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Abstract

Particle engineering strategies remain at the forefront of aerosol research for localized treatment of 

lung diseases and represent an alternative for systemic drug therapy. With the hastily growing 

popularity and complexity of inhalation therapy, there is a rising demand for tailor-made inhalable 

drug particles capable of affording the most proficient delivery to the lungs and the most 

advantageous therapeutic outcomes. To address this formulation demand, nanoparticle 

agglomeration was used to develop aerosols of the asthma therapeutics, fluticasone or albuterol. In 

addition, a combination aerosol was formed by drying agglomerates of fluticasone nanoparticles in 

the presence of albuterol in solution. Powders of the single drug nanoparticle agglomerates or of 

the combined therapeutics possessed desirable aerodynamic properties for inhalation. Powders 

were efficiently aerosolized (~75% deposition determined by cascade impaction) with high fine 

particle fraction and rapid dissolution. Nanoparticle agglomeration offers a unique approach to 

obtain high performance aerosols from combinations of asthma therapeutics.
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1. Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are currently treated using 

either nebulizers, pressurized metered dose inhalers or dry powder inhalers (Dalby and 

Suman, 2003; Murnane et al., 2008b; Yang et al., 2008a). A major determinant of aerosol 

deposition in the respiratory tract is the aerodynamic size of particles and the polydispersity 
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(Louey et al., 2004; Pilcer and Amighi, 2010; Pritchard, 2001). Inhaled drugs should ideally 

possess an aerodynamic diameter less than 5 µm for delivery into the ‘deep’ lung for local 

therapy or systemic absorption (Weers et al., 2010). Nanoparticles (<0.5 µm) are more likely 

to be exhaled, which may lead to dose variability (Shi et al., 2007). If delivered as a 

suspension, such small particles are also prone to particle growth due to Ostwald ripening 

and can suffer from uncontrolled agglomeration (Berkland, 2010). A major obstacle to 

inhaled therapeutics is the inability to efficiently deliver large quantities of a drug to the 

deep lung (Gillian, 2010).

Natural aerosols, in particular, spores from molds and fungi as well as soot and asbestos, 

have a size and structure that allows them to aerosolize efficiently into the lungs. They are 

composed of underlying nanostructures that join together to form microparticles. Following 

this rationale, nanoparticle agglomerates were designed by formulating nanometer-sized 

drug particles, then assembling them to micron-sized clusters with the desired aerodynamic 

diameter (e.g., 1 µm for treating distal airways or 3–5 µ m for treating upper airways) 

(Bailey et al., 2008; El Gendy et al., 2009; Plumley et al., 2009). By agglomerating 

nanoparticles under controlled process conditions, nanoparticle agglomerate dry powders 

can be tailored to the desired physical and chemical characteristics for aerosol delivery and 

dissolution (Aillon et al., 2010; El-Gendy and Berkland, 2009).

Asthma is a disease that is commonly treated with two types of aerosolized agents; 

bronchodilators (β2 agonists) and anti-inflammatory agents (steroidal compounds). Apart 

from acute asthma attacks, which are primarily treated with short acting β2 agonists, there is 

a strong need for chronic therapy to reduce inflammation and to avoid asthma exacerbations 

(Barnes, 2002). Therapeutic interventions using combinations of a β2 agonist and a 

glucocorticoid have emerged as an effective asthma management strategy to control 

persistent asthma (Rajeswari et al., 2006). The use of β2 agonists to prevent bronchial spasm 

and glucocorticoids to decrease inflammation is widely accepted (Westmeier and Steckel, 

2008). Combination formulations have also been suggested to be more effective than a 

single drug due to synergistic effects in the same target cell in the lung epithelia. It appears 

rational, therefore, to combine both substances in one particle instead of formulating a 

combination product containing both drugs in a physical mixture (Adi et al., 2008; Nelson et 

al., 2003; Papi et al., 2007).

