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1 . 1 Genera 1 

CHAPTER 1 

INTRODUCTION 

One of the modes of failure that can occur in a reinforced concrete 

structure during its lifetime, is the so-called "shear failure." Such 

failures reduce the strength of structural elements below their flexural 

capacity and result in a large reduction in ductility. For this reason 

snear failures are considered undesirable. 

Since the beginning of this century, many investigators have experi­

mentally studied reinforced concrete beams. The results are numerous, 

but not conclusive enough to develop a universally accepted solutio11 to 

t~e shear capacity problem. The abse~ce of a general solution is excel­

lcn-c evi<ience uf the tremendous difficulty involved in solving the 

problem. Most of the investigations nave been unr2lated, and unfortunate­

ly tnere nas oeen no systematic overall approacn to the test programs. 

In fact, many times the test srecin::ns have not been representative of 

those used in real structures. 

In spite of this extensive experimental research, there are some areas 

which have not received much attention until the past decade. One of these 

areas is the behavior of nomally proportioned reinforced concrete beams 

with small amounts of shear reinforcement and low to optimum percentages 

of longitudinal reinforcement. It is this category of beams which is the 

primary interest of this investigation. 

l .2 Previous Work 

1. 2. 1 Background 

Researchers of the late lJJJ's were divi.ied over the issue of the 
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mechanism of the shear failure of reinforced concrete members. Some be-

lieved t:,dt the cause of shear failure was horizontal shear, others believed 

it was diagonal tension (2, 19). 

For a decade, the two groups continued the discussion of the mechan-

ism of shear failure until E. MHrsch, from Germany, resolved this issue 

(2, 19,33). 8y testing a number of reinforced concrete beams, Morsch found 

that diagonal tension was the controlling.factor. 

After the acceptance of Horsch's theory, the early specifications 

in the United States considered the nominal shearing stress, v = 

0n which v =nominal shear stress, psi, V =shear force, pounds, 

width, inches, and jJ = internal r:lO!ile:lt arm, inches), to be a measure of 

diagonal tension and restricted tne stress, v, to values less t~an certain 

fractions of the cylinder strength, f~ (2). In l90Y A. N. Talbot pointed out 

the fallacies of such a procedure (2,40). Testing 106 beams without shear 

reinforcement, Talbot demonstrated (40) that the main variables affecting 

the shear strength of reinforced concrete bear,ls without shear reinforcement 

were the concrete strength, the ratio of beam length to depth, and the per-

centage of longitudinal reinforcement. 

Talbot's findings were ignored until the early 1950's, when A. P. 

Clark (ll) introduced an expression for the effect of the shear-span to 

depth ratio, a/d, on shear strength. Clark expressed Talbot's findings as: 

vn = 7000 p + O.l2f' d/a + 2500 ;p-lv c v (l.l) 

in \vhich pw = percentage of longitudinal steel (pw = As/bwd), a/d =shear­

span, a, to effective depth, d, ratio, pv = ratio of shear reinforcement 



( •Jv = 

ment, 

3 

~ 2 bS), Av =area of a stirrup, in , As= area of longitudinal reinforce-
w2 

in , and S = stirrup spacing along the axis of the beam, inches. 

The a/d ratio provided a way to account for the effect of horizontal 

flexural tension on shear strength. Unfortunately, the shear-span could not 

be defined for generalized cases of loading. This handicap was overcome 

in the early 1950's when researchers at the University of Illinois expressed 

the shear-span to depth ratio in the modified form of 1'1/Vd, involving bend­

ing moment, ~1, shear force, V, and effective depth, d (2,3). For the case 

of simple beams with concentrated loads, it is obvious that the term 11/Vd 

is synoli;mous with the a/d ratio. 

From the early 1950's to tile present, researchers have made numerous 

shear tests and found that some other variables influence ti1e snear strengtn 

of concrete iJeams (2,3). Among tile variables are the type of loading and 

the type of cross section. The ACI-ASCE Committee on Snear and Diagonal 

Tension chose to express the shear capacity of reinforced concrete ~eams 

without stirrups as a function of the square root of the cylinder strengtn, 

the shear-span to depth ratio, and the percentage of l ongitudi na·l reinforce­

ment (3,5). For beams with web reinforcement, the committee concluded that 

both the web reinforcement and the concrete contribute to the shear capac-

i ty of a member. They found that tne nominal shear stress in tne concrete 

at diagonal tension cracking correlated well the concrete contribution at 

ti1e failure loacl. Tne following equation was selected to express the 

ultimat2 capacity of reinforced concrete beams in shear. 

v n = v c + rpv f vy ( 1 . 2) 
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in which 

vn = nominal (ultimate) strength, psi, r = (sina + cosa), 

a = inclination of web reinforcement to longitudinal axis, 

=yield point of web reinforcement, psi, and 

= si1ear stress carried by the concrete equal to shear at 

diagonal tension cracking, psi. 

In the united States design practice, two expressions are given for 

the shear stress at diagonal tension cracking (5): 

p v d 
vc = l .9/fc' + 2500 ~­

t~u 

or, more conservatively, 

in which 

v = z,ff' c c 

Vu = factored shear at the section, and 

Mu = factored moment at the section. 

( l . 3) 

( l . 4) 

The expression r pvfvy was derived using the truss analogy for beams 

at failure, assuming that the web reinforcement yields and that diagonal 

cracks have a horizontal projection equal to the effective depth of the 

beam. 

To insure ductility, the committee set a minimum value of shear t·ein-

forcement, p f , equal to 50 psi. v vy 

The key shortcoming of ti1is procedure is that it does not accurately 

represent the effects of the various parameters on shear strength and thus 
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results in a variable factor of safety in the applicable range of the 

equation. It has been retained in the ACI Building Code (5) because of 

its relative simplicity and because it i1as generally provided conservative 

designs. 

One equation, which predicts the diagonal tension cracking stress with 

good accuracy, \vas derived by Zsutty ( 42): 

vc = 59 ( f' !!..) ';, c Pw a ( l . 5) 

This equJtion was derived using the techniques of dimensional analysis 

and statictical regression analysis aprlied to existing shear test data. 

The meci1anism of shear transfer in reinforced concrete beams with 

stirrups is not yet completely understood. It is believed that snear is 

carried to the supports of the beam in five different \>lays (3,11 ,13,14,15, 

22,32,41,42). 

l. shear force in t;1e uncracked concrete, 

2. tension forces in the s11ea r rei nforcernent, 

3. forces due to arch action, 

4. dowel forces in tne flexural reinforcement, and 

5. friction forces along the crack. 

The relative contribution to shear transfer of these mechanisms de-

pends on such factors as, (3) 

l. the geometry of the beam, 

2. the type of concrete, 

3. the type, amount and detailing of reinforcement, 

4. the type, stage and location of loading, and 
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5. the type of supports. 

Fig. l.l illustrates qualitatively the relative contributions of the 

various mechanisms to shear resistance as a function of load. 

l. 2. 2 Ra tiona l Approaches 

i~any researchers have attempted to develop rational solutions to the 

shear capacity problem (7 ,8,9, 12,16,20,21 ,22,23,27 ,30,31 ,33,34,37 ,33,39, 

43). For beams with stirrups, the major concern of this study, most of 

the theories can be classified under a few categories. 

Modified Truss Analogy 

This theory is attributed to Ritter and Horsch (2,19,33,38). They 

assume that beams resemble a truss after shear cracking. The top a;1u bot­

tom chords of the truss are the concrete compression zone and longitudinal 

reinforcement, respectively. The diagonal and vertical struts consist of 

the beam web and shear reinforcement. The assumption that all shear is 

carried by the shear reinforcement does not agree well with test data. 

Norti1 Ar.1erican design methods, as represented by Eqs. (1.2)-(1.4), 

recognize the contribution of the concrete (5). It is assumed that part 

of the applied shear is carried by the concrete, and the rest is carried 

by the shear reinforcement. The concrete contribution has been determined 

experimentally and thus has an empirical, rather than a rational basis. 

Failure is assumed to take place after yielding of the shear reinforcement 

and along a plane oriented at about 45° to the axis of the beam. 

The main weaknesses of this method are its inability to accurately 

express the effects of the percentage of the longitudinal reinforcement 

and shear-span to depth ratio on the shear capacity of reinforced concrete 

beams, and the assumption of a constant horizontal crack projection 



7 

equal to the effective depth of the beam. For these reasons, the margin 

of safety provided by this expression is variable. 

Plane of Minimum Resistance 

The developer of this theory, r1.S. Borishansky (7), rationalized 

tnat failure can occur along any inclined plane of the beam, 1if the total 

shear resistance along that plane is a minimum. It is assumed that after 

shear cracking, shear is carried by both the stirrups and the concrete. 

At failure all stirrups along the crack yield. The concrete capacity is 

not constant, but is a function of the beam depth to crack projection ratio. 

The capacity versus crack projection relation for the concrete was obtained 

experinentally. 

( l . 6) 

in which, 

b = web widtil, em, w 
d = effective depth, em, 

Rb = design cube strength, kgf/cm2
, and 

z = horizontal crack projection, em. 

The stirrup capacity is, also, a function of the crack projection and is 

expressed as: 

in which, 

Av 
V

5
=-f z . s vy 

fvy = yield stress of shear reinforcement, kgf/cm 2 , 

( l. 7) 
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Av =area of the vertical stirrups, cm2
, and 

s = spacing of stirrups along the axis of beam, em. 

For the case of a beam loaded witn concentrated loads, the ultimate shear 

capacity is: 

( l . 8) 

The size of the crack, z, for \vhich the expression of the ultimate shear, 

Vn' is a minimum can be found after differentiation of Eq. (1.8) with 

respect io crack projection, z. Using this mathematical technique, 

Borishansky, obtained the following equation: 

( l. 9) 

The introduction of the variable crack inclination in this method is 

compatible with the test results reported by a number of investigators 

(17,22,24,35,37). In contrast, the concrete capacity term is entirely 

empirical and i~oependent of the percentage of longitudinal reinforcement, 

Pw· This is a weakness in the theory, since pw has been proven experiment­

ally to have an appreciable effect on the shear capacity of reinforced 

concrete beams ( ll). 

Shear-Compression Theory 

The development of this t:1eory is credited to many different investi-

gators (27,30,37,43). One of the most complete approaches is the one 

developed by Regan (37). In his approach, Regan states that failure is 

caused by the normal stresses in the cor.1pression zone of the beam. He 
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obtained these stresses using equilibrium equations and an approximate 

compatibility equation. The compatibility equation relates the total de­

formations of the concrete and the tension steel, betv1een two planes at 

the ends of the shear crack, with an average neutral axis depth, as shown 

in Fig. 1.2. The final equation of ultimate shear capacity is too com­

plex to be practical for design. This is recognized and Regan recommends 

a graphical or another sir.1plified approach. 

The main handicap of the shear-compression failure theories is that 

they always predict failures caused by crushing of the concrete. Many 

rectangular beams, and most T-beams, fail in a mode different than compres­

sion. These types of failures have been defined as "shearing" failures 

( 35). However, for reinforced concrete oeams that fail in tne shear­

compression mode, this theory satisfactorily predicts the ultimate shear 

capacity. 

Arch Theory 

In ti1e "remaining arcn" theory (20,21 ,22,23), it is assur;Jed that 

cracks generate and propagate perpendicular to the principal tensile stress 

trajectories and parallel to the principal compressive trajectories in a 

beam, as shown in Fig. l.3a. After cracking, the beam is transformed into 

a number of tied arches, and the applied shear is carried to the beam 

support by arch action. Only the outside arch is supported directly by 

the beam supports. The remaining arches are hanging arches. Kani (20,21, 

22,23) states that the cause of premature shear failure is not the shear 

force, but the compression arch forces. Failure is caused by the reduction 

of the compression arch capacity due to the loss of the supports of the 

internal hanging arches, as shown in Figs. 1.3 b,c,d. The primary 
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function of stirrups is to act as the hanging supports of the internal, 

arches, thus retaining the flexural capacity of the beam. The arch theory 

provides quantitative results for beams without stirrups. However, it 

is a qualitative theory for beams with stirrups, and remains impractical 

for design. 

