STEEL AND COMPOSITE BEAMS

WITH

WEB OPENINGS

WARREN K. LUCAS

DAVID DARWIN

A Report on Research Sponsored by

THE AMERICAN IRON AND STEEL INSTITUTE

The University of Kansas

Lawrence, Kansas

June 1990

THE STREET

Landmanne Namer-

The largest strain was

of rectange of the state of the second state o

The second data

115.631

WEB OPENINGS

ABSTRACT

Three design methods, originally developed by Donahey and Darwin (1986), for determining the maximum shear capacity of composite beams with unreinforced web openings are extended to include steel and composite beams with or without reinforcement at the opening. The three design methods incorporate simplifying assumptions that permit closed-form solutions for maximum shear capacity. The first method assumes that the neutral axes for secondary bending lie in the flanges of the top and bottom tees and defines the interaction of shear and normal stresses by a linear approximation of the von Mises yield function. The second method ignores the contribution of the flanges to secondary bending moments and employs the von Mises yield function to define the interaction of shear and normal stresses. The third method ignores the contribution of the flanges to secondary bending moments and defines the interaction between shear and normal stresses with a linear approximation of the von Mises yield function. Simplified design expressions for the maximum moment capacity of steel and composite beams with web openings are presented. Six refinements of the design methods are investigated to determine their significance in predicting member strengths. Simplified design expressions developed by Darwin (1990) for determining the maximum moment capacity of steel and composite beams at web openings are summarized. The accuracy and ease of application of the design methods presented in this report (Methods I, II, and III) and applicable procedures proposed by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984), and Redwood and Cho (1986) are compared with experimental results of fifty steel beams and thirty-five composite beams. Resistance factors are calculated for use in LRFD of structural steel buildings. The simplest of the design methods

presented in this report, coupled with moment-shear interaction procedures proposed by Donahey and Darwin (1986), provides excellent agreement with test results and a superior approach in terms of accuracy and ease of application. Resistance factors of 0.90 and 0.85, applied to both shear and bending, are suitable for steel and composite beams, respectively.

ACKNOWLEDGEMENTS

This report is based on research performed by Warren K. Lucas in partial fulfillment of requirements for the M.S.C.E. degree. The research was supported by the American Iron and Steel Institute and the University of Kansas Center for Research, Inc. Structural Engineering and Materials Laboratory. Numerical calculations were performed on the HARRIS 1200 computer at the University of Kansas Computer Aided Engineering Laboratory and microcomputer and VAX computing resources owned by Black & Veatch, Kansas City, Missouri.

TABLE OF CONTENTS

ABSTRACT				
ACKNOWLEDGEMENTS iv				
SEC	CTIO	N 1.0 INTRODUCTION	1	
SEC	CTIO	N 2.0 STRENGTH DESIGN PROCEDURES		
	2.1	Overview of Design Procedures	3	
	2.2	Interaction Curve	4	
	2.3	Forces at the Opening	5	
	2.4	Shear Capacity Equations	6	
	2.5	Moment Capacity Equations 2	2	
	2.6	Redwood Methods 2	9	
SEC	CTIO	N 3.0 ANALYSIS AND RESULTS		
	3.1	Introduction	1	
	3.2	Proportioning and Detailing Guidelines 3	2	
	3.3	Resistance Factor Determination	3	
	3.4	Effect of Varying λ 3	4	
	3.5	Effect of Reducing Tee Depth for Reinforcement	6	
	3.6	Effect of Limiting P_{ch} by the Net Top Tee Steel	17	
	3.7	Effect of Limiting P, by Weld Strength 3	8	
	3.8	Effect of Flanges	8	
	3.9	Effect of Limiting M_m by M_p	9	
	3.10	Redwood Design Methods	19	
	3.11	Comparison of Design Methods with Test Results 4	1	

TABLE OF CONTENTS (continued)

SECTION 4.0 SUMMARY AND CONCLUSIONS

4.1 Summa	ry 44
4.2 Conclus	sions
REFERENCES	
TABLES	
FIGURES	
APPENDIX A	DEFINITIONS AND NOTATION 129
APPENDIX B	SHEAR CAPACITY EXPRESSIONS FOR
113	COMPARISON WITH TEST DATA 136
APPENDIX C	DERIVATION AND CALCULATION OF VALUES FOR
	THEORETICAL COMPARISON OF METHODS I, II,
	AND III
APPENDIX D	GUIDELINES FOR PROPORTIONING AND
	DETAILING BEAMS WITH WEB OPENINGS 142
APPENDIX E	SUMMARY OF BEAMS NOT MEETING DESIGN
	LIMITATIONS 153
APPENDIX F	DERIVATION OF $P_{c(min)}$ FOR COMPOSITE BEAM
	SIMPLIFIED MOMENT EQUATION 171
APPENDIX G	STEEL AND COMPOSITE BEAM RESULTS FOR
	METHODS I AND III WITH $λ = 1.207$

vi

LIST OF TABLES

Table	Description	Page
3.0	References Corresponding to Beam Designations	. 53
3.1	Material and Section Properties for Steel Beams	. 54
3.2	Material and Section Properties for Composite Beams	. 56
3.3	Design Limitation Summary for Steel Beams	. 60
3.4	Design Limitation Summary for Composite Beams	. 65
3.5	Steel Beam Shear Capacity Summary: Method I, $\lambda = 1.414$. 68
3.6	Composite Beam Shear Capacity Summary: Method I, $\lambda = 1.414$. 69
3.7	Steel Beam Shear Capacity Summary: Method II	. 70
3.8	Composite Beam Shear Capacity Summary: Method II	. 71
3.9	Steel Beam Shear Capacity Summary: Method III, λ = 1.414	. 72
3.10	Composite Beam Shear Capacity Summary: Method III, λ = 1.414	. 73
3.11	Steel Beam Shear Capacity Summary:	
	Redwood and Shrivastava (1980)	. 74
3.12	Composite Beam Shear Capacity Summary:	
	Redwood and Poumbouras (1984)	. 76
3.13	Steel Beam Capacity Summary: Method I, $\lambda = 1.414$. 77
3.14	Composite Beam Capacity Summary: Method I, $\lambda = 1.414$. 79
3.15	Steel Beam Capacity Summary: Method II	. 81
3.16	Composite Beam Capacity Summary: Method II	. 83
3.17	Steel Beam Capacity Summary: Method III, $\lambda = 1.414$. 85
3.18	Composite Beam Capacity Summary: Method III, $\lambda = 1.414$. 87
3.19	Steel Beam Capacity Summary: Redwood and Shrivastava (1980)	. 89

viii

LIST OF TABLES (continued)

Table	Description Page
3.20	Composite Beam Capacity Summary: Redwood et al. (1984) 91
3.21	Analysis Summary, $\lambda = 1.414$ (Methods I and II)
3.22	Effect of Reducing the Tee Depth in Proportion to the Reinforcement
	Present, Method III, $\lambda = 1.414$
3.23	Effect of Limiting P_{ch} by the Net Top Tee Steel;
	Method III, $\lambda = 1.414$
3.24	Effect of Restricting Normal Force in the Reinforcement by the
	Weld Strength
3.25	Effect of Flanges, Method I versus Method III, $\lambda = 1.414$
3.26	Effect of Limiting the Maximum Moment Capacity, M_m , to Plastic Moment Capacity,
	M_p , Method III, $\lambda = 1.414$
E.1	Material and Section Properties for Excluded Steel Beams 155
E.2	Design Limitation Summary for Excluded Steel Beams 156
E.3	Excluded Beam Capacity Summary: Method I, $\lambda = 1.414$
E.4	Excluded Beam Capacity Summary: Method II
E.5	Excluded Beam Capacity Summary: Method III, $\lambda = 1.414$
E.6	Excluded Beam Capacity Summary: Redwood and Shrivastava (1980) 164
G.1	Steel Beam Shear Capacity Summary: Method I, $\lambda = 1.207$ 176
G.2	Composite Beam Shear Capacity Summary: Method I, $\lambda = 1.207$ 177
G.3	Steel Beam Shear Capacity Summary: Method III, $\lambda = 1.207$ 178
G.4	Composite Beam Shear Capacity Summary: Method III, $\lambda = 1.207$ 179
G.5	Steel Beam Capacity Summary, Method I, $\lambda = 1.207$

LIST OF TABLES (continued)

Table	Description	Page
G.6	Steel Beam Capacity Summary, Method III, $\lambda = 1.207$	182
G.7	Composite Beam Capacity Summary, Method I, $\lambda = 1.207$	184
G.8	Composite Beam Capacity Summary, Method III, $\lambda = 1.207$	186
G.9	Analysis Summary, $\lambda = 1.207$ (Methods I and III)	188

LIST OF FIGURES

Figure	Description	Page
2.1	Opening Configurations for Steel Beams;	
	(a) Opening Configuration for an Unreinforced Steel Beam	100
	(b) Opening Configuration for a Reinforced Steel Beam	100
2.2	Opening configurations for Composite Beams;	
	(a) Opening Configuration for an Unreinforced Composite Beam	
	with a Solid Slab	101
	(b) Opening Configuration for an Unreinforced Composite Beam	
	with Transverse Ribs	101
	(c) Opening Configuration for a Reinforced Composite Beam	
	with Longitudinal Ribs	102
2.3	Cubic Moment-Shear Interaction (Darwin and Donahey 1988)	103
2.4	Forces Acting at a Web Opening (Darwin 1990)	104
2.5	Normal Forces in a Composite Opening	105
2.6	Yield Functions for Combined Shear and Normal Stress	105
2.7	Stress Distributions for Design Method I (Darwin 1990)	106
2.8	Stress Distributions for Design Methods II and III (Darwin 1990)	106
2.9	Comparison of Yield Functions Considering Practical Restraints	107
2.10	Difference between Methods II and III versus a_0/s_1	107
2.11	Ratio of Methods II and III versus a_0/s_1	108
2.12	Comparison of Methods I and III with and without adjustment	
	in Tee Depth	108

Figure	Description	Page
2.13	Steel section in pure bending	
	(a) Unreinforced Steel Beam in Pure Bending	109
	(b) Reinforced Steel Beam in Pure Bending	
	with Neutral Axis in Reinforcement	109
	(c) Reinforced Steel Beam in Pure Bending	
	with Neutral Axis in Web	109
2.14	Composite section in pure bending	
	(a) Composite Beam in Pure Bending with	
	Neutral Axis at or above Steel Flange	110
	(b) Composite Beam in Pure Bending with	
	Neutral Axis in the Steel Flange	110
	(c) Composite Beam in Pure Bending with	
	Neutral Axis in Web	110
3.0	Legend for Moment - Shear Curves for Figs. 3.1 - 3.85	111
3.1	Moment - Shear Interaction Curves for Test B-1	112
3.2	Moment - Shear Interaction Curves for Test B-2	112
3.3	Moment - Shear Interaction Curves for Test B-3	112
3.4	Moment - Shear Interaction Curves for Test B-4	112
3.5	Moment - Shear Interaction Curves for Test CSK-1	112
3.6	Moment - Shear Interaction Curves for Test CR-6A	112
3.7	Moment - Shear Interaction Curves for Test DO-1	112
3.8	Moment - Shear Interaction Curves for Test DO-2	112

Figure	Description	Page
3.9	Moment - Shear Interaction Curves for Test DO-3	113
3.10	Moment - Shear Interaction Curves for Test DO-4	113
3.11	Moment - Shear Interaction Curves for Test DO-5	113
3.12	Moment - Shear Interaction Curves for Test RBD-R1	113
3.13	Moment - Shear Interaction Curves for Test RBD-R2	113
3.14	Moment - Shear Interaction Curves for Test RM-2F	113
3.15	Moment - Shear Interaction Curves for Test RM-4F	113
3.16	Moment - Shear Interaction Curves for Test RM-4H	113
3.17	Moment - Shear Interaction Curves for Test RM-11H	114
3.18	Moment - Shear Interaction Curves for Test RM-21H	114
3.19	Moment - Shear Interaction Curves for Test CL-4B	114
3.20	Moment - Shear Interaction Curves for Test CS-1	114
3.21	Moment - Shear Interaction Curves for Test CS-2	114
3.22	Moment - Shear Interaction Curves for Test CS-3	114
3.23	Moment - Shear Interaction Curves for Test CSK-2	. 114
3.24	Moment - Shear Interaction Curves for Test CSK-5	. 114
3.25	Moment - Shear Interaction Curves for Test CSK-6	. 115
3.26	Moment - Shear Interaction Curves for Test CSK-7	115
3.27	Moment - Shear Interaction Curves for Test CR-3A	. 115
3.28	Moment - Shear Interaction Curves for Test CR-3B	. 115
3.29	Moment - Shear Interaction Curves for Test CR-4A	. 115
3.30	Moment - Shear Interaction Curves for Test CR-4B	. 115

Figure	Description	Page
3.31	Moment - Shear Interaction Curves for Test CR-5A	115
3.32	Moment - Shear Interaction Curves for Test CR-1A	115
3.33	Moment - Shear Interaction Curves for Test CR-2A	116
3.34	Moment - Shear Interaction Curves for Test CR-2B	116
3.35	Moment - Shear Interaction Curves for Test CR-2C	116
3.36	Moment - Shear Interaction Curves for Test CR-2D	116
3.37	Moment - Shear Interaction Curves for Test CR-7B	116
3.38	Moment - Shear Interaction Curves for Test CR-7D	116
3.39	Moment - Shear Interaction Curves for Test RL-5	116
3.40	Moment - Shear Interaction Curves for Test RL-6	116
3.41	Moment - Shear Interaction Curves for Test RBD-C1	117
3.42	Moment - Shear Interaction Curves for Test RM-1A	117
3.43	Moment - Shear Interaction Curves for Test RM-2A	117
3.44	Moment - Shear Interaction Curves for Test RM-2C	117
3.45	Moment - Shear Interaction Curves for Test RM-3A	117
3.46	Moment - Shear Interaction Curves for Test RM-4A	117
3.47	Moment - Shear Interaction Curves for Test RM-4C	117
3.48	Moment - Shear Interaction Curves for Test RM-1B	117
3.49	Moment - Shear Interaction Curves for Test RM-2B	118
3.50	Moment - Shear Interaction Curves for Test RM-4B	118
3.51	Moment - Shear Interaction Curves for Test D-1	119
3.52	Moment - Shear Interaction Curves for Test D-2	. 119

xiv

Figure	Description	Page
3.53	Moment - Shear Interaction Curves for Test D-3	. 119
3.54	Moment - Shear Interaction Curves for Test D-5A	119
3.55	Moment - Shear Interaction Curves for Test D-5B	. 119
3.56	Moment - Shear Interaction Curves for Test D-6A	. 119
3.57	Moment - Shear Interaction Curves for Test D-6B	. 119
3.58	Moment - Shear Interaction Curves for Test D-7A	. 119
3.59	Moment - Shear Interaction Curves for Test D-7B	. 120
3.60	Moment - Shear Interaction Curves for Test D-8A	. 120
3.61	Moment - Shear Interaction Curves for Test D-9A	. 120
3.62	Moment - Shear Interaction Curves for Test D-9B	. 120
3.63	Moment - Shear Interaction Curves for Test R-0	. 120
3.64	Moment - Shear Interaction Curves for Test R-1	. 120
3.65	Moment - Shear Interaction Curves for Test R-2	. 120
3.66	Moment - Shear Interaction Curves for Test R-3	. 120
3.67	Moment - Shear Interaction Curves for Test R-4	. 121
3.68	Moment - Shear Interaction Curves for Test R-5	. 121
3.69	Moment - Shear Interaction Curves for Test R-6	. 121
3.70	Moment - Shear Interaction Curves for Test R-7	. 121
3.71	Moment - Shear Interaction Curves for Test R-8	. 121
3.72	Moment - Shear Interaction Curves for Test C-1	. 121
3.73	Moment - Shear Interaction Curves for Test C-2	. 121
3.74	Moment - Shear Interaction Curves for Test C-3	. 121

xv

Figure	Description	Page
3.75	Moment - Shear Interaction Curves for Test C-4	122
3.76	Moment - Shear Interaction Curves for Test C-5	122
3.77	Moment - Shear Interaction Curves for Test C-6	122
3.78	Moment - Shear Interaction Curves for Test G-1	122
3.79	Moment - Shear Interaction Curves for Test G-2	122
3.80	Moment - Shear Interaction Curves for Test CHO-3	122
3.81	Moment - Shear Interaction Curves for Test CHO-4	122
3.82	Moment - Shear Interaction Curves for Test CHO-5	122
3.83	Moment - Shear Interaction Curves for Test CHO-6	123
3.84	Moment - Shear Interaction Curves for Test CHO-7	123
3.85	Moment - Shear Interaction Curves for Test WJE-1	123
3.86	Difference Between Methods I and III versus A_f / A_w	124
3.87	Linear Moment-Shear Interaction Curve	
	(Redwood and Shrivastava 1980)	125
3.88	Curvilinear Moment-Shear Interaction Curve	
	(Redwood and Shrivastava 1980)	126
3.89	Comparison of Method III with Test Results	
	for Steel Beams	127
3.90	Comparison of Method III with Test Results	
	for Composite Beams	128
D.1	Limits on Opening Dimensions, a_o/h_o versus h_o/d (Darwin 1990)	151
D.2	Limits on Opening Dimensions, a_a/s_t versus a_a/s_b , $p_a = 5.6$	152

xvi

Figure	Description	Page
D.3	Limits on Opening Dimensions, a_o/s_t versus a_o/s_b , $p_o = 6.0$	152
E.0	Legend for Figures E.1 - E.38	165
E.1	Moment - Shear Interaction Curves for Test RBD-HB1A	166
E.2	Moment - Shear Interaction Curves for Test RBD-UG2	166
E.3	Moment - Shear Interaction Curves for Test RBD-UG2A	166
E.4	Moment - Shear Interaction Curves for Test RBD-UG3	166
E.5	Moment - Shear Interaction Curves for Test RM-1D	166
E.6	Moment - Shear Interaction Curves for Test RM-2D	166
E.7	Moment - Shear Interaction Curves for Test RM-4D	166
E.8	Moment - Shear Interaction Curves for Test RL-1	166
E.9	Moment - Shear Interaction Curves for Test RL-2	167
E.10	Moment - Shear Interaction Curves for Test RL-3	167
E.11	Moment - Shear Interaction Curves for Test RL-4	167
E.12	Moment - Shear Interaction Curves for Test RBD-EH1	167
E.13	Moment - Shear Interaction Curves for Test RBD-HB1	167
E.14	Moment - Shear Interaction Curves for Test RBD-HB2	167
E.15	Moment - Shear Interaction Curves for Test RBD-HB3	167
E.16	Moment - Shear Interaction Curves for Test RBD-HB3A	167
E.17	Moment - Shear Interaction Curves for Test RBD-HB4	168
E.18	Moment - Shear Interaction Curves for Test RBD-HB5	168
E.19	Moment - Shear Interaction Curves for Test RBD-HB5A	168
E.20	Moment - Shear Interaction Curves for Test RM-21G	168

xvii

Figure	Description	Page
E.21	Moment - Shear Interaction Curves for Test RM-4G	168
E.22	Moment - Shear Interaction Curves for Test KKS-1HSC	168
E.23	Moment - Shear Interaction Curves for Test KKS-1HRC	168
E.24	Moment - Shear Interaction Curves for Test KKS-1HS10E	168
E.25	Moment - Shear Interaction Curves for Test KKS-1HR10E	169
E.26	Moment - Shear Interaction Curves for Test KKS-2HSC	169
E.27	Moment - Shear Interaction Curves for Test KKS-2HRC	169
E.28	Moment - Shear Interaction Curves for Test KKS-2HSE	169
E.29	Moment - Shear Interaction Curves for Test KKS-2HRE	169
E.30	Moment - Shear Interaction Curves for Test KKS-3HRC25	169
E.31	Moment - Shear Interaction Curves for Test KKS-3HSC35	169
E.32	Moment - Shear Interaction Curves for Test KKS-3HSC25	170
E.33	Moment - Shear Interaction Curves for Test KKS-3HRC35	170
E.34	Moment - Shear Interaction Curves for Test KKS-3HS10E25	170
E.35	Moment - Shear Interaction Curves for Test KKS-3HR10E25	170
E.36	Moment - Shear Interaction Curves for Test KKS-3HS5E25	170
E.37	Moment - Shear Interaction Curves for Test KKS-3HR5E25	170
E.38	Moment - Shear Interaction Curves for Test D-8B	170

1.0 INTRODUCTION

The aims of this report are to (1) extend three design methods, originally developed by Donahey and Darwin (1986), for determining the maximum shear capacity of composite beams with unreinforced web openings to cover steel and composite beams with or without reinforcement at the opening, (2) summarize simplified design expressions for the maximum moment capacity of composite and steel beams with web openings, (3) investigate the effect of the following on predicted capacities:

(a) the use of a linear approximation for the von Mises yield function by comparing two design methods that employ, respectively, the von Mises yield function, and a linear approximation of the von Mises yield function;

(b) the relative sizes of the flange and the web as a function of the design method by comparing two design methods where the only difference is whether the flanges are included or excluded in determining the secondary bending moments in a tee;

(c) reducing the tee depth to approximate the movement of the plastic neutral axis, *PNA*, with the addition of reinforcement by comparing two methods, one in which the *PNA* is constrained to the top of the flange, the other in which the *PNA* is permitted to move within the flange;

(d) limiting the normal force in the concrete at the high moment end of the opening to the axial yield capacity of the net top tee steel in a composite tee;

(e) limiting the maximum moment capacity, M_m , of reinforced steel beams to the plastic moment capacity of the unperforated section, M_p .

(f) limiting the normal force permitted in the reinforcement at the opening by the strength of the weld attaching the reinforcing steel to the web at the opening.

(4) compare the accuracy and ease of application of the three methods with procedures proposed by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984), and Redwood and Cho (1986), and (5) calculate resistance factors, ϕ , for use in load and resistance factor design of structural steel buildings.

Comparisons are made with experimental results of thirty-five composite beams and fifty steel beams. The methods for shear and moment capacity found in Section 2.0 are compared with results obtained using procedures proposed by Redwood and Shrivastava (1980) for steel beams and with results published by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984), and Redwood and Cho (1986) for composite beams with ribbed slabs, and composite beams with solid slabs, respectively.

2.0 STRENGTH DESIGN PROCEDURES

2.1 Overview of Design Procedures

In this section, the three design methods proposed by Donahey and Darwin (1986) for determining the maximum shear capacity, V_m , of composite beams with unreinforced web openings are modified to account for reinforcement at the opening and extended to cover steel beams. Design expressions for the maximum moment capacity, M_m , of composite and steel beams, with or without reinforcement, are also presented, as are the procedures for moment-shear interaction proposed by Donahey and Darwin (1986).

Figs. 2.1 and 2.2, respectively, illustrate web openings in steel beams and web openings in composite beams with solid and ribbed slabs. Openings are of length a_o , depth h_o , and may have an eccentricity, e, which is always taken as a positive for steel beams and positive in the upward direction for composite beams. The slab thicknesses, t_r and t_r' , effective slab width, b_e , and steel section dimensions, d, b_f , t_f , t_w , s_t , s_b , b_r and t_r , are as indicated in these figures. The regions above and below the opening are referred to as the top tee and bottom tee, respectively. Definitions of variables and notation used in the report are given in Appendix A.

The procedures described in this report are based on the following assumptions:

(1) The steel will yield in tension or compression.

(2) Shear forces can be carried in the steel and the concrete at both ends of the opening.

(3) Shear forces in the steel are carried by the webs of the tees.

(4) Shear stresses are uniformly distributed over the depth of the webs.

(5) The normal forces in the concrete are applied over an area defined by an equivalent stress block.

(6) For the calculation of maximum moment capacity, the reinforcement is concentrated at the edge of the opening in the top and bottom tees.

2.2 Interaction Curve

The nominal shear and bending strengths, V_n and M_n , of a member at an opening subjected to both shear and bending moment are obtained using the interaction equation proposed by Donahey and Darwin (1986).

$$\frac{M_n^3}{M_m^3} + \frac{V_n^3}{V_m^3} = 1$$
(2.1)

This continuous function, illustrated in Fig. 2.3, permits the calculation of the nominal shear and moment capacities and provides good agreement with test data (see Section 3.0).

Eq. 2.1 can be rearranged to provide a convenient expression for V_n or M_n for a given moment to shear ratio, M/V.

$$\frac{M_n^3 V_m^3}{V_n^3 M_m^3} + 1 = \frac{V_m^3}{V_n^3}$$
(2.2)

Setting $M_n/V_n = M/V$ and solving for V_n , gives

$$V_{n} = V_{m} \left(\frac{\frac{M^{3}}{V^{3}}}{\frac{M_{m}^{3}}{V_{m}^{3}}} + 1 \right)^{-1/3} = V_{m} \left(\frac{\frac{M^{3}}{M_{m}^{3}}}{\frac{V^{3}}{V_{m}^{3}}} + 1 \right)^{-1/3}$$
(2.3)

$$M_n = V_n \left(\frac{M}{V}\right) \tag{2.4}$$

$$M_{n} = M_{m} \left(\frac{\frac{M_{m}^{3}}{V_{m}^{3}}}{\frac{M^{3}}{V^{3}}} + 1 \right)^{-1/3} = M_{m} \left(\frac{\frac{V^{3}}{V_{m}^{3}}}{\frac{M^{3}}{M_{m}^{3}}} + 1 \right)^{-1/3}$$
(2.5)

2.3 Forces at the Opening

The forces acting at a web opening are shown in Fig. 2.4. Under positive bending, the top and bottom tees are each subjected to axial forces P_i and P_b , shear forces, V_i and V_b , and secondary bending moments, M_{tl} , M_{th} and M_{bl} , M_{bh} , respectively. Using equilibrium, the following relationships result.

$$P_b = P_t = P \tag{2.6}$$

$$V = V_b + V_t \tag{2.7}$$

$$V_b a_o = M_{bl} + M_{bk} \tag{2.8}$$

$$V_i a_o = M_{il} + M_{ih} \tag{2.9}$$

$$M = Pz + M_{ih} + M_{bh} - \frac{Va_o}{2}$$
(2.10)

in which V = total shear acting at an opening;

M = primary moment acting at opening center line;

$$a_o =$$
 length of the opening; and

z = distance between the local neutral axes in the top and bottom tees.

2.4 Shear Capacity Equations

In this section, the three design methods, developed by Donahey and Darwin (1986) to predict the maximum shear capacity of composite beams with unreinforced web openings, are extended to cover both steel and composite beams with or without reinforcement at the opening. Theoretical differences between the methods and limitations of the methods are discussed.

A closed-form solution for the maximum shear capacity at a web opening requires the use of several simplifying assumptions. Three closed-form solutions for the maximum shear capacity are derived, each simpler than the previous one. These closed-form solutions, hereafter referred to as Methods I, II, and III, are based on the assumption that the normal forces in the top and bottom tees is zero. As discussed by Clawson and Darwin (1980) and Donahey and Darwin (1986), this load state only approximates pure shear at the opening in composite beams because the secondary bending moments at the high and low moment ends of the top tee are not equal. As a result, the total moment at the opening center line is close to, but not equal to zero. The procedure, however, does represent pure shear in steel beams and gives a close approximation of the true maximum shear maximum capacity at web openings in composite beams.

The approach that is taken in the following sections is to develop an expression for the maximum shear capacity of the most general case, a top tee in a composite beam with a reinforced opening. The capacity of the other tees, top or bottom, can be obtained from the general case by neglecting appropriate terms in the expressions. The total shear capacity at an opening is obtained by summing the shear strengths of the top and bottom tees.

6

2.4.1 Forces in the Concrete and Steel

Normal forces in a composite tee are illustrated in Fig. 2.5. For composite beams, the normal force in the concrete at the high moment end of the opening, P_{ch} , is limited by the compressive strength of the concrete, the shear connector capacity, and the tensile strength of the top-tee steel. These limitations are expressed as follows.

$$P_{\perp} \leq 0.85 f' b t$$
 (2.11)

$$P_{ch} \le NQ_n \tag{2.12}$$

$$P_{ch} \leq F_y A_{st}$$

in which

t,

 $= t_s$ for solid slabs;

 $t_e = t'_s$ for ribbed slabs with transverse ribs;

 $t_e = (t_s + t'_s)/2$ for ribbed slabs with longitudinal ribs;

 f'_c = concrete compressive strength, ksi;

Q_n = shear connector capacity accounting for appropriate reduction factor for ribbed slabs;

 A_{rr} = area of top tee steel, including reinforcement; and

N = number of shear connectors from high moment end of opening to the support.

Fig. 2.5 shows the location of the concrete normal forces. Shear stresses are assumed to have no effect on the normal stresses in the concrete at the maximum load.

The concrete force at the low moment end of the tee, P_{cl} , is dependent upon the number of shear connectors over the opening, N_o , and the high moment end concrete force, P_{ch} .

$$P_{cl} = P_{ch} - N_o Q_n \ge 0 \tag{2.14}$$

 N_o and N include only the shear connectors entirely within the opening. Connectors at the edge of the high-moment end of the opening are not included.

The moment arms of the high moment end and low moment end concrete forces about the top of the steel flange, d_k and d_l , respectively, are given by the following equations.

$$d_{h} = t_{s} - \frac{P_{ch}}{1.7f_{c}^{\prime}b_{s}}$$
(2.15)

For solid slabs,

$$d_{l} = \frac{P_{cl}}{1.7f_{c}^{\prime}b_{e}}$$
(2.16)

For ribbed slabs with transverse ribs,

$$d_{l} = t_{s} - t_{s}' + \frac{P_{cl}}{1.7f_{c}'b_{s}}$$
(2.17)

For ribbed slabs with longitudinal ribs, d_l is the distance from the top of the flange to the centroid of the compression force in the concrete. Only the ribs that lie within the effective width, b_e , are considered for this calculation. A conservative estimate of d_l can be obtained by treating the sum of the minimum widths of the ribs that lie within the effective width of the slab as b_e . The maximum shear in the top tee, V_{mt} , is assumed to be carried by the steel web unless V_{mt} exceeds the plastic shear capacity of the top tee web, given by

$$V_{pt} = \frac{F_{yw}t_ws_t}{\sqrt{3}}$$
(2.18)

This is possible only for a composite tee, not for other cases derived from the composite tee. When the plastic shear capacity of the top tee is exceeded, the top tee web will fully yield in shear and will not contribute to moment equilibrium of the tee. As will be explained, Eqs. 2.32, 2.43, and 2.54 predict maximum shear capacity in accordance with Methods I, II, and III, respectively, when the top tee web contributes to moment equilibrium. When the web fully yields in shear, these equations must be rederived, excluding any contribution of the top tee web to moment equilibrium. This results in Eq. 2.33 for Method I and Eq. 2.46 for Methods II and III. In this case, the normal force in the concrete, at high moment end of the opening, P_{ch} , is further limited based on the reduced normal force in the top tee steel.

$$P_{ch} \le F_{yf} t_f (b_f - t_w) + P_r \tag{2.19}$$

in which P_r = normal force in the reinforcement in the top tee.

$$P_{r} = F_{yr}t_{r}(b_{r} - t_{w}) \leq \frac{F_{yw}t_{w}a_{o}}{2\sqrt{3}}$$
(2.20)

The term on the right side of the inequality in Eq. 2.20 represents the horizontal shear strength of the web below or above the opening. Following the determination of V_{mt} , the result must be compared to the combined shear capacity of the steel web and the concrete over the opening, $V_{t(sh)}$, given by Eq. 2.21.

$$V_{t(sh)} = V_{pt} + V_c \tag{2.21}$$

(2 21)

in which V_c = pure shear capacity of the concrete slab = $0.11\sqrt{f_c'}A_{vc}$, kips;

 $f_{\rm c}^{\ \prime} \; {\rm and} \; \sqrt{f_{\rm c}^{\ \prime}} \; {\rm are} \; {\rm in} \; {\rm ksi}; \; {\rm and} \;$

 A_{ve} = effective concrete shear area = $3t_s t_e$

The maximum shear capacity of the bottom tee, V_{mb} , assumed to be non-composite, may not exceed the plastic shear capacity of the web in the bottom tee, which is

$$V_{pb} = \frac{F_{yw} t_w s_b}{\sqrt{3}}$$
(2.22)

The maximum shear capacity of the section, V_m , is the sum of the maximum capacities of the top and bottom tees expressed as

$$V_m = V_{mi} + V_{mb} \tag{2.23}$$

2.4.2 Derivation of the Design Methods

The three design methods are developed for the most general case, a composite tee with a reinforced opening. In each of the three design methods, the von Mises yield function, or a simplification of the function, is used to model the reduced normal yield strength of the web, F_y , caused by interaction with the shear stress, τ .

For a material with yield strength, F_y , the von Mises yield function is given by

$$\overline{F}_{y} = \sqrt{F_{y}^{2} - 3\tau^{2}}$$

$$(2.24)$$

which is illustrated in Fig. 2.6.

The three design methods derived in the following sections employ simplifying assumptions that permit a closed-form solution for the maximum shear capacity.

2.4.2.1 Method I

The fully plastic stress distribution at an opening with zero axial force in the tees is illustrated in Fig. 2.7. Two simplifying assumptions will be made in the derivation of this method to facilitate a closed-form solution for the maximum shear capacity. First, the position of the neutral axis in the top and bottom tees for secondary bending is assumed to lie in the flanges. Second, the interaction of shear and normal stresses is defined by a linear approximation of the von Mises yield function given by

$$\overline{F}_{y} = \lambda F_{y} - \sqrt{3}\tau \qquad (2.25)$$

in which $\tau \leq F_y/\sqrt{3}$

 $\lambda = a$ factor used to adjust the approximation to obtain an improved match with experimental results. Donahey and Darwin (1986) used $\lambda = (1 + \sqrt{2})/2 = 1.207$. As will be shown in Section 3.0, a value of $\lambda = \sqrt{2}$ appears to give better results. The maximum shear capacity of a composite tee is found by using the moment equilibrium equation for the tee.

$$V_{,a_{a}} = M_{,b} + M_{,t}$$
 (2.26)

To determine M_{ik} and M_{il} based on the stresses in the steel and concrete, the locations of the neutral axes at the high and low moment ends of the opening, g_k and g_l , must be known. g_k and g_l are measured with respect to the outside of the flange (Fig. 2.7). Assuming the neutral axis to be in the flange and using normal force equilibrium,

$$g_{h} = \frac{-P_{ch} + F_{yj}(b_{f} - t_{w})t_{f} + F_{y}t_{w}s_{t} + P_{r}}{2\left[F_{yj}(b_{f} - t_{w}) + \overline{F}_{y}t_{w}\right]}$$
(2.27)

$$g_{l} = \frac{P_{cl} + F_{yf}(b_{f} - t_{w})t_{f} + F_{y}t_{w}s_{t} + P_{r}}{2[F_{yf}(b_{f} - t_{w}) + \overline{F}_{y}t_{w}]}$$
(2.28)

in which $P_r = F_{yr}t_r(b_r - t_w)$

Substituting Eq. 2.25 for $\overline{F_y}$ in Eqs. 2.27 and 2.28 results in the following expressions for g_h and $g_{l'}$.

$$g_{h} = \frac{-P_{ch} + F_{yf}(b_{f} - t_{w})t_{f} + \lambda \overline{F}_{y}t_{w}s_{t} - V_{mt}\sqrt{3} + P_{r}}{2\left(F_{yf}(b_{f} - t_{w}) + \lambda \overline{F}_{y}t_{w} - \frac{\sqrt{3}V_{mt}}{t_{w}}\right)}$$
(2.29)

$$g_{l} = \frac{P_{cl} + F_{yf}(b_{f} - t_{w})t_{f} + \lambda \overline{F}_{y}t_{w}s_{t} - V_{mt}\sqrt{3} + P_{r}}{2\left(F_{yf}(b_{f} - t_{w}) + \lambda \overline{F}t_{w} - \frac{\sqrt{3}V_{mt}}{t_{w}}\right)}$$
(2.30)

Using moment equilibrium of the tee

$$V_{mt}a_{o} = P_{ch}d_{h} - P_{cl}d_{l} - \frac{F_{yf}(b_{f} - t_{w})(g_{h}^{2} + g_{l}^{2})}{2} + \frac{F_{yf}(b_{f} - t_{w})(t_{f}^{2} - g_{l}^{2})}{2} + \frac{F_{yf}(b_{f} - t_{w})(t_{f}^{2} - g_{h}^{2})}{2} + \frac{\overline{F}_{y}t_{w}(g_{h}^{2} + g_{l}^{2})}{2} + \frac{\overline{F}_{y}t_{w}(s_{t}^{2} - g_{l}^{2})}{2} + \frac{\overline{F}_{y}t_{w}(s_{t}^{2} - g_{h}^{2})}{2} + \frac{\overline{F}_{y}t_{w}(s_{t}^{2} - g_{h}^{2})}{2}$$

Substituting the resulting expressions for g_h and g_i into Eq. 2.31 and simplifying results in an equation that is quadratic in V_{mu} . This equation can be reduced to

$$V_{mt} = F_{y} \left(\frac{\beta - \sqrt{\beta^{2} - 4\alpha\gamma}}{2\alpha} \right)$$
 (2.32)

in which $\alpha = 3 + \frac{2\sqrt{3}a_o}{s_t}$

$$\beta = 2\sqrt{3}(b_f - t_w) \left(s_t - t_f + \frac{t_f^2}{s_t} \right) + 2\sqrt{3}\lambda t_w s_t + 2a_o [b_f + (\lambda - 1)t_w]$$

+
$$\frac{2\sqrt{3}(2P_rd_r + P_{ch}d_h - P_{cl}d_l)}{s_lF_y}$$
 + $\frac{\sqrt{3}(P_{ch} - P_{cl} - 2P_r)}{F_y}$

$$\gamma = (b_f - t_w)^2 t_f^2 + \lambda^2 t_w^2 s_t^2 + 2\lambda t_w (b_f - t_w) (s_t^2 - s_t t_f + t_f^2)$$

$$+ \frac{2[b_{f} + (\lambda - 1)t_{w}]}{F_{y}} (2P_{r}d_{r} + P_{ch}d_{h} - P_{cl}d_{l})$$
$$- \frac{(2P_{r}^{2} + P_{ch}^{2} + P_{cl}^{2})}{2F_{y}^{2}} + \frac{P_{r}(P_{ch} - P_{cl})}{F_{y}^{2}}$$

+
$$\frac{[(b_f - t_w)t_f + \lambda t_w s_i]}{F_y}(P_{ch} - P_{cl} - 2P_r)$$

For the derivation of preceding terms using the different yield strengths for the flanges, web, and reinforcement, see Appendix B.

If $V_{mt} > V_{pt}$, the web has yielded. Resolving Eq. 2.29 through Eq. 2.31 with $\overline{F_y} = 0.0$ gives

$$V_{mt} = \frac{\left[2P_{r}d_{r} + P_{ch}d_{h} - P_{cl}d_{l} + \frac{t_{f}}{2}(P_{ch} - P_{cl} - 2P_{r})\right]}{a_{o}} + \frac{F_{y}}{2}(b_{f} - t_{w})t_{f}^{2} + \frac{2P_{r}(P_{ch} - P_{cl}) - 2P_{r}^{2} - P_{ch}^{2} - P_{cl}^{2}}{4F_{y}(b_{f} - t_{w})} \ge V_{pt}$$
(2.33)

2.4.2.2 Method II

The primary simplification made in this method is to ignore the contribution of the flanges to the secondary bending moments. This approximation works because the contribution of the normal stresses in the flanges to the secondary moments is small when moments are calculated about the extreme edges of the flanges. Both the normal and the shear stresses are assumed to be uniform within the web. The normal stresses in the reinforcement are assumed to act at the centroid of the reinforcement. The plastic stress distribution is illustrated in Fig. 2.8. The von Mises yield function, Eq. 2.24, controls the stresses in the web.

The normal force in the web when shear is acting on a tee, P_w , is given by

$$P_{\omega} = \overline{F}_{\omega} s_{\omega} t_{\omega}$$
(2.34)

The shear stress, τ , is

$$\tau = \frac{V_{mt}}{s_t t_w}$$
(2.35)

Substituting Eq. 2.34 and Eq. 2.35 into the von Mises yield function results in the following equation for the normal force in the web.

$$P_{w} = \sqrt{3V_{pt}^{2} - 3V_{mt}^{2}}$$
(2.36)

Taking moments about the top of the flange results in

$$V_{m}a_{o} = P_{w}s + P_{ch}d_{h} - P_{cl}d_{l} + 2P_{r}d_{r}$$
(2.37)

Eq. 2.37 can be more simply represented by

$$V_{m}a_{o} = P_{wt}s_{t} + \mu V_{ot}s_{t}$$
(2.38)

in which $\mu = \frac{P_{ch}d_h - P_{cl}d_l + 2P_rd_r}{V_{pl}s_l}$

Substituting Eq. 2.36 into Eq. 2.38 and solving gives,

$$V_{mu}a_{o} = \sqrt{3V_{pt}^{2} - 3V_{mt}^{2}} + \mu V_{pt}s_{t}$$
(2.39)

$$(V_{mt}a_o - \mu V_{pt}s_t)^2 = 3V_{pt}^2 - 3V_{mt}^2$$
(2.40)

$$V_{mt}^2 a_o^2 - 2\mu V_{pt} s_t V_{mt} a_o + (\mu V_{pt} s_t)^2 = 3V_{pt}^2 - 3V_{mt}^2$$
(2.41)

$$V_{mt}^{2}(a_{o}^{2}+3) - V_{mt}(2\mu V_{pt}s_{t}a_{o}) + (\mu V_{pt}s_{t})^{2} - 3V_{pt}^{2} = 0$$
(2.42)

Substituting v = aspect ratio of the tee = $a_d s_t$ into Eq. 2.42 and solving for V_{mt} gives

$$V_{mt} = V_{pt} \left(\frac{\mu \upsilon - \sqrt{3\upsilon^2 - 3\mu^2 + 9}}{\upsilon^2 + 3} \right)$$
(2.43)

When reinforcement is added at the edge of the opening, the plastic neutral axis, *PNA*, will shift toward the opening to maintain equilibrium in the tee. However, a key assumption made in the derivation of this method is that the *PNA* is located at the top of the flange. This

assumption becomes increasingly unconservative as more reinforcement is added. An adjustment can be made to approximate the true movement of the *PNA* by reducing the effective depth of the steel tee, in the calculation of v, by a distance which is proportional to the amount of reinforcement present.

$$\upsilon = \frac{a_o}{\overline{s}}$$
(2.44)

in which $\overline{s} = s - \frac{A_r}{2b_r}$

The procedure to approximate the movement of the PNA is discussed in greater detail in Section 2.4.3.2.

When V_{mt} exceeds the plastic shear capacity of the web, V_{pt} , an alternate determination of maximum shear capacity is necessary because the web has yielded in shear. In this case, $P_w = 0.0$ and Eq. 2.38 gives

$$V_{mt}a_{o} = \mu V_{m}s_{t} \tag{2.45}$$

Solving for Vm gives

$$V_{mt} = \frac{\mu V_{pt} S_t}{a_o} = \frac{\mu V_{pt}}{\upsilon}$$
(2.46)

in which μ is defined in Eq. 2.38 and $\upsilon = a_0/s$. <u>No adjustment</u> is necessary in s for Eq. 2.46, when reinforcement is present.
2.4.2.3 Method III

A linear solution for the maximum shear capacity is possible by adding the linear approximation for the von Mises yield function, Eq. 2.25, used in Method I to the simplified stress distribution used in Method II (see Fig. 2.8).

The normal force in the web when shear is acting on a tee is given by

$$P_{w} = \overline{F}_{v} s_{t} t_{w} \tag{2.47}$$

Substituting Eq. 2.47 into Eq. 2.25 results in

$$P_w = (\lambda F_v - \sqrt{3\tau}) s_t t_w \tag{2.48}$$

Rewriting Eq. 2.48 in terms of V_{pt} and V_{mt} results in

$$P_{\rm m} = \sqrt{3} \left(\lambda V_{\rm m} - V_{\rm m}\right) \tag{2.49}$$

The maximum shear capacity in the top tee, V_{mt} , can be found by taking moments about the top of the flange.

$$V_{m}a_{a} = P_{m}s_{r} + P_{cr}d_{r} + P_{cr}d_{r} + 2P_{r}d_{r}$$
(2.50)

Substituting Eq. 2.49 into Eq. 2.50 gives

$$V_{mt}a_{o} = \sqrt{3} (\lambda V_{pt} - V_{mt})s_{t} + P_{ck}d_{k} + P_{cl}d_{l} + 2P_{r}d_{r}$$
(2.51)

Consolidating terms results in

$$V_{mt}(a_o + s_t\sqrt{3}) = \lambda\sqrt{3}V_{pt}s_t + P_{ch}d_h + P_{cl}d_l + 2P_rd_r$$
(2.52)

Rearranging, and using v and μ as defined in Eqs. 2.38 and 2.44,

$$V_{mt}(\upsilon + \sqrt{3}) = V_{pt}(\lambda\sqrt{3} + \mu)$$
(2.53)

$$V_{mt} = V_{pt} \left(\frac{\lambda \sqrt{3} + \mu}{\upsilon + \sqrt{3}} \right)$$
(2.54)

As with Method II, the definition of v should be altered to account for the shift in the PNA when reinforcement is added to a tee (see Eq. 2.44, also Section 2.4.3.2).

When V_{mt} exceeds the plastic shear capacity of the web, V_{pt} , the alternate determination of maximum shear capacity summarized in Eq. 2.46 applies.

2.4.3 Limitations and Differences Between Design Methods

The preceding derivations can be more fully understood by exploring the limitations of the simplifying assumptions.

In this section, the effect of the linear approximation for the von Mises yield function for secondary bending will be evaluated by comparing the predicted maximum shear capacities using Methods II and III. The effect of neglecting the flanges when determining maximum shear capacity will be established by comparing Methods I and III over the range of permissible combinations of opening length and tee depths.

Fig. 2.6 illustrates the von Mises yield function and its linear approximations when $\lambda = 1.207$ and $\lambda = 1.414$. Two concerns arise when the linear approximation of the von Mises yield function is used. First, for slender tees (high v), it is possible that the predicted normal stress in the web, $\overline{F_y}$, will exceed the yield stress of the web, F_y . This unconservative prediction of $\overline{F_y}$

results in a less conservative and potentially unconservative prediction of the maximum shear capacity when using Methods I and III, compared to the maximum shear capacity predicted by Method II. Second, for stocky tees (low υ), it is possible that the predicted shear stress in the web, τ , will exceed the shear stress predicted by the von Mises yield function. This will also result in less conservative predictions of maximum shear capacity for Methods I and III compared to Method II.

2.4.3.1 Effect of the Linear Approximation of the von Mises Yield Function

The linear approximation of the von Mises yield function allows the normal stress in the web, F_{y} , to be overpredicted by as much as 41% when $\lambda = 1.414$, as indicated in Fig. 2.9, which is a comparison of yield functions considering practical restraints. While this large overprediction is possible, the practical maximum stress predicted by the linear yield function is $1.236F_y$ when v is limited to 12.0 and $\lambda = 1.414$ (see Appendix C). At this same practical maximum, for an unreinforced tee, Method III predicts a maximum shear capacity that exceeds that predicted by Method II by 24.5%, while the absolute difference between Methods II and III is 3.5% of the plastic shear capacity of the tee, V_p . For an unreinforced tee, when $\lambda = 1.207$ and $\upsilon = 12.0$, the predicted maximum shear capacities of Method II and III differ by 6.3% which translates to 0.90% of V_p . Another practical consideration that further reduces the effect of the unconservative normal stress in the web on the predicted maximum shear capacity is a restriction, p_o , placed on the size of the opening (see Appendix D). This restriction limits the value of υ for the second tee to 2.836 when $p_o = 5.6$, $a_o/h_o = 3.0$ and v = 12.0 for first tee. This is illustrated for $\lambda = 1.414$ and $\lambda = 1.207$ in Figs. 2.10 and 2.11. Fig 2.10 illustrates the difference between the maximum shear capacities predicted by Methods II and III for the top and bottom tees normalized on the plastic shear capacity of the perforated web versus a_0/s_r . Fig. 2.11 illustrates the ratio of Methods II and

III versus a_o/s_r . A W21X44 beam with an opening depth, h_o , equal to 50% of the overall beam depth is used for the comparisons. The curves were generated by varying the opening length, a_o . The ratio of opening length to tee depth for the bottom tee, a_o/s_b , becomes limited as the opening length increases, consequently, the difference in the combined maximum shear capacities of the top and bottom tees predicted by Methods II and III diminishes as the opening length increases. Fig. 2.11 was generated with the same beam and opening except the ratio of the maximum shear capacities predicted by Methods II and III is plotted with respect to a_o/s_r . For either value of λ , the predicted maximum shear capacity is not significantly affected by the unconservative prediction of the normal stress in the web by the linear approximation of the von Mises yield function.

For openings with a low v, the linear approximation of the von Mises yield function can predict the shear stress in the web of a tee to be as much as 9.7% higher than that predicted by the von Mises yield function when $\lambda = 1.414$ and v = 0.717, as illustrated in Fig 2.9. The corresponding maximum shear capacities predicted by Methods II and III differ by 9.9%, or 9.0% of the plastic shear capacity of the tee. When $\lambda = 1.207$ and v = 0.359, the linear approximation overpredicts the shear stress in the web by 2.1%, and the corresponding maximum shear capacities predicted by Methods II and III differ by 2.2%, or 2.1% of the plastic shear capacity of the tee. When $\lambda = 1.414$ and v = 0.717, the potential difference between the maximum shear capacities predicted by Methods II and III are significant and will have the most effect on the nominal shear capacity when the opening is under high shear. Openings with v = 0.717 or 0.359 are very unlikely, however. Consequently, potentially unconservative predictions of maximum shear capacity by Method III are very unlikely to occur in practice.