Combination products such as Advair and Symbicort are currently marketed. Advair 

combines fluticasone propionate and salmeterol xinafoate into one inhaler (Michael et al., 

2000). Salmeterol (long acting β2 agonists) does not replace the need for rescue inhalers, 

such as albuterol, which are still necessary for immediate relief of asthma symptoms (Kamin 

et al., 2007; Salpeter et al., 2006). Symbicort is another combination product containing 

budesonide and formoterol. Fluticasone propionate is a synthetic corticosteroid used to treat 

asthma, allergic rhinitis (hay fever) and eosinophilic esophagitis (Murnane et al., 2008a; 

Rehman et al., 2004; Vatanara et al., 2009). Albuterol sulfate is a short-acting β2 

adrenoreceptor agonist used for the relief of bronchospasm in conditions such as asthma and 

COPD, and is currently one of the most prescribed bronchodilators for the treatment of 

bronchial asthma (Ahmad et al., 2009; Xu et al., 2010).
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Development of dry powder aerosols for delivering fluticasone and/or albuterol nanoparticle 

agglomerates as single anti-asthmatic therapies or in combination to achieve synergistic 

effect is herein described. The study illustrates the formulation of fluticasone nanoparticles 

using potentially acceptable surfactants that control the size and surface charge of the 

prepared nanoparticles. Also, albuterol nanoparticles free of excipients were engineered 

using different techniques. The nanoparticle suspensions were destabilized via ionic charge 

interactions using L-leucine. Combination drug formulations were prepared by adding 

albuterol aqueous solution to the fluticasone nanoparticle suspension followed by addition of 

L-leucine. The aerosol performance of these nanoparticles agglomerate formulations were 

fully characterized and compared to micronized stock drug.

2. Materials and methods

2.1. Materials

Fluticasone propionate (Flu) and albuterol sulfate (Albu) were generously provided by 3M. 

L-α-phosphatidylcholine (lecithin; Lec), cetyl alcohol (CA), L-leucine (Leu) and 

polyvinylpyrrolidone K90 (PVP) were purchased from Sigma Chemical Co., USA. Pluronic 

F-127 (PL, Mw ~12,220) was purchased from BASF, USA. Ethanol, acetone, potassium 

dihydrogen phosphate (KH2PO4), disodium hydrogen phosphate (Na2HPO4) and sodium 

chloride (NaCl) were purchased through Fisher Scientific, USA. Floatable dialysis 

membrane units (MWCO=10 kDa) were obtained from Spectrum Laboratories Inc., USA. 

Amicon Ultra Centrifugal filter units (MWCO=5 kDa) used for dissolution were purchased 

from Millipore, Co (Billerica, MA). Double-distilled water was used throughout the study, 

provided by an EASYpure® RODI (Barnstead International, USA).

2.2. Nanoparticle formulation

2.2.1. Preparation of fluticasone nanoparticle suspension—Nanoparticle 

suspensions of fluticasone propionate were prepared using antisolvent precipitation. 

Solutions of the drug in organic solvent (acetone or ethanol) were prepared at different 

concentrations and directly injected into water at a rate of 2.5 mL/min. A variety of solvent/ 

non-solvent ratios were precipitated under ultrasonication (probe-type sonicator, Fisher 

Scientific, Sonic Dismembrator) operating with an amplitude of 48% in an ice bath or under 

homogenization (probe-type homogenizer, Tissue tearor, Biospec Products, Inc.). 

Hydrophobic surfactants (cetyl alcohol and lecithin) were added to the drug solution while 

hydrophilic surfactants (PL F127, PVA and PVP K90) were dissolved in the aqueous phase.

2.2.2. Formulation of combination therapy—The combined formulation was prepared 

by adding albuterol sulfate dissolved in water to the precipitated fluticasone propionate 

nanosuspension during homogenization at 25,000 rpm. The two drugs were combined, at a 

ratio of 2:1 w/w, fluticasone propionate: albuterol sulfate (Papi et al., 2007; Westmeier and 

Steckel, 2008).

2.2.3. Fabrication of albuterol nanoparticle suspension—Albuterol sulfate 

nanoparticles were prepared by precipitation or by a top-down (attrition) method. 

Concerning the precipitation technique, solutions of albuterol in water were prepared and 
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directly injected into ethanol or acetone at a rate of 2.5 mL/min. Various solvent/ non-

solvent ratios were used under ultrasonication operating with an amplitude of 48% or under 

homogenization. In the top-down method, albuterol nanoparticles were prepared by 

ultrasonicating or homogenizing a suspension of albuterol in acetone or ethanol. The 

concentration of the drug in the anti-solvent was varied between 0.2 and 1 mg/mL. The 

ultrasonication or homogenization time was also varied.

