 
J. 1 16.00 0.88 0.0073 0.0000 00.0 
J-2 16.02 1.19 0.0099 0.0008 34.0 
J-3 15.03 2.07 0.0184 0.0015 82.0 

East Span 
Seam d A. Pw"'Aslbwd pv=Avlbws Pvfvy 

in. in.2 psi 
I - 1 16.05 1.19 0.0099 0.0000 00.0 
1-2 15.96 1.19 0.0099 0.0008 34.1 
I· 3 16.08 1.19 0.0099 0.0000 00.0 
J-1 16.00 0.88 0.0073 0.0000 00.0 
J·2 16.02 1.19 0.0099 0.0000 00.0 
J-3 15.16 2.07 0.0182 0.0008 57.3 

Negative Moment Region 

West Span 
Seam d A. Pw"'Aslbwd Pv=AvlbwS Pvfvy 

in. in.2 psi 
1- 1 15.52 1.19 0.0102 0.0000 00.0 
1-2 15.89 1.19 0.0100 0.0008 34.1 
1-3 15.89 1.19 0.0100 0.0008 33.9 
J-1 15.50 0.88 0.0076 0.0000 00.0 
J-2 15.88 0.88 0.0074 0.0008 34.0 
J-3 15.75 0.88 0.0074 0.0015 82.0 

East Span 
Seam d A. Pw"'A.Ibwd Pv=Avlbws Pvfvy 

in. ln.2 psi 
1- 1 15.52 1.19 0.0102 0.0000 00.0 
1-2 15.89 1.19 0.0100 0.0008 34.1 
1- 3 15.89 1.19 0.0100 0.0000 00.0 
J-1 15.50 0.88 0.0076 0.0000 00.0 
J-2 15.88 0 .. 88 0.0074 0.0000 00.0 
J-3 15.63 0.88 0.0075 0.0008 57.3 



69 

Table 2 2 Concrete Properties 

Beam Mix. Prop. per yard' Slump Air Temp. f' c * * Age at test 
lbs. in. % F psi days 

I · 1 517:267:1490:1490 31/4 3.3 66 4620 1 1 

I· 2 517:267:1490:1490 31/4 3.8 64 4420 1 1 

I· 3 517:267:1490:1490 31/2 3.5 67 4470 1 3 

J-1 517:267:1490:1490 41/2 4.3 62 4510 1 5 

J-2 517:267:1490:1490 31/4 4.6 56 4490 1 9 

J-3 517:267:1490:1490 21/2 4.0 80 4430 1 2 

• Cement :water : fine aggregate : coarse aggregate 

•• Compressive strength of 12 x 6 in. test cylinders 

Table 2 3 Point Loads and Middle Support Reaction at Failure 

Beam Failure region Load points Total load per span, kips Middle support reaction 
per span West East reaction, kips•• 

1-1 east negative 1 18.79 18.61 24.23 
I· 1 west negative 1 18.29 18.11 23.58 
1·2 east negative 1 30.60 30.55 39.90 
I· 3 east negative 2 21.53 20.55 26.15 
I· 3 west negative 2 27.37 26.54 33.44 
J-1 east positive 1 17.15 16.83 23.20 
J-1 west negative 1 17.81 17.54 24.02 
J-1 west positive 1 20.70 20.56 27.32 
J-1 east negative 1 18.08 17.94 24.60 
J-2 east negative 2 19.35 18.85 23.68 
J-2 west negative 2 28.15 28.22 34.42 
J-3 east negative 2 38.13 37.97 46.92 
J-3 west negative 2 51.49 50.58 61.35 
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Table 2.4 Measured Shear Strength 

Beam V 0 (test} v 0 (test} Failure 
kips psi region 

I- 1 15.3 131 east negative 
I- 1 14.9 128 west negative 
1-2 23.5 197 east negative 
1-3 16.7 140 east negative 
I- 3 21.0 176 west negative 
J - 1 12.0 100 east positive 
J-1 15.0 129 west negative 
J-1 14.5 121 west positive 
J-1 14.9 128 east negative 
J-2 15.5 130 east negative 
J-2 21.6 1 81 west negative 
J-3 24.6 208 east negative 
J-3 31.2 266 west negative 
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Table 3.1 Shear Cracking loads, Vc (kips) 

Posttive Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 12.9 XX 

1-2 17.3 11.5 12.8 
1-3 XX 12.4 XX 

J-1 12.2 11.9 
J-2 14.3 11.0 13.4 
J-3 17.7 17.4 17.7 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 XX 12.1 
1-2 12.8 8.7 12.1 
1-3 XX XX 

J-1 11.4 10.8 
J-2 12.1 12.7 
J-3 17.6 14.7 17.1 

Negative Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 14.3 14.3 
1-2 14.9 11.5 13.9 
1-3 15.1 15.0 15.8 
J-1 12.3 13.0 
J-2 15.5 15.5 13.5 
J-3 15.9 15.3 18.4 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 14.9 12.9 
1-2 13.5 11.5 13.0 
1-3 14.2 13.5 
J-1 12.8 13.8 
J-2 12.9 13.3 
J-3 15.8 14.2 17.8 

- - no stirrups used 
xx method produced no resutts 
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Table 3 2 Shear cracking stresses, v0 (psi) 

Positive Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 106.8 JO( 

1-2 144.5 95.9 107.4 
1-3 XX 103.1 JO( 

J-1 101.5 98.9 
J-2 119.1 91.8 111.9 
J-3 157.5 154.2 157.5 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 XX 100.9 
1-2 107.0 72.6 101.4 
1-3 XX JO( 