The effect of the linear approximation of the von Mises yield function on the predicted capacities of fifty steel and thirty-five composite beams is investigated further in Section 3.4.

2.4.3.2 Effect of Reducing the Tee Depth in Proportion to Reinforcement

For an unreinforced steel tee, with $\mu = 0.0$, Method I predicts a higher maximum shear capacity than Method III over the entire range of acceptable values of $v = a_d/s$, as illustrated in Fig. 2.12. This difference is as high as 15% of the plastic shear capacity of the tee when $a_d/s =$ 2.00. As reinforcement is added to a tee, the PNA will shift toward the opening, and the assumption made in the derivation of Methods II and III, that the PNA is at the top of the flange, becomes increasingly unconservative. Method I accounts for the shift of the PNA, so reasonably conservative predictions of shear capacity can be expected regardless of the amount of reinforcement at an opening. The unconservative difference between Methods I and III when nothing is done to account for the shift in the PNA is about 7.5% of the plastic shear capacity of the tee when $\mu = 9.0$ and $a_0/s = 12.0$. By reducing the depth of the tee in proportion to the reinforcement present (Eq. 2.44), the unconservative difference between Methods I and III is reduced to about 2% of V_{pt} for heavily reinforced slender tees. As shown in Fig. 2.12, with increasing quantities of reinforcement, it becomes more likely that the maximum shear capacity of a steel tee will be governed by the plastic shear capacity of the tee. The unconservative affect on predicted shear capacity by an unadjusted PNA location for Method III will likely be lessened in many situations because the plastic shear capacity of a tee will govern. However, reducing the tee depth in proportion to the reinforcement present to approximate the actual shift in the PNA permits the prediction of maximum shear capacity more in line with those predicted by Method I.

2.5 Moment Capacity Equations

The expressions for the maximum moment capacity of steel and composite beams with web openings presented in this section are applicable only to members meeting AISC (1986) criteria for compact sections. Instabilities in the compression flange or web, likely in non-compact sections, may render the expressions of this section unconservative because the full strength at the opening may not be attained.

Well established strength procedures are employed in deriving the expressions for maximum moment capacity, M_m . In all cases, fully plastic behavior is assumed for the steel section in both tension and compression.

2.5.1 Steel Beams

The maximum moment capacity of unreinforced steel beams, as derived in this section, involves no approximations. Simplified, conservative design expressions for reinforced steel beams are derived by assuming that the reinforcement is concentrated along the top and bottom edges of the opening and that the thickness of the reinforcement is small. For members with an eccentric opening, $e \neq 0$, the plastic neutral axis will be located in the reinforcement at the edge of the opening closest to the centroid of the original steel section or in the web of the deeper tee. When reinforcement is used, the maximum moment capacity, M_m , should not exceed the flexural strength of the unperforated beam, M_p .

The eccentricity of an opening, e, is always taken to be positive in steel beams. Figs. 2.13(a), 2.13(b), and 2.13(c) illustrate stress diagrams for steel sections in pure bending.

22

2.5.1.1 Unreinforced Openings

For members with unreinforced openings and eccentricity, e, the maximum moment capacity of a steel member can be expressed as

$$M_{m} = M_{p} - F_{y}t_{w} \left(\frac{h_{o}^{2}}{4} + eh_{o}\right)$$
(2.55)

$$M_m = M_p - F_y \Delta A_s \left(\frac{h_o}{4} + e \right)$$
(2.56)

in which $\Delta A_s = h_o t_{w_s}$

2.5.1.2 Reinforced Openings

The maximum moment capacity of steel beams with reinforcement along both the top and bottom edges of the opening are derived in this section. Two simplifying assumptions are used in the following derivation so that concise, conservative expressions for M_m are possible. First, the reinforcement is assumed to be concentrated along the top and bottom edges of the opening, and second, the thickness of the reinforcement is assumed to be small. The maximum moment capacity of a perforated, reinforced, steel beam in which the *PNA* resides in the reinforcement and $e \leq F_{yr}A_r / F_y t_w$ can then be expressed as

$$M_{m} = M_{p} - F_{y}t_{w}\left(\frac{h_{o}^{2}}{4} + eh_{o} - e^{2}\right) + F_{yr}A_{r}h_{o} \le M_{p}$$
(2.57)

in which F_{yr} = yield strength of the reinforcement

 A_r = area of reinforcement at the top or bottom of an opening

The maximum moment capacity of a perforated, reinforced, steel beam in which the *PNA* resides in the web and $e \ge F_{yr}A_r / F_y t_w$ can be expressed as

$$M_{m} = M_{p} - F_{y}t_{w}\left(\frac{h_{o}^{2}}{4} + eh_{o} - \frac{F_{yr}A_{r}}{F_{y}t_{w}}\left(2e + \frac{h_{o}}{2}\right)\right) + F_{yr}A_{r}\left(\frac{h_{o}}{2} - \frac{F_{yr}A_{r}}{F_{y}t_{w}}\right) \le M_{p}$$
(2.58)

Further simplification is possible if Eq. 2.58 is rewritten in terms of the original unperforated cross-section.

$$M_m = M_p - F_y \Delta A_s \left(\frac{h_o}{4} + e\right) + F_{yr} \Delta A_s \frac{A_r}{2t_w} \le M_p$$
(2.59)

in which $\Delta A_x = h_o t_w - \frac{2A_r F_{yr}}{F_y}$

2.5.2 Composite Beams

Expressions for the maximum moment capacity of composite beams (Darwin 1990) are presented in this section. Simplified design expressions (Darwin 1990) are also developed following a review of the more precise moment capacity equations. When the opening is reinforced, the maximum moment capacity, M_m , should not exceed the flexural strength of the unperforated composite section, M_{pc} . The eccentricity of the opening, *e*, is taken to be positive in the upward direction in composite beams. Figs. 2.14(a), 2.14(b), 2.14(c) illustrate stress diagrams for composite beams in pure bending.

2.5.2.1 Derivation

For a given beam and opening configuration, the force in the concrete, P_c , is limited to the lower of the concrete compressive strength, the shear connector capacity, or the tensile capacity of the net steel section.

$$P_c \le 0.85 f_c' b_c t_c \tag{2.60}$$

$$P_c \le NQ_n \tag{2.61}$$

$$P_c \le T' = F_v A_m \tag{2.62}$$

in which $A_{sn} = A_s - h_o t_w + \frac{2A_r F_{yr}}{F_y}$

The depth of the concrete stress block, *a*, for solid slabs or for ribbed slabs with transverse ribs is given by

$$a = \frac{P_c}{0.85f_c'b_e}$$
(2.63)

The maximum moment capacity, M_m , is dependent on the governing inequality from Eqs. 2.60, 2.61, and 2.62. If $P_c = T'$ [Eq. 2.62, Fig. 2.14(a)], the *PNA* resides at the top of the steel flange and the maximum moment capacity is expressed by

$$M_m = T\left(\frac{d}{2} + \frac{\Delta A_s e}{A_{sn}} + t_s - \frac{a}{2}\right) \le M_{pc}$$
(2.64)

in which $\Delta A_r = h_o t_w - \frac{2A_r F_{yr}}{F_y}$

e = opening eccentricity, (+) upward for composite beams

Eq. 2.63 is valid for ribbed slabs if $a \le t_s'$. If $a > t_s'$, as is possible for ribbed slabs with longitudinal ribs, the term $(t_s - a/2)$ in Eq. 2.64 must be replaced with the appropriate expression for the distance between the top of the steel flange and the centroid of the concrete force.

If $P_c < T'$ (Eq. 2.60 or Eq. 2.61), the *PNA* is in the steel section, placing a portion of the steel member in compression. The *PNA* can be either in the flange or the web of the top tee, based on the inequality

$$P_{c} + F_{y}A_{f} \stackrel{>}{<} F_{y}(A_{sh} - A_{f})$$
 (2.65)

in which $A_f =$ flange area = $b_f t_f$.

If the force in the concrete and the tensile capacity of the flange (left side of Eq. 2.65) exceeds the tensile capacity of the web (right side of Eq. 2.65), the *PNA* will be in the flange (Fig. 2.14(b)) at a distance x from the top of the flange. For this case,

$$x = \frac{(A_{sn}F_{y} - P_{c})}{2b_{j}F_{y}}$$
(2.66)

The corresponding maximum moment capacity can be expressed as

$$M_m = T' \left(\frac{d}{2} + \frac{\Delta A_s e - b_j x^2}{A_{sn}} \right) + P_c \left(t_s - \frac{a}{2} \right) \le M_{pc}$$
(2.67)

If the tensile capacity of the web exceeds the capacity of the concrete slab and steel flange, the *PNA* will reside in the web at a distance *x* from the top of the flange, as illustrated in Fig. 2.15 (c). For this case,

$$x = \frac{(A_{sn} - 2A_{f})}{2t_{w}} - \frac{P_{c}}{2F_{v}t_{w}} + t_{f}$$
(2.68)

The corresponding maximum moment capacity can be expressed as

$$M_{m} = T' \left(\frac{d}{2} + \frac{\Delta A_{s}e - (b_{f} - t_{w})t_{f}^{2} - t_{w}x^{2}}{A_{sn}} \right) + P_{c} \left(t_{s} - \frac{a}{2} \right) \leq M_{pc}$$
(2.69)

2.5.2.2 Design Equations

Simplified design expressions (Darwin 1990) for the maximum moment capacity of perforated composite beams are developed in this section. When the *PNA* in an unperforated member resides at the top of the steel flange, Eq. 2.64, a simplified design expression is possible by assuming that $F_{yr} = F_{y}$, and that the internal moment arm between tensile and compressive forces is not significantly affected by the loss in steel area due to the opening or the addition of steel from the reinforcement.

Using the first assumption, Eq. 2.64 can then be rewritten as

$$M_{m} = A_{sn}F_{y}\left(\frac{d}{2} + \frac{\Delta A_{s}e}{A_{sn}} + t_{s} - \frac{a}{2}\right)$$
(2.70)

in which $A_{sn} = A_s - h_o t_w + 2A_r$

Rearranging,

$$M_m = A_{sn} F_y \left(\frac{d}{2} + t_s - \frac{a}{2}\right) + F_y \Delta A_s e \qquad (2.71)$$

Using the second assumption, the term $(d/2 + t_s - a/2)$ is assumed to be about the same for the perforated and unperforated sections. Thus the first term of Eq. 2.71 can be expressed in terms of the maximum moment capacity of an unperforated composite section, M_{pc} .

$$M_m = M_{pc} \frac{A_{sn}}{A_s} + F_y \Delta A_s e \le M_{pc}$$
(2.72)

Eq. 2.72 is usually accurate within a few percent and is conservative when the steel cross-sectional area of the reinforced beam at the opening is less than that of the original unreinforced beam.

When the *PNA* in the unperforated member resides in the steel section, [Eq. 2.61 or 2.62], one design expression for M_m is possible by assuming that the term $-b_f x^2/A_{sn}$ in Eq. 2.67 and the term $[-(b_f - t_w)t_f^2 - t_w x^2]/A_{sn}$ in Eq. 2.69 are small in comparison to d/2 and, thus, can be ignored. The following simplified expression results.

$$M_m = F_y A_{sn} \left(\frac{d}{2} + \frac{\Delta A_s e}{A_{sn}} \right) + P_c \left(t_s - \frac{a}{2} \right)$$
(2.73)

Rearranging,

$$M_m = F_y A_{sn} \left(\frac{d}{2}\right) + P_c \left(t_s - \frac{a}{2}\right) + F_y \Delta A_s e \le M_{pc}$$
(2.74)

Eq. 2.74 is exact when the *PNA* lies at the top of the flange and can be used in place of Eq. 2.72, and it is very accurate, but slightly unconservative, when the *PNA* is in the flange. Eq. 2.74 becomes progressively more unconservative as the *PNA* moves into the web. A limitation on the application of Eq. 2.74 is then necessary to preclude overly unconservative results. This can be conservatively accomplished by limiting the magnitude of the terms neglected by Eq. 2.74

(see Eq. 2.67 and 2.69) to less than 4 percent of d/2 for members in which the flange area is greater than or equal to 40 percent of the web area [i.e., $(b_f - t_w)t_f \ge 0.4t_wd$]. This is accomplished by limiting the force in the concrete, P_{c_i} to values greater than $F_y(0.75t_wd - \Delta A_s)$. The flange-toweb area ratio stipulation is conservative, and as that ratio increases, the accuracy of Eq. 2.74 improves. For members in which the *PNA* resides in the web, and either $P_c < F_y(0.75t_wd - \Delta A_s)$, or the flange-to-web area ratio is less than 0.40, M_m must be determined using Eq. 2.67 or 2.69. A derivation of the stipulation on P_c for configurations where the *PNA* is located in the web can be found in Appendix E.

2.6 Redwood Methods

In this section, the design expressions proposed by Redwood and Shrivastava (1980) for determining the maximum shear capacity, V_m , and an intermediate value of moment used for moment-shear interaction, M_v , for steel beams with and without reinforcement at the opening are altered to account for the yield strengths of the web and reinforcent. These altered expressions are used in calculating the nominal capacities of steel beams which are summarized in Tables 3.11, 3.19, and E.6. The expressions for determining moment capacity used with expressions presented in this section are those derived in Section 2.5.

The intermediate moment capacity, M_{ν} , for an unreinforced beam at which the nominal shear capacity commences to diminish because of increasing moment at the opening is given by

$$M_{v} = M_{p} \left(1 - \frac{\frac{A_{w}F_{yw}}{4A_{f}F_{yf}} \left(1 - \frac{h_{o}}{d} + \frac{2e}{d} \right) \frac{2}{\sqrt{1 + \alpha_{b}}}}{1 + \frac{A_{w}F_{yw}}{4A_{f}F_{yf}}} \right)$$

The maximum shear capacity, V_m , of the top and bottom tees of an unreinforced beam is

$$V_m = \left(0.50\left(1 - \frac{h_o}{d} - \frac{2e}{d}\right)\sqrt{\frac{\alpha_t}{1 + \alpha_t}}\right) + \left(0.50\left(1 - \frac{h_o}{d} + \frac{2e}{d}\right)\sqrt{\frac{\alpha_b}{1 + \alpha_b}}\right)$$
(2.76)

in which

$$\alpha_t = \frac{3}{16} \left(\frac{2d}{a_o}\right)^2 \left(1 - \frac{h_o}{d} - \frac{2e}{d}\right)^2$$
$$\alpha_b = \frac{3}{16} \left(\frac{2d}{a_o}\right)^2 \left(1 - \frac{h_o}{d} + \frac{2e}{d}\right)^2$$

The intermediate moment capacity, M_{ν} , for a reinforced beam at which the nominal shear capacity commences to diminish because of increasing moment at the opening is given by

$$M_{\nu} = \frac{\left(1 - \frac{A_{r}F_{yr}}{A_{f}F_{yf}}\right)}{\left(1 + \frac{A_{r}F_{yr}}{A_{f}F_{yf}}\right)}$$
(2.77)

The maximum shear capacity, V_m , of the top and bottom tees of a reinforced beam is

$$V_m = \sqrt{3} \left(\frac{2d}{a_o}\right) \left(\frac{A_r F_{yr}}{A_w F_{yw}}\right) \left(1 - \frac{h_o}{d}\right) \le V_{pb} + V_{pt}$$
(2.78)

3.0 ANALYSIS AND RESULTS

3.1 Introduction

In this section, the three design methods described in Section 2.0 are evaluated. The results from fifty steel beams and thirty-five composite beams are used for comparison. Of the fifty steel beams, nineteen are unreinforced with rectangular openings, ten are unreinforced with circular openings, and twenty-one are reinforced with rectangular openings. Of the thirty-five composite beams, twenty-two have ribbed slabs and thirteen have solid slabs. Two of the beams with solid slabs and one of the beams with ribbed slabs are reinforced at the opening. The proportioning and detailing guidelines presented in Appendix D are also discussed in this section, along with the equations used to calculate resistance factors. The results of six specific areas of investigation are presented in Sections 3.4 - 3.9. The six areas investigated are the effects of (1) varying λ , the factor used in the linear approximation of the von Mises yield function, (2) reducing the tee depth of a reinforced tee to approximate the actual movement of the plastic neutral axis with the addition of reinforcement, (3) limiting P_{ch} , the normal force in the concrete at the high moment end of the opening, by the axial yield capacity of the net steel in a composite tee, (4) limiting the normal force in the reinforcement at an opening by the capacity of the accompanying weld, (5) size of the flanges relative to the web as a function of the design method, and (6) limiting the maximum moment capacity of a perforated beam to the plastic moment capacity of the unperforated beam. These six areas are important because they are refinements, simplifications, and limitations that impact the accurate prediction of shear and moment capacity.

The comparisons made in Sections 3.4 - 3.9 are not based on tests specifically formulated to validate the refinement, simplification, or limitation in question, however. Consequently, the

comparisons, in themselves, may not present a complete picture and the theoretical basis of these comparisons is of greater importance.

Dimensions and properties for the steel and composite beams included in the analysis are contained in Tables 3.1 and 3.2, respectively.

The results obtained using the expressions developed in Section 2.0 and presented in Appendix B to account for the yield strengths of the flanges, web, and reinforcement are summarized in Tables 3.3 - 3.10, and 3.13 - 3.18. Results obtained using the appropriate methods proposed by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984) and Redwood and Cho (1986) are summarized in Tables 3.11, 3.12, 3.19 and 3.20. Table 3.21 is an overall summary of the results of the analysis for all of the methods considered.

3.2 Proportioning and Detailing Guidelines

Proportioning guidelines have been developed for web openings in steel and composite beams which are most recently summarized by Darwin (1990). These appear in Appendix D. The majority of the guidelines help to insure that failure of a beam, as predicted by the design methods presented in Section 2.0, does not occur prematurely.

The design limitations dictated by the proportioning and detailing guidelines for beams used in the analysis are presented in Table 3.3 for steel beams and in Table 3.4 for composite beams. Ten of the beams used in the analysis violate one or more of the proportioning guideleines which are summarized in Table 3.3(f) and Table 3.4(d) for steel and composite beams, respectively. These beams were retained in the analysis because either the violation was related more to detailing practice than to the strength of the beam and/or failure did not occur because of the violation. Twenty-one steel beams and one composite beam tested in previous studies have been excluded from consideration in this analysis due to violations of the proportioning and detailing guidelines. Sixteen steel beams tested by Kim (1980) were excluded because of extremely conservative test/theory ratios for tests with shear acting at the opening. Dimensions and properties, design limitations and results for the design methods presented in this report and the applicable Redwood method for the excluded beams are presented in Appendix E.

3.3 Resistance Factor Determination

Resistance factors appropriate for the design methods presented in this report and design methods proposed by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984), and Redwood and Cho (1986) were determined in accordance with procedures outlined in AISC (1986). The basic equation for determining the resistance factor, ϕ , is

$$\phi = \left(\frac{R_m}{R_n}\right) e^{-0.55\beta V_n} \tag{3.1}$$

in which $R_m =$ mean resistance

 R_n = nominal resistance according to expressions in Section 2.0

 β = reliability index = 3.0

 V_r = coefficient of variation of the resistance

The term R_m/R_n is the average test/theory ratio for a group of beams, expressed as

$$\frac{R_m}{R_n} = \left(\frac{F_{ym}}{F_{yn}}\right) \left(\frac{V_{test}}{V_n}, \frac{M_{test}}{M_n}\right)$$
(3.2)

in which F_{ym}/F_{yn} = mean steel strength/nominal steel strength = 1.07;

This value was determined by Galambos (1978) using a large number of test coupons from steel beams. It serves to account for the additional strength available from steel beams beyond the nominal yield strength.

$$V_{test}$$
 = actual shear capacity at an opening

 V_n = predicted shear capacity at an opening

 M_{test} = actual moment capacity at an opening

 M_n = predicted moment capacity at an opening

The term V_r is the coefficient of variation resulting from several sources of variation, which is given by

$$V_r = \sqrt{V_m^2 + V_c^2 + V_{pm}^2}$$
(3.3)

in which $V_m = \text{coefficient of variation of } F_{ym}/F_{yn} = 0.10 \text{ (Galambos 1978)}$

 V_c = coefficient of variation of construction = 0.05 (Galambos 1978)

 V_{pm} = coefficient of variation of the prediction method (obtained from comparison of predicted strengths with test results)

3.4 Effect of Varying λ

The first of six areas investigated is the effect of varying λ , the variable used in the linear approximation of the von Mises yield function. The effect of varying λ is investigated to establish a value that yields the most accurate predictions of maximum shear capacity by Methods I and III. Two values for λ are considered, 1.207 and 1.414. Donahey and Darwin (1986) used $\lambda =$

1.207 which represents the best uniform approximation of the von Mises yield function. This study uses $\lambda = 1.414$, which represents the practical upper limit for a linear approximation (Fig 2.6). The maximum shear capacities, and the predicted nominal shear and moment capacities for steel and composite beams using $\lambda = 1.414$ are presented in Tables 3.5 - 3.10, 3.13 - 3.18 and 3.21. The maximum shear capacities, and the predicted nominal shear and moment capacities for steel and composite beams using $\lambda = 1.414$ are presented in Tables 3.5 - 3.10, 3.13 - 3.18 and 3.21. The maximum shear capacities, and the predicted nominal shear and moment capacities for steel and composite beams using $\lambda = 1.207$ are presented in Tables G.1 - G.9.

For the fifty steel beams, when $\lambda = 1.414$, the mean test/theory ratios are 1.158, 1.213, and 1.183 and the coefficients of variation are 0.134, 0.179, and 0.150 for Methods I, II, and III, respectively. The corresponding resistance factors for the three methods are 0.929, 0.916, and 0.929. Considering the test/theory means, Method I is the most accurate followed by Method III and Method II. The fact that Method III is more accurate, for the beams considered, than Method II might not be expected considering Method III is a simplification of Method II. However, Method III, with $\lambda = 1.414$, tends to give a better match with the test data because the von Mises yield function does not account for strain hardening, which appears in virtually all of the high shear tests. The higher values of shear strength obtained with Methods I and III with $\lambda = 1.414$ take advantage of this behavior. For the same steel beams, when $\lambda = 1.207$, the mean test/theory ratios are 1.232 and 1.281 and the coefficients of variation are 0.166 and 0.193 for Methods I and III, respectively. The corresponding resistance factors for Methods I and III are 0.947 and 0.949. Method II is not influenced by λ . Considering test/theory means, coefficients of variation, and resistance factors, Method I is the most accurate followed by Method II and Method III, when $\lambda = 1.207$. In general, for the steel beams, using $\lambda = 1.414$ for Methods I and III produces lower test/theory ratios, lower coefficients of variation, and lower resistance factors. In all cases, resistance factors are higher than 0.90.

For the thirty-five composite beams, when $\lambda = 1.414$, the mean test/theory ratios are 1.024, 1.065, and 1.039 and the coefficients of variation are 0.084, 0.088, and 0.092 for Methods I, II, and III, respectively. The corresponding resistance factors for the three methods are 0.870, 0.901, and 0.876. Considering the test/theory means, coefficients of variation, and resistance factors, Method I is the most accurate followed by Methods III and II. For the same composite beams, when $\lambda = 1.207$, the mean test/theory ratios are 1.060 and 1.083 and the coefficients of variation are 0.079 and 0.086 for Methods I and III, respectively. The corresponding resistance factors for Methods I and III are 0.905 and 0.918. Method II is not influenced by λ . Considering test/theory means, coefficients of variation, and resistance factors, Method II and Method III, when $\lambda = 1.207$. In general, for the composite beams, using $\lambda = 1.414$ produces lower test/theory ratios, slightly higher coefficients of variation, and lower resistance factors. In all cases, resistance factors are higher than 0.85. Using $\lambda = 1.414$ for both steel and composite beams produces more accurate predictions of nominal capacity.

3.5 Effect of Reducing Tee Depth for Reinforcement

The effect of reducing the depth of a tee when reinforcement is present for Methods II and III is investigated to establish its significance with test data. Results obtained using Method III with no adjustment in the tee for reinforcement are compared with results obtained using Method III with an adjustment in the tee for reinforcement. The effect of reducing the depth of a tee in the calculation of v in Eq. 2.44 is summarized in Table 3.22 for twenty-one reinforced steel beams and three reinforced composite beams. Reducing the tee depth for reinforcement does reduce the predicted maximum shear capacity and produces slightly more conservative nominal capacities for those beams affected. The overall test/theory ratio mean for the steel beams increases from 1.141 to 1.148, the coefficient of variation does not change and the resistance factor increases from 0.929 to 0.935 when the stub is reduced proportionally by the reinforcement present. The test/theory ratio for the single reinforced composite beam affected (CHO-6) increases from 1.112 to 1.118 when the stub is reduced. The other two beams have very little shear (CHO-7) or no shear (WJE-1) and are thus not affected. Reducing the tee depth by an amount proportional to the reinforcement present does not have a large affect on many other beams because the reinforcement contributes to shear capacity in excess of the maximum permitted by Section D.1.2. This restriction serves to maintain similiar conservatism available with Method I for tees with significant quantities of reinforcement.

3.6 Effect of Limiting P_{ch} by the Net Top Tee Steel

The effect of limiting P_{ch} , the normal force in the concrete slab at the high-moment end of the opening, by the normal force in the net steel in the top tee when $V_{mt} < V_{pt}$ for Methods II and III was investigated to establish if the limitation could be applied accurately and consistently with all three design methods for predicting maximum shear capacity presented in Section 2.0. The basis of comparison is the results obtained from Methods II and III with $\lambda = 1.414$ and P_{ch} not limited to the normal force in the net steel when $V_{mt} < V_{pt}$. Donahey and Darwin (1986) did not limit P_{ch} when $V_{mt} < V_{pt}$ for Methods II and III because this was thought to be unconservative and inconsistent with the assumptions made in the derivation of Methods II and III.

The results of limiting P_{ch} by the net steel when $V_{mt} < V_{pt}$ and $\lambda = 1.414$ are summarized for Method III in Table 3.23. For the D-series beams, the test/theory mean is unchanged at 0.974, the coefficient of variation increases from 0.060 to 0.067 and the resistance factor decreases from 0.845 to 0.841 when the limitation is applied to P_{ch} . For the R-series beams, the test/theory mean decreases from 1.065 to 1.050, the coefficient of variation decreases from 0.087 to 0.057, and the resistance factor increases from 0.902 to 0.913. For the C, G and CHO-series beams the test/theory mean decreases from 1.121 to 1.116, the coefficient of variation increases from 0.076 to 0.080, and the resistance factor decreases from 0.960 to 0.952. For the CHO-series beams (reinforced) the test/theory mean, the coefficient of variation and the resistance factor do not change. For the composite beams as a group, the test/theory mean decrease from 1.048 to 1.043, the coefficient of variation decreases from 0.095 to 0.091 and the resistance factor is unchanged at 0.880. For the thirty-five composite beams considered with $\lambda = 1.414$, the limitation on P_{ck} yields test/theory means closer to 1.000 and smaller coefficients of variation, though the differences are small.

3.7 Effect of Limiting P, by Weld Strength

The effect of limiting the normal force in the reinforcement by the weld strength in determining the maximum shear capacity is checked to establish its significance on the prediction of maximum shear capacity for reinforced beams. The results of this investigation are summarized in Table 3.24. F_r in the beams of the twenty-four reinforced beams was affected by the limitation. Of these nine beams, the maximum shear capacity of only one, CHO-6, was influenced. No change was seen in the maximum shear capacity for the other eight beams because the maximum shear capacity was limited by the plastic shear capacity of the tee even after applying the limitation.

3.8 Effect of Flanges

Because Methods II and III ignore the contribution of the flanges to the secondary bending moments, it is possible, for beams with large A_f / A_w ratios, that these two methods could significantly underpredict the maximum shear capacity when compared to Method I. Fig. 3.86 (refer to Table 3.25 for selected members and other study parameters) illustrates that, as the A_f / A_w

ratio increases, the difference between Methods I and III also increases and can be very significant. Within the typical range of A_f / A_w , 0.40 to 0.80, the difference between the two methods is never larger than 5% of V_p . For A_f / A_w ratios larger than 0.80, for sections typically used as beams, the difference between the two methods is as high as 16% (for a W12x58). A larger difference between the two methods occurs for a W14x109, but this section is not typically used as a beam. The effect of ignoring the contribution of the flanges to the secondary bending moments for sections typically used as beams with moderate flange areas is not significant. However, unnecessarily conservative predictions of shear capacity can result for some beam sections using Methods II or III, if the A_f / A_w ratio exceeds 0.80.

3.9 Effect of Limiting M_m by M_p

The effect of limiting the maximum moment capacity by the plastic moment capacity of the unperforated section is summarized in Table 3.26. All but two of the twenty-one reinforced steel beams are affected by the limitation. As a group, the test/theory ratio mean increased from 1.133 to 1.148, the coefficient of variation dropped from 0.128 to 0.122, and the resistance factor increased from 0.916 to 0.935. Insuring that $M_m \leq M_p$ provides slightly more conservative predictions of strength than when M_m is not limited to M_p .

3.10 Redwood Design Methods

For the purpose of comparison with the current work, nominal shear and moment capacities are obtained for all of the steel and composite beams considered in the report using applicable methods developed by Redwood and his coworkers. Maximum capacities are calculated for the steel beams using procedures proposed by Redwood and Shrivastava (1980) and are given in Table 3.11 for beams included in the analysis and in Table E.6 for beams not used

in the analysis. Equations proposed by Redwood and Shrivastava (1980) are modified in Section 2.6 to account for the individual yield strengths of the flanges, web and reinforcement. Tables 3.11 and E.6 contain intermediate values, defined in the respective table and the respective reference, used to calculate the maximum shear capacities. Maximum shear capacities are calculated for thirteen composite beams with ribbed-slabs tested by Donahey and Darwin (1986) (D-series) using procedures presented by Redwood and Poumbouras (1984) which are given in Table 3.12. Capacities for nine composite beams with ribbed slabs tested by Redwood and Poumbouras (1984) (R-series) are taken from published values. The capacities for the remaining unreinforced composite beams with solid slabs are taken from values published by Redwood and Cho (1986). The predicted nominal shear and moment capacities for the steel and composite beams are presented in Tables 3.19 and 3.20, respectively. Capacities were not calculated or provided for beams CHO-6, CHO-7, and WJE-1 because no Redwood method has been published which accounts for reinforcement in composite beams. Several of the calculated capacities for composite beams do not agree with capacities published by Redwood. These discrepencies may be due to the way in which the shear connector capacities are calculated (see Donahey and Darwin (1986)).

Two moment-shear interaction procedures have been proposed by Redwood and Shrivastava (1980). Both require the calculation of an intermediate value for the moment, M_{ν} , at which interaction with shear begins to have an influence on the moment capacity, M_m . The first interaction diagram is composed of two straight lines connecting the maximum shear capacity, V_m , to M_{ν} , and M_{ν} to the maximum moment capacity, M_m (see Fig. 3.87). This method is referred to as Redwood(L). The second interaction procedure used by Redwood uses a straight line to connect V_m to M_{ν} , and a circular arc to connect M_{ν} to M_m (see Fig. 3.88). This procedure is referred to as Redwood(C). Both interaction procedures are used for the steel beams, while only Redwood(C) is used for the composite beams.

3.11 Comparison of Design Methods with Test Results

In this section the nominal shear and moment capacities obtained using the design methods discussed in Section 2.0, using $\lambda = 1.414$, and those by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984) and Redwood and Cho (1986) are compared with test results. The analysis includes fifty steel beams and thirty-five composite beams. A tabular summary of results for both steel and composite beams is given in Table 3.21. Individual moment-shear interaction curves and the respective beam test values are given in Figs. 3.1 - 3.85 for the steel and composite beams. Graphical comparisons of the predicted strengths using Method III and the actual test values for the steel and composite beams are given in Figs. 3.89 and 3.90, respectively.

3.11.1 Steel Beams

Nineteen of the fifty steel beams are unreinforced with rectangular openings, ten are unreinforced with circular openings, and twenty-one are reinforced with rectangular openings. The beams with unreinforced rectangular openings have test/theory means of 1.213, 1.302, 1.250, 1.265, and 1.391 with coefficients of variation of 0.142, 0.211, 0.167, 0.191 and 0.195 for Methods I, II, III, Redwood(C), and Redwood(L), respectively. The corresponding resistance factors are 0.963, 0.939, 0.960, 0.939, and 1.027. The beams with unreinforced circular openings have test/theory means of 1.088, 1.145, 1.127, 1.111, and 1.264 with coefficients of variation of 0.119, 0.154, 0.142, 0.140 and 0.131 for Methods I, II, III, Redwood(C), and Redwood(L), respectively. The corresponding resistance factors are 0.889, 0.895, 0.895, 0.885, and 1.018. The

group of beams with reinforced rectangular openings have test/theory means of 1.143, 1.166, 1.148, 1.142, and 1.362 with coefficients of variation of 0.121, 0.125, 0.122, 0.151 and 0.195 for Methods I, II, III, Redwood(C), and Redwood(L), respectively. The corresponding resistance factors are 0.932, 0.946, 0.935, 0.896, and 1.006. Overall, the fifty steel beams have test/theory means of 1.158, 1.213, 1.183, 1.183, and 1.353 with coefficients of variation of 0.134, 0.179, 0.150, 0.174 and 0.185 for Methods I, II, III, Redwood(C), and Redwood(L), respectively. The corresponding resistance factors are 0.929, 0.916, 0.930, 0.900, and 1.013. Generally, Method I provides test/theory means closest to 1.000, followed by Method III, Redwood(C), Method II, and Redwood(L). Method I gives the smallest coefficients of variation, followed by Method III, Redwood(C), Method II, and Redwood(C), Method II, Method II, Method II, and Redwood(C).

3.11.2 Composite Beams

Of the thirty-five composite beams, twenty-one have ribbed slabs and unreinforced rectangular openings, eleven have solid slabs and unreinforced rectangular openings, one has a ribbed slab and a reinforced rectangular opening, and two have solid slabs and reinforced rectangular openings. Methods I, II and III are applied to all thirty-five beams. The Redwood(C) method (Redwood and Poumbouras (1984) and Redwood and Cho (1986)) is applied to the thirty-two beams without reinforcement. Redwood(L) is not applicable. The group of beams with ribbed slabs and unreinforced rectangular openings have test/theory means of 0.995, 1.037, 1.006, and 1.090 with coefficients of variation of 0.071, 0.069, 0.072, and 0.121 for Methods I, II, III, and Redwood(C), respectively. The corresponding resistance factors are 0.856, 0.893, 0.864, and 0.889. The beams with solid slabs and unreinforced rectangular openings have test/theory means of 1.092, 1.141, 1.116, and 1.207 with coefficients of variation of 0.075, 0.080, and 0.124

for Methods I, II, III, and Redwood(C), respectively. The corresponding resistance factors are 0.943, 0.978, 0.952, and 0.981. The beams with ribbed and solid slabs with reinforced rectangular openings have test/theory means of 0.978, 0.985, and 0.983 with coefficients of variation of 0.110, 0.122, and 0.119 for Methods I, II, and III, respectively. The corresponding resistance factors are 0.808, 0.802, and 0.803. These low values are due to the fact that only three beams are used for this calculation, and the results are dominated by a single member (WJE-1) for which failure was controlled by shear connector capacity (Wiss et al. 1984). Thus these values are not considered to be representative of what is expected in practice.

The thirty-five composite beams [thirty-two for Redwood(C)] have test/theory means of 1.024, 1.065, 1.039, and 1.131, with coefficients of variation of 0.084, 0.088, 0.092, and 0.128 for Methods I, II, III, and Redwood(C), respectively. The corresponding resistance factors are 0.870, 0.901, 0.875, and 0.895. Overall, Method I provides test/theory means closest to 1.000, followed by Method III, Method II, and Redwood(C). Method I provides the smallest coefficients of variation, followed by Method II, Method III, and Redwood(C). Method I yields the lowest resistance factor followed by Method III, Redwood(C), and Method II.

3.11.3 Recommendations

Method III, the simplest of the design methods for determining maximum shear capacity, coupled with the cubic moment-shear interaction procedure proposed by Donahey and Darwin (1986) is recommended for design. Resistance factors of 0.90 and 0.85, applied to shear and bending, are recommended for the design of steel and composite beams, respectively. As illustrated in Figs. 3.89 and 3.90, none of the beams used for the comparisons had a strength below the product of the resistance factor and the predicted strength.

43

SECTION 4.0 SUMMARY AND CONCLUSIONS

4.1 Summary

Three design methods, originally developed by Donahey and Darwin (1986), for determining the maximum shear capacity of composite beams with unreinforced web openings are extended to include steel and composite beams with or without reinforcement at the opening. The three design methods incorporate simplifying assumptions that permit closed-form solutions for maximum shear capacity. The first method assumes that the neutral axes for secondary bending lie in the flanges of the top and bottom tees and defines the interaction of shear and normal stresses by a linear approximation of the von Mises yield function. The second method ignores the contribution of the flanges to secondary bending moments and employs the von Mises yield function to define the interaction of shear and normal stresses. The third method ignores the contribution of the flanges to secondary bending moments and defines the interaction between shear and normal stresses with a linear approximation of the von Mises yield function. Simplified design expressions for the maximum moment capacity of steel and composite beams with web openings are presented. Six refinements of the design methods are investigated to determine their significance in predicting member strengths. Simplified design expressions developed by Darwin (1990) for determining the maximum moment capacity of steel and composite beams at web openings are summarized. The accuracy and ease of application of the design methods presented in this report (Methods I, II, and III) and applicable procedures proposed by Redwood and Shrivastava (1980), Redwood and Poumbouras (1984), and Redwood and Cho (1986) are compared with experimental results of fifty steel beams and thirty-five composite beams. Resistance factors are calculated for use in LRFD of structural steel buildings.

4.2 Conclusions

Based on the work presented in this report, the following conclusions can be made:

1. For slender tees, the predictions of normal stress made by the linear approximation of the von Mises yield function, when $\lambda = 1.414$, can be as much as 41% higher than the normal stress predicted by the von Mises yield function. Considering practical design limitations on opening sizes (Appendix D), the normal stress is overpredicted by 26.3%. This translates into a maximum shear capacity that is overpredicted by 3.5% of the *plastic* shear capacity of a tee when considering the design limitations presented in Appendix D.

2. For stocky tees, the linear approximation of the von Mises yield function can overpredict the shear stress in a tee by as much as 9.7% when $\lambda = 1.414$ and $\upsilon = 0.717$. This translates into a difference in predicted maximum shear capacity of 9.0% of the plastic shear capacity of a tee. While this difference is signicant, such low values of υ are very unlikely to occur in practice.

3. Using $\lambda = 1.414$ with Methods I and III, instead of 1.207, for both steel and composite beams produces more accurate predictions of nominal capacity and more consistent resistance factors for different opening and slab types thus eliminating unnecessary conservatism from potential designs.

4. Unnecessarily conservative predictions of shear capacity can result for some beam sections using Methods II or III, if the ratio of the area of the flange to the area of the web, A_f/A_w , exceeds 0.80.

5. The effect of reducing the tee depth by an amount proportional to the reinforcement present, when calculating the maximum shear capacity at an opening, did not have a large effect in many of the reinforced beams considered, because the reinforcement contributed to shear capacity in excess of the maximum permitted by Section D.1.2. The procedure, however, serves

to maintain conservatism similiar to that obtained with Method I for tees with significant quantities of reinforcement.

6. For the thirty-five composite beams considered, with $\lambda = 1.414$, consistently limiting P_{ch} by the axial yield capacity of the top tee steel gives test/theory means closer to 1.0 and smaller coefficients of variation, than when P_{ch} is not limited by the net top tee steel.

7. Insuring that $M_m \leq M_p$ provides slightly more conservative predictions of moment capacity than when M_m is not limited to M_p .

8. Insuring that the normal force in the reinforcement is less than the capacity of the corresponding weld provides predictions of shear capacity that are more conservative than when the normal force in the reinforcement is not limited by the weld capacity.

9. For the steel beams, Method I provides test/theory means closest to 1.0, followed by Method III, Redwood(C), Method II, and Redwood(L). Method I gives the smallest coefficients of variation, followed by Method III, Redwood(C), Method II, and Redwood(L). For the group of steel beams, Redwood(C) yields the lowest resistance factor followed by Method II, Method II, Method II, Method III, and Redwood(L). For the composite beams, Method I provides test/theory means closest to 1.0, followed by Method II, Method III, and Redwood(C). Method I yields the smallest coefficients of variation, followed by Method II, Method III, and Redwood(C). Method I yields the smallest coefficients of variation, followed by Method II, Method III, and Redwood(C). Method I yields the smallest the lowest resistance factor followed by Method I gives the lowest resistance factor followed I.

10. Methods proposed by Redwood and Shrivastava (1980), Redwood and Poumbouras (1986) and Redwood and Cho (1986) for determining shear and moment capacity for steel beams, composite beams with ribbed slabs, and composite beams with solid slabs, respectively, are generally more complex than the methods in this report and do not offer any additional accuracy.

11. Method III coupled with the moment-shear interaction procedures proposed by Donahey and Darwin (1986) is easily applied and provides strength predictions that are in excellent agreement with test data.

12. Resistance factors for shear and bending of 0.90 and 0.85 are appropriate for steel and composite beams, respectively.

7

REFERENCES

Aglan, Ahmed A., and Qaqish, Samih. (1982). "Plastic Behavior of Beams with Mid-depth Web Openings," AISC Engineering Journal, Vol. 19, No.1, pp. 20-26.

Aglan, Ahmed A., and Redwood, Richard G. (1974). "Web Buckling in Castellated Beams," Proceedings, Part 2, Institution of Civil Engineering (London), Vol. 57, June, pp. 307-320.

Bower, John E. (1968). "Ultimate Strength of Beams with Rectangular Holes," Journal of the Structural Division, ASCE, Vol. 94, No. ST 6, June, pp. 1315-1337.

Cato, S. L. (1964). "Web Buckling Failure of Built-up Girders with Rectangular Holes," M.S. Thesis, Oregon State University, Corvallis, Oregon.

Cho, Soon Ho. (1982). "An Investigation on the Strength of Composite Beams with Web Openings," M.S. Arch. Eng. Thesis, Hanyong University, Seoul, Korea, Dec., 270 pp.

Cho, Soon Ho, and Redwood, Richard G. (1986). "The Design of Composite Beams with Web Openings," <u>Structural Engineering Series</u> No. 86-2, McGill University, Montreal, Quebec, Canada, June, 66 pp.

Clawson, William C., and Darwin, David. (1980). "Composite Beams with Web Openings," <u>SM</u> <u>Report</u> No. 4, University of Kansas Center for Research, Lawrence, Kansas, Oct., 209 pp.

Clawson, William C., and Darwin, David. (1982a). "Tests of Composite Beams with Web Openings," Journal of the Structural Division, ASCE, Vol. 108, No. ST1, Jan., pp. 145-162.

Clawson, William C., and Darwin, David. (1982b). "Strength of Composite Beams with Web Openings," Journal of the Structural Division, ASCE, Vol. 108, No. ST3, Mar., pp. 623-641. Discussions by R. G. Redwood and Closure to Discussion, Vol. 109, No. ST5, Apr. 1983, pp. 1307-1309.

Congdon, Judith G., and Redwood, Richard G. (1970). "Plastic Behavior of Beams with Reinforced Holes," Journal of the Structural Division, ASCE, Vol. 96, No. ST9, Sep., pp. 1933-1955.

Cooper, Peter B., and Snell, Robert R. (1972). "Tests on Beams with Reinforced Web Openings," Journal of the Structural Division, ASCE, Vol. 98, No. ST3, Mar., pp. 611-632.

Cooper, Peter B.; Snell, Robert R.; and Knostman, Harry D. (1972). "Failure Tests on Beams with Eccentric Web Holes," <u>Journal of the Structural Division</u>, ASCE, Vol. 103, No. ST9, Sep., pp. 1731-1737.

Darwin, David. (1984). "Composite Beams with Web Openings," <u>Proceedings</u>, National Engineering Conference, American Institute of Steel Construction, Chicago, Illinois, Mar., 17 pp. Also, <u>Journal of the Boston Society of Civil Engineers Section</u>, ASCE, Vol. 71, No. 1 & 2, 1985, pp. 67-83.

Darwin, David. (1988). "Behavior and Design of Composite Beams with Web Openings," Chapter 3, <u>Steel-Concrete Composite Structures: Stability and Strength</u>, R. Narayanan, Ed., Applied Science Publishers, London and New York, 1988, pp. 53-78.

Darwin, David. (1990). <u>Design of Steel and Composite Beams with Web Openings</u>, American Institute of Steel Construction, Chicago, IL, 63 pp.

Darwin, David, and Donahey, Rex C. (1988). "LRFD for Composite Beams with Unreinforced Web Openings," Journal of Structural Engineering, ASCE, Vol. 114, No. 3, Mar., pp. 535-552.

Donahey, Rex C. (1987). "Deflections of Composite Beams with Web Openings," <u>Building</u> <u>Structures, Proceedings</u>, ASCE Structures Congress, D. R. Sherman, Ed., Orlando, Florida, Aug., pp. 404-417.

Donahey, Rex C., and Darwin, David. (1986). "Performance and Design of Composite Beams with Web Openings," <u>SM Report</u> No. 18, University of Kansas Center for Research, Lawrence, Kansas, Apr., 267 pp.

Donahey, Rex C., and Darwin, David. (1988). "Web Openings in Composite Beams with Ribbed Slabs," Journal of Structural Engineering, ASCE, Vol. 114, No. 3, Mar., pp. 518-534.

Donoghue, C. Michael. (1982). "Composite Beams with Web Openings: Design," Journal of the Structural Division, ASCE, Vol. 108, No. ST12, Dec., pp. 2652-2667.

Dougherty, Brian K. (1980). "Elastic Deformation of Beams with Web Openings," Journal of the Structural Division, ASCE, Vol. 106, No. ST1, Jan., pp. 301-312.

Dougherty, Brian K. (1981). "Buckling of Web Posts in Perforated Beams," Journal of the Structural Division, ASCE, Vol. 107, No. ST 3, Mar., pp. 507-519.

Ellingwood, Bruce; Galambos, Theodore V.; MacGregor, James G.; and Cornell, C. Allin, (1980). <u>Development of a Probability Based Load Criterion for American National Standard</u> <u>A58-Building Code Requirements for Minimum Design Loads in Buildings and Other Structures</u>, National Bureau of Standards, Washington, DC, June.

Frost, Ronald W., and Leffler, Robert E. (1971). "Fatigue Tests of Beams with Rectangular Web Holes," Journal of the Structural Division, ASCE, Vol. 97, No. ST2, Feb., pp. 509-527.

Galambos, Theodore V. (1978). "Proposed Criteria for Load and Resistance Factor Design of Steel Building Structures," <u>Steel Research for Construction Bulletin</u> No. 27, American Iron and Steel Institute, Washington, DC, Jan.

Galambos, Theodore V., and Ravindra, Mayasandra K. (1973). "Tentative Load and Resistance Factor Design Criteria for Steel Buildings," <u>Research Report</u> No. 18, Civil Engineering Department, Washington University, St. Louis, Missouri, Sep. Galambos, Theodore V., and Ravindra, Mayasandra K. (1976). "Load and Resistance Factor Design Criteria for Composite Beams," <u>Research Report</u> No. 44, Civil Engineering Department, Washington University, St. Louis, Missouri, Apr.

Granade, Charles J. (1968). "An Investigation of Composite Beams having Large Rectangular Openings in Their Webs," M.S. Thesis, University of Alabama, at University, Alabama, 61 pp.

Hansell, William C.; Galambos, Theodore V.; Ravindra, Mayasandra K.; and Viest, Ivan M. (1978). "Composite Beam Criteria in LRFD," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, Sep., pp. 1409-1426.

Kim, Kyu Suk. (1980). "An Experimental Study of H-Shape Beams with Hole in Web," (In Korean), Journal of Architectural Institute of Korea, Vol. 24, No. 95, Aug., pp. 76-85.

Knostman, Harry D.; Cooper, Peter B.; and Snell, Robert R. (1977). "Shear Force Distribution at Eccentric Web Openings," Journal of the Structural Division, ASCE, Vol. 103, No. ST6, June, pp. 1276-1221.

Kussman, Richard L., and Cooper, Peter B. (1976). "Design Example for Beams with Web Openings," AISC Engineering Journal, Vol. 13, No. 2, pp. 48-56.

Load and Resistance Factor Design Manual of Steel Construction. (1986). First Edition, American Institute of Steel Construction, Inc., Chicago, IL.

Load and Resistance Factor Design Specification for Structural Steel Buildings. (1986). American Institute of Steel Construction, Inc., Chicago, Illinois.

Lupien, Roger, and Redwood, Richard G. (1978). "Steel Beams with Web Openings Reinforced on One Side," Canadian Journal of Civil Engineering, Vol. 5, No. 4, Dec., pp. 451-461.

McCormick, Michael M. (1972a). "Open Web Beams - Behavior, Analysis and Design," <u>BHP</u> <u>Report</u>, MRL 17/18, Melbourne Research Laboratories, The Broken Hill Proprietary Company Limited, Clayton, Vic., Australia, Feb., 195 pp.

McCormick, Michael M. (1972b). Discussion of "Suggested Design Guides for Beams with Web Holes," Journal of the Structural Division, ASCE, Vol. 98, No. ST12, Dec., pp. 2814-2816.

Poumbouras, George. (1983). "Modification of a Theory Predicting the Shear Strength of Composite Beams with Large Web Openings," <u>Project Report</u> No. U83-20, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada, Apr., 109 pp.

Rectangular, Concentric and Eccentric Unreinforced Web Penetrations in Steel Beams - A Design Aid. (1986). Revised Ed., ADUSS 27-8482-02, U.S. Steel Corp., Pittsburgh, Pennsylvania, Apr., 32pp.