2.3. Characterization of nanoparticle suspensions

The average size and polydispersities of the nanoparticle suspensions were determined by 

dynamic light scattering (Brookhaven, ZetaPALS, SA). The same instrument was used to 

determine the zeta potential of the nanoparticles in 1 mM potassium chloride solution. Three 

runs of 15 cycles were acquired, and the mean zeta potential was recorded. Measurements 

were taken at an angle of 90° to the incident light source. Some samples were frozen at −80 

°C and lyophilized (FreeZone 1) for ~36 h at a temperature of −50 °C under vacuum (~0.02 

millibar). Lyophilized powder was stored at room temperature for further characterization.

2.4. Agglomeration of nanoparticle suspensions

Nanoparticles were agglomerated via addition of an agglomerating agent. L-Leucine solution 

in water (2.5 mg/mL) was slowly injected into nanoparticle colloids during homogenization 

at 25,000 rpm for 30 s. The amount of L-leucine added was adjusted to a fluticasone: L-

leucine ratio equal to 1:1 for agglomerating the fluticasone suspension and the combination 

suspension. An albuterol: L-leucine ratio of 1:1.5 was used for agglomerating the albuterol 

suspension.

The agglomerated suspensions were incubated with the agglomerating agent for three hours. 

Then, the size of the prepared nanoparticle agglomerates was measured in Isoton diluent 

using a Coulter Multisizer 3 (Beckman Coulter Inc.) equipped with a 100 µm aperture. The 

suspensions were kept overnight at room temperature to allow evaporation of organic 

solvent and then frozen at −80 °C. The frozen suspensions were transferred to the freeze 

dryer where drying lasted for ~3 days. Lyophilized powder was stored at room temperature 

for further characterization.

2.5. Particle size and morphology by transmission electron microscopy (TEM)

Lyophilized powders were resuspended in Isotonic solution and the particle size and size 

distribution was detected using a Coulter Multisizer 3. In addition, the size and morphology 

of the lyophilized nanoparticles and nanoparticle agglomerate powders were evaluated using 

JEOL 1200 EXII transmission electron microscope. Prior to imaging, carbon-coated grids 

(Electron Microscopy Sciences) were placed on a droplet of the suspensions on a glass 

microscope slide to permit the adsorption of the particles onto the grid. After this, the grid 

was blotted with a filter paper and air dried for 1 h.

2.6. Powder flow characteristics

Nanoparticle agglomerate dry powders were poured through a glass funnel from a height of 

4 cm onto a level bench top. The angle that the side of the conical heap made with the 

horizontal plane was recorded as the angle of repose (tan θ = height / radius). In addition, 
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bulk and tapped densities were determined. Then, the Hausner ratio (tapped density / bulk 

density) and Carr’s compressibility index (Ci) [(tapped density – bulk density)/ tapped 

density X 100%] were calculated (Kumar et al., 2001; Louey et al., 2004).

2.7. Evaluation of Aerosol performance of nanoparticle agglomerate dry powders

2.7.1. Measurement of theoretical mass mean aerodynamic diameter—The 

geometric particle size and tap density measurements were used for calculating the 

theoretical mass mean aerodynamic diameter (dae) of the nanoparticle agglomerates (El-

Gendy et al., 2010b; Fiegel et al., 2008).

2.7.2. Aerodynamic size distribution by time-of-flight analysis—The aerodynamic 

diameter and size distributions of the nanoparticle agglomerate powders were determined by 

time-of-flight measurement (TOF) using an Aerosizer LD (Amherst Instruments, Hadely, 

MA, USA) equipped with a 700 µm aperture operating at 6 psi. For these studies, ~1 mg of 

the powder was added to the instrument disperser and data were collected for ~60 s under 

high shear force (~3.4 kPa). The instrument size limits were 0.10–200 µm and particle 

counts were above 100,000 for all measurements.