J-1 95.0 89.6 
J-2 100.7 106.0 
J-3 155.0 129.1 150,4 

Negative Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 122.5 122.5 
1-2 125.2 96.7 116.7 
1-3 126.5 126.2 132.6 
J-1 105.5 111.5 
J-2 130.5 130.5 113.4 
J-3 134.8 129.4 155.5 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 128.0 110.6 
1-2 113.6 96.7 108.9 
1-3 119.2 113.1 
J-1 110.S 119.0 
J-2 108.4 112.1 
J-3 134.9 121.1 151.5 

- - no stirrups used 
xx method produced no results 
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Iatlla a a Calculated Shear Cracking Stresses, v0 (psi} 

Positive Moment Region 
West Span 

Beam Eq.1.2 Eq. 1.8* Eq.1.7 Eq. 1.10 Eq.1.11 Eq. 1.12* 
1-1 135.9 134.9 121.7 135.1 114.8 123.0 
1-2 133.0 133.2 119.7 133.0 113.0 122.2 
1-3 133.7 119.7 132.9 112.9 .. 
J-1 134.3 120.5 102.7 112.6 94.2 108.2 
J-2 134.0 .. 119.9 133.2 113.2 
J-3 133.1 154.2 133.1 153.1 149.8 184.0 

East Span 

Beam Eq.1.2 Eq. 1.8* Eq.1.7 Eq. 1.10 Eq. 1.11 Eq. 1.12* 
1-1 135.9 135.0 121.7 135.1 114.8 123.6 
1-2 133.0 132.4 119.0 132.2 112.3 121.3 
1-3 133.7 •• 119.7 132.9 112.9 .. 
J-1 134.3 120.8 102.7 112.6 94.2 108.4 
J-2 134.0 .. 119.9 133.2 113.2 .. 
J-3 133.1 152.5 133.1 153.1 149.8 178.5 

Negative Moment Region 
West Span 

Beam Eq.1.2 Eq. 1.8* Eq.1.7 Eq. 1.10 Eq.1.11 Eq.1.12* 
1-1 135.9 136.6 123.7 137.6 117.0 126.4 
1-2 133.0 135.0 119.7 133.0 113.0 123.3 
1-3 133.7 138.6 120.3 133.7 113.7 127.5 
J-1 134.3 123.4 104.8 115.0 96.4 111.8 
J-2 134.0 126.4 103.2 113.1 94.7 114.2 
J-3 133.1 128.9 102.5 112.4 94.1 115.2 

East Span 

Beam Eq.1.2 Eq. 1.8* Eq.1.7 Eq. 1.10 Eq. 1.11 Eq. 1.12* 
1-1 135.9 136.6 123.7 137.6 117.0 126.2 
1-2 133.0 135.1 119.7 133.0 113.0 123.6 
1-3 133.7 137.7 120.3 133.7 113.7 126.4 
J-1 134.3 122.8 104.8 115.0 96.4 111.3 
J-2 134.0 124.9 103.2 113.1 94.7 112.1 
J-3 133.1 128.1 103.2 113.1 94.8 115.3 

Eq. 1.2 Vc = 2ffc ACI 318-89 (3} 
1 

Eq. 1.8 Vc = 59(f'cpw~)o Zsutty (44} 

Eq. 1.7 Vc = {0.8 + 1 OOpw)ffc Rajagopalan and Ferguson 

Eq.1.10 Vc={0.8 + 120pw)ffc ACI-ASCE 426 (6} 

Eq. 1.11 Vc = {0.6 + 110pw)ffc Batchelor and Kwun (14} 
1 

Eq. 1.12 Vc = 10 ( w)3 ffc + m Bazant and Kim (16} 

+ 0.01 c (~f 
• use MNd from crack pattern analysis (except beam 1-1 east, use M/Vd from concrete 

strain} 
• • M!Vd < 2.5 
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Iabl~ M Approximate Shear Span, MN, inches, at Shear Cracking Load 

Positive Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Pattems Strain Strain 

1·1 61.40 XX 

1·2 60.48 61.59 61.25 
1-3 XX 26.95 XX 

J-1 61.73 61.80 
J-2 26.35 26.84 26.78 
J-3 44.47 32.50 44.47 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1·1 XX 61.29 
1·2 61.16 62.75 61.34 
1-3 XX XX 

J-1 61.23 61.42 
J-2 25.57 25.57 
J-3 44.08 34.72 35.06 

Negative Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1·1 58.87 58.87 
1-2 58.93 58.13 58.72 
1-3 54.79 54.79 54.83 
J-1 57.97 58.23 
J-2 53.05 53.05 54.86 
J-3 51.08 52.53 44.99 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1·1 59.15 58.68 
1·2 58.69 58.10 58.55 
1-3 55.88 55.79 
J-1 58.81 59.04 
J-2 55.70 55.58 
J-3 51.47 55.55 45.17 

• - No stirrups used 
xx Methcd produced no resufts 
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Iabla 3.5 Approximation Shear span-to-Depth Ratio, M/(Vd), at Shear Cracking Load 

