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CHAPTER 1
INTRODUCTION

1.1 General

One of the modes of failure that can occur in a reinforced concrete
structure during its lifetime, is the so-called “shear failure." Such
failures reduce the strength of structural elements below their flexural
capacity and result in a large reduction in ductility. For this reason
shear failures are considered undesirable.

Since the beginning of this century, many investigators have experi-
mentally studied reinforced concrete beams. The results are numerous,
but not conclusive enough to develop a universally accepted solution to
tae shear capacity problem. The absence of a general solution is excei-
fent evidence of the tremendous difficulty involved in solving thne
problem. Host of the investigations nave been unr:ziated, and unfortunate-
1y tnere nas oeen no systematic overall approacit to the test programs.

In fact, many times the test snacimans have not been representative of
those used in real structures.

In spite of this extensive experimental research, there are some areas
which have not received much attention until the past decade. One of these
areas is the benhavior of normally proportioned reinforced concrete beams
with small amounts of shear reinforcement and low to optimum percentages
of longitudinal reinforcement. It is this category of beams which is the

primary interest of this investigation.

1.2 Previous Work

1.2.1 Background

Researchers of the late 13dd's were divi.ded over the issue of the



mechanism of the shear failure of reinforced concrete members, Some be-
lieved that the cause of shear failure was horizontal shear, others believed
it was diagonal tension (2,19).

For a decade, the two groups centinued the discussion of the mechan-
ism of snear failure until E. Mdrsch, from Germany, resolved this issue
(2,19,33). By testing a number of reinforced concrete beams, Morsch found
that diagonal tension was the controlling factor.

After the acceptance of Mirsch's theory, the early specifications

Vv
| ijd
{in whicn v = nominal shear stress, psi, V = shear force, pounds, bw= web

in the United States considered the nominal shearing stress, v =

width, inches, and Jd = internal moment arm, inchesL_to be a measure of
diagonal tension and restricted tne stress, v, to values less than certain
fractions of the cylinder strengtn, fé (2). In 1909 A. N. Talbot pointed out
the fallacies of such a procedure (2,40). Testing 106 beams without shear
reinforcement, Talbot demonstrated (4J) that the main variables affecting
tne shear strength of reinforced concrete beams without shear reinforcement
were the concrete strength, the ratio of beam Tength to depth, and the pér-
centage of longitudinal reinforcement.

Talbot's findings were ignored until the early 1950's, when A. P.
Clark (11) introduced an expression for the effect of the shear-span to

depth ratio, a/d, on shear strength. Clark expressed Talbot's findings as:
v, = 7000 py t U.]Efé d/a + 2500 /E; (1.1)

in which o, = percentage of Tongitudinal steel (pw = As/bwd), a/d = shear-

span, a, to effective deptn, d, ratio, py = ratio of shear reinforcement



A,

(ov = ngi, A, = area of a stirrup, inz, A_ = area of longitudinal reinforce-
W .

v 5

ment, inz, and 5 = stirrup spacing along the axis of the beam, inches.

The a/d ratio provided a way to account for the effect of horizontal
flexural tension on snear strength. Unfortunately, the shear-span could not
be defined for genera!ized cases of loading. This handicap was overcome
in the early 1950's when researchers at the University of I11inois expressed
the shear-span to depth ratio in the modified form of M/vd, involving bend-
ing moment, M, shear force, Y, and effective depth, d (2,3). For the case
of simple beams with concentrated loads, it is obvious that the term M/Vd
is synonymous with the a/d ratio.

From the eariy 1950's to tine presaent, researchers have made numerous
shear tests and found that some other variables influence the shear strengta
of concrete beams (2,3). Among the variables are the type of loading and
the type of cross section. The ACI-ASCE Committee on Shear and Diagonal
Tension chose to express the shear capacity of reinforced concrete beams
without stirrups as a function of tne square root of the cylinder strengtn,
the shear-span to deptn ratio, and the percentage of longitudinal reinforce-
ment {3,5). For beams with web reinforcement, the committee concluded that
both the web reinforcement and the concrete contribute to the shear capac-
ity of a member. They found that tne nominal shear stress in tne concrete
at diagonal tension cracking correlated well the concrete contribution at
the failure load. Tne following egquation was seiecied to express the

ultimate capacity of reinforced concrete beams in shear.

v, S vt rpvay (1.2)



in which
vy, = nominal {(ultimate} strength, psi, r = (sinc + cosa),
q = inclination of web reinforcement to longitudinal axis,
vy © yield point of web reinforcement, psi, and
Ve 7 snear stress carried by the concrete equal to shear at

diagonal tension cracking, psi.
In the United States design practice, two expressions are given for

the shear stress at diagonal tension cracking (5):

o Py Vud
Ve T ?.9¢$C + 2500 —mﬁamw {1.3)
or, more conservatively,
Ve = 2/?2 | (1.4)
in which
Vu = factored shear at the section, and
Mu = factored moment at the section.

The expression r pvay was derived using the truss analogy for beams
at failure, assuming that the web reinforcement yields and that diagonal
cracks have a horizontal projection equal to the effective deptn of the
beam.

Te insure ductility, the committee set a minimum value of shear rein-
forcement, pvay, equal to 30 psi. |

The key shortcoming of tnis procedure is that it does not accurately

represent the effects of the various parameters oh shear strengtih and thus



results in a variable factor of safety in the applicable range of the
equation. It has been retained in the ACI Building Code (5) because of
its relative simplicity and because it nas generally provided conservative
designs.

One equation, which predicts the diagonal tension cracking stress with

good accuracy, was derived by Zsutty (42):

v, =59 (flp, g—)% (1.5)
Tnis equation was derived using the techniques of dimensional analysis
and statictical regressioﬁ analysis appliied to existing shear test data.

The mechanism of shear transfer in reinforced concrete beams with
stirrups is not yet completely understood. It is believed that shear 1s
carried to the supports of the beam in five different ways (3,11,13,14,15,
22,32,41,42).

1. shear force in tne uncracked concrete,

2. tension forces 1n'the shear reinforcement,

3. forces due to arch action,

4.  dowel forces in the flexural reinforcement, and
5. friction forces along tne crack.

The relative contribution to shear transfer of these mechanisms de-
pends on sucn factors as, (3)

1. the geometry of the beam,

2. tne type of concrete,

3. the type, amount and detailing of reinforcement,

4, the type, stage and location of loading, and



5. the type of supports.
Fig. 1.1 illustrates qualitatively the relative contributions of the

various mecnanisms to shear resistance as a function of load.

1.2.2 Rational Approaches

Many researchers have attempted to develop rational solutions to the
shear capacity problem (7,8,9,12,16,20,21,22,23,27,30,31,33,34,37,38,39,
43). For beams with stirrups, the major concern of this study, most of
the theories can be classified under a few categories.

Modified Truss Analogy

This theory is attributed to Ritter and Mdrsch (2,19,33,38). Tney
assume that beams resemble a truss after snear cracking. The top ana bot-
tom chords of the truss are the concrete compression zone and longitudinal
reinforcement, respectively. The diagonal and vertical struts consist of
the beam web and snear reinforcement. The assumption that ali shear is
carried by the shear reinforcement does not agree well with test data.

North American designh methods, as represented by Eqs. (1.2)-(1.4),
recognize the contribution of the concrete (5). It is assumed that part
of the applied shear is carried by the concrete, and the rest is carried
by the shear reinforcement. The concrete contribution has been determined
experimentally and thus has an empirical, rather than a rational basis.
Failure is assumed to take place after yielding of the shear reinforcement
and along a plane orjented at about 45° to the axis of the beam.

The main weaknesses of this method are its inability to accurately
express the effects of the percentage of the longitudinal reinforcement
and shear-span o depth ratio on the shear capacity of reinforced concrete

beams,and the assumption of a constant horizontal crack projection



equal to the effective depth of the beam. For these reasons, the margin
of safety provided by tnis expression is variable.

Plane of Minimum Resistance

The developer of this theory, M.S. Borishansky (7), rationalized
tnat failure can occur along any inclined piane of the beam,,if the total
shear resistance along that plane is a minimum. It is assumed that after
shear cracking, shear is carried by both the stirrups and the concrete.
At failure all stirrups along the crack yield. The concrete capacity is
not constant, but is a function of the beam depth to crack projection ratio.
The capacity versus crack projection relation for the concrete was obtained

experimentally.

VC = {0.15 awd Rb/z (1.6)
in which,

DW = web widtn, cm,

d = effective depth, cm,

R = design cube strength, kgf/cm®, and

Z = horizontal crack projection, cm.

The stirrup capacity is, also, a function of the crack projection and is

expressed as:
A

in which,

fvy = yield stress of shear reinforcement, kgf/cm?,



A area of the vertical stirrups, cm®, and

v

5 spacing of stirrups along the axis of beam, cm.
For the case of g beam loaded witn concentrated loads, the ultimate shear
capacity is:

A
_ - - 2 v :
¥ = VC + VS = J.15 bwd Rb/24‘?;-f Z (1.8)

n vy
The size of the crack, z, for whicn the expression of the ultimate shear,
Vn, is a minimum can be found after differentiation of Eq. (1.8) with
respect o crack projection, z. Using this mathematical technique,

Borishansky, obtained the following eguation:

V, = ZVU.lébwd4RbAv fvy/S (1.9)

Tne introduction of the variable crack inclination in this method is
compatible with the test results reported by a number of investigators
(17,22,24,35,37). In contrast, the concrete capacity term is entirely
empirical and incependent of the percentage of longitudinal reinforcement,
Oy This is a weakness in the theory, since P has been proven experiment-
ally to have an appreciable effect on the shear capacity of reinforced

concrete beams {11).

Shear-Compression Theory

The development of this tneory is credited to many different investi-
gators (27,33,37,43). One of the most compiete approacnhes is the one
developed by Regan {37). In nis approach, Regan states that failure is

caused by the normal stresses in the compression zone of the beam. He



obtained these stresses using equilibrium equations and an approximate
compatibility equation. The compatibility eguation relates the total de-
formations of the concrete and the tension steel, between two planes at
the ends of the shear crack, with an average neutral axis depth, as shown
in Fig. 1.2. The final equation of ultimate snear capacity is too com-
plex to be practical for design. This is recognized and Regan recommends
a graphical or anotner simplified approach.

The main handicap of the shear-compression failure theories is that
they always predict failures caused by crushing of the concrete. Many
rectangufar beams, and most T-beams, fail in a mode different than compres-
‘sion. These types of failures have been defined as "shearing" failures
(35). However, for reinforced concrete beams that fail in the shear-
compression mode, tnis theory satisfactorily predicts the ultimate shear
capacity.