Diagonal Compression Field Theory 

Diagonal compression field theory (8,12,16,34) uses a truss model 

with a variable inclination of the concrete diagonals, as shown in Fig. 

1.4. The truss model is approximated with compression and tension chords 

consisting of the concrete compression zone and the longitudinal rein- 1 
! 

forcement, respectively. The stirrups represent the posts of the truss,! 

and the continuous diagonal compression field represents the diagonals. 

One mode of failure is due to crushing of the concrete in the 

continuous diagonal compression field, while the shear reinforcement 

yields, or is still elastic. The other mode of failure is due to yielding 

of the shear or flexural reinforcement, or both, while the concrete in 

the continuous diagonal compression field is still intact. In all cases, 

it is assumed that the top chord of the truss (the compression zone of the 

beam) has adequate strength to carry the applied loads. This strength is 

determined from the equations of pure bending. 

This represents a weakness in the diagonal compression field theory, 

since it nas been found that combined flexural and shear stresses nave 

an appreciable effect on the capacity of concrete. In addition, it has 

been observed that in regions of high bending and shear stresses, cracks 

propagate higher in the compression zone of the beam than they do in 

regions subject to pure flexure. For these reasons, the capacity of the 
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compression zone in reinforced concrete beams is significantly reduced 

when shear forces are present. A rational theory should incorporate this 

strengtn reduction. 

1.2.3 Experimental Hark Ihat Ir.1pacts on This Study 

In 1963 Rajagopalan and Ferguson (36) showed, after testing ten 

rectangular beams witnout stirrups and with low percentages of longitudi-

nal reinforcement, that the present code provisions (Eqs. (1.3) and (1.4) 

are unconservative for low percentages of longitudinal reinforcement. 

They found that the expression 

v = (0.8 + lOOp ) If' c w c ( l . 9) 

conservatively represents the shear s tre;1gtn of reinforced concrete beams 

without stirrups and witi1 a reinforcing ratio, pw, less than 1.2 percent. 

In the recent ''Suggested Revisions to Shear Provisions of ACI Code, 3ld-

-71" (4) by ACI-ASCE cor.1mittee 426, a similar expression 

(1.10) 

\vas recommended. 

According to the findings of Bresler and Scordelis (10) in 1963 and 

Haddadin, Hong, and r1attock (17) in 1971, the effect of the first shear 

reinforcement on the shear strength of beams is about 75 percent higner 

than the strength calculated using the ACI Code provisions (5). Beams in 

these two studies had flexural reinforcing ratios, pw' in excess of 1.3 

percent. 
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In spite of the extensive use of concrete beams with small amounts 

of shear and longitudinal reinforcement, no experimental work has been 

performed to determine the shear strength of these beams. Tests on beams 

of this type are needed and will yield valuable information about the be-

havior· and shear capacity of these commonly used reinforced concrete mem-

bers. 

1. 3 Object and Scope 

The objectives of this study are to experimentally investigate the 

behavior of reinforced concrete beams with 1 0\~ amounts of both fl exura 1 

and shear reinforcement and to develop a useful representation of the 

shear strength of reinforced concrete beams. 

The tests consist of fifteen sir,J'Jly supported T-beams loaded to 

failure. The r.1ajor variables in the study are the flexural reinforcing 

ratio, p
11

, and amount of shear reinforcement,pvfvy The test results are 

analyzed and compared with the provisions of the ACI Building Code (5). 

A failure model is developed that incorporates the observed shear 

behavior of reinforced concrete beams and helps explain how shear strength 

is effected by flexural reinforcing ratio, concrete strength, shear-span 

to depth ratio, and shear reinforcement. 
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CHAPTER 2 

EXPERIMENTAL WORK 

The main purpose of this work is to determine the ultimate shear 

capacity of slender reinforced concrete beams with small amounts of shear 

and longitudinal reinforcement. This can be achieved only with a clear shear 

mode failure of the selected specimens. Therefore, care was taken in the de­

sign of the specimens to eliminate all other possible modes of failure. A 

description of the materials and the procedures used during this experimental 

work is pres en ted. 

2.2 Test Specimens 

The test specimens (Fig. 2. l) consisted of fifteen concrete T-beams, 

eleven with stirrups and four without. The geometry of these specimens was 

selected to closely resemble members in actual structures. In this manner, 

the size effect was eliminated. All beams had the same cross section: web 

width = 7~ inches; total depth = 18 inches; flange width = 24 inches; and 

flange thickness = 4 inches. The span of the beams was 13'-2", and the length 

was 20'-0". The 3'-5" overhangs at the ends of the beams increased the embed­

ment and prevented slippage of the reinforcing steel. Non-prestressed, pre­

stressing strands were selected for the longitudinal reinforcement to prevent 

flexural failures in the test specimens. The use of the high strength steel 

also allowed high strains to be obtained in the flexural steel, as would 

occur in continuous reinforced concrete beams undergoing moment redistribu­

tion following the formation of one or more plastic hinges. 

The beams were divided in three series, as a function of the quantity of 

the longitudinal reinforcement. Five strands were used for each beam to 
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eliminate the effect of the arrangement of the longitudinal reinforcement on 

the shear capacity of the beams. The smooth wire stirrups were spaced at a 

distance of about half the effective depth of the beam. The amount of longi­

tudinal steel was controlled using different diameter strands, l/2 inch, 7/16 

inch and 0.6 inch for series A, B, and C, respectively. The amount of shear 

reinforcement, pvfvy' varied from 0 to about 110 psi, using different sizes of 

smooth wire (0.132, 0.186, 0.229 or 0.244 inches in diameter). The flange rein-

forcement in all beams consisted of two #4 longitudinal bars and #3 transverse 

bars, spaced as shown in Fig. 2. l. Information on the shear and longitudinal 

reinforcing steels is summarized in Table 2.1. 

2.3 Material Properties and Sizes 

2. 3. l Concrete 

Concrete was supplied by a local ready mix plant. The concrete was air 

entrained. Type I cement was used. The nominal size of coarse aggregate 

was 3/4 inch (locally described as "l/2 inch aggregate"). 

t~i x proportions, compressive strengths and moduli of rupture are pre­

sented in Table 2.2. A typical stress-strain curve is shown in Fig. 2.2. 

2.3.2 Steel 

Three different types of reinforcement were used in the test specimens: 

prestressing strands, deformed bars and smooth wire. 

The flexural steel in all beams was non-prestressed, ASTM A416, Grade 

270 Seven-Wire Stress-Relieved Strand. Typical force-strain diagrams for 

these strands are shown in Figs. 2.3, 2.4 and 2.5. 

The flange reinforcement was ASTM A615, Grade 60 deformed billet steel bars. 

The stirrups were low carbon smooth wires with a diameter of 0. 132, 

0. 186, 0.229 or 0.244 inches. All wires were annealed in order to obtain 
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a yield stress close to the design yield stress obtained v1ith deformed 

reinforcing bars. The wires were supplied in coils because of the manu­

facturing process. The wire was straightened with a roller. During 

rolling, residual stresses were introduced. For tnis reason, the stress­

strain curve of these wires was not linear up to t;le yield point. To 

obtain a well defined yield point on the stress-strain diagram, all wires 

were loaded to t~e yield stress (preyielded). In this manner, a well 

defined yield plateau was obtained, as shown in Fig. 2.6. Due to work 

i1ardening during preyielding, strain aging occurred in tile wires. To 

obtain t:1e actual yield and ultimate loads of the wires on the day of 

tile test, two wire specimens 11ere tested after the failure of each beam. 

Tne preyielding loads, as well as the yield and ultimate loads on the day 

of testing, are presented in Table 2.1. 

2.4 Specimen Preparation 

The beams were prepared in four stages: (l) fabrication of tile rein­

forcing cage, (2) installation of gages on the reinforcing steel, (3) 

casting and curing of the concrete, and (4) preparation for the test. 

As soon as the stress relieved strand was received, it was flame cut 

into the desired lengths and stored outside of the laboratory, exposed to 

the weather. This treatment provided the strands with a uniform coat of 

rust which improved the bond and prevented slippage of the strands during 

the tests. 

After preyielding, the stirrups were cut to length, bent to snape 

using a one inc11 diameter pin, and welded to form a closed loop. The only 

possible failure mode of tile stirrups was by yielding of the stirrups 

themselves, since slippage of the anchorage was prevented. The strands, 
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reinforcing bars, and smooth wire stirrups were assembled to form a cage 

using commercially available wire ties. 

Following the fabrication of the reinforcing steel, strain gages 

were installed on the stirrups and strands, as shown in Fig. 2.7. Infor­

mation on the gage types and tile installation procedures is presented in 

Appendix B. 

Prior to casting tile concrete, the plywood form was oiled and sealed, 

anu the reinforcing cage was secured in the form using commercially avail­

able steel chairs and form ties. The concrete was placed in two layers 

(web and flange) with the aid of a cubic yard concrete bucket and an 

internal vibrator. Ten cylinders anci two flexure specimens were made for 

each test. Tile forms \'/ere removed after three days (except for beams COO 

and C50-one day) and covered with a polyethylene sheet. The oeam and the 

control specimens were wet cured together until the compressive strengtn 

was at least 3000 psi. 

Wilen the concrete compressive strengtil reaciled 3000 psi, the oeam was 

lifted to the test supports with a 3 ton capacity crane. For alignment of 

the beam and uniform Dearing stresses at the supports, a quick set gypsum 

cement grout, Hydrostone, was used. Hydrostone, also, was used to align 

and secure the loading beam bearing plates on top of the beam. Next, a 

coat of white wasn, made of Hydros tone, was app 1 i ed to one side of the 

beam. After drying, the location of neutral axis and the locations of the 

shear and tensile steel were marked. For comparison, stirrup ''locations'' 

were also marked on beams without shear reinforcement. The marking was 

fo 11 owed oy the ins ta 11 a ti on of the paper gages on the top of the beam, as 

shown in Fig. 2.7. Finally, the loading system (loading beams, load rods 
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and hydraulic jacks) were installed. 

2.5 _Test Equipment 

The load was applied to the beam with the aid of a Satec pumping 

console assembly (an electrically powered, 3000 psi capacity hydraulic 

loading system) and four 60-ton Enerpac hydraulic jacks. The jacks, lo­

cated below the structural test floor, pulled on four one-inch diameter 

steel rods attached to two wide flange beams attached to the test specimens 

(Fig. 2.8). The one-inch steel rods served as load cells. Two l/4-inch 

strain gages were installed on each rod, and then the rods were calibrated 

within one percent of the total load. In this manner, monitoring of the 

applied loads was possible with the aid of a strain indicator. 

The beam supports were one 6 inch roller and one bolster (Fig. 2.8). 

To reduce the friction in the bolster, 1/32 inch teflon sheets were in­

serted between the bearing surfaces of the bolster. 

A Yishay Model 220 Data Logging System was used to read the specimen 

strain gages and one hand operated Budd Instrument P-350 strain indicator was 

used to obtain the strains in the four loading rods. This combination of 

strain recorders was used for all beams, except COO and C75. For these beams, 

hand operated Budd Instrument P-350 strain indicators were used for all gages. 

Three 0.001 inch scale dial gages and one LYDT were used to monitor 

the deflections. 

Four techniques were used to determine the shear cracking loads. 

These techniques used data obtained from the cracking patterns, the stirrup 

strain gages, the concrete strain gages, and four 0.0001 inch scale dial 

gages installed on specially constructed ''shear cracking frames''(6) to 



18 

measure the increase in beam depth. 