Rectangular, Concentric and Eccentric Reinforced Web Penetrations in Composite Steel Beams - A Design Aid. (1984). ADUSS 27-8532-01, U.S. Steel Corp., Pittsburgh, Pennsylvania, Oct., 27 pp. Rectangular, Concentric and Eccentric Unreinforced Web Penetrations in Composite Steel Beams - A Design Aid. (1981). ADUSS 27-7108-01, U.S. Steel Corp., Pittsburgh, Pennsylvania, June, 28 pp.

Redwood, Richard G. (1968a). "Plastic Behavior and Design of Beams with Web Openings," <u>Proceedings</u>, First Canadian Structural Engineering Conference, Toronto, Canadian Steel Industries Construction Council, Toronto, Canada, Feb., pp. 127-138.

Redwood, Richard G. (1968b). "Ultimate Strength of Beams with Multiple Openings," <u>Preprint</u> No. 757, ASCE Structural Engineering conference, Pittsburgh, Oct.

Redwood, Richard G. (1969). "The Strength of Steel Beams with Unreinforced Web Holes," <u>Civil</u> Engineering and Public Works Review (London), Vol. 64, No. 755, June, pp. 559-562.

Redwood, Richard G. (1971). "Simplified Plastic Analysis for Reinforced Web Holes," <u>AISC</u> Engineering Journal, Vol. 8, No. 3, pp. 128-131.

Redwood, Richard G. (1983). "Design of I-Beams with Web Perforations," Chapter 4, <u>Beams and</u> <u>Beam Columns: Stability and Strength</u>, R. Narayanan, Ed., Applied Science Publishers, London and New York, pp. 95-133.

Redwood, Richard G. (1986). "The Design of Composite Beams with Web Openings," <u>Proceedings</u>, First Pacific Structural Steel Conference, Aukland, New Zealand, Vol. 1, Aug.,pp. 169-185.

Redwood, Richard G.; Baranda, Hernan; and Daly, Michael J. (1978). "Tests of Thin-Webbed Beams with Unreinforced Holes," Journal of the Structural Division, ASCE, Vol. 104, No. ST3, Mar., pp. 577-595.

Redwood, Richard G., and McCutcheon, John O. (1968). "Beam Tests with Unreinforced Web Openings," Journal of the Structural Division, ASCE, Vol. 94, No. ST1, Jan., pp. 1-17.

Redwood, Richard G., and Poumbouras, George. (1983). "Tests of Composite Beams with Web Holes," Canadian Journal of Civil Engineering, Vol. 10, No. 4, Dec., pp 713-721.

Redwood, Richard G., and Poumbouras, George. (1984). "Analysis of Composite Beams with Web Openings," Journal of Structural Engineering, ASCE, Vol. 110, No. ST9, Sep., pp. 1949-1958.

Redwood, Richard G., and Shrivastava, Suresh C. (1980). "Design Recommendations for Steel Beams with Web Holes," <u>Canadian Journal of Civil Engineering</u>, Vol. 7, No. 4, Dec., pp 642-650.

Redwood, Richard G., and Uenoya, Minoru. (1979). "Critical Loads for Webs with Holes," Journal of the Structural Division, ASCE, Vol. 105, No. ST10, Oct., pp. 2053-2076.

Redwood, Richard G., and Wong, Patrick K. (1982). "Web Holes in Composite Beams with Steel Deck," <u>Proceedings, Eighth Canadian Structural Engineering Conference</u>, Canadian Steel Construction Council, Willowdale, Ontario, Canada, Feb., 41 pp.

Structural Investigation of a Typical Floor Beam at the 200 West Adams Building, Chicago, Illinois. (1984). WJE No. 840795, Wiss, Janney, Elstner Associates, Inc., Northbrook, Illinois, Aug., 21 pp.

"Suggested Design Guides for Beams with Web Holes." (1971). By the Subcommittee on Beams with Web Openings of the Task Committee on Flexure Members of the Structural Division, John E. Bower, Chmn., Journal of the Structural Division, ASCE, Vol. 97, No. ST11, Nov., pp. 2707-2728. Closure to Discussion, Vol. 99, No. ST.6, June 1973, pp. 1312-1315.

Todd, David M., and Cooper, Peter B. (1980). "Strength of Composite Beams with Web Openings," Journal of the Structural Division, ASCE, Vol. 106, No. ST2, Feb., pp. 431-444.

Uenoya, Minoru, and Redwood, Richard G. (1978). "Buckling of Webs with Openings," Computers and Structures, Vol. 9, No. 2, pp. 191-199.

Wang, Tsong-Miin; Snell, Robert R.; and Cooper, Peter B. (1975). "Strength of Beams with Eccentric Reinforced Holes," Journal of the Structural Division, ASCE, Vol. 101, No. ST9, Sep., pp. 1783-1799.

Redwood, Bleanet, C. (1998), "The Design of Compute Brann with Vett Openings," <u>Proceedings</u>, First Parille Structure Steel Conference, Aulitani, New Zesland, Vol. 1, Aug., pro (4)-185.

Redwoed: Richard G.: Barneda, Barneda, Barneda and Dely, Michael J. (1978), "Tests (ATT-r-Webber, Servers with Consistenced Hobes," <u>Journal of the Simuranti Division</u>, ASCE, Vol. 105, No. 273, Nucl. pp. 577-595.

Resistor: Cohurd G., and M., Natabaoa, John O. (1983). "Beam Tests with Unstinforted Web dynamics. Journal of the Structural Division. ASCE: Vol. 94, No. 571, Jun., pp. (-17.)

Rolwood, Richard G., and Permission Courge. (1983). "Tena of Composite Beams with Web Molecular product Council of Court Engineering, Vol. 10, No. 4, Dec. op 713-721.

Kedwood, Machand G., and Poundouran, George. (1994). "Analysis of Composing Hunter with Web Openings." Journal of Structural Engineering. ASCE, Vol. (10, No. ST9, Sec., pp. 1997-1955).

Redwood, Richard G., and Shrivasaava, Sureau C. (1980). "Design Recenterentations for Surei Beams with Web Holes," Canadian Journal of Civil Engineering, Vol. 7, No. 4, Con., pp. 562-550.

Andwood, Richard G., and Devrye, Kinone (1979), "Edifical Lords fly Webs with Boles," Journal of the Structural Division, ASCE, Vol. 105, No. ST10, Oct., pp. 2035-2073.

Redwood, Richard G., and Wring, Patrick K. (1982), "Web Holes in Composite Bonne with Steel Deck," <u>Proceedings Effektit Canadian Structural Engineering Conditions Steel</u> Construction Council, Willowfale, Ontario, Canada, Feb., 41 pp.
Table 3.0 References Corresponding to Beam Designations

Designation	Reference	
Steel Beams		
В	Bower (1968)	
CL	Clawson and Darwin (1980)	
CR	Congdon and Redwood (1970)	
CS	Cooper and Snell (1972)	
CSK	Cooper, Snell, and Knostman (1972)	
DO	Doughterty (1980)	
KKS	Kim (1980)	
RBD	Redwood, Baranda, and Daly (1978)	
RL	Lupien and Redwood (1978)	
RM	Redwood and McCutcheon (1968)	
Composite Bean	ns	
С	Clawson and Darwin (1980)	
D	Donahey and Darwin (1986)	
СНО	Cho (1982)	
G	Granade (1968)	
R	Redwood and Poumbouras (1983)	
WJE	Wiss, Janney, and Elstner (1984)	

Table 3.1 Material and Section Properties for Steel Beams

(in inches unless noted)

	Web			Open	ing		Rein	forcemen	t		Тор Т	'ee			Botto	m Tee		
m(l)			F _{yw}			12				F_{yr}				F _{yf}		h	,	F _{yf}
Test	d	I _w	(KS1)	D,	no	a,	р,	4,	у,	(KSI)	S	Df	4	(KSI)	3	Uf	4	(K51)
RBD-C1	16.970	0.276	46.500	4.670	4.203	2.101					6.384	7.210	0.423	43.100	6.384	7.210	0.423	43.100
RM-1A	8.125	0.246	51.400	4,500	4.050	2.025					2.038	5.250	0.322	45.500	2.038	5.250	0.322	45.500
RM-1B	8 1 2 5	0.242	51 600	4,500	4.050	6.525					2.030	5.250	0.317	44.900	2.038	5.250	0.317	44.900
RM-2A	8.125	0.249	54.400	4.500	4.050	2.025					2.038	5.250	0.324	50.900	2.038	5.250	0.324	50.900
RM-2B	8.040	0.233	45 300	4 500	4.050	6.525					1.995	5.250	0.296	46.400	1.995	5.250	0.296	46.400
RM-2C	8.040	0.234	44 200	4.500	4.050	2.025					1.995	5.220	0.296	43.000	1.995	5.220	0.296	43.000
RM-3A	8 1 25	0 245	52 200	4 500	4 050	2 025					2.038	5.250	0.323	45.000	2.038	5.250	0.323	45.000
PM.dA	8 1 25	0.245	52 100	4 500	4.050	2 025					2.038	5.250	0.322	45.700	2.038	5.250	0.322	45,700
RM.4R	8 1 25	0 244	51.000	4 500	4.050	6 5 2 5					2.038	5.250	0.322	43.000	2.038	5.250	0.322	43.000
RM-4D	8 1 25	0 246	58.000	4 500	4.050	2 025					2.038	5.250	0.322	42.800	2.038	5.250	0.322	42.800
CP.1A	0.800	0.240	57.000	4.500	5 500	8 750	2 720	0.253	0.326	37 000	2195	5 780	0.324	43 100	2 200	5,780	0.324	43,100
CR-1A	14 130	0.326	41 300		7.000	10.460	2813	0.381	0.383	43 700	3 565	6 770	0.496	38,800	3.565	6.770	0.496	38,800
CR-2A	14.130	0.326	41.300		7.000	10.460	2.813	0.381	0.383	43 700	3 565	6 770	0.496	38 800	3 565	6.770	0.496	38.800
CR-2D	14.130	0.320	55 800		7.000	10.450	2 720	0.368	0.267	30 800	3 610	6.680	0.490	44 600	3 610	6.680	0.490	44.600
CR-2C	14.220	0.305	55.800		7,000	10.450	2 720	0.368	0.267	30 800	3.610	6 680	0.490	44 600	3,610	6.680	0.490	44,600
CR-2D	14.220	0.305	41 200		7.000	10,450	5 313	0.300	0.207	43 700	3 565	6 7 70	0.496	38 800	3 565	6 770	0.496	38.800
CR-JA	14.130	0.320	41.300		7.000	10.400	5 220	0.361	0.303	33.100	3,610	6.680	0.490	44 600	3.610	6 680	0.490	44 600
CR-3D	14.220	0.303	55.800		7.000	12.080	3.230	0.301	0.340	30,800	3,610	6.680	0.490	44.600	3.610	6 680	0.490	44 600
CR-4A	14.220	0.305	55.800		7.000	13.980	2.720	0.308	0.340	39.000	3.610	6 690	0.490	44.600	3.610	6 680	0.490	44 600
CR-4B	14.220	0.305	55.800		7.000	13.980	2 7 20	0.208	0.240	39.800	2.610	6.680	0,490	44.600	2 610	6.680	0.490	44.600
CR-JA	14.220	0.305	33.800		9.000	13.440	3.770	0.371	0.303	20.000	2.010	6.700	0.490	40.500	2.620	6 700	0.486	40.500
CR-7B	14.270	0.317	47.700		7.030	10.570	2.817	0.378	0.338	39.900	3,620	6.700	0.480	40.500	3.620	6.700	0.486	40.500
CR-7D	14.270	0.317	47.700		7.0.30	10.570	2.817	0.378	0.238	39.900	3.020	0.700	0.480	40.300	2.045	2.025	0.400	44.800
CSK-2	16.130	0.345	46.070		6.000	9.000	4.340	0.250	0.375	43.420	3.065	1.035	0.363	45.430	7.005	1.033	0.303	44.890
CSK-5	16.010	0.305	44.710		6.000	12.000	4.305	0.250	0.375	42.720	3.005	0.995	0.505	42.030	7.005	0.993	0.505	43.940
CSK-6	16.010	0.305	44.710		8.000	16.000	4.305	0.250	0.375	35.520	6.005	6.995	0.505	42.630	2.005	6.995	0.505	43.940
CSK-7	16.010	0.305	44.710		8.000	12.000	4.305	0.250	0.375	35.520	6.005	6.995	0.505	42.630	2.005	6.995	0.505	43.940
CS-1	12.060	0.335	37.500		6.000	9.000	4.340	0.375	0.438	34.700	3.030	8.045	0.575	33.000	3.030	8.045	0.575	33.000
CS-2	12.060	0.335	36.100		6.000	9.000	4.340	0.375	0.438	35.000	3.030	8.045	0.575	33.700	3.030	8.045	0.575	33.700
CS-3	12.060	0.335	37.400		6.000	9.000	3.340	0.500	0.625	33.100	3,030	8.045	0.575	32.200	3.030	8.045	0.575	32.200
RL-5	16.330	0.274	47.900		7.160	17.810	2.188	0.249	0.000	38.130	4.585	6.980	0.416	41.240	4.585	6.980	0.416	41.240
RL-6	16.350	0.266	49.960		10.720	26.760	2.766	0.372	0.000	44.750	2.815	6.940	0.423	40.340	2.815	6.940	0.423	40.340
B-1	15.940	0.314	44.000		7.440	9.000					4.250	7.165	0.420	36.200	4.250	7.165	0.420	36,200
B-2	15.810	0.300	40.200		7.112	9.000					4.349	7.125	0.420	35.600	4.349	7.125	0.420	35.600
B-3	15.880	0.310	37.700		7.320	9.000					4.280	7.094	0.425	33.700	4.280	7.094	0.425	33.700
B-4	15.800	0.313	43.700		7.160	7.300					4.320	7.094	0.419	35.000	4.320	7.094	0.419	35.000
CL-4B	17.875	0.343	52.000		10.813	21.625					3.000	7.500	0.485	46.390	3.060	7.500	0.485	44.890
CR-6A	14.220	0.305	55.800		7.000	10.450					3.610	6.680	0.490	44.600	3.610	6.680	0.490	44.600
CSK-1	16.130	0.345	44.790		6.000	9.000					3.065	7.035	0.565	45.980	7.065	7.035	0.565	46.060
DO-1	7.920	0.232	52.210		2.362	7.087					2.779	5.275	0.315	45.690	2.779	5.275	0.315	45.690
DO-2	7.920	0.232	52.210		4.724	9.449					1.598	5.275	0.315	45.690	1.600	5.275	0.315	45.690

Table 3.1 (continued)

	Web	1.22	100	Openin	g	Reinfo	orcement	- 10	i - 10	Тор	Tee	en n	11-12-1	Во	ttom Tee	10	1.14	
Test ⁽¹⁾	d	<i>L_</i>	F _{yw} (ksi)	D.	h _a a _a	<i>b</i> ,	t,	у,	F _{yr} (ksi)	S	ь,	<i>t,</i>	F _{sf} (ksi)	s	ь,	4	F _{sf} (ksi)	
DO-3	7.920	0.232	52.210	2	.362 7.087					1.598	5.275	0.315	45.690	3.960	5.275	0.315	45.690	
DO-4	7.822	0.256	51.490	3	.543 9.449					1.550	5.198	0.324	47.140	2.129	5.198	0.324	47.140	
DO-5	7.920	0.232	52.210	4	.724 4.724					1.598	5.275	0.315	45.690	1.598	5.275	0.315	45.690	
RBD-R1B	16.980	0.273	46.500	2	.300 6.900					7.340	7.250	0.426	43.400	7.340	7.250	0.426	43.400	
RBD-R2	16.970	0.276	46.500	5	.293 11.700					5.835	7.210	0.423	43.100	5.835	7.210	0.423	43.100	
KM-11H	8.125	0.295	56.100	4	.500 6.750					1.813	5.250	0.321	45.100	1.813	5.250	0.321	45.100	
RM-21H	8.000	0.230	48.600	4	.500 6.750					1.750	5.250	0.292	43.900	1.750	5.250	0.292	43.900	
KM-2P	8.063	0.238	45.600	4	500 6.750					1.782	5.250	0.300	43.500	1.782	5.250	0.300	43.500	
KM-4P	8.125	0.250	54.100	4	.500 6.750					1.813	5.250	0.322	46.100	1.813	5.250	0.322	46.100	
KM-4H	8.030	0.230	50.600	4	.500 6.750					1.765	5.250	0.292	44.900	1.765	5.250	0.292	44.900	
Notes:																		
1. Refer	to Table	e 3.0 fc	or key to b	eam desig	gnations													

Table 3.2 Material and Section Properties for Composite Beams

(in inches unless noted)

(a) STEEL SECTION

	Web			Openin	ıg	Rein	forcement	t (Тор Т	ee			Bottor	n Tee		
			<i>F</i>						<i>F.</i> ,				F				F _×
Test ⁽¹⁾	d	t _w	(ksi)	ho	ao	<i>b</i> ,	t,	у,	(ksi)	\$	b_f	t_f	(ksi)	\$	b_f	t _f	(ksi)
D-1	20.630	0.358	55,400	12.380	24.750					4.178	6.510	0.440	54.600	4.101	6.500	0.430	52.300
D-2	20.630	0.357	53.100	12.380	24,750					4.094	6.500	0.427	52.300	4.094	6.510	0.448	51.200
D-3	20.630	0.358	52.500	12.380	24.750					4.105	6.570	0.423	52.600	4.097	6.560	0.435	51.700
D-5A	20.630	0.358	52.700	12.380	24.750					4.168	6.510	0.440	53.100	4.110	6.500	0.430	54.700
D-5B	20.630	0.358	52.700	14.390	24.750					4.110	6.570	0.440	53.100	2.123	6.450	0.430	54.700
D-6A	20.630	0.357	52,700	12.380	24.750					4.120	6.580	0.440	53.600	4.115	6.570	0.432	52.700
D-6B	20.630	0.357	52.700	12.380	24.750					4.120	6.580	0.440	53.600	4.115	6.570	0.432	52.700
D-7A	20.630	0.360	41,200	12.380	24.750					4.025	6.660	0.409	40.600	4.150	6.590	0.412	41.100
D-7B	20.630	0.360	41.200	12.380	24,750					4.075	6.660	0.409	40.600	4.188	6.590	0.412	41.100
D-8A	10.130	0.231	50.800	5.950	11.820					2.096	3.980	0.268	47.600	2.090	4.020	0.280	47.700
D-9A	20.630	0.365	41.200	14,750	24.750					2.960	6.670	0.425	41.100	2.960	6.610	0.429	40.600
D-9B	20,630	0.369	41,200	14,750	14.750					3.075	6.670	0.427	41.100	2.812	6.610	0.427	40.600
R-0	9.980	0.228	56.100	5.910	11.810					2.039	4.020	0.256	50.600	2.039	4.020	0.256	50.600
R-1	14.010	0.293	45,100	8.390	16.770					2.810	6.870	0.448	40.100	2.810	6.870	0.448	40.100
R-2	14.050	0.309	47.300	8.390	16.770					2.830	6.740	0.441	43.800	2.830	6.740	0.441	43.800
R-3	14.030	0.313	47.200	8.390	16.750					2.820	6.740	0.444	42.200	2.820	6.740	0.444	42.200
R-4	14.040	0.313	48.100	8.390	16.750					2.835	6.860	0.436	43.700	2.835	6.860	0.436	43.700
R-5	14.010	0.293	45.100	8.390	16.770					1.410	6.870	0.448	40.100	4.210	6.870	0.448	40.100
R-6	14.050	0.305	47.200	8.390	16.750					2.835	6.750	0.437	43.700	2.835	6.750	0.437	43.700
R-7	14.050	0.305	44.000	8.390	16.750					2.835	6.750	0.437	43.700	2.835	6.750	0.437	44.100
R-8	13.980	0.292	44.000	8.390	16.750					2.795	6.690	0.450	44.100	2.795	6.690	0.450	44.100
C-1	14.000	0.287	38.500	8.000	16.000					3.003	6.750	0.453	39.400	3.003	6.750	0.453	40.400
C-2	17.880	0.356	42.400	10.810	21.630					3.475	7.500	0.475	39.300	3.770	7.500	0.520	39.900
C-3	17.880	0.356	42.400	10.810	21.630					3.605	7.500	0.475	39.300	3.650	7.500	0.520	39.300
C-4	17.880	0.343	52.000	10.810	21.630					3.485	7.500	0.485	46.400	3.555	7.500	0.495	44.900
C-5	18.130	0.380	44.200	10.810	21.630					3.683	6.000	0.623	43.900	3.745	6.000	0.615	45.100
C-6	14.000	0.296	49.800	8.000	16.000					2.855	6.690	0.475	42.900	2.803	6.690	0.423	43.500
G-1	8.000	0.285	47.900	4.800	7.200					1.630	6.540	0.463	43.800	1.630	6.540	0.463	43.800
G-2	8.000	0.285	47.900	4.800	7.200					1.630	6.540	0.463	43.800	1.630	6.540	0.463	43.800
CHO-3	7.870	0.236	50.800	4.720	7.280					1.500	5.910	0.354	44.100	1.500	5.910	0.354	43.400
CHO-4	11.810	0.256	64.600	7.050	10.630					2.360	5.910	0.354	54.000	2.400	5.910	0.354	50.700
CHO-5	11.810	0.256	64.600	7.090	10.630					2.400	5.910	0.354	54.000	2.320	5.910	0.354	50,700
CHO-6	7.870	0.236	50.800	4.610	7.130	4.170	0.236	0.374	50.800	1.540	5.910	0.354	44.100	1.500	5.910	0.354	43,400
CHO-7	11.810	0.256	64,600	7.090	14.370	4.170	0.236	0.374	50.800	2.360	5.910	0.354	54.000	2.360	5,910	0.354	50,700
WJE-1	20.830	0.380	37.000	15.000	39.000	5.000	0.500	0.000	37.000	2.938	6.530	0.535	37.000	2.938	6.530	0.535	37.000
D-8B	10.130	0.231	50.800	6.380	18.630	191991	3 TO TO THE	10000-5.	-76-872-777-74 -	2.025	3.980	0.268	47.600	1.725	4.020	0.280	47.700

Table 3.1 (consume

Table 3.2 (continued)

(D) SLAD	(b)	SL	A	В
----------	-----	----	---	---

		~											
		f_c											
est ⁽¹⁾	Type	(psi)	b,	t_i'	t,	t,	Wimx	WIMA	w,	Η,			
-								10000					
	TDID	4470	48.000	2 000	5 000	2 000	7.000	5 000	6.000	3.000			
2	TDID	4950	48.000	2.000	5.000	2 000	7.000	5.000	6.000	3,000			
2	TDID	5400	48.000	2.000	5.000	2 000	7.000	5.000	6.000	3.000			
5	TDID	4740	48.000	2,000	5.000	2.000	7.000	5.000	6.000	3,000			
SP	TRID	5000	48.000	2.000	5.000	2,000	7.000	5,000	6.000	3,000			
50	TRID	4020	48.000	2.000	5.000	2.000	7.000	5.000	6.000	3,000			
CD CD	IND	4020	48.000	2.000	5.000	2.500	7.000	5.000	6.000	3,000			
OB	LKIB	4300	48.000	2.000	5.000	3.500	7.000	5.000	6.000	3.000			
IA	LKIB	4190	48.000	2.000	5.000	3.500	7.000	5.000	6.000	3.000			
78	LKIB	4300	48.000	2.000	5.000	3.500	7.000	5.000	6.000	3.000			
-8A	TRIB	3940	48.000	2.500	5.500	2.500	7.000	5.000	6.000	3.000			
9A	TRIB	4170	36.000	4.000	7.000	4.000	7.000	5.000	6.000	3.000			
·9B	TRIB	4360	48.000	4.000	7.000	4.000	7.000	5,000	6.000	3.000			
0	TRIB	3830	48.000	2.600	5.600	2.600	6.460	5.550	0.005	3.000			
1	TRIB	3190	39.400	2.600	5.600	2.600	0.400	5,550	6.005	3.000			
2	TRIB	2830	47.200	2.600	5.600	2.600	6.460	5.550	6.005	3.000			
3	TRIB	4290	47.200	2.600	5.600	2.600	0.400	5.550	6.005	5.000			
4	TRIB	3960	47.200	2.600	5.600	2.600	6.460	5.550	6.005	3.000			
5	TRIB	3190	47.200	2.600	5.600	2.600	6.460	5.550	6.005	3.000			
6	TRIB	2610	39.400	2.600	5.600	2.600	6.460	5.550	6.005	3.000			
7	TRIB	2610	39.400	2.600	5.600	2.600	6.460	5.550	6.005	3.000			
8	TRIB	2480	39.400	2.600	5.600	2.600	6.460	5.550	6.005	3.000			
1	SOL	7000	39.400	4.000	4.000	4.000							
2	SOL	4200	48.000	4.000	4.000	4.000							
3	SOL	4930	48.000	4.000	4.000	4.000							
4	SOL	4460	48.000	4.000	4.000	4.000							
5	SOL	4680	45.000	4.000	4.000	4.000							
6	SOL	4020	48.000	4.000	4.000	4.000							
1	SOL	3970	45.000	3.600	3.600	3.600							
-2	SOL	3990	24.000	3.600	3.600	3.600							
IO-3	SOL	3270	24.000	5.300	5.300	5.300							
IO-4	SOL	3040	21.600	5.400	5.400	5.400							
IO-5	SOL	3270	23.800	5.300	5.300	5.300							
HO-6	SOL	3270	23.800	5.300	5.300	5.300							
HO-7	SOL	3170	23.800	5.300	5.300	5.300							
JE-1	TRIB	4420	110.500	3.500	6.500	3.500	7.000	5.000	6.000	3.000			
-8B	TRIB	3940	48.000	2.500	5.500	2.500	7.000	5.000	6.000	3,000			

(ii) stanya cosmittence

Failer 3.2 (Comparison)

Table 3.2 (continued)

(c) SHEAR CONNECTORS

	-				_										
Test ⁽¹⁾	Н,	N, ⁽²⁾	N ₂ ⁽³⁾	N. ⁽⁴⁾	N,1 ⁽⁵⁾	N _{r2} ⁽⁶⁾	F _# (ksi)	Dia.	A _{sc} (in. ²)	$R_{I}^{(7)}$	R ₂ ⁽⁸⁾	Q _a (k)	R ₁ *Q _n (k)	R ₂ *Q _n (k)	A _{sc} *F _s (k)
	-	1.40	1.1	1	THE	200									
D-1	4.500	10		4	2		67.900	0.750	0.442	0.601	0.000	28.83	17.33	0.00	30.00
D-2	4.500	10	12	4	2	4	67.900	0.750	0.442	0.601	0.491	30.65	18.42	15.04	30.00
D-3	4.500	20		4	2		67.900	0.750	0.442	0.601	0.000	33.22	19.97	0.00	30.00
D-5A	4.500	7		2	1		67.900	0.750	0.442	0.850	0.000	30.13	25.61	0.00	30.00
D-5B	4.500	16		4	2		67.900	0.750	0.442	0.601	0.000	31.78	19.10	0.00	30.00
D-6A	4.500	12		4	2		67.900	0.750	0.442	0.601	0.000	26.62	16.00	0.00	30.00
D-6B	4.500	20		8			67.900	0.750	0.442	0.491	0.000	28.00	13.74	0.00	30.00
D-7A	4.500	22		10			67.900	0.750	0.442	0.491	0.000	27.47	13.48	0.00	30.00
D-7B	4.500	10					67.900	0.750	0.442	0.491	0.000	27.47	13.48	0.00	30.00
D-8A	5.000	8		2	2		63.200	0.625	0.307	0.801	0.000	18.21	14.60	0.00	19.39
D-8B	4.500	6		2	2		67.900	0.625	0.307	0.601	0.000	18.23	10.95	0.00	20.85
D-9A	5.500	10		4	2		63.200	0.750	0.442	1.000	0.000	27.37	27.37	0.00	27.92
D-9B	5,500	8		2	2		68.800	0.750	0.442	1.000	0.000	28.30	28.30	0.00	30.39
R-0	4.840	4		1	1		68.800	0.750	0.442	1.000	0.000	25.68	25.68	0.00	30.39
R-1	4.840	4		1	1			0.750	0.442	1.000	0.000	22.39	22.39	0.00	0.00
R-2	4.840	18		2	2			0.750	0.442	0.738	0.000	20.46	15.10	0.00	0.00
R-3	4.840	22		4	2			0.750	0.442	0.738	0.000	27.96	20.63	0.00	0.00
R-4	4.840	5		0	1			0.750	0.442	1.000	0.000	26.33	26.33	0.00	0.00
R-5	4.840	4		1	1			0.750	0.442	1.000	0.000	22.39	22.39	0.00	0.00
R-6	4.840	4		0	2			0.750	0.442	1.000	0.000	22.39	22.39	0.00	0.00
R-7	4.840	8		4	2			0.750	0.442	0.738	0.000	19.26	14.21	0.00	0.00
R-8	4.840	8		4	2			0.750	0.442	0.738	0.000	18.53	13.68	0.00	0.00
C-1	3.000	14		4				0.750	0.442	1.000	0.000	40.36	40.36	0.00	0.00
C-2	3.000	16		2				0.750	0.442	1.000	0.000	27.51	27.51	0.00	0.00
C-3	3.000	16		2				0.750	0.442	1.000	0.000	31.03	31.03	0.00	0.00
C-4	3.000	10		4				0.750	0.442	1.000	0.000	28.78	28.78	0.00	0.00
C-5	3.000	16		4				0.750	0.442	1.000	0.000	29.84	29.84	0.00	0.00
C-6	3.000	10		4				0.750	0.442	1.000	0.000	26.62	26.62	0.00	0.00
G-1	2.500	10		2				0.625	0.307	1.000	0.000	18.32	18.32	0.00	0.00
3-2	2.500	16		2				0.625	0.307	1.000	0.000	18.39	18.39	0.00	0.00
CHO-3	3.940	12		4				0.500	0.196	1.000	0.000	10.14	10.14	0.00	0.00
CHO-4	3.940	18		4				0.500	0.196	1.000	0.000	9.60	9.60	0.00	0.00
CHO-5	3.940	20		4				0.500	0.196	1.000	0.000	10.14	10.14	0.00	0.00
CHO-6	3.940	12		4				0.500	0.196	1.000	0.000	10.14	10.14	0.00	0.00
CHO-7	3.940	20		4				0.500	0.196	1.000	0.000	9.90	9.90	0.00	0.00
WJE-1	4.500	18		6	1			0.750	0.442	0.850	0.000	28.59	24.30	0.00	0.00

Q2 25 M

Lable 3.2 (contraded)

Table 3.2 (continued)

Notes:

(

ref N_1 N_2 N_o N_{r1} N_{r2} N_r R_1 R_2 A stu	er = = = = = = = = = = = = = = = = = = =	to = = = = of pe	Ta nui nui nui nui red red	bla mb mb mb luc luc bs ib.	e 3 er er er tio tio is	.0 of of of of n n	fo sl sl ri fac fac	or l tuc tuc ibs ibs cto cto	ke ds/ ds/ ds in in or or	y /ril /ril ov n fo fo	of b ve fir se r r r r	b in in st co fir sec bs	ea fi se he se ond st con	m rst cc c c c c c c c c c c c c c c c c c	do so pe *) et(t c so h t	esi et(l s ni (*) of et (he	gn *) set(ng sho of	ean sh	ior i ri i o ne	is bs fr on r (ib: une con	s	ors ect	i	s														

	(a) Lo Co	ocal Buck ompressio (D.1.1)	ding of on Flange		(b) Web]	Buckling (D.1	.2)	
Test ⁽¹⁾	b _f /2t _f <	$65/\sqrt{F_y}$	$p_o < 6.0$	h/t	$420/\sqrt{F_y}$	$520/\sqrt{F_y}$	a _o /h _o	aJh_(max)
RBD-C1	8.52	9.90	2.10	58.42	61.59	76.26	0.45	3.00
RM-1A	8.15	9.64	3.77	30.41	58.58	72.53	0.45	3.00
RM-1B	8.28	9.70	4.77	30.95	58.47	72.39	1.45	3.00
RM-2A	8.10	9.11	3.77	30.03	56.94	70.50	0.45	3.00
RM-2B	8.87	9.54	4.81	31.97	62.40	77.26	1.45	3.00
RM-2C	8.82	9.91	3.81	31.83	63.17	78.22	0.45	3.00
RM-3A	8.13	9.69	3.77	30.53	58.13	71.97	0.45	3.00
RM-4A	8.15	9.62	3.77	30.53	58.19	72.04	0.45	3.00
RM-4B	8.15	9.91	4.77	30.66	58.81	72.81	1.45	3.00
RM-4C	8.15	9.94	3.77	30.41	55.15	68.28	0.45	3.00
CR-1A	8.92	9.90	4.93	37.88	55.63	68.88	1.59	3.00
CR-2A	6.82	10.44	4.47	40.30	65.35	80.91	1.49	3.00
CR-2B	6.82	10.44	4.47	40.30	65.35	80.91	1.49	3.00
CR-2C	6.82	9.73	4.45	43.41	56.23	69.61	1.49	. 3.00
CR-2D	6.82	9.73	4.45	43.41	56.23	69.61	1.49	3.00
CR-3A	6.82	10.44	4.47	40.30	65.35	80.91	1.49	3.00
CR-3B	6.82	9.73	4.45	43.41	56.23	69.61	1.49	3.00
CR-4A	6.82	9.73	4.95	43.41	56.23	69.61	2.00	3.00
CR-4B	6.82	9.73	4.95	43.41	56.23	69.61	2.00	3.00
CR-5A	6.82	9.73	5.29	43.41	56.23	69.61	1.49	3.00
CR-7B	6.89	10.21	4.46	41.95	60.81	75.29	1.50	3.00
CR-7D	6.89	10.21	4.46	41.95	60.81	75.29	1.50	3.00
CSK-2	6.23	9.64	3.73	43.48	61.88	76.61	1.50	3.00
CSK-5	6.93	9.96	4.25	49.18	62.81	77.77	2.00	3.00
CSK-6	6.93	9.96	5.00	49.18	62.81	77.77	2.00	3.00
CSK-7	6.93	9.96	4.50	49.18	62.81	77.77	1.50	3.00
CS-1	7.00	11.32	4,49	32.57	68.59	84.92	1.50	3.00
CS-2	7.00	11.20	4.49	32.57	69.90	86.55	1.50	3.00
CS-3	7.00	11.45	4.49	32.57	68.68	85.03	1.50	3.00
RL-5	8.39	10.12	5.12	56.56	60.69	75.13	2.49	3.00
RL-6	8.20	10.23	6.43	58.29	59.42	73.57	2.50	3.00
B-1	8.53	10.80	4.01	48.09	63.32	78.39	1.21	3.00
B-2	8.48	10.89	3.96	49.90	66.24	82.01	1.27	3.00
B-3	8.35	11.20	4.00	48.48	68.40	84.69	1.23	3.00
B-4	8.47	10.99	3.74	47.80	63.53	78.66	1.02	3.00
CL-4B	7.73	9.54	5.63	49.29	58.24	72.11	2.00	3.00
CR-6A	6.82	9.73	4.45	43.41	56.23	69.61	1.49	3.00
CSK-1	6.23	9.59	3.73	43.48	62.76	77.70	1.50	3.00
DO-1	8.37	9.62	4.79	31.42	58.13	71.97	3.00	3.00
DO-2	8.37	9.62	5.58	31.42	58.13	71.97	2.00	3.00
DO-3	8.37	9.62	4.79	31.42	58.13	71.97	3.00	3.00
DO-4	8.02	9.47	5.38	28.02	58.53	72.47	2.67	3.00
DO-5	8.37	9.62	4.58	31.42	58.13	71.97	1.00	3.00
RBD-R1B	8.51	9.87	3.81	59.08	61.59	76.26	3.00	3.00
RBD-R2	8.52	9.90	4.08	58.42	61.59	76.26	2.21	3.00
RM-11H	8.18	9.68	4.82	25.37	56.07	69.43	1.50	3.00
RM-21H	8.99	9.81	4.88	32.24	60.25	74.59	1.50	3.00
RM-2F	8.75	9.86	4.85	31.36	62.20	77.01	1.50	3.00
RM-4F	8.15	9.57	4.82	29.92	57.10	70.70	1.50	3.00
RM-4H	8.99	9.70	4.86	32.37	59.04	73.10	1.50	3.00

Table 3.3 Design Limitation Summary for Steel Beams

Table 3.3 (continued)

P_{crx} (k) P_a (k) P_{ory} (k) Test/ Test⁽¹⁾ Theory⁽²⁾ $M_{J}M_{m}$ als, RBD-C1 121.24 121.22 138.48 0.552 0.33 1.258 RM-1A 57.34 57.56 92.41 1.000 0.99 1.016 RM-1B 54.90 55.69 90.34 1.000 3.20 1.002 RM-2A 64.58 64.85 73.08 0.524 0.99 1.208 RM-2B 51.88 52.65 37.80 0.275 3.27 1.394 RM-2C 49.83 50.02 61.48 0.513 1.02 1.354 RM-3A 56.80 57.02 78.61 0.782 0.99 1.031 RM-4A 57.54 57.77 87.79 0.922 0.99 1.012 RM-4B 53.31 54.07 70.26 0.730 1.000 3.20 RM-4C 53.94 54.15 85.39 0.946 0.99 0.994 CR-1A 59.36 59.87 110.38 0.812 3.99 1.007 CR-2A 100.46 100.86 134.22 0.492 2.93 1.320 CR-2B 100.46 100.86 202.88 0.813 2.93 1.211 CR-2C 111.90 112.32 183.30 0.597 2.89 1.194 CR-2D 111.90 112.32 121.86 0.360 2.89 1.294 CR-3A 100.63 100.86 152.77 0.485 2.93 1.461 CR-3B 112.08 112.32 240.50 0.845 2.89 1.154 CR-4A 111.44 112.05 128.64 0.379 3.87 1.302 CR-4B 111.44 112.05 200.08 0.692 3.87 1.140 CR-5A 102.97 104.04 127.66 0.456 5.15 1.167 CR-7B 102.25 102.62 0.804 211.96 1.174 2.92 CR-7D 102.25 102.62 114.22 0.362 2.92 1.343 CSK-2 130.34 131.11 227.17 0.670 2.94 1.161 CSK-5 108.22 109.05 185.37 0.655 3.99 1.108 CSK-6 132.08 131.79 110.11 0.445 2.66 1.002 CSK-7 132.39 132.18 133.24 0.521 2.00 1.060 CS-1 106.87 107.46 183.18 0.857 2.97 0.976 CS-2 109.13 109.74 179.24 0.842 0.963 2.97 CS-3 104.22 104.88 162.64 0.682 2.97 1.066 RL-5 98.68 98.97 239.74 1.000 3.88 1.085 RL-6 85.15 83.64 87.09 0.396 0.927 9.51 B-1 90.57 90.91 65.78 0.317 2.12 1.114 B-2 88.23 88.54 119.88 0.573 2.07 1.212 B-3 84.31 84.60 0.13 0.001 2.10 1.348 B-4 87.39 87.62 70.71 0.371 1.055 1.69 CL-4B 118.23 123.19 63.10 0.149 7.21 1.616 CR-6A 111.08 112.09 93.46 0.273 2.89 1.483 CSK-1 127.43 129.13 167.03 0.478 2.94 1.269 DO-1 60.33 60.76 56.67 0.403 2.55 1.163 DO-2 51.09 53.20 24.73 0.143 5.91 1.619 DO-3 51.86 53.34 90.61 0.761 4.43 1.093 DO-4 53.65 55.96 70.45 0.498 6.10 1.250 DO-5 52.55 53.47 98.66 1.000 2.96 1.081 RBD-R1B 129.03 128.85 124.10 0.520 0.94 1.089 RBD-R2 116.35 116.40 86.43 0.346 2.01 1.080 RM-11H 56.12 57.12 103.49 1.000 3.72 1.031 RM-21H 47.91 48.89 46.20 0.325 1.469 3.86 RM-2F 49.02 49.98 38.11 0.241 3.79 1.607 RM-4F 55.58 56.68 75.51 0.642 3.72 1.078 RM-4H 49.09 50.09 64.98 0.617 1.097 3.82

(c) Buckling of Tee Shaped Compression Zone (D.1.3)

Table 3.3 (continued)

(d) Hole Restrictions (D.3.1)

	h	<	0.7d	S,	& Sh	>0.15d						
Test ⁽¹⁾	(in.)		(in.)	(in.)	(in.)	(in.)	ads,	& also	<	12.0		
						1.11	11.2	100.0		11.21	12.11	
RBD-C1	4.67		11.88	6.38	6.38	2.55	0.33	0.33				
RM-1A	4.50		5.69	2.04	2.04	1.22	0.99	0.99				
RM-1B	4.50		5.69	2.04	2.04	1.22	3.20	3.20				
RM-2A	4.50		5.69	2.04	2.04	1.22	0.99	0.99				
RM-2B	4.50		5.63	2.00	2.00	1.21	3.27	3.27				
RM-2C	4.50		5.63	2.00	2.00	1.21	1.02	1.02				
RM-3A	4.50		5.69	2.04	2,04	1.22	0.99	0.99				
RM-4A	4.50		5.69	2.04	2.04	1.22	0.99	0.99				
RM-4B	4.50		5.69	2.04	2.04	1.22	3.20	3.20				
RM-4C	4.50		5.69	2.04	2.04	1.22	0.99	0.99				
CR-1A	5.50		6.92	2.20	2.20	1.48	3.99	3.98				
CR-2A	7.00		9.89	3.57	3.57	2.12	2.93	2.93				
CR-2B	7.00		9.89	3.57	3.57	2.12	2.93	2.93				
CR-2C	7.00		9.95	3.61	3.61	2.13	2.89	2.89				
CR-2D	7.00		9.95	3.61	3.61	2.13	2.89	2.89				
CR-3A	7.00		9.89	3.57	3.57	2.12	2.93	2.93				
CR-3B	7.00		9.95	3.61	3.61	2.13	2.89	2.89				
CR-4A	7.00		0.95	3.61	3.61	2.13	3.87	3.87				
CR-4R	7.00		0.05	3.61	3.61	213	3.87	3.87				
CR-5A	9.00		0.05	2.61	2.61	213	515	5 15				
CP.7B	7.03		0.00	3.63	3.6	214	2.02	2.02				
CR-7D	7.03		0.00	3.62	3.0/	214	2.02	2.92				
CEV 2	6.00		11.00	3.02	3.0	2.14	2.04	1.22				
CSK-2	6.00		11.29	2.01	7.0	2.42	2.00	1.27				
CSK-J	0.00		11.21	5.01	7.0	2.40	3.99	7.00				
CSK-0	8.00		11.21	6.01	20	240	2.00	1.90				
CSK-/	8.00		11.21	0.01	20	2.40	2.00	3.99				
CS-1	6.00		8.44	3.03	3.0.	1.81	291	2.97				
CS-2	6.00		8.44	3.03	3.0.	5 1.81	2.97	2.97				
CS-3	6.00		8.44	3.03	3.0.	1.81	2.97	2.97				
RL-5	7.16		11.43	4.59	4.5	2.45	3.88	3.88				
RL-6	10.72		11.45	2.82	2.8	2 2.45	9.51	9.51				
B-1	7.44		11.16	4.25	4.2	2.39	2.12	2.12				
B-2	7.11		11.07	4.35	4.3	5 2.37	2.07	2.07				
B-3	7.32		11.12	4.28	4.2	3 2.38	2.10	2.10				
B-4	7.16		11.06	4.32	4.3	2 2.37	1.69	1.69				
CL-4B	10.81		12.51	3.00	3.0	5 2.68	7.21	7.07				
CR-6A	7.00		9.95	3.61	3.6	2.13	2.89	2.89				
CSK-1	6.00		11.29	3.07	7.0	7 2.42	2.94	1.27				
DO-1	2.36		5.54	2.78	2.7	8 1.19	2.55	2.55				
DO-2	4.72		5.54	1.60	1.6	1.19	5.91	5.91				
DO-3	2.36		5.54	1.60	3.9	5 1.19	4.43	1.79				
DO-4	3.54		5.48	1.55	2.7	3 1.17	6.10	3.46				
DO-5	4.72		5.54	1.60	1.6	0 1.19	2.96	2.96				
RBD-R1B	2.30		11.89	7.34	7.3	4 2.55	0.94	0.94				
RBD-R2	5.29		11.88	5.84	5.8	4 2.55	2.01	2.01				
RM-11H	4.50		5.69	1.81	1.8	1 1.22	3.72	3.72				
RM-21H	4.50		5.60	1.75	17	5 1.20	3.86	3.86				
RM-2F	4 50		5 64	1 79	1.7	8 1.21	3 70	3 70				
RMAE	4.50		5.60	1.91	1.0	1 1.22	3.72	3.73				
RMAU	4.50		5.69	1.01	1.0	7 1.20	2.92	3.92				
121VI-4011	4.50		2.04	1.//	1./	1.40	3.64	2.04				

Deutshinob) E.E. skills T-

Table 3.3 (continued)

				3 5)	orcement (D	ed Reinfe	e) One-sid	(
				5.5)	oreement (D.	,/3	A,< A	
	$M_{\mathfrak{u}}/(V_{\mathfrak{u}}*d)\leq 20$	$40/\sqrt{F_y}$	$t_b/t_w \leq$	s_t/t_{w^*} s	$a_o/h_o \leq 2.5$.2)	(in	Test ⁽¹⁾
	3.16	20.27	11.42	11.42	1.50	1.09	0.29	CR-7B
	1.19	20.27	11.42	11.42	1.50	1.09	0.29	CR-7D
	1.86	20.63	20.48	8.88	1.50	1.32	0.25	CSK-2
	1.88	20.94	6.57	19.69	2.00	1.18	0.28	CSK-6
	1.88	20.94	6.57	19.69	1.50	1.18	0.28	CSK-7
	3.32	22.89	9.04	9.04	1.50	1.54	0.32	CS-3
	193471.52	20.23	16.73	16.73	2.49	0.97	0.16	RL-5
	3.01	19.81	10.58	10.58	2.50	0.98	0.32	RL-6

 Design permanent visitant by the signation branch front dad and any adversary with the predicted segmented and diff ner conjugant to presentate follows.

(beiminnop) Ed. skielT

Table 3.3 (continued)

Test	(1) (f) Viola	tions ⁽³⁾						
CR-5 RL-5 RL-6 DO-3 DO-4	A (D.1.3) (D.1.3), (D (D.1.3) (D.1.3) (D.1.3) (D.1.3)	1.3.5) Militer Ham, Vin Ja	36	n 2.5				
Note	25:							
(1)	refer to Table 3.0 fo	or key to beam designation	ations					
(2)	The Test/Theory rat as some indication of parameter on the pro- were to buckle pren	ios for Method III, λ of the effect of a poten edicted capacity. If the naturely, unconservative	= 1.414, a ntial viola te tee-sha ve predict	are provid ation of the ped comp ions wou	led ne design pression z ld result.	one		

(3) Design parameters violated by the respective beams listed did not adversely affect the predicted capacities and did not contribute to premature failure.