Arch Theory

In the "remaining arcn" theory (20,21,22,23), it is assumed that
‘cracks generate and propagate perpendicular to the principal tensile stréss
trajectories and parallel to the principal compressive trajectories in a
beam, as shown in Fig. 1.3a. After cracking, the beam is transformed into
a number of tied arches, and the applied shear is carried to the beam
support by arch action. Only the outside arch is supported directly by
the beam supports. The remaining arches are nanging arches. Kani (20,21,
22,23) states that the cause of premature shear failure is not the shear
force, but the compression arch forces. Failure is caused by the reducticn
of the compression arch capacity due to the loss of the supports of the

internal hanging arches, as shown 1in Figs. 1.3 b,c,d. The primary
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function of stirrups is to act as the hanging supports of the internal,
arches, thus retaining the flexural capacity of the beam. The arch theory
provides guantitative results for beams without stirrups. However, it |
is a qualitative theory for beams with stirrups, and remains impractical
for design. |

Diagonal Compression Field Theory

Diagonal compression field theory (8,12,16,34) uses a truss model
with a variable inclination of the concrete diagonals, as shown in Fig.
1.4. The truss model is approximated with compression and tension chords
consisting of the concrete compression zone and the longitudinal rein- i

§

forcement, respectively. The stirrups represent the posts of the truss,%
¥

aind the continuous diagonal compression field represents the diagona1s.z
One mode of failure is due to crushing of the concrete in the |
continuous diagonal compression field, while the shear reinforcement
yields, or is still elastic. The other mode of failure is due to yielding
of the shear or flexural reinforcement, or both, while the concréte in
the continuous diagonal compression field is still intact. In all cases%
it 1s assumed that the top chord of the truss (the compression zone of the
beam) has adeguate strength to carry the applied loads. This strength is
determined from the equations of pure bending.
This represents a weakness in the diagonal compression field theory,
since it nas been found that combined flexural and shear stresses have

an appreciable effect on the capacity of concrete. 1In addition, it has

been observed that in regions of high bending and shear stresses, cracks

—

R ——

probagate nigher in the compression zone of the beam than they do in

regions subject to pure flexure. For these reasons, the capacity of the’
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compression zone in reinforced concrete beams is significantly reduced
when shear forces are present. A rational theory should incorporate this

strengtn reduction.

1.2.3 txperimental Work That Impacts on This Study

In 1908 Rajagopalan and Ferguson {36} showed, after testing ten
rectangular beams witnout stirrups and with low percentages of jongitudi-
nat reinforcement, that the present code provisions {Egs. (1_3) and (1.4)
are unconservative for Tow percentages of longitudinal reinforcement.

They found tnat the expression
v = (0.8 + Eoopw) ‘/ﬁ: {1.9)

conservatively represents the shear strength of reinforced concrete beams

without stirrups and witn a reinforcing ratio, o, Tess than 1.2 percent.

w’
In the recent "Suggested Revisions to Shear Provisions of ACI Code, 314-

-71" (4) by ACI-ASCE Committee 426, a similar expression
v. = (0.8 + TZOQW) /ﬁ: (1.10)

was recommended.

According to the findings of Bresler and Scordelis {10) in 1963 and
Haddadin, Hong, and Mattock {17) in 1971, the effect of the first shear
reinforcement on the shear strength of beams is about 75 percent higher
than the strength calculated using the ACI Code provisions (5). Beams in
these two studies had flexural reinforcing ratios, P in excess of 1.8

percent.
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In spite of the extensive use of concrete beams with small amounts
of shear and longitudinal reinforcement, no experimental work has been
performed to determine the shear strength of these beams. Tests on beams
of this type are needed and will yield valuabie information about the be-
havior and shear capacity of these commonly used reinforced concrete mem-

bers.

1.3 Object and Scope

The objectives of this study are to experimentally investigate the
behavior of reinforced concrete beams with low amounts of both flexural
and shear reinforcement and to develop a useful representation of tne
snear strength of reinforced concrete beams.

The tests consist of fifteen sinmly supported T-beams loaded to
failure. The major variables in the study are the flexural reinforcing
ratio, P> and ancunt of snear reénforcement,pvay. The test results are
analyzed and compared with tne provisions of the ACI Building Code (5).

A failure model is developed that incorporates the observed snear
behavior of reinforced concrete beams and helps explain now shear strength

is effected by flexural veinforcing ratio, concrete sirength, shear-span

to depth ratio, and shear reinforcement.
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CHAPTER 2
EXPERIMENTAL WORK

2.1 General

The main purpose of this work is to determine the ultimate shear
capacity of slender reinforced concrete beams with small amounts of shear
and longitudinal reinforcement. This can be achieved only with a clear shear
mode failure of the selected specimens. Therefore, care was taken in the de-
sign of the specimens to eliminate all other possible modes of failure. A
description of the materials and the procedures used during this experimental

work is presented.

2.2 Test Specimens

The test specimens (Fig. 2.1) consisted of fifteen concrete T-beams,
eleven with stirrups and four without. The geometry of these specimens was
selected to closely resemble members in actual structures., In this manner,
the size effect was eliminated. All beams had the same cross section: web
width = 7% inches; total depth = 18 inches; flange width = 24 inches; and
flange thickness = 4 inches. The span of the beams was 13'-29, and the length
was 20'-0". The 3'-5" overhangs at the ends of the beams increased the embed-
ment and prevented slippage of the reinforcing steel. Non-prestressed, pre-
stressing strands were selected for the longitudinal reinforcement to prevent
flexural failures in the test specimens. The use of the high strength steel
also allowed high strains to be obtained in the flexural steel, as would
occur in continuous reinforced concrete beams undergoing moment redistribu-
tion following the formation of one or more plastic hinges.

The beams were divided in three series, as a function of the quantity of

the longitudinal reinforcement. Five strands were used for each beam to
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eliminate the effect of the arrangement of the longitudinal reinforcement on

the shear capacity of the beams. The smooth wire stirrups were spaced at a
distance of about half the effective depth of the beam. The amount of longi-
tudinal steel was controlled using different diameter strands, 1/2 inch, 7/16
inch and 0.6 inch for series A, B, and C, respectively. The amount of shear
.reinforcement, pvay, varied from 0 to about 110 psi, using different sizes of
smooth wire (0.132, 0.186, 0.229 or 0.244 inches in diameter). The flange rein-
forcement in all beams consisted of two #4 longitudinal bars and #3 transverse
bars, spaced as shown in Fig. 2.1. Information on the shear and longitudinal

reinforcing steels is summarized in Table 2.7.

2.3 Material Properties and Sizes

2.3.1 Concrete

Concrete was supplied by a Tocal ready mix plant. The concrete was air
entrained. Type I cement was used. The nominal size of coarse aggregate
was 3/4 inch {Tocally described as "1/2 inch aggregate").

Mix proportions, compressive strengths and moduli of rupture are pre-

sented in Table 2.2. A typical stress-strain curve is shown in Fig. 2.2.

2.3.2 Steel

Three different types of reinforcement were used in the test specimens:
prestressing strands, deformed bars and smooth wire.

The flexural steel in all beams was non-prestressed, ASTM A416, Grade
270 Seven-Wire Stress-Relieved Strand, Typical force-strain diagrams for
these strands are shown in Figs. 2.3, 2.4 and 2.5.

The flange reinforcement was ASTM A615, Grade 60 deformed billet steel bars.

The stirrups were low carbon smooth wires with a diameter of 0.132,

0.186, 0.229 or (.244 inches. All wires were annealed in order to obtain
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a yie}d stress close to the design yield stress obtained with deformed
reinforcing bars. The wires were supplied in coils because of the manu-
facturing process. The wire was straightened with a roller. During
relling, residual stresses were introduced. For tnis reason, the stress-
strain curve of these wires was not linear up to tne yield point. To
obtain a well defined yield point on the stress-strain diagram, all wires
were loaded to tne yield stress (preyielded)}. In this manner, a well
defined yield plateau was optained, as shown in Fig., Z.6. Due to work
nardening during preyielding, strain aging occurred in the wires. To
obtain the actual yield and ultimate loads of the wires on the day of
the test, two wire specimens were tested after the failure of eacn bean.
Tne preyielding loads, as well as the yield and ultimate loads on the day

of testing, are presented in Table 2.1.

2.4 Specimen Preparation

The beams were prepared in four stages: (1) fabrication of the rein-
forcing cage, (2} installation of gages on tne reinforcing steel, (3)
casting and curing of the concrete, and (4) preparation for the test.

As soon as the stress relieved strand was received, it was flame cut
into the desired lengtns and stored outside of the laboratory, exposed to
the weatner, This treatment provided the strands with a uniform coat of
rust which improved the bond and prevented slippage of the strands during
the tests.

After preyieiding, the stirrups were cut to length, bent to snape
using a one incn diameter pin, and welded to form a closed loop. The only

possible failure mode of tne stirrups was by yielding of the stirrups

themselves, since slippage of tne anchorage was prevented. The strands,
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reinforcing bars, and smooth wire stirrups were assembled o form a cage
using commercially available wire ties.

Following the fabrication of tne reinforcing steel, strain gages
were installed on the stirrups and strands, as shown in Fig. 2.7. Infor-
mation on the gage types and the instailation procedures is presented in
Appendix B.

Prior to casting the concrete, the plywood form was oiled and sealed,
ana the reinforcing cage was secured in the form using commercially avail-
able steel chairs and form ties. The concrete was placed in two layers
(web and flange) with tne aid of a cubic yard concrete bucket and an
internal vibrator. Ten cylinders anu two flexure specimens were made for
each test. Tne forms were removed after three days {except for beams €00
and C50-one day) and covered with a polyethylene sheet. The peam and the
control specimens were wet cured togetner until the compressive sirengtn
was at least 3000 psi.

Wnen tne concrete compressive strength reacned 3000 psi, tne beam was
lifted to the test supports with a 3 ton capacity crane, For alignment of
the beam and uniform bearing stresses at the supports, a quick set gypsum
cement grout, Hydrostone, was used. Hydrostone, also, was used to align
and secure the Toading beam bearing plates on top of the beam. Next, a
coat of white wasn, made of Hydrostone, was applied to one side of the
beam. After drying, the Tlocation of neutral axis and the jocations of the
snear and tensile steel were marked. For comparison, stirrup “locations”
were also marked on beams without shear reinforcement. The marking was
followed oy the installation of the paper gages on the top of the beam, as

shown in Fig. 2.7. Finally, the Toading system (loading beams, load rods
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and hydraulic jacks) were installed.

2.5 Test Equipment

The load was applied to the beam with the aid of a Satec pumping
console assembly (an electrically powered, 3000 psi capacity hydraulic
loading system) and four 60-ton Enerpac hydraulic jacks. The jacks, lo-
cated below the structural test floor, pulied on four one-inch diameter
steel rods attached to two wide flange beams attached to the test specimens
(Fig. 2.8). The one-inch steel rods served as load cells. Two 1/4-inch
strain gages were installed on each rod, and then the rods were calibrated
within one percent of the total load. In this manner, monitoring of the
applied loads was possible with the aid of a strain indicator.

The beam supports were one 6 inch roller and one bolster (Fig. 2.8).

To reduce the friction in the bolster, 1/32 inch teflon sheets were in-
serted between the bearing surfaces of the bolster.

A Vishay Model 220 Data Logging System was used to read the specimen
strain gages and one hand operated Budd Instrument P-350 strain indicator was
used to obtain the strains in the four loading rods. This combination of
strain recorders was used for all beams, except CO0 and C75. For these beams,
hand operated Budd Instrument P-350 strain indicators were used for all gages.

Three 0.001 inch scale dial gages and one LVDT were used to monitor
the deflections.

Four technigues were used to determine the shear cracking Toads.

These techniques used data obtained from the cracking patterns, the stirrup
strain gages, the concrete strain gages, and four 0.0001 inch scale dial

gages installed on specially constructed "shear cracking frames"(6)} to
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measure tne increase in oeam depth.

2.6 Test Procedure

One dial gage and the LVDT were placed at the center of the span.

Two other dial gages were placed at the load points, shown in Fig. 2.8.
Tne four shear cracking frames were secured at the locations of the third
and fourth stirrups from the center line of tne span, on both sides of the
beam. The dial gages were adjusted and tne strain gages and the LVDT were
connected and balanced.