Positive Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 3.83 XX 
1-2 3.80 3.87 3.85 
1-3 XX 1.68 XX 
J-1 3.86 3.86 
J-2 1.n 1.68 1.67 
J-3 2.96 2.16 2.96 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1·1 XX 3.82 
1-2 3.83 3.93 3.84 
1-3 XX XX 
J-1 3.83 3.84 
J-2 1.60 1.60 
J-3 2.91 2.29 2.31 

Negative Moment Region 

West Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 3.79 3.79 
1-2 3.71 3.66 3.70 
1-3 3.45 3.45 3.45 
J-1 3.74 3.76 
J-2 3.34 3.34 3.45 
J-3 3.24 3.34 2.86 

East Span 
Beam Crack Stirrup Concrete 

Patterns Strain Strain 

1-1 3.81 3.78 
1-2 3.69 3.66 3.68 
1·3 3.52 3.51 
J-1 3.79 3.81 
J-2 3.51 3.50 
J-3 3.29 3.55 2.89 

- - no stirrups used 
xx method produced no resutts 



76 

Table 3 Sa Comparison of test and calculated shear cracking stresses: 
values represent v0 {test)/v0 {eq) where v0 is calculated from crack patterns 

Positive Moment Region 

West Span 

Beam Eq.1.2 

1-1 0.79 
1-2 1.09 
1-3 XX 

J-1 0.76 
J-2 0.89 
J-3 1.18 

Beam Eq.12 

1-1 XX 

1-2 0.80 
1-3 XX 

J-1 0.71 
J-2 0.75 
J-3 1.16 

mean 0.90 
standard deviation 0.19 

coef. of variation, % 20.80 

Eq. 1 .2 Vc = 2f"f; 

Eq. 1.8 Vc = Ss(rcpw~} 
Eq. 1.7 Vc = (0.8 + 100pw)'{f; 

Eq. 1.10 Vc = (0.8 + 120pw)<{f; 

Eq.1.11 Vc =(0.6 + 110pw)<{f; 

Eq.1.8 

0.79 
1.08 

XX 

0.84 .. 
0.88 

Eq. 1.8 

XX 

0.81 
XX 

0.79 

0.87 

0.87 
0.10 
11.88 

1 

Eq. 1.12 Vc = 10 (pw):i <{f; + • (JE;1 
+ o.o1 'V (~)" J 

x x no shear cracking observed 
* * M/Vd < 2.5 

Eq.1.7 

0.88 
1.21 

XX 

0.99 
0.99 
1.18 

East Span 

Eq.1.7 

XX 

0.90 
XX 

0.92 
0.84 
1.16 

1.01 
0.14 
13.95 

Eq. 1.10 Eq. 1.11 Eq. 1.12 

0.79 0.93 0.87 
1.09 1.28 1.18 

XX XX XX 

0.90 1.08 0.94 
0.89 1.05 •• 
1.03 1.05 0.86 

Eq. 1.10 Eq. 1.11 Eq. 1.12 

XX 
0.81 

XX 

0.84 
0.76 
1.01 

0.90 
0.12 
12.91 

XX 

0.95 
XX 

1.01 
0.89 
1.03 

1.03 
0.11 
10.97 

ACI 318-89 (3) 

Zsutty (44) 

XX 

0.88 
XX 

0.88 .. 
0.87 

0.93 
0.12 
12.44 

Rajagopalan and Ferguson 

ACI-ASCE 426 (6) 

Batchelor and Kwun {14) 

Bazant and Kim ( 16) 
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Table 3 6b Comparison of test and calculated shear cracking stresses: 
values represent vc(test)/vc(eq) where v0 is calculated from crack patterns 

Negative Moment Region 

West Span 

Beam Eq.1.2 Eq.1.8 Eq.1.7 Eq.1.10 Eq.1.11 Eq.1.12 

1-1 0.90 0.90 0.99 0.89 1.05 0.97 
1-2 0.94 0.93 1.05 0.94 1.11 1.02 
1-3 0.95 0.91 1.05 0.95 1.11 0.99 
J-1 0.79 0.86 1.01 0.92 1.09 0.94 
J-2 0.97 1.01 1.26 1.15 1.38 1.14 
J·3 1.01 1.05 1.32 1.20 1.43 1.17 

East Span 

Beam Eq.1.2 Eq. 1.8 Eq.1.7 Eq. 1.10 Eq. 1.11 Eq. 1.12 

1-1 0.94 0.94 1.03 0.93 1.09 1.01 
1-2 0.85 0.84 0.95 0.85 1.01 0.92 
1-3 0.89 0.87 0.99 0.89 1.05 0.94 
J-1 0.82 0.90 1.05 0.96 1.15 0.99 
J-2 0.81 0.87 1.05 0.96 1.14 0.97 
J-3 1.01 1.05 1.31 1.19 1.42 1.17 

mean 0.91 0.93 1.09 0.99 1.17 1.02 
standard deviation 0.08 0.07 0.13 0.12 0.15 0.09 

coef. of variation, % 8.38 7.80 11.95 12.37 12.89 8.83 

All beams, both positive and negative moment region 

mean 0.91 
standard deviation 0.13 

coef. of variation, % 14.53 

Eq. 1 .2 Vc = 2Yfc 

Eq. 1.8 Vc = 59(f'cpw~)} 
Eq. 1.7 Vc = (0.8 + 100pw){f;;" 

Eq. 1.10 Vc =(0.8 + 120pw)Yfc 

Eq.1.11 Vc=(0.6 + 110pw)Yfc 

0.90 
0.09 
9.60 

1 

Eq.1.12 Vc= 10 ( w)"3 Yfc +.@ 
+ o.o~ 'V (~t J 

1.05 
0.14 
13.04 

0.95 
0.12 
13.06 

1.11 
0.15 
13.54 

ACI 318-89 (3) 