2.7.3. In vitro aerosol deposition of nanoparticle agglomerates by cascade 
impactor—An eight-stage Mark II Andersen Cascade Impactor (ACI, Tisch 

Environmental, Inc.) had stages with particle aerodynamic diameter specifications at a flow 

rate of 28.3 L/min as follows: pre-separator (10.00 µm), stage 0 (9.00 µm), stage 1 (5.80 

µm), stage 2 (4.70 µm), stage 3 (3.30 µm), stage 4 (2.10 µm), stage 5 (1.10 µm), stage 6 

(0.70 µm), stage 7 (0.40 µm) and the final filter (< 0.40 µm). Aerodynamic behavior of 

nanoparticle agglomerate dry powders was assessed using the ACI and compared with that 

of the two drugs as received.

The powder was delivered into the cascade impactor by placing capsules (gelatin type, size 

3, generously provided from Capsugel®, NJ, USA) containing 5 ± 0.5 mg of powder into a 

Plastiape Monodose Inhaler RS01 Model 7. The capsule was punctured and the powder was 

drawn through the cascade impactor which was operated at a flow rate of 28.3 L/min for 4 s. 

Dry powder aerosols deposited on each of the nine stages of the impactor were quantified by 

HPLC. After actuation, the device, capsule, adapter, throat, all plates, stages and filter were 

washed into separate volumetric flasks using ethanol (for fluticasone alone or Flu/Alu 

combination) or phosphate buffered saline (pH 7.4 for albuterol). Appropriate sample 

dilutions were made prior to testing by HPLC. Each sample was tested in triplicate.

Concerning the combination formula, the powder deposited on stages was suspended in 

ethanol and was ultrasonicated in a bath-type sonicator (Branson 3510) for 30 min. Then, 

the solution was centrifuged (Beckman, Avanti ) at ~15,000 rpm for 30 min and the amount 

of fluticasone in the supernatant was determined using a reversed-phase HPLC method. As 

albuterol has a very slightly solubility in ethanol, the drug content in both supernatant and 

precipitate were detected by HPLC.

All ACI experiments were performed under controlled conditions (21 ± 2 °C, 50 ± 5% RH) 

in triplicate. The emitted dose (ED) was defined as the mass of drug delivered from the 
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inhaler (i.e., total amount excluding the inhaler device and capsule) (Xu et al., 2010). The 

emitted fraction was determined as the percent of the emitted dose divided by the initial 

mass delivered into the impactor (Lechuga-Ballesteros et al., 2008; Shur et al., 2008; Yang 

et al., 2008b).

The fine particle fraction of the total dose (FPFTD) was calculated as the percentage of 

aerosolized particles that reached the lower seven stages of the impactor (corresponding to 

aerodynamic diameters below 5 µm; stage 2-filter), or the lower five stages (corresponding 

to aerodynamic diameters below 3 µm; stage 4-filter) (El-Gendy et al., 2010a).

The fine particle fraction of the emitted dose (FPFED) was determined from the cumulative 

mass distribution curve at 5 µm and 3 µm and was calculated as a function of the emitted 

dose. Additionally, mass median aerodynamic diameter (MMAD) and geometric standard 

deviation (GSD) were determined from the cumulative mass distribution curve (Pham and 

Wiedmann, 2001; Vanbever et al., 1999; Xu et al., 2010).

2.8. Solid-state characterization

2.8.1. Power X-Ray Diffraction (PXRD)—For analysis of crystallinity, X-ray diffraction 

analysis was performed using an XGEN-4000 (Scintag, Inc.). The powders were analyzed 

over the range of 5° to 45° (2θ) at 45.0 kV and 35.0 mA.

2.8.2. Differential scanning calorimetry (DSC)—DSC data of materials as received, 

nanoparticles and nanoparticle agglomerates were collected using a Q100 DSC from TA 

Instruments. For thermogram acquisition, sample sizes of 1 to 5 mg were weighed into 

aluminum hermetic pans. Measurement was carried out under inert conditions (nitrogen 

flow of 50 mL/min) with a scan rate of 10 °C/min from 25 to 350 °C.

2.8.3. Thermogravimetric analysis (TGA)—TGA was also performed using a Q50 

TGA from TA Instruments. A platinum sample pan was loaded with 5 ± 0.5 mg of sample 

and heated from 25 to 350 °C at a rate of 10 °C/min under dry nitrogen flowing at rate of 40 

mL/min. Data analysis was completed using Universal Analysis 2000 (Version 4.3A) 

software that was provided by TA Instruments.