To cneck the equipment, all beams were loaded to about one-third of
tne calculated flexural cracking load and unloaded. The readings of all
strain and dial gages were tnen recorded for zero load. The load was then
applied incrementally until the beam failed. The size of the iocad incre-
ments was reduced around the calculated fiexural cracking, shear cracking
and failure loads. The smallest increments in total loac were about 1250
pounds and the largest were about 5000 pounds. At each increment, all
strain and dial gage readings were recorded, while the applied load was
kept constant. Following the readings, the beam was inspected, and all
cracks were marked. The value of the total applied load was inscribed
at the end of each crack. In this way, a complete crack propagation
history was available from photographs taken during and after the test.

In addition, a time log of all actions and observations was kept.

Cracks were marked until very 1ittle additional cracking was observed.
After failure, all additional cracks were marked, and detailed photographs
were taken. The beam tests were followed by tests of the remaining con-

crete cylinders, flexure specimens and stirrup tension specimené.
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The average time for a test, from initial loading to failure, was

about one hour and forty-five minutes.

2.7 Results and Observations

Geometric and material information (dimensions, concrete strengtn,
shear-span to depth ratio, percentage of longitudinal reinforcement, and
amount of snear reinforcement), the flexural cracking stress and the ulti-

mate shear capacity, V pare presented for each beam in Table 2.3,

n tes
Using tne photographs which were taken during and after the tests,
the comp?etelcrack pattern for each beam nas been reproduced, except for
beams #1 and 2%, in Figs. 2.9-2.13. The heavy crack line represents the
failure crack. Tne numbers represent the total load, to tne nearest kip,
at which the crack formed.
The deflection dial gage readings are plotted versus the applied
toad in Figs. 2.14-2.28. The recorded readings of the steel and concrete
strain gages are plotted versus tne total applied load in Figs. 2.29-2.75.
Tne snear frame dial gage readings are plotted versus the applied Toad in
Figs. 2.77-2.87. |
A description of the behavior of a typical beam from the beginning
of a test to the time of failure foljows:
In the first stages of loading, the beams were free of cracks. Since
the stresses were very small and the full section participated in carrying
the load, the deflection was small and proportional to the applied load.

At a Toad close to the calculated flexural cracking load (obtained using

the ACI (5) modulus of rupture), the first cracks were observed and a

* Beams #1 and #2 served as preliminary tests, and complete crack patterns
were not obtained.
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considerable increase in deflection occurred. These cracks always
initiated in the region of pure flexure and extended vertically up to

the neutral axis of the uncracked section of tne beam. With increasing
load, more flexural cracks developed in both the center and the shear

span regions of the beam. Cracks in the two regions propagated different-
ly. Cracks in the pure moment section were always vertical, while cracks
in the shear span curved toward the point of the applied load, as soon as
they entered the area between the level of the tension reinforcement ana
tne neutral axis.

The trend of cracking was almost the same in all beams, except that
the number and the size of the cracks seemed to depend on the amount of
the flexural reinforcement. Compared to the otiner series, the beams in
Series B (pw = 0.5 percent) exhibited fewer and wider cracks. In confrast,
the other series (pw = 0.66 and 0.94 percent) exnibited a greater number
of cracks of smaller widtn. Tne cracks in tne Series C beams (pw = J.94
percent) were so narrow that additional ligint was required in order to
Tocate toem.

This trend of fiexural cracking continued until "shear cracking"
began. Shear cracking was accompanied by an increase in stirrup strain
and beam depth and a decrease in the compressive strain in tne concrete
witnin tite snear span. The shear cracks were extensions of the flexural
cracks and initiated close to the wmidheight of the beam. They propa-
gated at an inclination flatter than 45° in two directions, toward the
flange ang toward the flexural reinforcement. When the bottom end of
the crack reached the flexural reinforcement, it continued o propagate

with increasing load along the reinforcement for a distance at least equal
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to one stirrup spacing. The other end of the crack propagated until it
reached the pottom of the flange. From tnere on, two possible crack patns
were observed. For most beams, the crack extended horizontally along

the junction‘of the flange and the web. In a few cases, the crack re-
mained fairly stable after it reached the bottom of the flange, until
failure occurred. For beams with the first type of crack path, the crack
entered the flange at failure or at a Joad stage prior to failure. In both
cases, failure occurred with a sudden extension of the crack toward the
point of ioéding. The only exception to tnis failure mode was beam (75.
In this beam, the failure crack in tne flange was a horizontal crack ex-
tending along the total Tength of the shear span of the beam.

In all cases, the mode of failure was a tensile failure of the flange
with no signs of crushing of the concrete. The location of the failure
shear crack, (i.e., tne horizontal projection of tne crack within the shear
span) was erratic: sometimes closer to the support, sometimes closer to
the applied load, and at other times in tne center of the shear span. For
the beams without stirrups, the failure crack was always the crack closest
to the support. In beams with stirrups, the failure crack was either the
crack closest to the support (beams A50a, B50), or an interior crack
{beams A25, A25a , A50, (25, C75}. In three beams with stirrups (beams

A75, B25, C50), failure occurred along a double inclined shear crack.
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CHAPTER 3
EVALUATION OF EXPERIMENTAL RESULTS

3.1 General

It is of primary interest in this report to examine how the amount
of flexural steel, Py and web reinfercement, pvay, affect the behavior
of reinforced concrete beams, with special emphasis on shear cracking and
ultimate shear capacity.

A description of the findings and a comparison with the current pro-

visions of the ACI Building Code (5} follow.

3.2 Evaluation of Results

3.2.1 Flexural Cracking

The parameter which has the greatest effect on the deflection of
these reinforced concrete beams, after flexural cracking, is the amount
of longitudinal reinforcement. For the same load, much more deflection
was recorded for the beams in Series B (pw apout 0.3%) than for tne beams
in Series { (pw apout .94%). This difference is apparent in Figs. 2.14-
2,28.

The flexural cracking loads were obtained using the load-deflection
curves {Figs. 2.14-2.28) and the load-strain curves for strain gages #1
and #2 {Figs. 2.29-2.75). These loads are in good agreement with the
flexural cracking loads calcultated using the transformed cross section
and 7.5¢?z'for the modulus of rupture, fr, as recopmended in the ACI

Building Code (5). The calculated stress at flexural cracking varied

hetween 6.18/?3 and 7.57/??.
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3.2.2 Snhear Cracking

Four methods were used to determine the shear cracking locad. These
approaches were based on the stirrup strains, the concrete strains, the
increase in beam deptn following crack formation, and the cracking patterns.
The four methods were used to provide detailed information on beam behavior
and to compare procedures for defining "shear cracking." The details of
this portion of the study are presented in Reference 6.

The shear cracking load is considered toc be the Toad at which sig-
nificant changes in the load carrying mechanisms occur, resulting in the
redistrioution of stresses within the beam, Using this criterion, the
objective is to determine the load at which this change occurs. The
techniques for analyzing the data are summarized below:

The concrete strain data (Figs. 2.29-2.76} indicates that an appre-

ciable change (reduction) in the compressive strain occurs in the extreme
compression fiber within the shear span at a load coinciding with the
formation of diagonal cracks. This load is defined as the shear cracking
1oad.

The shear cracxing loads are obtained from Stirrup $train and depth

increase data using Figs. 2.29-2.87. Tnese load-strain and load-depth
increase curves show essentially no reading up to a load of 1.5 to 2 times
the flexural cracking load. However,inmost of the beams, small readings were
recorded before the formation of the first shear cracks due to inclined
flexural cracks within the shear-span. To obtain the shear cracking load
from these figures, the portion of the graph whicn shows a marked increase
in strain or depth is extended back until it intersects the load axis,

as iljustrated in Fig. 3.1. The point of intersection is defined as the
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shear cracking load.

The shear cracking load obtained from the crack patterns (Figs. ¢.9-

2.13), is assumed to be the Toad at which a crack forms at the level of
the neutral axis (the centroid of the uncracked transformed cross section)
at an angle of 45° or less to the longitudinal axis of the beam.

The shear cracking stresses obtained using the feur methods are pre-
sented in Table 3.1. Results are not available for beams #1 and #2, since
these beams were not fully instrumented.

To help reduce the effect of the variable concrete strength, the
results are normalized with respect to (fc')l/2 and (f(’:)l/3 in Figs. 3.2 and
3.3 (8). The results are, also, compared with the predictive equations,
Egs {1.3) (1.5) and (1.9}, presented by the ACI Building Code (5), Zsutty
(42) and Rajagopalan and Ferguson (36), respectively. Presented in this
form, the results obtained using the stirrup and concrete strains exhibit
much less scatter than the cracking loads obtained using the depth in-
crease and the cracking patterns. Both the stirrup and the concrete
strains appear to be nmore sensitive to the change in the load carrying
mecnanisms at shear cracking than do the other two procedures.

Tne shear cracking loads obtained using the concrete and stirrup
strains match each other quite well. The values obtained from the depth
increase data are equal to or greater fthan the values obtained from the
stirrup and concrete strains. The shear cracking loads obtained from the
crack patterns do not show a consistent relationship to the loads obtained
from the stirrup and concrete strains.

Overall, the comparison indicates that the loads obtained using the

concrete and stirrup strains provide a good indication of the true shear
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cracking load of the beam, while the other two methods are not as accu-

S

raie.

3.2.3 Stirrup cffectiveness

According to the ACI Building Code (5), the contribution of stirrups
to the uliimate snhear capacity of reinforced concrete beams is expressed
as the product of a coefficient, r, and the amount of shear reinforcement,
pvay (vS =y pvay). For beams with vertical stirrups, r is egual to
one. The contribution of concrete to the ultimate shear capacity is
assumed to be equal to the snear cracking stress oflthe beam, Ve In
this investigation, the shear cracking loads were measured for thirteen of
tne T-peams tested, and therefore, thne stirrup contribution to shear
capacity is known for each of these beams.

The stirrup effectiveness factor is defined as the ratio of the

stirrup contribution from the tests (vn - v} divided by the predicted

v
C
stirrup capacity according to tne ACI Building Code (pvay). The test

stirrup contributions are plotted versus the ACI code stivrup contribution,

pvay’

Using linear regression analysis, it was found (6) that the stirrup

in Figs. 3.4a to 3.4d, for the different methods used to obtain Ve
contribution can be expressed reasonably well by the expression:

Vo " Ve T 1.5 pvay +c {3.1)
in which
¢ = 2-8 psi.

In Figs. 3.4b and 3.4c, it is shown that the correlation coefficient in
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this analysis is 0.95 and (.97 for the cases in which the shear cracking
stress is determined from the concrete and stirrup strains, the two methods
which appear to be the most reliable methods for the determination of the
shear cracking loads.

The stirrup effectiveness factor {neglecting the small value of ¢} of
1.5 is smaller than the factors 1.30 and 1.75 which were repor;éd by Bresler
and Scordelis (10) and Haddadin, Hong and Mattock (17). fhe reason for
this difference probably lies in the different type and amount of longi-
tudinal reinforcement that was used in this study. Only strands were used
in this .nvestigation as longitudinal reinforcement, in amounts which
never exceeded one percent. Flexural reinforcement in excess of 1.8
percent were used by the otner investigators. Both the lower percentage
of filexural reinforcing steel and the lTower bond strength obtained with
the strands, as compared with the reinforcing bars, could have contributed

to the Tower stirrup effectiveness exhibited in these tests.

3.3 Comparison with Design Equations

- 3.3.1 Shear Cracking Stress

The snear crackin§ stresses obtained using the concrete and stirrup
strains are compared with loads predicted by Egs. (1.3} and (1.4) from
the ACI Building Code (5), Eq. (1.5) proposed by Zsutty (42} and Eq.
(1.9} recommended by Rajagopalan and Ferguson (36), in Table 3.2 and Figs.
3.2b, ¢ and 3.3b, c. The ACI eguations provide an unconservative estimate
of the shear cracking lvad for tne T-beams tested in this study. Much
better predictions are obtained using Eq. (1.5} by Zsutty (42} and Eq.