Table 3.4 Design Limitation Summary for Composite Beams

Tebre 3.4 (continued)

(a)	Local Buckling of
	Compression Flange
	(D.1.1)

(b) Web Buckling (D.1.2)

D RECEIPTION ROLL

Test ⁽¹⁾ b _j	,/21 ₁ < 6	$5/\sqrt{F_y}$	$p_{o} < 6.0$	h/t	$420/\sqrt{F_y}$	$520/\sqrt{F_y}$	a_/h_	a_/h_(max)	11.1	24.00	
D-1	7.57	8.80	5.60	55.17	56.43	69.86	2.00	3.00	104	10.01	
D-2	7.25	8.99	5.60	55.39	57.64	71.36	2.00	3.00			
D-3	7.55	8.96	5.60	55.26	57.97	71.77	2.00	3.00			
D-5A	7.57	8.92	5.60	55.17	57.86	71.63	2.00	3.00			
D-5B	7.64	8.92	5.91	55.17	57.86	71.63	1.72	3.00			
D-6A	7.62	8.88	5.60	55.32	57.86	71.63	2.00	3.00			
D-6B	7.62	8.88	5.60	55.32	57.86	71.63	2.00	3.00			
D-7A	8.08	10.20	5.60	55.03	65.43	81.01	2.00	3.00			
D-7B	8.08	10.20	5.60	55.03	65.43	81.01	2.00	3.00			
D-8A	7.11	9.42	5.51	41.53	58.93	72.96	1.99	3.00			
D-94	7 77	10.14	5.97	54.19	65 43	81.01	1.68	3.00			
D-98	7.81	10.14	5 29	53 59	65 43	81.01	1.00	3.00			
R-0	7.85	9 14	5.55	41.53	56.07	69.43	2.00	3.00			
R-1	7.67	10.26	5 59	44.76	62.54	77 43	2.00	3.00			
R-2	7.64	9.82	5 58	42 61	61.07	75.61	2.00	3.00			
R.3	7 50	10.01	5 58	41 00	61.13	75 69	2.00	3.00			
R-A	7 87	0.83	5.58	42 07	60.56	74.98	2.00	3.00			
R-5	7.67	10.26	5 50	44.76	62.54	77 43	2.00	3.00			
R-6	7 72	0.23	5 58	43 20	61.13	75 69	2.00	3.00			
P.7	7 72	0.83	5 58	43.20	63 32	78 30	2.00	3.00			
D.9	7.43	0.70	5.60	44.70	63.32	78 30	2.00	3.00			
C-1	7.45	10.36	5.43	45.62	67 69	83.81	2.00	3.00			
C-2	7.21	10.37	5 63	47.56	64.50	79.86	2.00	3.00			
C-3	7 21	10.37	5.63	47.56	64 50	79.86	2.00	3.00			
C.4	7 58	0.54	5.63	40 30	58.24	72 11	2.00	3.00			
C-5	4 99	0.81	5 58	44.30	63.17	78 22	2.00	3.00			
C.6	7 01	0.02	5.43	44.09	59.52	73 69	2.00	3.00			
GI	7.06	0.82	5 10	24.82	60.69	75.13	1.50	3.00			
C 2	7.00	0.92	5.10	24.92	60.60	75 13	1.50	3.00			
CUO 2	9.25	0.70	5.10	20.35	58.03	72.06	1.50	3.00			
CHO-3	0.35	9.19	5.00	42.27	50.75	64 70	1.51	3.00			
CHO-4	9.35	0.03	5.10	43.37	52.20	64.70	1.50	3.00			
CHO-5	0.00	0.00	5.10	43.37	52.20	72.06	1.50	3.00			
CHO-0	8.33	9.19	5.00	30.33	52.95	64.70	2.03	3.00			
CHO-/	8.35	8.83	3.03	43.37	32.20	95.40	2.05	3.00			
WJE-1	6.10	10.69	6.92	52.00	69.05	85.49	2.00	3.00			

Table 3.4 (continued)

(c) Hole Restrictions (D.3.1)													
Test ⁽¹⁾	h _o < (in.)	0.7 <i>d</i> (in.)	(in.)	& s _b (in.)	> 0.15 <i>d</i> (in.)	a s _t	& a/sb	<	12.0	0			
D-1	12.38	14.44	4.18	4.10	3.09	5.92	6.04						
D-2	12.38	14.44	4.09	4.09	3.09	6.05	6.05						
D-3	12.38	14.44	4.11	4.10	3.09	6.03	6.04						
D-5A	12.38	14.44	4.17	4.11	3.09	5.94	6.02						
D-5B	14.39	14.44	4.11	2.12	3.09	6.02	11.66						
D-6A	12.38	14.44	4.12	4.12	3.09	6.01	6.01						
D-6B	12.38	14.44	4.12	4.12	3.09	6.01	6.01						
D-7A	12.38	14.44	4.03	4.15	3.09	6.15	5.96						
D-7B	12.38	14.44	4.08	4.19	3.09	6.07	5.91						
D-8A	5.95	7.09	2.10	2.09	1.52	5.64	5.66						
D-9A	14.75	14.44	2.96	2.96	3.09	8.36	8.36						
D-9B	14.75	14.44	3.08	2.81	3.09	4.80	5.25						
R-0	5.91	6.99	2.04	2.04	1.50	5.79	5.79						
R-1	8.39	9.81	2.81	2.81	2.10	5.97	5.97						
R-2	8.39	9.83	2.83	2.83	2.11	5.93	5.93						
R-3	8.39	9.82	2.82	2.82	2.10	5.94	5.94						
R-4	8.39	9.83	2.84	2.84	2.11	5.91	5.91						
R-5	8.39	9.81	1.41	4 21	2.10	11.89	3.98						
R-6	8.39	9.83	2.84	2.84	2.11	5.91	5.91						
R-7	8.39	9.83	2.84	2.84	2.11	5.91	5.91						
R-8	8.30	9.79	2.80	2.80	2.10	5 00	5 99						
C-1	8.00	9.80	3.00	3.00	2.10	5.33	5.33						
C-2	10.81	12 52	3.48	3 77	2.68	6.22	5 74						
C-3	10.81	12 52	3.61	3.65	2.68	6.00	5.03						
C-4	10.81	12 52	3 40	3.56	2.68	6 21	6.08						
C.5	10.01	12.60	3.69	3.75	2.00	5.87	5.78						
C.6	8.00	0.80	2.96	2.80	2.10	5.60	5 71						
G1	4.80	5.60	1.63	1.63	1.20	1.40	3.11						
0-1	4.00	5.00	1.05	1.05	1.20	4.42	4.42						
0-2	4.80	5.00	1.03	1.03	1.20	4.42	4.42						
CHO-3	4.72	5.51	1.50	1.50	1.18	4.85	4.85						
CHO-4	7.05	8.27	2.36	2.40	1.77	4.50	4.43						
CHO-5	7.09	8.27	2.40	2.32	1.77	4.43	4.58						
CHO-6	4.61	5.51	1.49	1.45	1.18	4.78	4.91						
CHO-7	7.09	8.27	2.29	2.28	1.77	6.28	6.30						
WJE-1	15.00	14.58	2.76	2.76	3.12	14.12	14.12						

66

2.76 3.12

Table 3.4 (continued)

Test ⁽¹⁾	(d) Vio	lations (2)						
		- 24						
D-9A	(D.3.1)							
D-9B	(D.3.1)							
WTF-1	(D.3.1) (D.1.2) (0.3.1)						
M12-1	(10,11,2), (0.3.1)						
Notes:								
(1) refer	to Table	3.0 for key	y to beams d	esignations				
				0				
(2) Decie	morami	atom viola	tad by the re	manting base	an did not av	huarralu affac		
(2) Desig	n param	eters viora	ted by the re	spective dean	is did not ac	iversely allec	•	
the p	redicted o	capacities a	and did not c	contribute to p	remature fai	lure.		

Table 3.5	Steel Beam	Shear (Capacity	Summary:	Method	Ι, λ	=	1.414	

1 1			
(val	1185	171	kins)

Test	V _{mbl}	V_{pb}	V_{bl}	V _{mll}	V_{pt}	V_{tt}	V"	Vı
RBD-C1	57.72	47.30	47.30	57.72	47.30	47.30	82.99	82.99
RM-1A	14.89	14.88	14.88	14.89	14.88	14.88	39.15	29.76
RM-1B	7.68	14.69	7.68	7.64	14.64	7.64	38.66	15.32
RM-2A	16.10	15.94	15.94	16.10	15.94	15.94	41.94	31.88
RM-2B	6.41	12.16	6.41	6.41	12.16	6.41	32.34	12.82
RM-2C	11.88	11.91	11.88	11.88	11.91	11.88	31.69	23.76
RM-3A	15.02	15.05	15.02	15.02	15.05	15.02	39.60	30.05
RM-4A	15.02	15.02	15.02	15.02	15.02	15.02	39.52	30.04
RM-4B	7.63	14.64	7.63	7.63	14.64	7.63	38.53	15.26
RM-4C	16.35	16.79	16.35	16.35	16.79	16.35	44.17	32.71
CR-1A	14.39	17.67	14.39	14.34	17.63	14.34	52.41	28.73
CR-2A	30.36	27.71	27.71	30.36	27.71	27.71	72.49	55.42
CR-2B	30.36	27.71	27.71	30.36	27.71	27.71	72.49	55.42
CR-2C	33.00	35.47	33.00	33.00	35.47	33.00	92.22	66.01
CR-2D	33.00	35.47	33.00	33.00	35.47	33.00	92.22	66.01
CR-3A	30.36	27.71	27.71	30.36	27.71	27.71	72.49	55.42
CR-3B	39.02	35.47	35.47	39.02	35.47	35.47	92.22	70.94
CR-4A	26.64	35.47	26.64	26.64	35.47	26.64	92.22	53.27
CR-4B	26.64	35.47	26.64	26.64	35.47	26.64	92.22	53.27
CR-5A	23.67	25.65	23.67	23.67	25.65	23.67	92.22	47.34
CR-7B	31.40	31.60	31.40	31.39	31.60	31.39	82.22	62.79
CR-7D	28.47	31.60	28.47	31.39	31.60	31.39	82.22	59.86
CSK-2	80.37	64.83	64.83	31.60	28,13	28.13	97.69	92.96
CSK-5	60.91	55.15	55.15	23.62	23.66	23.62	83.19	78.78
CSK-6	10.21	15.79	10.21	41.16	47.28	41.16	83.19	51.36
CSK-7	13.02	15.79	13.02	48.93	47.28	47.28	83.19	60.30
CS-1	24.60	21,98	21.98	24.60	21.98	21.98	57.73	43.95
CS-2	23.87	21.16	21.16	23.87	21.16	21.16	55.58	42.31
CS-3	23.54	21.92	21.92	23.54	21.92	21.92	57.58	43.84
RL-5	21.30	34.74	21.30	21.30	34.74	21.30	81.67	42.60
RL-6	11.84	21.60	11.84	11.84	21.60	11.84	82.80	23.69
B-1	21.59	33.90	21.59	21.59	33.90	21.59	83.92	43.18
B-2	19.68	30.28	19.68	19.68	30.28	19.68	72.65	39.36
B-3	18.60	28.88	18.60	18.60	28.88	18.60	70.72	37.20
B-4	24.53	34.12	24.53	24.53	34.12	24.53	82.35	49.06
CL-4B	9.26	31.51	9.26	8,78	30.89	8.78	121.49	18.03
CR-6A	19.13	35.47	19.13	19.13	35.47	19.13	92.22	38.27
CSK-1	51.67	63.03	51.67	16.28	27.34	16.28	94.98	67.95
DO-1	11.27	19.43	11.27	11.27	19.43	11.27	36.56	22.53
DO-2	4.00	11.19	4.00	4.00	11.18	4.00	36.56	8.00
DO-3	19.18	27.69	19.18	5.01	11.18	5.01	36.56	24.19
DO-4	9.80	20.77	9.80	4.13	11.80	4.13	39.29	13.93
DO-5	6.72	11.18	6.72	6.72	11.18	6.72	36.56	13.45
RBD-R1B	49.59	53,80	49.59	49.59	53.80	49.59	82.14	82.14
RBD-R2	28.29	43.24	28.29	28.29	43.24	28.29	82.99	56.58
RM-11H	7.98	17.32	7.98	7.98	17.32	7.98	51.24	15.96
RM-21H	5 35	11 29	5 35	5 35	11.29	5.35	34.08	10.71
RM-2F	5.40	11.17	5.40	5.40	11.17	5.40	33.34	10.80
RM-4F	6.81	14.16	6.81	6.81	14.16	6.81	41.87	13.62
RM-4H	5.62	11.86	5.62	5.62	11.86	5.62	35.61	11.25

Notes:

refer to Table 3.0 for key to beam designations

Vmbi, Vmil	= shear capacity of bottom and top tee, respectively, using Eq. B.1.
Vpb Vpt	= plastic shear capacity of bottom and top tee, respectively, using E
Vbi, Vpi	= governing shear capacity of top and bottom tees, respectively.
Vm	= maximum permissible shear capacity of beam per Section D.1.2.
V_{I}	= maximum shear capacity as predicted by Method I.

plastic shear capacity of bottom and top tee, respectively, using Eqs. 2.22, and 2.18. =

Table 3.6 Composite Beam Shear Capacity Summary: Method I, $\lambda = 1.414$

(values in kips)

Test	$V_{t(a)}$	$V_{i(b)}$	V_{pl}	Vish	V_{il}	V_b	Vpb	V _{bl}	V ₁		
				20.00		in the second	and the second	DOLLAR.			
D-1	28.88	47.84	47.84	54.86	28.88	14.85	46.96	14.85	43.7	3	
D-2	28.45	44.81	44.81	52.12	28.45	13.99	44.81	13.99	42.4	4	
D-3	29.78	44.54	44.54	52.26	29.78	13.86	44,46	13.86	43.6	4	
D-SR	20.14	45.40	45.40	52.26	20.14	4.53	94.77	4.53	39.3	3	
D-6A	26.58	44.75	44.75	51.41	26.58	13.94	44.70	13.94	40.5	2	
D-6B	41.99	44.75	44.75	53.36	41.99	13.94	44.70	13.94	55.9	2	
D-7A	34.48	34.47	34.47	42.96	34.47	10.93	35.54	10.93	45.4	0	
D-7B	31.51	34.90	34.90	43.50	31.51	11.11	35.86	11.11	42.6	2	
D-8A	20.71	17.39	14.20	23.26	17.39	4.58	14.16	4.58	21.9	7	
D-9A	35.24	30.56	25.70	44.68	30.56	6.32	25.70	6.32	36.8	8	
D-9B	45.29	40.04	26.99	46.40	40.04	8.96	24.68	8.96	49.0	0	
R-0	20.90	17.02	15.06	24.52	17.02	4.76	15.06	4.76	21.7	8	
R-1	18.51	21.44	21.44	30.07	18.51	7.18	21.44	7.18	25.7	0	
R-2	21.76	23.88	23.88	32.01	21.76	7.95	23.88	7.95	29.7	1	
R-3	34.93	32.52	24.05	34.07	32.52	7.94	24.05	7.94	40.4	6	
R-4	17.98	24.64	24.64	34.26	17.98	8.18	24.64	8.18	26.1	6	
R-5	16.04	16.14	10.76	19.39	16.14	13.71	32.12	13.71	29.8	5	
R-6	12.93	23.56	23.56	31.37	12.93	7.87	23.56	7.87	20.8	0	
R-7	25.30	23.86	21.97	29.78	23.80	7.38	21.97	7.38	31.1	9	
R-8	24.32	23.05	20.73	28.35	23.05	7.08	20.73	7.08	30.1	3	
C-1	34.32	29.51	19.10	33.21	29.51	10.07	19.10	10.97	30.5	5	
C-2	30.45	30.28	31.42	41.17	31.42	10.87	31.91	10.87	41.1	<u>л</u>	
C-3	37 75	35 90	35.90	45.21	35 80	11.00	36.61	11.00	41.0	8	
C-5	37.47	35 71	35 71	47.21	35.71	11.69	36.32	11.69	47.4	0	
C-6	37 33	31.75	24 30	34.95	31.75	7.91	23.86	7.91	39.6	5	
G-1	48.90	54.53	12.85	21.42	21.42	7.27	12.85	7.27	28.6	9	
G-2	38.74	44.97	12.85	21.44	21.44	7.27	12.85	7.27	28.7	1	
CHO-3	50.47	55.78	10.38	27.25	27.25	4.90	10.38	4.90	32.1	5	
CHO-4	42.62	42.13	22.53	39.41	39.41	9.82	22.92	9.82	49.2	4	
CHO-5	45.28	43.56	22.92	39.78	39.78	9.31	22.15	9.31	49.0	9	
CHO-6	59.80	72.61	10.66	27.53	27.53	9.99	10.38	9.99	37.5	2	
CHO-7	45.03	48.37	22.53	39.14	39.14	17.32	22.53	17.32	56.4	6	
WJE-1	42.13	40.88	23.85	23.85	23.85	14.00	23.85	14.00	37.8	5	
Notes:											
110000.											
	TT-11-2	0.6			in the later						
refer to	o Table 3	.0 for key	to beam o	lesignation	15						
V _{t(a)}	= shear o	capacity of	top tee u	sing Eq. B	3.1.						
V.m	= shear o	capacity of	top tee u	sing Eq. 2	.33.						
V	= plastic	shear cap	acity of to	op tee usin	g Eq. 2.1	8					
V	- combi	and plastic	chear car	acity of t	on tee and	d concrete	using F	a 2 21			
v tah	- comon	lieu plastic	sileai caj	facily of a	op ice an	u concrete	, using L	d. mart			
V _{t1}	= govern	ing shear	capacity o	or top tee.							
V _b	= shear of	capacity of	bottom t	ee using E	q. B.1.						
V _{pb}	= plastic	shear capa	acity of b	ottom tee	using Eq.	2.22.					
V.	= govern	ing shear	capacity o	of bottom	tee.						
V.	= maxim	um shear	capacity	s predicte	d by Met	hod L					
.1	- maxin	an stou	expansion (- producto	- 0) 1100						

If health of initializes to obtain and some that it

Table 3.7 Steel Beam Shear Capacity Summary: Method II

(values in kips)

Test	$V_{\rm mb2}$	V_{pb}	V_{b2}	V _{mt2}	V_{pt}	V_{t2}	V_{m}	V_2			
RBD-C1	46.47	47.30	46.47	46.47	47.30	46.47	82.99	82.99	-		
RM-1A	12.91	14.88	12.91	12.91	14.88	12.91	39.15	25.81			
RM-1B	6.99	14.69	6.99	6.94	14.64	6.94	38.66	13.93			
RM-2A	13.82	15.94	13.82	13.82	15.94	13.82	41.94	27.65			
RM-2B	5.69	12.16	5.69	5.69	12.16	5.69	32.34	11.38			
RM-2C	10.28	11.91	10.28	10.28	11.91	10.28	31.69	20.56			
RM-3A	13.05	15.05	13.05	13.05	15.05	13.05	39.60	26.11			
RM-4A	13.03	15.02	13.03	13.03	15.02	13.03	39.52	26.06			
RM-4B	6.97	14.64	6.97	6.97	14.64	6.97	38.53	13.93			
RM-4C	14.56	16.79	14.56	14.56	16.79	14.56	44.17	29.12			
CR-1A	14.18	17.67	14.18	14.14	17.63	14.14	52.41	28.32			
CR-2A	27.19	27.71	27.19	27.19	27.71	27.19	72.49	54.38			
CR-2B	27.19	27.71	27.19	27.19	27.71	27.19	72.49	54.38			
CR-2C	31.63	35.47	31.63	31.63	35.47	31.63	92.22	63.27			
CR-2D	31.63	35.47	31.63	31.63	35.47	31.63	92.22	63.27			
CR-3A	27.02	27.71	27.02	27.02	27.71	27.02	72.49	54.04			
CR-3B	34.92	35.47	34.92	34.92	35.47	34.92	92.22	69.84			
CR-4A	26.56	35.47	26.56	26.56	35.47	26.56	92.22	53.12			
CR-4B	26.56	35.47	26.56	26.56	35.47	26.56	92.22	53.12			
CR-5A	22.67	25.65	22.67	22.67	25.65	22.67	92.22	45.34			
CR-7B	29.51	31.60	29.51	29.49	31.60	29.49	82.22	59.00			
CR-7D	27.50	31.60	27.50	29.49	31.60	29.49	82.22	56.99			
CSK-2	64.76	64.83	64.76	27.50	28.13	27.50	97.69	92.26			
CSK-5	54.58	55.15	54.58	21.96	23.66	21.96	83.19	76.55			
CSK-6	9.64	15.79	9.64	40.46	47.28	40.46	83.19	50.10			
CSK-7	12.17	15.79	12.17	45.11	47.28	45.11	83.19	57.28			
CS-1	21.26	21.98	21.26	21.26	21.98	21.26	57.73	42.53			
CS-2	20.47	21.16	20.47	20.47	21.16	20.47	55.58	40.95			
CS-3	20.75	21.92	20.75	20.75	21.92	20.75	57.58	41.50			
RL-5	21.40	34.74	21.40	21.39	34.74	21.39	81.67	42.79			
RL-6	11.71	21.60	11.71	11.71	21.60	11.71	82.80	23.42			
B-1	21.46	33.90	21.46	21.46	33.90	21.46	83.92	42.93			
B-2	19.44	30.28	19.44	19.44	30.28	19.44	72.65	38.87			
B-3	18.36	28.88	18.36	18.36	28.88	18.36	70.72	36.72			
B-4	24.42	34.12	24.42	24.42	34.12	24.42	82.35	48.84			
CL-4B	7.50	31.51	7.50	7.22	30.89	7.22	121.49	14.72			
CR-6A	18.21	35.47	18.21	18.21	35.47	18.21	92.22	36.43			
CSK-1	50.78	63.03	50.78	13.89	27.34	13.89	94.98	64.67			
DO-1	10.92	19.43	10.92	10.92	19.43	10.92	36.56	21.84			
DO-2	3.15	11.19	3.15	3.14	11.18	3.14	36.56	6.29			
DO-3	19.26	27.69	19.26	4.07	11.18	4.07	36.56	23.32			
DO-4	9.29	20.77	9.29	3.22	11.80	3.22	39.29	12.52			
DO-5	5.65	11.18	5.65	5.65	11.18	5.65	36.56	11.30			
RBD-R1B	47.28	53.80	47.28	47.28	53.80	47.28	82.14	82.14			
RBD-R2	28.26	43.24	28.26	28.26	43.24	28.26	82.99	56.53			
RM-11H	7.31	17.32	7.31	7.31	17.32	7.31	51.24	14.61			
RM-21H	4,63	11.29	4.63	4.63	11.29	4.63	34.08	9.25			
RM-2F	4.64	11.17	4.64	4.64	11.17	4.64	33.34	9.29			
RM-4F	5.97	14.16	5.97	5.97	14.16	5.97	41.87	11.94			
RM-4H	4.89	11.86	4.89	4.89	11.86	4.89	35.61	9.79			
	0.000		(1994)	2252	2002	6833	5111772	20032			

Notes:

refer to Table 3.0 for key to beam designations

 $V_{m/2}$ = shear capacity of bottom and top tee, respectively, using Eq. 2.43.

= plastic shear capacity of bottom and top tee, respectively, using Eqs. 2.22 and 2.18.

- $V_{mb2}, V_{ml2} V_{ml2} V_{pb}, V_{pl} V_{pl} V_{p2} V_$
- governing shear capacity of bottom and bottom tees, respectively.
 maximum permissible shear capacity of beam per Section D.1.2.
- = maximum shear capacity as predicted by Method II.

(values	in kips)										
Test	$V_{\iota(a)}$	$V_{\iota(b)}$	V_{pt}	Vish	V _a	V _b	V_{pb}	V_{b2}	V ₂	1079	
D-1	29.00	47 84	47 84	54.86	29.00	12.05	46.96	12.05	41.06	121.01	
D-2	29.27	44.81	44.81	52.12	29.27	12.34	44.81	12.34	41.61		
D-3	30.48	44.54	44.54	52.26	30.48	12.25	44.46	12.25	42.73		
D-5A	26.40	45.40	45.40	52.63	26.40	12.37	44.77	12.37	38.77		
D-5B	29.93	44.77	44.77	52.26	29.93	3.40	23.13	3.40	33.33		
D-6A	27.01	44.75	44.75	51.41	27.01	12.37	44.70	12.37	39.37		
D-6B	41.05	44.75	44.75	53.36	41.05	12.37	44.70	12.37	53.41		
D-7A	32.77	34.47	34.47	42.96	32.77	9.91	35.54	9.91	42.68		
D-7B	31.36	34.90	34.90	43.50	31.36	10.09	35.86	10.09	41.45		
D-8A	0.00	16.83	14.20	23.26	16.83	4.15	14.16	4.15	20.98		
D-9A	0.00	29.15	25.70	44.68	29.15	5.21	25.70	5.21	34.36		
D-9B	0.00	38.61	26.99	46.40	38.61	7.74	24.68	7.74	46.35		
R-0	0.00	16.53	15.06	24.52	16.53	4.31	15.06	4.31	20.85		
R-1	17.84	21.44	21.44	30.07	17.84	5.98	21.44	5.98	23.82		
R-2	21.87	23.88	23.88	32.01	21.87	6.70	23.88	6.70	28.57		
R-3	0.00	30.71	24.05	34.07	30.71	6.73	24.05	0.73	37.44		
R-4	18.64	24.64	24.64	34.26	18.64	6.93	24.64	6.93	25.58		
R-3	0.00	14.97	10.76	19.39	14.97	12.81	3212	12.81	27.78		
K-0	12.48	23.30	23.30	31.37	12.48	0.03	23.50	0.03	19.10		
R-/	0.00	22.31	21.97	29.78	22.31	6.18	21.97	0.18	28.49		
K-8	0.00	21.40	20.73	28.35	21.40	5,76	20.73	5.76	27.10		
C-1	0.00	27.06	19.10	33.21	27.06	5.92	19.10	5.92	32.99		
C-2	29.41	30.28	30.28	41.17	29.41	9.50	32.85	9.50	38.90		
C-3	30.74	31.42	31.42	43.21	30.74	8.92	31.81	8.92	39.00		
C-4	35.29	35.89	35.89	47.11	35.29	10.02	36.61	10.02	45.31		
0-5	34.90	35.71	35.71	47.21	34.90	10.43	30.32	10.43	45.33		
C-6	0.00	29.23	24.30	34.95	29.23	6.93	23.80	0.93	36.16		
0-1	0.00	32.34	12.85	21.46	21.42	4.09	12.85	4.09	20.11		
G-2	0.00	42.11	12.85	21.44	21.44	4.09	12.85	4.69	20.13		
CHO-3	0.00	54.03	10.38	27.25	20.41	3.49	10.38	3.49	30.74		
CHO-4	0.00	40.97	22.53	39.41	39.41	8.33	22.92	8.33	47.76		
CHO-5	0.00	42.34	10.00	39.78	39.78	7.83	22.15	7.83	47.01		
CHO-6	0.00	/0.81	10.66	27.53	21.53	9.22	10.38	9.12	30.73		
CHO-/	0.00	48.32	22.33	39.14	39.14	16.70	22.33	10.70	20.00		
WJE-1	0.00	38.70	23.83	23.83	23.85	14.43	23.83	14.43	20.20		
Notes:											
refer to	o Table 3	0 for key	to beam	designati	ons						
rerer b	0 14010 5	to for hoj	to beam	acorgrian	GILD						
					0.40						
V _{L(a)}	= shear of	capacity of	t top tee i	using Eq.	2.43						
V _{t(b)}	= shear of	capacity o	f top tee 1	using Eq.	2.46.						
V	= plastic	shear can	acity of t	op tee us	ing Eq. 2	.18					
V	- combi	ned plastic	chear ca	nacity of	ton tee a	nd concrete	using Fa	2 21			
"uh	- comon	incu plastic	, shour ou	pacity of	wp ice a	na concrete	using by				
V ₁₂ V _h	= govern = shear o	capacity o	f bottom	or top te tee using	e. Eq. 2.43.	16.00 30					
V _{pb}	= plastic	shear cap	acity of b	ottom te	e using E	q. 2.22.					
V _{b2} V ₂	= govern = maxim	ung shear	capacity	as predic	ted by Me	ethod II.					
			- particip	12 C		here the second					

Table 3.8 Composite Beam Shear Capacity Summary: Method II

Table 3.9 Steel Beam Shear Capacity Summary: Method III, $\lambda = 1.414$

(values in kips)

Test	V _{mb3}	V_{pb}	V_{b3}	V _{mt3}	V_{pl}	V_{B}	V_{m}	V_3			
RBD-C1	56.21	47.30	47.30	56.21	47.30	47.30	82.99	82.99	14		
RM-1A	13.37	14.88	13.37	13.37	14.88	13.37	39.15	26.74			
RM-1B	7.29	14.69	7.29	7.25	14.64	7.25	38.66	14.54			
RM-2A	14.32	15.94	14.32	14.32	15.94	14.32	41.94	28.64			
RM-2B	5.95	12.16	5.95	5.95	12.16	5.95	32.34	11.90			
RM-2C	10.62	11.91	10.62	10.62	11.91	10.62	31.69	21.24			
RM-3A	13.52	15.05	13.52	13.52	15.05	13.52	39.60	27.04			
RM-4A	13.50	15.02	13.50	13.50	15.02	13.50	39.52	26.99			
RM-4B	7.27	14.64	7.27	7.27	14.64	7.27	38.53	14.54			
RM-4C	15.08	16.79	15.08	15.08	16.79	15.08	44.17	30.17			
CR-1A	14.26	17.67	14.26	14.22	17.63	14.22	52.41	28.47			
CR-2A	29.62	27.71	27.71	29.62	27.71	27.71	72.49	55.42			
CR-2B	29.62	27.71	27.71	29.62	27.71	27.71	72.49	55.42			
CR-2C	32.55	35.47	32.55	32.55	35.47	32.55	92.22	65.10			
CR-2D	32.55	35.47	32.55	32.55	35.47	32.55	92.22	65.10			
CR-3A	29.19	27.71	27.71	29.19	27.71	27.71	72.49	55.42			
CR-3B	38.23	35.47	35.47	38.23	35.47	35.47	92.22	70.94			
CR-4A	26.59	35.47	26.59	26.59	35.47	26.59	92.22	53.17			
CR-4B	26.59	35.47	26.59	26.59	35.47	26.59	92.22	53.17			
CR-5A	23.06	25.65	23.06	23.06	25.65	23.06	92.22	46.12			
CR-7B	30.92	31.60	30.92	30.91	31.60	30.91	82.22	61.83			
CR-7D	28.00	31.60	28.00	30.01	31.60	30.01	82.22	59.00			
CSK-2	78 48	64.83	64.83	20.82	28.13	28.13	07.60	02.06			
CSK-5	62 24	55 15	55.15	22.02	23.66	20.15	97.09	77.01			
CSK-6	9.67	15 70	9.67	41 22	47.28	41.22	83.19	50.80			
CSK-7	12.10	15.79	12.10	41.22	47.20	47.22	83.19	50.07			
CSA-/	22.19	21.09	21.09	40.01	47.25	91.28	63.19	12.05			
CS-1	21.05	21.90	21.90	21.05	21.98	21.90	51.15	43.93			
CS-2	21.95	2 02	21.10	21.95	21.10	21.10	57.50	42.31			
C3-3	21.90	21.92	21.90	21.90	21.92	21.90	57.38	43.80			
RL-S	21.51	34.74	21.51	21.50	34.74	21.50	81.07	43.01			
RL-0	11.81	21.00	11.81	11.81	21.60	11.81	82.80	23.03			
B-1	21.57	33.90	21.57	21.57	33.90	21.57	83.92	43.13			
B-2	19.51	30.28	19.51	19.51	30.28	19.51	72.65	39.02			
B-3	18.44	28.88	18.44	18.44	28.88	18.44	70.72	36.89			
B-4	24.42	34.12	24.42	24.42	34.12	24.42	82.35	48.83			
CL-4B	8.77	31.51	8.77	8.46	30.89	8.46	121.49	17.23			
CR-6A	18.78	35.47	18.78	18.78	35.47	18.78	92.22	37.55			
CSK-1	51.35	63.03	51.35	14.35	27.34	14.35	94.98	65.70			
DO-1	11.11	19.43	11.11	11.11	19.43	11.11	36.56	22.23			
DO-2	3.59	11.19	3.59	3.58	11.18	3.58	36.56	7.17			
DO-3	19.26	27.69	19.26	4,44	11.18	4.44	36.56	23.70			
DO-4	9.79	20.77	9.79	3.69	11.80	3.69	39.29	13.48			
DO-5	5.84	11.18	5.84	5.84	11.18	5.84	36.56	11.68			
RBD-R1B	49.31	53.80	49.31	49.31	53.80	49.31	82.14	82.14			
RBD-R2	28.33	43.24	28.33	28.33	43.24	28.33	82.99	56.67			
RM-11H	7.78	17.32	7.78	7.78	17.32	7.78	51.24	15.55			
RM-21H	4.95	11.29	4.95	4.95	11.29	4.95	34.08	9.90			
RM-2F	4.95	11.17	4.95	4.95	11.17	4.95	33.34	9.91			
RM-4F	6.36	14.16	6.36	6.36	14.16	6.36	41.87	12.71			
RM-4H	5.23	11.86	5.23	5.23	11.86	5.23	35.61	10.45			
Notes											
riotes.											
refer to	able 3.	U for key	to bean	n design	ations						

 $\begin{array}{c} V_{\textit{mb3}}, V_{\textit{mt3}} \\ V_{\textit{pb}}, V_{\textit{pt}} \\ V_{\textit{b3}}, V_{\textit{p3}} \\ V_{\textit{m}} \\ V_{\textit{3}} \end{array}$

= =

=

plastic shear capacity of bottom and top tee, respectively, using Eqs. 2.22 and 2.18. governing shear capacity of bottom and bottom tees, respectively.

shear capacity of bottom and top tee, respectively, using Eq. 2.54.

maximum permissible shear capacity of beam per Section D.1.2. =

maximum shear capacity as predicted by Method III. =

Table 3.10 Composite Beam Shear Capacity Summary: Method III, $\lambda = 1.414$

(values in kips)

m .							11.0					
Test	V _{t(a)}	$V_{i(b)}$	V _{pt}	Visk	VB	Vb	Vpb	VBS	V_3			
D 1	20.14	47.04	47.04	64.04	20.14	14.01	46.06	14.01	12.05	10.5	12.24	
D-1	29.14	47.84	47.84	54.86	29.14	14.81	40.90	14.81	43.95			
D-2	29.30	44.81	44.81	52.12	29.30	14.11	44.81	14.11	43.41			
D-3	30.48	44.34	44.34	54.20	30.48	14.01	44.46	14.01	44,49			
D-SA	20.39	45.40	45.40	52.03	26.59	14.14	44.77	14.14	40.73			
D-3B	29.95	44.11	44.77	54.20	29.95	4.23	23.13	4.23	34.17			
D-6A	27.14	44.75	44.75	51.41	27.14	14.13	44.70	14.13	41.27			
D-0B	42.03	44.75	44.75	23.30	42.03	14.13	44.70	14.15	56.16			
D-7A	33.93	34.47	34,47	42.90	33.93	11.31	35.54	11.31	43.24			
D-7B	31.95	34.90	34.90	43.50	31.95	11.49	35.86	11.49	43.45			
D-8A	0.00	16.83	14.20	23.26	16.83	4.69	14.16	4.69	21.53			
D-9A	0.00	29.15	25.70	44.68	29.15	6.24	25.70	6.24	35.38			
D-9B	0.00	38.61	26.99	46.40	38.61	8.66	24.68	8.66	47.28			
R-0	0.00	16.53	15.06	24.52	16.53	4.90	15.06	4.90	21.43			
R-1	17.97	21.44	21.44	30.07	17.97	6.82	21.44	6.82	24.79			
R-2	22.39	23.88	23.88	32.01	22.39	7.64	23.88	7.64	30.02			
R-3	0.00	30.71	24.05	34.07	30.71	7.68	24.05	7.68	38.38			
R-4	18.66	24.64	24.64	34.26	18.66	7.90	24.64	7.90	26.56			
R-5	0.00	14.97	10.76	19.39	14.97	13.76	32.12	13.76	28.73			
R-6	12.67	23.56	23.56	31.37	12.67	7.55	23.56	7.55	20.22			
R-7	0,00	22.31	21.97	29.78	22.31	7.04	21.97	7.04	29.35			
R-8	0.00	21.40	20.73	28.35	21.40	6.57	20.73	6.57	27.98			
C-1	0.00	27.06	19.16	33.21	27.06	6.65	19.16	6.65	33.71			
C-2	30,75	30.28	30.28	41.17	30.75	10.77	32.85	10.77	41.53			
C-3	32.34	31.42	31.42	43.21	32.34	10.17	31.81	10.17	42.52			
C-4	37.24	35.89	35.89	47.11	37.24	11.47	36.61	11.47	48.71			
C-5	36.73	35.71	35.71	47.21	36.73	11.85	36.32	11.85	48.58			
C-6	0.00	29.23	24.30	34.95	29.23	7.85	23.86	7.85	37.08			
G-1	0.00	52.34	12.85	21.42	21.42	5.12	12.85	5.12	26.54			
G-2	0.00	42.77	12.85	21.44	21.44	5.12	12.85	5.12	26.56			
CHO-3	0.00	54.03	10.38	27.25	27.25	3.86	10.38	3.86	31.11			
CHO-4	0.00	40.97	22.53	39.41	39.41	9.11	22.92	9.11	48.52			
CHO-5	0.00	42.34	22.92	39.78	39.78	8.59	22.15	8.59	48.37			
CHO-6	0.00	70.81	10.66	27.53	27.53	3 9.40	10.38	9.40	36.93			
CHO-7	0.00	48.32	22.53	39.14	39.14	16.71	22.53	16.71	55.85			
WJE-1	0.00	38.76	23.85	23.85	23.85	5 14.46	23.85	14.46	38.31			

Notes:

refer to Table 3.0 for key to beam designations

 $\begin{array}{c} V_{i(a)} \\ V_{i(b)} \\ V_{pi} \\ V_{ish} \\ V_{i3} \\ V_{b} \\ V_{bb3} \\ V_{3} \end{array}$ shear capacity of top tee using Eq. 2.54. = shear capacity of top tee using Eq. 2.46. = plastic shear capacity of top tee using Eq. 2.18 = combined plastic shear capacity of top tee and concrete using Eq. 2.21. = governing shear capacity of top tee. = shear capacity of bottom tee using Eq. 2.43. = plastic shear capacity of bottom tee using Eq. 2.22. = governing shear capacity of bottom tee. = maximum shear capacity as predicted by Method III. =

Test	<i>V</i> _p (k)	α,	α,	term ₁	term ₂	$(d-2t_f)/t_f$	V. (k	V	V (k)		
RBD-C1	125.74	27.69	27.70	0.37	0.37	58.42	92.	94 83.87	83.87		
RM-1A	59.31	3.04	3.04	0.22	0.22	30.41	25.	80 29.76	25.80		
RM-1B	58.58	0.29	0.29	0.12	0.12	30.95	13.	98 29.33	13.98		
RM-2A	63.54	3.04	3.04	0.22	0.22	30.03	27.	64 31.88	27.64		
RM-2B	48.99	0.28	0.28	0.12	0.12	31.97	11.	38 24.31	11.38		
RM-2C	48.01	2.91	2.91	0.21	0.21	31.83	20.	56 23.83	20.56		
RM-3A	59.99	3.04	3.04	0.22	0.22	30.53	26.	10 30.10	26.10		
RM-4A	59.88	3.04	3.04	0.22	0.22	30.53	26.	05 30.04	26.05		
RM-4B	58.37	0.29	0.29	0.12	0.12	30.66	13.	93 29.28	13.93		
RM-4C	66.93	3.04	3.04	0.22	0.22	30.41	29.	12 33.58	29.12		
CR-1A	79.41	0.00	0.00	0.29	0.00	37.88	23.	26 35.29	23.26		
CR-2A	109.84	0.00	0.00	0.50	0.00	40.30	55.	42 55.42	55.42		
CR-2B	109.84	0.00	0.00	0.50	0.00	40.30	55.	42 55.42	55.42		
CR-2C	139.72	0.00	0.00	0.35	0.00	43.41	48.	88 70.94	48.88		
CR-2D	139.72	0.00	0.00	0.35	0.00	43.41	48.	88 70.94	48.88		
CR-3A	109.84	0.00	0.00	0.50	0.00	40.30	55.	42 55.42	55.42		
CR-3B	139.72	0.00	0.00	0.51	0.00	43.41	70.	94 70.94	70.94		
CR-4A	139.72	0.00	0.00	0.26	0.00	43.41	36.	53 70.94	36.53		
CR-4B	139.72	0.00	0.00	0.26	0.00	43.41	36.	53 70.94	36.53		
CR-5A	139.72	0.00	0.00	0.32	0.00	43.41	44.	34 51.29	44.34		
CR-7B	124.58	0.00	0.00	0.41	0.00	41.95	51.	65 63.21	51.65		
CR-7D	124.58	0.00	0.00	0.41	0.00	41.95	51.	65 63.21	51.65		
CSK-2	148.02	0.00	0.00	0.63	0.00	43.48	92.	96 92.96	92.96		
CSK-5	126.05	0.00	0.00	0.57	0.00	49.18	71.	27 78.81	71.27		
CSK-6	126.05	0.00	0.00	0.28	0.00	49.18	35.	56 63.06	35.56		
CSK-7	126.05	0.00	0.00	0.38	0.00	49.18	47.	42 63.06	47.42		

Table 3.11 Steel Beam Shear Capacity Summary: Redwood and Shrivastava (1980)

courself.

replacing to the loss of the loss of the second second

ALL off entry and set he attacked which in the

The Print Print and part for the press of the second second

(a) C. Manual and the restance space that the standard set in the

12.2 with some sometimes have not true to examine trade plantile basic/converted

vision by finant the triving po filtration attacks

The party of Acceleration free and the second

and the second second

Table 3.12 Composite Biana Sirone Capacity Summary: Redwood and Promitneerse

Test	V _p (k)	α,	α,	term ₁	term ₂	$(d-2t_f)/t_w$	V. (k)	V _m (k)	V (k)	
CS-1	87.47	0.00	0.00	0.50	0.00	32.57	43.95	43.95	43.95	
CS-2	84.21	0.00	0.00	0.50	0.00	32.57	42.31	42.31	42.31	
CS-3	87.24	0.00	0.00	0.50	0.00	32.57	43.84	43.84	43.84	
RL-5	123.74	0.00	0.00	0.15	0.00	56.56	18.71	69.49	18.71	
RL-6	125.45	0.00	0.00	0.14	0.00	58.29	17.51	43.20	17.51	
B-1	127.15	0.67	0.67	0.17	0.17	48.09	42.93	67.80	42.93	
B-2	110.08	0.70	0.70	0.18	0.18	49.90	38.87	60.56	38.87	
B-3	107.15	0.68	0.68	0.17	0.17	48.48	36.72	57.76	36.72	
B-4	124.77	1.05	1.05	0.20	0.20	47.80	48.84	68.23	48.84	
CL-4B	184.07	0.06	0.11	0.04	0.07	49.29	20.16	62.40	20.16	
CR-6A	139.72	0.36	0.36	0.13	0.13	43.41	36.43	70.94	36.43	
CSK-1	143.90	0.35	1.85	0.10	0.35	43.48	64.67	90.38	64.67	
DO-1	55.39	0.46	0.46	0.20	0.20	31.42	21.84	36.94	21.84	
DO-2	55.39	0.09	0.09	0.06	0.06	31.42	6.28	22.36	6.28	
DO-3	55.39	0.15	0.94	0.07	0.35	31.42	23.32	36.94	23.32	
DO-4	59.53	0.08	0.25	0.05	0.16	28.02	12.52	32.56	12.52	
DO-5	55.39	0.34	0.34	0.10	0.10	31.42	11.30	22.35	11.30	
RBD-R1B	124.45	3.39	3.39	0.38	0.38	59.08	94.56	83.01	83.01	
RBD-R2	125.74	0.75	0.75	0.22	0.23	58.42	56.58	83.87	56.58	
RM-11H	77.63	0.22	0.22	0.09	0.09	25.37	14.61	34.65	14.61	
RM-21H	51.63	0.20	0.20	0.09	0.09	32.24	9.25	22.59	9.25	
RM-2F	50.52	0.21	0.21	0.09	0.09	31.36	9.28	22.33	9.28	
RM-4F	63.45	0.22	0.22	0.09	0.09	29.92	11.94	28.31	11.94	
RM-4H	53.96	0.21	0.21	0.09	0.09	32.37	9.79	23.72	9.79	

Notes	8		
refer t	o T	able 3.0 for key to beam designations	
V.	=	plastic shear capacity of unperforated web	
α,	=	expression used in Eq. 2.76	
α,	=	expression used in Eq. 2.76	
term,	=	first part of Eq. 2.76 for unreinforced beams	
		Eq. 2.78/(1 - h_d) for reinforced beams	
term,	=	second part of Eq. 2.76 for unreinforced beams,	
		0.0 for reinforced beams	
Va	=	$(term_1 + term_2) * V_s$	
V_{-}	=	maximum permissible shear capacity per Section D.1.2 of this report	
V	=	governing shear capacity	

 Table 3.12
 Composite Beam Shear Capacity Summary: Redwood and Poumbouras (1984)

Test	<i>C</i> , (k)	<i>C</i> , (k)	C2 (k)	kS	5 k6	μ	γ	<i>V</i> _t (k)	<i>V</i> ^b (k)	<i>V</i> " (k)	<i>M</i> _* (ink)	
D-1 D-2 D-3 D-5A	364.7 395.7 440.6 386.7	5 173.28 6 214.79 4 215.37 8 179.25	103.97 141.11 135.50 128.04	0.44 0.54 0.44 0.44	8 0.29 4 0.36 9 0.31 6 0.33	2.21 2.64 2.86 2.04	5.92 6.05 6.03 5.94	29.00 29.27 30.48 26.40	12.95 12.34 12.25 12.37	41.96 41.61 42.73 38.77	2478.96 2312.13 2360.26 2407.58	
D-5B D-6A D-6B D-7A	415.3 328.0 438.6 427.3	4 222.68 3 192.03 0 224.28 8 164.31	146.27 128.02 114.33 29.53	0.5 0.5 0.5	4 0.35 9 0.39 1 0.26 8 0.07	2.74 2.24 3.44 4.81	6.02 6.01 6.01 6.15	29.93 27.01 34.00 31.14	3.40 12.37 12.37 9.91	33.33 39.37 46.37 41.05	2941.50 2486.16 2596.25 1882.26	
D-7B D-8A D-9A D-9B	438.6 401.8 510.4 711.5	0 165.05 8 72.42 1 154.65 5 157.33	107.79 43.23 45.18 100.74	0.3 0.1 0.3 0.2	8 0.25 8 0.11 0 0.09 2 0.14	2.91 8.28 11.11 8.45	6.07 5.64 8.36 4.80	23.94 14.20 25.70 26.99	10.09 4.15 5.21 7.74	34.03 18.35 30.91 34.73	1748.31 494.13 2296.02 2256.19	
D-8B Notes:	401.8	8 65.72	43.82	0.1	6 0.11	7.58	9.20	12.41	1.85	14.26	501.24	
refer to	o Table	3.0 for ke	y to beam	design	ations							
С° С1 С2 К5 Кб	= f $= c$ $= c$ $= c$ $= c$	full compressive compressive C_1/C_o C_2/C_o erm relating	ssive resis force in force in g the inter	concrete concrete rnal more	f the slab e at the h e at the k ments of	igh mome ow mome compress	ent en nt end	d of the l of the rces at	opening opening the ends			
γ V _b V _i V _m	= 0 = 0 = 1 = 1 = 1	of the opening len opening len oottom tee s op tee shea naximum s naximum n	ing and C gth/tee de shear capa r capacity hear capa noment capa	, to the pth acity city with pacity	plastic sh hout mon without sl	near capac	action	the tee	and tee of	iepth		

Vm (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V. (k)	Test/ Theory
82.99	2046.38	98.17	1626.80	78.04	1.258
29.76	728.13	0.00	716.71	0.00	1.016
15.32	712.13	0.00	711.06	0.00	1.002
31.88	575.54	31.96	516.63	28.69	1.114
12.82	295 54	16.41	227 64	12.64	1 298

Table 3.13 Steel Beam Capacity Summary: Method I, $\lambda = 1.414$

Unreinforced Circular Opening RBD-C1 2945.79 RM-1A 716.71 RM-1B 711.06 RM-2A 798.33 RM-2B 660.89 RM-2C 23.76 480.54 26.69 386.99 21.49 1.242 606.23 RM-3A 713.87 30.05 619.49 20.63 624.29 20.79 0.992 RM-4A 720.71 30.04 691.77 14.38 693.16 14.41 0.998 RM-4B 695.17 15.26 553.77 11.50 566.64 11.77 0.977 RM-4C 701.33 32.71 672.77 13.98 681.79 0.987 14.17 Mean 1.088 Coefficient of Variation 0.119 0.889 Rectangular Opening B-1 2303.02 43.18 945.00 47.22 849.48 42.45 1.112 B-2 2171.63 39 36 1704.80 42.56 1415.15 35.33 1.205 B-3 2081.90 37.20 1.80 49.74 1.35 37.20 1.337 47.70 B-4 2207.88 49.06 1003.00 50.12 954.61 1.051 CL-4B 647.36 3555.94 1.545 18.03 1000.00 27.80 18.00 CR-6A 2564.72 38.27 1212.37 55.07 832.78 37.83 1.456 CSK-1 3388.11 67.95 2358.39 78.54 1910.29 63.62 1.235 22.53 342.11 21.71 1.149 DO-1 725.03 392.95 24.94 1.452 DO-2 674.35 8.00 182.69 11.59 125.79 7.98 DO-3 691.24 24.19 622.36 19.73 574.31 18.21 1.084 DO-4 408.08 12.93 1.218 698.68 13.93 496.99 15.75 DO-5 674.35 13.45 728.74 0.00 674.35 0.00 1.081 RBD-R1B 1577.91 78.09 3033.59 82.14 1718.81 85.06 1.089 1.082 RBD-R2 2925.66 56.58 1269.70 59.86 1173.71 55.33 RM-11H 749.12 15.96 772.33 0.00 749.12 0.00 1.031 251.37 10.46 1.364 RM-21H 618.27 10.71 342.82 14.27 192.58 1.477 RM-2F 629.18 10.80 284.54 15.80 10.69 RM-4F 733.86 13.62 566.77 11.77 548.14 11.38 1.034 462.12 1.047 RM-4H 637.98 11.25 483.77 10.04 9.59 1.213 Mean Coefficient of Variation 0.142 0.963 1.170 Mean Coefficient of Variation 0.143 **********

Overall Unreinforced

Mm

(in.-k)

Test⁽¹⁾

Resistance Factor

0.928

 -	~	
7	v	
	ሳ	
•	~	

Test ⁽¹⁾	<i>M</i> _{<i>m</i>} (ink)	<i>V</i> (k)	M _{test} (ink)	V _{iest} (k)	<i>M</i> _* (ink)	<i>V</i> (k)	Test/ Theory		
Reinforce	ed							- 1	
Recti	angular Open	ing							
CR-1A	1079.61	28.73	914.16	21.22	911.10	21.15	1.003		
CR-2A	2362.84	55.42	1542.37	70.07	1168.65	53.09	1.320		
CR-2B	2362.84	55.42	2331.35	51.74	1925.81	42.74	1.211		
CR-2C	2773.20	66.01	2112.23	70.36	1786.40	59.51	1.182		
CR-2D	2773.20	66.01	1404.33	82.53	1099.34	64.61	1.277		
CR-3A	2362.84	55.42	1707.37	77.57	1168.60	53.09	1.461		
CR-3B	2773.20	70.94	2704.85	60.10	2344.37	52.09	1.154		
CR-4A	2773.20	53.27	1487.37	67.57	1144.54	52.00	1.300		
CR-4B	2773.20	53.27	2313.35	51.34	2032.05	45.10	1.138		
CR-5A	2773.20	47.34	1554.23	51.76	1362.83	45.39	1.140		
CR-7B	2501.55	62,79	2448.35	54.34	2099.57	46.60	1.166		
CR-7D	2501.55	59.86	1319.33	77.58	996.03	58.57	1.325		
CSK-2	3680.73	92.96	2872.39	95.69	2473.48	82.40	1.161		
CSK-5	3141.22	78.78	2309.50	76.93	2100.71	69.98	1.099		
CSK-6	3043.56	51.36	1471.10	48.99	1480.76	49.31	0.993		
CSK-7	3043.56	60.30	1780.10	59.29	1698.78	56.58	1.048		
CS-1	2137.01	43.95	1811.25	30.08	1856.00	30.82	0.976		
CS-2	2155.60	42.31	1772.25	29.43	1840.91	30.57	0.963		
CS-3	2095.06	43.84	1604.00	40.03	1505.14	37.56	1.066		
RL-5	2667.74	42.60	2893.50	0.00	2667.74	0.00	1.085		
RL-6	2701.97	23.69	1048.89	21.36	1133.79	23.09	0.925		
				100					
				Mean	• • • • • • • • • • • •		1.143		
				Coefficient o	of Variation		0.121		
				Resistance F	actor	********	0.932		
Overall S	teel Beams								
			Mear				1.158		
			Coef	ficient of Varia	ation		0.134		
			Resis	tance Factor			0.929		
Notes:									
(1)									
(1) refe	r to Table 3.0	for key b	o beam de	signations					