2.6 Test Procedure 

One dial gage and tile LVDT were placed at the center of tne span. 

Two other dial gages were placed at the load points, shown in Fig. 2.8. 

The four shear cracking frames were secured at the locations of the third 

and fourth stirrups from the center line of the span, on both sides of the 

beam. Ti1e dial gages were adjusted and the strain gages and the LVDT were 

connected and balanced. 

To check the equipment, all beams were loaded to about one-third of 

the calculated flexural cracking load and unloaded. The readings of all 

strain and dial gages were tnen recorded for zero load. The load was then 

applied incrementally until the beam failed. D1e size of the load incre­

ments was reduced around the calculated flexural cracking, shear cracking 

and failure loads. The smallest increments in total load were about 1250 

pounds and the largest were about SOOO pounds. At each increment, all 

strain and dial gage readings were recorded, \'nile the applied load was 

Kept constant. Following the readings, the beam was inspected, and all 

cracks were marked. The value of the total applied load was inscribed 

at the end of each crack. In this way, a complete crack propagation 

history was available from photographs taken during and after the test. 

In addition, a time log of all actions and observations was kept. 

Cracks were marked until very little additional cracking was observed. 

After failure, all additional cracks were marked, and detailed photographs 

were taken. The beam tests were followed by tests of the remaining con­

crete cylinders, flexure specimens and stirrup tension specimens. 
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The average time for a test, from initial loading to failure, was 

about one hour and forty-five minutes. 

2.7 Results and Observations 

Geometric and material information (dimensions, concrete strength, 

shear-span to depth ratio, percentage of longitudinal reinforcement, and 

amount of shear reinforcement), the flexural cracking stress and the ulti-

mate shear capacity, V t t' are presented for each beam in Table 2.3. n es. 
Using the photographs which were taken during and after the tests, 

tne complete crack pattern for each beam has been reproduced, except for 

beams #l and #2*, in Figs. 2.9-2.13. The heavy crack line represents the 

failure crack. Tne numbers represent tile total load, to tne nearest kip, 

at whici1 the crack formed. 

The deflection dial gage readings are plotted versus the applied 

load in Figs. 2.14-2.2il. The recorded readings of the steel and concrete 

strain gages are plotted versus the total applied load in Figs. 2.29-2.76. 

Ti1e shear frame dial gage readings are plotted versus the applied load in 

Figs. 2.77-2.87. 

A description of the behavior of a typical beam from the beginning 

of a test to the time of failure follows: 

In the first stages of loading, the beams were free of cracks. Since 

the stresses were very small and the full section participated in carrying 

the load, the deflection was small and proportional to the applied load. 

At a load close to the calculated flexural cracking load (obtained using 

the ACI (5) modulus of rupture), the first cracks were observed and a 

* Beams #1 and #2 served as preliminary tests, and complete crack patterns 
were not ootained. 
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considerable increase in deflection occurred. These cracks always 

initiated in the region of pure flexure and extended vertically up to 

the neutral axis of the uncracked section of the beam. With increasing 

load, more flexural cracks developed in both the center and the shear 

span regions of the beam. Cracks in the two regions propagated different­

ly. Cracks in the pure moment section were always vertical, wnile craci<s 

in the shear span curved toward the point of the applied load, as soon as 

they entered the area between the level of the tension reinforcement anu 

the neutral axis. 

The trend of cracking was almost the same in all beams, except that 

the number and the size of the cracks seemed to depend on the amount of 

the flexural reinforcement. Compared to tile otr1er series, the beams in 

Series B (pw = 0.5 percent) exhibited fewer and wider cracks. In contrast, 

the other series (pw = 0.66 and 0.94 percent) exhibited a greater number 

of cracks of smaller width. Tne cracks in the Series C beams (pw = 0.94 

percent) were so narrow that additional lig~t was required in order to 

locate t:1em. 

This trend of flexural cracking continued until "shear cracking" 

began. Shear cracking was accompanied by an increase in stirrup strain 

and beam depth and a decrease in the compressive strain in the concrete 

witnin the snear span. The shear cracks were extensions of the flexural 

cracks and ini·tiated close to the midi1eight of the beam. They propa­

gated at an ·inc·i ination flatter than 45° in t1v0 directions, toward the 

flange and towarci the flexural reinforcement. When the bottom end of 

the crack reacned the flexural reinforcement, it continued to propagate 

with increasing load along the reinforcement for a distance at least equal 
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to one stirrup spacing. The other end of the crack propagated until it 

reacned the bottom of the flange. From tilere on, two possible crack paths 

were observed. For most beams, the crack extended horizontally along 

the junction of the flange and the web. In a few cases, the crack re­

mained fairly stable after it reached the bottom of the flange, until 

failure occurred. For beams with the first type of crack path, the crack 

entered the flange at failure or at a load stage prior to failure. In both 

cases, failure occurred with a sudden extension of the crack toward the 

point of loading. The only exception to this failure mode was beam C75. 

In this beam, the failure crack in the flange was a horizontal crack ex­

tending along t~e total length of the shear span of the beam. 

In all cases, the mode of failure 11as a tensile failure of the flange 

with no signs of crushing of the concrete. The location of the failure 

shear crack, (i.e., tile horizontal projection of the crack within the shear 

span) was erratic: sometimes closer to the support, sometimes closer to 

the applied load, and at other times in the center of the shear span. For 

the beams without stirrups, the failure crack was always the crack closest 

to the support. In beams with stirrups, the failure crack was either the 

crack closest to the support (beams A50a, 850), or an interior crack 

(beams A25, A25a, ASO, C25, C75). In three beams with stirrups (beams 

A75, B25, C50), failure occurred along a double inclined shear crack. 
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CHAPTER 3 

EVALUATION OF EXPERIMENTAL RESULTS 

3.1 General 

It is of primary interest in this report to examine how the amount 

of flexural steel, Pw' and web reinforcement, pvfvy' affect the behavior 

of reinforced concrete beams, with special emphasis on shear cracking and 

ultimate shear capacity. 

A description of the findings and a comparison with the current pro­

visions of the ACI Building Code (5) follow. 

3.2 Evaluation of Results 

3.2.1 Flexural Crac~ing 

The parameter which has the greatest effect on the deflection of 

these reinforced concrete beams, after flexural cracking, is the amount 

of longitudinal reinforcement. For the same load, much more deflection 

was recorded for the beams in Series i3 (pw aoout 0.5';) than for the beams 

in Series C (pw about .94:;). This difference is apparent in Figs. 2.14-

2.28. 

The flexural cracking loads were obtained using the load-deflection 

curves (Figs. 2.14-2.28) and the load-strain curves for strain gages #1 

and »2 (Figs. 2.29-2.70). These loads are in good agreement with the 

flexural cracking loads calculated using the transformed cross section 

and 7.5/t;;" for the modulus of rupture, fr, as recommended in the ACI 

Building Code (5). The calculated stress at flexural cracking varied 

between 6. 18/f' and 7. S7 /f'. c c 
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3.2.2 Shear Cracking 

Four methods were used to determine the shear cracking load. These 

approaches were based on the stirrup strains, the concrete strains, the 

increase in beam depth following cracK formation, and the cracking patterns. 

The four methods were used to provide detailed information on beam behavior 

and to compare procedures for defining "shear cracking." The details of 

this portion of the study are presented in Reference 6. 

The shear cracking load is considered to be the load at which sig­

nificant changes in the load carrying mechanisms occur, resulting in the 

redistribution of stresses within the beam. Using this criterion, the 

objective is to determine the load at which this change occurs. The 

techniques for analyzing the data are summarized below: 

The concrete strain data (Figs. 2.29-2.76) indicates that an appre­

ciable change (reduction) in the compressive strain occurs in the extreme 

compression fiber within the shear span at a load coinciding with the 

formation of diagonal cracks. This load is defined as the shear cracking 

load. 

The shear cracking loads are obtained from stir~ strain and depth 

increase data using Figs. 2.29-2.87. These load-strain and load-depth 

increase curves show essentially no reading up to a load of 1.5 to 2 times 

the flexural cracking load. However, in most of the beams, small readings were 

recorded before the formation of the first shear cracks due to inclined 

flexural cracks within the shear-span. To obtain the shear cracking load 

from these figures, the portion of the graph which shows a marked increase 

in strain or depth is extended back until it intersects the load axis, 

as illustrated in Fig. 3.1. The point of intersection is defined as the 
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shear cracking load. 

The shear cracking load obtained from the era~ patterns (Figs. 2.9-

2.13), is assumed to be the load at which a crack forms at the level of 

the neutral axis (the centroid of the uncracked transformed cross section) 

at an angle of 45° or less to the longitudinal axis of the beam. 

The shear cracking stresses obtained using the four methods are pre­

sented in Table 3.1. Results are not available for beams #1 and #2, since 

these beams were not fully i~strumented. 

To help reduce the effect of the variable concrete strength, the 

results are normalized with respect to (f~) V2 and (f~) 'h in Figs. 3.2 and 

3.3 (6). The results are, also, compared with the predictive equations, 

Eqs (1.3) (1.5) and (1.9), presented by the ACI Building Code (5), Zsutty 

(42) and Rajagopalan and Ferguson (36), respectively. Presented in this 

form, the results obtained using the stirrup and concrete strains exhibit 

much less scatter than the cracking loads obtained using the depth in-

crease and the cracking patterns. Both the stirrup and the concrete 

strains appear to be more sensitive to the change in the load carrying 

mecnanisms at shear cracking than do the other two procedures. 

The shear cracking loads obtained using the concrete and stirrup 

strains match each other quite well. The values obtained from the depth 

increase data are equal to or greater than the values obtained from the 

stirrup and concrete strains. The shear cracking loads obtained from the 

crack patterns do not show a consistent relationship to the loads obtained 

from the stirrup and concrete strains. 

Overall, the comparison indicates that the loads obtained using the 

concrete and stirrup strains provide a good indication of the true shear 
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cracking load of the beam, while the other two methods are not as accu-

rate. 

3.2.3 Stirrup Effectiveness 

According to tile ACI Building Code (5), the contribution of stirrups 

to the ultimate shear capacity of reinforced concrete beams is expressed 

as the product of a coefficient, r, and the amount of shear reinforcement, 

P/vy (vs = r ~/vy). For beams with vertical stirrups, r is equal to 

one. The contribution of concrete to the ultimate shear capacity is 

assumed to be equal to the shear cracking stress of the beam, vc. In 

this investigation, the shear cracking loads were measured for thirteen of 

the T-beams tested, and therefore, ti1e stirrup contribution to shear 

capacity is known for each of these beams. 

The stirrup effectiveness factor is defined as the ratio of the 

stirrup contribution from the tests (vn - vc) divided by the predicted 

stirrup capacity according to the ACI Building Code (p/vy). The test 

stirrup contributions are plotted versus the ACI code stirrup contribution, 

p f , in Figs. 3.4a to 3.4d, for the different methods used to obtain v . v vy c 

Using linear regression analysis, it was found (6) that the stirrup 

contribution can be expressed reasonably well by the expression: 

( 3. l ) 

in which 

c = 2-8 psi . 

In Figs. 3.4b and 3.4c, it is shown that the correlation coefficient in 
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this analysis is 0.96 and 0.97 for the cases in which the shear cracking 

stress is determined from the concrete and stirrup strains, the two methods 

which appear to be the most reliable methods for the determination of the 

shear cracking loads. 

The stirrup effectiveness factor (neglecting the small value of c) of 

1.5 is smaller than the factors 1.30 and 1.75 which were reported by tlresler 

and Scordelis (10) and Haddadin, Hong and t·1attock (17). The reason for 

this difference probably lies in the different type and amount of longi­

tudinal reinforcement that was used in this study. Only strands were used 

in t11is ;nvestigation as longitudinal reinforcement, in amounts which 

never exceeded one percent. Flexural reinforcement in excess of 1.8 

percent were used by the other investigators. Both the lower percentage 

of flexural reinforcing steel and the lower bond strength obtained with 

the strands, as compared vlith the reinforcing bars, could have contributed 

to the lower stirrup effectiveness exhibited in these tests. 