{1.9) by Rajagopalan and Ferguson {36).
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3.3.2 Ultimate Shear Stress

A summary of the nominal (uitimate) shear stress obtained from the
tests and the values predicted by the current ACI code procedures (Egs.
(1.2), {1.3) and (14)) are presented in Table 3.3. These results are
compared in Fig. 3.5.

A comparison of Figs. 3.2b, ¢, 3.3b, ¢ and 3.5 indicates that there is
a better agreement between the test results and the calculated values for
nominal shear strength than there is for the shear carcking stress. The
reason for the improved agreement in the case of shear strength is that,
while the ACI equations (Egs. (1.3) and (1.4)) overestimate the contribution
of the concrete to the shear strength for beams with longitudinal reinforce-
ment ratios less than about one percent, they underestimate the contribu-
tion of the stirrups (Eq. (1.2)}). The two errors appear to counterbalance
each other. The net result is a good agreement between the calculated
nominal shear capacity and the experimental shear capacity obtained in this
study. This coincidence will not be true for the whole range of percent-
ages of longitudinal reinforcement, pe to which the ACI equation, Eq. {1.3),
applies. The application of Eg. (1.2) gives a different margin of safety in
beams with different amounts of longitudinal and shear reinforcement. The
result is that in the case of beams with very Tow amounts of longitudinal
and shear reinforcement , the ACI (%} procedure could predict shear
capacity values a little on the unsafe side, while in beams with large
percentages of longitudinal reinforcement the procedure is overconserva-
tive. It should be noted that in the case of T-beams with small amounts
of shear and longitudinal reinforcement, it appears that the ACI pro-
cedure is safe and in good agreement with the shear strength obtained

during these tests. Of the beams with stirrups, only one beam, B25,
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failed at a load less than that predicted by the ACI (5) procedure.

3.4 Design Implications and Recommendations

3.4.1 Beams with Stirrups

The test results indicate that beams with stirrups containing amounts
of longitudinal reinforcement close to minimum, exhibit a reduction in
shear strength, relative to the ACI Code equations, when they are compared
to beams with larger amounts of longitudinal reinforcement. It appears
that the application of the current ACI Code procedure for tne ultimate
shear capacity for this type of beams loses the typical conservatism
which is present for beams with flexural steel greater than about 1.2
percent. In fact, for beams with percentages of longitudinal reinforce-
ment close to minimum permitted by the ACI Code (5), the current ACI
procedure may be stightly unconservative.

The tests performed during this investigation do not point to any
alarming deficiency in the shear strength of this type of beam, compared
to the shear strengtn predicted by the current ACI procedure. In addition,
the number of tests is too few to warrant a recommendation to change the
present ACI procedures. However, it appears that the use of a snear
cracking equation similar to that proposed by Zsutty, Egq. (1.53), would
result in a consistently conservative shear strength prediction along the
whole range of percentages of longitudinal reinforcement to whicn the ACI
code, tq. {1.2), applies.

In spite of the beneficial effect that the change would produce on
the margin of safety, it seems reasonable to suggest that in the case of
beams with stirrups, a reduction in the ACI code (5) concrete capacity

term, VC, without any increase in the stirrup capacity term, Vs’ is
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neither necessary nor desirable at the present time.

3.4.2 Beams without Stirrups

For beams without stirrups, the ACI Code {5), Egs. (1.3) and (1.4},
seems to be unconservative for beams with amounts of longitudinal rein-
forcement less than about 1.2 percent. However, the deficiency in shear
strength does not really present a problem. The allowable shear capacity
for beams without stirrups in the ACI Code is not limited by Egs. (1.3)
and (1.4), but by the gquantity V?Zl The ACI Code requires that the minimum
amount of shear reinforcement must be provided whenever the applied shear,
vu, exceeds ¢/?Z. This additionai Code requirement is an adequate safe-
guard (6), since beams without shear reinforcement exhibit a shear strength
greater than J?Zl In addition, shear capacity should be weil in excess of
V?Z'in Tocations of low moment (where longitudinal reinforcement may be
reduced) due to the strengthening effect of low shear-span to depth ratios

a )
{1ow qor M/Vd) on Ve
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CHAPTER 4
ULTIMATE STRENGTH MODEL FOR BEAMS WITH STIRRUPS

4.1 General

A universally accepted explanation of tne manner in which loads are
carried to the supports of shear-critical reinforced concrete beams, with
or without stirrups, nas not been developed; and in spite of the large
amount of work accomplished to data, the manner in which stirrups influence
the snear transfer mechanisms is not yet completely understood.

In tnis study, a relatively simpie semianalytical model is used to
explain the relative contribution of the variocus shear transfer mechanisms
in reinforced concrete beams on both a qualitative and a quantitative

basis.

4.2 Analytical Model

4.2.17 The model

A complete analytical approach to tne ultimate shear capacity problem
of reinforced concrete beams witn shear cracks is a task of tremendous
complexity. Considering this complexity (composite material, nonlinear
properties and geometric discontinuities), it is concluded that a realistic
approach to the uitimate shear capacity problem is an approach which is
based on both the basic principles of mechanics and test resuits and
observations.

The model utilizes the truss analogy, as shown in Fig. 4.1. It is
assumed that in beams with stirrups, the shear forces are carried to the
supports by four distinct shear transfer mechanisms: shear forces in the

interface or friction

concrete compression zone, ch’ dowel forces, Vd,
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forces along the cracks, Vay’ and tension forces in the snear reinforce-
ment, V_.
s
At failure, the shear capacity of a reinforced concrete beam is

expressed as

Vo=V VY

n cZz ay d ¥ Vs (4.1a)

which can be written as,
Vn = VC + vS (4.1.b)

in which VC (VCZ + Vay + Vd) is the total shear carried by the concrete.
[t has been found from tests (3,14,41) that the four main parameters
winich affect the shear capacity of reinforced concrete beams are: the
concrete strength, the percentage of Tongitudinal reinforcement, the shear-
span to depth ratio and the amount of shear reinforcement.
For simplicity, this model is developed for rectanguiar beams with
vertical stirrups and shear-span to depth ratios greater that 2.5. In
this type of beam, the effect of the shear-span to depth ratio is not as
large as in the case of short beams, but is still significant. The ulti-

mate shear capacity, then, is expressed as a function of all four param-

eters.

4.2.2 Overview of ilethod

The purpose of this section is to give an overview of the method
which is presented in the following sections. Expressions are derived

for the shear capacity of the compression zone, V VCZ depends on the

cz”’
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size of the compression zone, the shear stress distribution in the com-
pression zone, and the shear strength of the concrete. The size of the
compression zone can be determined if the location of the tip of the
failure shear crack is known. As a first step, the location of the tip

of the failure crack is determined. Following this derivation, expressions
are obtained for the average shear stress in the compression zone at fail-
ure. Then the compression zone capacity, ch’ is presented as a function
of the concrete strength, fé, shear-span to depth ratio, a/d, percentage
of laongitudinal reinforcement, B, and amount of shear reinforcement,
pvay.

Using experimental data for reinforced concrete beams without stirrups
(10,24,32?33L the total contribution of the dowel force, Vd’ plus the
interface shear , Vay’ is expressed approximately as a function of shear-
spah to depth ratio and percentage of longitudinal. reinforcement.

In this manner, the ultimate concrete capacity, Vc’ for beams with-
out stirrupé is expressed as a function of three independent variables:
concrete strength, shear-span to depth ratio, and percentage of !ongitqd-
inal reinforcement. The predicted concrete capacity is compared with
predictive expressions presented by other investigators.

For beams with stirrups, it is assumed that the relative cohtribution
of the compression zone, dowel snear, and interface shear are the same
as in the case of similar beams without stirrups. The contribution of
the stirrups is obtained with the simplifying assumption that the failure
shear crack is inclined at 30° to the axis of the beam, as shown ih Fig.

4.2. The model is used to nelp determine the effect of the shear rein-

forcement on the concrete snear capacity, VC, and on the total nominal
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'shear capacity, Vn, of rectangular beams. Comparisons are made with
experimental results for both rectangular beams and T-beams.

In tne process of developing tne model, a number of approaches were
tried, which did not work. One model was based on the assumption that
the inclined crack does not have any effect on the size of the compression
zone. This model determined the depth of the compression zone as if the
lbeam were in pure bending. Tne compression zone was very large, and-the
predicted compression zone shear capacity was greater than the total
shear strength measured experimentally in reinforced concrete beams.
Following another approach, the effect of the inclined crack on the size
of tne compression zone was incorporated, but the dowel and interface
shears were jgnored. The ultimate shear capacities predicted wifh this
model were always smaller than the shears obtained from tests of rectan-
gular reinforced concrete beams. An improved version of the Tast approach,
in which the effects of the dowel and interface shears are included, is
the model presented in the following sections. A key aspect of the model,
as compared to others, is that it isoiates the effect of the inclined
crack on the size of the compression zone. In the\deve?opment of this
model, thne main parameters found to influence the ultimate shear capacity
of beams (concrete strength, shear-span to depth ratio, percentage of
longitudinal reinforcement, amount of shear reinforcement) are included.

Whnile quantitative results are obtained, tne model should be consid-
ered primarily as a qualitative model, because of a number of limitations.
For simplicity, crack depth is based on zero tensile strength. In addi-
tion, the nonlinear material behavior of concrete and the effect of shear

stresses on the nominal .stress-strain curve are, also, ighored. These
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limitations affect the accuracy of the quantitative results. However,
the model explains some important aspects of shear behavior and illustrates

how the controiling parameters work.

4.3 Concrete Capacity

4.3.1 Compression Zone Capacity, MC

z
The shear force carried by the intact concrete compression zone

depends on the area of the zone and the average shear stress in the zone
at fatlure. The first.task, then, is to determine the depth of the com- -
pression zone,

Depth of Compression Zone: 1t has been found experimentally (1}
that the neutral axis in beams subject to combined bending and shear is
located much higher than in beams subject to pure bending. The depth of
the compression zone in the case of combined bending and shear may be as
Jow as 0.357 the compression zone deptn in beams under pure bending.

In the case of pure bending, the planarity assumption (planes before
bending remain plane after bending) holds reasonably well. An expression
can be derived relating the effective depth, tne depth of the neutral axis
Vand strainsin the extreme compression fiber and flexural steel. This
expression, together with the equilibrium equations, defines the location
of the neutral axis of the beam. For beams subject to bending and shear, a
compatibility equation cannot be accurately formulated at an isolated
cross section within the beawm due to the geometric discontinuity caused by the
inclined cracks. In this case, the region of the beam traversed by the
diagonal cracks must be investigated. |

To investigate this region and determine the effect of the diagonal

cracks on the location of the neutral axis, a procedure is developed to
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convert a beam with a single diagonal crack into an equivalent beam witn
a vertical crack in order to use conventional expressions for determining
the depth of the neutral axis.

In Fig. 4.2, two beams are shown; one beam is subject to bending and
shear, the other to pure bending. For an elastic material, if the strains
at the extreme compression fiber (plane 1-1 in Fig. 4.2) -and the location
of the neutral axis are the same for both beams, then the normal stresses
in the concrete, tne resultant compressive force and its point of appli-
cation are, also, the same. Thus, in terms of the concrete, the beams
are equivalent. However, due to the geometry of the crack, the strain in
the flexural steel for the beam in bending and shear js smaller than itne
strain for the beam in pure bending. Since the tension forces, T2, must
be the same in the beams, the amount of flexural steel in the equivalent
peam must be smaltler.