Zsutty (44) 

0.98 
0.11 
10.90 

Rajagopalan and Ferguson 

ACI-ASCE 426 (6) 

Batchelor and Kwun (14) 

Sazant and Kim (16) 
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Table 3 7a Comparison of test and calculated shear cracking stresses: 
values represent vc(test)lv0 (eq) where v0 is calculated from stirrup strain 

Positive Moment Region 

West Span 

Beam Eq. 1.2 

1-1 
1·2 0.72 
1·3 0.77 
J-1 
J-2 0.69 
J-3 1.16 

Beam Eq. 1.2 

1·1 
1-2 0.55 
1-3 
J-1 
J-2 
J-3 0.97 

mean 0.81 
standard deviation 0.22 

coef. of variation, % 27.03 

Eq. 1.2 Vc = 2'{'f'; 

Eq. 1.8 Vc = 59(fcpw~)} 
Eq. 1.7 Vc = (0.8 + 1 OOpw~ 
Eq. 1.10 Vc = (0.8 + 120pw)'{'f'; 

Eq. 1.11 Vc = (0.6 + 11 Opw)'{'f'; 
1 

Eq. 1.8 

0.72 .. 

0.87 

Eq. 1.8 

0.55 

0.72 

0.72 
0.13 
18.29 

Eq.1.12 Vc= 10 ( w)3 '{'f'; + • ~ 
+ o.o1 ·v (~t J 

no stirrups present 
• • M!Vd < 2.5 

Eq.1.7 

0.80 
0.86 

0.77 
1.16 

East Span 

Eq.1.7 

0.61 

0.97 

0.86 
0.19 
21.79 

Eq. 1.10 Eq. 1.11 Eq. 1.12 

0.72 0.85 0.78 
0.78 0.91 •• 

0.69 0.81 •• 
1.01 1.03 0.70 

Eq. 1.10 Eq. 1.11 Eq. 1.12 

0.55 

0.84 

0.77 
0.15 
20.23 

0.65 

0.86 

0.85 
0.12 
14.84 

ACI 318-89 (3) 

Zsutty (44) 

0.60 

0.72 

0.70 
0.07 
10.69 

Rajagopalan and Ferguson 
ACI-ASCE 426 (6) 

Batchelor and Kwun (14) 

Sazant and Kim (16) 
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Table 3 7b Comparison of test and calculated shear cracking stresses: 
values represent Vc(test)/vc(eq) where Vc is calculated from stirrup strain 

Negative Moment Region 

West Span 

Beam Eq. 1.2 Eq. 1.8 Eq. 1.7 Eq. 1.10 Eq. 1.11 Eq.1.12 

1-1 
1-2 0.73 0.72 0.81 0.73 0.86 0.78 
1-3 0.94 0.91 1.05 0.94 1.11 0.99 
J-1 
J-2 0.97 1.03 1.26 1.15 1.38 1.14 
J-3 0.97 1.00 1.26 1.15 1.38 1.12 

East Span 

Beam Eq.1.2 Eq. 1.8 Eq. 1.7 Eq. 1.10 Eq.1.11 Eq. 1.12 

1-1 
1-2 0.73 0.72 0.81 0.73 0.86 0.78 
1-3 
J-1 
J-2 
J-3 0.91 0.95 1.17 1.07 1.28 1.05 

mean 0.88 0.89 1.06 0.96 1.15 0.98 
standard deviation 0.11 0.14 0.21 0.20 0.24 0.16 

coef. of variation, % 13.09 15.39 19.66 20.30 21.12 16.52 

All beams, both positive and negative moment region 

mean 0.84 
standard deviation 0.17 

coat. of variation,% 20.18 

Eq. 1.2 Vc = 2ffi 
1 

Eq. 1.8 Vc = 59(fcpw~)3 
Eq. 1.7 Vc = {0.8 + 1 OOpw)ffi 

Eq. 1.10 Vc = {0.8 + 120pw)ffc 

Eq. 1.11 Vc = (0.6 + 11 Opw)ffi 

0.82 
0.16 
18.95 

1 
Eq. 1.12 Vc = 10 ( w)3 ffc + • {5l 

1 + o.o1 -v (~)' J 
no stirrups present 

0.96 
0.22 

22.44 

0.86 
0.20 

22.80 

1.00 
0.24 
23.94 

0.87 
0.19 

22.13 

ACI 318-89 (3) 

Zsutty (44) 

Rajagopalan and Ferguson 
ACI-ASCE 426 (6) 

Batchelor and Kwun (14) 

Bazant and Kim ( 16) 
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Table 3 8a Comparison of test and calculated shear cracking stresses: 
values represent vc(test)lvc(eq) where v0 is calculated from concrete strain 

Positive Moment Region 

West Span 

Beam Eq.1.2 

1·1 XX 

1·2 0.81 
1·3 XX 
J-1 0.74 
J-2 0.84 
J-3 1.18 

Beam Eq.1.2 

1·1 0.74 
1·2 0.76 
1·3 XX 

J-1 0.67 
J·2 0.79 
J-3 1.13 

mean 0.85 
standard deviation 0.18 

coef. of variation, % 21.07 

Eq. 1.2 Vc = 2'/f; 