3.3 Comparison with Design Equations 

3.3.1 Shear Cracking Stress 

The shear cracking stresses obtained using the concrete and stirrup 

strains are compared with loads predicted by Eqs. (1.3) and (1.4) from 

the ACI Building Code (5), Eq. (1.5) proposed by Zsutty (42) and Eq. 

(1.9) recommended by Rajagopalan and Ferguson (36), in Table 3.2 and Figs. 

3.2b, c and 3.3b, c. The ACI equations provide an unconservative estimate 

of the shear cracking load for the T-beams tested in this study. Much 

better predictions are obtained using Eq. (1.5) by Zsutty (42) and Eq. 

(1 .9) by Rajagopalan and Ferguson (36). 
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3.3.2 Ultimate Shear Stress 

A summary of the nominal (ultimate) shear stress obtained from the 

tests and the values predicted by the current ACI code procedures (Eqs. 

(1.2), (1.3) and (1.4)) are presented in Table 3.3. These results are 

compared in Fig. 3.5. 

A comparison of Figs. 3.2b, c, 3.3b, c and 3.5 indicates that there is 

a better agreement between the test results and the calculated values for 

nominal shear strength than there is for the shear carcking stress. The 

reason for the improved agreement in the case of shear strength is that, 

while the ACI equations (Eqs. (1.3) and (1.4)) overestimate the contribution 

of the concrete to the shear strength for beams with longitudinal reinforce­

ment ratios less than about one percent, they underestimate the contribu-

tion of the stirrups (Eq. (1.2)). The two errors appear to counterbalance 

each other. The net result is a good agreement between the calculated 

nominal shear capacity and the experimental shear capacity obtained in this 

study. 

ages of 

applies. 

This coincidence will not be true for the whole range of percent­

longitudinal reinforcement, p , to which the ACI equation, Eq. (1. 3), 
w 

The application of Eq. (1.2) gives a different margin of safety in 

beams with different amounts of longitudinal and shear reinforcement. The 

result is that in the case of beams with very low amounts of longitudinal 

and shear reinforcement , the ACI (5) procedure could predict shear 

capacity values a little on the unsafe side, while in beams with large 

percentages of longitudinal reinforcement the procedure is overconserva­

tive. It should be noted that in the case ofT-beams with small amounts 

of shear and longitudinal reinforcement, it appears that the ACI pro­

cedure is safe and in good agreement with the shear strength obtained 

during these tests. Of the beams with stirrups, only one beam, 825, 
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failed at a load less than that predicted by the ACI {5) procedure. 

3. 4 Des iSJ!l.. Imp 1 i cations and Recommendations 

3.4.1 Beams with Stirrups 

The test results indicate that beams with stirrups containing amounts 

of longitudinal reinforcement close to minimum, exhibit a reduction in 

shear strength, relative to the ACI Code equations, when they are compared 

to beams with larger amounts of longitudinal reinforcement. It appears 

that the application of the current ACI Code procedure for the ultimate 

shear capacity for this type of beams loses the typical conservatism 

which is present for beams with flexural steel greater than about 1.2 

percent. In fact, for beams with percentages of longitudinal reinforce­

ment c 1 ose to mini mum permitted by the ACI Code ( 5), the current ACI 

procedure may be slightly unconservative. 

The tests performed during this investigation do not point to any 

alarming deficiency in the shear strength of this type of beam, compared 

to tne shear strength predicted by the current ACI procedure. In addition, 

the number of tests is too few to warrant a recommendation to change the 

present ACI procedures. However, it appears that the use of a shear 

cracking equation similar to that proposed by Zsutty, Eq. (1.5), \vould 

result in a consistently conservative shear strength prediction along the 

whole range of percentages of longitudinal reinforcement to which the ACI 

code, Eq. (1.2), applies. 

In spite of the beneficial effect that the change would produce on 

the margin of safety, it seems reasonable to suggest that in the case of 

beams with stirrups, a reduction in the ACI code {5) concrete capacity 

term, Vc, without any increase in the stirrup capacity term, Vs, is 
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neither necessary nor desirable at the present time. 

3.4.2 Beams without Stirruns 
~--- ------- ____ x __ 

For beams without stirrups, the ACI Code (5), Eqs. (1.3) and (1.4), 

seems to be unconservative for beams with amounts of longitudinal rein-

forcement less than about l. 2 percent. However, the deficiency in shear 

strength does not really present a problem. The allowable shear capacity 

for beams without stirrups in the ACI Code is not limited by Eqs. (1.3) 

and (1.4), but by the quantity~- The ACI Code requires that the minimum 

amount of shear reinforcement must be provided whenever the applied shear, 

vu, exceeds ~~· This additional Code requirement is an adequate safe­

guard (6), since beams without shear reinforcement exhibit a shear strength 

greater than If'. In addition, shear capacity should be well in excess of 
c 

~in locations of low moment (11here longitudinal reinforcement may be 

reduced) due to the strengthening effect of low sl1ear-span to depth ratios 

(low~ or M/Vd) on vc. 
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CHAPTER 4 

UL Tir1ATE STRENGTH MODEL FOR BEAt~S WITH STIRRUPS 

4. l General 

A universally accepted explanation of the manner in which loads are 

carried to the supports of shear-critical reinforced concrete beams, with 

or without stirrups, has not been developed; and in spite of the large 

amount of work acCOI;Jplished to Jate, the manner in which stirrups influence 

the snear transfer mechanisms is not yet completely understood. 

In this study, a relatively simple semianalytical model is used to 

explain the relative contribution of the various shear transfer mechanisms 

in reinforced concrete beams on both a qualitative and a quantitative 

basis. 

4.2 Analytical Model 

4.2.1 The model 

A complete analytical approach to tne ultimate shear capacity problem 

of reinforced concrete beams with shear cracks is a task of tremendous 

complexity. Considering this complexity (composite material, nonlinear 

properties and geometric discontinuities), it is concluded that a realistic 

approach to the ultimate shear capacity problem is an approach which is 

based on both the basic principles of mechanics and test results and 

observations. 

The model utilizes the truss analogy, as shown in Fig. 4.1. It is 

assumed that in beams with stirrups, the shear forces are carried to the 

supports by four distinct shear transfer mechanisms: shear forces in the 

concrete compression zone, Vcz' dowel forces, Vd, interface or friction 
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forces along the cracks, Vay' and tension forces in the silear reinforce­

ment, Vs. 

At failure, the shear capacity of a reinforced concrete beam is 

expressed as 

(4.la) 

wftich can be written as, 

(4.l.b) 

in which Vc (Vcz + Vay + V0) is the total shear carried by the concrete. 

It has been found from tests (3,14,41) that the four main parameters 

whi en affect the shear capacity of reinforced concrete beams are: the 

concrete strength, the percentage of longitudinal reinforcement, the shear·· 

span to depth ratio and the amount of shear reinforcement. 

For simplicity, this model is developed for rectangular beams with 

vertical stirrups and shear-span to depth ratios greater that 2.5. In 

this type of beam, the effect of the shear-span to depth ratio is not as 

large as in the case of short beams, but is still significant. The ulti-

mate shear capacity, then, is expressed as a function of a 11 four par am-

eters. 

4. 2. 2 Overview of i·lethod 

The purpose of this section is to give an overview of the method 

which is presented in the following sections. Expressions are derived 

for the shear capacity of the compression zone, Vcz· Vcz depends on the 
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size of the compression zone, the shear stress distribution in the com-

pression zone, and the shear strength of the concrete. The size of the 

compression zone can be determined if the location of the tip of the 

failure shear crack is known. As a first step, the location of the tip 

of the failure crack is determined. Following this derivation, expressions 

are obtained for the average shear stress in the compression zone at fail-

ure. Then the compression zone capacity, Vcz' is presented as a function 

of the concrete strength, f ~, shear-span to depth ratio, a/ d, percentage 

of longitudinal reinforcement, pw' and amount of shear reinforcement, 

P/vy 

Using ex peri menta 1 data for reinforced concrete beams without stirrups 

(10,24,32,33), the total contribution of the dowel force, Vd' plus the 

interface shear , Vay' is expressed approximately as a function of shear­

span to depth ratio and percentage of longitudinal reinforcement. 

In this manner, the ultimate concrete capacity, V , for beams with­
e 

out stirrups is expressed as a function of three independent variables: 

concrete strength, shear-span to depth ratio, and percentage of longitud­

inal reinforcement. The pred·i cted concrete capacity is compared with 

predictive expressions presented by other investigators. 

For beams with stirrups, it is assumed that the relative contribution 

of the compression zone, dowel shear, and interface shear are the same 

as in the case of similar beams without stirrups. The contribution of 

the stirrups is obtained with the simplifying assumption that the failure 

shear crack is inclined at 30° to the axis of the beam, as shown in Fig. 

4.2. The model is used to help determine the effect of the shear rein-

forcement on the concrete shear capacity, V , and on the total nominal 
c 
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shear capacity, Vn, of rectangular beams. Comparisons are made with 

experimental results for both rectangular beams and T -beams. 

In the process of developing the model, a number of approaches were 

tried, which did not work. One model was based on the assumption that 

the inclined crack does not have any effect on the size of the compression 

zone. This model determined the depth of the compression zone as if the 

beam were in pure bending. The compression zone was very large, and the 

. predicted compression zone shear capacity was greater than the total 

shear strength measured experimentally in reinforced concrete beams. 

Following another approach, the effect of the inclined crack on the size 

of the compression zone was incorporated, but the dowel and interface 

shears were ignored. The ultimate shear capacities predicted with th.is 

model were always smaller than the shears obtained from tests of rectan­

gular reinforced concrete beams. An improved version of the last approach, 

in which the effects of the dowel and interface shears are included, is 

the model presented in the following sections. A key aspect of the model, 

as compared to others, is that it isolates the effect of the inclined 

crack on the size of the compression zone. In the development of this 

model, the main parameters found to influence the ultimate shear capacity 

of beams (concrete strength, shear-span to depth ratio, percentage of 

longitudinal reinforcement, amount of shear reinforcement) are included. 

i-Jhile quantitative results are obtained, the model should be consid­

ered primarily as a qualitative model, because of a number of limitations. 

For simplicity, crack depth is based on zero tensile strength. In addi­

tion, the nonlinear material behavior of concrete and the effect of shear 

stresses on the nominal stress-strain curve are, also, ignored. These 
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limitations affect the accuracy of the quantitative results. However, 

the model explains some important aspects of shear behavior and illustrates 

how the controlling parameters work. 

4.3 Concrete Capacity 

4.3.1 Compression Zone Capaci~, ~z 

The shear force carried by the intact concrete compression zone 

depends on the area of the zone and the average shear stress in the zone 

at failure. The first task, then, is to determine the depth of the com-· 

pression zone. 

Depth of Compression Zone: It has been found experimentally (l) 

that the neutral axis in beams subject to combined bending and shear is 

located much higher than in beams subject to pure bending. The depth of 

the compression zone in the case of combined bending and shear may be as 

low as 0.357 the compression zone depth in beams under pure bending. 

In the case of pure bending, the planarity assumption (planes before 

bending remain plane after bending) holds reasonably well. An expression 

can be derived relating the effective depth, the depth of the neutral axis 

and strainsin the extreme compression fiber and flexural steel. This 

expression, together with the equilibrium equations, defines the location 

of the neutral axis of the beam. For beams subject to bending and shear, a 

compatibility equation cannot be accurately formulated at an isolated 

cross section within the bea1" due to the geometric discontinuity. caused by the 

inclined cracks. In this case, the region of the beam traversed by the 

diagonal cracks must be investigated. 