The ratio of the flexural steel in the equivalent beam to the steel
in the beam with the diagonal crack is defined as;the "geomatric and shear
softening effect factor", FS. This softening factor is determined from
the analysis of the deformations of the concrete region bounded by the
top of the beam, the diagonal crack and the two planes, 1-1 and 2-2,
through the ends of the shear crack, as shown in Fig. 4.2a.

The foilowing notation is illustrated in the figure:

z = norizontal projection of shear crack,

C = concrete compressive force,

Ti = tensile force in flexural steel, i = 1,2,

HX = depth of concrete zone at location x,

A = flexural steel in beam under bending and snhear,
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flexural steel in equivalent beam under pure bending

=
11

sb

that produces neutral axis location equivalent to'néﬁtrai
axis in beam under bending and shear,

YX = location of neutral axis at plane x, equal to kd at plane 1-1,

ch = point of application of compression force, €, from the ex-
treme compressive fiber of'beam at section x,

Yy = distance from point of application of resultant, C, to the
tevel of flexural steel at section x,

M1 = applied moment at section 1,

M2 = applied moment at section 2,

Mx = applied moment at section x,

Mb = moment for the pure bending case,

€y © strain at Tevel of flexural steel at location x, and

Eoy = strain in extreme compressive fiber of concrete at location x.

Reasonable simplicity is preserved in the derivation of the expression

for the softening factor with the following assumptions:

1.
2.

Stresses and strains are linearly related in the concrete.
Planes 1-1 and 2-2 of the beam in Fig. 4.2a, remain plane after
loading.

The neutral axis passes through the tip of the shear crack.

The compression force, C, is the same for both beams.

Dowel and interface shears are present and act at the inter-
section of the shear crack with the flexural steel, as shown

in Fig. 4.2a.

The inclined force shown in Fig. 4.2a acts paraliel to the

diagonal crack.
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7. Nd dowel forces exist in the shear reinforcement.

8. For the concrete region only, planes before loading remain

plane after loading.

9. The angle of the crack, 6, is constant and equal to 30°.

10.  The shear crack is a parabola: H, = d - d(1-k) (]—x/z)%.

As a first step, the point of application of the resultant, C, is
found for a section, x, between planes 1-1 and 2-2, as shown in Fig. 4.2c.
Then the stresses in the concrete at the top of the beam and at the crack
Tevel are obtained at x. Since the stresses, and therefore the strains,
are known, the location of the neutral axis and the strains at the
boundaries of the concrete (top of beam and crack level) are determined.
Then the deformation at the Tevel of the flexural steel is obtained be-
tween planes i-1 and 2-2. The softening factor (FS = Asb/AS) is equal
to the ratio of the steel strain at plane 2-2 to the steel strain in the
equivalent beam. FS is found as follows.

The applied moment at x is
M, = Vn(a—x) =M= Vox (4.2)
The internal moment at x is
M= Ty + Vs(z—x)Z/ZZ + (Vd+vay) (z-x} (4.3)
From the egquilibrium of the external and internal moments,

Y

o " [M1~an - Vs(z-x)Z/EZ - (Vd+Vay) (z-x)}/T2 (4.4)
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Defining i<1 as tne ratio of dowel shear plus interface shear to the
¥ +V
total shear carried by the concrete (~§V—E¥J and KZ as the ratio of the
o
shear carried by the stirrups to the nominal shear force (VS/VH), ¥, can

be expressed as

_ [2—KZz/a+2K2x/a—Zx/a-szz/Za—Z(]-KZ)K]z/a+2(}—K2)K]x/a](3-k)d

¥
X 2[3-T.5K,2/a-3(1-K,)K,z/a]

(4.5)

Substituting z = (d-kd)/tan sand Yy = d-Y __, solving for ﬁ»@ and simplifying:

CX

Y o =d -{{2a tane-{1-k) K

. X X
x d+2K, (1-k)dz- -2(1-k ) dZ

2

-K2(1—k)d(§f~ﬁ1—K2)K}(?—k)d+2(1—K2)(I—k)Kldgﬂ(suk)d}/ (4.6)
¢[3atans-1.5K,(1-k)d-3(1-K; K, (1-k)d]

The strain in the extreme compressive fiber of the concrete is

o 4e 6(gx/2"ycx)c
€ex TELH T EBHAZ _ _ (4.7)
C WX C WX

The neutral axis depth Yx is

YX - ECX/[ECX

~(4C/ECbWHX + 6(HX/2-YCX)C/ECbWHX?)] (4.8)

The strain at the level of the steel is

Eop = (dY Je /Y, | (4.9)
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The total elongation of the steel is
) ‘
b= [ (e, (4.10)

and the average strain in tne steel is

A
®sav 7 (4.11)
The strain in the stee] is not constant between planes 1-1 and 2-2.

At plane 2-2 the steel strain is approximated as

. ) [(vay+vd)+vsjz
52 Sav Ed{]—k)ASES

(4.12)

The variation of ¢_, frome_ . ~1s based on the assumption that the strains
in the steel vary 1inearly between planes 1-1 and 2-2, due to the inclined

force shown in Fig. 4.2a.

The strain in the steel in the equivalent beam 1is

. 2(1-K)C (4.13)

From equilibrium (TZ = = sz)

A o= fAe F (4.14)

sh Esb “s s°52%s

Substituting the expressions for Ecps Egp and E. (57000%?g'psi) and the

value for ES(29,OOO,OOG psi) into Eg. (4.14}), and solving for Asb gives
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£ (3kZ=k¥) (1=K, JK, +K, ) VFT

f = A
sb Slfsb 6105(1-k)? [tansa/d(1-k)-K,/2-(1-K,)K, Tg,,

Asb = AS.FS (4.15b)
where Py is the percentage of flexural reinforcement in the beam with the
diagonal crack, and the guantity in the brackets is the softening factor,
Fs'

For a given equivalent reinforcing ratio, pz(iFSpw), and modular

ratio, n(=ES/EC), the depth of the neutral axis can be obtained,

k= /énp; + (np;)? - np; (4.16)
Equations (4.15) and (4.16) are solved simultaneously for k and FS
using an iterative technique. The depth of the neutral axis and the soft-
ening factor can be determined for any reinforced cohcrete beam for which
the ratios, K¥, KZ’ and the angle of diagonal crack, 8, are known,
Average stress at failure: For a given depth of thé neutral axis,
kd, the capacity, ch’ can be found if the average shear stress in the
compression zone is known at failure. To obtain the average shear stress,
an equation is derived for the shear stress at a point within the compres-
sjon zone of a reinforced concrete beam subject to bending and shear.

The assumed forces and strains are shown in Fig. 4.3, in which:

Y = distance to neutral axis from tne top of. the beam,

YC = di§tance of resultant C.from the top of the beam,

y = distance of resultant C from the neutral axis,

g = strain corresponding to maximum stress on the stress-strain
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developed by Kupfer and Gerstle (25) for combined tension and compression
is used (Fig. 4.5). Using this criterion, the principal tensile stress

at Fai1ure,o], is expressed as

92

op = (1 +2/3 %) T} (4.25)
c

in which i is the tensile strength of the concrete (assumed equal to SJ?Z).

For a normal stress, o, and a shear stress, T, acting as shown in Fig.

4.6, the failure criterion is expressed as

12,2 ("1 BY-E
2 .o ftG thﬁ

v2y O t ] : -
ot raterm t oy s - e o (4.26)
2fr | 2
(1 + =¢r)
3

Eq. (4.26) is plotted in Fig. 4.6 for 4000 psi concrete.

The variation of shear strength with y is shown in Fig. 4.4 for a
strain ratio, w = 0.6. Fig. 4.4 suggests that failure initiates at an
interior point, close to the center of the compression zone.

Using this procedure, the average shear stress witnin the compression
zone‘at failure, Ty Can be accurately approximated (within 3 percent}

as
T = K ({_‘I)'75 (4.27)

The constant , K3, depends on the strain ratio, w., The values of Tay

obtained from this analysis are shown in Table 4.1 for different concrete

strengths and strain ratios. The representative constant, K3, for each
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strain ratio, w, is also shown.
After the examination of the results and comparison with test data
(26), a constant value for Ky = 0.75 was selected as reasonably repre-

sentative. The value of average shear stress within the compression zone

at failure is therefore:

_ A
Tay = 0.75(F) {4.28)

The shear capacity of the compression zone 1s:

_ B .75
ch = bwkd Ty = O.?Sk(fc) bwd . (4.29a)
or in terms of nominal stress,
o4 bwd ’ c

4.3.2 Dowel and Interface Shear Capacity

Based on the simplified model described above, the "contribution"
of the dowel and interface shear to the nominai shear capacity of rectang-
ular reinforced concrete beams without stirrups is obtained using an analy-
sis of the experimental data obtained from a number of investigators (10,
24,35,36). Using Eqgs. (4.15), (4.16) and (4.29), the factor, Ky, s deter-
mined for each beam with an iterative procedure.

The procedure consists of selecting a value for KI( =(vd+vay)/vc)
and obtaining the values for k (Egs. (4.15 and 4.16)),VCZ (Eq. (4.29)),

and finally
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v
Vo= 55 (4.30)

c ?1?5
for the particular beam under consideration. The value of V. from Eq. {4.30)
is then compared with the test value. Ki is modified until the solution con-
verges.

As shown in Fig. 4.7, K1 can be expressed reasonably well as a function
of only two independent variables, shear-span to depth ratio, a/d, and per-
centage of longitudinal reinforcement, Dy in the following form (based on
a least squares fit of the calculated values of K1 versus a/d):

Ky = 1 - [-.33+.29 a/d -.033(a/d)*+.0015(a/d)°] (100p,) %> (4.31)

1
Fig. 4.7 and Eq. (4.31) dndicate that the relative contribution of dowel
shear and aggregate interlock to total shear strength decrease with in-
creasing values of a/d and Py Conversely, the relative contribution of
the compression zone increases. £Egs. (4.15), (4.16) and (4.29) can now

be used in conjunction with Egs. (4.31) and (4.30) to obtain the softening
factor, Fs’ the neutral axis location at the top of the diagonal crack, k ,

and the concrete compression zone capacity, V for different values of

cz’
concrete strength, shear-span to depth ratio, and percentage of longi-
tudinal reinforcement. These values are presented in Figs. 4.8, 4.9 and
4.10. These figures suggest that the size of the compression zone, and
therefore the shear capacity of the compression zone,strongly depends on
the shear-span to depth ratio and percentage of longitudinal reinforce-

ment. Concrete strength has a smaller, but still significant, effect

on the compression zone shear capacity of the model.



46

4.3.3 Concrete Capacity EC

For beams without stirrups, the nominal shear capacity, V., is expressed

c

as

Ve ® Vez

/(%—K}) (4.30)

Eq. (4.30) isa function of concrete strength, shear-span to depth ratio
and percentage of longitudinal reinforcement and can be used to predict the nom-
inal (ultimate) shear capacity for rectangular beams without stirrups. The
predicted shear capacities are shown in Fig. 4.11 in terms of shear stress,
Ve The curves are similar to the curves obtained using Eq. (1.5), proposed
by Zsutty. For comparison, Ve is plotted versus the percentage of longitud-
inal reinforcement (Fig. 4.12), for fé = 4000 psi and a/d = 4, and compared
with shear capacities from other predictive relations (5,36,42}.

Figs. 4.11 and 4.12 suggest that the concrete shear capacity is an in-
creasing function of both concrete stirength and percentage of Tongitudinal
reinforcement, and a decreasing function of shear-span to depth ratio. The
proposed model, therefore, matches observed behavior on at least a gualita-
tive basis. Unfortunately, the model seems to show a much stronger effect
of Py ON Ve than obtained by Zﬁutty based on a statistical analysis. This
over-sensitivity of the model is likely due to the fact that it ignores the
nonlinear, softening behavior of the concrete within the compression zone.
It is, also, important to note that even the qualitative match requires the
use of Eq. (4.31) based on test results.