2.9. Determination of process yield

The weight of dry powder for the prepared nanoparticle agglomerates was measured and the 

yield was calculated (El Gendy et al., 2009).

2.10. Determination of drug content uniformity of nanoparticle agglomerates

Fluticasone content in the dry powders was assessed by dispersing 1 mg of the lyophilized 

powder in 10 mL of ethanol. The dispersion was ultrasonicated in a bath-type sonicator for 

30 min. Then the solution was centrifuged at ~15,000 rpm for 30 min to remove insoluble 

ingredients and the amount of fluticasone in the supernatant was determined using a 

reversed-phase HPLC method. For the combination formula, albuterol content was detected 

in both the pellet after dissolving in 10 mL PBS and in the supernatant using HPLC. Drug 

content in albuterol nanoparticle agglomerates was determined by dispersing 1 mg of the 

El-Gendy et al. Page 6

Eur J Pharm Sci. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lyophilized powder in PBS. The dispersion was ultrasonicated in a bath-type sonicator for 

15 min. Then the amount of albuterol was determined using a reversed-phase HPLC method. 

All experiments were performed in triplicate and drug content was calculated (El Gendy et 

al., 2009).

2.11. Dissolution studies

The dissolution of the prepared nanoparticles and nanoparticle agglomerates was determined 

under sink condition and compared with the dissolution of the drugs as received. The 

dissolution of fluticasone was carried out at 37 ± 0.5 °C in a 1 liter beaker. Lyophilized 

powder (~10 mg) was dispersed in 10 mL PBS (pH 7.4) and was suspended in a floatable 

dialysis membrane unit (Mw cut-off = 10 kDa). The unit was allowed to float in 500 mL of 

PBS and the whole assembly was stirred at a constant speed (100 rpm) using a magnetic 

stirrer (Barnstead, Thermolyne MIRAK™). At predetermined time intervals for a total 

period of 8 h, samples (1 mL) of the medium were withdrawn from the dialysis bag and 

replaced with fresh medium. Then, the samples were centrifuged for 30 min at ~13,000 rpm. 

The supernatant was removed and the pellet was dissolved in 1 mL of ethanol. Fluticasone 

content was determined using reversed-phase HPLC. In the case of the combination 

formula, both pellet and supernatant were analyzed for albuterol using a reversed-phase 

HPLC method. Studies were conducted in triplicate.

For albuterol dry powders, 5 mg was dispersed in 0.6 mL phosphate buffered saline (PBS, 

pH 7.4) and placed in a 5 kDa Ultra Centrifugal filter unit which was immersed inside a 10 

mL centrifugal tube containing PBS solution to a final volume of 7 mL. All samples were 

incubated at 37 ± 0.5 °C and shaken at 100 rpm. One mL aliquots were taken at various time 

points up to 8 hours from the bulk solution and replaced with 1 mL of fresh PBS. The drug 

concentration was measured using reversed-phase HPLC. All experiments were performed 

in triplicate.

2.12. Quantitative analysis of the drug concentrations by HPLC

Drug content, dissolution, and ACI concentration on stages were carried out using reversed-

phase HPLC methods. A Shimadzu HPLC system including a solvent delivery pump 

(Shimadzu LC-10AT), a controller (Shimadzu SCL-10A), SIL-10AxL autoinjector, and a 

SPD-10A UV detector was used in this study. Chromatograms were acquired and analyzed 

using Shimadzu Class VP 4.3 software. A long Zorbax SB C-18 column (Agilent C; 4.6 mm 

× 100 mm) with a particle diameter of 3.5 µm was used for separation. During the assay of 

fluticasone, the drug was eluted isocratically at a mobile phase flow rate of 1.2 mL/min and 

monitored with a UV detector operating at 238 nm. The mobile phase for the assay consisted 

of an acetonitrile and water mixture (65:35 v/v) (Asmus et al., 2004; Steckel and Muller, 

1998). The run time for the assay was 10 minutes, and the retention time for fluticasone was 

3.9 ± 0.2 min. For analyzing albuterol samples, an isocratic system was used with mobile 

phase of 90:10 v/v phosphate buffer (10 mM, pH3.5): acetonitrile at a flow rate of 0.3 

mL/min and detection was performed at 225 nm (Kamin et al., 2007). The run time for the 

assay was 10 min, and the retention time for albuterol was 3.85 ± 0.4 min.
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3. Results and discussion