To investigate this region and determine the effect of the diagonal 

cracks on the location of the neutral axis, a procedure is developed to 
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convert a beam with a single diagonal crack into an equivalent beam with 

a vertical crack in order to use conventional expressions for determining 

the depth of the neutral axis. 

In Fig. 4.2, two beams are shown; one beam is subject to bending and 

shear, the other to pure bending. For an elastic material, if the strains 

at the extreme compression fiber (plane 1-l in Fig. 4.2) and the location 

of the neutral axis are the same for both beams, then the normal stresses 

in the concrete, tile resultant compressive force and its point of appl i-

cation are, also, the same. Thus, in terms of the concrete, tile beams 

are equi ,alent. However, due to the geometry of the crack, the strain in 

the flexural steel for the beam in bending and shear is smaller than tne 

strain for the beam in pure bending. Since the tension forces, T2, must 

be the same in the beams, the amount of flexural steel in the equivalent 

oeam must be smaller. 

The ratio of the flexural steel in the equivalent beam to the steel 
) 

in the beam with the diagonal crack is defined as the "geometric and shear 

softening effect factor", Fs. This softening factor is determined from 

the analysis of the deformations of the concrete region bounded by the 

top of the beam, the diagonal crack and the two planes, 1-l and 2-2, 

through the ends of the shear crack, as shown in Fig. 4.2a. 

The follo>ting notation is illustrated in the figure: 

z = horizontal projection of shear crack, 

c = concrete compressive force, 

Ti = tensile force in flexural steel , = l, 2, 

H = 
X 

depth of concrete zone at location X, 

\ = flexural steel in beam under bending and shear, 
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Asb = flexural steel in equivalent beam under pure bending 

that produces neutral axis location equivalent to neutral 

axis in beam under bending and shear, 

Yx = location of neutral axis at plane x, equal to kd at plane 1-1, 

Vex = point of application of compression force, C, from the ex­

treme compressive fiber of beam at section x, 

Yx =distance from point of application of resultant, C, to the 

level of flexural steel at section x, 

M1 =applied moment at section 1, 

r~2 = applied moment at section 2, 

Mx = applied moment at section x, 

Mb = moment for the pure bending case, 

ssx = strain at level of flexural steel at location x, and 

sex = strain in extreme compressive fiber of concrete at location x. 

Reasonable simplicity is preserved in the derivation of the expression 

for the soft~ning factor with the following assumptions: 

1. Stresses and strains are linearly related in the concrete. 

2. Planes 1-1 and 2-2 of the beam in Fig. 4.2a, remain plane after 

loading. 

3. The neutral axis passes through the tip of the shear crack. 

4. The compression force, C, is the same for both beams. 

5. Dowel and interface shears are present and act at the inter­

section of the shear crack with the flexural steel, as shown 

in Fig. 4.2a. 

6. The inclined force shown in Fig. 4.2a acts parallel to the 

diagonal crack. 
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7. No dowel forces exist in the shear reinforcement. 

8. For the concrete region only, planes before loading remain 

9. 

10. 

plane after loading. 

The angle of the crack, e, is constant and equal to 30°. 

" The shear crack is a parabola: Hx = d- d(l-k) (l-x/z) 2
• 

As a first step, the point of application of the resultant, C, is 

found for a section, x, betv1een planes 1-1 and 2-2, as shown in Fig. 4.2c. 

Then the stresses in the concrete at the top of the beam and at the crack 

level are obtained at x. Since the stresses, and therefore the strains, 

are known, the location of the neutral axis and the strains at the 

boundaries of the concrete (top of beam and crack level) are determined. 

Then the deformation at the level of the flexural steel is obtained be-

tween planes 1-l and 2-2. The softening factor (Fs = Asb/As) is equal 

to the ratio of the steel strain at plane 2-2 to the steel strain in the 

equivalent beam. Fs is found as follows. 

The applied moment at xis 

(4.2) 

The internal moment at x is 

(4.3) 

From the equilibrium of the external and internal moments, 

(4.4) 
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Defining K1 as the ratio of dowel shear plus interface shear to the 
V +V 

total shear carried by the concrete ( dv ay) and K2 as the ratio of the 
c 

shear carried by the stirrups to the nominal shear force (Vs/Vn), yx can 

be expressed as 

y = 
X 

[2-K2z;a+2i<2x; a-2x/a-K2x2 1 za-2( l-K2) K1 z/a+2 ( l-K2) K1 x/ a] ( 3-k )d 
2[3-l.5K2z;a-3(l-K2)K1z;a] 

(4.5) 

Substituting z = (d-kd)/tan eand yx = d-Ycx' solving for Vex' and simplifying: 

Y = d -{[2a tane-(1-k) K d+2K (1-k)d~ -2(1-k)d~ ex 2 2 z z 

;o [3a tan e-1 . 5 K2 ( 1 -k) d -3 ( 1 -K2) 1<1 ( 1-k) d] 

The strain in the extreme compressive fiber of the concrete is 

4C 
E b H 

C W X 

6(H /2-Y )C x ex 
E b H 2 -
c 11 X 

The neutral axis depth Yx is 

v = c /[c -(4C/E b Hx + 6(H 12-v )C/E b H 2 )] x ex ex c 11 x ex c w x 

The strain at the level of the steel is 

( 4. 7) 

(4.8) 

(4.9) 
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The total elongation of the steel is 

(4.10) 

and the average strain in the steel is 

(4.11) 

The strain in the steel is not constant between planes 1-l and 2-2. 

At plane 2-2 the steel strain is approximated as 

[(Va/Vd)+Vs]z 
2d(l-k)ASES (4.12) 

The variation of Esz from Esav is based on the assumption that the strains 

in the steel vary linearly between planes 1-l and 2-2, due to the inclined 

force shown in Fig. 4.2a. 

The strain in the steel in the equivalent beam is 

(4.13) 

From equilibrium (T2 = C = T2b) 

(4.14) 

Substituting the expressions for Eso' Es 2 and Ec (57000~ psi) and the 

value for Es(29,000,000 psi) into Eq. (4.14), and solving for Asb gives 
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= A ~- c (4.15a) 

E 
(Jk"-k 3 J(l-K2)K1+K2)!f' J 

s sb 6105(1-k) 2 [tanea/d(l-k)-K2/2-(l-K2)K1]Pw 

( 4. 15b) 

where Pw is the percentage of flexural reinforcement in the beam with the 

diagonal crack, and the quantity in the brackets is the softening factor, 

For a given equivalent reinforcing ratio, p~(=Fspw), and modular 

ratio, n(=Es/Ec)' the depth of the neutral axis can be obtained. 

k = 12np* + (np*F - np* w w . w (4.16) 

Equations (4.15) and (4.16) are solved simultaneously fork and Fs 

using an iterative technjque. The depth of the neutral axis and the soft-

ening factor can be determined for any reinforced concrete beam for which 

the ratios, K1, K2, and the angle of diagonal crack, e, are known. 

Average stress at failure: For a given depth of the neutral axis, 

kd, the capacity, Vcz' can be found if the average shear stress in the 

compression zone is known at failure. To obtain the average shear stress, 

an equation is derived for the shear stress at a point within the compres­

sion zone of a reinforced concrete beam subject to bending and shear. 

The assumed forces and strains are shown in Fig. 4.3, in which: 

Y = distance to neutral axis from tne top of the beam, 

Yc = distance of resultant C from the top of the beam, 
-y = distance of resultant C from the neutral axis, 

Eu = strain corresponding to maximum stress on the stress-strain 
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developed by Kupfer and Gerstle (25) for combined tension and compression 

is used (Fig. 4.5). Using tnis criterion, the principal tensile stress 

at failure, a1, is expressed as 

(4.25) 

in which ft is tne tensile strength of the concrete 0ssumed equal to 5~). 

For a normal stress, a, and a shear stress, T, acting as shown in Fig. 

4.6, the failure criterion is expressed as 

f'a 
t ~] 

Eq. (4.26) is plotted in Fig. 4.6 for 4000 psi concrete. 

(4.26) 

The variation of shear strength with y is shown in Fig. 4.4 for a 

strain ratio, w = 0.6. Fig. 4.4 suggests that failure initiates at an 

interior point, close to the center of the compression zone. 

Using this procedure, the average shear stress within the compression 

zone at failure, 'av' can be accurately approximated (within 3 percent) 

as 

( 4. 27) 

The constant , K3, depends on the strain ratio, w. The values of 'av 

obtained from this analysis are shown in Table 4.1 for different concrete 

strengths and strain ratios. The representative constant, K3, for each 
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strain ratio, w, is also shown. 

After the examination of the results and comparison with test data 

(26), a constant value for K3 = 0.75 was selected as reasonably repre­

sentative. The value of average shear stress within the compression zone 

at failure is therefore: 

'av = 0.75(f~).75 (4.28) 

The shear capacity of the compression zone is: 

= 0. 75k(f') · 75 b d 
c w (4.29a) 

or in terms of nominal stress, 

0.75k(f~)· 75 (4.29b) 

4.3.2 Dowel and Interface Shear Capacity 

Based on the simplified model described above, the "contribution" 

of the dowel and interface shear to the nominal shear capacity of rectang­

ular reinforced concrete beams without stirrups is obtained using an analy­

sis of the experimental data obtained from a number of investigators (10, 

24,35,36). Using Eqs. (4.15), (4.16) and (4.29), the factor, K1, is deter­

mined for each beam with an iterative procedure. 

The procedure consists of selecting a value for K1( =(Vd+V )/V) ay c 

and obtaining the values fork (Eqs. (4.15 and 4.16)), Vcz (Eq. (4.29)), 

and finally 
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v 
v = _g (4. 30) 
c 1- K1 

for the particular beam under consideration. The value of Vc from Eq. (4.30) 

is then compared with the test value. K1 is modified until the solution con-

verges. 

As shown in Fig. 4.7, K1 can be expressed reasonably well as a function 

of only two independent variables, shear-span to depth ratio, a/d, and per-

centage of longitudinal reinforcement, Pw• in the following form (based on 

a least squares fit of the calculated values of K1 versus a/d): 

K1 = l - [-.33+.29 a/d -.033(a/d) 2+.0015(a/d) 3
] (l00pw)· 25 (4.31) 

Fig. 4.7 and Eq. (4.31) indicate that the relative contribution of dowel 

shear and aggregate interlock to total shear strength decrease with in-

creasing values of a/d and Pw· Conversely, the relative contribution of 

.the compression zone increases. Eqs. (4.15), (4.16) and (4.29) can now 

be used in conjunction with Eqs. (4.31) and (4.30) to obtain the softening 

factor, Fs, the neutral axis location at the top of the diagonal crack, k , 

and the concrete compression zone capacity, Vcz' for different values of 

concrete strength, shear-span to depth ratio, and percentage of longi-

tudinal reinforcement. These values are presented in Figs. 4.8, 4.9 and 

4.10. These figures suggest that the size of the compression zone,and 

therefore the shear capacity of the compression zone,strongly depends on 

the shear-span to depth ratio and percentage of longitudinal reinforce­

ment. Concrete strength has a smaller, but still significant, effect 

on the compression zone shear capacity of the model. 
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4.3.3 Concrete Capacity~ 

For beams without stirrups, the nominal shear capacity, Vc' is expressed 

as 

V = V I ( 1-K ) c cz l ( 4. 30) 

Eq. (4.30) is a function of concrete strength, shear-span to depth ratio 

and percentage of longitudinal reinforcement and can be used to predict the nom­

inal (ultimate) shear capacity for rectangular beams without stirrups. The 

predicted shear capacities are shown in Fig. 4.11 in terms of shear stress·, 

vc. The curves are similar to the curves obtained using Eq. (1.5), proposed 

by Zsutty. For comparison, vc is plotted versus the percentage of longitud­

inal reinforcement (Fig. 4.12), for f~ = 4000 psi and a/d = 4, and compared 

with shear capacities from other predictive relations (5,36,42). 