The predicted shear capacities are compared with the test results used

to develop the model in Fig. 4.13.

4.4 Capacity of Shear Reinforcement, V.

The contribution of stirrups to the shear capacity of the model can be

evaluated only if both the stress in the stirrups and the number of stirrups
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crossed by the shear crack at failure are known. The stirrups which cross
the shear crack can be assumed to yield. Yielding of the stirrups has been
reported by many investigators (10,17,35,37), and was observed in all eleven
T-beams with stirrups tested in this investigation. The horizontal crack pro-
jection, z, can be evaluated if the inclination, 8, of the assumed parabolic
crack to the axis of the beam is known. In this investigation, the incliina-
tion, 0, is assumedto be 30°. This is close to the ¢ptimum vaiue of 31°
adopted by the CEB (comité Euro-International du Béton) as proposed by Grob
and Thurtimann (16). The horizontal projection of the shear crack is expressed
as: 2

z = (d-kd) cot 30 = (1-k) d cot 30 (4.32)
The stirrup shear capacity then is:

VS = 1,73(1~k)pvay bwd (4.33)

This representation for VS results in a somewhat reduced effectiveness of
the shear reinforcement as the depth of the neutral axis, k, increases.

For beams with stirrups it is assumed that the variation of the factor
K] (= (vay+vd)/vc) is the same as in similar beams without stirrups. The
shear capacities, Vegs (Vay+vd)>a”d V. are again obtained but are now based
on four independent variables: concrete strength, shear-span to depth ratio,
percentage of longitudinal reinforcement, and amount of shear reinforcement
p.f (factor KZ)‘ The variation of shear capacity, along with the individual

vy
components of Vo is presented in Fig. 4.14 as a function of pvay for
fé = 4000 psi, by = 1.0% and a/d = 4.0.
The results indicate that the presence of shear reinforcement causes
an increase in the contribution of the concrete to the shear capacity of
the model, in addition to the direct contribution obtained from Eq. (4.33).

The concrete capacity, Vc’ increases quickly as tne amount of shear
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reinforcement, pvay,ﬂxyeases from O to about 150 psi, and then remains approxi-

mately constant with the further increase in the amount of shear reinforcement,

4.5 Effectiveness of Shear Reinforcement

The nominal {u1timate shear capacity of reinforced concrete beams with

stirrups is
Vo=V * Y (4.1b)

or in ferms of stresses, g

Vg T Vet v = v rpvay {4.34a)

in which r is defined as the effectiveness factor of the shear reinforce-
ment.

When the nominal shear, Vi s is expressed in the form

v o= VE S rpvay (4.34b)
in which vé is the ultimate shear capacity for a similar beam without
stirrups, the effectiveness factor, r, varies considerably as a function
of the amount of the shear reinforcement. As it is shown in Fig. 4.15,
the effectiveness factor is larger in beams with small shear-span to depth
ratios, smail amounts of flexural and shear reinforcement and higher con-
crete strengths.

Fig. 4.15 shows that the effectiveness factor for a beam with a/d = 4,

pw=.02, fc = 4000 and pvay close to the minimum is about 1.65. This



49

value is reasonably compatible with the effectiveness factors (1.8, 1.75)
reported by other investigators (10,17). It is of interest to note that
the effectiveness factors obtained for the model are based on a constant
crack inclination, 6 = 30 °, which is not necessarily justified.

In Fig. 4.16, the nominal shear stress is plotted for a constant per-
centage of flexural reinforcement and two shear-span to depth ratios. In
the same figure, experimental results for T-beams (17) are also shown.
Examination of Fig. 4.16 suggests that there is a reasonable agreement
between the test results and the values of Vo predicted by the model. The
model appears to be unconservative for beams with small shear-span to
depth ratios and larger amounts of shear reinforcement. This weakness in
the model is in all 1ikelihood due to the use of an average faiiure shear
(rav) within the compression zone of the modei, which is independent of
the actual loading on the beam,

In Fig. 4.17, the nominal shear stress is plotted for a shear-span
to depth ratio of 4 and different amounts of longitudinal reinforcement.
This figure suggests that the effect of the percentage of longitudinal
reinforcement on the ultimate shear capacity is more pronounced in beams
with small amounts of shear reinforcement and tends to diminish with in-
creasing amounts of shear reinforcement. The severity of this behaivor
in the model seems to be somewhat unrealistic, and experimental evidence

does not exist showing the convergence in v illustrated in Fig. 4.17.

4.6 Comparison of Predicted and Experimental Shear Capacities

The shears predicted by the proposed procedure are compared with test
results (10,17,24,35) for beams with stirrups in Figs. 4.18 and 4.19 and

Tables 4.2 and 4.3, for rectanqular beams and T-beams, respectively.
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It appears that the proposed procedure is somewhat better for rectang-
ular beams than for T-beams. The predicted ultimate shear capacities are
more conservative in the case of T-beams. For rectangular beams, the means
of the ratios of the test results to the predicted values of shear strength
are .75, 1.01 and 1.04, with coefficient of variation of 6 87%,1008% and 5. 86%
for beams from references 24, 35 and 10, respectively. The ratio of .?5
is obtained from the tests by Krefeld and Thurston (24). In their tests,
Krefeld and Thurston did not use compression reinforcement; therefore,
there is a possibility that these beams failed at smaller loads compared
to the beams tested by the other investigators (10,35) due to insufficient
anchorage of the stirrups.

For the T-beams, the mean values of the ratios of test to predicted
shear strengths are 0.89, 1.14 and 1.26, with coefficients of variation of
5.36% , 917% and 13.41% for the results reported in Chapter 2 of this report,
Reference 17, and Reference 35, respectiﬁe!y. The vaitue 0.89 obtained
for the test results from this investigation may be the result of the
different types of flexural reinforcement used in these T-beams. Since
the flexural reinforcement consisted of strandé, instead of reinforcing
bars, it is possible that the dowel shear, Which is normally carried by
the flexural reinforement, was reduced, as was the bond strength between
the strands and the concrete.

Overall, the mean values of the ratios of experimental shear strength
to predicted shear strength are 0.95 for the rectangular beams and 1.15

for the T-beams, with coefficients of variation of 14.70% and 19.74%, respectively.

4.7 Critique of the Model

For the benefit of simplicity, some of the assumptions used in
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developing the model are not truly representative of the actual materials
being modeled: Concrete stress-strain curves are nonlinean not lTinear.
The average shear stress at failure is not only a function of the concrete
strength, but is also a function of the applied moment. Interface shear
is present along the total length of the shear crack. The inclination of
the critical shear crack is not constant for all beams.

One of the most apparent inconsistencies in the model is the assump-
tion of zero tensile strength in the concrete, used to determine the depth
of the compression zone, while at the same time assuming a tensile strengtn
(Eq. (4.25}) to obtain the shear capacity of the same compression zone.

The overall effect of the simpiifying assumptions is to ignore the
true stress-strain behavior of the concrete and, therefore, ignhore the
material softening in combined compression and shear and the accompanying
reduction in the depth of the compression zone. This results in too great
an increase in the depth of the compression zone, as a function of a/d
and Oy ® and a sudbsequent overestimation of the concrete capacity. The
use of an average failure shear stress within the compressfon zone, T,
also prevents the model from exhibiting compression-type failure (and re-
duced "stirrup effectiveness”) for high values of pvay. Finally, no
attempt is made to model the aggregate interlock and dowel shear except
through the use of test data.

In spite of these shortcomings, the model provides a qualitative repre-
sentation of the effects of concrete strength, shear-span to depth ratio,
percentage of longitudinal reinforcement and amount of shear reinforcement

on the shear capacity of reinforced concrete beams. The qualitative success

of the model suggests that the general approach is correct and that a more
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accurate model can be obtained by following a similar approach and improv-

ing the realism of the stress-strain representation of the concrete.
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CHAPTER 5
SUMMARY AHD CONCLUSIONS

5.1  Summary

Fifteen Jightly reinforced concrete T-beams, eleven with stirrups
and four without stirrups were tested to faiiure. The major variables
in the study were the amounts of flexural and shear reinforcement. The
flexural steel varied from one-half to one percent, and the shear reinforce-
ment varied from zero to about 110 psi. The test results are analyzed and
compared with the ACI Building Code {5) shear design procedures. Design
recommendations are presented.

An analytical model is developed which examines the effects of con-
crete strength, shear-span to depth ratio, percentage of flexural steel
and amount of shear reinforcement on the shear capacity of normal {a/d > 2.5)
rectangular reinforced concrete beams. The effects of these parameters on
the relative contributions of compression zone capacity, aggregate inter-

lock, dowel shear and stirrup capacity to shear strength are examined.

5.2 Conclusions

1. The test results obtained in this study indicate that
reinforced concrete T-beams with small percentages of longitudinal
reinforcement and small amounts of shear reinforcement exhibit a
reduction in shear capacity relative to the design expressions in
the ACI Building Code (5}, when compared to similar beams with
normal to large percentages of longitudinal reinforcement.

2. The shear capacity of these lightly reinforced T-beams is, in most

cases, eqgual to or greater than the shear capacity predicted by the
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current ACI Code (5), and the present ACI procedure appears to be
safe for T-beams.

For the lightly reinforced concrete T-beams, in this investigation
it was found that the stirrups are 1.5 times as effective as pre-
dicted by the ACI Code (5).

The current procedures for shear design (Z) should be retained for
reinfo}ced concrete beams both with or without stirrups, until
additional tests are performed.

The semianalytical model developed in this study is a reasonable
qua.itative tool for the examination of the effect of concrete
strength, shear-span to depth ratio, percentage of flexural steel
and amount of shesr reinforcement on the ultimate shear capacity
of reinforced concrete peams.

The model can be used to examine the relative contribution of the
different shear transfer mechanisms on shear capacity.

The model explains the observed high effectiveness of the first
small amounts of shear reinforcement in terms of a greater shear
crack projection and an increased compression zone capacity.

Due to the simplifying assumptions used, the model overestimates
the effect of shear-span to depth ratio and flexural reinforcing
ratio on shear strength and cannot account for shear-compression
failure.

Diagonal cracks must be modeled to properly represent both the
concrete and steel contributions to the shear strength of reinforced

concrete beams.
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5.3 Recommendations for Further Study

The experimental investigation in this study is only a small part
of a test program needed to examine the ultimate shear capacity of rein-
forced concrete beams with small amounts of flexural and shear reinforce-
ment. Additional tests should be carried out on both T-beams and rectang-
ular beams. The effect of concrete strength and shear-span to depth ratio
should be examined. In addition, the effect of continuity and type of
loading should be investigated. The type of flexural reinforcement used
in the future should be high strength deformed reinforcing bars,.in order
to more accurately represent the flexural steel which is used in practice.