3.1. Fluticasone nanopaticle suspensions made by precipitation

To obtain small nanoparticles from poorly water soluble fluticasone propionate, a non-

solvent precipitation method was employed (Bilati et al., 2005). Selected surfactants were 

chosen from a list of excipients that may be appropriate for inhalation (Chougule et al., 

2007; Pilcer and Amighi, 2010). Different suspensions were produced using water as anti-

solvent and a drug concentration of 0.1% or 0.2% w/w dissolved in ethanol or acetone. 

Fluticasone particles prepared without surfactants were very large with high polydispersity. 

Mean diameters of fluticasone nanoparticles made with individual surfactants were larger 

than those with combined surfactants. Particle size tended to increase and colloidal stability 

was difficult to maintain as fluticasone concentration was increased. Nanoparticles 

precipitated from acetone were larger than those precipitated from ethanol. Nanoparticle size 

appeared to decease slightly when using ultrasonication rather than homogenization during 

the precipitation process (Supplementary Table 1).

The most successful fluticasone nanosuspension was prepared by precipitation from ethanol 

under ultrasonication (0.1% w/v Flu + 0.01% w/v PVP + 0.005% w/v Lec). The surfactant 

combination employed yielded a small drug particle size (~400 nm) and low polydispersity 

(0.132). The charged surface of the nanoparticles (~12 mV) allowed the potential to 

destabilize this colloid via interaction with an agglomerating agent (Table 1). This formula 

was chosen for the preparation of the fluticasone nanoparticle agglomerates and for the 

combination formulation with albuterol sulfate in solution.

3.2. Albuterol nanoparticle suspensions made by two approaches

3.2.1. Production of nanoparticles by precipitation—Albuterol nanoparticles were 

first prepared by precipitation. A smaller nanoparticle size was produced when using 

acetone as non-solvent as opposed to ethanol. A decrease in particle diameter followed from 

a decrease of the drug concentration. The smallest nanoparticle size was obtained at a 2.5/25 

water/acetone ratio at a drug concentration of 0.1 % w/v; however, the polydispersity was 

high with low yields for all precipitation trials (Supplementary Table 2).

3.2.2. Production of nanoparticles by attrition—Nanoparticles were also produced 

by fragmenting micronized drug particles using homogenization or ultrasonication. The 

homogenizer was superior to ultrasonication in the preparation of albuterol nanoparticles 

causing a significant decrease in size with low polydispersity (Supplementary Table 3). With 

these considerations in mind, the A7 nanoparticle formulation was selected which was 

prepared by homogenizing a suspension of the drug in acetone in a concentration of 1 

mg/mL for 15 min (Table 1).

3.3. Agglomeration of the formulated nanoparticles

Colloidal suspensions of fluticasone nanoparticles, albuterol nanoparticles (A7) and 

fluticasone nanoparticles combined with albuterol in solution were destabilized using L-

leucine to disrupt the electrostatic repulsion between particles (Young et al., 2002). The 

resulting nanoparticle agglomerates had a geometric size of ~3–5 µm (Table 2). After 
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drying, powders showed a slightly broader size distribution (Fig. 1). In addition, the 

combination powders had a wider distribution compared to the single-drug formulations, 

perhaps due to large albuterol particles formed during freeze drying.

The particle size of the nanoparticles and nanoparticle agglomerates was congruent with the 

structures observed in TEM micrographs. Fluticasone nanoparticles were slightly elongated 

with smooth surfaces and a particle size of ~400 nm (Fig. 2A). Nanoparticle agglomerates 

appeared as elongated nanoparticles that were agglomerated together into micron-sized 

clusters with a somewhat porous structure (Fig. 2B). The combination powders of 

fluticasone nanoparticles dried with albuterol in solution generally exhibited slightly larger 

particles with a rough surface. Presumably, albuterol in solution deposited on the rod-shaped 

fluticasone particles during drying (Fig. 2C). Small albuterol nanoparticles with a particle 

diameter less than 100 nm were (Fig. 3A) [/agglomerated into micron-sized particles (Fig. 