Figs. 4.11 and 4.12 suggest that the concrete shear capacity is an in-

creasing function of both concrete strength and percentage of longitudinal 

reinforcement, and a decreasing function of shear-span to depth ratio. The 

proposed model, therefore, matches observed behavior on at least a qualita-

tive basis. Unfortunately, the model seems to show a much stronger effect 

of pw on vc than obtained by Zsutty based on a statistical analysis. This 

over-sensitivity of the model is likely due to the fact that it ignores the 

nonlinear, softening behavior of the concrete within the compression zone. 

It is, also, important to note that even the qualitative match requires the 

use of Eq. (4.31) based on test results. 

The predicted shear capacities are compared with the test results used 

to develop the model in Fig. 4. 13. 

4. 4 Capacity of Shear Reinforcement, y_s 

The contribution of stirrups to the shear capacity of the model can be 

evaluated only if both the stress in the stirrups and the number of stirrups 
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crossed by the shear crack at failure are known. The stirrups which cross 

the shear crack can be assumed to yield. Yielding of the stirrups has been 

reported by many investigators (10,17,35,37), and was observed in all eleven 

T-beams with stirrups tested in this investigation. The horizontal crack pro­

jection, z, can be evaluated if the inclination, e, of the assumed parabolic 

crack to the axis of the beam is known. In this investigation, the inclina-

tion, e, is assumedto be 30°. This is close to the optimum value of 3JO 

adopted by the CEB (comite Euro-International du Beton) as proposed by Grab 

and Thurlimann (16). The horizontal projection of the shear crack is expressed 

as: 4 

z = (d-kd) cot 30 = (1-k) d cot 30 (4.32) 

The stirrup shear capacity then is: 

( 4. 33) 

This representation for Vs results in a somewhat reduced effectiveness of 

the shear reinforcement as the depth of the neutral axis, k, increases. 

For beams with stirrups it is assumed that the variation of the factor 

K1 (= (Va/Vd)/Vc) is the same as in similar beams without stirrups. The 

shear capacities, Vcz' (Vay+Vd),and Vc are again obtained but are now based 

on four independent variables: concrete strength, shear-span to depth ratio, 

percentage of longitudinal reinforcement, and amount of shear reinforcement 

pvfvy(factor K2). The variation of shear capacity, along with the individual 

components of v n, is presented in Fig. 4. 14 as a function of P/ vy for 

f~ = 4000 psi, Pw = 1.0% and a/d = 4.0. 

The results indicate that the presence of shear reinforcement causes 

an increase in the contribution of the concrete to the shear capacity of 

the model, in addition to the direct contribution obtained from Eq. (4.33). 

The concrete capacity, V , increases quickly as the amount of shear 
c 
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reinforcement, p f , increases from 0 to about 150 psi, and then remains approxi­v vy 
mately constant with the further increase in the amount of shear reinforcement. 

4.5 Effectiveness of Shear Reinforcement 

The nominal (ultimate) shear capacity of reinforced concrete beams with 

stirrups is 

V =V + V n c s {4.lb) 

or in terms of stresses, 

= vc + rp f v vy (4. 34a) 

in which r is defined as the effectiveness factor of the shear reinforce-

ment. 

When the nominal shear, vn, is expressed in the form 

( 4. 34b) 

in which v~ is the ultimate shear capacity for a similar beam without 

stirrups, the effectiveness factor, r, varies considerably as a function 

of the amount of the shear reinforcement. As it is shown in Fig. 4.15, 

the effectiveness factor is larger in beams with small shear-span to depth 

ratios, small amounts of flexural and shear reinforcement and higher con-

crete strengths. 

Fig. 4.15 shows that the effectiveness factor for a beam with a/d = 4, 

p =.02, f' = 4000 and p f close to the minimum is about 1.65. This w c v vy 
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value is reasonably compatible with the effectiveness factors (1.8, 1.75) 

reported by other investigators (10,17). It is of interest to note that 

the effectiveness factors obtained for the model are based on a constant 

crack inclination, e = 30 °, which is not necessarily justified. 

In Fig. 4. 16, the nominal shear stress is plotted for a constant per-

centage of flexural reinforcement and two shear-span to depth ratios. In 

the same figure, experimental results forT-beams (17) are also shown. 

Examination of Fig. 4.16 suggests that there is a reasonable agreement 

between the test results and the values of v predicted by the model. The 
n 

model ap~2ars to be unconservative for beams with small shear-span to 

depth ratios and larger amounts of shear reinforcement. This weakness in 

the model is in all likelihood due to the use of an average failure shear 

(Tavl within the compression zone of the model, which is independent of 

the actual loading on the beam. 

In Fig. 4.17, the nominal shear stress is plotted for a shear-span 

to depth ratio of 4 and different amounts of longitudinal reinforcement. 

This figure suggests that the effect of the percentage of longitudinal 

reinforcement on the ultimate shear capacity is more pronounced in beams 

with small amounts of shear reinforcement and tends to diminish with in-

creasing amounts of shear reinforcement. The severity of this behaivor 

in the model seems to be somewhat unrealistic, and experimental evidence 

does not exist showing the convergence in vn illustrated in Fig. 4.17. 

4.6 Comparison of Predicted and Experimental Shear Capacities 

The shears predicted by the proposed procedure are compared with test 

results {10,17,24,35) for beams with stirrups in Figs. 4.18 and 4.19 and 

Tables 4.2 and 4.3, for rectangular beams and T-beams, respectively. 
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It appears that the proposed procedure is somewhat better for rectang­

ular beams than for T-beams. The predicted ultimate shear capacities are 

more conservative in the case of T-beams. For rectangular beams, the means 

of the ratios of the test results to the predicted values of shear strength 

are .75, 1.01 and 1.04, with coefficientofvariationof6.87%,l0.08%and5.86% 

for beams from references 24, 35 and 10, respectively. The ratio of .75 

is obtained from the tests by Krefeld and Thurston (24). In their tests, 

Krefeld and Thurston did not use compression reinforcement; therefore, 

there is a possibility that these beams failed at smaller loads compared 

to the btcams tested by the other investigators (10,35) due to insufficient 

anchorage of the stirrups. 

For the T-beams, the mean values of the ratios of test to predicted 

shear strengths are 0.89, l .14 and 1.26, with coefficien~ of variation of 

5.36't, 9.l7:s and 13.41;; for the results reported in Chapter 2 of this report, 

Reference 17, and Reference 35, respectively. The value 0.89 obtained 

for the test results from this investigation may be the result of the 

different types of flexural reinforcement used in these T-beams. Since 

the flexural reinforcement consisted of strands, instead of reinforcing 

bars, it is possible that the dowel shear, which is normally carried by 

the flexural reinforement, was reduced, as was the bond strength between 

the strands and the concrete. 

Overall, the mean values of the ratios of experimental shear strength 

to predicted shear strength are 0.95 for the rectangular beams and 1.15 

for the T-beams, with coefficients of variation ofl4. 7o;; and 19.74%, respectively. 

4.7 Critique of the Model 

For the benefit of simplicity, some of the assumptions used in 
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developing the model are not truly representative of the actual materials 

being modeled: Concrete stress-strain curves are nonlinea~ not linear. 

The average shear stress at failure is not only a function of the concrete 

strength, but is also a function of the applied moment. Interface shear 

is present along the total length of the shear crack. The inclination of 

the critical shear crack is not constant for all beams. 

One of the most apparent inconsistencies in the model is the assump­

tion of zero tensile strength in the concrete, used to determine the depth 

of the compression zone, while at the same time assuming a tensile strength 

(Eq. (4.Z5)) to obtain the shear capacity of the same compression zone. 

The overall effect of the simplifying assumptions is to ignore the 

true stress-strain behavior of the concrete and, therefore, ignore the 

material softening in combined compression and shear and the accompanying 

reduction in the depth of the compression zone. This results in too great 

an increase in the depth of the compression zone, as a function of a/d 

and Ow• and a subsequent overestimation of the concrete capacity. The 

use of an average failure shear stress within the compression zone, Tav' 

also prevents the model from exhibiting compression-type failure (and re­

duced "stirrup effectiveness") for high values of pvfvy· Finally, no 

attempt is made to model the aggregate interlock and dowel shear except 

through the use of test data. 

In spite of these shortcomings, the model provides a qualitative repre­

sentation of the effects of concrete strength, shear-span to depth ratio, 

percentage of longitudinal reinforcement and amount of shear reinforcement 

on the shear capacity of reinforced concrete beams. The qualitative success 

of the model suggests that the general approach is correct and that a more 
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accurate model can be obtained by following a similar approach and improv­

ing the realism of the stress-strain representation of the concrete. 
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CHAPTER 5 

SUMt1ARY AilD CONCLUSIONS 

Fifteen lightly reinforced concrete T-beams, eleven with stirrups 

and four without stirrups were tested to failure. The major variables 

in the study were the amounts of flexural and shear reinforcement. The 

flexural steel varied from one-half to one percent, and the shear reinforce­

ment varied from zero to about 110 psi. The test results are analyzed and 

compared with the ACI Building Code (5) shear design procedures. Design 

recommendations are presented. 

An analytical model is developed which examines the effects of con­

crete strength, shear-span to depth ratio, percentage of flexural steel 

and amount of shear reinforcement on the shear capacity of normal (a/d ~ 2.5) 

rectangular reinforced concrete beams. The effects of these parameters on 

the relative contributions of compression zone capacity, aggregate inter­

lock, dowel shear and stirrup capacity to shear strength are examined. 

5.2 Conclusions 

l. The test results obtained in this study indicate that 

reinforced concrete T-beams with small percentages of longitudinal 

reinforcement and small amounts of shear reinforcement exhibit a 

reduction in shear capacity relative to the design expressions in 

the ACI Building Code (5), when compared to similar beams with 

normal to large percentages of longitudinal reinforcement. 

2. The shear capacity of these lightly reinforced T-beams is, in most 

cases, equal to or greater than the shear capacity predicted by the 
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current Pn Code ( 5), and the present ACI procedure appears to be 

safe for T-beams. 

3. For the lightly reinforced concrete T-beams, in this investigation 

it was found that the stirrups are l .5 times as effective as pre­

dicted by the ACI Code {5). 

4. The current procedures for shear design (5) should be retained for 

reinforced concrete beams both with or without stirrups, until 

additional tests are performed. 

5. The semianalytical model developed in this study is a reasonable 

qua~itative tool for the examination of the effect of concrete 

strength, shear-span to depth ratio, percentage of flexural steel 

and amount of sheor reinforcement on the ultimate shear capacity 

of reinforced concrete oeams. 

6. The model can be used to examine the relative contribution of the 

different shear transfer mechanisms on shear capacity. 

7. The model explains the observed high effectiveness of the first 

small amounts of shear reinforcement in terms of a greater shear 

crack projection and an increased compression zone capacity. 

8. Due to the simplifying assumptions used, the model overestimates 

the effect of shear-span to depth ratio and flexural reinforcing 

ratio on shear strength and cannot account for shear-compression 

failure. 

9. Diagonal cracks must be modeled to properly represent both the 

concrete and steel contributions to the shear strength of reinforced 

concrete beams. 
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5.3 Recommendations for Further Study 

The experimental investigation in this study is only a small part 

of a test program needed to examine the ultimate shear capacity of rein­

forced concrete beams with small amounts of flexural and shear reinforce­

ment. Additional tests should be carried out on both T-beams and rectang­

ular beams. The effect of concrete strength and shear-span to depth ratio 

should be examined. In addition, the effect of continuity and type of 

loading should be investigated. The type of flexural reinforcement used 

in the future should be high strength deformed reinforcing bars, in order 

to more accurately represent the flexural steel which is used in practice. 