The relatively simple model presented in this study may be impfoved,
but with some loss in simplicity. A better representatfon of interface
shear along the total length of the shear crack should be incorporated
in the basic model. The actual nonlinear stress*straiﬁ curve for the con-
crete should be used, and the effect of a variable shear.crack inclination

on ultimate strength should be studied.
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TABLE 2.1 LONGITUDINAL AND TRANSVERSE REINF(CUCEMENT

Longitudinal Reinforcement Transverse Reinforcement
Bottom Flange Flange Smooth Wire Stirrups
Beam Type . Flexural Type Type Diameter  Spacing  Shear Preyielding VYield Htimate
Area,in” réiqforcing + in in reinforcing ++ load, load, toad,
rat1o,“w,u ﬁvay’ psi pounds pounds pounds
i2 5-1/47 in 8,693 - o
ADD ASTM Ad16 03,656 B o -
LYES 270 ki 0.663 .- oo 0.132 7 31.8 750 835 1078
A25a siress 0.765 (.668 % o ° 2 0,132 7 31.8 750 835 1115
50 relieved . 661 S %iﬁ 0,186 7 73.9 1650 1340 2125
Ab0a sirands 0.658 g Ea 0.186 7 15.0 1700 1870 £200
A7S 0.655 o 3o 0.229 7 97.1 2350 2550 3240
1 0.699 28 mi’l 0.244 1h* 110, 2%+ 1350 1550%* -
B0 5-7/16 in 0.488 38 S
825 ASTM Adl6  0.575 0.494 £= 82 0.132 7 32.4 750 850 1135
B&{} 210 ksi 0.498 o= ;§}% 0.186 7 76.2 1700 2000 2200
stress —_ -
relieved 3";\., IE
strands f:«-\h 2.
wy
oo 5-0.6 in 0.943 25 =
Cz5  ASTM AdE6 | o0 0.548 o D 2y 0132 7 32.4 750 R50 1120
€50 270 ksi : 1,839 Pl o 0.186 Fi 76.2 1700 2000 2210
C75 St;gss g 0,933 o e G6.229 7 153.0 2350 2795 3347
relieve
strands

double stirrups at 7%" were used
estimated
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TABLE 2.2 CONCRETE MIX DESIGN AND STRENGTH

Series  Beam Coarse Fine Type 1 w/c  Slump  Measured Age at Cylinder Modulus of
aggregate aggregate cement in air con- test, strength, rupture.
1b/cy* Th/cy* Th* tent % days fé,psi fr’ psi
72 1470 1460 564 473 1Y 5.5 21 4750 437
AOO 1510 1500 470 .568 1Y% 5.0 7 4740 667
A25 1510 1500 470 .568 1 5.5 16 4720 390
A AZba 1490 1480 517 516 VA 2.0 4 4790 664
A50 1510 1500 470 . 968 1Y, 6.5 18 3810 380
A50a 14390 1480 517 .b16 1%, 4.5 & 4060 b12
A75 1510 1500 470 .568 1% 3.9 6 4670 550
#1 1510 1500 470 .568 Y, 6.0 10 5520 717
BOO 1510 1500 470 .568 ¥, 4.5 11 4640 567
B B25 1510 1500 470 .568 1Y, 3.8 18 4470 525
B50 1510 1500 470 .568 1Y 6.0 13 4390 585
coo 1490 1480 517 .516 Y 4.4 3 4270 604
c €25 1490 1480 517 .516 A 3.3 5 4100 462
€50 1450 1450 611 450 14 6.5 3 4300 650
3.2 9 4260 585

C75 1480 1480 517 .516 1

* Based on air content = 5.0%.
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TABLE 2.3 SUMMARY OF TEST PROGRAM, FLEXURAL CRACKING STRESSES
AND NOMINAL SHEAR STRENGTH

A
Series Beam pw=5~%~' pvay fé a/d , bw d f]:liisl Vn test
4 psi psi in in cracking kips
stress
psi

#2 0.693 - - 4750  4.14 14.72 7.48/?3' 16.244

ADQ 0.6586 - - 4740 3.92 15.54 6.54Jﬁ; 14.560

AZb 0.663 31.8 4720 3.97 15.38 6.55J?§ 19.275

A25a 0.668 31.8 4790 4.00 15.26 6.77J?: 20.77¢

A A50 0.061 73.9 3810 3.96 73 15.42 7.22/?1“ 25.954
A50a 0.658 75.0 4060  3.34 15.49 7.49/?5' 24 . 660

A75 J.655 97.1 4670  3.92 15.56 6.83#?2 31.966

#1 0.699 110.2 5520 4.18 14.60 6.24f?§’ 31.275

BOO 0.488 - - 4640  3.88 15.70 6.18/F, 16.027

B B25 0.494 32.4 4470 3.93 74 15.52 6.38/ﬁ? 1?.670
B50 0.498 76.2 4390  3.96 15.39 7.57%?; 24,050

Coo 0.943 - - 4270 3.96 15.41] 7.14/ﬁ: 13.270

C €25 0.948 32.4 4100 3.98 7 15.33 7.23#?? 18.650
€50 0.934 76.2 4300 3.94 15.47 7.82%?: 30.150

C75 0.933 103.0 4260 3.92 - 15.57 7.53%?2' 31.020

* Based on the uncracked transformed cross section.
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*TABLE 3.1 SHEAR CRACKING STRESSES OBTAINED FROM CONCRETE
STRAINS, STIRRUP STRAINS, DEPTH INCREASE AND
CRACKING PATTELRNS

Series Beam

#2
ADC
AZ5
A . A25a
A50
AbQa
AT75

BOO
B B25
B50

Co0
€25
€50
€75

* From Ref. (6)

Concrete
strains

111
112
114
116
114
110

39
93
98

96
114
115
116

Diagonal Cracking, psi

Stirrup
strains

115
115
116

Depth
increase

Cracking
patterns

100
104
93

73
114
115

94
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TABLE 4.1 AVERAGE SHEAR STRESSES IN THE COMPRESSION
ZONE AT FAILURE BASED ON ASSUMED LINEAR
STRESS-STRAIN CURVE FOR CONCRETE

W .5 .6 .7 8 .9 1.0
Ky .735 772 .804 .831 .853 .873

fe
3000 298 313 326 337 346 354
(298)  (313)  (326)  (337)  (346)  (354)
4000 365 384 400 415 428 438

(370) (388)  (404) (418) (429) (439)

5000 427 450 471 489 204 516
(437) (459}  (478) (494) (507) (519)

6000 486 513 537 558 576 591
(501)  (526) (548)  (566)  (581) - (595)

values in parenthesis are obtained using Tay = K3f"75
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TABLE 4.2 COMPARISON OF PREDICTED AND EXPERIMENTAL NOMINAL
SHEAR STRESS FOR RECTANGULAR BEAMS WITH STIRRUPS

A
Beams b, 4 a/d 1000, o,fy Vitest Vmtest Vn ik
psi in, - kips psi  psi n
BRESLER AND SCORDELIS (10)
A1 3880 121 18.35 3.92 1.80  47.2 52.5 236 243  .Y73
A2 3520 12.0 18.27 4.93 2.28 47.6 55.0 251 231 1.086
Bl 3590 9.1 18.15 3.95 2.43  69.2 50.0 303 287 1.054
52 3360 9.0 18.33 4.91 2.43  70.0 45.0 273 258 1.057
¢ 4290 6.1 18.25 3.95 1.80  93.9 35.0 314 324 .97
c2 3450 6.0 18.28 4.93 3.66 95.2 36.5 333 239 1.113
PLACAS AND REGAN (35)
R& 3876 6.0 10.7 3.3 1.46 83.5 17.9 279 313  .890
R 4290 6.0 10.7  3.36 1.46 167.0 23.5 366 446 .82
RIO 4205 6.0 10.7 3.3 .97  83.5 16.9 263 291  .903
RIT 3800 6.0 10.7 3.36 1.95 83.5 20.1 313 326  .959
RI2 4920 6.0 10.0  3.60 4.16  83.5 24.6 410 384 1.067
RI3 4680 6.0 10.0  3.60 4.16 167.0 33.6 560 479 1.168
R4 4210 6.0 10.7  3.36 1.46 55.7 20.1 313 267 1.170
RIS 4330 6.0 10.0 3.60 4.16 167.0 31.4 523 467 1.121
RI6G 4580 6.0 10.0 3.60 4.16 167.0 31.4 523 476 1.099
RI7 1850 6.0 10.7  3.36 1.46 83.5 15.7 244 251  .975
R20 6230 6.0 10.7 3.3 1.46 83.5 20.2 315 353 .89
R21 6980 6.0 10.0 3.60 4.16 167.0 33.6 560 545 1,027
R22 4280 6.0 10.7 4.50 1.46 83.5 17.9 279 282  .988
R4 4480 6.0 10.0 5.05 4.16  83.5 20.7 345 317 1.089
R25 4470 6.0 10.0  3.60 4.16  83.5 23.5 392 371 1.055
R27 1980 6.0 10.0 3.60 4.16 167.0 21.3 385 355 1.000
REB 4580 6.0 10.0  3.60 4.16 326.0 40.3 672 657 1.022

* predicted
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TABLE 4.2 (continued)
KREFELD AND THURSTON {24)

26-1 5820 10.0 17.94 4.01 2.22 79,
29-1 5630 10.0 17.94 4.01 2.22 53.
29b-1 5460 10.0 17.94 4,01 2.22 53.
2%a-2 53% 10.0 17.94 4.01 2.22 62.
29b-2 6000 10.0 17.94 4.01 2.2¢ 62.
29c-2 3500 10.0 17.94 4.01 2.22 62.
29d-2 4410 10.0 17.94 4,01 2.22 62.
29e-2 7030 10.0 17.94 4,01 2.22 62.
29-3 4970 10.0 17.84 4.01 2.22 40.

OO0 O O O o O O Q

46.
35.
36.
48.
45,
36.
37.
46,
43.

W o L~ OO

259

. 200

201
271
254
202
207
259

223

343
299
298
311
321
268
292
340
266

. 756
.670
.674
.873
. 789
.755
. 708
.761
.837



Beams

AZ5
Alba
A50
A50a
A75
#1
B25
B50
W)
€50
C75

B3
4
C3
D3
C4
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TABLE 4.3 COMPARISON OF PREDICTED AND EXPERIMENTAL NOMINAL
SHEAR STRESS FOR T-BEAMS WITH STIRRUPS

v
f . 'ntest
f b d a/d  100p, pvay Votest Vntest 'n v

psi in. in. AUTHOR kips psi psi
4720 7.5 15.38 3.96  .663 31.8 19.275 167 189  .885
4790 7.5 15.26 4.00  .668 31.8 20.772 181 183 .99
3810 7.5 15.42 3.96  .661 74,0 25.954 224 247  .907
4060 7.5 15.49 3.94  .658 75.0 24.660 212 248  .855
4670 7.5 15.56 3.92  .655 97.0 31.966 274 295  .928
5520 7.5 14.60 4.18  .699 106.0 31.275 285 321  .888
4470 7.5 15.52 3.93 .49 32.4 17.670 152 174  .872
4350 7.5 15.39 3.96  .498 76.2 24,05 208 247  .844
4100 7.5 15.33 3.98  .948 32.4 18.650 162 199  .813
4300 7.5 15.47 3.94  .939 76.2 30.150 260 270  .963
4260 7.5 15.57 3.92  .933 103.0 31.020 266 313  .847
HADDADIN, HONG AND MATTOCK (17)
4000 7.0 15.00 3.37 3.81 210.0 61.0 581 . 519 1.118
4027 7.0 15.00 4.25 3.8]  95.0 39.0 371 338 1.099
3500 7.0 15.00 4.25 3.81 210.0 58.5 577 448 1.245
4244 7.0 15.00 6.00 3.81 210.0 54.2 516 424 1.218
3730 7.0 15.0  4.25 3.81 393.0 69.8 665 552 1.020

* predicted
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TABLE 4.3 (continued)

PLACAS AND REGAN (35)

T 4050 6.0 10.7  3.36 1.25  83.
T3 3990 6.0 10.7  3.36 1.46  83.
T4 4710 6.0 10.7  3.36 1.95  83.
T5 4890 6.0 10.7  3.36 1.46 167.
T6 3740 6.0 10.0  3.60 4.16 326.
T7 3970 6.0 10.4  3.46 3.00  83.
T8 4530 6.0 10.0  3.60 4.16  83.
T9 2930 6.0 10.0  3.60 4.16 167.
TI0O 4090 6.0 10.7 3.36 1.46 55,
T13 1550 6.0 10.7  3.36 1.46  83.
TI5 4810 6.0 10.0 7.20 4.16  83.
T16 4740 6.0 10.0  7.20 4.i6 55,
T17 4790 6.0 10.0 7.20 4.16 167.
T19 4340 6.0 10.0  5.40 4.16 83,
T20 4655 6.0 10.0  5.40 4.16. 167.
T25 7840 6.0 10.7  3.36 1.46 83,
T26 8260 6.0 10.0  3.60 "4.16 167.
T27 1740 6.0 10.0  3.60 4.16 167.
T31 4495 6.0 10.7  3.36 1.46  83.
T32 4000 6.0 10.0  3.60 4.16 326.
T34 4920 6.0 10.0 5.40 4.16  83.
T35 4880 6.0 10.0 5.40 4.16 83,
T36 3500 6.0 10.0  3.60 4.16 167.
T37 4615 6.0 10.0  3.60 4.16 326,
T8 4380 6.0 10.0  3.60 4.16  326.