Eq. 1.8 Vc = 59(fcPw~)} 
Eq. 1.7 Vc = (0.8 + 1 OOpw)'{f; 

Eq. i.1 0 Vc = (0.8 + 120pw)'{f; 

Eq.1.11 Vc=(0.6 + 110pw)ffc 

Eq.1.8 

XX 

0.81 
XX 

0.82 .. 
0.88 

Eq.1.8 

0.75 
0.77 

XX 

0.74 .. 
0.84 

0.80 
0.05 
6.34 

1 

Eq. 1.12 Vc = 10 ( w)3 '/f; + • @ 
1 + o.o~ ·v (~J" J 

xx no shear cracking observed 
• • M/Vd < 2.5 

Eq. 1.7 

XX 

0.90 
XX 

0.96 
0.93 
1.18 

East Span 

Eq.1.7 

0.83 
0.85 

XX 

0.87 
0.88 
1.13 

0.95 
0.12 
13.13 

Eq.1.10 Eq. 1.11 Eq. 1.12 

XX XX XX 

0.81 0.95 0.88 
XX XX XX 

0.88 1.05 0.91 
0.84 0.99 •• 
1.03 1.05 0.86 

Eq.1.10 Eq.1.11 Eq. 1.12 

0.75 
0.77 

XX 

0.80 
0.80 
0.98 

0.85 
0.10 
11.25 

0.88 
0.90 

XX 

0.95 
0.94 
1.00 

0.97 
0.06 
6.19 

ACI 318-89 (3) 

Zsutty (44) 

0.82 
0.84 

XX 

0.83 .. 
0.84 

0.85 
0.03 
3.69 

Rajagopalan and Ferguson 

ACI-ASCE 426 (6) 

Batchelor and Kwun (14) 

Bazant and Kim (16) 
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Table 3 .8b Comparison of test and calculated shear cracKmg stresses: 
values represent vc(test)lv0 {eq) where vc is calculated from concrete strain 

Negative Moment Region 

West Span 

Beam Eq. 1.2 Eq. 1.8 Eq. 1.7 Eq. 1.10 Eq. 1.11 Eq. 1.12 

1-1 0.90 0.90 0.99 0.89 1.05 0.97 
1-2 0.88 0.86 0.98 0.88 1.03 0.95 
1-3 0.99 0.96 1.10 0.99 1.17 1.04 
J-1 0.83 0.90 1.06 0.97 1.16 1.00 
J-2 0.85 0.90 1.10 1.00 1.20 0.99 
J-3 1.17 1.21 1.52 1.38 1.65 1.35 

East Span 

Beam Eq.1.2 Eq.1.8 Eq.1.7 Eq. 1.10 Eq. 1.11 Eq. 1.12 

1-1 0.81 0.81 0.89 0.80 0.94 0.88 
1-2 .0.82 0.81 0.91 0.82 0.96 0.88 
1-3 0.85 0.82 0.94 0.85 1.00 0.89 
J-1 0.89 0.97 1.14 1.04 1.23 1.07 
J-2 0.84 0.90 1.09 0.99 1.18 1.00 
J-3 1.14 1.18 1.47 1.34 1.60 1.31 

mean 0.91 0.94 1.10 1.00 1.18 1.03 
standard deviation 0.12 0.13 0.20 0.19 0.23 0.15 

coef. of variation, % 13.38 14.15 18.38 18.76 19.42 14.97 

All beams. both positive and negative moment region 

mean 0.89 
standard deviation 0.15 

coef. of variation, % 16.77 

Eq. 1 .2 Vc = 2f'f:. 
1 

Eq. 1.8 Vc = 59(f'epw~)3 
Eq.1.7 Vc=(0.8 + 100pw)f'f;, 
Eq.1.10 Vc=(0.8 + 120pw)f'f:. 
Eq.1.11 Vc={0.6 + 110pw)f'f:. 

1 

0.89 
0.13 
14.25 

Eq.1.12 Vc= 10 { w)J f'f:. +.@ 
+ o.o~ ·v (~t J 

1.03 
0.19 
17.97 

0.93 1.09 0.96 
0.17 0.21 0.15 
18.00 18.82 15.45 

ACI 318-89 {3) 

Zsutty (44) 

Rajagopalan and Ferguson 
ACI-ASCE 426 (6) 
Batchelor and Kwun (14) 

Bazan! and Kim {16) 
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Table 3.9 Stirrup effectiveness, v0 -v0 (psi) 

Current Study 

Beam Vn ~ Vc (psQ Pvfvy (psi) Pw 

1-1 3.0 0.0 0.0102 
1-1 5.5 0.0 0.0102 
1-2 83.4 34.1 0.0100 
1-3 20.8 0.0 0.0100 
1-3 49.5 33.9 0.0100 

J-1· 5.0 0.0 0.0073 
J-1 23.5 0.0 0.0076 
J-1· 19.5 0.0 0.0073 
J-1 17.5 0.0 0.0076 
J-2 21.6 0.0 0.0074 
J-2 50.5 34.0 0.0074 
J-3 73.1 57.3 0.0075 
J-3 131.2 82.0 0.0074 

Results of Rodrigues and Darwin (38,39.40) and Palaskas, Attiogbe, and Darwin (11,34,35) 