The relatively simple model presented in this study may be improved, 

but with some loss in simplicity. A better representation of interface 

shear along the total length of the shear crack should be incorporated 

in the basic model. The actual nonlinear stress-strain curve for the con­

crete should be used, and the effect of a variable shear crack inclination 

on ultimate strength should be studied. 
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TABLE2.1 LONGITUDINAL AND TRAIISVERSE RE!Nm,CEMENT 

longitudinal Reinfor·cement Transverse Reinforcement 

~ 

w Bottom Flange Flange Smooth Wire Stirrups 
·r Beam Type Flexural Type Type Oiametf,r Spacing Shear Preyielding Yield Ul tirnate w 

Ared,in1 reinforcing 1 in in reinforcing ++ 1oad, load, load, ~ 

ratio, 1'w•':'. p f , psi v vy pounds pounds pounds 

12 5-l/2 in 0.693 ~ 
w 

AOO ASTM A416 0.656 :0 ~-

0, A25 270 k;i 0.663 u-~ .ON 0.132 7 31.8 750 835 1018 
A A25a st1·ess 0. 765 0.668 

w~ 0.132 7 31.8 750 835 1115 E u 
A 50 r·elieved 0.661 c w w~ 0. 186 7 73.9 1650 1940 2125 0 w E·~ 

A50a strands 0.658 
~ ~ c~ 0.11!6 I 75.0 1700 1970 2200 w- 0 

A75 0.655 u ~w 0. ?29 7 97. I 2350 2550 3240 ww 
II 0.699 o~ u~ 0.244 7}* 110.2** 1350 1550** ~" -0 

<DO BOO S-7/16 in 0.4il8 ~-~ 
uo ~ 

B25 ASTM Ml6 0.575 0.494 ~0 w<> 0.132 7 32.4 750 850 1135 0"> c u 0 
B 850 270 ksi 0.498 "'0 ~0 0.186 1 76.2 1700 2000 2200 ~ c~ 

s tr·ess ~ C?M 
~" 

re 1 ieved ~ ~~ 

'"' ~"' ~~ 

strands ~ 
>: '"'" >--~ 

coo 5-0.6 in 0.943 v>C 

'"'~ 
>: 
>-- 4-

>, 

C25 ASTM A416 0.948 .0 ~ 0.132 7 32.4 750 %0 1120 c l. 090 ~ ~ -o:~ 

C50 270 ksi 0.939 ·~~ c 0.186 7 76.2 1700 2000 2210 w M"' 
C75 stress 0.933 N-N 11. .a 0.229 7 103.0 2350 2705 3347 

relieved 
strands 

* double stirrups dt 7~1." were used 
** estimated 

+ A p =: • s 
w bwd 

A f 
++ fJ f "' ~XI 

v vy bws 



TABLE 2.2 CONCRETE MIX DESIGN AND STRENGTH 

Series Beam Coarse Fine Type I W/C Slump Measured Age at Cylinder r~odul us of 
aggregate aggregate cement in air con- test, strength, rupture. 

lb/cy* lb/cy* lb* tent 5~ days f ~,psi f , psi 
r 

#2 1470 1460 Sti4 .473 1 1;, 5.5 21 4750 437 
ADO 1510 1500 470 .568 1% 5.0 7 4740 667 
A25 1510 1500 470 .568 l 5.5 16 4720 396 

A A25a 1490 1480 517 .516 ';. 2.0 4 4790 664 
A 50 1510 1500 470 . 568 1% 6.5 18 3810 380 
A50a 1490 1480 517 .516 1% 4.5 b 4060 512 
A75 1510 1500 470 .568 1 1;. 3.9 6 4670 550 "' ~ 
#1 1510 1500 470 .568 % 6.0 10 5520 717 

BOO 1510 1500 470 .568 '!. 4.5 11 4640 567 
B 825 1510 1500 470 .568 l v. 3.8 18 4470 525 

850 1510 1500 470 .568 11h 6.0 13 4390 585 

coo 1490 1480 517 .516 v2 4.4 3 4270 604 

c C25 1490 1480 51 7 . 516 '!. 3.3 5 4100 462 
C50 1450 1450 611 .450 1 v. 6.5 3 4300 650 
C75 1490 1480 517 .516 1 3.2 9 4260 585 

* Based on air content~ 5.0%. 



TABLE 2.3 SUHr,IARY OF TEST PROGRAt,1, FLEXURAL CRACKING STRESSES 
AND NOt~INAL SHEAR STRENGTH 

Series Beam 
A s 

Pv f vy f' a/d b d *Test v 0w=bd c w fl exura 1 n test w 
/o psi psi in in cracking kips 

stress 
psi 

#2 0.693 - - 4750 4.14 14.72 7.48~ 16.244 

AOO 0.656 - - 4740 3.92 15.54 6.54~ 14.560 

A25 0.663 31.8 4720 3. 97 15.38 6.55~ 19.275 

A25a 0.668 31.8 4790 4.00 15.26 6.77~ 20.772 
A A 50 0.661 73.9 3810 3.96 

7;, 
15.42 7 22/f' 25.954 . c 

A50a 0.658 75.0 4060 3.94 15.49 7.49~ 24.660 
"' A75 0.655 97. 1 4670 3.92 15.56 6.83~ 31.966 
N 

#1 0.699 110.2 5520 4.18 14.60 6.24~ 31 . 275 

BOO 0.488 - - 4640 3.88 15.70 6.18~ 16.027 

B B25 0.494 32 ."4 4470 3.93 7;, 15.52 6.381~ 1 7. 6 70 

850 0.498 76.2 4390 3.96 15. 39 7.57~ 24.050 

coo 0.943 - - 4270 3.96 15.41 7.14~ 13.270 

c C25 0.948 32.4 4100 3.98 7;, 15.33 7.23~ 18.650 

cso 0.939 76.2 43ll0 3.94 15.47 7.82~ 30.150 

C75 0.933 103.0 4260 3.92 15.57 7.53~ 31.020 

* Based on the uncracked trans formed cross section. 
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*TABLE 3.1 SHEAR CRACKING STRESSES OBTAINED FROM CONCRETE 
STRAINS, STIRRUP STRAINS, DEPTH INCREASE AND 
CRACKING PATTERNS 

Diagonal Cracking, psi 

Series Beam Cone rete Stirrup Depth Cracking 
strains strains increase patterns 

#2 

AOO 111 89 

A25 112 112 124 112 

A A25a 114 114 114 114 
A 50 116 112 122 122 
A50a 114 114 114 114 
A75 110 110 116 110 
#1 

BOO 89 100 
B B25 93 93 114 104 

B50 98 98 131 98 

coo 96 73 

c C25 114 115 115 114 

C50 115 115 115 115 

C75 116 116 116 94 

* From Ref. (6) 
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TABLE 4.1 AVERAGE SHEAR STRESSES IN THE COMPRESSION 
ZONE AT FAILURE BASED ON ASSUMED LINEAR 
STRESS-STRAIN CURVE FOR CONCRETE 

w .5 .6 . 7 .8 .9 1.0 

K3 . 735 .772 .804 . 831 .853 .873 
f' c 

3000 298 313 326 337 346 354 
(298) ( 313) ( 326) ( 337) ( 346) ( 354) 

4000 365 384 400 415 428 438 
( 370) (388) (404) (418) ( 429) ( 439) 

5000 427 450 471 489 504 516 
(437) (459) ( 478) (494) (507) (519) 

6000 486 513 537 558 576 591 
( 501) (526) (548) (566) ( 581 ) (595) 

Values in parenthesis are obtained using Tav = K3 f~ · 
75 
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TABLE 4.2 CDr~PARISON OF PREDICTED AND EXPERIMENTAL NOMINAL 
SHEAR STRESS FOR RECTANGULAR BEAMS WITH STIRRUPS 

Beams f' bw d a/d 100pw Pvf vy vntest v* 
vntest 

v 
c ill . 

ntest n vn 
psi in. kips psi psi 

BRESLER AND SCORDELIS (10) 

A1 3490 12.1 18.35 3.92 1.80 47.2 52.5 236 243 .':173 

A2 3520 12.0 18.27 4.93 2.28 47.6 55.0 251 231 1. 086 

81 3590 9. 1 18. 15 3. 95 2.43 69.2 50.0 303 287 1 .054 

B2 3360 9.0 18.33 4. 91 2.43 70.0 45.0 273 258 1.057 

C1 4290 6. 1 18.25 3.95 1.80 93.9 35.0 314 324 . 971 

C2 3450 6.0 18.28 4.93 3.66 95.2 36.5 333 299 1.113 

PLACAS AND REGAN ( 35) 

R8 3870 6.0 10.7 3.36 1.46 83.5 17.9 279 313 .890 

R9 4290 6.0 10.7 3.36 1.46 167.0 23.5 366 446 .821 

R10 4295 6.0 10.7 3. 36 .97 83.5 16.9 263 291 .903 

Rll 3800 6.0 10.7 3.36 l. 95 83.5 20.1 313 326 .959 

R12 4920 6.0 10.0 3.60 4.16 83.5 24.6 410 384 1.067 

R13 4680 6.0 10.0 3.60 4.16 167.0 33.6 560 479 1 . 168 

R14 4210 6.0 10.7 3.36 1.46 55.7 20.1 313 267 1 . 170 

R15 4330 6.0 10.0 3.60 4.16 167.0 31.4 523 467 1.121 

R16 4580 6.0 10.0 3.60 4.16 16 7. 0 31.4 523 476 1. 099 

R17 1850 6.0 10.7 3. 36 1.46 83.5 15.7 244 251 . 975 

R20 6230 6.0 10.7 3. 36 1.46 83.5 20.2 315 353 . 891 

R21 6980 6.0 10.0 3.60 4.16 167.0 33.6 560 545 l. 027 

R22 4280 6.0 10.7 4.50 1.46 83.5 17.9 279 282 . 988 

R24 4480 6.0 10.0 5.05 4.16 83.5 20.7 345 31 7 1. 089 

R25 4470 6.0 10.0 3.60 4.16 83.5 23.5 392 371 1. 055 

R27 1980 6.0 10.0 3.60 4.16 167.0 21. 3 355 355 1.000 

R28 4580 6.0 10.0 3.60 4.16 326.0 40.3 672 657 1 .022 

* predicted 
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TABLE 4.2 (continued) 

KREFELD AND THURSTON (24) 

26-1 5820 10.0 17.94 4. 01 2.22 79,0 46.5 259 343 . 756 

29a-1 5630 10.0 17.94 4. 01 2.22 53.0 35.9 200 299 .670 

29b-1 5460 10.0 17.94 4.01 2.22 53.0 36.0 201 298 .674 

29a-2 5390 10.0 17.94 4. 01 2.22 62.0 48.7 271 311 .873 

29b-2 6000 10.0 17.94 4.01 2.22 62.0 45.5 254 321 .789 

29c-2 3500 10.0 17.94 4.01 2.22 62.0 36.3 202 268 . 755 

29d-2 4410 10.0 17.94 4.01 2.22 62.0 37. 1 207 292 .708 

29e-2 7030 10.0 17.94 4.01 2.22 62.0 46.4 259 340 . 761 

29-3 4970 10.0 17.94 4. 01 2.22 40.0 43.3 223 266 .837 
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TABLE 4.3 COMPARISON OF PREDICTED AND EXPERIMENTAL NOMINAL 
SHEAR STRESS FOR T -i3EAf.1S WITH STIRRUPS 