OO O M s o OO O WU O QU s T DS M s e

24,
Z3.
24.
31.
46.
24,
28.
34.
19.
20.
23.
20.
30.
25.
34.
25.
40.
29.
21.
48.
25.
25.
40.
47.
53.

[+ B FE R« B AN B o ot s T T I =T A B S s L o« B 2 B L 1 B A o B A o R = L 52 N |

385
366
383
489
767
394
467
578
304
315
392
347
502
425
577
402
672
495
332
785
420
430
672
785
897

308
316
347
459
618
348
373
409
262
252
291

259.

378
305
405
376
575
337
322
658
320
319
434
658
648

—_—t il e ok el mad wed eed ced e e aed et et e omid eed mad ae? omad eed i wewed weef eed

248
.160
.103
.066
.240
131
. 250
415
.158
. 245
. 345
. 338
. 326
. 392
.423
.070
.169
.467
.030
.192
.31
. 346
.546
.192
.383
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Figure 2.17 Load-Deflection Curves, Beam A25a (pw = (0.668%, Qvay = 31.8 psi)
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Figure 2.19 Load-Deflection Curves, Beam A50a (pw = .658%, pvay = 75.0 psi)
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Figure 2.22 Load-Deflection Curves, Beam BOO (pw = 0.488%, pvay = 0.0 psi).
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86



lLoad, P, Kips

T
+

60+

504

dial gages

LoT

30 4

20 +

10 1

66

&
T g

0.9 0.5 1.0 1.5 2.0
0.0 .5 1.0 1.5 2.0
0.0 0.5 1.0 1.5

Deflection, in

Figure 2.27 tLoad-Deflection Curves, Beam C50 (pw = {,948%, pvay = 76.2 psi).



Load, P, Kips

e - —pe + -t

604
dial gages #l

50d-
kot
30+
204
R

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.6
0.0 n.5 1.0 1.5 2.0
Deflection, in
Figure 2.28 Load-Deflection Curves, Beam {75 {p = 0.933%, eyfyy = 103.0 psi).

W

¥

001



Lead, P, Kips

6Q

19 18 17 éP/Z 13 r/z 1415 16
a.g.n 0 | a.n.n
SR NN SO N N hed E O SN S |
'HEEEEN 3 ko8 @
| L1 1 [?021]5]6 |78 |22 %l A LAY L LI T T T | |
i 1_’;_ ] d ) | L L i 1 i i i | £ 3 1 3 i b 1 L i 1 -1 I-g i
0 | . ! . 3 b
g Steel Strain Gages o Concrete Strain Gages
L strain gages #3 #13 #E»’”
. //,
- #1
17
9940 0-001 4 004 0.902 4 002 0.003 4 003
0.0 0.0 0.001 6.001 0.002 0.002 4.003 0.003
’ 0.0 ' 0.001 . 0.002 ’

Strain, in/in

Figure 2.29 Load-Strain Curves, Beam #2 (pw = 0.693%, pvay = 0.0 psi).
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Figure 2.35 Load-Strain Curves, Beam A25a (pw = (.668%, pvay = 31.8 psi).
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Figure 2.59 Load-Strain Curves, Beam B50 (pw = (0.498%, pvay = 76.2 psi).
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Figure 2.60 Load-Strain Curves, Beam B50 (pw = (.498%, pvay = 76.2 psi).
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Figure 2.66 Load-Strain Curves, Beam (25 (pw = (0,948%, pvay = 32.4 psi).
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Figure 2.77 Load-Depth Increase Curves, Beam AGO (pw = (.6h6%, pva = 0.0 psi).
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Figure 2.78 Load-Depth Increase Curves, Beam A25 (pw = (J,663%, pvay = 31.8 psi).
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Figure 2.79 Load-Depth Increase Curves, Beam A25a (pw = 0.668%, pvay = 31.8 psi).
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Figure 2.80 Load-Depth Increase Curves, Beam A50 (pW = 0.66??1, pvay = 73.9 psi}.
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Figure 2.81 Load-Depth Increase Curves, Beam A350a (pw = 0.658%, pva = 75.0 psi).
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Figure 2.82 Load-Depth Increase Curves, Beam A75 (pw

0.655%, p = 97.1 psi).
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Figure 2.83

Load-Depth Increase Curves, Beam BQO (QW = 0.488%, pvay = 0.0 psi).
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Figure 2.84 Load-Depth Increase Curves, Beam B25 (o, = 0.494%, o f = 32.4 psi).
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Figure 2.85

Load-Depth Increase Curves, Beam (25 (pw = (.948%, pvay = 32.4 psi).
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Figure 2.86 Load-Depth Increase Curves, Beam C50 (pw = {],939%, pvay = 76.2 psi}.
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APPENDIX A

NOMENCLATURE

area of longitudinal reinforcement

area of longitudinal reinforcement in equivalent beam under
pure bending that produces neutral axis JTocation equivalent
to neutrai axis in beam under bending and shear

area of shear reinforcement

snear-span

widtn of a rectangular beam or web width of a T-beam

compression force in the concrete

resultant of normal stresses for a depth y Trom the top of
the beam

effective depth of beam

modulus of elasticity of concrete (EC = 57,000/ﬁ§)
modulus of elasticity of steel

geometric and shear softening factor

concrete cylinder strength

concrete compression stress at a distance y from the top of
the beam

modulus of rupture of the concrete

tensile strength of the concrete (fé =5 fé , assumed)
yvield stress of shear reinforcement

depth of concrete compression zone at section x
internal moment arm

ratio of compression zone to effective depth

depth of concrete compression zone at plane 1-1

ratio of dowel plus interface shear to total concrete

snear (K] = (Vy + Vay)/vc)

ratio of shear carried by stirrups to nominal shear (K2 = VS/VC)
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variable coefficient

applied moment

applied moment

moment for the pure bending case
applied moment at section x
modular ratio {n = Es/Ec)

design cube strength

V=V
effectiveness factor of shear reinforcement (r = EE?JQ)

vV vy
stirrup spacing along the axis of beam
tension force in the longitudinal reinforcement at section i

tension force in the longitudinal reinforcement in the pure
bending case

applied shear

interface shear capacity {verticel component of aggregate interlock)

3 [ b - +
shear carried by the concrete (VC ch + Vay Vd)
shear carried by the concrete compression zone

shear carried by the dowel action of longitudinal rein-
forcement

nominal (ultimate} shear capacity
experimental ultimate shear capacity
shear carried by the shear reinforcement
applied shear

nominal shear stress

interface shear stress

shear cracking stress {diagonal tension cracking stress)
Vv
: i i CZ
compression zone “stress' (v__ = %)
cz bwd

shear cracking stress for beams without stirrups
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experimental shear cracking stress

dowel shear stress

nominai  ultimate snear stress

experimental wultimate shear stress

shear stress carried by the shear reinforcement
compression strain ratio (w = £

fu

distance from plane 1-1along the longitudinal axis of the beam
distance to the neutral axis from the top of the beam

distance of point of application of resultant, C, from
tne extreme compressive fiber of the beam at plane 1-1

distance of point of application of resultant, C, from the
extreme compressive fiber of the beam at section x

distance of neutral axis from the extreme compressive fiber
of the beam at section x

distance from the extreme compressive fiber of the beam

distance of point of application of resultant, C, from the
neutral axis

distance of point of application of resultant, C, to the
level of flexural reinforcement at section x

horizontal shear crack projection
inclination of web reinforcement to longitudinal axis

total elongation of longitudinal reinforcement between
sections 1-1 and 2-2

strain in extreme compressive fiber of concrete

strain in the extreme compressive fiber of the concrete at
section x

strain in concrete at a distance y from the top of the beam
strain in the longitudinal reinforcement at section 2-2.

average strain in the longitudinal reinforcement
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strain at tne Tevel of the flexural reinforcement at
Tocation x

inclination of inclined crack

A
ratio of shear reinforcement (p = —-)

v b.s
W A
percentage of longitudinal reinforcement (pw==5—%}
W
normal appiied compressive stress in the concrete
principal tensile stress

principal compressive stress

failure shear stress of the concrete

average shear stress within compression zone at faiture

shear stress at a distance y from the top of the beam

strength reduction facter (from ACI)
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APPENDIX B
STRAIN GAGE INFORMATION

The type and size of the strain gage used in this investigation are
shown in Table B.1.

2.4 inch paper backed gages supplied by the Precision Measurement
CG; were used to measure concrete strain in all beams except Beams #1 and
#2. 1.0 inch paper backed gages supplied by BLH Electronics were used
for Beams #1 and #2. The steps of the concrete gage installation were:
smoothing the concrete surface with a grinding wheel, bonding the gage
to the concrete with Duco cement, and protecting the gage with a layer
of Buco cement.

0.03 inch foil gages were used to measure steel strain. This small
size was selected in order to make installation possible on the smailest
diameter stirrup used (0.132 inches). The steps of foil gage installation
were: cleaning and preparing the specimen surface, bonding the gage to
the steel surface and waterproofing. All material used for the foil
gage installation was supplied by the Micro-Measurements Co. The surface
preparation materials were M-Prep Conditioner A and M-Prep Neutralizer 5.
The bonding media consisted of M-Bond 200 catalyst and M-Bond 200 adhesive.
The waterproofing coat was M-Coat G. For additional information on the
material used and detailed information on the procedure of installation

of the foil gages see References 28 and 29,
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TaD?e B 1 STRAIW GAGES

Stee] Gages v y}_fi o Concrete Gages

Lg: }iBeami-f; Type _'"':’”5; Manufacturer* s Type ~ Manufacturer® -

- _”ff*#é'“t-,FAE 03J-12-S6EL: BN _';” CoA-12 BLH
LUA00 4 EAS 06 OS?DE 120 WM. w240 0 PM
- ¢=ffA25 Lo -. ;; R L R S
U A25a FAE -031- 12 SbELf;F e o
ASO - CEA-06-031DEZ1200 MM e
AS0a  FAE-03]-12-SGEL' . BLH. T v
A75  EA-06-031DE-120.  MMe o e
INREE TS R
BOO "
s s e "
50 o I PR neo :
C75 T . ' w7 " 8

BLH Electronics, Waltham, Mass.
Precision Measurement Co., Ann Arbor, Michigan
Micro-Measurements Co., Raleigh, North Carolina

* BLH
' PM

[T I