Beam Vn • Vc (psi} Pvfvy (psQ Pw 

A-o· 13.9 0.0 0.0066 
A-25' 55.1 31.8 0.0066 
A2sa• 67.5 31.8 0.0067 
A-so· 103.0 74.0 0.0066 
A-Soa• 98.3 75.0 0.0066 
A-75• 164.0 97.0 0.0066 
s-o· 47.1 0.0 0.0049 

9-25• 49.1 32.4 0.0049 
B-5o· 110,4 76.2 0.0050 
c-o· 18.8 0.0 0.0094 

C-2s• 52.0 32.4 0.0095 
e-so· 145.0 76.2 0.0094 
C-75. 172.0 103.0 0.0093 

D-0 18.4 0.0 0.0068 
D-20 37.0 21.6 0.0071 
D-40 34.7 37.0 0.0070 

D-80(1}* 134.6 82.9 0.0069 
D-80(2} 99.9 73.1 0.0070 

E-o· 19.0 0.0 0.0047 
E-20 34.6 22.2 0.0047 
E-4o· 54.7 36.8 0.0048 
E-80 68.6 73.5 0.0048 

• Positive Moment Region Failure 
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Table 3.10 Horizontal Crack Projection and Stirrup Contribution to Shear Strength at Failure 

.. 

Beam Location 

1-2 east 
1-3 west 
J-2 west 
J-3 east 
J-3 west 

0-80(2)* nta 
0-40* nla 
0-20* nla 
E-80* nta 
E-20* nta 

Beam Location •• 
A-25* nta 

A-25a* n/a 
A-so· nta 

A-Sea• n/a 
A-75* nta 
8-25* nta 
B-so· nta 
C-25* nla 
c-so· n/a 
C-75* nta 

0-80(1)* nta 
E-40* nta 

Negative Moment Region 

# of stirrups Horizontal Vs;=nAvfvylbwd 
intercepted Projection (psi) 

4 1.6d 60.1 
3 1.0d 44.8 
3 1.5d 45.0 
3 1.5d 77.0 
3 1.3d 109.3 
2 1.1d 66.8 
1 0.9d 16.8 
2 1.1d 20.0 
2 0.9d 68.3 
2 1.4d 20.2 

Positive Moment Region 
# of stirrups Horizontal Vs;=nAvfvyibwd 

Intercepted Projection (psi) 
3 1.7d 43.4 
3 2.2d 43.8 
3 1.8d 100.6 
3 2.0d 101.7 
3 1.8d 131.1 
2 1.8d 29.2 
3 1.5d 104 
3 1.7d 44.4 
3 1.7d 103.4 
3 1.7d 139 
3 1.4d 116 
3 1.8d 49.7 

Pvfvy (psi) 
34.1 
33.9 
34.0 
57.3 
82.0 
73.1 
37.0 
21.6 
73.5 
22.2 

Pvfvy (psi) 
31.8 
31.8 
74 
75 
97 

32.4 
76.2 
32.4 
76.2 
103 
82.9 
36.8 

Test results of Rodrigues and Darwin (38,39,40) and Palaskas et a!. (11 ,34,35) 
In order of failure 
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Table 3.11 Comparison of Test and Calculated Nominal Shear Stresses from Current Study and 
Results of Rodrigues and Darwin (38,39,40) 

Negative Moment Region Failures 

Beam Span Vn (test) Vn (ACI) .. Vn (test) 
psi psi 

1-1 east 131 136 
1-1 west 128 136 
1-2 east 197 167 
1-3 east 140 134 
1-3 west 176 168 
J-1 west 129 134 
J-1 east 128 134 
J-2 east 130 134 
J-2 west 181 168 
J-3 east 208 190 
J-3 west 266 215 
D-o· nla 138 135 
D-2o· nla 148 153 
D-40• nla 148 167 

D-80(2)" nla 200 201 
E-20• nla 127 152 
E-so· nla 152 200 

Mean (all beams from the current study) 
Coefficient of Variation 

Mean (beams with stirrups from the current study) 
Coefficient of Variation 

Mean (all beams from Rodrigues and Darwin) 
Coefficient of Variation 

Mean (beams with stirrups from Rodrigues and Darwin) 
Coefficient of Variation 

Mean (all beams from combined results) 
Coefficient of Variation 

Mean (beams with stirrups from combined resutts) 
Coefficient of Variation 

• Test Results of Rodrigues and Darwin (38,39,40) 
** V n = pvfvy + 2f'f; 

Vn (ACI) 

0.96 
0.94 
1.18 
1.04 
1.05 
0.96 
0.96 
0.97 
1.08 
1.09 
1.24 
1.02 
0.97 
0.87 
1.00 
0.84 
0.76 

1.04 
9.5% 
1.13 

7.0% 

0.91 
8.4% 
0.89 

11.0% 

1.00 
11.7% 

1.01 
15.2% 
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Table 312 Sample Beam Response (using MCFT response procedure on beam 1-2) 

EJ a E2 Ex Et v M 
X 10,000 degrees X 100,000 X 10,000 X 10,000 kips k-in. 