3B).

Powder properties for micronized drugs as received and nanoparticle agglomerates were also 

studied. Flowability and density characterization helped elucidate any differences in bulk 

powder properties (Table 3). Flowability indices were calculated from density differences 

and the angle of repose. The micronized drugs showed a larger angle of repose, greater tap 

density and higher values of the Hausner ratio and Carr’s index compared to the 

nanoparticle agglomerates (Fig. 4). This was probably the result of a reduction of cohesive 

forces in nanoparticle agglomerates compared to drug powders as received. L-Leucine may 

have also reduced surface energy in nanoparticle agglomerate dry powders (Shur et al., 

2008).

3.4. Nanoparticle agglomerates yielded desirable aerosol characteristics

Theoretical mass mean aerodynamic diameters (daero) of the prepared nanoparticle 

agglomerates were calculated from the geometric particle size and tap density. The 

calculated daero (0.8–1.1 µm) was appropriate for increasing the probability of aerosol 

deposition in the alveolar region of the lungs. Aerosizer LD time-of-fight (TOF) 

measurements of nanoparticle agglomerate dry powders also showed particles in the 

respirable size range (2 – 3.2 µm) with relatively narrow size distribution (Table 2 and Fig. 

5). The MAD value of the combination formula obtained by Aerosizer appeared to be close 

to that of the pure fluticasone nanoparticle agglomerates.

Cascade impactor analysis is the standard technique for in vitro characterization of dry 

powder aerosols. Fluticasone nanoparticle agglomerates mainly deposited on stages 3 and 4, 

while albuterol nanoparticle agglomerates favored deposition on stages 4 and 5 of the 

impactor. The combination formula exhibited size distribution similar to fluticasone 

nanoparticle agglomerates with some additional powder deposition on upper stages. This 

may be explained by the fact that once fluticasone nanoparticle agglomerates were dried in 

the presence of albuterol in solution, forces such as van Der Waals are sufficient to hold all 

particles together. This may suggest that fluticasone nanoparticle agglomerates were indeed 

a ‘carrier’ for much of the albuterol. Albuterol in the combination showed a different 

deposition profile than the fluticasone, although the albuterol deposition was improved 
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compared to the albuterol as received. This may be due to the segregation of some larger 

albuterol particles from the fluticasone nanoparticle agglomerates.

Conversely, drug powders as received largely deposited on the mouthpiece, throat and the 

upper stages (Fig. 6). A larger percentage of fluticasone (27%) and albuterol (28%) powder 

as received remained in the capsule shell and device when compared to the nanoparticle 

agglomerates (9% for Flu NA, 11% for Albu NA and 18% for the combined formulation). 

This reflected the efficient aerosolization and high fine particle fraction of the nanoparticle 

agglomerates. In addition, the irregular shape of the nanoparticle agglomerates may decrease 

their contact area with device surfaces, thus resulting in superior dispersion properties.

The aerosol performance was described according to emitted fraction (EF), emitted dose 

(ED), fine particle fraction (FPF), and mass median aerodynamic diameter (MMAD) (Table 

4). The high EF (~75–90%) and ED of nanoparticle agglomerate dry powders obtained at 

the tested flow rate suggested efficient aerosolization of the nanoparticle agglomerates as 

compared to the micronized drugs as received. All prepared formulas offered high fine 

particle fraction with anticipated total lung deposition (FPFTD <5 µm) of about 74–88% and 

deep lung deposition (FPFTD<3 µm) of ~55–62%. No significant change in FPF of 

fluticasone was observed after combination with albuterol in solution, suggesting the 

fluticasone nanoparticle agglomerates were indeed a carrier for albuterol (Table 4). Analysis 

of the drug content on each stage indicated that some larger albuterol particles were 

segregated from the fluticasone nanoparticle agglomerates (Fig. 7). The drug powders as 

received gave significantly lower FPF compared to all prepared nanoparticle agglomerates.

The mass median aerodynamic diameter (MMAD) was calculated from ACI data as the 50th 

percentile of the aerodynamic particle size distribution by mass. MMADs of the nanoparticle 

agglomerates ranged from 2–3.5 µm (Table 4). These values were very close to the 

Aerosizer data but slightly higher than the theoretical MMAD calculations as expected. In 

addition, the geometric standard deviation (GSD) was determined (El-Gendy et al., 2010a; 

Xu et al., 2010). GSDs for the selected nanoparticle agglomerates ranged between 2.1 and 

2.5, suggesting an acceptable range of particle size (Table 4).