Table 3.13 (continued) Mildland Libertish remainsuit ribered to make lands. If E and all

Test ⁽¹⁾	<i>M_m</i> (ink)	V _m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _n (ink)	V, (k)	Test/ Theory		
Unreinfo	orced		(108	a.r. (3),	(3R)	0 0	(3~380)	(31)	
Ribbe	d Slab								
D-1	5405.49	43.73	1606.00	37.80	1833.32	43.15	0.876		
D-2	5967.14	42.44	3095.00	39.00	3187.38	40.16	0.971		
D-3	6096.61	43.64	6075.00	11.30	6061.36	11.27	1.002		
D-5A	5388.57	39.33	2768.00	34.60	2961.53	37.02	0.935		
D-5B	5226.80	33.67	2568.00	32.20	2573.89	32.27	0.998		
D-6A	5422.56	40.52	0.00	41.00	0.00	40.52	1.012		
D-6B	5733.80	55.92	2070.00	48.90	2314.16	54.67	0.894		
D-7A	4665.32	45.40	1845.00	43.50	1882.53	44.38	0.980		
D-7B	4362.93	42.62	3379.00	42.60	2976.26	37.52	1.135		
D-8A	1344.57	21.97	774.00	19.40	807.98	20.25	0.958		
D-8B	1056.25	14.76	427.00	14.30	430.55	14.42	0.992 (2)		
D-9A	4791.16	36.88	1474.00	34.50	1557.46	36.45	0.946		
D-9B	4588.71	49.00	1755.00	47.30	1781.80	48.02	0.985		
R-0	1288.17	21.78	752.00	18.20	816.12	19.75	0.921		
R-1	2630.28	25.70	978.00	26.00	951.08	25.28	1.028		
R-2	3516.43	29 71	2904.00	28 70	2557 21	25 27	1.136		
P.3	2774 22	40.46	3003.00	16.40	3706 13	15 22	1 077		
R-J P 4	2022.68	26.16	3212.00	13.10	2024.05	11 03	1.008		
R-4	3022.08	20.10	1028.00	13.10	1000.27	20.22	0.044		
K-S	2791.09	29.85	1038.00	27.00	1099.57	29.23	1.028		
K-0	2594.94	20.80	/86.00	21.20	764.39	20.62	1.028		
R-7	2833.28	31.19	1134.00	30.50	1134.13	30.50	1.000		
K-0	2017.04	50.15	1075.00	28.90	1098.11	29.32	0.979		
			Me	an			0.995		
			Me	an	Variation		0.995		
			Me Cor Res	an afficient of V	Variation		0.995 0.071 0.856		
			Me Co Res	an efficient of V sistance Fact	Variation or		0.995 0.071 0.856		
Calid	Clab		Me Co Res	an efficient of N histance Fact	Variation or		0.995 0.071 0.856		
Solid	Slab		Me Co Res	an officient of N distance Fact	Variation or		0.995 0.071 0.856		
Solid C-1	Slab 3110.10	36.52	Me Co Res 2886.00	an Efficient of N sistance Fact 33.40	Variation or 2486.39	28.78	0.995 0.071 0.856 1.161		
Solid C-1 C-2	Slab 3110.10 4604.48	36.52 41.15	Me Coo Res 2886.00 4107.00	an fficient of V nistance Fact 33.40 36.80	Variation or 2486.39 3649.89	28.78 32.70	0.995 0.071 0.856 1.161 1.125		
Solid C-1 C-2 C-3	Slab 3110.10 4604.48 4624.92	36.52 41.15 41.84	Me Cox Res 2886.00 4107.00 5468.00	an fficient of V iistance Fact 33.40 36.80 14.00	Variation or 2486.39 3649.89 4590.49	28.78 32.70 11.75	0.995 0.071 0.856 1.161 1.125 1.191		
Solid C-1 C-2 C-3 C-4	Slab 3110.10 4604.48 4624.92 4900.59	36.52 41.15 41.84 47.78	Me Cox Res 2886.00 4107.00 5468.00 1723.00	an fficient of V iistance Fact 33.40 36.80 14.00 47.60	Variation or 2486.39 3649.89 4590.49 1705.04	28.78 32.70 11.75 47.10	0.995 0.071 0.856 1.161 1.125 1.191 1.011		
Solid C-1 C-2 C-3 C-4 C-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23	36.52 41.15 41.84 47.78 47.40	Me Cox Res 2886.00 4107.00 5468.00 1723.00 3511.00	an fficient of V iistance Fact 33.40 36.80 14.00 47.60 48.10	Variation or 2486.39 3649.89 4590.49 1705.04 3165.98	28.78 32.70 11.75 47.10 43.37	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109		
Solid C-1 C-2 C-3 C-4 C-5 C-6	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26	36.52 41.15 41.84 47.78 47.40 39.65	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00	an fficient of V istance Fact 33.40 36.80 14.00 47.60 48.10 40.40	2486.39 3649.89 4590.49 1705.04 3165.98 1401.73	28.78 32.70 11.75 47.10 43.37 38.50	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13	36.52 41.15 41.84 47.78 47.40 39.65 28.69	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00	an cfficient of V cfficiance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72	28.78 32.70 11.75 47.10 43.37 38.50 28.10	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00	an fficient of V iistance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO 3	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15	Me Cox Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00	an fficient of V istance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2256.96	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15	Me Cox Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00	an fficient of V iistance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 200	an cfficient of V istance Fact 33.40 36.80 14.00 47.60 47.60 47.60 48.10 40.40 32.70 26.50 35.70 46.70 12.00	2486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2200 78	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00	an cfficient of V istance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1771.00 791.00 1296.00 634.00 1477.00 2319.00	an fficient of V istance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Me	an fficient of V iistance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 ean	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Me Coo	an efficient of V iistance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 efficient of V efficient of V	Variation or 2486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966 1.092 0.066 0.943		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Me Co Res	an cfficient of V cfficient of V cfficient of V 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 cfficient of V sistance Fact	Z486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78 Variation for	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966 1.092 0.066 0.943		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1477.00 2319.00 Me Co Res	an efficient of V iistance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 efficient of V sistance Fact	Variation or 2486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78 Variation or	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966 1.092 0.066 0.943		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Me Co Res	an cfficient of V cfficient of V istance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 efficient of V sistance Fact	Variation or 2486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78 Variation or	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966 1.092 0.066 0.943 1.028		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	36.52 41.15 41.84 47.78 47.40 39.65 28.69 28.71 32.15 49.24 49.09	Me Coo Res 2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Me Coo Res Mean Coefficient	an efficient of V istance Fact 33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 en efficient of V sistance Fact	Variation or 2486.39 3649.89 4590.49 1705.04 3165.98 1401.73 679.72 1212.95 557.83 1431.12 2399.78 Variation or	28.78 32.70 11.75 47.10 43.37 38.50 28.10 24.80 31.41 45.25 18.52	0.995 0.071 0.856 1.161 1.125 1.191 1.011 1.109 1.049 1.164 1.068 1.137 1.032 0.966 1.092 0.066 0.943 1.028 0.081 0.856		

Table 3.14 Composite Beam Capacity Summary: Method I, $\lambda = 1.414$ method I. 1.4 metho

Test ⁽¹⁾	M_m (ink)	V_m (k)	M _{test} (ink)	V _{iest} (k)	<i>M</i> _s (ink)	V, 60	Test/ Theory		
Painform				2.5					
Kennore	eu								
Ribbe	d Slab								
	8700 CZ								
WJE-1	7782.56	37.85	7155.63	0.00	7782.56	0.00	0.919		
Solid	Slab								
Solid	5140								
CIIIO (1745 50	27 62	201.00	10.00		24.04			
CHO-6	1745.52	56.46	721.00	40.60	604.36	36.85	1.102		
CHO-7	2903.21	20,40	2004.00	20.00	2918.30	44.31	0.915		
			Masa				1.008		
			Coeffi	cient of Va	riation		0.133		
			Resist	ance Factor			0.810		
Overall I	Reinforced		A COULDE	alleo I actor			0.010		
Overan 1	Cimoroca		Marr				0.078		
			Coefficient	of Variation		*****	0.110		
			Resistance	Factor			0.808		
Overall (Composite Re	eame	(toolar and too			_	01000		
o rotan v	composite De	ALLING.	Menn				1 024		
			Coefficient of V	ristion			0.084		
			Resistance Facto	r			0.870		
Notes:									
100001									
(1)	T-11	0.6-1-							
(1) ret	er to lable.	3.0 for k	ey to beam des	ignations					
(2) exc	cluded form	analysis	(see Appendix	E)					

Table 3.14 (continued) and a final body of a standard of the second advectment of the second

Test ⁽¹⁾	<i>M</i> _{<i>m</i>} (ink)	V _m (k)	M _{test} (ink)	V _{tast} (k)	<i>M</i> , (ink)	V. (k)	Test/ Theory	24	
Unreinford	ced		Sound C.	00	DA-180	104	(a.~a)	- 60	
C									
Circui	ar Opening								
RBD-C1	2945.79	82.99	2046.38	98.17	1626.80	78.04	1.258		
RM-1A	716.71	25.81	728.13	0.00	716.71	0.00	1.016		
RM-1B	711.06	13.93	712.13	0.00	711.06	0.00	1.002		
RM-2A	798.33	27.65	575.54	31.96	463.14	25.72	1.243		
RM-2B	660.89	11.38	295.54	16.41	202.94	11.27	1.456		
RM-2C	606.23	20.56	480.54	26.69	345.66	19.20	1.390		
RM-3A	713.87	26.11	619.49	20.63	591.81	19.71	1.047		
RM-4A	720.71	26.06	691.77	14.38	680.09	14.14	1.017		
RM-4B	695.17	13.93	553.77	11.50	541.82	11.25	1.022		
RM-4C	701.33	29.12	672.77	13.98	674.27	14.01	0.998		
							-		
				Mean			1.145		
				Coefficient of	of Variation		0.154		
				Resistance F	actor		0.895		
Racta	ngular Open	ina							
Roota	ingunar Open	mig							
B-1	2303.02	42.93	945.00	47.22	844.70	42.21	1.119		
B-2	2171.63	38.87	1704.80	42.56	1402.40	35.01	1.216		
B-3	2081.90	36.72	1.80	49.74	1.33	36.72	1.355		
B-4	2207.88	48.84	1003.00	50.12	950.62	47.50	1.055		
CL-4B	3555.94	14.72	1000.00	27.80	528.86	14.70	1.891		
CR-6A	2564.72	36.43	1212.37	55.07	793.91	36.06	1.527		
CSK-1	3388.11	64.67	2358.39	78.54	1833.36	61.06	1.286		
DO-1	725.03	21.84	392.95	24.94	332.63	21.11	1.181		
DO-2	674.35	6.29	182.69	11.59	99.05	6.28	1.844		
DO-3	691.24	23.32	622.36	19.73	565.20	17.92	1.101		and the second second
DO-4	698.68	12.52	496.99	15.75	373.66	11.84	1.330		
DO-5	674.35	11.30	728.74	0.00	674.35	0.00	1.081		
RBD-R1B	3033.59	82.14	1718.81	85.06	1577.91	78.09	1.089		
RBD-R2	2925.66	56.53	1269.70	59.86	1172.67	55.29	1.083		
RM-11H	749.12	14.61	772.33	0.00	749.12	0.00	1.031		
RM-21H	618.27	9.25	342.82	14.27	218.95	9.11	1.566		
RM-2F	629.18	9.29	284,54	15.80	166.21	9.23	1.712		
RM-4F	733.86	11.94	566.77	11.77	504.51	10.48	1.123		
RM-4H	637.98	9.79	483.77	10.04	421.11	8.74	1.149		
				Mean			1.302		
				Coefficient	of Variation		0.211		
				Resistance I	actor		0.939		
Overall U	nreinforced								
STOLLE O			Mee				1.248		
			Cont	Figiant of Veri	ation		0.203		
			D	ficient of vari			0.011		
			IC (**C1	NUMBER PACIOF	and a state of the state of the state of the state	and an	17.911		

Table 3.15 Steel Beam Capacity Summary: Method II

Test(1)	M_m	V_{m}	M _{lest}	V _{lest}	M_{*}	V.	Test/		
1050	(111K)	(K)	(IIIK)	(K)	(шк)	(K)	Theory	-	
Reinforce	ed								
Recta	angular Open	ing							
CR-1A	1079.61	28.32	914.16	21.22	905.81	21.03	1.009		
CR-2A	2362.84	54.38	1542.37	70.07	1149.29	52.21	1.342		
CR-2B	2362.84	54.38	2331.35	51.74	1908.90	42.36	1.221		
CR-2C	2773.20	63.27	2112.23	70.36	1730.93	57.66	1.220		
CR-2D	2773.20	63.27	1404.33	82.53	1056.38	62.08	1.329		
CR-3A	2362.84	54.04	1707.37	77.57	1142.88	51.92	1.494		
CR-3B	2773.20	69.84	2/04.85	60.10	2329.68	51.76	1.161		
CR-4A	2773.20	53.12	1487.37	51.24	1141.50	31.80	1.303		
CR-5A	2773.20	45 34	1554 23	51.76	1311 57	43.62	1 185		
CR-7B	2501 55	59.00	2448 35	54 34	2043.93	45.36	1 198		
CR-7D	2501.55	56.99	1310 33	77.58	951.15	55.93	1.387		
CSK-2	3680.73	92.26	2872.39	95.69	2460.48	81.97	1.167		
CSK-5	3141.22	76.55	2309.50	76.93	2058.36	68.56	1.122		
CSK-6	3043.56	50.10	1471.10	48.99	1448.36	48.23	1.016		
CSK-7	3043.56	57.28	1780.10	59.29	1627.24	54.20	1.094		
CS-1	2137.01	42.53	1811.25	30.08	1834.33	30.46	0.987		
CS-2	2155.60	40.95	1772.25	29.43	1817.55	30.18	0.975		
CS-3	2095.06	41.50	1604.00	40.03	1452.76	36.26	1.104		
RL-5	2667.74	42,79	2893.50	0.00	2667.74	0.00	1.085		
RL-6	2701.97	23.42	1048.89	21.36	1121.93	22.85	0.935		
				Mean			1.166		
				Coefficient of	of Variation		0.125		
				Resistance F	actor		0.946		
Overall S	teel Beams								
			Mean				1.213		
			Coefi	ficient of Vari	ation		0.179		
			Resis	tance Factor			0.916		
22									
Notes:									
(1) refer	to Table 3.0	for key t	o beam de	signations					
4.6									

Viat M_m V_m V_{n} Miest M. Test/ Test⁽¹⁾ (in.-k) (k) (in.-k) (k) (in.-k) (k) Theory Unreinforced Ribbed Slab D-1 5405.49 41.96 1606.00 37.80 1761.88 41.47 0.912 D-2 3095.00 3134.09 5967.14 41.61 39.00 39.49 0.988 D-3 6096.61 42.73 6075.00 6059.10 11.27 11.30 1.003 D-5A 5388.57 38.77 2768.00 34.60 2926.49 36.58 0.946 D-5B 5226.80 33.33 2568.00 32.20 2550.56 31.98 1.007 D-6A 5422.56 39.37 0.00 41.00 0.00 39.37 1.041 D-6B 5733.80 53.41 2070.00 48.90 2216.70 52.37 0.934 D-7A 4665.32 42.68 1845.00 43.50 1776.25 41.88 1.039 D-7B 4362.93 41.45 3379.00 42.60 2919.52 36.81 1.157 **D-8A** 1344.57 20.98 774.00 19.40 778,78 19.52 0.994 **D-8B** 1056.25 14.26 427.00 14.30 416.89 13.96 1.024 (2) **D-9A** 4791.16 34.36 1474.00 34.50 1454.22 34.04 1.014 D-9B 4588.71 46.35 1755.00 47.30 1690.66 45.57 1.038 R-0 1288.17 20.85 752.00 18.20 789.46 19.11 0.953 R-1 2630.28 23.82 978.00 26.00 884.35 23.51 1.106 R-2 3516.43 28.57 2904.00 28.70 2494.73 24.66 1.164 R-3 3774.33 37.44 3993.00 16.40 3689.03 15.15 1.082 3022.68 25.58 3212.00 2917.62 11.90 1.101 R-4 13.10 R-5 2791.69 27.78 1038.00 27.60 1026.99 27.31 1.011 R-6 2594.94 19.10 786.00 21.20 703.59 18.98 1.117 2833.28 1134.00 30.50 1041.39 28.01 1.089 R-7 28.49 R-8 2817.84 27.16 1075.00 28.90 995.18 26.75 1.080 1.037 Mean Coefficient of Variation 0.069 0.893 Resistance Factor Solid Slab C-1 3110.10 32.99 2886.00 33.40 2356.44 27.27 1.225 3544.21 C-2 4604.48 38.90 4107.00 36.80 31.76 1.159 4584.59 C-3 4624.92 5468.00 14.00 11.74 1.193 39.66 C-4 4900.59 45.31 1723.00 47.60 1620.15 44.76 1.063 C-5 5138.23 45.33 3511.00 48.10 3058.00 41.89 1.148 1.143 C-6 3188.26 36.16 1471.00 40.40 1287.01 35.35 G-1 1734.13 26.11 791.00 32,70 621.76 25.70 1.272 1712.64 26.50 1138.24 23.27 1.139 G-2 26.13 1296.00 CHO-3 35.70 534.82 30.12 1.185 1369.30 30.74 634.00 CHO-4 2356.96 47.76 1477.00 46.70 1397.35 44.18 1.057 2444.36 0.968 CHO-5 47.61 2319.00 17.90 2395.66 18.49 1.141 Mean Coefficient of Variation 0.075 Resistance Factor 0.978 Overall Unreinforced 1.073 Coefficient of Variation 0.084 Resistance Factor 0.912

Table 3.16 (continued)

Table 3.16 Carrowitz Ream Canada Sommers Mathe

Test ⁽¹⁾	M_m	V _m	M _{test} (in .k)	V _{test}	M_{\star}	V.	Test/		
	(шк)	(4)	(11K)	(4)	(IIL-K)	(4)	Theory		
Reinford	ed								
Ribb	bed Slab								
WJE-1	7782.56	38.28	7155.63	0.00	7782.56	0.00	0.919		
Soli	d Slab								
CUO 6	1745 50	26.76	221 00	10.60	643 64	26.12	1 124		
CHO-0	1743.32	55.94	721.00	40.60	041.04	20.13	0.012		
CHO-/	2983.21	33.84	2004.00	20.60	2910.28	22.33	0.915		
							1.010		
			M	can			1.019		
			Co	efficient of	variation		0.140		
			Re	sistance Paci	or		0.805		
Overall I	Reinforced								
			Mean .				0.985		
			Coeffici	ient of Variat	ion	******	0.122		
			Resistar	ice Factor .			0.802		
Overall (Composite B	eams							
			Mean				1.065		
			Coefficient o	f Variation .			0.088		
			Resistance Fa	ictor			0.901		
Notes:									

(1) refer to Table 3.0 for key to beam designations

(2) excluded from analysis (see Appendix E)

Solid Stab

Test ⁽¹⁾	<i>M</i> _m (ink)	V (k)	M _{test} (ink)	V _{iest} (k)	<i>M</i> _n (ink)	V. (k)	Test/ Theory		
Unreinfor	ced								
Circul	lar Opening								
DDD CI	0045 70		0016.00	00.17	1 (2) (2)	-	1.050		
RBD-CI	2945.19	84.99	2040.38	98.17	1626.80	78.04	1.238		
RM-IA	710.71	20.14	728.13	0.00	710.71	0.00	1.010		
RM-1B	711.00	14.54	11213	0.00	/11.06	0.00	1.002		
RM-ZA	798.33	28.64	375.54	31.90	470.33	20.45	1.208		
RM-2B	660.89	11.90	295.54	16.41	211.99	11.77	1.394		
RM-2C	606.23	21.24	480.54	26.69	334.93	19.71	1.354		
KM-3A	713.87	27.04	619.49	20.63	600.58	20.00	1.031		
RM-4A	720.71	26.99	691.77	14.38	683.76	14.21	1.012		
RM-4B	695.17	14.54	553.77	11.50	553.66	11.50	1.000		
RM-4C	701.33	30.17	672.77	13.98	676.80	14.06	0.994		
				Mean			1.127		
				Coefficient o	f Variation		0.142		
				Resistance Fa	actor		0.895		
Recta	ngular Open	ing							
	0	0							
P.1	2202.02	42.12	045.00	47.22	848 50	42.40	1.114		
D-1	2303.02	43.13	1704.90	47.22	1406 27	25.11	1 212		
B-2	2171.05	39.02	1704.80	42.30	1.22	35.11	1.249		
B-3	2081.90	30.89	1.00	49.14	050 55	47.50	1.055		
B-4	2207.88	48.83	1003.00	50.12	930.33	47.50	1.055		
CL-4B	3333.94	17.23	1000.00	27.80	018.82	17.20	1.010		
CR-6A	2364.72	37.33	121237	33.07	817.70	57.14	1,485		
CSK-1	3388.11	65.70	2358.39	78.54	1857.84	01.87	1.269		
DO-1	725.03	22.23	392.95	24.94	338.00	21.45	1.103		
DO-2	674.35	7.17	182.69	11.59	112.81	7.16	1.619		
DO-3	691.24	23.70	622.36	19.73	569.22	18.05	1.093		
DO-4	698.68	13.48	496.99	15.75	397.53	12.60	1.250		
DO-5	674.35	11.68	728.74	0.00	674.35	0.00	1.081		
RBD-R1B	3033.59	82.14	1718.81	85.06	1577.91	78.09	1.089		
RBD-R2	2925.66	56.67	1269.70	59.86	1175.43	55.42	1.080		
RM-11H	749.12	15.55	772.33	0.00	749.12	0.00	1.031		
RM-21H	618.27	9.90	342.82	14.27	233.43	9.72	1.469		
RM-2F	629.18	9.91	284.54	15.80	177.10	9.83	1.607		
RM-4F	733.86	12.71	566.77	11.77	525.52	10.91	1.078		
RM-4H	637.98	10.45	483.77	10.04	440.82	9.15	1.097		
				Mean			1.250		
				Coefficient of	of Variation		0.167		
				Resistance F	actor		0.960		
Overall U	nreinforced		Ma				1 208		
			Me	fficient of V-	riation		0.165		
			Coe	istance East			0.030		
			RCS	istance ractor			0.930		

Table 3.17 Steel Beam Capacity Summary: Method III, $\lambda = 1.414$

Test ⁽¹⁾	<i>M</i> _m (ink)	V_m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V. (k)	Test/ Theory	Ъ0 ЦО	
Reinforce	ed								
Rect	angular Open	ing							
CR-1A	1079.61	28.47	914.16	21.22	907.83	21.07	1.007		
CR-2A	2362.84	55.42	1542.37	70.07	1168.65	53.09	1.320		
CR-2B	2362.84	55.42	2331.35	51.74	1925.81	42.74	1.211		
CR-2C	2773.20	65.10	2112.23	70.36	1768.33	58.90	1.194		
CR-2D	2773.20	65.10	1404.33	82.53	1085.19	63.77	1.294		
CR-3A	2362.84	55.42	1707.37	77.57	1168.60	53.09	1.461		
CR-3B	2773.20	70.94	2704.85	60.10	2344.37	52.09	1.154		
CR-4A	2773.20	53.17	1487.37	67.57	1142.54	51.90	1.302		
CR-4B	2773.20	53.17	2313.35	51.34	2029.72	45.05	1.140		
CR-5A	2773.20	46.12	1554.23	51.76	1331.72	44.35	1.167		
CR-7B	2501.55	61.83	2448.35	54.34	2086.21	46.30	1.174		
CR-7D	2501.55	59.00	1319.33	77.58	982.66	57.78	1.343		
CSK-2	3680,73	92.96	2872.39	95.69	2473.48	82.40	1.161		
CSK-5	3141.22	77.91	2309.50	76.93	2084.50	69.44	1.108		
CSK-6	3043.56	50.89	1471.10	48.99	1468.61	48.91	1.002		
CSK-7	3043.56	59.47	1780.10	59.29	1679.31	55.93	1.060		
CS-1	2137.01	43.95	1811.25	30.08	1856.00	30.82	0.976		
CS-2	2155.60	42.31	1772.25	29.43	1840.91	30.57	0.963		
CS-3	2095.06	43.80	1604.00	40.03	1504.35	37.54	1.066		
RL-5	2667.74	43.01	2893.50	0.00	2667.74	0.00	1.085		
RL-6	2701.97	23.63	1048.89	21.36	1131.03	23.03	0.927		
				Mean			. 1.148		
				Coefficient of	of Variation		. 0.122		
				Resistance F	actor		. 0.935		
Overall S	steel Beams						100		
			Mea	n			. 1.183		
			Coe	fficient of Van	riation		. 0.150		
			Resi	stance Factor			. 0.930		
Notes:									
110100.									
(1) refer	to Table 3.0	for key to	beam desi	ignations					

Table 3.17 (continued)

Test ⁽¹⁾	<i>M</i> _m (ink)	V _m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V. (k)	Test/ Theory		
Unreinfo	orced	61.54				540			
Ribbe	d Slab								
D-1	5405.49	43.95	1606.00	37.80	1842.19	43.36	0.872		
D-2	5967.14	43.41	3095.00	39.00	3248.86	40.94	0.953		
D-3	6096.61	44.49	6075.00	11.30	6063.33	11.28	1.002		
D-5A	5388.57	40.73	2768.00	34.60	3048.68	38.11	0.908		
D-5B	5226.80	34.17	2568.00	32.20	2607.65	32.70	0.985		
D-6A	5422.56	41.27	0.00	41.00	0.00	41.27	0.994		
D-6B	5733.80	56.16	2070.00	48.90	2323.46	54.89	0.891		
D-7A	4665.32	45.24	1845.00	43.50	1876.15	44.23	0.983		
D-7B	4362.93	43.45	3379.00	42.60	3015.41	38.02	1.121		
D-8A	1344.57	21.53	774.00	19.40	795.00	19.93	0.974		
D-8B	1056.25	14.87	427.00	14.30	433.54	14.52	0.985 (2)		
D-9A	4791.16	33.38	1474.00	34.50	1496.23	35.02	0.985		
D-9B	4588.71	47.28	1755.00	47.30	1722.03	40.43	0.033		
R-0	1288.17	24.70	072.00	26.00	010.09	24 42	1.064		
R-I D D	2030.28	24.19	2004.00	28.00	2573.65	24.43	1.128		
R-2	3310.43	30.02	2904.00	16.40	3604.03	15.19	1.081		
R-J	3022.68	20.56	3212.00	13.10	2028 20	11 04	1.007		
DS	2701 60	8 73	1038.00	27.60	1060.45	28 20	0.070		
D C	2504.04	20.22	786.00	21.00	743.84	20.06	1.057		
P.7	2833.28	20.35	1134.00	30.50	1071 24	28 81	1.059		
R-8	2817.84	27.98	1075.00	28.90	1023.71	27.52	1.050		
1.72.000									
			Me	an			1.006		
			Co	efficient of V	ariation		0.072		
			Rea	sistance Fact	or		0.864		
Solid	Slab								
C-1	3110.10	33.71	2886.00	33.40	2385.07	27.60	1.210		
C-2	4604.48	41.53	4107.00	36.80	3666.45	32.85	1.120		
C-3	4624.92	42.52	5468.00	14.00	4592.08	11.76	1.191		
C-4	4900.59	48.71	1723.00	47.60	1736.49	47.97	0.992		
C-5	5138.23	48.58	3511.00	48.10	3225.35	44.19	1.089		
	3188.26	37.08	1471.00	40.40	1317.69	36.19	1.116		
C-6		26.54	791.00	32.70	631.44	26.10	1.253		
C-6 G-1	1734.13	and the second s			1151 25	23.54	1.126		
C-6 G-1 G-2	1734.13 1712.64	26.56	1296.00	26.50	11.01.4.4	and the second second			
C-6 G-1 G-2 CHO-3	1734.13 1712.64 1369.30	26.56 31.11	1296.00 634.00	26.50 35.70	540.89	30.46	1.172		
C-6 G-1 G-2 CHO-3 CHO-4	1734.13 1712.64 1369.30 2356.96	26.56 31.11 48.52	1296.00 634.00 1477.00	26.50 35.70 46.70	540.89 1414.91	30.46 44.74	1.172 1.044		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	1734.13 1712.64 1369.30 2356.96 2444.36	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00	26.50 35.70 46.70 17.90	540.89 1414.91 2397.84	30.46 44.74 18.51	1.172 1.044 0.967		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	1734.13 1712.64 1369.30 2356.96 2444.36	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00 Ma	26.50 35.70 46.70 17.90	540.89 1414.91 2397.84	30.46 44.74 18.51	1.172 1.044 0.967 1.116		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	1734.13 1712.64 1369.30 2356.96 2444.36	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00 Me Co	26.50 35.70 46.70 17.90	540.89 1414.91 2397.84	30.46 44.74 18.51	1.172 1.044 0.967 1.116 0.080		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	1734.13 1712.64 1369.30 2356.96 2444.36	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00 Ma Co Re	26.50 35.70 46.70 17.90 san sistance Fac	540.89 1414.91 2397.84 Variation	30.46 44.74 18.51	1.172 1.044 0.967 1.116 0.080 0.952		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5 Overall	1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00 Me Co Re	26.50 35.70 46.70 17.90 efficient of sistance Fac	540.89 1414.91 2397.84 Variation	30.46 44.74 18.51	1.172 1.044 0.967 1.116 0.080 0.952		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5 Overall	1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00 Ma Co Re	26.50 35.70 46.70 17.90 efficient of ' sistance Fac	540.89 1414.91 2397.84 Variation	30.46 44.74 18.51	1.172 1.044 0.967 1.116 0.080 0.952 1.044		
C-6 G-1 G-2 CHO-3 CHO-4 CHO-5 Overall	1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	26.56 31.11 48.52 48.37	1296.00 634.00 1477.00 2319.00 Man Co Re Mean	26.50 35.70 46.70 17.90 efficient of ' sistance Fac	540.89 1414.91 2397.84 Variation	30.46 44.74 18.51	1.172 1.044 0.967 1.116 0.080 0.952 1.044 0.090		

Table 3.18 Composite Beam Capacity Summary: Method III, $\lambda = 1.414$

Test ⁽¹⁾	<i>M</i> _{<i>m</i>} (ink)	V., (k)	M _{test} (ink)	V _{iest} (k)	<i>M</i> _* (ink)	<i>V</i> * (k)	Test/ Theory	s.	
Reinford	ed		(com					- 1087	
Ribbe	d Slab								
	7700 54		a		7700 21	0.00	0.010		
WJE-1	1182.56	38.31	/155.63	0.00	118236	0.00	0.919		
Solid	Slab								
CHO-6	1745.52	36.93	721.00	40.60	644.63	36.30	1.118		
CHO-7	2983.27	55.85	2664.00	20.60	2916.30	22.55	0.913		
			Mean	1			1.016		
			Coel	ficient of v	ariation		0.806		
Overall 1	Dainforcad		Acor	Station 1 and			0.000		
Overall	Reinforceu		Mean				0.983		
			Coefficien	t of Variati	on		0.119		
			Resistance	Factor			0.803		
Overall (Composite Be	eams					Can any		
			Mean				1.039		
			Coefficient of	Variation			0.092		
			Resistance Fact	or			0.875		
Notes:									
(1) ref (2) ex	fer to Table : cluded from	3.0 for ke analysis	y to beam de (see Appendi	signation x E)	S				

Table 3.18 (continued)
Curvilinear Linear Vier V_m Miest M_m M. M. V., Test/ V. Test/ Μ" Test⁽¹⁾ (in.-k) (k) (in.-k) (in.-k) (k) (in.-k) (k) Theory (in-k) (k) Theory Unreinforced Circular Opening RBD-C1 2945.79 83.87 1987.91 2046.38 98.17 1748.30 83.87 1.170 1748.30 83.87 1.170 RM-1A 716.71 25.80 487.74 728.13 0.00 716.71 0.00 1.016 716.71 0.00 1.016 RM-1B 711.06 13.98 398.60 712.13 0.00 711.06 0.00 711.06 0.00 1.002 1.002 RM-2A 798.33 27.64 553.50 575.54 31.96 497.77 27.64 1.156 497.77 27.64 1.156 RM-2B 660.89 11.38 403.67 295.54 16.41 204.94 11.38 1.442 204.94 11.38 1.442 370.10 RM-2C 606.23 20.56 422.86 480.54 26.69 370.10 20.56 1.298 1.298 20.56 RM-3A 713.87 26.10 482.17 619.49 20.63 627.02 20.88 0.988 447.88 1.383 14.92 RM-4A 720.71 26.05 489.50 691.77 14.38 668.72 13.90 1.034 484.81 10.08 1.427 RM-4B 695.17 13.93 383.82 553.77 11.50 559.48 11.62 0.990 403.76 8.38 1.372 RM-4C 665.33 1.370 701.33 29.12 672.77 13.98 13.83 491.05 10.20 441.90 1.011 1.111 1.264 Coefficient of Variation . . . 0.140 0.131 Resistance Factor 0.885 1.018 Rectangular Opening 945.00 859.07 B-1 2303.02 42.93 965.56 47.22 42.93 1.100 859.07 42.93 1.100 2171.63 25.70 1704.80 42.56 1364.53 34.07 1004.81 1.656 B-2 38.87 999.47 1.249 B-3 2081.90 36.72 952.77 1.80 49.74 1.33 36.72 1.355 1.33 36.72 1.355 B-4 2207.88 48.84 946.42 1003.00 50.12 976.41 48.79 1.027 936.42 48.84 1.026 CL-4B 3555.94 19.79 1811.28 1000.00 27.80 711.93 19.79 1.405 711.93 19.79 1.405 CR-6A 2564.72 36.43 1252.56 1212.37 55.07 801.92 36.43 1.512 801.92 36.43 1.512 CSK-1 3388.11 64.67 1788.75 2358.39 78.54 1863.39 62.06 1.266 1501.53 49.53 1.586 344.08 21.84 21.84 1.142 DO-1 725.03 21.84 357.02 392.95 24.94 1.142 344.08 DO-2 674.35 6.28 425.78 182.69 11.59 99.04 6.28 1.845 99.04 6.28 1.845 DO-3 691.24 23.32 307.84 622.36 19.73 528.17 16.74 1.178 373.51 12.00 1.644 1.641 DO-4 698.68 12.52 344.64 496.99 15.75 373.68 11.84 1.330 294.29 9.60 674.35 728.74 674.35 0.00 1.081 674.35 0.00 1.081 DO-5 11.30 439.79 0.00 RBD-R1B 1675.21 1596.88 1.025 3033.59 1647.23 1718.81 85.06 82.90 1.026 83.01 83.01 RBD-R2 2925.66 56.58 1212.79 1269.70 59.86 1200.11 56.58 1.058 1200.11 56.58 1.058 0.00 1.031 RM-11H 749.12 14.61 370.85 772.33 0.00 749.12 0.00 1.031 749.12 1.542 222.29 9.25 RM-21H 618.27 9.25 372.26 342.82 14.27 222.29 9.25 1.542 RM-2F 629.18 9.28 385.47 284.54 15.80 167.15 9.28 1.702 167.15 9.28 1.702 1.360 RM-4F 733.86 11.94 424.03 566.77 11.77 520.77 10.81 1.088 391.77 8.66 10.04 438.59 9.10 1.103 338.09 7.38 1.360 RM-4H 637.98 9.79 378.85 483.77 1.265 1.391 0.191 Coefficient of Variation . . . 0.195 0.939 Resistance Factor 1.027 Overall Unreinforced

Table 3.19 Steel Beam Capacity Summary: Redwood and Shrivastava (1980)

-		
Mean	1.212	 1.347
Coefficient of Variation	0.186	 0.182
Resistance Factor	0.939	 1.013

							Curvilinea	r		Linear	
Test ⁽¹⁾	<i>M_m</i> (ink)	V_m (k)	<i>M</i> , (ink)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V _* (k)	Test/ Theory	<i>M</i> _* (ink)	<i>V</i> * (k)	Test/ Theory
Reinford	ed										
CR-1A	1079.61	35.29	548.11	914.16	21.22	000 80	23.21	0.914	708.65	16.45	1.290
CR-2A	2362.84	52.38	1190.83	1542.37	70.07	1152.98	52.38	1.338	1152.98	52.38	1.338
CR-2B	2362.84	52.38	1190.83	2331.35	51.74	1681.32	37.31	1.387	1188.91	26.39	1.961
CR-2C	2773.20	68.53	1485.58	2112.23	70.36	1858.91	61.92	1.136	1395.64	46.49	1.513
CR-2D	2773.20	68.53	1485.58	1404.33	82.53	1166.02	68.53	1.204	1166.02	68.53	1.204
CR-3A	2362.84	52.38	1190.83	1707.37	77.57	1152.92	52.38	1.481	1152.92	52.38	1.481
CR-3B	2773.20	70.94	1964.94	2704 85	60.10	2168.61	48.19	1.257	1534.59	34.10	1.763
CR-4A	2773.20	51.22	1485 58	1487.37	67.57	1127.52	51.22	1.319	1127.52	51.22	1.319
CR-4B	2773.20	51.22	1485.58	2313.35	51.34	1942.77	43.12	1.191	1406.15	31.21	1.645
CR-5A	2773.20	51.29	1333.02	1554.23	51.76	1522.62	50.71	1.021	1336.70	44.52	1.163
CR-7B	2501.55	61.75	1267.75	2448 35	54 34	1883 35	41.80	1.300	1332.90	29.58	1.837
CR-7D	2501.55	61.75	1267.75	1319.33	77.58	1050.14	61.75	1.256	1050.14	61.75	1.256
CSK-2	3680 73	92.96	2191 87	2872 30	95 69	2550.28	84.96	1.126	1932.36	64.37	1.486
CSK-5	3141 22	74 59	1651 52	2309 50	76.93	2058 46	68 57	1 122	1567.85	52.23	1.473
CSK-6	3043 56	44.77	1761 75	1471 10	48 00	1344.26	44 77	1 004	1344.26	44 77	1.094
CSK-7	3043.56	50 60	1761.75	1780.10	50.20	1701.86	50.68	0.003	1766 50	58 84	1.008
CS-1	2137.01	43.05	1420.07	1911.25	30.08	2069.40	34 37	0.995	1472 57	24.45	1 238
CS-2	2157.01	42.93	1420.07	1772.25	20.08	2103.08	34.07	0.843	1513.06	25.13	1.171
CC-3	2005.06	42.51	1419.07	1604.00	40.03	1682.07	41.92	0.054	1350 37	33 70	1 188
DI 5	2693.00	22 51	1585 70	2803.50	40.05	2667 74	41.90	1.025	2667.74	0.00	1.085
RL-6	2701.97	19.55	1201.35	1048.89	21.36	960.03	19.55	1.093	960.03	19.55	1.093
					CCOMP.			10.000			
					Me	can		1.142	*********		1.362
					Co	efficient of V	ariation	0.151			0.195
					Re	sistance Facto	or	0.896	*******		1.006
Overall :	Steel Beams										
					Mean			1.183			1.353
					Coefficie	ent of Variatio	on	0.174			0.185
					Resistant	ce Factor		0.900			1.013
Notes-											
Notes.											
(1) refe	er to Table 3	3.0 for ke	ey to beam	designatio	ns						
					12,000						

Table 3.19 (continued)

rest(1)	<i>M</i> _m (ink)	M _m ' (ink)	V _m (k)	M, (ink)	M _{issi} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V. (k)	Test/ Theory ⁽²⁾	
Unreinf	orced								her	
Ribb	bed Slab (R	ledwood an	d Poumbo	uras 1984)						
D-1	6214.50	5405.49	41.96	2478.96	1606.00	37.80	1782.74	41.96	0.901	
D-2	6243.69	5967.14	41.61	2312.13	3095.00	39.00	3230.04	40.70	0.958	
D-3	6409.99	6096.61	42.73	2360.26	6075.00	11.30	6096.61	11.34	0.996	
D-5A	6286.92	5388.57	38.77	2407.58	2768.00	34.60	3084.93	38.56	0.897	
D-5B	5736.02	5226.80	33.33	2941.50	2568.00	32.20	2658.12	33.33	0.966	
D-6A	5990.69	5422.56	39.37	2486.16	0.00	41.00	0.00	39.37	1.041	
D-6B	6507.28	5733.80	46.37	2596.25	2070.00	48.90	1962.90	46.37	1.055	
D-7A	4937.41	4665.32	41.05	1882.26	1845.00	43.50	1741.09	41.05	1.060	
D-7B	4945.59	4362.93	34.03	1748.31	3379.00	42,60	2499.73	31.51	1.352	
D-8A	1523.07	1344.57	18.35	494.13	774.00	19.40	709.02	17.77	1.092	
D-8B	1428.50	1056.25	14.26	501.24	427.00	14.30	425.81	14.26	1.003 (3)	
D-9A	5137.87	4791.16	30.91	2296.02	1474.00	34.50	1320.62	30.91	1.116	
0-9B	5169.73	4588.71	34.73	2256.19	1755.00	47.30	1288.61	34.73	1.362	
0-5	1488.10	1070.69	19.07	463.42	752.00	18.20	755.73	18.29	0.995	
8-1	3330.08	2432.45	23.01	1539.59	978.00	26.00	865.53	23.01	1.130	
-2	3556.57	3347.16	25.29	2235.15	2904.00	28.70	2337.04	23.10	1.243	
-3	3756.96	3756.96	29.96	1463.41	3993.00	16.40	3242.95	13.32	1.231	
-4	3837.03	2921.87	24.70	1775.19	3212.00	13.10	2921.87	11.92	1.099	
-5	3484.91	2587.36	23.52	1213.30	1038.00	27.60	884.56	23.52	1.173	
-6	3243.38	2537.64	19.04	1510.48	786.00	21.20	705.92	19.04	1.113	
1-7	3243.38	2689.19	29.93	1642.66	1134.00	30.50	1112.81	29.93	1.019	
L-8	3173.49	2651.24	26.20	1740.68	1075.00	28.90	974.57	26.20	1.103	
						Mean . Coefficie Resistance	ent of Variation . ce Factor	· · · · · · · · · · · · · · · · · · ·	1.090 0.121 1.889	
Soli	d Slab (Re	dwood and	Cho 1986	i)						
2.1	2826 10	2543.80	46.20	1463.90	2886.00	33.40	2274 14	26 32	1.269	
-2	4330.60	3950.20	37 32	2012 70	4107.00	36.80	3076.26	27.56	1.335	
1.3	4397 20	3499 70	27.86	1757 80	5468.00	14.00	3499 70	8.96	1.562	
	4876.00	4370.60	42 58	2157.80	1723.00	47.60	1541 29	42.58	1.118	
· 4	4010.00	4302 50	40.42	2251 70	3511.00	48 10	2726 45	37 35	1.288	
-4	4910 50	54 TU (40.42	1400.70	1471.00	40.10	1205.86	35 50	1 135	
2-4 2-5	4810.50	2650.00	35 50	1/188 //11		40,40	1 40 0 0 000	331033	A + A	
2-4 2-5 2-6	4810.50 3176.60	2650.00	35.59	1488.70	701.00	32 70	707.06	20.23	1 119	
2-4 2-5 2-6 3-1	4810.50 3176.60 1631.20	2650.00 1269.20	35.59 29.23 30.10	915.20 922.30	791.00	32.70	707.06	29.23	1.119	
2-4 2-5 2-6 3-1 3-2	4810.50 3176.60 1631.20 1631.20	2650.00 1269.20 1503.80	35.59 29.23 30.10	915.20 922.30	791.00 1296.00 634.00	32.70 26.50 35.70	707.06 1262.97 534.55	29.23 25.82 30.10	1.119 1.026	
2-4 2-5 2-6 3-1 3-2 2HO-3	4810.50 3176.60 1631.20 1631.20 1493.20 2407.80	2650.00 1269.20 1503.80 1055.00	35.59 29.23 30.10 30.10	1488.70 915.20 922.30 675.30	791.00 1296.00 634.00	32.70 26.50 35.70	707.06 1262.97 534.55 1312.13	29.23 25.82 30.10	1.119 1.026 1.186	
2-4 2-5 3-1 3-2 2HO-3 2HO-4 2HO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90	707.06 1262.97 534.55 1312.13 2091.50	29.23 25.82 30.10 41.49 16.14	1.119 1.026 1.186 1.126 1.109	
2-4 2-5 3-6 3-1 3-2 2HO-3 2HO-4 2HO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	1488.70 915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90	707.06 1262.97 534.55 1312.13 2091.50	29.23 25.82 30.10 41.49 16.14	1.119 1.026 1.186 1.126 1.109	
2-4 2-5 2-6 3-1 3-2 2HO-3 2HO-4 2HO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	1488.70 915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90 Mean .	707.06 1262.97 534.55 1312.13 2091.50	29.23 25.82 30.10 41.49 16.14	1.119 1.026 1.186 1.126 1.109 1.207	
C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-3 CHO-4 CHO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	1488.70 915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90 Mean . Coefficie	707.06 1262.97 534.55 1312.13 2091.50 ent of Variation .	29:23 25:82 30:10 41:49 16:14	1.119 1.026 1.186 1.126 1.109 1.207 0.124	
2-4 2-5 2-6 3-1 3-2 2HO-3 2HO-4 2HO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	1488.70 915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90 Mean . Coefficie Resistant	707.06 1262.97 534.55 1312.13 2091.50 ent of Variation . ce Factor	29.23 25.82 30.10 41.49 16.14	1.119 1.026 1.186 1.126 1.109 1.207 0.124 0.981	
C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-3 CHO-4 CHO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	1488.70 915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90 Mean . Coefficie Resistant	707.06 1262.97 534.55 1312.13 2091.50 ent of Variation . ce Factor	29.23 25.82 30.10 41.49 16.14	1.119 1.026 1.186 1.126 1.109 1.207 0.124 0.981	
C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-3 CHO-4 CHO-5	4810.50 3176.60 1631.20 1631.20 1493.20 2497.80 2497.80	2650.00 1269.20 1503.80 1055.00 2091.50 2091.50	35.59 29.23 30.10 30.10 42.83 42.83	1488.70 915.20 922.30 675.30 1080.70 1080.70	791.00 1296.00 634.00 1477.00 2319.00	32.70 26.50 35.70 46.70 17.90 Mean . Coefficient of	707.06 1262.97 534.55 1312.13 2091.50 ent of Variation . ce Factor	29.23 25.82 30.10 41.49 16.14	1.119 1.026 1.186 1.126 1.109 1.207 0.124 0.981 1.131 0.128	

Table 3.20 Composite Beam Capacity Summary: Redwood et al.