5.00 56.9 -2.72 3.43 1.30 13.4 699 
5.50 55.6 -2.97 3.65 1.55 13.9 723 
6.00 54.5 -3.21 3.87 1.81 14.3 745 
6.50 53.4 -3.44 4.07 2.09 14.7 766 
7.00 52.4 -3.68 4.26 2.37 15.1 787 
7.50 51.6 -3.91 4.45 2.66 15.5 805 
8.00 50.7 -4.13 4.62 2.96 15.8 823 
8.50 49.9 -4.36 4.79 3.27 16.1 840 
9.00 49.2 -4.57 4.96 3.58 16.5 856 
9.50 48.5 -4.80 5.11 3.91 16.8 572 
10.00 47.8 -5.01 5.26 4.24 17.1 887 
10.50 47.2 -5.22 5.41 4.57 17.3 902 
11.00 46.6 -5.42 5.56 4.90 17.6 915 
11.50 46.1 -5.63 5.70 5.24 17.9 929 
12.00 45.6 -5.86 5.83 5.59 18.1 943 
12.50 45.1 -6.11 5.96 5.93 18.4 955 
13.00 44.6 -6.36 6.09 6.28 18.6 968 
13.50 44.2 -6.61 6.21 6.83 18.8 980 
14.00 43.8 -6.86 6.34 6.98 19.1 991 
14.50 43.4 -7.12 6.46 7.33 19.3 1003 
15.00 43.0 -7.38 6.57 7.69 19.5 1015 
15.50 42.6 -7.64 6.69 8.05 19.7 1026 
16.00 42.3 -7.89 6.81 8.41 19.9 1036 
16.50 41.9 -8.16 6.91 8.77 20.1 1048 
17.00 41.6 -8.42 7.03 9.13 20.3 1058 
17.50 41.3 -8.68 7.14 9.50 20.5 1068 
18.00 41.0 -8.96 7.24 9.87 20.8 1079 
18.50 40.7 -9.22 7.35 10.23 20.9 1089 
19.00 40.1 -9.41 7.34 10.72 20.7 1077 
19.50 39.5 -9.61 7.32 11.22 20.5 1065 
20.00 39.0 -9.79 7.31 11.71 20.3 1053 
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Table 3 13 Partial Design Tables from Collins and Mitchell (22) 

Beams wfth Stirrups 

v/f'c 
Longftudinal Strain, ex x 1000 

1.00 1.50 2.00 2.50 3.00 
9 36 41 43 45 46 

0.050 
~ 2.33 1.95 1.72 1.54 1.39 
9 36 40 42 43 43 

O.Q75 
~ 2.15 1.90 1.65 1.44 1.25 

Beams wfthout Stirrups 

Longitudinal Strain, exx 1000 
d, inches 1.00 1.50 2.00 2.50 3.00 

9 45 46 50 52 53 
15.0 

f3 1.99 1.67 1.45 1.30 1.17 
9 51 54 57 59 61 

25.0 
f3 1.70 1.39 1.19 1.05 0.94 
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Table 3 14 Results Obtained from MCFT Response Procedure 

k, from Step 3 equal to 0.8 for shear reinforcement 

Beam Span 9 Hor. Proj. Vn(MCFT) Vn(MCFT) v.(test) 
Vn(MCFT) 

1-1 east 50 0.84d 12.5 107 1.22 
1-1 west 50 0.84d 12.5 107 1.20 
1-2 east •• 40.7 1.16d 21.1 177 1.11 
1·3 east 50.1 0.84d 12.8 107 1.31 
1-3 west •• 40.4 1.17d 21.7 182 0.97 
J-1· east 57.6 0.63d 10.3 86 1.16 
J-1 west 54.1 0.72d 10.8 93 1.39 
J-1· west 57.6 0.63d 10.3 86 1.41 
J-1 east 54.1 0.72d 10.8 93 1.38 
J-2 east 54.1 0.72d 11.2 94 1.38 
J-2 west •• 43.4 1.06d 19.2 161 1.12 
J-3 east ... 41.1 1.13d 20.3 173 1.20 
J-3 west** 44.2 1.03d 21.3 180 1.48 

v .(test) Vn(test) 
Vn(MCFT) Vn(MCFT) 

Mean (!-series beams, Pw=1.00%): 1.16 Mean (all beams): 1.26 
Coefficient of Variation: 11.1% Coefficient of Variation: 11.8% 

Mean (J-series beams, Pw=0.75%): 1.32 Mean (beams without stirrups): 1.31 
Coefficient of Variation: 10.2% Coefficient of Variation: 7.6% 

Mean (beams wtth stirrups): 1.18 
Coefficient of Variation: 16.1% 

k, from Step 3 equal to 0.4 for shear reinforcement 

Beam Span 9 

1-2 east- 39 .. 3 
1-3 west •• 38.9 
J-2 west- 43.2 
J-3 east- 41.3 
J-3 west•• 45 

• · positive moment region failure 
- beams containing stirrups 

Hor. Proj. 

1.22d 
1.24d 
1.06d 
1.14d 
1.00d 

Vn(MCFI) Vn(MCFT) v.(test) 
Vn(MCFT) 

22.2 186 1.06 
22.8 191 0.92 
19.3 162 1.12 
20.3 173 1.20 
21.4 181 1.47 

Vn(test) 
v0 (MCFT) 

Mean (beams with stirrups): 1.15 
Coefficient of Variation: 17.7% 
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Table 3.15 Results Obtained from MCFT Design Procedure 

Beam Span a Her. Proj. 
1-1 east 48 0.90d 
1-1 west 48 0.90d 
1-2 east** 43 1.07d 
1-3 east 49 0.87d 
1-3 west- 43 1.07d 
J-1· east 50 0.84d 
J-1 west 50 0.84d 
J-1· west 50 0.84d 
J-1 east 50 0.84d 
J-2 east 50 0.84d 
J-2 west .. 45 1.00d 
J-3 east .. 45 1.00d 
J-3 west •• 45 1.00d 

v ,(test) 

v,(MCFT) 