Beams f' bw d a/d 100pw Pv fvy V ntes t v* 
vntest 

c v ntes t n v 
psi in. in. kips psi psi n 

AUTHOR 

A25 4720 7.5 15.38 3.96 .663 31.8 19.275 167 189 .885 

A25a 4790 7.5 15.26 4.00 .668 31.8 20.772 181 183 . 991 

A50 3810 7.5 15.42 3.96 .661 74.0 25.954 224 247 .907 

A50a 4060 7.5 15.49 3.94 .658 75.0 24.660 212 248 .855 

A75 4670 7.5 15.56 3. 92 .655 97.0 31.966 274 295 .928 

#1 5520 7.5 14.60 4.18 .699 106.0 31 . 275 285 321 .888 

B25 4470 7.5 15.52 3.93 .494 32.4 17.670 152 174 .872 

850 4390 7.5 15.39 3.96 .498 76.2 24.05 208 247 .844 

C25 4100 7.5 15.33 3. 98 .948 32.4 18.650 162 199 .813 

C50 4300 7.5 15.47 3.94 . 939 76.2 30.150 260 270 .963 

C75 4260 7.5 15.57 3.92 .933 103.0 31.020 266 313 .847 

HADDADIN,HONG AND MATTOCK (17) 

B3 4000 7.0 15.00 3.37 3.81 210.0 61.0 581 519 l. 118 

C2 4027 7.0 15.00 4.25 3. 81 95.0 39.0 371 338 1.099 

C3 3500 7.0 15.00 4.25 3.81 210.0 58.5 577 448 1.245 

03 4244 7.0 15.00 6.00 3.81 210.0 54.2 516 424 1 . 218 

C4 3730 7.0 15.0 4.25 3. 81 393.0 69.8 665 552 1.020 

* predicted 
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TABLE 4.3 (continued) 

PLACAS AND REGAN ( 35) 

T1 4050 6.0 10.7 3.36 l. 25 83.5 24.7 385 308 1.248 

T3 3990 6.0 10.7 3. 36 1.46 83.5 23.5 366 316 1.160 

T4 4710 6.0 10.7 3.36 l. 95 83.5 24.6 383 347 1. 103 

T5 4890 6.0 10.7 3.36 l. 46 167.0 31.4 489 459 1.066 

T6 3740 6.0 10.0 3.60 4. 16 326.0 46.0 767 618 1.240 

T7 3970 6.0 10.4 3.46 3.00 83.5 24.6 394 348 l. 131 

T8 4530 6.0 10.0 3.60 4.16 83.5 28.0 467 373 1. 250 

T9 2930 6.0 10.0 3.60 4.16 167.0 34.7 578 409 1 .415 

T10 4090 6.0 10.7 3.36 1.46 55.7 19.5 304 262 1 . 158 

T13 1b50 6.0 10.7 3. 36 1.46 83.5 20.2 315 252 1. 245 

T15 4810 6.0 10.0 7.20 4.16 83.5 23.5 392 291 1. 345 

T16 4740 6.0 10.0 7.20 4.16 55.7 20.8 347 259 1. 338 

T17 4790 6.0 10.0 7.20 4.16 167.0 30.1 502 378 1. 326 

T19 4340 6.0 10.0 5.40 4.16 83.5 25.5 425 305 1. 392 

T20 4655 6.0 10.0 5.40 4.16 167.0 34.6 577 405 l. 423 

T25 7840 6.0 10.7 3. 36 l. 46 83.5 25.8 402 376 1.070 

T26 8260 6.0 10.0 3.60 . 4.16 167.0 40.3 672 575 1. 169 

T27 1740 6.0 10.0 3.60 4.16 167.0 29.7 495 337 1 . 46 7 

T31 4495 6.0 10.7 3.36 1.46 83.5 21.3 332 322 1. 030 

. T32 4000 6.0 10.0 3.60 4.16 326.0 48.6 785 658 1. 192 

T34 4920 6.0 10.0 5.40 4.16 83.5 25.2 420 320 1.311 

T35 4880 6.0 10.0 5.40 4.16 83.5 25.8 430 319 1. 346 

T36 3500 6.0 10.0 3.60 4.16 167.0 40.3 672 434 1.546 

T37 4615 6.0 10.0 3.60 4.16 326.0 47.1 785 658 1. 192 

T38 4380 6.0 10.0 3.60 4. 16 326.0 53.8 897 648 1. 383 
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Figure 2.15 Load-Deflection Curves, Beam AOO (pw = 0.656%, pvfvy = 0.0 psi). 
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Figure 2.16 Load-Deflection Curves, Geam A2b (pw = 0.663%, pvfvy = 31.8% psi). 
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Figure 2. 15 Load-Deflection Curves, Beam AOO (pw = 0.656%, pvfvy = 0.0 psi). 



60 

50 
"' 0. ·-
"' . 
a_ 

40 . 
dial gages~ / ii3 " "' / 0 I co 

....J 

"" 30 

20 

10 

0.0 o.s I .0 l .5 2.0 
0.0 0.5 I .0 1.5 2.0 

0.0 0.5 1.0 I .5 2.0 

Deflection, in 

Figure 2.16 Load-Deflection Curves, Beam A2S (pw; 0.663%, pvfvy; 31.8?; psi). 
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Figure 2.18 Load-Deflection Curves, Beam A50 (pw = 0.6611;, P/vy = 73.9 psi) 
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Figure 2.22 Load-Deflection Curves, Beam BOO (pw = 0.488%, P/vy = 0.0 psi). 
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Figure 2.24 Load-Deflection Curves, Beam 850 (pw = 0.4Y8%, pvfvy = 76.2 psi). 
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Figure 2.26 Load-Deflection Curves, Beam C25 (o = 0.948%, p f = 32.4 psi). · w v vy 
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Figure 2.27 Load-Deflection Curves, Beam C50 (p = 0.948%, p f = 76.2 psi). 
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APPENDIX A 

NOi4ENCLATURE 

area of longitudinal reinforcement 

area of longitudinal reinforcement in equivalent beam under 
pure bending that produces neutral axis location equivalent 
to neutral axis in beam under bending and shear 

area of shear reinforcement 

silea r-span 

width of a rectangular beam or web width of aT-beam 

compression force in the concrete 

resultant of normal stresses for a depth y from the top of 
the beam 

effective depth of beam 

Ec modulus of elasticity of concrete (Ec = 57,000~) 

f' 
c 

fey 

f' 
t 

fvy 

Hx 

jd 

k 

kd 

modulus of elasticity of steel 

geometric and shear softening factor 

concrete cylinder strength 

concrete compression stress at a distance y from the top of 
the beam 

modulus of rupture of the concrete 

tensile strength of the concrete (ft = 5~ , assumed) 

yield stress of shear reinforcement 

depth of concrete compression zone at section x 

internal moment arm 

ratio of compression zone to effective depth 

depth of conrrete compression zone at plane 1-l 

ratio of dowel plus interface shear to total concrete 
she a r ( K1 = ( V n + V ay) /V c) 

K2 ratio of shear carried by stirrups to nominal shear (K2 = V/Vc) 
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K3 variable coefficient 

M applied moment 

Mu applied moment 

M0 moment for the pure bending case 

1-1 applied moment at section x 
X 

n modular ratio (n = Es/Ec) 

Rb design cube strength 

r 

s 

T ·-1 ? i'l- ''-

v 

effectiveness factor of shear reinforcement (r = 

stirrup spacing along the axis of beam 

tension force in the longitu~n~ reinforcement at section 

tension force in the longitudinal reinforcement in the pure 
bending case 

applied shear 

interface shear capacity ( verticcl component of aggregate inter] ock) 

shear carried by the concrete (Vc = Vcz + Vay + Vd) 

shear carried by the concrete compression zone 

shear carried by the dowel action of longitudinal rein­
forcement 

nominal (ultimate) shear capacity 

V
11 

test experimental ultimate shear capacity 

v 

shear carried by the shear reinforcement 

applied shear 

nominal shear stress 

interface shear stress 

shear cracking stress (diagonal tension cracking stress) 
vcz 

compression zone "stress" (vcz = bd) 
w 

shear cracking stress for beams without stirrups 
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vc test experimental shear cracking stress 

vd dowel shear stress 

vn nominal ultimate snear stress 

vn test experimental ultimate shear stress 

w 

X 

y 

y 

-y 

z 

a 

los 

shear stress carried by the shear reinforcement 
"c compression strain ratio (w = --) 
"u 

distance from plane 1-1 a 1 on g the 1 ong itud ina 1 axis of the beam 

distance to the neutral axis from the top of the beam 

distance of point of application of resultant, c. from 
the extreme compressive fiber of the beam at plane 1-1 

distance of point of application of resultant, C, from the 
extreme compressive fiber of the beam at section x 

distance of neutral axis from the extreme compressive fiber 
of the beam at section x 

distance from the extreme compressive fiber of the beam 

distance of point of application of resultant, C, from the 
neutral axis 

distance of point of application of resultant, C, to the 
level of flexural reinforcement at section x 

horizontal shear crack projection 

inclination of web reinforcement to longitudinal axis 

total elongation of longitudinal reinforcement between 
sections 1-1 and 2-2 

strain in extreme compressive fiber of concrete 

strain in the extreme compressive fiber of the concrete at 
section x 

strain in concrete at a distance y from the top of the beam 

strain in the longitudinal reinforcement at section 2-2. 

average strain in the longitudinal reinforcement 



8 

196 

strain at the level of the flexural reinforcement at 
location x 

inclination of inclined crack 
A 

ratio of shear reinforcement (pv = b ~) 
w 

percentage of longitudinal reinforcement 

o normal applied compressive stress in the concrete 

o1 principal tensile stress 

o2 principal compressive stress 

T failure shear stress of the concrete 

Tav average shear stress within compression zone at failure 

TY shear stress at a distance y from the top of the beam 

~ strength reduction factor (from ACI) 
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APPENDIX B 

STRAIN GAGE INFORHATION 

The type and size of the strain gage used in this investigation are 

shown in Table B. 1. 

2.4 inch paper backed gages supplied by the Precision Measurement 

Co. were used to measure concrete strain in all beams except Beams #1 and 

#2. 1.0 inch paper backed gages supplied by BLH Electronics were used 

for Beams #1 and #2. The steps of the concrete gage installation were: 

smoothing the concrete surface with a grinding wheel, bonding the gage 

to the concrete with Duco cement, and protecting the gage with a layer 

of Duco cement. 

0.03 inch foil gages were used to measure steel strain. This small 

size was selected in order to make installation possible on the smallest 

diameter stirrup used (0.132 inches). The steps of foil gage installation 

were: cleaning and preparing the specimen surface, bonding the gage to 

the steel surface and waterproofing. All material used for the foil 

gage ins ta 11 ati on was supplied by the Mi cro-~leasurements Co. The surface 

preparation materials were M-Prep Conditioner A and 1'1-Prep Neutralizer 5. 

The bonding media consisted of M-Bond 2JO catalyst and t1-Bond 200 adhesive. 

The waterproofing coat was M-Coat G. For additional information on the 

material used and detailed information on the procedure of installation 

of the foil gages see References 28 and 29. 
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TaoleB.l STRAI ~~ GAGES 

Steel Gages Concrete Gages 

Beam Type Manufacturer* Type 

#2 FAE-03J-l2-S6EL BLH A-12 
ADO EA-06-031DE-l20 Mt~ W-240 
A25 " " " 
A25a FAE-031-l2-S6EL BLH " 
A 50 EA-06-031DE-120 MM " 
A50a FAE"03J-12-S6El BLH " 
A75 EA~06-031 DE-J 20 M~1 II 

#l II II A-12 
BOO II II W-240 
B25 FAE-03J-12-S6EL BLH II 

B50 II II " 
coo II " " 
C25 II II " 
C50 " " " 
C75 " " " 

* BLH = BLH Electronics, Waltham, Mass. 
PM =Precision Measurement Co., Ann Arbor, Michigan 
MM =Micro-Measurements Co., Raleigh, North Carolina 

Manufacturer* 

BLH 
PM 
II 

II 

II 

" 
" 
BLH 
PM 
II 

•! 

" 
II 

" 
II 