4	\sim	1	۰.	
J	ч	Γ.	1	
۰,	,		-	

			1-7	(((K)	((K)	Theory	_
einfo	orced									
HO-6 HO-7 /JE-1	n/a n/a n/a									
lotes										
0103	19.4									
Ň .	refer to Tak	ale 3.0 for ke	v to beam	designation	10					
5	interest to Tat	ne 5.0 IOI Ke	ad ocall	designation	13					
	curvinical i	meracuon us	eu A	11 T2)						
9	excluded in	om analysis ((see Appen	Idix E)						
m ⁻	= moment	capacity base	ed on full o	composite a	iction					
	= moment	capacity base	ed on actua	l partial co	mposite actio	n				
	= maximur	n shear capac	city							
Č,	= moment	at which she	ar interacti	on begins t	o diminish m	oment capa	acity			
						(1. Č.)	1 10.00			

Table 3.20 Composite Beam Capacity Summary: Redwood et al. (continued)

Table 3.21 Analysis Summary, $\lambda = 1.414$ (Methods I and III)

				Mean				Co	efficient	of Variation	1211		R	esistance	Factor	
	# Beams	I	п	ш	Redwood (C)	Redwood (L)	I	п	ш	Redwood (C)	Redwood (L)	I	п	ш	Redwood (C)	Redwood (L)
STEEL BEAMS	-					.,										
Unreinforced	29	1.170	1.248	1.208	1.212	1.347	0.143	0.203	0.165	0.186	0.182	0.928	0.911	0.930	0.907	1.013
Rectangular Opening Circular Opening	19 10	3.213 1.088	1.302 1.145	1.250 1.127	1.265 1.111	1.391 1.264	0.142 0.119	0.211 0.154	0.167 0.142	0.191 0.140	0.195 0.131	0.963 0.889	0.939 0.895	0.960 0.895	0.939 0.885	1.027 1.018
Reinforced																
Rectangular Opening	21	1.143	1.166	1.148	1.142	1.362	0.121	0.125	0.122	0.151	0.195	0.932	0.946	0.935	0.896	1.005
OVERALL STEEL	50	1.158	1.213	1.183	1.183	1.353	0.134	0.179	0.150	0.174	0.185	0.929	0.916	0.930	0.900	1.013
COMPOSITE BEAMS																
Unreinforced	32	1.028	1.073	1.044	1.131	N/A	0.081	0.084	0.090	0.128	N/A	0.676	0.912	0.882	0.914	N/A
Ribbed Slab Solid Slab	21 11	0.995 1.092	1.037 1.141	1.006 1.116	1.090 1.207	N/A N/A	0.071 0.065	0.069 0.075	0.072 0.080	0.121 0.124	N/A N/A	0.856 0.943	0.893 0.978	0.864 0.952	0.889 0.981	N/A N/A
Reinforced	3	0.978	0.985	0.983	N/A	N/A	0.110	0.122	0.119	N/A	N/A	0.808	0.802	0.803	N/A	N/A
Ribbed Slab Solid Slab	1 2	0.919 1.008	0.919 1.019	0.919 1.016	N/A N/A	N/A N/A	N/A 0.133	N/A 0.146	N/A 0.143	N/A N/A	N/A N/A	N/A 0.810	N/A 0.805	N/A 0.806	N/A N/A	N/A N/A
OVERALL COMPOSITE	35	1.024	1.065	1.039	1.131	N/A	0.084	0.088	0.092	0.128	N/A	0.870	0.901	0.876	0.895	N/A

Table 3.22	Effect of Reducing the Tee Depth in Proportion to the Reinforcement Present,
	Method III, $\lambda = 1.414$

								(2)			(3)	
Test ⁽¹⁾	<i>M_m</i> (ink)	<i>V_p</i> (k)	V _m ⁽²⁾ (k)	V _m ⁽³⁾ (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	<i>V</i> * (k)	Test/ Theory	<i>M</i> _* (ink)	<i>V</i> * (k)	Test/ Theory
CR-1A	1079.61	35.29	28.95	28.47	914.16	21.22	913.82	21.21	1.000	907.83	21.07	1.007
CR-2A	2362.84	55.42	55.42	55.42	1542.37	70.07	1168.65	53.09	1.320	1168.65	53.09	1.320
CR-2B	2362.84	55.42	55.42	55.42	2331.35	51.74	1925.81	42.74	1.211	1925.81	42.74	1.211
CR-2C	2773.20	70.94	65.87	65.10	2112.23	70.36	1783.70	59.42	1.184	1768.33	58.90	1.194
CR-2D	2773.20	70.94	65.87	65.10	1404.33	82.53	1097.22	64.48	1.280	1085.19	63.77	1.294
CR-3A	2362.84	55.42	55.42	55.42	1707.37	77.57	1168.60	53.09	1.461	1168.60	53.09	1.461
CR-3B	2773.20	70.94	70.94	70.94	2704 85	60.10	2344.37	52.09	1.154	2344.37	52.09	1.154
CR-4A	2773 20	70.94	53.87	53 17	1487 37	67.57	1156 37	52 53	1.286	1142 54	51.90	1.302
CR-4R	2773 20	70.94	53.87	53 17	2313 35	51 34	2045 65	45 40	1 131	2029 72	45.05	1 140
CR-5A	2773 20	51.20	47.55	46.12	1554.23	51.76	1368 32	45.57	1.136	1331 72	44 35	1.167
CR-7B	2501 55	63 21	62.60	61.93	2448 35	54 34	2008.18	45.57	1.150	2086 21	46 30	1.174
CR-7D	2501.55	62 21	50.75	50.00	1210.22	77 59	004 35	58 17	1.207	082.66	57 78	1 343
CR-ID	2501.55	03.21	39.75	02.06	1319.33	05 (0	2472 49	20.47	1.327	902.00	82.40	1.161
CON-L	3080.73	70.01	92.90	92.90	2012.39	95.09	2473.46	60.70	1.101	2473.40	60 44	1 108
CSK-J	3141.22	/8.81	78.33	50.00	2309.30	10.93	2092.39	40.25	0.002	1469 61	49.01	1.002
COV-0	3043.56	63.06	51.41	50.89	14/1.10	48.99	1482.00	49.33	0.993	1408.01	40.91	1.002
CSK-/	3043.56	63.06	59.77	59.47	1780.10	59.29	1686.40	20.02	1.056	16/9.31	33.93	0.076
CS-1	2137.01	43.95	43.95	43.95	1811.25	30.08	1856.00	30.82	0.976	1856.00	30.82	0.970
CS-2	2155.60	42.31	42.31	42.31	1772.25	29.43	1840.91	30.57	0.963	1840.91	30.57	0.963
CS-3	2095.06	43.84	43.84	43.80	1604.00	40.03	1505.14	37.56	1.066	1504.35	37.54	1.000
RL-5	2667.74	69.49	43.25	43.01	2893.50	0.00	2667.74	0.00	1.085	2667.74	0.00	1.085
RL-6	2701.97	43.20	24.23	23.63	1048.89	21.36	1157.61	23.57	0.906	1131.03	23.03	0.927
							Mean Coefficient of	f Variation	. 1.141 . . 0.122 .	··· ····		. 1.148
							Resistance Fa	ictor	. 0.929 .			. 0.935
CUIO (1745 50	01.04	22.16	26.02	201.00	10 (0	(10.10)	26.51	1 110	644.62	26.20	1 110
CHO-0	1743.32	45.07	57.10	30.93	721.00	40.00	046.42	20.51	0.012	2016 20	20.50	0.012
WIF-1	2983.21	43.07	30.29	38 31	2004.00	20.60	7782 56	0.00	0.913	2910.30	0.00	0.919
11212-1	1104000		33.13	50.51	1133.05	0.00	1104.00	0.00	0.717	1104000	0.00	
							Mean		. 0.981			. 0.983
							Coefficient of	f Variation	. 0.115			. 0.119
							Resistance Fa	clor	0.806			. 0.803
Notes:												
(1)	T-b	1. 206	Level L									
(1) rel	er to 1 ab	le 3.0 Ioi	r key to b	eam desi	gnations							
(2) no	reduction	in tee d	epth for 1	reinforce	ment							
(3) tee	e depth rea	duced (as	s used in	this study	v)							
1.11				and a constraint	6 M.							

							(2)			(3)	
	1	17 (2)	17 (3)	1.	17			T		N/	Track
Test ⁽¹⁾	(ink)	(k)	(k)	(ink)	(k)	M _n (ink)	(k)	Test/ Theory	M _* (ink)	(k)	Theory
D-1	5405.49	42.24	43.95	1606.00	37.80	1773.29	41.74	0.906	1842.19	43.36	0.872
D-2	5967.14	40.79	43.41	3095.00	39.00	3081.37	38.83	1.004	3248.86	40.94	0.953
D-3	6096.61	42.02	44.49	6075.00	11.30	6057.19	11.27	1.003	6063.33	11.28	1.002
D-5A	5388.57	40.73	40.73	2768.00	34.60	3048.68	38.11	0.908	3048.68	38.11	0.908
D-5B	5226.80	33.72	34.17	2568.00	32.20	2576.94	32.31	0.997	2607.65	32.70	0.985
D-6A	5422.56	41.27	41.27	0.00	41.00	0.00	41.27	0.994	0.00	41.27	0.994
D-6B	5733.80	58.81	56.16	2070.00	48.90	2424.95	57.29	0.854	2323.46	54.89	0.891
D-7A	4665.32	45.78	45.24	1845.00	43.50	1897.03	44.73	0.973	1876.15	44.23	0.983
D-7B	4362.93	46.48	43.45	3379.00	42.60	3150.04	39.71	1.073	3015.41	38.02	1.121
D-8A	1344.57	21.53	21.53	774.00	19.40	795.00	19.93	0.974	795.00	19.93	0.974
D-9A	4791.16	35.38	35.38	1474.00	34.50	1496.23	35.02	0.985	1496.23	35.02	0.985
D-9B	4588.71	47.28	47.28	1755.00	47.30	1722.63	46.43	1.019	1722.63	46.43	1.019
					Mean			0.974			0.974
					Coefficient	of Variation		0.058			0.067
					Resistance	Factor		0.845	•••••		0.841
R-O	1288.17	21.43	21.43	752.00	18.20	806.35	19.52	0.933	806.35	19.52	0.933
R-1	2630.28	24.79	24.79	978.00	26.00	919.08	24.43	1.064	919.08	24.43	1.064
R-2	3516.43	25.19	30.02	2904.00	28.70	2289.06	22.62	1.269	2573.65	25.44	1.128
R-3	3774.33	38.38	38.38	3993.00	16.40	3694.93	15.18	1.081	3694.93	15.18	1.081
R-4	3022.68	26.56	26.56	3212.00	13.10	2928.20	11.94	1.097	2928.20	11.94	1.097
R-5	2791.69	28.73	28.73	1038.00	27.60	1060.45	28.20	0.979	1060.45	28.20	0.979
R-6	2594.94	20.22	20.22	786.00	21.20	743.84	20.06	1.057	743.84	20.06	1.057
R-7	2833.28	29.35	29.35	1134.00	30.50	1071.24	28.81	1.059	1071.24	28.81	1.059
R-8	2817.84	27.98	27.98	1075.00	28.90	1023.71	27.52	1.050	1023.71	27.52	1.050

Table 3.23	Effect of Limiting P_{ch} by the Net Top Tee Steel
	Method III, $\lambda = 1.414$

	when in Table 2.2 and a side	10
Mean	1.065	1.050
Resistance Factor	0.902	0.913

Table 3.23 (continued)

(2)	(3)

							(2)	(2)		(3)	
Test ⁽¹⁾	<i>M</i> _{<i>m</i>} (ink)	V _m ⁽²⁾ (k)	V _m ⁽³⁾ (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V. (k)	Test/ Theory	<i>M</i> _* (ink)	V. (k)	Test/ Theory
C-1	3110.10	33.71	33.71	2886.00	33.40	2385.07	27.60	1.210	2385.07	27.60	1.210
C-2	4604.48	41.06	41.53	4107.00	36.80	3645.52	32.67	1.127	3666.45	32.85	1.120
C-3	4624.92	41.59	42.52	5468.00	14.00	4589.87	11.75	1.191	4592.08	11.76	1.191
C-4	4900.59	47.36	48.71	1723.00	47.60	1690.44	46.70	1.019	1736.49	47.97	0.992
C-5	5138.23	47.56	48.58	3511.00	48.10	3174.11	43.48	1.106	3225.35	44.19	1.089
C-5	3188.26	37.08	37.08	1471.00	40.40	1317.69	36.19	1.116	1317.69	36.19	1.116
G-1	1734.13	26.54	26.54	791.00	32,70	631.44	26.10	1.253	631.44	26.10	1.253
G-2	1712.64	26.56	26.56	1296.00	26.50	1151.25	23.54	1.126	1151.25	23.54	1.126
CHO-3	1369.30	31.11	31.11	634.00	35.70	540.89	30.46	1.172	540.89	30.46	1.172
CHO-4	2356.96	48.52	48.52	1477.00	46.70	1414.91	44.74	1.044	1414.91	44.74	1.044
					Mann			1 121			1.116
					Coefficient	of Variation		0.026			0.080
					Resistance	Factor		0.960			0.952
CHO-6	1745 52	36.03	36.03	721.00	40.60	644 63	36 30	1 118	644 63	36 30	1 118
CHO-7	2983.27	55.85	55.85	2664.00	20.60	2916.30	22.55	0.913	2916.30	22.55	0.913
					Mean			1.016			1.016
					Coefficient	of Variation .		0.145			0.145
					Resistance	Factor		0.804			0.804
Overall											
Carlo Carlo Carlo					Mean			1.048			1.039
					Coefficient	of Variation		0.095			0.091
					Resistance	Factor		0.880			0.880
					accounter to C			0.000			4,000
Notes											
rotes.											

(1) (2) (3)

refer to Table 3.0 for key to beam designations P_{ck} not limited by $A_{ss} \ge F_y$ P_{ck} limited by $A_{ss} \ge F_y$ (as used in current study)

Test ⁽¹⁾		(2	2)		(3)	(2) Test/ Theory	(2)			
	V _p (k)	<i>P</i> , (k)	V, (k)	<i>P</i> , (k)	V_m (k)		(3) Test/ Theory			
							1 007			
CR-1A	35.29	23.18	28.47	23.18	28.47	1.007	1.007			
CR-2A	55.42	41.41	55.42	40.65	55.42	1.320	1.320			
CR-2B	55.42	41.41	55.42	40.65	55.42	1.211	1.211			
CR-2C	70.94	35.37	65.10	33.37	65.10	1.194	1.194			
CR-2D	70.94	33.37	65.10	33.37	65.10	1.294	1.294			
CR-3A	55.42	83.03	55.42	40.65	55.42	1.461	1.461			
CR-3B	70.94	58.85	70.94	51.34	70.94	1.154	1.154			
CR-4A	70.94	35.37	53.17	35.37	53.17	1.302	1.302			
CR-4B	70.94	35.37	53.17	35.37	53.17	1.140	1.140			
CR-5A	51.29	57.08	46.12	57.08	46.12	1.167	1.167			
CR-7B	63.21	37.71	61.83	37.71	61.83	1.174	1.174			
CR-7D	63.21	37.71	59.00	37.71	59.00	1.343	1.343			
CSK-2	92.96	43.37	92.96	41.29	92.96	1.161	1.161			
CSK-5	78.81	42.72	77.91	42.72	77.91	1.108	1.108			
CSK-6	63.06	35.52	50.89	35.52	50.89	1.002	1.002			
CSK-7	63.06	35.52	59.47	35.52	59.47	1.060	1.060			
CS-1	43.95	52.12	43.95	32.64	43.95	0.976	0.976			
CS-2	42.31	52.57	42.31	31.42	42.31	0.963	0.963			
CS-3	43.84	49.73	43.84	32.55	43.80	1.066	1.066			
RL-5	69.49	18.17	43.01	18.17	43.01	1.085	1.085			
RL-6	43.20	41.62	23.63	41.62	23.63	0.927	0.927			
CHO-6	n/a	47.16	40.60	24.68	36.93	1.091	1.118			
CHO-7	n/a	46.92	55.85	46.92	55.85	0.913	0.913			
WJE-1	n/a	85.47	38.31	85.47	38.31	0.919	0.919			
Notes:										

Table 3.24	Effect of Restricting Normal Force in Reinforcement	
	by the Weld Strength	

(1) refer to Table 3.0 for key to beam designations (2) no restriction on normal force in reinforcement

(3) normal force restricted

 V_p = plastic shear capacity of the top and bottom tees P_r = normal force in the reinforcement V_m = naximum shear capacity as predicted by Method III

Table 3.25	Effect of Flanges,	Method I versus Method III	
	$\lambda = 1.414$		

Beam	A_f/A_w	<i>V</i> ₁ (k)	V3 (k)	V_I/V_3	$(V_1 - V_3)/$ V_p	d.			
W21X44	0.40	19.32	19.76	0.98	-0.01				
W12X22	0.54	8.88	8.75	1.01	0.00				
W14X26	0.60	9.98	9.69	1.03	0.01				
W16X57	0.72	21.23	19.31	1.10	0.03				
W14X38	0.80	13.24	11.95	1.11	0.04				
W12X35	0.91	11.97	10.25	1.17	0.06				
W14X43	1.02	13.60	11.39	1.19	0.06				
W12X45	1.14	14.34	11.04	1.30	0.10				
W14X74	1.24	24.39	17.43	1.40	0.13				
W10X39	1.35	12.30	8.54	1.44	0.14				
W12X58	1.46	17.79	11.99	1.48	0.16				
W10X49	1.65	14.99	9.27	1.62	0.20				
W8X10	0.60	3.76	3.67	1.03	0.01				
W14X109	1.67	34.38	20.55	1.67	0.22				
W18X60	0.69	22.26	20.69	1.08	0.02				
W21X122	0.91	42.03	35.55	1.18	0.06				
W24X117	0.82	40.45	36.46	1.11	0.04				
W27X114	0.60	44.08	42.51	1.04	0.01				
W30X108	0.49	44.31	44.43	1.00	0.00				
W30X211	0.83	74.72	65.53	1.14	0.05				
W33X221	0.77	79.09	71.86	1.10	0.03				
W36X150	0.50	61.28	61.23	1.00	0.00				
W36X300	0.81	108.41	94.88	1.14	0.05				
Notes:									
Consister	nt relativ	e opening	g dimensi	ons calcu	lated using:				
a.Jh.	= 2.0)							
hld	- 0.6	50							
ng a	- 0.0	16.1							
S_t	= 0.1	154							
Sb	= d	$-h_o - s_t$							
V_I	= ma	aximum s	hear capa	city of to	p and bottom te	es			
V_{3}	= ma	aximum s	hear capa	2.52 icity of to	op and bottom te	es			

calculated using Eq. 2.54 = plastic shear capacity of top and bottom tees V,

Test ⁽¹⁾		<i>M</i> _m (ink)					(2)			(3)	
	<i>M</i> _{<i>p</i>} (ink)		V_m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	<i>V</i> , (k)	Test/ Theory	<i>M</i> _* (ink)	<i>V</i> * (k)	Test/ Theory
CR-1A	1079.61	1102.64	28.47	914.16	21.22	919.11	21.33	0.995	907.80	21.07	1.007
CR-2A	2362.84	2487.76	55.42	1542.37	70.07	1175.41	53.40	1.312	1168.58	53.09	1.320
CR-2B	2362.84	2487.76	55.42	2331.35	51.74	1978.26	43.90	1.178	1925.75	42.74	1.211
CR-2C	2773.20	2812.31	65.10	2112.23	70.36	1774.62	59.11	1.190	1768.29	58.90	1.195
CR-2D	2773.20	2812.31	65.10	1404.33	82.53	1086.05	63.83	1.293	1085.16	63.77	1.294
CR-3A	2362.84	2779.13	55.42	1707.37	77.57	1187.27	53.94	1.438	1168.52	53.09	1.461
CR-3B	2773.20	2976.66	70.94	2704.85	60.10	2442.32	54.27	1.107	2344.33	52.09	1.154
CR-4A	2773.20	2812.31	53.17	1487.37	67.57	1143.55	51.95	1.301	1142.46	51.90	1.302
CR-4B	2773.20	2812.31	53.17	2313.35	51.34	2040.66	45.29	1.134	2029.63	45.05	1.140
CR-5A	2773.20	2942.26	46.12	1554.23	51.76	1339.83	44.62	1.160	1331.74	44.35	1.167
CR-7B	2501.55	2579.80	61.83	2448.35	54.34	2123.08	47.12	1.153	2086.22	46.30	1.174
CR-7D	2501.55	2579.80	59.00	1319.33	77.58	984.42	57.89	1.340	982.66	57.78	1.343
CSK-2	3690.74	3680.73	92.96	2872.39	95.69	2473.52	82.40	1.161	2473.52	82.40	1.161
CSK-5	3141.22	3165.72	77.91	2309.50	76.93	2089.13	69.59	1.105	2084.43	69.44	1.108
CSK-6	3141.22	3043.56	50.89	1471.10	48.99	1468.63	48.91	1.002	1468.63	48.91	1.002
CSK-7	3141.22	3043.56	59.47	1780.10	59.29	1679.34	55.93	1.060	1679.34	55.93	1.060
CS-1	2137.01	2336.64	43.95	1811.25	30.08	1962.33	32.59	0.923	1855.96	30.82	0.976
CS-2	2155.60	2362.15	42.31	1772.25	29.43	1942.98	32.27	0.912	1840.87	30.57	0.963
CS-3	2095.06	2280.69	43.80	1604.00	40.03	1548.59	38.65	1.036	1504.37	37.54	1.066
RL-5	2705.84	2667 74	43.01	2893.50	0.00	2667.74	0.00	1.085	2667.74	0.00	1.085
RL-6	2701.97	2766.31	23.63	1048.89	21.36	1133.14	23.08	0.926	1131.25	23.03	0.927
					Mean			1.133			1.148
					Coefficien	t of Variation		0.128			0.122
					Desistance	Factor		0.016			0.035

Notes:

- (1) refer to Table 3.0 for key to beam designations
- (2) M_m not limited by M_p
- (3) M_m limited by M_p

Fig. 2.1(b) Opming Configuration for a Refutored Steel Jargar

Fable 3.28 Affect of Lighting the Mashmun Mornist Capacity, W., to the Planic Morness Capacity, M., Multinii III, 3. – 1.414

Second M

Fig. 2.1(b) Opening Configuration for a Reinforced Steel Beam

Fig. 2.2(a) Opening Configuration for an Unreinforced Composite Beam with a Solid Slab

Fig. 2.2(b) Opening Configuration for an Unreinforced Composite Beam with Transverse Ribs

Fig. 2.260 Opening Configuration for in Unrendorood Composite Deam with 8 Solid State

Fig. 2.2(1) Opening Configuration for an Unministend Composite Boam, with Transverse Rile.

Fig. 2.4 Forces Acting at a Web Opening (Darwin 1990)

Fig. 2.5 Normal Forces in a Composite Opening

Fig. 2.6 Yield Functions for Combined Shear and Normal Stress

Fig. 2.8 Stress Distributions for Design Methods II and III

Fig. 2.10 Difference Between Methods II and III versus a_s/s_t

Fig. 2.13(a) Unreinforced Steel Beam in Pure Bending

Fig. 2.13(b) Reinforced Steel Beam in Pure Bending with Neutral Axis in Reinforcement

Fig. 2.13(c) Reinforced Steel Beam in Pure Bending with Neutral Axis in Web

0.85fc

Fig. 2.14(b) Composite Beam in Pure Bending with Neutral Axis at in the Steel Flange

Fig. 2.14(c) Composite Beam in Pure Bending with Neutral Axis at in the Web

ία.

Fig. 3.12 Interaction Curves for Test RBD-R1 Fig. 3.16 Interaction Curves for Test RM-4H

.

Fig. 3.86 Difference Between Methods I and III versus A_f/A_w

Fig. 3.88 Curvlinear Moment-Shear Interaction Curve (Redwood & Shrivastava 1980)

Fig. 3.89 Comparison of Method III with Test Results for Steel Beams

Fig. 3.90 Comparison of Method III with Test Results for Composite Beams

APPENDIX A

DEFINITIONS AND NOTATION

A.1 Definitions (Darwin 1990)

The following terms apply to members with web openings. bottom tee - region of a beam below an opening.

- **bridging** separation of the concrete slab from the steel section in composite beams. The separation occurs over an opening between the low moment end of the opening and a point outside the opening past the high moment end of the opening.
- high moment end the edge of an opening subjected to the greater primary bending moment. The secondary and primary bending moments act in the same direction.
- **low moment end -** the edge of an opening subjected to the lower primary bending moment. The secondary and primary bending moments act in opposite directions.

opening index - parameter used to limit opening size and aspect ratio.

plastic neutral axis - position in steel section, or top or bottom tees, at which the stress changes abruptly from tension to compression.

primary bending moment - bending moment at any point in a beam caused by external loading.

reinforcement - longitudinal steel bars welded above and below an opening to increase section

capacity.

reinforcement, slab - reinforcing steel within a concrete slab.

secondary bending moment - bending moment within a tee that is induced by the shear carried by the tee.

tee - region of a beam above or below an opening.

top tee - region of a beam above an opening.

unperforated member - section without an opening. Refers to properties of the member at the position of the opening.

A.2	Notation (Darwin 1990)
Α	Gross transformed area of a tee
A _f	Area of flange
Α,	Cross-sectional area of reinforcement along top or bottom edge of an opening
A_s	Cross-sectional area of steel in unperforated member
A _{sc}	Cross-sectional area of shear stud
A _{sn}	Net area of steel section with opening and reinforcement
A _{st}	Net steel area of top tee
$A_{\rm vc}$	Effective concrete shear area = $3t_st_e$
D _o	Diameter of circular opening
Ε	Modulus of elasticity of steel
E_{c}	Modulus of elasticity of concrete
Fy	Yield strength of steel
<i>F</i> ,	Reduced axial yield strength of steel; see Eqs. 2.24 and 2.25
$F_{\rm yf}$	Yield strength of the flange
Fyr	Yield strength of opening reinforcement
Fyw	Yield strength of the web
М	Bending moment at center line of opening

ier - ragion of a brain alove of ballow an a

	$M_{\it bh}$, $M_{\it bl}$	Se
		res
	М.,	М
	M _n	N
	M_p	Pl
	M_{pc}	Pl
	M_{th} , M_{tl}	Se
	М	Fa
	IN	N
Ŭ.		su
	No	N
	Р	A
	P	Δ
	1 6	
	P _c	A
	P_{ch} , P_{cl}	A
		a
	PNA	Pl
	P	٨
	1,	А
	P_t	A
	Qn	In

M_{bh} , M_{bl}	Secondary bending moment at high and low moment ends of bottom tee,	
	respectively.	
1 _m	Maximum nominal bending capacity at the location of an opening	
1 _n	Nominal bending capacity	
Λ_p	Plastic bending capacity of an unperforated steel beam and the second	
Λ_{pc}	Plastic bending capacity of an unperforated composite beam	
M_{th} , M_{tl}	Secondary bending moment at high and low moment ends of top tee, respectively	
1 _u	Factored bending moment	
7	Number of shear connectors between the high moment end of an opening and the	
	support	
V.	Number of shear connectors over an opening	
2	Axial force in top or bottom tee	
р b	Axial force in top tee	
2	Axial force in concrete for a section under pure bending	
P _{ch} , P _{cl}	Axial force in concrete at high and low moment ends of opening, respectively, for	
	a section at maximum shear capacity	
PNA	Plastic neutral axis	
r	Axial force in opening reinforcement	
P _t	Axial force in top tee	
2,	Individual shear connector capacity, including reduction factor for ribbed slabs	

Ratio of factored load to design capacity at an opening	
$= V_{\mu} \phi V_{n}$	
$= M_{\mu}/\phi M_{n}$	
Strength reduction factor for shear studs in ribbed slabs	
Required strength of a weld	
Clear space between openings	
Tensile force in net steel section	
Shear at opening	
Shear in bottom tee	
Calculated shear carried by concrete slab = $V_{pt}(\mu/\upsilon - 1) \ge 0$, or $V_{mu(sh)}$ -	V_{pt} ,
whichever is less	
Maximum nominal shear capacity at the location of an opening	
Maximum nominal shear capacity of bottom and top tees,	
respectively	
Pure shear capacity of top tee	
Coefficient of variation on test-to-prediction ratio	
Plastic shear capacity of top or bottom tee	
Plastic shear capacity of unperforated beam	
Plastic shear capacity of bottom and top tees, respectively	
Coefficient of variation on resistance	
Shear in top tee	
Factored shear	
Plastic section modulus	
	Ratio of factored load to design capacity at an opening = $V_a \langle \Phi V_a \rangle$ = $M_a \langle \Phi M_a \rangle$ Strength reduction factor for shear studs in ribbed slabs Required strength of a weld Clear space between openings Tensile force in net steel section Shear at opening Shear in bottom tee Calculated shear carried by concrete slab = $V_{\mu}(\mu/v - 1) \ge 0$, or $V_{nu(ab)} = 0$ whichever is less Maximum nominal shear capacity at the location of an opening Maximum nominal shear capacity of bottom and top tees, respectively Pure shear capacity of top tee Coefficient of variation on test-to-prediction ratio Plastic shear capacity of top or bottom tee Plastic shear capacity of bottom and top tees, respectively Coefficient of variation on resistance Shear in top tee Factored shear Plastic section modulus

a _o	Length of opening
ā	Depth of concrete compressive block
b	Projecting width of flange or reinforcement
b,	Effective width of concrete slab
b_f	Width of flange
b,	Width of reinforcement at top or bottom of opening
d	Depth of steel section
d_h , d_l	Distance from top of steel section to centroid of concrete force at high and low
	moment ends of opening, respectively
d _r	Distance from outside edge of flange to centroid of opening reinforcement; may
	have different values in top and bottom tees
е	Eccentricity of opening; always positive for steel sections; positive up for
	composite sections
f_c^{\prime}	Compressive (cylinder) strength of concrete
8h , 81	Distance from outside edge of flange to secondary bending neutral axis in top tee
	at high and low moment ends of opening, respectively
h _o	Depth of opening
<i>P</i> _o	Opening parameter = $\frac{a_o}{h_o} + \frac{6h_o}{d}$
$\boldsymbol{S},~\boldsymbol{S}_b$, \boldsymbol{S}_t	Depth of a tee, bottom tee and top tee, respectively
$\overline{s}, \overline{s_b}, \overline{s_t}$	Effective depth of a tee, bottom tee and top tee, respectively, to account for movement of <i>PNA</i> when an opening is reinforced; used <u>only for calculation of</u>
	$\underline{\upsilon}$, when $\upsilon \ge \mu$

	134
t	Thickness of flange or reinforcement
t _e	Effective thickness of concrete slab
t _f	Thickness of flange
t,	Total thickness of concrete slab
t_s'	Thickness of concrete slab above the rib
t _w	Thickness of web
x	Distance from top of flange to plastic neutral axis in flange or web of a composite
	beam
Ζ	Distance between points about which secondary bending moments are calculated
$\alpha_t, \beta_t, \gamma_t$	Variables used to calculate V_{me}
ΔA_{s}	Net reduction in area of steel section due to presence of an opening and
	reinforcement = $h_o t_w - 2A_r$
λ	Constant used in linear approximation of von Mises yield criterion; recommended
	value = $\sqrt{2}$
μ	Dimensionless ratio relating the secondary bending moment contributions of
	concrete and opening reinforcement to the product of the plastic shear capacity of
	a tee and the depth of the tee
	$=\frac{2P_rd_r+P_{ck}d_h-P_{cl}d_l}{V_{cs}s_t}$
	W 25 25 Billiottive density of a terr, bostom terr, and tag terr, terrestively, a
$\upsilon, \upsilon_b, \upsilon_t$	Ratio of length to depth or length to effective depth for a tee, bottom tee or top
	tee, respectively = a_o/s , a_o/\overline{s}

Average shear stress

τ

φ Resistance factor

HEAR CAPACITY EXPRESSIONS FOR

Subscripts:

b

m Maximum or mean

Bottom tee

n Nominal

t make the top tee the state back and the second the back again the state of the state of the state of the state

u Factored

$V_{ij}=\frac{\beta_{i}-\gamma\beta_{i}^{2}-4\alpha\gamma}{2\alpha}$

staldwist

 $A(2 + 2q(1^{-})) + A(2^{-})Q + A(2 + 2q(2^{-})) = 1$

APPENDIX B

SHEAR CAPACITY EXPRESSIONS FOR

COMPARISON WITH TEST DATA

B.1 Method I

The top and bottom tee shear capacities determined by Method I, considering different vield strengths for the web, flange, and stiffener, are calculated using the following expressions.

$$V_{mr} = \frac{\beta - \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}$$
(B.1)

in which

$$\alpha = 3 + \frac{2\sqrt{3}a_o}{s_t}$$

$$\beta = 2a_o(F_{yf}(b_f - t_w) + \lambda F_{yw}t_w)$$

$$+ \frac{2\sqrt{3}}{s_t}F_{yf}(b_f - t_w)(s_t^2 - s_tt_f + t_f^2)$$

$$+ 2\sqrt{3}(\lambda F_{yw}t_ws_t - F_{yr}t_r(b_r - t_w))$$

$$+ \frac{2\sqrt{3}}{s_t}(P_{ch}d_h - P_{cl}d_l)$$

$$+ \frac{4\sqrt{3}}{s_t}F_{yr}t_r(b_r - t_w)(s_t - y_r)$$

$$\gamma = (F_{yf} f_{j} (b_{j} - t_{w}))^{2} + (\lambda F_{yw} t_{w} s_{i})^{2} - (F_{yr} t_{r} (b_{r} - t_{w}))^{2}$$

$$+ (P_{ch} - P_{cl})(F_{yf}t_{f}(b_{f} - t_{w}) + \lambda F_{yw}t_{w}s_{t} + F_{yr}t_{r}(b_{r} - t_{w}))$$

$$+ 2(P_{ch}d_{h} - P_{cl}d_{l})(F_{yf}(b_{f} - t_{w}) + \lambda F_{yw}t_{w}) - \frac{P_{ch}^{2}}{2} - \frac{P_{cl}^{2}}{2}$$

$$+ 2F_{yf}(b_{f} - t_{w})\lambda F_{yw}t_{w}(s_{t}^{2} - s_{t}t_{f} + t_{f}^{2})$$

$$+ 4F_{yr}t_{r}(b_{r} - t_{w})(s_{t} - y_{r})(F_{yf}(b_{f} - t_{w}) + \lambda F_{yw}t_{w})$$

$$-2F_{yr}t_r(b_r - t_w)(F_{yf}t_f(b_f - t_w) + \lambda F_{yw}t_ws_t)$$

B.2 Methods II and III

The yield strengths of the web and reinforcement are differentiated in Methods II and III as follows. The yield strength of the web is accounted for in the calculation of V_{pt} and V_{pb} as given by Eqs. 2.18 and 2.22.

The yield strength of the reinforcement is accounted for in the expression for μ , given by

$$\mu = \frac{P_{ch}d_h - P_{cl}d_l + 2P_rd_r}{V_{pl}s_t}$$
(B.2)

in which $P_r = F_{yr}(b_r - t_w)t_r$

walled M = 1.414 for M = 4.505

(1210 - Tyratin) - Tyl - ann-

APPENDIX C

138

DERIVATION AND CALCULATION OF VALUES

FOR

THEORETICAL COMPARISON OF METHODS I, II AND III

In this appendix, calculations are presented which provide the basis for values used in comparing Methods I, II, and III in Section 2.3.4.

C.1 Overprediction of F_y by the Linear Approximation of the von Mises Yield Function

The overprediction of normal stress in a tee under low shear stress by the linear approximation of the von Mises yield function can be as high as 41% when $\lambda = 1.414$ (Method III, $\mu = 0.0$). Design considerations, however, limit υ to 12.0 (Darwin 1990). The actual effect of this overprediction, as limited by design considerations, can be determined by comparing Methods II and III, which employ the von Mises yield function and its linear approximation, respectively.

The values of V_{mt} / V_{pt} for Methods II and III when $\mu = 0.0$ and $\upsilon = 12.0$ for $\lambda = 1.207$ and $\lambda = 1.414$ follow.

$$\frac{V_{mu}}{V_{pt}}(II) = \frac{\sqrt{3\upsilon^2 + 9}}{\upsilon^2 + 3} = \frac{\sqrt{(3)(144) + 9}}{144 + 3} = 0.143$$
(C.1)

$$\frac{V_{mt}}{V_{pt}}(III) = \frac{\lambda\sqrt{3}}{\nu+\sqrt{3}} = \frac{(1.207)\sqrt{3}}{12+\sqrt{3}} = 0.152; \ \lambda = 1.207$$
(C.2)

$$\frac{V_{mt}}{V_{pt}}(III) = \frac{\lambda\sqrt{3}}{\nu+\sqrt{3}} = \frac{(1.414)\sqrt{3}}{12+\sqrt{3}} = 0.178; \ \lambda = 1.414$$
(C.3)

The difference between Methods II and III is

$$V_{mt(III)} - V_{mt(II)} = (0.152 - 0.143)V_{pt} = 0.009V_{pt}; \lambda = 1.207$$
 (C.4)

$$V_{mt(III)} - V_{mt(II)} = (0.178 - 0.143)V_{pt} = 0.035V_{pt}; \ \lambda = 1.414$$
(C.5)

The ratio of the maximum shear strengths using the two methods is

$$\frac{V_{mt(III)}}{V_{mt(II)}} = \frac{0.152}{0.143} = 1.063; \ \lambda = 1.207 \tag{C.6}$$

$$\frac{V_{mt(III)}}{V_{mt(II)}} = \frac{0.178}{0.143} = 1.245; \ \lambda = 1.414 \tag{C.7}$$

C.2 Overprediction of τ_{xy} by the Linear Approximation of the von Mises Yield Function

The overprediction of shear stress in the web of a tee under high shear stress by the linear approximation of the von Mises yield function can be as high as 9.7% when $\lambda = 1.414$ and $\upsilon = 0.717$ (Method III, $\mu = 0.0$). This overprediction would be even higher without the limit of $0.577F_y$ on the shear stress. A tee with such stocky dimensions is not very likely, but is possible, and is something that should be considered. The effect of this overprediction can be determined by comparing Methods II and III, which employ the von Mises yield function and its linear approximation, respectively.

The von Mises yield function can be expressed as

$$\overline{F}_{y}^{2} + 3\tau_{xy}^{2} = F_{y}^{2}$$
(C.13)

Dividing Eq. C.13 by F_y^2 , and rearranging gives

$$\frac{\overline{F}_{y}}{F_{y}} = \left(1 - 3\left(\frac{\tau_{xy}}{F_{y}}\right)^{2}\right)^{1/2}$$
(C.14)

By substituting $\tau_{xy} = V_{mt}/s_t t_w$, Eq. C.14 can be rewritten in terms of V_{mt} and V_{pr} .

$$\frac{\overline{F}_{y}}{\overline{F}_{y}} = \left(1 - \left(\frac{V_{mi}}{V_{pi}}\right)^{2}\right)^{1/2}$$
(C.15)

The linear approximation of the von Mises yield function can be expressed as

$$\overline{F}_{y} = \lambda F_{y} - \sqrt{3}\tau_{xy}$$
(C.16)

Dividing Eq. C.16 by F_y and rearranging gives,

$$\frac{\overline{F}_{y}}{F_{y}} = \lambda - \frac{\sqrt{3}\tau_{xy}}{F_{y}}$$
(C.17)

By substituting $\tau_{xy} = V_{m}/(s_t t_w)$ into Eq. C.17, the following expression is obtained

$$\frac{\overline{F}_{y}}{\overline{F}_{y}} = \lambda - \frac{V_{mt}}{V_{pt}}$$
(C.18)

Eq. C.15 and C.18 are useful in comparing Methods II and III when $\tau_{xy}/F_y = 0.577$.

The point at which the maximum difference occurs in the predicted shear stress in the web between the von Mises yield function and its linear approximation can now be easily predicted. This occurs when $V_{mt}/V_{pt(III)} = 1.0$ due to the maximum permissible shear stress. Eq. C.18 yields

$$\frac{\overline{F}_{y}}{\overline{F}_{y}} = \lambda - 1.0 = 0.207 ; \lambda = 1.207$$
 (C.19)

$$\frac{\overline{F}_{y}}{F_{y}} = \lambda - 1.0 = 0.414 ; \lambda = 1.414$$
(C.20)

The respective shear capacities can be determined by substituting the two preceding values for F_y/F_y into Eq. C.15, which gives

$$\frac{V_{mt}}{V_{pt}} = \left(1 - \left(\frac{\overline{F}_y}{\overline{F}_y}\right)^2\right)^{1/2} = \sqrt{1 - (0.414)^2} = 0.910; \ \lambda = 1.414$$
(C.21)

The corresponding ratios and differences between Methods II and III are

$$\frac{V_{mt(II)}}{V_{mt(II)}} = \frac{1.000}{0.978} = 1.023; \ \lambda = 1.207 \tag{C.22}$$

$$\frac{V_{mr(III)}}{V_{mr(II)}} = \frac{1.000}{0.910} = 1.099; \ \lambda = 1.414$$
(C.23)

$$V_{mt(III)} - V_{mt(II)} = (1.000 - 0.978)V_{pt} = 0.022V_{pt}; \lambda = 1.207$$
 (C.24)

$$V_{mt(III)} - V_{mt(II)} = (1.000 - 0.910)V_{pt} = 0.090V_{pt}; \lambda = 1.414$$
 (C.25)

The ratio, τ_{xy}/F_{y} for the shear capacities predicted by Methods II and III, respectively, are

$$\frac{\tau_{xy}}{F_y}(II) = \frac{1}{\sqrt{3}} \left(1 - \left(\frac{\overline{F}_y}{F_y}\right)^2 \right)^{1/2} = \frac{1}{\sqrt{3}} \sqrt{1 - (0.207)^2} = 0.565 \ ; \frac{\overline{F}_y}{F_y} = 0.207$$
(C.26)
$$\frac{\tau_{xy}}{F_y}(II) = \frac{1}{\sqrt{3}} \left(1 - \left(\frac{\overline{F}_y}{F_y}\right)^2 \right)^{1/2} = \frac{1}{\sqrt{3}} \sqrt{1 - (0.414)^2} = 0.526 \ ; \frac{\overline{F}_y}{F_y} = 0.414$$
(C.27)

$$\frac{t_{xy}}{F_y}(III) = \frac{1}{\sqrt{3}} = 0.577$$
 (C.28)

(1.43)

APPENDIX D

142

GUIDELINES FOR PROPORTIONING AND DETAILING BEAMS WITH WEB

OPENINGS (Darwin 1990)

To insure that the strength provided by a beam at a web opening is consistent with the design equations presented in section 2.4, a number of guidelines must be followed. Unless otherwise stated, these guidelines apply to unreinforced and reinforced web openings in both steel and composite beams. All requirements of the AISC Specifications (1986) should be applied. The steel sections should meet the AISC requirements for compact sections in both composite and non-composite members. $F_y \leq 65$ ksi.

D.1 Stability Considerations

To insure that local instabilities do not occur, consideration must be given to local buckling of the compression flange, web buckling, buckling of the tee-shaped compression zone above or below the opening, and lateral buckling of the compression flange.

D.1.1 Local buckling of compression flange or reinforcement

To insure that local buckling does not occur, the AISC (1986) criteria for compact sections applies. The width to thickness ratios of the compression flange or web reinforcement are limited by

$$\frac{b}{t} \le \frac{65}{\sqrt{F_y}} \tag{D.1}$$

in which b =projecting width of flange or reinforcement

- t = thickness of flange or reinforcement
- F_y = yield strength in ksi

For a flange of width, b_f , and thickness, t_f , Eq. D.1 becomes

V_{mode} - V_m, whichever is lass. All metabolic tolled W plaque quality is morely members if 420/W_p < (d - 2c)h_p is \$200/W_p, then a₀/b_pshould be limited to 2.1, and V_p should be imited to 0.450°, for justic consensite and non-composite members. The limite on specify

D.1.2 Web Buckling

To prevent buckling of the web, two criteria should be met:

(a) The opening parameter, p_o , should be limited to a maximum value of 5.6 for steel sections and 6.0 for composite sections.

$$p_o = \frac{a_o}{h_o} + \frac{6h_o}{d}$$
(D.3)

in which a_o and h_o = length and width of opening, respectively d = depth of steel section

received takes to enorgied to elisticate effort, sol, consider Jano el Notaro sero "Africado

(b) The web width-thickness ratio should be limited as follows

 $\frac{d - 2t_f}{t_w} \le \frac{520}{\sqrt{F_y}} \tag{D.4}$

in which $t_w =$ thickness of web

If $(d - 2t_f)/t_w \leq 420/\sqrt{F_y}$, the web qualifies as stocky. In this case, the upper limit on a_o/h_o is 3.0 and the upper limit on V_m (maximum nominal shear capacity) for non-composite sections is $0.67 \nabla_p$, in which $\nabla_p = F_y t_w d/\sqrt{3}$, the plastic shear capacity of the unperforated web. For composite sections, this upper limit may be increased by ∇_c which equals $V_{pt}(\mu/\upsilon - 1) \geq 0$, or $V_{mt(sh)} - V_{pt}$, whichever is less. All standard rolled W shapes qualify as stocky members.

If $420/\sqrt{F_y} < (d - 2t_f)/t_w \le 520/\sqrt{F_y}$, then a_d/h_o should be limited to 2.2, and V_m should be limited to $0.45\nabla_p$ for both composite and non-composite members. The limits on opening dimensions to prevent web buckling, presented in this section are summarized graphically in Figs. D.1, D.2, and D.3. Fig. D.1 graphs a_d/h_o versus h_d/d to determine permissible opening sizes. Figs. D.2 and D.3 graph a_d/s_t versus the value a_d/s_b that meets the opening dimension requirements of this section for steel ($p_o = 5.6$) and composite ($p_o = 6.0$) beams, respectively.

D.1.3 Buckling of tee-shaped compression zone

For steel beams only: The tee which is in compression should be investigated as an axially loaded column following the procedures of AISC (1986). For unreinforced members, this is not required when the aspect ratio of the tee ($v = a_o/s$) is less than or equal to 4. For reinforced openings, this check is only required for large openings in regions of high moment.

and the balance of blocks and block and block of the balance of the balance.

D.1.4 Lateral Buckling

For steel beams only: In members subject to lateral buckling of the compression flange, strength should not be governed by strength at the opening (calculated without regard to lateral buckling).

inv to monorable -____ finitiev of

In members with unreinforced openings or reinforced openings with the reinforcement placed on both sides of the web, the torsional constant, *J*, should be multiplied by

$$\left(1 - \left(\frac{a_o}{L_b}\right) \frac{\Delta A_s}{t_w (d + 2b_f)}\right)^2 \le 1$$
(D.5)

in which L_b = unbraced length of compression flange $\Delta A_x = h_{onw} - 2A_r$

In members reinforced on only one side of the web, $A_r = 0$ for the calculation of ΔA_r in Eq. D.5. Members reinforced on one side of the web should not be used for long, laterally unsupported spans. For shorter spans the lateral bracing closest to the opening should be designed for an additional load equal to 2 percent of the force in the compression flange.

D.3 Other Considerations

D.3.1 Opening and tee dimensions

Opening dimensions are restricted based on the criteria in section D.1.2. Additional criteria also apply.

The opening depth should not exceed 70 percent of the section depth $(h_o \le 0.7d)$. The depth of the top tee should not be less than 15 percent of the depth of the steel section $(s_t \ge 0.15d)$. The depth of the bottom tee, s_b , should not be less than 0.15d for steel sections or 0.12d for composite sections. The aspect ratios of the tees $(v = a_o/s)$ should not be greater than 12 $(a_o/s_b \le 12, a_o/s_t \le 12)$.

D.3.2 Corner radii

The corners of the opening should have minimum radii at least 2 times the thickness of the web, $2t_w$, or 5/8 in., whichever is greater.

D.3.3 Concentrated loads

No concentrated loads should be placed above an opening. Unless needed otherwise, bearing stiffeners are not required to prevent web crippling in the vicinity of an opening due to a concentrated load if

$$\frac{d - 2t_f}{t_w} \le \frac{420}{\sqrt{F_y}}$$
(D.6)
$$\frac{b}{t} \le \frac{54}{\sqrt{F_y}}$$
(D.7)

and the load is placed at least d/2 from the edge of the opening.

$$\frac{d - 2t_f}{t_w} \le \frac{520}{\sqrt{F_y}}$$

$$\frac{b}{t} \le \frac{65}{\sqrt{F}}$$
(D.8)

and the load is placed at least d from the edge of the opening. In any case, the edge of an opening should not be closer than a distance d to a support.

depute of the top the about one to less then 1.5 present of the depute of the steal continue ($r_c \ge 0, 156$). The depute of the bottom ($r_c \ge 0, 156$). The depute of the bottom ($r_c \ge 0, 156$). The depute of the bottom ($r_c \ge 0, 156$) are then 0,156 for another or 0,176 for any $r_c \ge 0, 156$ for another or 0,176 to $r_c \ge 0, 156$ for any $r_c \ge 1, 156$ for any $r_c \ge 12$.

D.3.4 Circular openings

Circular openings may be designed using the expressions in section 2.4 by using the following substitutions for h_o and a_o .

Unreinforced web openings

$h_o = D_o$ for bending	(D.10a)
$h_o = 0.9 D_o$ for shear	(D.10b)
$a_o = 0.45 D_o$	(D.10c)

in which D_o = diameter of circular opening.

Reinforced web openings

$h_{a} = D_{a}$ for bending and shear	(D.11a	.)
---------------------------------------	--------	----

 $a_o = 0.45 D_o$ (D.11b)

D.3.5 Reinforcement

Rwr

Reinforcement should be placed as close to an opening as possible, leaving adequate room for fillet welds, if required on both sides of the reinforcement. Continuous welds should be used to attach the reinforcement bars. A fillet weld may be used on one or both sides of the bar within the length of the opening. However, fillet welds should be used on both sides of the reinforcement on extensions past the opening. The required strength of the weld within the length of the opening is,

$$R_{wr} = \phi 2P_r$$

(D.12)

in which

= required strength of the weld

 ϕ = 0.90 for steel beams and 0.85 for composite beams

$$P_r = F_y A_r \le F_y t_w a_o / 2\sqrt{3}$$

A, = cross-sectional area of reinforcement above or below the opening.

The reinforcement should be extended beyond the opening by a distance $l_1 \ge a_0/4$ or $\sqrt{3A_r}/2t_w$ whichever is greater, on each side of the opening (Figs 2.1 and 2.2). Within each extension, the required strength of the weld is

$$R_{wr} = \phi F_{v} A_{r} \tag{D.13}$$

If reinforcing bars are only used on one side of the web, the section should meet the following additional requirements.

$$A_r \le \frac{A_f}{3} \tag{D.14}$$

$$\frac{a_o}{h_o} \le 2.5 \tag{D.15}$$

$$\frac{s_t}{t_w}, \frac{s_b}{t_w} \le \frac{140}{\sqrt{F_y}} \tag{D.16}$$

$$\frac{M_{\mu}}{V.d} \le 20 \tag{D.17}$$

in which A_f = area of flange

 M_{μ} and V_{μ} = factored moment and shear at centerline of opening, respectively.

D.3.6 Spacing of openings

Openings should be spaced in accordance with the following criteria to avoid interaction between openings.

Rectangular openings:

 $S \ge h_o$ (D.18a)

- cross-sectional and of relationsticate above or below lite operatory.

Circular openings:

(one was a low state of the state of the based $S \ge a_o \left[\frac{\frac{V_u}{\phi V_p}}{1 - \frac{V_u}{\phi V_p}} \right]$ (D.18b)

 $S \ge D_{o} \left(\frac{\frac{V_{u}}{\phi V_{p}}}{1 - \frac{V_{u}}{\phi V_{p}}} \right)$ (D.19b)

 $S \ge 1.5 D_{a}$ (D.19a)

in which S = clear space between openings.

In addition to the requirements in Eqs. D.18 and D.19, openings in composite beams should be spaced so that

> (D.20a) $S \ge a_o$

$$S \ge 2.0 d \tag{D.20b}$$

D.4 Additional Criteria for Composite Beams

In addition to the guidelines presented above, composite members should meet the following criteria.

D.4.1 Slab reinforcement

Transverse and longitudinal slab reinforcement ratios should be a minimum of 0.0025, based on the gross area of the slab, within a distance d or a_o , whichever is greater, of the opening. For beams with longitudinal ribs, the transverse reinforcement should be below the heads of the shear connectors.