Mean (!-series beams, Pw=1 .00%): 1.28 
Coefficient of Variation: 6.8% 

Mean (J-series beams, Pw=0.75%): 1.34 
Coefficient of Variation: 11 .0% 

• · positive moment region failure 
- beams containing stirrups 

v,(test) 

Vn(MCFT) Vn(MCFT) Vn(MCFT) 
12.3 '106 1.24 
12.3 106 1.21 
16.6 139 1.42 
12.6 106 1.32 
17.0 143 1.23 
11.5 96 1.04 

11 '1 95 1.36 
11.5 96 1.26 

11 '1 95 1.35 
11.5 97 1.34 
15.6 131 1.38 
17.5 149 1.40 
20.2 171 1.56 

v,(test) 

v,(MCFT) 

Mean (all beams): 1.32 
Coefficient of Variation: 9.5% 

Mean (beams wfthout stirrups): 1.27 
Coefficient of Variation: 8.4% 

Mean (beams with stirrups): 1.40 
Coefficient of Variation: 8.4% 
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Table 3 16 Comparison of Test and Calculated Nominal Shear Stress from Current Study 

Beam Span 

1-1 east 
1-1 west 
1-2 east 
1-3 east 
1-3 west 
J-1* east 
J-1 west 
J-1* west 
J-1 east 
J-2 east 
J-2 west 
J-3 east 
J-3 west 

positive moment region failure 

Vn = pvfvy + 2ifc 

Vn (test) Vn (ACI) .. Vn (test) 
psi psi Vn (ACI) 

131 136 0.96 
128 136 0.94 
197 167 1.18 
140 134 1.04 
176 168 1.05 
100 134 0.75 
129 134 0.96 
121 134 0.90 
128 134 0.96 
130 134 0.97 
181 168 1.08 
208 190 1.09 
266 215 1.24 

Mean (all beams) 1.01 
Coefficient of Variation 12.4% 

Mean (beams wnhout stirrups) 0.94 
Coefficient of Variation 9.0% 

Mean (beams wfth stirrups) 1.13 
Coefficient of Variation 7.0% 
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APPENDIX A 

NOTATION 

Ac = area of concrete cross-section 

A, = area of flexural reinforcement 

Av = area of web reinforcement 

Ax = area of longitudinal (flexural) reinforcement 

a = shear-span, distance from maximum moment section to zero moment section, 
or height of equivalent compressive stress block on concrete cross-section 

bw = web width of I -beam 

C = compression force on concrete cross-section 

c = distance from compression face to neutral axis of the cross-section 

Cv = horizontal distance from center of the web to inside edge of the stirrup 

Cx = vertical distance from neutral axis of the uncracked section to inside edge of the tension 
steel 

d = distance from extreme compression fiber to centroid of flexural reinforcement 

.da = diameter of maximum size aggregate 

~ = diameter of transverse reinforcement (stirrups) 

dbx = diameter of longitudinal reinforcing bars 

Ec = modulus of elasticity of concrete 

E, = modulus of elasticity of reinforcement 

f 1 = average principal tensile stress in concrete 

f2 = principal compressive stress in concrete 

fc = compressive stress in concrete outside of the area bwid 

fer = cracking strength of concrete 
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NOTATION (continued) 

f' c = compressive strength of concrete measured on 6 x 12 in. cylinders 

fv = tensile stress in web reinforcement 

fvy = yield stress of web reinforcement 

fx = stress applied in x-direction 

fy = stress applied in y-direction, or 
yield stress of flexural reinforcement 

j d = flexural lever arm 

M = applied moment on concrete cross-section 

Mu = factored bending moment at section 

N = axial tensile force on concrete cross-section 

r = coefficient of variation, or 
ratio of moment to shear, MIV 

s = spacing of transverse reinforcement 

Sx = horizontal clear space between longitudinal bars 

Smv= average spacing of cracks perpendicular to the transverse reinforcement 

Smx= average spacing of cracks perpendicular to the longitudinal reinforcement 

Sme = average spacing of cracks inclined at e to the longitudinal reinforcement 

T = tensile force on concrete cross-section 

V = shear force 

Vc = shear strength provided by tensile stresses in concrete 

Vn = nominal shear strength (ultimate strength) 

Vc = nominal shear stress carried by concrete, Vcfbwd 

v cl = shear stress on crack surfaces 
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NOTATION (continued) 

Vn = nominal shear stress, V0/bwd 

Vs = nominal stirrup stress 

v si = shear stress carried by stirrup alone 

w = crack width 

x = distance from point where ex is measured to neutral axis 

e1 = principal tensile strain in concrete 

e2 = principal compressive strain in concrete 

eo = concrete strain at f'c 

e•c = concrete strain at f'c 

Ecr = strain in concrete at cracking 

ect = strain at extreme compression fiber of concrete cross-section 

es = strain in flexural reinforcement 

. et = strain in web reinforcement 

ex = longitudinal strain 

ey = transverse strain 

'Yx y= shear strain relative to x, y axes 

e = angle of inclination of principal compressive stresses in concrete, measured with 
respect to longitudinal axis 

Pv = ratio of web reinforcement, Avlbws 

Px = ratio of reinforcement area to concrete area 

Pw = ratio of flexural reinforcement, Asfbw d 

<1> = strength reduction factor 