D.4.2 Shear connectors

In addition to the shear connectors used between the high moment end of the opening and the support, a minimum of two studs per foot should be used for a distance d or a_o , whichever is greater, from the high moment end of the opening toward the direction of <u>increasing</u> moment.

D.4.3 Construction loads

If a composite beam is to be constructed without shoring, the section at the web opening should be checked for adequate strength as a <u>non-composite</u> member under factored dead and construction loads.

D.4. Additional Criteria for Composite Busin

In addition to the guidelines prestained above, composite metabers should more the

APPENDIX E SUMMARY OF BEAMS NOT MEETING DESIGN LIMITATIONS

A total of thirty-eight steel and composite beams available from previous research were excluded from consideration in determining resistance factors because of one or more violations of design limitations presented in Appendix D. Tables containing material and section properties, design limitation summaries, and capacity summaries and figures showing shear and moment interaction plots for the excluded beams follow (Tables E.1 - E.6 and Figs. E.0 - E.38).

Most of the excluded beams violated limitations pertaining to local buckling of the compression flange and/or the web. These violations contributed most significantly to premature failure of the beams, as illustrated by the results for beams RBD-UG2, RL-3, and RL-4. With the exception of RL-3, the predicted capacities for beams resisting high moment at the opening agreed reasonably well with test data. The predicted capacities for beams resisting high shear at the opening generally did not agree very well with test data.

Five beams, RM-1D, RM-2D, RM-4D, RM-21G, and RM-4G had closely spaced openings which, in three cases (RM-2D, RM-21G, and RM-4G), failed as a unit (Redwood and McCutcheon 1968). However, the predicted capacities of all five beams were conservative. Beams RL-1, RL-2, RL-3, and RL-4 were reinforced on one side of the web and violated associated design limitations. Beam RL-3 exhibited very premature failure with a test/theory ratio of 0.455. Reasonable strength predictions were obtained for the other four beams.

Sixteen beams tested by Kim (1980), (KKS-series), were excluded from the analysis although they met all of the design limitations. Without exception, the beams subjected to any amount of shear were unusually strong when compared to predicted capacities.

153

The predicted capacity of KKS-2HRC was the most conservative with a test/theory ratio of 2.022. These conservative results may well be due to strain hardening which is not accounted for by the prediction methods.

A votal of thirty-eight meet and composite brands available from previous research were excluded (irres considerance in acamaining researces figures because of one or more violations of design limitations preserved in Appendix D. Tables containing material and socion properties, design limitation summaries, and expendix measures and figures showing viewe and use-root interaction plots for the excluded beams follow (Tables E.1 - E.6 and Figs. E.0 - E.35).

being on the everyoned feature vestion where instructions perturbed into significantly to pressure decopyrulation flatage and/or the web. These violations contributed into significantly to pressure failure of the beams, as illustrated by the results for beams RBD-UC2, RL-3, and RL-4, With the exception of HL-3, the problemed capacities for beams containing high memories a the opening agreed researching well with text data. The predicted capacities for beams resisting high state at the opening generally did not agree very well with text data.

Five beams, RM-11D, RM-2D, RM-4D, RM-21G, and RM-4G had closely aparent operatings which, in these areas (RM-2D, RM-2D, and RM-4G), failed as a unit (Redwood and MeCarchette 1968). However, the predicted expection of all five beams were conservative. Beams RL-1, RL-2, RL-3, and RL-1 were reinflored on one side of the web and violand conscious design limitations. Beam RL-3 exhibited were presented of the web and violance manufactor (R-2D, RL-2, RL-3, and RL-1 were reinflored on one side of the tech and the land of R-2D.

Stateen brown inniti by Kim (1980), (KEE-anties), were excluded from the entiprisnithrough they met all of the design limitations. Withrest caregoine, the bases subjected to any measure of sheer were unaversity shreets when compared to producted capacities.

Table E.1 Material and Section Properties for Excluded Steel Beams

(in inches unless noted)

STEEL SECTION

Web			Opening				Reinforcement				Тор Тее			Bottom Tee				
			F							F				F				F
Test	d	t _w	(ksi)	D_o	h _o	a,	ь,	t,	У,	(ksi)	S	b_f	l _f	(ksi)	\$	b_f	l _f	(ksi)
RBD-HB1A	20,750	0.257	45.700	7.000	6.300	3.150					6.880	7.220	0.381	43.300	6.870	7.220	0.381	43.300
RBD-UG2	20,770	0.251	58.000	11.000	9.900	4.950					4.890	7.340	0.385	54,100	4,880	7.340	0.385	54,100
RBD-UG2A	20.770	0.251	58,000	13.000	11,700	5.850					3.890	7.340	0.385	54,100	3.880	7.340	0.385	54,100
RBD-UG3	20,710	0.257	59,400	11.000	9.900	4.950					4.860	7.250	0.388	52.800	4.850	7.250	0.388	52 800
RM-1D	8.016	0.235	49.600	4,500	4.050	2.025					1.983	5.250	0.297	46,200	1.983	5.250	0.297	46.200
RM-2D	8 125	0.248	53,800	4 500	4.050	2.025					2.038	5 250	0.321	45 400	2.038	5 250	0 321	45 400
RM-4D	8.125	0.248	53,800	4 500	4.050	2.025					2.038	5.250	0.326	48 000	2.038	5 250	0.326	48 000
RL-1	20.560	0.256	60.870		9.000	22 560	2.510	0.242	0	47.070	5.780	7.060	0 392	55 480	5,780	7.060	0 392	55 480
RL-2	20,560	0.256	58.670		13,500	33,750	2.534	0.368	0	43,310	3.530	6 880	0.392	54,170	5,780	7.060	0.392	55 480
RL-3	20.630	0.252	58.260		9.000	22 500	2 533	0.368	0	43,780	5.815	7.060	0.392	53 230	5.815	7.060	0 392	53 730
RL-4	15.540	0.255	67.000		6.780	16.940	2.751	0.251	0	47.070	4.380	5.500	0.355	53,450	4 380	5 500	0355	53 450
RBD-EH1	15,940	0.317	47.900		6.540	12.940					8.510	6.940	0.488	46 600	0.890	6 940	0.488	46 600
RBD-HB1	20.750	0.257	45.700		13.000	13.000					3.875	7.220	0.381	43.300	3.875	7.220	0.381	43 300
RBD-HB2	20.740	0.254	45,700		13.000	13.000					3.870	7.200	0.372	43.200	3.870	7.200	0.372	43.200
RBD-HB3	20.720	0.254	45.700		7.000	7.000					6.860	7.190	0.379	43.200	6.860	7,190	0.379	43.200
RBD-HB3A	20.720	0.254	45,700		7.000	14.000					6.860	7.190	0.379	43.200	6.860	7.190	0.379	43.200
RBD-HB4	20.750	0.258	45.700		7.000	7.000					6.875	7.230	0.378	43.200	6.875	7.230	0.378	43.200
RBD-HB5	20.750	0.255	57.600		11.000	22.000					4.875	7.220	0.374	55.800	4.875	7.220	0 374	55.800
RBD-HB5A	20.750	0.255	57.600		11.000	11.000					4.875	7.220	0.374	55.800	4.875	7.220	0.374	55.800
RM-21G	8.020	0.238	47.200		4.050	6.750					1.760	5.250	0.300	40.200	1.760	5.250	0.300	40 200
RM-4G	8.125	0.251	54,100		4.050	6.750					1.813	5.250	0.321	47.400	1.813	5.250	0 321	47,400
KKS-1HSC	7.090	0.157	40.000		3.150	3.150					1.970	3.540	0.236	40.000	1.970	3 540	0.236	40.000
KKS-1HRC	7.090	0.157	40.000		3.150	4,720					1.970	3.540	0.236	40.000	1.970	3 540	0.236	40.000
KKS-1HS10	7.090	0.157	40.000		3,150	3.150					1.260	3.540	0.236	40.000	2 680	3 540	0.236	40.000
KKS-1HR10	7.090	0.157	40.000		3.150	4,720					1.260	3.540	0.236	40.000	2.680	3 540	0.236	40.000
KKS-2HSC	7.090	0.157	40.000		3.150	3.150					1.970	3.540	0.236	40.000	1.970	3.540	0.236	40.000
KKS-2HRC	7.090	0.157	40.000		3.150	4.720					1.970	3.540	0.236	40.000	1.970	3.540	0.236	40.000
KKS-2HSE	7.090	0.157	40.000		3.150	3.150					1.260	3,540	0.236	40.000	2.680	3 540	0.236	40.000
KKS-2HRE	7.090	0.157	40.000		3.150	4.720					1.260	3.540	0.236	40.000	2.680	3.540	0.236	40.000
KKS-3HRC2	7.090	0.157	40.000		3.150	4.720					1.970	3.540	0.236	40.000	1.970	3.540	0.236	40.000
KKS-3HSC3	7.090	0.157	40.000		3.150	3.150					1.970	3.540	0.236	40,000	1.970	3,540	0.236	40.000
KKS-3HSC2	7.090	0.157	40.000		3.150	3.150					1.970	3.540	0.236	40.000	1.970	3.540	0.236	40.000
KKS-3HRC3	7.090	0.157	40.000		3.150	4.720					1.970	3.540	0.236	40.000	1.970	3.540	0.236	40.000
KKS-3HS10	7.090	0.157	40.000		3.150	3.150					1.260	3.540	0.236	40.000	2.680	3.540	0.236	40.000
KKS-3HR10	7.090	0.157	40.000		3.150	4.720					1.260	3.540	0.236	40.000	2 680	3.540	0.236	40.000
KKS-3HS5E	7.090	0.157	40.000		3.150	3.150					1.620	3,540	0.236	40.000	2 320	3 540	0.236	40.000
KKS.3HRSE	7 090	0 157	40.000		3.150	4.720					1.620	3 540	0.236	40 000	2 320	3 540	0.236	40.000

Notes:

refer to Table E.0 for key to beam designations

155

031 0112	<i>t_f</i> <	$65/\sqrt{F_y}$	$p_{o} < 6.0$	h/t	$420/\sqrt{F_y}$	$520/\sqrt{F_y}$	a,/h,	$a_o/h_o(\max)$	
BD-HB1A	9.48	9.88	2.47	77,77	62.13	76.92	0.45	2.20	Т
BD-UG2	9.53	8.84	3.63	79.68	55.15	68.28	0.45	2.20	
BD-UG2A	9.53	8.84	4.21	79.68	55.15	68.28	0.45	2.20	
BD-UG3	9.34	8.95	3.64	77.56	54.49	67.47	0.45	2.20	
M-1D	8.84	9.56	3.82	31.58	59.64	73.84	0.45	3.00	
M-2D	8.18	9.65	3.77	30.17	57.26	70.89	0.45	3.00	
M-4D	8.05	9.38	3.77	30.13	57.26	70.89	0.45	3.00	
L-1	9.01	8.73	5.13	77.25	53.83	66.65	2.51	2.20	
L-2	8.78	8.83	6.44	77.25	54.83	67.89	2.50	2.20	
L-3	9.01	8.91	5.12	78.75	55.03	68.13	2.50	2.20	
L-4	7.75	8.89	5.12	58.16	51.31	63.53	2.50	2,20	
BD-EH1	7.11	9.52	4.44	47.21	60.69	75.13	1.98	3.00	
BD-HB1	9.48	9.88	4.76	77.77	62.13	76.92	1.00	2.20	
BD-HB2	9.68	9.89	4.76	78.72	62.13	76.92	1.00	2.20	
BD-HB3	9.49	9,89	3.03	78.59	62.13	76.92	1.00	2.20	
BD-HB3A	9.49	9.89	4.03	78.59	62.13	76.92	2.00	2.20	
BD-HB4	9.56	9.89	3.02	77.50	62.13	76.92	1.00	2,20	
BD-HBS	9.65	8 70	5.18	78 44	55 34	68 57	2.00	2.20	
BD-HBSA	9.65	8.70	4 18	78 44	55 34	68 52	1.00	2 20	
M-21G	8.75	10.25	4 70	31 18	61.13	75 69	1.67	3.00	
M-4G	8.18	9 44	4.66	29.81	57.10	70.70	1.67	3.00	
KS-1HSC	7.50	10.28	3.67	42 15	66.41	82.22	1.00	3.00	
KS-1HRC	7.50	10.28	4.16	42.15	66.41	82 22	1.50	3.00	
KS-1HS10	7.50	10.28	3.67	42.15	66.41	82 22	1.00	3.00	
KS-1HP10	7 50	10.28	4.16	42.15	66.41	92.22	1.00	3.00	
KS-2HSC	7.50	10.28	3.67	42.15	66.41	82.22	1.00	3.00	
KS-2HPC	7.50	10.20	4.16	4215	66.41	04.44	1.00	3.00	
KS-2HSE	7 50	10.20	3.67	4215	66.41	02.22	1.00	3.00	
KS_2HPE	7.50	10.20	4.16	42.15	66.41	02.22	1.00	3.00	
VC JUDCOS	7.50	10.20	4.10	4215	00.41	84.44	1.50	3.00	
VS TUCCTS	7.50	10.28	4.10	4215	00.41	82.22	1.50	3.00	
KS-SHSCSS	7.50	10.28	3.07	4215	00.41	82.22	1.00	3.00	
KS-SHSCD	7.50	10.28	3.07	4215	00.41	82.22	1.00	3.00	
VC AUCIODOC	7.50	10.28	4.10	4215	00.41	82.22	1.50	3.00	
VS 3UB 10E25	7.50	10.28	3.07	4215	00.41	82.22	1.00	3.00	
AS-SHR10E25	7.50	10.28	4.10	42.15	00.41	82.22	1.50	3.00	
10-3H33E23	7.50	10.28	3.07	4215	00.41	82.22	1.00	3.00	
CO-SHICES	7.50	10.28	4.10	4215	00.41	82.22	1.50	3.00	
/-6D	7.11	9.42	0.70	41.53	58.93	72.96	2.92	3.00	
						333888			

Table E.2 Design Limitation Summary for Excluded Steel Beams

Table E.2 Design Limitation Summary for Excluded Steel Beams

(c) Buckling of Tee Shaped Compression Zone (D.1.3)

	Per	Par	P_a			Test/			
Test ⁽¹⁾	(k)	(k)	(k)	M_{π}/M_{π}	als,	Theory ⁽²⁾			
					- CAR				
RBD-HB1A	114.63	114.57	169.52	0.921	0.46	0.957			
RBD-UG2	127.71	127.91	88.80	0.454	1.01	1.063			
RBD-UG2A	119.17	119.72	72.05	0.330	1.50	1.293			
RBD-UG3	124.83	125.01	194.00	0.928	1.02	1.032			
RM-1D	53.88	54.10	87.35	1.000	1.02	1.033			
RM-2D	57.17	57.39	67.54	0.523	0.99	1.622			
RM-4D	61.15	61.39	90.36	0.947	0.99	1.014			
RL-1	135.82	135.59	279.08	1.000	3.90	1.009			
RL-2	109.33	111.05	258.92	1.000	9.56	1.078			
RL-3	130.19	129.96	127.55	0.999	3.87	0.455			
RL-4	94.20	93.95	167.21	0.513	3.87	0.954			
RBD-EH1	164.64	163.74	139.54	0.715	1.52	1.077			
RBD-HB1	92.96	93.86	177.74	0.992	3.35	1.128			
RBD-HB2	90.67	91.54	45.06	0.213	3.36	1.589			
RBD-HB3	112 78	112.66	105 53	0.459	1.02	1.202			
RBD-HB3A	112.23	111.96	80.97	0.440	2.04	1.114			
RBD_HB4	113 77	113 64	211 03	0 000	1.02	1.098			
RBD-HB5	125 11	126.12	42.56	0.205	4 51	1.126			
RBD_HB5A	1 27 13	127.57	73 72	0 318	2.26	1 252			
PM 21G	45 21	46.08	37 70	0.400	3.84	1 207			
PM 4G	57.03	59 17	76.66	0.709	3.72	1.137			
KKS THEC	26.36	26.46	84.51	1 000	1.60	1.047			
KKS-IHDC	26.30	26.40	94.51	1.000	2.40	1.042			
KKS 1HS10	23.52	23.91	84.02	1.000	2.50	1.087			
VVC 1UD10	22.22	22.75	94.02	1.000	3.75	1.081			
KKG SUGC	26.36	26.16	94.52	0.000	1.60	1.042			
KKS 2HBC	26.24	26.40	84.51	0.000	2.40	2 022			
KKG SUCE	20.24	20.40	84.02	0.000	2.50	1 000			
VVC OUDE	20.52	20.01	04.72	0.000	2.75	1.022			
VVC AUDCOS	25.50	25.15	04.54	0.000	2.40	1.704			
KKS-SHRCZ	20.24	20.40	04.51	0.295	1.60	1.194			
KKS-3HSC35	20.30	20,40	84.51	0.492	1.00	2.007			
KKS-3HSC25	20.30	20.40	84.51	0.360	1.00	2013			
KKS-3HRC35	26.24	26.40	84.51	0.405	2.40	1.824			
KKS-3HS10E25	23.52	23.81	84.92	0.389	2.50	1.752			
KKS-3HR10E25	23.30	23.75	84.92	0.321	3.75	1,852			
KKS-3HS5E25	24.99	25.15	84.58	0.372	1.94	1.988			
KKS-3HR5E25	24.83	25.10	84.58	0.303	2.91	1.837			

Table E.2 Design Limitation Summary for Excluded Steel Beams

(d) Hole Restrictions (D.3.1)

0.7d 0.15d h. < 5, & Sb > Test⁽¹⁾ a/sb < 12.0 (in.) (in.) als, (in.) (in.) (in.) RBD-HB1A 7.00 14.52 6.88 6.87 3.11 0.46 0.46 1.01 RBD-UG2 11.00 14.54 4.89 4.88 3.12 1.01 RBD-UG2A 13.00 14.54 3.89 3.88 3.12 1.50 1.51 RBD-UG3 3.11 11.00 14.50 4.86 4.85 1.02 1.02 1.98 RM-ID 4.50 5.61 1.98 1.20 1.02 1.02 RM-2D 4.50 5.69 2.04 2.04 1.22 0.99 0.99 RM-4D 4.50 5.69 2.04 2.04 1.22 0.99 0.99 3.90 3.90 RL-1 9.00 14.39 5.78 5.78 3.08 13.50 14.39 3.53 3.53 3.08 9.56 9.56 RL-2 RL-3 9.00 14.44 5.82 3.09 3.87 3.87 5.82 RL4 6.78 10.88 4.38 4.38 2.33 3.87 3.87 RBD-EH1 6.54 11.16 8.51 0.89 2.39 1.52 14.54 RBD-HB1 3.35 13.00 14.52 3.88 3.88 3.11 3.35 RBD-HB2 13.00 3.36 3.36 14.52 3.87 3.87 3.11 1.02 1.02 **RBD-HB3** 7.00 14.50 6.86 6.86 3.11 RBD-HB3A 7.00 14.50 6.86 6.86 3.11 2.04 2.04 **RBD-HB4** 7.00 14.52 6.88 6.88 3.11 1.02 1.02 **RBD-HB5** 11.00 14.52 4.88 4.88 3.11 4.51 4.51 **RBD-HB5A** 14.52 4.88 2.26 2.26 11.00 4.88 3.11 1.76 3.84 **RM-21G** 4.05 5.61 1.76 1.20 3.84 RM-4G 1.22 3.72 3.72 4.05 5.69 1.81 1.81 KKS-1HSC 3.15 4.96 1.97 1.97 1.06 1.60 1.60 KKS-1HRC 3.15 4.96 1.97 1.97 1.06 2.40 2,40 KKS-1HS10 3.15 4.96 1.26 2.68 1.06 2.50 1.18 3.75 KKS-1HR10 3.15 4.96 1.26 2.68 1.06 1.76 KKS-2HSC 4.96 1.97 1.06 1.60 1.60 3.15 1.97 KKS-2HRC 1.97 1.97 1.06 2.40 2.40 3.15 4.96 KKS-2HSE 3.15 4.96 1.26 2.68 1.06 2.50 1.18 KKS-2HRE 3.15 4.96 1.26 2.68 1.06 3.75 1.76 KKS-3HRC25 1.97 2.40 2,40 3.15 4.96 1.97 1.06 KKS-3HSC35 4,96 1.97 1.97 1.06 1.60 1.60 3.15 KKS-3HSC25 3.15 4,96 1.97 1.97 1.06 1.60 1.60 KKS-3HRC35 3.15 4.96 1.97 1.97 1.06 2.40 240 2.50 KKS-3HS10E25 3.15 4.96 1.26 2.68 1.06 1.18 3.75 1.76 KKS-3HR10E25 4.96 1.26 2.68 1.06 3.15 KKS-3HS5E25 3.15 4.96 1.62 2.32 1.06 1.94 1.36 KKS-3HR5E25 3.15 4.96 1.62 2.32 1.06 2.91 2.03 10.80 D-8B 6.38 7.09 2.03 1.73 1.52 9.20

to frankring of the filepoid Compression Gore (I

(e) One-sided Reinforcem			ent (D.	3.5)						
	<i>A</i> , <	$A_f/3$								
Test ⁽¹⁾		(in. ²)	a,	$h_o \leq 2.5$	3	siltur	$s_b/t_\omega \leq$	$140/\sqrt{F_y}$	$M_u/(V_u^*d)$	≤ 20
RL-1 RL-2 RL-3 RL-4	0.20 0.31 0.30 0.32	0.92 0.90 0.92 0.65	1	2.51 2.50 2.50 2.50		22.58 13.79 23.08 17.18	22.58 13.79 23.08 17.18	17.94 18.28 18.34 17.10	223164.88 221842.90 19.06 25.30	

Table E.2 Design Limitation Summary for Excluded Steel Beams

1000

combanadeals mucht at with tall VLR phila? at patter (1)

(2) The mechanicy matrix for intertant (II with A = 1.414 are provided as around inductantian of the efficience of a properties violations of the straige protometers for the producted conjuncting. If the non-singural many remains many more to be and a producted in memory resolution and the second second.

Test ⁽¹⁾ ((f) \	/iolations				
RBD-HB1A	(D.1.1), (D.1.3)				
RBD-UG2A RBD-UG3	000	D.1.1) D.1.1), (D.1.3)				
RM-1D RM-2D RM-4D RL-1 RL-2 RL-3 RL-4 RBD-HB1 RBD-HB1 RBD-HB3 RBD-HB3 RBD-HB3 RBD-HB3 RBD-HB5 RBD-HB5 RBD-HB5 RBD-HB5 RBD-HB5A RM-21G RM-4G KKS-1HSC KKS-1HSC0		D.1.3) D.1.3) D.1.3) D.1.1), (D.1.2), (D.1. D.1.2), (D.1.3), (D.3. D.1.1), (D.1.2), (D.3. D.1.2), (D.1.3), (D.3. D.1.3), (D.3.1) D.1.3) (D.1.3) (D.1.3) (D.1.1) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3)	3), (D.3.5) 5) 5) 5)			
KKS-1HR10 KKS-2HSC KKS-2HRC KKS-2HRE KKS-2HRE KKS-3HRC25 KKS-3HRC25 KKS-3HSC25 KKS-3HS10E2 KKS-3HS10E2 KKS-3HS10E2 KKS-3HS5E25 KKS-3HR5E25 D-8B	5 25	(D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3) (D.1.3)				

Table E.2 Design Limitation Summary for Excluded Steel Beams

Notes:

(1) refer to Table E.0 for key to beam designations

(2) The test/theory ratios for Method III with $\lambda = 1.414$ are provided as some indication of the effect of a potential violation of the design parameter on the predicted capacity. If the tee-shaped compression zone were to buckle prematurely, unconservative predictions would result.
Table E.4. Rectoded Beam Capacity Summary: Nethod II

Test ⁽¹⁾	M_m (ink)	V_m (k)	M _{test} (ink)	V _{test} (k)	M_{n} (ink)	V. (k)	Test/ Theory		
	No. 1 C. O							 12.25	
DDD LIDIA	2421 70	62.22	2025.00	26.45	2161 01	28.10	0.057		
RBD-HBIA	3431.79	65.00	1601 25	50.45	1640.79	63.50	1.025		
RBD-UG2	4032.31	44.92	1405 65	63.10	1154.10	03.50	1.025		
RBD-UG2A	2004.04	44.85	2680.20	34.10	2601 26	44.42	1.210		
RDD-003	650 40	07.28	601 12	0.00	650.40	43.33	1.022		
RM-ID	701 51	23.19	521.04	27.90	266.00	26.00	1.055		
RM-2D	721.51	21.21	211.22	14.70	200.40	20.02	1.455		
RM-4D	103.00	27.08	111.77	14.79	120.49	14.97	0.988		
RL-I	4040.00	30.13	4568.27	0.00	4040.00	0.00	1.009		
RL-2	4229.85	23.80	4561.09	0.00	4229.85	0.00	1.078		
RL-3	4437.05	62.38	2016.89	5.13	4428.32	11.20	0.455		
RL-4	2542.72	52.19	1141.72	48.61	1183.22	50.38	0.965		
RBD-EHI	2/51.06	51.03	1900.56	47.03	1817.85	43.36	1.046		
KBD-HB1	3107.81	22.34	3459.23	8.31	3070.09	7.38	1.127		
RBD-HB2	3031.42	21.98	876.40	33.77	569.07	21.93	1.540		
RBD-HB3	3413.62	62.49	1881.42	72.60	1565.52	60.41	1.202		
RBD-HB3A	3413.62	50.82	1443.55	55.70	1292.88	49.89	1.117		
RBD-HB4	3444.06	63.56	3778.78	9.08	3441.53	8.27	1.098		
RBD-HB5	4098.45	27.72	807.73	31.10	718.60	27.67	1.124		
RBD-HB5A	4098.45	44.09	1399.11	53.90	1136.36	43.78	1.231		
RM-21G	590.97	9.46	263.72	10.97	223.34	9.29	1.181		
RM-4G	749.67	12.12	540.77	11.23	513.19	10.66	1.054		
KKS-1HSC	282.23	9.63	294.20	0.00	282.23	0.00	1.042		
KKS-1HRC	282.23	7.66	291.60	0.00	282.23	0.00	1.033		
KKS-1HS10E	268.18	9.98	291.60	0.00	268.18	0.00	1.087		
KKS-1HR10E	268.18	8.04	289.90	0.00	268.18	0.00	1.081		
KKS-2HSC	282.23	9.63	0.13	17.41	0.07	9.63	1.808		
KKS-2HRC	282.23	7.66	0.13	14.63	0.07	7.66	1.909		
KKS-2HSE	268.18	9.98	0.13	17.65	0.07	9.98	1.768		
KKS-2HRE	268.18	8.04	0.13	14.60	0.07	8.04	1.816		
KKS-3HRC25	282.23	7.66	127.01	12.91	74.91	7.61	1.696		
KKS-3HSC35	282.23	9.63	200.64	14.55	128.50	9.32	1.561		
KKS-3HSC25	282.23	9.63	175.80	17.87	93.59	9.51	1.878		
KKS-3HRC35	282.23	7.66	179.40	13.01	103.87	7.53	1.727		
KKS-3HS10E25	268.18	9.98	157.39	15.99	96.70	9.82	1.628		
KKS-3HR10E25	268.18	8.04	136.78	13.90	78.43	7.97	1.744		
KKS-3HS5E25	275.30	9.71	174.74	17.76	94.28	9.58	1.853		
KKS-3HR5E25	275.30	7.75	131.36	13.35	75.74	7.70	1.734		

Table E.3 Excluded Beam Capacity Summary: Method I, $\lambda = 1.414$

Notes:

externational parameters and the line parameters of the second sec

(1) refer to Table E.0 for key to beam designations

Table E.4 Excluded Beam Capacity Summary: Method II

Table E.3. Racinded Born Creatity Summers: Muthod L 5. - 1.414

Test ⁽¹⁾	<i>M</i> _m (ink)	V_m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V, (k)	Test/ Theory			
				1000	11 0	0	01.40	100		
RBD-HB1A	3431.79	63.32	3025.09	36.45	3161.91	38.10	0.957			
RBD-UG2	4052.31	70.88	1691.25	65.10	1787.15	68.79	0.946			
RBD-UG2A	3842.82	49.29	1405.65	54.10	1265.16	48.69	1.111			
RBD-UG3	3994.94	73.75	3680.39	44.30	3682.09	44.32	1.000			
RM-1D	659.40	22.99	681.13	0.00	659.40	0.00	1.033			
RM-2D	721.51	27.24	531.94	37.80	365.83	26.00	1.454			
RM-4D	763.06	27.24	711.77	14.79	718.61	14.93	0.990			
RL-1	4546.63	62.67	4588.27	0.00	4546.63	0.00	1.009			
RL-2	4229.85	24.84	4561.09	0.00	4229.85	0.00	1.078			
RL-3	4437.05	68.80	2016.89	5.13	4430.54	11.27	0.455			
RL-4	2542.72	58.31	1141.72	48.61	1304.79	55.55	0.875			
RBD-EH1	2751.06	56.99	1900.56	47.63	1958.71	49.09	0.970			
RBD-HB1	3107.81	24.11	3459.23	8.31	3077.64	7.39	1.124			
RBD-HB2	3031.42	23.77	876.40	33.77	615.21	23.71	1.425			
RBD-HB3	3413.62	62.49	1881.42	72.60	1565.52	60.41	1.202			
RBD-HB3A	3413.62	59.50	1443.55	55.70	1497.31	57.77	0.964			
RBD-HB4	3444.06	63.56	3778.78	9.08	3441.53	8.27	1.098			
RBD-HB5	4098.45	29.63	807.73	31.10	767.77	29.56	1.052			
RBD-HB5A	4098.45	50.34	1399.11	53.90	1293.01	49.81	1.082			
RM-21G	590.97	9.40	263.72	10.97	221.84	9.23	1.189			
RM-4G	749 67	11.99	540 77	11.23	509 34	10.58	1.062			
KKS-1HSC	282 23	10.50	294 20	0.00	282 23	0.00	1 042			
KKS-1HRC	282 23	8 37	201 60	0.00	282 23	0.00	1 033			
KKS-1HS10E	268.18	10.64	291.60	0.00	268 18	0.00	1.087			
KKS-1HR10F	268.18	8 73	289.90	0.00	268.18	0.00	1.081			
KKS-2HSC	282 23	10.50	0.13	17.41	0.08	10.50	1 650			
KKS-2HRC	282.23	8 37	0.13	14.63	0.07	8 37	1 748			
KKS-2HSF	268 18	10.64	0.13	17.65	0.02	10.64	1.659			
KKS OLDE	268.18	0.72	0.13	14.60	0.08	0 72	1.620			
KKS-3HRC25	200.10	8 37	127.01	12.00	81.67	8 20	1.555			
KKS JUSC 25	202.23	10.50	200.64	14.55	120 77	10.06	1.333			
KKS-SHSC35	202.22	10.50	175.80	14.33	101.62	10.00	1.440			
KKS-SHSC25	282.23	0.27	175.80	17.87	110.00	10.33	1.730			
KKS-SHRC35	282.23	8.37	1/9.40	15.00	112.89	8.19	1.589			
KKS 211D10E25	208.18	10.04	137.39	13.99	102.75	10.44	1.532			
KKS SHEETSE	208.18	8.73	136.78	13.90	84.99	8.64	1.009			
KKS-3H33E23	275.30	10.53	174.74	17.76	101.80	10.35	1.717			
KK3-3HK3E25	2/5.30	8.45	131.36	13.35	82.44	8.38	1.593			

Notes:

(1) refer top Table E.0 for key to beam designations

spoltonganis reseal at goil tel ful size? I summer (1)

	M _m	Vm	Must	Viest	M _n	V,	Test/			
Test ⁽¹⁾	(ink)	(k)	(ink)	(k)	(ink)	(k)	Theory			
		10.10				11.1.		N. C.C.	10.00	
RBD-HB1A	3431.79	63.32	3025.09	36.45	3161.91	38.10	0.957			
RBD-UG2	4052.31	62.53	1691.25	65.10	1591.08	61.24	1.063			
RBD-UG2A	3842.82	42.17	1405.65	54.10	1087.27	41.85	1.293			
RBD-UG3	3994.94	65.02	3680.39	44.30	3567.30	42.94	1.032			
RM-1D	659.40	20.27	681.13	0.00	659.40	0.00	1.033			
RM-2D	721.51	24.08	531.94	37.80	327.94	23.30	1.622			
RM-4D	763.06	24.08	711.77	14.79	701.80	14.58	1.014			
RL-1	4546.63	56.51	4588.27	0.00	4546.63	0.00	1.009			
RL-2	4229.85	23.80	4561.09	0.00	4229.85	0.00	1.078			
RL-3	4437.05	62.54	2016.89	5.13	4428.39	11.26	0.455			
RL-4	2542.72	52.85	1141.72	48.61	1196.68	50.95	0.954			
RBD-EH1	2751.06	48.95	1900.56	47.63	1763.96	44.21	1.077			
RBD-HB1	3107.81	21.60	3459.23	8.31	3066.16	7.37	1.128			
RBD-HB2	3031.42	21.30	876.40	33.77	551.66	21.26	1.589			
RBD-HB3	3413.62	62.49	1881.42	72.60	1565.52	60.41	1.202			
RBD-HB3A	3413.62	50.95	1443.55	55.70	1295.90	50.00	1.114			
RBD-HB4	3444.06	63.56	3778.78	9.08	3441.53	8.27	1.098			
RBD-HB5	4098.45	27.68	807.73	31.10	717.59	27.63	1.126			
RBD-HB5A	4098.45	43.34	1399.11	53.90	1117.30	43.04	1.252			
RM-21G	590.97	8.57	263.72	10.97	203.26	8.45	1.297			
RM-4G	749.67	10.89	540.77	11.23	475.53	9.88	1.137			
KKS-1HSC	282.23	8.97	294.20	0.00	282.23	0.00	1.042			
KKS-1HRC	282.23	7.23	291.60	0.00	282.23	0.00	1.033			
KKS-1HS10E	268.18	9.24	291.60	0.00	268.18	0.00	1.087			
KKS-1HR10E	268.18	7.56	289.90	0.00	268.18	0.00	1.081			
KKS-2HSC	282.23	8.97	0.13	17.41	0.07	8.97	1.942			
KKS-2HRC	282.23	7.23	0.13	14.63	0.06	7.23	2.022			
KKS-2HSE	268.18	9.24	0.13	17.65	0.07	9.24	1.909			
KKS-2HRE	268.18	7.56	0.13	14.60	0.07	7.56	1.932			
KKS-3HRC25	282.23	7.23	127.01	12.91	70.80	7.20	1.794			
KKS-3HSC35	282.23	8.97	200.64	14.55	120.35	8.73	1.667			
KKS-3HSC25	282.23	8.97	175.80	17.87	87.32	8.88	2.013			
KKS-3HRC35	282.23	7.23	179.40	13.01	98.34	7.13	1.824			
KKS-3HS10E25	268.18	9.24	157.39	15.99	89.83	9.13	1.752			
KKS-3HR10E25	268.18	7.56	136.78	13.90	73.86	7.51	1.852			
KKS-3HS5E25	275.30	9.03	174,74	17.76	87.89	8.93	1.988			
VVS SUDSESS	275 20	7 21	121 26	12 35	71 53	7 27	1 937			

Table E.5 Excluded Beam Capacity Summary: Method III, $\lambda = 1.414$

Cubic E.S.

1000

(1) refer to Table E.0 for key to beam designations

Notes:

refler to Table E.0 for key to install.

-	~	- 44	
- 8	~	Z 1	
		-	
	v	-	

Table E.6

6 Excluded Beam Capacity Summary: Redwood and Shrivastava (1980)

						Curv	linear		Line	ear		
Test ⁽¹⁾	<i>M</i> _m (ink)	V _m (k)	<i>M</i> , (ink)	M _{test} (ink)	V _{test} (k)	<i>M</i> , (ink)	<i>V</i> . (k)	Test/ Theory	<i>M</i> _* (ink)	<i>V</i> , (k)	Test/ Theory	
				2025 00				0.000	0000 50	24.72	1.040	
RBD-HB1A	3431.79	63.32	2430.47	3025.09	36.45	3414.09	41.14	0.886	2882.32	34.73	1.049	
RBD-UG2	4052.31	78.56	2309.55	1691.25	65.10	2040.88	78.50	0.829	2040.88	18.30	0.829	
RBD-UG2A	3842.82	61.16	2184.18	1405.65	54.10	1589.06	61.16	0.885	1589.06	01.10	0.885	
RBD-UG3	3994.94	82.14	2172.12	3680.39	44.30	3933.19	47.34	0.936	3152.78	37.95	1.107	
RM-1D	659.40	22.99	444.85	681.13	0.00	659.40	0.00	1.033	659.39	0.00	1.033	
RM-2D	721.51	27.23	468.45	531.94	37.80	383.15	21.23	1.388	383.15	21.23	1.388	
RM-4D	763.06	27.23	510.34	711.77	14.79	758.49	15.76	0.938	639.68	13.29	1.113	
RL-1	4546.63	26.31	1665.36	4588.27	0.00	4546.63	0.00	1.009	4546.52	0.00	1.009	
RL-2	4229.85	15.19	1435.59	4561.09	0.00	4229.85	0.00	1.078	4229.68	0.00	1.078	
RL-3	4437.05	37.99	1448.10	2016.89	5.13	4378.94	11.14	0.461	3697.19	9.40	0.546	
RL-4	2542.72	30.50	916.39	1141.72	48.61	716.34	30.50	1.594	716.34	30.50	1.594	
RBD-EH1	2751.06	56.99	1019.12	1900.56	47.63	2396.94	60.07	0.793	1561.65	39.14	1.217	
RBD-HB1	3107.81	24.11	1525.91	3459.23	8.31	3088.51	7.42	1.120	2684.64	6.45	1.289	
RBD-HB2	3031.42	23.77	1469.69	876.40	33.77	616.93	23.77	1.421	616.93	23.77	1.421	
RBD-HB3	3413.62	62.49	1902.17	1881.42	72.60	1619.35	62.49	1.162	1619.35	62.49	1.162	
RBD-HB3A	3413.62	59.50	1081.96	1443.55	55.70	2368.12	91.37	0.610	1358.85	52.43	1.062	
RBD-HB4	3444.06	63.56	1906.43	3778.78	9.08	3441.47	8.27	1.098	3254.87	7.82	1.161	
RBD-HB5	4098.45	29.63	1609.71	807.73	31.10	769.46	29.63	1.050	769.46	29.63	1.050	
RBD-HB5A	4098.45	50.34	1815.78	1399.11	53.90	1306.83	50.34	1.071	1306.83	50.34	1.071	
RM-21G	590.97	11.77	303.08	263.72	10.97	282.92	11.77	0.932	282.92	11.77	0.932	
RM-4G	749.67	14.90	390.50	540.77	11.23	711.66	14.78	0.760	499.56	10.37	1.082	
KKS-1HSC	282.23	10.50	162.80	294.20	0.00	282.23	0.00	1.042	282.23	0.00	1.042	
KKS-1HRC	282.23	8.37	151.50	291.60	0.00	282.23	0.00	1.033	282.23	0.00	1.033	
KKS-1HS10E	268.18	10.64	155.48	291.60	0.00	268.18	0.00	1.087	268.18	0.00	1.087	
KKS-1HR10E	268.18	8.73	137.86	289.90	0.00	268.18	0.00	1.081	268.18	0.00	1.081	
KKS-2HSC	282.23	10.50	162.80	0.13	17.41	0.08	10.50	1.659	0.08	10.50	1.659	
KKS-2HRC	282.23	8.37	151.50	0.13	14.63	0.07	8.37	1.748	0.07	8.37	1.748	
KKS-2HSE	268.18	10.64	155.48	0.13	17.65	0.08	10.64	1.658	0.08	10.64	1.658	
KKS-2HRE	268,18	8.73	137.86	0.13	14.60	0.08	8.73	1.672	0.08	8.73	1.672	
KKS-3HRC25	282.23	8.37	151.50	127.01	12.91	82.34	8.37	1.543	82.34	8.37	1.543	
KKS-3HSC35	282.23	10.50	162.80	200.64	14.55	144.74	10.50	1.386	144.74	10.50	1.386	
KKS-3HSC25	282.23	10.50	162.80	175 80	17.87	103.26	10.50	1.702	103.26	10.50	1.702	
KKS-3HRC35	282.23	8 37	151 50	179.40	13.01	115.41	8.37	1.554	115.41	8.37	1.554	
KKS-3HS10F25	268.18	10.64	155.48	157 30	15.00	104.75	10.64	1.503	104.75	10.64	1.503	
KKS-3HR10F25	268.19	8 72	137.96	136.78	13.90	85 01	8 73	1 592	85.91	8.73	1.592	
KKS-3USSE25	275 30	10.53	158.69	174 74	17.76	103 58	10 53	1 687	103 58	10.53	1.687	
KKS JUDSE25	275 30	8 45	144.12	131 36	13 35	83 10	8.45	1 570	83 10	8 45	1 579	
KK3-JHKJE2J	215.50	0.43	144.12	131.30	13.33	03.19	0.43	1.319	03.19	0.45	1.013	

Notes:

(1) refer to Table E.0 for key to beam designations

(i) relies to Fully d.M for law to mean check

Fig. E.12 Interaction Curves for Test RBD-EH1 Fig. E.16 Interaction Curves for Test RBD-HB3A

APPENDIX F

DERIVATION OF P_{c(min)} FOR COMPOSITE BEAM SIMPLIFIED MOMENT EQUATION

When the *PNA* resides in the steel section, a simplified expression for the maximum moment capacity of a composite beam, Eq. 2.74, can be used. As the *PNA* moves into the web, Eq. 2.74 becomes increasingly unconservative. In this appendix, the limit on P_c is derived for applying the approximation for M_m if the *PNA* is located in the web of a perforated composite beam.

The approximate equation is

$$M_m = F_y A_{sn} \frac{d}{2} + P_c \left(t_s - \frac{a}{2} \right) + F_y \Delta A_s e \tag{F.1}$$

The first term of equation F.1 is an approximation for the correct terms given in Eqs. 2.67 and 2.69. The first term of Eq. 2.69 can be rewritten as

$$F_{y}\left(A_{sn}\frac{d}{2} - (b_{f} - t_{w})t_{f}^{2} - t_{w}x^{2}\right)$$
(F.2)

The object of the derivation will be to determine what the lower bound for P_c is, such that the approximate term differs from the more precise term by a small percentage. This is expressed by

$$(b_f - t_w)t_f^2 + t_w x^2 \le \alpha A_{sn} \frac{d}{2}$$
 (F.3)

in which α is some small number.

The neutral axis location in a perforated composite beam, where the neutral axis is located in the web, is determined by

$$x = \frac{A_{sn} - 2A_f}{2t_w} - \frac{P_c}{2F_v t_w} + t_f$$
(F.4)

in which x is measured from the top of the flange of the steel section. Solving for x in terms of the inequality expressed by Eq. F.3 gives

$$x \le \sqrt{\frac{\alpha A_{sn}d - 2A_{f}'t_{f}}{2t_{w}}}$$
 (F.5)

in which $A'_f = (b_f - t_w)t_f$

Solving for Pc in Eq. F.4 gives

 $P_{c} = F_{y}(A_{sn} - 2A_{f} - 2t_{w}(x - t_{f}))$ (F.6) Eq. F.6 can be more simply expressed as

$$P_{c} = F_{y}(t_{w}(d - h_{o}) - 2t_{w}x)$$
(F.7)

Substituting the expression for x in Eq. F.5 into Eq. F.7 results in

The object of the derivation will be to detration when the lower board for $N_{\rm c}$ is, such that the

$$P_{c} = F_{y}\left(t_{w}(d - h_{o}) - \sqrt{2}\sqrt{\alpha A_{sn}dt_{w} - 2A_{f}^{\prime}t_{f}t_{w}}\right)$$
(F.8)

(E.F)

By substituting $2A'_f + dt_w - h_o t_w$ for A_{sn} in Eq. F.8, the expression under the radical can be arranged to give

$$2A'_{f}t_{w}(\alpha d - t_{f}) + \alpha (d - h_{o})t_{w}^{2}d \qquad (F.9)$$

Setting $A'_f = \beta A_w = \beta t_w d$, in which β is some fraction results in the following expression.

$$2\beta dt_w^2(\alpha d - t_f) + \alpha (d - h_g) t_w^2 d \qquad (F.10)$$

Rearranging gives,

$$dt_{w}^{2}(\alpha((2\beta + 1)d - h_{o}) - 2\beta t_{i})$$
(F.11)

 h_o is typically between 0.3d and 0.7d, so if h_o is assumed to 0.5d, and if t_f is conservatively assumed to be 0.02d, Eq. F.11 can be rewritten as

$$d^{2}t_{\omega}^{2}(\alpha(2\beta + 0.5) - 0.04\beta)$$
(F.12)

Substituting equation F.11 into equation F.8, and rearranging gives,

$$P_{c(\min)} = F_{y} \left[t_{w} (d - h_{o}) - t_{w} d\sqrt{2\alpha(2\beta + 0.5)} - 0.08\beta \right]$$
(F.13)

For $\alpha = 0.04$ (i.e. a 4% maximum error in the first term in Eq. F.1), the following table is obtained for different values of β :

β	P _{c(min)}
0.00	$F_v t_w (d - h_o)$
0.40	$F_{y}t_{w}(0.732d - h_{o})$
0.50	$F_{v}t_{w}(0.717d - h_{o})$
1.00	$F_{y}t_{w}(0.654d - h_{o})$

As seen from the table, $P_{c(min)} = F_y t_w (d - h_o)$ is always safe, however, $P_{c(min)} = F_y t_w (0.75d - h_o)$ is safe and reasonable for building construction because β , the ratio of the flange area to the web area, is rarely below 0.40.

Setting $A \neq \beta A_{+} = \beta$

Bankramating Bives

A_i is typically believen 0.1cl and 0.7d, so if A_i is assumed to 0.5d, and (i e is conservatively samed to be 0.02d. Ba, F ii) can be rewritten as

Submittating aqualities F.13 (non-equation F.3, and matraighter gives,

$$P_{max} = F_{p_1}^{2}(x - \lambda_{p} - Q_{1}^{2}) \log B + 0.51 - 0.008$$
 (6.13)

For $\alpha = 0.09$ (i.e. a 4% maximum error in the four term in Eq. F.1), the following table is strained for different values of θ_i

APPENDIX G

STEEL AND COMPOSITE BEAM RESULTS FOR METHODS I AND III

WITH $\lambda = 1.207$

This appendix contains nine tables summarizing shear capacities and analysis results for steel and composite beams obtained using Methods I and III with $\lambda = 1.207$. These results were used to calculate the resistance factors corresponding to $\lambda = 1.207$.

cash/4

combarciants mand or was sell 0.0 olda's at solars

V V show expedity of basism and way too, rememberly, minn his, R 1

The second se

1.1 Division page start is closed which adding any manipum.

- 1	~	C	
- 1	1	0	
- 71		~	

m						- 11			
Test	V _{mb1}	Vpb	V _{bl}	V _{mil}	V _{pt}	V _{it}	V _m	VI	
RBD-C1	49.59	47.30	47.30	49.59	47.30	47.30	82.99	82.99	
RM-1A	13.06	14.88	13.06	13.06	14.88	13.06	39.15	26.13	
RM-1B	6.74	14.69	6.74	6.70	14.64	6.70	38.66	13.44	
RM-2A	14.14	15.94	14.14	14.14	15.94	14.14	41.94	28.27	
RM-2B	5.64	12.16	5.64	5.64	12.16	5.64	32.34	11.27	
RM-2C	10.42	11.91	10.42	10.42	11.91	10.42	31.69	20.85	
RM-3A	13.17	15.05	13.17	13.17	15.05	13.17	39.60	26.35	
RM-4A	13.18	15.02	13.18	13.18	15.02	13.18	39.52	26.35	
RM-4B	6.70	14.64	6.70	6.70	14.64	6.70	38.53	13.39	
RM-4C	14.29	16.79	14.29	14.29	16.79	14.29	44.17	28.58	
IR-1A	13.43	17.67	13.43	13.40	17.63	13.40	52.41	26.83	
CR-2A	28.49	27.71	27.71	28.49	27.71	27.71	72.49	55.42	
CR-2B	28.49	27.71	27.71	28.49	27.71	27.71	72.49	55.42	
CR-2C	30.57	35.47	30.57	30.57	35.47	30.57	92.22	61.15	
CR-2D	30.57	35.47	30.57	30.57	35.47	30.57	92.22	61.15	
CR-3A	28.49	27.71	27.71	28.49	27.71	27.71	72.49	55.42	
CR-3B	36.61	35.47	35.47	36.61	35.47	35.47	92.22	70.94	
CR-4A	24.67	35.47	24.67	24.67	35.47	24.67	92.22	49.33	
CR-4B	24.67	35.47	24.67	24.67	35.47	24.67	92.22	49.33	
CR-5A	22.60	25.65	22.60	22.60	25.65	22.60	92.22	45.19	
:R-7B	29.25	31.60	29.25	29.24	31.60	29.24	82.22	58.49	
CR-7D	26.31	31.60	26.31	29.24	31.60	29.24	82.22	55.55	
CSK-2	72.90	64.83	64.83	29.76	28.13	28.13	97.69	92.96	
CSK-5	55.63	55.15	55.15	22.37	23.66	22.37	83.19	77.52	
CSK-6	9.78	15.79	9.78	37.59	47.28	37.59	83.19	47.37	
CSK-7	12.47	15.79	12.47	44.67	47.28	44.67	83.19	57.14	
CS-1	23.17	21.98	21.98	23.17	21.98	21.98	57.73	43.95	
CS-2	22.48	21.16	21.16	22.48	21.16	21.16	55.58	42.31	
CS-3	22.11	21.92	21.92	22.11	21.92	21.92	57.58	43.84	
RL-5	19.29	34.74	19.29	19.28	34.74	19.28	81.67	38.57	
RL-6	11.28	21.60	11.28	11.28	21.60	11.28	82.80	22.56	
3-1	18.66	33.90	18.66	18.66	33.90	18.66	83.92	37.33	
B-2	17.02	30.28	17.02	17.02	30.28	17.02	72.65	34.04	
3-3	16.09	28.88	16.09	16.09	28.88	16.09	70.72	32.18	
3-4	21.18	34.12	21.18	21.18	34.12	21.18	82.35	42.37	
CL-4B	8.13	31.51	8.13	7.73	30.89	7.73	121.49	15.86	
CR-6A	16.68	35.47	16.68	16.68	35.47	16.68	92.22	33,36	
CSK-1	44.50	63.03	44.50	14.45	27.34	14.45	94.98	58.95	
00-1	9.78	19.43	9.78	9.78	19.43	9.78	36.56	19.56	
00-2	3.57	11.19	3.57	3.56	11.18	3.56	36.56	7.13	
00-3	16.51	27.69	16.51	4.46	11.18	4.46	36.56	20.98	
00-4	8.51	20.77	8.51	3.69	11.80	3.69	39.29	12.20	
00-5	5.99	11.18	5.99	5.99	11.18	5.99	36.56	11.97	
RBD-R1B	42.56	53.80	42.56	42.56	53.80	42.56	82.14	82.14	
RBD-R2	24.36	43.24	24.36	24.36	43.24	24.36	82.99	48.72	
RM-11H	7.01	17.32	7.01	7.01	17.32	7.01	51.24	14.01	
RM-21H	4.73	11.29	4.73	4.73	11.29	4.73	34.08	9.45	
KM-2F	4.77	11.17	4.77	4.77	11.17	4.77	33.34	9.54	
KM-4F	6.01	14.16	6.01	6.01	14.16	6.01	41.87	12.02	
RM-4H	4.96	11.86	4.96	4.96	11.86	4.96	35.61	9.92	

Table G.1 Steel Beam Shear Capacity Summary: Method I, $\lambda = 1.207$

Notes:

refer to Table 3.0 for key to beam designations

Vmb	, V _{mil}
V.	V.,
V	V.
V	, b1
* m	

= shear capacity of bottom and top tee, respectively, using Eq. B.1.

= plastic shear capacity of bottom and top tee, respectively, using Eqs. 2.22, and 2.18.

= governing shear capacity of top and bottom tees, respectively.

= maximum permissible shear capacity of beam per Section D.1.2.

÷

Table G.2 Composite Beam Shear Capacity Summary: Method I, $\lambda = 1.207$

(va	ues	in	ki	DS)	
1					

Test	V _{t(a)}	V _(b)	V_{pt}	Vish	V_{tt}	V_b	V_{pb}	V _{bl}	VI	N.	
D-1	26.83	47.84	47.84	54.86	26.83	12.86	46.96	12.86	39.68		
D-2	26.55	44.81	44.81	52.12	26.55	12.12	44.81	12.12	38.67		
D-3	27.88	44.54	44.54	52.26	27.88	12.01	44.46	12.01	39.89		
D-5A	24.01	45.40	45.40	52.63	24.01	11.60	44.77	11.60	35.61		
D-5B	27.23	44.77	44.77	52.26	27.23	4.04	23.13	4.04	31.27		
D-6A	24.69	44.75	44.75	51.41	24.69	12.07	44.70	12.07	36.76		
D-6B	40.04	44.75	44.75	53.36	40.04	12.07	44.70	12.07	52.11		
D-7A	32.97	34.47	34.47	42.96	32.97	9.46	35.54	9.46	42.44		
D-7B	30.01	34.90	34.90	43.50	30.01	9.61	35.86	9.61	39.62		
D-8A	20.05	17.39	14.20	23.26	17.39	3.99	14.16	3.99	21.38		
D-9A	34.37	30.56	25.70	44.68	30.56	5.53	25.70	5.53	36.09		
D-9B	43.88	40.04	26.99	46.40	40.04	7.84	24.68	7.84	47.89		
R-0	20.23	17.02	15.06	24.52	17.02	4.14	15.06	4.14	21.16		
R-1	17.63	21.44	21.44	30.07	17.63	6.33	21.44	6.33	23.96		
R-2	20.75	23.88	23.88	32.01	20.75	6.99	23.88	6.99	27.75		
R-3	33.88	32.52	24.05	34.07	32.52	6.98	24.05	6.98	39.50		
R-4	16.96	24.64	24.64	34.26	16.96	7.19	24.64	7.19	24.15		
R-5	15.82	16.14	10.76	19.39	16.14	11.90	32.12	11.90	28.03		
R-6	11.97	23.56	23.56	31.37	11.97	6.92	23.56	6.92	18 89		
R-7	24.36	23.80	21.97	29.78	23.80	6.51	21.97	6.51	30.31		
R-8	23.45	23.05	20.73	28.35	23.05	6.25	20.73	6.25	29.30		
C-1	33.37	29.51	19.16	33.21	29.51	6.18	19.16	6.18	35 70		
C-2	29.19	30.28	30.28	41.17	29.10	9.51	32.85	0.13	38 70		
C-3	30.78	31.42	31.42	43.21	30.78	0 13	31.81	0.13	30.00		
C-4	36.24	35.89	35.89	47.11	35.89	10.40	36.61	10.40	46.28		
C-5	35.92	35 71	35 71	47.21	35 71	10.26	36.32	10.46	45.08		
C-6	36.21	31 75	24 30	34.05	31.75	6.05	23.86	6.05	38.60		
G-1	48 19	5. 53	12.85	21 42	21.42	6.67	12.85	6.67	28.00		
G.2	38.05	44.97	12.85	21.42	21.42	6.67	12.05	6.67	28.09		
CHO-3	40.00	55 78	10.38	27.95	27.25	4.43	10.38	0.07	23.11		
CHO-4	41.40	42.13	22.53	20.41	20.41	9.50	10.58	9.50	31.08		
CHO 5	41.40	42.15	22.33	29.41	20.79	0.15	22.92	8.39	48.01		
CHO-5	50.20	43.30	10.66	39.18	39.78	0.53	10.29	8.15	47.94		
CHO-7	44.00	18 37	22.53	21.33	20.14	9.33	10.38	9.53	57.00		
WIE_1	41.63	40.37	22.33	39.14	39.14	12.50	22.33	10.42	33.30		
W32-1	41.05	40.00	25.05	23.03	23.83	13.38	23.83	13.38	31.42		
Matan											
Notes:											
refer to	Table 3.0 f	or key to	beam desi	ignations							
				0							
T/											
$V_{t(a)} =$	shear capa	acity of to	op tee usin	g Eq. B.1							
$V_{i(b)} =$	shear capa	acity of to	p tee usin	g Eq. 2.3	3.						
V., =	plastic she	ear capaci	ty of top t	tee using	Eq. 2.18						
V -	combined	plactic ch	aar canac	ity of ton	tae and c	onorata u	cing Eq. 2	21			
tah -	comonieu	plastic SI	ical capac	ity or top	tee and e	oncrete u	sing Lq. 2				
V ₁₁ =	governing	shear cap	pacity of t	op tee.							
$V_b =$	shear capa	acity of be	ottom tee	using Eq.	B.1.						
V =	plastic she	ear capaci	ty of botto	om tee us	ing Eq. 2	22.					
V -	governing	chaar car	ancity of h	ottom tar	9 -4. a.						
V. =	maximum	shear car	pacity of t	redicted	hv Metho	d I Notes	6				
-1 -	maannum	stical caj	facily as h	activited i	of mento	a minores.	0.2				

Steel Beam Shear Capacity Summary: Method III, $\lambda = 1.207$ Table G.3

(values in kips)

Test	V _{mb3}	V_{pb}	V _{b3}	V _{ml3}	V_{pt}	V _B	Vm	V_3			
	10.00			10.00	17.00	17.00			.0		
RBD-CI	47.98	47.30	47.30	47.98	47.30	47.30	82.99	82.99			
RM-1A	11.41	14.88	11.41	11.41	14.88	11.41	39.15	22.82			
RM-1B	6.23	14.69	6.23	6.19	14.64	6.19	38.66	12.41			
RM-2A	12.22	15.94	12.22	12.22	15.94	12.22	41.94	24.45			
RM-2B	5.08	12.16	5.08	5.08	12.16	5.08	32.34	10.16			
RM-2C	9.07	11.91	9.07	9.07	11.91	9.07	31.69	18.13			
RM-3A	11.54	15.05	11.54	11.54	15.05	11.54	39.60	23.08			
RM-4A	11.52	15.02	11.52	11.52	15.02	11.52	39.52	23.04			
RM-4B	6.20	14.64	6.20	6.20	14.64	6.20	38.53	12.41			
RM-4C	12.88	16.79	12.88	12.88	16.79	12.88	44.17	25.75			
CR-1A	13,17	17.67	13.17	13.13	17.63	13.13	52.41	26.29			
CR-2A	27.53	27.71	27.53	27.53	27.71	27.53	72.49	55.05			
CR-2B	27.53	27.71	27.53	27.53	27.71	27.53	72.49	55.05			
CR-2C	29.83	35.47	29.83	29.83	35.47	29.83	92.22	59.67			
CR-2D	29.83	35.47	29.83	29.83	35.47	29.83	92.22	59.67			
CR-3A	27.12	27.71	27.12	27.12	27.71	27.12	72.49	54.25			
CR-3B	35.53	35.47	35.47	35.53	35.47	35.47	92.22	70.94			
CR-4A	24.35	35.47	24.35	24.35	35.47	24.35	92.22	48.69			
CR-4B	24.35	35.47	24.35	24.35	35.47	24.35	92.22	48.69			
CR-5A	21.76	25.65	21.76	21.76	25.65	21.76	92.22	43.53			
CR-7B	28.52	31.60	28.52	28.50	31.60	28.50	82.22	57.02			
CR-7D	25.69	31.60	25.69	28.50	31.60	28.50	82.22	54.19			
CSK-2	70.79	64.83	64.83	27.69	28.13	27.69	97.69	92.52			
CSK-5	56.64	55.15	55.15	21.31	23.66	21.31	83.19	76.46			
CSK-6	9.10	15 79	9.10	37 39	47.28	37 39	83.19	46.49			
CSK-7	11.48	15 79	11.48	44.09	47.28	44.09	83.19	55.57			
CS-1	21.16	21.08	21.16	21.16	21.98	21.16	57 73	42 32			
CS-2	20.38	21.20	20.38	20.38	21.16	20.38	55 58	40.75			
CS-2	20.38	21.10	20.38	20.38	21.10	20.38	57.58	40.73			
DI 5	10.20	24.74	10.20	10.20	24.74	10.20	91.57	38.60			
RL-J	11.14	21.66	19.30	11.14	21.60	11 14	82.80	22.28			
R.1	19.41	21.00	19.41	19.41	21.00	18 41	83.07	36.82			
B-1 B-2	16.41	30.90	16.41	16.41	30.29	16.41	72.55	32 31			
D-2	16.05	30.28	16.05	15.74	20.20	15.05	72.03	33.31			
B-3	13.74	20.00	15.74	13.74	24.10	15.74	10.12	J1.49			
D-4	20.84	34.12	20.84	20.84	34.12	20.84	82.33	41.09			
CL-4B	7.49	31.51	7.49	1.22	30.89	1.22	121.49	14.71			
CR-6A	16.03	35.47	16.03	16.03	35.47	16.03	92.22	32.06			
CSK-1	43.84	63.03	43.84	12.25	27.34	12.25	94.98	56.08			
DO-1	9.49	19.43	9.49	9.49	19.43	9.49	36.56	18.98			
DO-2	3.06	11.19	3.06	3.06	11.18	3.06	36.56	6.12			
DO-3	16.44	27.69	16.44	3.79	11.18	3.79	36.56	20.23			
DO-4	8.36	20.77	8.36	3.15	11.80	3.15	39.29	11.51			
DO-5	4.98	11.18	4.98	4.98	11.18	4.98	36.56	9.97			
RBD-R1B	42.09	53.80	42.09	42.09	53.80	42.09	82.14	82.14			
RBD-R2	24.19	43.24	24.19	24.19	43.24	24.19	82.99	48.37			
RM-11H	6.64	17.32	6.64	6.64	17.32	6.64	51.24	13.28			
RM-21H	4.22	11.29	4.22	4.22	11.29	4.22	34.08	8.45			
RM-2F	4.23	11.17	4.23	4.23	11.17	4.23	33.34	8.46			
RM-4F	5.43	14.16	5.43	5.43	14.16	5.43	41.87	10.85			
RM-4H	4.46	11.86	4.46	4.46	11.86	4.46	35.61	8.92			

Notes:

refer to Table 3.0 for key to beam designations

 V_{mb3} , V_{ma3} = shear capacity of bottom and top tee, respectively, using Eq. 2.54.

V pb	Vpt	=	plastic	shear	capacity	of	bottom	and	top	tee,	respectively,	using	Eqs.	2.22	and	2.1	8.
------	-----	---	---------	-------	----------	----	--------	-----	-----	------	---------------	-------	------	------	-----	-----	----

= governing shear capacity of bottom and bottom tees, respectively.

= maximum permissible shear capacity of beam per Section D.1.2.

 V_{b3}, V_{p3} V_m V_3 = maximum shear capacity as predicted by Method III.

Table G.4 Composite Beam Shear Capacity Summary: Method III, $\lambda = 1.207$

(values in kips)

Test	$V_{i(a)}$	V_{ub}	V _{pt}	Visk	VB	V_{b}	V_{pb}	V	V3	n julian	
D-1	26.90	47.84	47.84	54.86	26.90	12.64	46.96	12.64	39.54		and in the
D-2	27.24	44.81	44.81	52.12	27.24	12.04	44.81	12.04	39.28		
D-3	28.43	44.54	44.54	52.26	28.43	11.96	44.46	11.96	40.38		
D-5A	24.47	45.40	45.40	52.63	24.47	12.07	44.77	12.07	36.54		
D-5B	27.87	44.77	44.77	52.26	27.87	3.61	23.13	3.61	31.49		
D-6A	25.06	44.75	44.75	51.41	25.06	12.06	44.70	12.06	37.13		
D-6B	39.96	44.75	44.75	53.36	39.96	12.06	44.70	12.06	52.02		
D-7A	32.36	34.47	34.47	42.96	32.36	9.65	35.54	9.65	42.01		
D-7B	30.35	34.90	34.90	43.50	30.35	9.81	35.86	9.81	40.16		
D-8A	0.00	16.83	14.20	23.26	16.83	4.01	14.16	4.01	20.84		
D-9A	0.00	29.15	25.70	44.68	29.15	5.32	25.70	5.32	34.47		
D-9B	0.00	38.61	26.99	46.40	38.61	7.40	24.68	7.40	46.01		
R-0	0.00	16.53	15.06	24.52	16.53	4.18	15.06	4.18	20.72		
R-1	16.97	21.44	21.44	30.07	16.97	5.82	21.44	5.82	22.79		
R-2	21.27	23.88	23.88	32.01	21.27	6.52	23.88	6.52	27.79		
R-3	0.00	30.71	24.05	34.07	30.71	6.55	24.05	6.55	37.26		
R-4	17.51	24.64	24.64	34.26	17.51	6.74	24.64	6.74	24.25		
R-5	0.00	14.97	10.76	19.39	14.97	11.75	32.12	11.75	26.72		
R-6	11.56	23.56	23.56	31.37	11.56	6.45	23.56	6.45	18.01		
R-7	0.00	22.31	21.97	29.78	22.31	6.01	21.97	6.01	28.32		
R-8	0.00	21.40	20.73	28.35	21.40	5.61	20.73	5.61	27.01		
C-1	0.00	27.06	19.16	33.21	27.06	5.67	19.16	5.67	32.74		
C-2	29.39	30.28	30.28	41.17	29.39	9.20	32.85	9.20	38.59		
C-3	30.89	31.42	31.42	43.21	30.89	8.68	31.81	8.68	39.57		
C-4	35.61	35.89	35.89	47.11	35.61	9.79	36.61	9.79	45.41		
C-5	35.05	35.71	35.71	47.21	35.05	10.11	36.32	10.11	45.16		
C-6	0.00	29.23	24.30	34.95	29.23	6.70	23.86	6.70	35.93		
G-1	0.00	52.34	12.85	21.42	21.42	4.37	12.85	4.37	25.79		
G-2	0.00	42.77	12.85	21.44	21.44	4.37	12.85	4.37	25.81		
CHO-3	0.00	54.03	10.38	27.25	27.25	3.30	10.38	3.30	30.54		
CHO-4	0.00	40.97	22.53	39.41	39.41	7.78	22.92	7.78	47.19		
CHO-5	0.00	42.34	22.92	39.78	39.78	7.33	22.15	7.33	47.12		
CHO-6	0.00	70.81	10.66	27.53	27.53	8.84	10.38	8.84	36.37		
CHO-7	0.00	48.32	22.53	39.14	39.14	15.70	22.53	15.70	54.84		
WJE-1	0.00	38.76	23.85	23.85	23.85	13.92	23.85	13.92	37.77		
Notes:											
1100001											
refer to 7	Table 3.0 f	or key to	beam desi	gnation	S						
** *											

 $V_{i(a)}$ = shear capacity of top tee using Eq. 2.54.

 $V_{(b)}$ = shear capacity of top tee using Eq. 2.46.

 V_{pt} = plastic shear capacity of top tee using Eq. 2.18 V_{tak} = combined plastic shear capacity of top tee and concrete using Eq. 2.21.

 V_{cb} = governing shear capacity of top tee. V_{b} = shear capacity of bottom tee using Eq. 2.43.

 V_{pb} = plastic shear capacity of bottom tee using V_{b3} = governing shear capacity of bottom tee. = plastic shear capacity of bottom tee using Eq. 2.22.

 V_1 = maximum shear capacity as predicted by Method III.

Test	<i>M</i> _{<i>m</i>} (ink)	V _m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _s (ink)	V. (k)	Test. Theor	/ ry		
Unreinford	ced	AGAIO	10.11	06.0	49-21	1920	20.42	10.00		
Circul	ar Opening									
Circui	at Opening									
								11.00		
RBD-C1	2945.79	82.99	2046.38	98.17	1626.80	78.04	1.25	s		
RM-IA	716.71	26.13	728.13	0.00	716.71	0.00	1.010			
RM-IB	711.06	13.44	712.13	0.00	711.06	0.00	1.00	6		
RM-ZA	198.33	28.27	575.54	31.96	4/1.46	20.18	1.22			
RM-2D	600.89	11.27	295.54	16.41	201.06	11.10	1.47	5		
RM-2C	713.97	20.85	480.34	20.09	549.00	19.42	1.57.	2		
RM-JA	713.87	26.33	619.49	20.65	594.15	19.79	1.04.	2		
DM AD	605.17	12.33	553 77	14.50	520.24	14.10	1.01.	4		
RM-4D	701 22	13.39	553.77	12.08	530.34	12.02	1.04	*		
RM-+C	701.55	28.38	012.11	13.98	072.83	15.96	1.000			
				Mean			1.14	4		
				Coefficient	of Variation .		0.15	2		
				Resistance I	factor		0.89	/		
Recta	ngular Openi	ng								
B-1	2303.02	37.33	945.00	47.22	738.68	36.91	1.27	9		
B-2	2171.63	34.04	1704.80	42.56	1266.53	31.62	1.34	6		
B-3	2081.90	32.18	1.80	49.74	1.16	32.18	1.54	6		
B-4	2207.88	42.37	1003.00	50.12	832.41	41.60	1.20	5		
CL-4B	3555.94	15.86	1000.00	27.80	569.84	15.84	1.75	5		
CR-6A	2564.72	33.36	1212.37	55.07	728.72	33.10	1.66	4		
CSK-1	3388.11	58.95	2358.39	78.54	1693.13	56.39	1.39	3		
DO-1	725.03	19.56	392.95	24.94	300.65	19.08	1.30	7		
DO-2	674.35	7.13	182.69	11.59	112.14	7.11	1.62	9		
DO-3	691.24	20.98	622.36	19.73	536.43	17.01	1.16	0		
DO-4	698.68	12.20	496.99	15.75	365.57	11.59	1.35	9		
DO-5	674.35	11.97	728.74	0.00	674.35	0.00	1.08	1		
RBD-R1B	3033.59	82.14	1718.81	85.06	1577.91	78.09	1.08	9		
RBD-R2	2925.66	48.72	1269.70	59.86	1018.74	48.03	1.24	6		
RM-11H	749.12	14.01	772.33	0.00	749.12	0.00	1.03	1		
RM-21H	618.27	9.45	342.82	14.27	223.44	9.30	1.53	4		
RM-2F	629.18	9.54	284.54	15.80	170.64	9.48	1.66	7		
RM-4F	733.86	12.02	566.77	11.77	506.83	10.53	1.11	8		
RM-4H	637.98	11.25	483.77	10.04	462.12	9.59	1.04	7		
								_		
				Mean			1.34	0		
				Coefficient	of Variation		0.17	4		
				Resistance	Factor		1.01	9		
Quamil II	nminformed			Troubletteb :						
Overall U	methiorced						DI DUE			
			Mea	n		• • • • • • • • • •	1.27	2		
			Coet	flicient of Var	ation		0.18	2		
			Resi	stance Factor	********		0.95	1		

Table G.5 Steel Beam Capacity Summary: Method I, $\lambda = 1.207$

(mill of tonier)

Test	<i>M</i> _m (ink)	V_m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V. (k)	Test/ Theory		
Reinforce	ed.							-	
Deat									
Recu	angular Open	ing							
CR-1A	1079.61	26.83	914.16	21.22	885.11	20.55	1.033		
CR-2A	2362.84	55.42	1542.37	70.07	1168.65	53.09	1.320		
CR-2B	2362.84	55.42	2331.35	51.74	1925.81	42.74	1.211		
CR-2C	2773.20	61.15	2112.23	70.36	1686.25	56.17	1.253		
CR-2D	2773.20	61.15	1404.33	82.53	1022.77	60.11	1.373		
CR-3A	2362.84	55.42	1707.37	77.57	1168.60	53.09	1.461		
CR-3B	2773.20	70.94	2704.85	60.10	2344.37	52.09	1.154		
CR-4A	2773.20	49.33	1487.37	67.57	1065.03	48.38	1.397		
CR-4B	2773.20	49.33	2313.35	51.34	1935.46	42.95	1.195		
CR-5A	2773.20	45.19	1554.23	51.76	1307.87	43.56	1.188		
CR-7B	2501.55	58.49	2448.35	54.34	2035.79	45.18	1.203		
CR-7D	2501.55	55.55	1319.33	77.58	928.30	54.59	1.421		
CSK-2	3680.73	92.96	2872.39	95.69	2473.48	82.40	1.161		
CSK-5	3141.22	77.52	2309.50	76.93	2077.04	69.19	1.112		
CSK-6	3043.56	47.37	1471.10	48.99	1377.05	45.86	1.068		
CSK-7	3043.56	57.14	1780.10	59.29	1623.96	54.09	1.096		
CS-1	2137.01	43.95	1811.25	30.08	1856.00	30.82	0.976		
CS-2	2155.60	42.31	1772.25	29.43	1840.91	30.57	0.963		
CS-3	2095.06	43.84	1604.00	40.03	1505.14	37.56	1.066		
RL-5	2667.74	38.57	2893.50	0.00	2667.74	0.00	1.085		
RL-6	2701.97	22.56	1048.89	21.36	1083.56	22.07	0.968		
				Mean			1.176		
				Coefficient of	f Variation		0.128		
				Resistance Fa	ctor		0.951		
Overall S	taal Baama								
Overall 5	leer beams						1 020		
			Mean			********	1.232		
			Coeff	icient of Varia	uon		0.160		
			Resist	ance ractor .	********	********	0.947		
Notes:									
(1) == f==	to Table 2.0	Can leave t	- hearn day	innetions					
(1) rele	r to Table 5.0	for key t	o beam des	agnations					

Table G.5 (continued)

Test	<i>M</i> _m (ink)	<i>V</i> _m (k)	M _{test} (ink)	V _{ien} (k)	<i>M</i> _* (ink)	<i>V</i> , (k)	Test/ Theory	ž.	
Unreinford	ced								
Circul	ar Opening								
DDD (11	2045 70	80.00	2046.29	09.17	1 () (90	78.04	1 359		
RBD-CI	2945.79	82.99	2046.38	98.17	1626.80	0.00	1.200		
RM-IA	/10./1	22.82	728.13	0.00	710.71	0.00	1.000		
RM-1B	711.00	1241	575 54	31.06	419 11	23.22	1 377		
RM-ZA	798.33	24.45	373.34	31.90	410.11	10.00	1.626		
RM-2B	660.89	10.16	295.54	16.41	181.72	17.09	1.626		
RM-2C	606.23	18.13	480.34	20.09	511.04	19.50	1.110		
KM-3A	/13.8/	23.08	619.49	20.63	558.14	18.39	1.110		
RM-4A	720.71	23.04	691.77	14.38	664.65	13.82	1.041		
RM-4B	695.17	12.41	553.TT	11.50	507.20	10.53	1.092		
RM-4C	701.33	25.75	672.77	13.98	663.46	13.79	1.014		
				Mean			1.208		
				Coefficient o	f Variation		0.193		
				Resistance F	actor		0.895		
Rectar	ngular Open	ing							
	0	0							
B .1	2202.02	26.82	945.00	47 22	728 00	36.43	1 296		
B-1	2171 63	33 31	1704 80	47.22	1244 53	31.07	1 370		
D-2	2081.00	31.40	1 80	40.74	1 14	31.49	1.580		
D-3	2001.90	41.60	1002.00	50.12	810 73	40.06	1 224		
CT AD	2207.88	41.09	1003.00	27.80	528 58	14 69	1 892		
CD-4D	3333.94	14.71	1010.00	55.07	700.96	21.84	1 730		
CR-0A	2304.72	32.00	1212.37	33.07	1620.35	\$2.04	1.750		
CSA-I	3388.11	30.08	200.05	76.54	1020.20	19.55	1.450		
DO-1	125.05	18.98	392.95	24.94	292.30	18.55	1.904		
DO-2	674.33	0.12	182.09	11.39	90.33	0.11	1.070		
DO-3	691.24	20.23	622.30	19.73	543.85	10.07	1.184		
DO-4	698.68	11.51	496.99	15.75	347.59	11.02	1.430		
DO-5	674.35	9.97	728.74	0.00	674.33	0.00	1.081		
RBD-RIB	3033.59	82.14	1718.81	85.06	1577.91	78.09	1.089		
RBD-R2	2925.66	48.37	1269.70	59.86	1011.69	47.70	1.255		
RM-11H	749.12	13.28	772.33	0.00	749.12	0.00	1.031		
RM-21H	618.27	8.45	342.82	14.27	200.63	8.35	1.709		
RM-2F	629.18	8.46	284.54	15.80	151.60	8.42	1.877		
RM-4F	733.86	10.85	566.77	11.77	471.50	9.79	1.202		
RM-4H	637.98	8.92	483.77	10.04	393.37	8.16	1.230		
				Mean			1.415		
				Coefficient	F Variation		0.202		
				Resistance F	actor		1.034		
Overall U	nreinforced						-		
			Mea	n			1.343		
			Con	fficient of Vari	ation .		0.210		
			Resi	stance Factor			0.970		

Table G.6 Steel Beam Capacity Summary: Method III, $\lambda = 1.207$

Mm	Vm	Mtest	Vian	M _*	V.	Test/			
(mK)	(K)	(ink)	(K)	(IIIK)	(K)	Ineory			
ed									
angular Openi	ing								
1079 61	26.29	914 16	21.22	876 97	20.36	1 042			
2362.84	55.05	1542.37	70.07	1161.73	52.78	1.328			
2362.84	55.05	2331.35	51.74	1919.83	42.61	1.214			
2773.20	59.67	2112.23	70.36	1654.31	55.11	1.277			
2773.20	59.67	1404.33	82.53	999.23	58.72	1,405			
2362.84	54.25	1707.37	77.57	1146.69	52.10	1.489			
2773.20	70.94	2704.85	60.10	2344.37	52.09	1.154			
2773.20	48.69	1487.37	67.57	1052.00	47.79	1.414			
2773.20	48.69	2313 35	51.34	1918.77	42.58	1.206			
2773 20	43 53	1554.23	51.76	1264 36	42.11	1 229			
2501 55	57.02	2448 35	54 34	2011.66	44 65	1.217			
2501 55	54.19	1319 33	77.58	906.68	53 32	1.455			
3680 73	92 52	2872 39	95.69	2465.42	82.13	1 165			
3141 22	76.46	2309 50	76.93	2056.65	68 51	1 123			
3043.56	46.49	1471.10	48.99	1353.83	45.08	1.087			
3043.56	55.57	1780.10	59.29	1585.73	52.82	1.123			
2137.01	42.32	1811.25	30.08	1831.00	30.41	0.989			
2155.60	40.75	1772.25	29.43	1814.07	30.12	0.977			
2095.06	40.53	1604.00	40.03	1429.73	35.68	1.122			
2667.74	38.60	2893 50	0.00	2667.74	0.00	1.085			
2701.97	22.28	1048.89	21.36	1070.93	21.81	0.979			
			Mean Coefficient of Resistance Fa	Variation	 	1.194 0.129 0.964			
teel Beams									
		Mean .				1.281			
		Coeffic	ient of Variat	ion		0.193			
		Resistan	nce Factor .			0.949			
				÷.					
Table 2.0	for lease t	a haam daal	mations						
to Table 5.0	for key u	o beam desi	gnauons						
	<i>M</i> _m (ink) ad ingular Openi 1079.61 2362.84 2362.84 2773.20 2095.06 2667.74 2701.97 tteel Beams	M_m V_m (ink) (k) angular Opening 1079.61 26.29 2362.84 55.05 2773.20 59.67 23773.20 59.67 2362.84 54.25 2773.20 59.67 2362.84 54.25 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 2773.20 48.69 201.55 57.02 2501.55 57.02 2501.55 54.19 3680.73 92.52 3141.22 76.46 3043.56 46.49 3043.56 40.75 2095.06 40.53 2667.74 38.60 2701.97 22.28 teel Beams 4 4 4 teel Beams 5 5 5 <	M_m V_m M_{test} (ink) (k) (ink) ad angular Opening 1079.61 26.29 914.16 2362.84 55.05 1542.37 2362.84 55.05 2331.35 2773.20 59.67 2112.23 2773.20 59.67 1404.33 2362.84 54.25 1707.37 2773.20 59.67 1404.33 2362.84 54.25 1707.37 2773.20 48.69 1487.37 2773.20 48.69 2313.35 2773.20 48.69 1481.37 2773.20 48.69 1481.37 2773.20 48.69 1481.35 2501.55 57.02 2448.35 2501.55 54.19 1319.33 3680.73 92.52 2872.39 3141.22 76.46 209.50 3043.56 55.57 1780.10 2137.01 42.32 1811.25 2155.60	M_m V_m M_{test} V_{test} (ink) (k) (ink) (k) ad angular Opening 1079.61 26.29 914.16 21.22 2362.84 55.05 1542.37 70.07 2362.84 55.05 2331.35 51.74 2773.20 59.67 2112.23 70.36 253 2362.84 54.25 1707.37 77.57 2773.20 59.67 1404.33 82.53 2362.84 54.25 1707.37 77.57 2773.20 70.94 2704.85 60.10 2773.20 48.69 2313.35 51.34 2773.20 48.69 2313.35 51.34 2773.20 48.69 2313.35 54.34 2501.55 57.02 2448.35 54.34 2501.55 54.19 1319.33 77.58 3680.73 92.52 2872.39 95.69 3141.22 30.08 2155.60 40.75 1772.25 29.43 2095.06 40.53 1604.00 40.0	$\frac{M_m}{(ink)} \frac{V_m}{(k)} \frac{M_{itest}}{(ink)} \frac{V_{iest}}{(k)} \frac{M_s}{(ink)}$ ad $\frac{1079.61}{2362.84} \frac{26.29}{55.05} \frac{914.16}{1542.37} \frac{21.22}{70.07} \frac{876.97}{1161.73} \frac{2362.84}{2362.84} \frac{55.05}{55.55} \frac{2331.35}{231.35} \frac{51.74}{51.74} \frac{1919.83}{1919.83} \frac{2773.20}{2362.84} \frac{59.67}{54.23} \frac{2132.23}{70.36} \frac{1654.31}{10232} \frac{2773.20}{73.20} \frac{59.67}{71} \frac{1404.33}{4253} \frac{82.53}{999.23} \frac{999.23}{2362.84} \frac{54.25}{54.25} \frac{1707.37}{77.77} \frac{77.57}{1052.00} \frac{146.69}{2773.20} \frac{148.69}{48.69} \frac{1487.37}{213.35} \frac{67.57}{51.34} \frac{10264.36}{2501.55} \frac{57.02}{57.02} \frac{2448.35}{2448.35} \frac{54.34}{51.44} \frac{2011.66}{2501.55} \frac{57.02}{57.02} \frac{2472.39}{248.35} \frac{95.69}{54.42} \frac{2465.42}{3141.22} \frac{76.46}{2309.50} \frac{2056.65}{7033.56} \frac{3063.56}{46.49} \frac{1471.10}{471.10} \frac{48.99}{48.99} \frac{1353.83}{3043.56} \frac{55.57}{55.57} \frac{1780.10}{59.29} \frac{59.29}{1585.73} \frac{2137.01}{2137.01} \frac{-42.32}{-42.32} \frac{1811.25}{100.06} \frac{8131.00}{2155.60} \frac{240.53}{1604.00} \frac{40.003}{40.03} \frac{1429.73}{2667.74} \frac{2667.74}{38.60} \frac{2893.50}{2893.50} \frac{0.00}{0.00} \frac{2667.74}{2701.97} \frac{22.28}{21.36} \frac{1070.93}{1070.93} \frac{Mean}{Resistance Factor} \dots$ teel Beams $\frac{Mean}{Coefficient of Variation}{Resistance Factor} \frac{Mean}{Resistance Factor} \frac{Mean}{Resistance} \frac{Mean}{$	$\frac{M_m}{(ink)} \frac{V_m}{(k)} \frac{M_{tat}}{(ink)} \frac{V_{tat}}{(k)} \frac{M_s}{(ink)} \frac{V_s}{(k)}$ angular Opening $\frac{1079.61}{2362.84} 55.05 1542.37 70.07 1161.73 52.78 \\ 2362.84 55.05 2331.35 51.74 191.83 42.61 \\ 2773.20 59.67 2112.23 70.36 1654.31 55.11 \\ 2773.20 59.67 2112.23 70.36 1654.31 55.11 \\ 2773.20 70.94 2704.85 60.10 2344.37 52.09 \\ 2773.20 48.69 2313.35 51.34 1918.77 42.58 \\ 2773.20 48.69 2313.35 51.34 1918.77 42.58 \\ 2773.20 48.69 2313.35 51.34 1918.77 42.58 \\ 2773.20 48.69 2313.35 51.34 1918.77 42.58 \\ 2773.20 48.69 2313.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2501.55 57.02 2448.35 54.34 2011.66 44.65 \\ 2505.66 40.53 1604.00 40.03 1429.73 35.68 \\ 2667.74 38.60 2893.50 0.00 2667.74 0.00 \\ 2701.97 22.28 1048.89 21.36 1070.93 21.81 \\ \hline Mean \qquad Coefficient of Variation \ Resistance Factor \ Nation \ Resistance Factor \ Nation \ Resistance Factor \ Nation \ N$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table G.6 (continued)

	3	Test/ Theory	<i>V</i> * (k)	<i>M</i> , (ink)	V _{test} (k)	M _{iest} (ink)	V., (k)	<i>M</i> _m (ink)	Test
		Di-Chi		10-100	- pr	- Carlos		rced	Unreinfo
								i Slab	Ribbeo
		0.070						5 10 F 10	
		0.962	39.29	1669.31	37.80	1606.00	39.68	5405.49	D-1
		1.052	37.00	2941.32	39.00	3095.00	38.67	5967.14	D-2
		1.004	24.01	0050.60	11.30	6075.00	39.89	6096.01	D-3
		1.017	34.01	2720.95	34.00	2768.00	35.61	5388.57	D-JA D SD
		1.066	30.21	2409.69	32.20	2568.00	31.27	5226.80	D-SB
		1.115	36.70	0.00	41.00	0.00	36.76	5422.56	D-0A
		0.956	51.16	2165.57	48.90	2070.00	52.11	5733.80	D-6B
		1.044	41.65	1766.68	43.50	1845.00	42.44	4665.32	D-7A
		1.195	35.64	2827.11	42.60	3379.00	39.62	4362.93	D-7B
		0.979	19.82	790.80	19.40	774.00	21.38	1344.57	D-8A
		0.992	14.42	430.55	14.30	427.00	14.76	1056.25	D-8B
		0.966	35.70	1525.13	34.50	1474.00	36.09	4791.16	D-9A
		1.007	46.99	1743.61	47.30	1755.00	47.89	4588.71	D-9B
		0.942	19.32	798.46	18.20	752.00	21.16	1288.17	R-0
		1.099	23.65	889.50	26.00	978.00	23.96	2630.28	R-1
		1.186	24.19	2447.86	28.70	2904.00	27.75	3516.43	R-2
		1.079	15.20	3701.23	16.40	3993.00	39.50	3774.33	R-3
		1.108	11.83	2899.47	13.10	3212.00	24.15	3022.68	R-4
		1.002	27.55	1036.07	27.60	1038.00	28.03	2791.69	R-5
		1.130	18.77	695.81	21.20	786.00	18 89	2594.94	R-6
		1.027	29.70	1104.11	30.50	1134.00	30.31	2833.28	R-7
		1.005	28.76	1069.76	28.90	1075.00	29.30	2817.84	R-8
		1.045			ui	Mea			
		0.070		ariation	fficient of V	Coe			
		0.899		or	istance Facto	Res			
								Slab	Solid
		1.174	28.45	2458.30	33.40	2886.00	35.70	3110.10	C-1
		1.162	31.67	3534.04	36.80	4107.00	38.70	4604.48	C-2
		1.193	11.74	4585.32	14.00	5468.00	39.90	4624.92	C-3
		1.042	45.68	1653.61	47.60	1723.00	46.28	4900.59	C-4
		1.136	42.36	3092.00	48.10	3511.00	45.98	5138.23	C-5
		1.073	37.64	1370.48	40.40	1471.00	38.69	3188.26	C-6
		1.187	27.55	666.40	32.70	791.00	28.09	1734.13	G-1
		1.083	24.46	1196.46	26.50	1296.00	28.11	1712.64	G-2
		1.152	30,98	550.21	35.70	634.00	31.68	1369.30	CHO-3
		1.053	44.36	1403.01	46.70	1477.00	48.01	2356.96	CHO-4
		0.968	18.50	2396.60	17.90	2319.00	47.94	2444.36	CHO-5
		1.111	urssonn		813	Me			
		0.065	17 . S. S. S. S. S.	ariation	fficient of V	Cor			
		0.040		or	istance Fact	Res			
		0.960							
		0.960				M		Inreinforced	Overall I
		1.068				Mean		Inreinforced	Overall I
		1.068 0.073			of Variation	Mean Coefficient		Jnreinforced	Overall I

Table G.7 Composite Beam Capacity Summary: Method I, $\lambda = 1.207$

Table G.7 (continued)

Test	M_m	V_m	M _{test}	V _{test}	M _a		Test/		
	(11K)	(2)	(шк)	(K)	(11K)	(K)	Theory		
Reinforc	ed								
Ribbe	d Slab								
								100	
WJE-1	7782.56	37.42	7155.63	0.00	1/82.56	0.00	0.919		
Solid	Slab								
CHO-6	1745.52	37.06	721.00	40.60	646.74	36.42	1.115		
CHO-7	2983.27	55.56	2664.00	20.60	2915.29	22.54	0.914		
			Me	an			1.015		
			Co	efficient of 1	Variation	*******	0.140		
			Re	sistance Fact	or		0.808		
Overall I	Reinforced								
			Mean				0.983		
			Coefficie	ent of Variat	ion		0.117		
			Resistan	ce Factor .	**********		0.805		
Overall (Composite Be	ams							
	•		Mean				1.060		
			Coefficient of	Variation .			0.079		
			Resistance Fa	ctor			0.905		
Notes:									
		1.44							

Refer to Table 3.0 for key to beam designations

OWNER THEORY

Test	<i>M</i> _m (ink)	V _m (k)	M _{test} (ink)	V _{test} (k)	<i>M</i> _* (ink)	V, (k)	Test/ Theory	3	
Unreinfo	orced								
Ribbe	ed Slab								
D-1	5405.49	37.83	1606.00	37.80	1593.53	37.51	1.008		
D-2	5967.14	39.28	3095.00	39.00	2981.87	37.57	1.038		
D-3	6096.61	40.38	6075.00	11.30	6052.26	11.26	1.004		
D-5A	5388.57	36.54	2768.00	34.60	2182.43	34.78	1.050		
D-5B	5226.80	31.49	2568.00	32.20	2424.53	30.40	1.059		
D-6A	5422.56	37.13	0.00	41.00	0.00	51.15	1.104		
D-6B	5733.80	52.02	2070.00	48.90	2161.99	51.07	0.957		
D-7A	4665.32	42.01	1845.00	43.50	1750.04	41.20	1.054		
D-7B	4362.93	40.16	3379.00	42.60	2855.00	35.99	1.184		
D-8A	1344.57	20.84	774.00	19.40	174.60	19.42	0.999		
D-8B	1056.25	14.87	427.00	14.30	433.34	14.52	0.985		
D-9A	4/91.16	34.47	14/4.00	34.50	1438.73	34.14	1.010		
D-9B	4588.71	46.01	1755.00	47.30	10/8./4	43.24	0.057		
R-0	1288.17	20.72	752.00	18.20	785.05	19.01	1.154		
R-1	2630.28	22.19	978.00	20.00	847.70	24.00	1.134		
R-2	3216.43	27.79	2904.00	28.70	2450.20	15.15	1.105		
R-3	3774.33	37.26	3993.00	10.40	3687.83	13.15	1.085		
K-4	3022.68	24.25	3212.00	13.10	2900.85	11.85	1.107		
R-5	2791.69	26.72	1038.00	27.60	989.64	20.31	1.049		
R-6	2594.94	18.01	786.00	21.20	004.03	17.91	1.184		
R-7	2833.28	28.32	1134.00	30.50	1035.52	27.85	1.095		
R-8	2817.84	27.01	1075.00	28.90	990.08	26.62	1.086		
			Me	un			1.065		
			Co	efficient of	Variation		0.000		
Salid	Slab								
Solid	l Slab								
Solid C-1	I Slab 3110.10	32.74	2886.00	33.40	2346.28	27.15	1.230		
Solid C-1 C-2	I Slab 3110.10 4604.48	32.74 38.59	2886.00 4107.00	33.40 36.80	2346.28 3528.34	27.15 31.62	1.230 1.164		
Solid C-1 C-2 C-3	1 Slab 3110.10 4604.48 4624.92	32.74 38.59 39.57	2886.00 4107.00 5468.00	33.40 36.80 14.00	2346.28 3528.34 4584.33	27.15 31.62 11.74	1.230 1.164 1.193		
Solid C-1 C-2 C-3 C-4	1 Slab 3110.10 4604.48 4624.92 4900.59	32.74 38.59 39.57 45.41	2886.00 4107.00 5468.00 1723.00	33.40 36.80 14.00 47.60	2346.28 3528.34 4584.33 1623.42	27.15 31.62 11.74 44.85	1.230 1.164 1.193 1.061		
Solid C-1 C-2 C-3 C-4 C-5	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23	32.74 38.59 39.57 45.41 45.16	2886.00 4107.00 5468.00 1723.00 3511.00	33.40 36.80 14.00 47.60 48.10	2346.28 3528.34 4584.33 1623.42 3048.64	27.15 31.62 11.74 44.85 41.77	1.230 1.164 1.193 1.061 1.152		
Solid C-1 C-2 C-3 C-4 C-5 C-6	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26	32.74 38.59 39.57 45.41 45.16 35.93	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00	33.40 36.80 14.00 47.60 48.10 40.40	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56	27.15 31.62 11.74 44.85 41.77 35.14	1.230 1.164 1.193 1.061 1.152 1.150		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13	32.74 38.59 39.57 45.41 45.16 35.93 25.79	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00	33.40 36.80 14.00 47.60 48.10 40.40 32.70	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44	27.15 31.62 11.74 44.85 41.77 35.14 25.40	1.230 1.164 1.193 1.061 1.152 1.150 1.287		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-1 G-2 CHO-3 CHO-4	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067 0.969		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-3 CHO-4 CHO-5	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067 0.969 1.147		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-3 CHO-4 CHO-5	1 Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Me Co	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 an	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17 Variation	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067 0.969 1.147 0.076		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	I Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Ma Co Res	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 an efficient of Tristance Fac	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17 Variation	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067 0.969 1.147 0.076 0.982		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5	I Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Ma Co Re	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 an efficient of visitance Fac	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17 Variation tor	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.087 0.969 1.147 0.076 0.982		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5 Overall	I Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Ma Co Re	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 an efficient of Tristance Fact	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17 Variation	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067 0.969 1.147 0.076 0.982 1.093 0.072		
Solid C-1 C-2 C-3 C-4 C-5 C-6 G-1 G-2 CHO-3 CHO-4 CHO-5 Overall	I Slab 3110.10 4604.48 4624.92 4900.59 5138.23 3188.26 1734.13 1712.64 1369.30 2356.96 2444.36 Unreinforced	32.74 38.59 39.57 45.41 45.16 35.93 25.79 25.81 30.54 47.19 47.12	2886.00 4107.00 5468.00 1723.00 3511.00 1471.00 791.00 1296.00 634.00 1477.00 2319.00 Ma Co Re Mean Coefficient	33.40 36.80 14.00 47.60 48.10 40.40 32.70 26.50 35.70 46.70 17.90 an of Variation	2346.28 3528.34 4584.33 1623.42 3048.64 1279.56 614.44 1128.26 531.65 1384.08 2394.17 Variation	27.15 31.62 11.74 44.85 41.77 35.14 25.40 23.07 29.94 43.75 18.48	1.230 1.164 1.193 1.061 1.152 1.150 1.287 1.149 1.193 1.067 0.969 1.147 0.076 0.982 1.093 0.078 0.024		

Table G.8 Composite Beam Capacity Summary: Method III, $\lambda = 1.207$ and 3.0 add 3.0

						187							
Table	G.8 (cont	inued)											
Test	M_{m}	V _m (k)	M _{issi}	V _{test}	Atte	M_{\star}		V_{\star}	T	'est/			
Painford	ad	(K)	(11K)	(K)	÷.	(11K)	1	(A)		leory	 11		
Ribbe	d Slab												
WJE-1	7782.56	37.77	7155.63	0.0	0	7782.56		0.00	0	.919			
Solid	Slab												
CHO-6 CHO-7	1745.52 2983.27	36.37 54.84	721.00 2664.00	40.6 20.6	0	635.33 2912.73	3	35.78 22.52	1. 0.	135 915			
			M	ean	of Va	riation			1	0.025			
Overall F	Reinforced		Mean .						-	0.990			
0 "			Coeffic: Resistar	ient of Vi nee Facto	riatio r	n	••••	•••••	(0.127			
Overall	composite Be	ams	Mean Coefficient o Resistance Fa	f Variatio						1.083 0.086 0.918			
Notes:													
refer to	Table 3.0 for	r key to b	eam design	nations									

(DII bea Taborhald) (DL.1) = A generated singles & \$15 sideT

Table G.9 Analysis Summary, λ = 1.207 (Methods I and III)

300 I 19

		Mean						Coefficient of Variation					Resistance Factor				
	# Beams	I	п	ш	Redwood (C)	Redwood (L)	I	п	ш	Redwood (C)	Redwood (L)	I	п	ш	Redwood (C)	Redwood (L)	
STEEL BEAMS																	
Unreinforced	29	1.272	1.248	1.343	1.212	1.347	0.182	0.203	0.210	0.186	0.182	0.957	0.911	0.970	0.907	1.013	
Rectangular Opening	19	1.340	1.302	1.415	1.265	1.391	0.174	0.211	0.202	0.191	0.195	1.019	0.939	1.034	0.939	1.027	
Circular Opening	10	1.144	1.145	1.208	1.111	1.264	0.152	0.154	0.193	0.140	0.131	0.897	0.895	0.895	0.885	1.018	
Reinforced																	
Rectangular Opening	21	1.176	1.166	1.194	1.142	1.362	0.128	0.125	0.129	0.151	0.195	0.951	0.946	0.964	0.896	1.005	
OVERALL STEEL	50	1.232	1.213	1.281	1.183	1.353	0.166	0.179	0.193	0.174	0.185	0.947	0.916	0.949	0.900	1.013	
COMPOSITE BEAMS																	
Unreinforced	32	1.068	1.073	1.093	1.131	N/A	0.073	0.084	0.078	0.128	N/A	0.917	0.912	0.934	0.914	N/A	
Ribbed Slab	21	1.045	1.037	1.065	1.090	N/A	0.070	0.069	0.066	0.121	N/A	0.899	0.893	0.920	0.889	N/A	
Solid Slab	11	1.111	1.141	1.147	1.207	N/A	0.065	0.075	0.076	0.124	N/A	0.960	0.978	0.982	0.981	N/A	
Reinforced	3	0.983	0.985	0.990	N/A	N/A	0.117	0.122	0.127	N/A	N/A	0.805	0.802	0.801	N/A	N/A	
Ribbed Slab	i	0.919	0.919	0.919	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Solid Slab	2	1.015	1.019	1.025	N/A	N/A	0.140	0.146	0.152	N/A	N/A	0.808	0.805	0.803	N/A	N/A	
OVERALL COMPOSITE	35	1.060	1.065	1.083	1.131	N/A	0.079	0.088	0.086	0.128	N/A	0.905	0.901	0.918	0.895	N/A	
*																	

188