Nanoparticle agglomerate formulations reported here offered a highly efficient aerosol in 

comparison to previous reports. For example, Steckel et al. prepared fluticasone by milling 

and micronization and evaluated the powder using a multi-stage liquid impinger. The 

highest fine particle fraction (% FPF <5µm) was achieved when using a FlowCaps® inhaler 

without lactose (37.5 %) (Steckel et al., 2003). Louey et al. explored multiple methods to 

generate fluticasone particles and characterized the aerosol using an eight-stage cascade 

impactor with pre-separator. Low-resistance (Rotahaler) and high-resistance (Inhalator) 

inhalers were compared. The Inhalator yielded the highest FPF (11.95%) for the jet milled 

powder blended with lactose (Louey et al., 2004). Very fine aerosols of albuterol are more 

common in the literature. For example, Chiou et al. and Hu et al. formulated salbutamol 

sulfate using high gravity controlled precipitation and assessed these powders using an 

Aerolizer connected to a multi-stage liquid impinger. They achieved similar albuterol 

performance as was reported here, the best reported FPFloaded and FPFemitted was 76.5% and 

83.7%, respectively (Chiou et al., 2007; Hu et al., 2008). Aerosol performance of fluticasone 
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in combination with salmeterol seemed to revert more towards the values reported for 

fluticasone. Westmeier et al. formulated these actives together by precipitation in a 

micromixer. The aerodynamic behavior of the particles was assessed using a Next 

Generation Impactor. Even though a high flow rate of 100 L/min was used, an Aerolizer 

device still only produced a FPF of 36.4% when the actives were blended with lactose 

(Westmeier and Steckel, 2008).

3.5. Crystallinity and thermal properties

PXRD was performed to analyze the nanoparticles and nanoparticle agglomerates. The X-

ray diffraction patterns showed sharp diffraction peaks suggesting that both fluticasone as 

received and nanoparticles were crystalline (Fig. 8) (Louey et al., 2004; Murnane et al., 

2008a; Yang et al., 2008a). The pattern of fluticasone nanoparticle agglomerates showed 

features of L-leucine and fluticasone nanoparticles. There was a peak at ~7.5° in the pattern 

of the drug as received that did not appear in that of the nanoparticles or nanoparticle 

agglomerates. On the other hand, a peak at 9° was apparent in the patterns of fluticasone 

nanoparticles and nanoparticle agglomerates, perhaps due to a slight change in the crystal 

arrangement (Fig. 8). Nanoparticle agglomerates also had diffraction peaks at 12° and 27.5° 

that differed from the nanoparticle pattern, which suggested some overlap with L-leucine 

peaks. The intensity of the diffraction peaks of the nanoparticles and nanoparticle 

agglomerates was low due to the small particle size. The PXRD pattern of combination 

nanoparticle agglomerates illustrated the features of L-leucine, fluticasone nanoparticles and 

albuterol as received (Fig. 9). The results indicated that fluticasone in this formulation 

showed the same crystalline form of fluticasone as received.

Both albuterol as received and albuterol nanoparticles showed crystalline character (Fig. 10) 

(Xu et al., 2010). The X-ray diffraction pattern of albuterol nanoparticles was different from 

that of albuterol as received as a result of the appearance of a peak at ~10° in the 

nanoparticle sample. This peak disappeared after agglomeration. The albuterol nanoparticle 

agglomerate pattern had features of L-leucine and albuterol as received indicating that the 

crystal form of nanoparticle agglomerates was likely the same crystal form as that of 

albuterol as received (Fig. 10).

Fluticasone and albuterol nanoparticles and nanoparticle agglomerates were also analyzed 

using differential scanning calorimetry (Table 5 and Fig. 11–13). No characteristic melting 

peak was found in fluticasone as received or the prepared nanoparticles. Micronized 

fluticasone as received showed an endothermic degradation peak at 282.51 °C while the 

selected nanoparticles exhibited an exothermic degradation peak at 278.42 °C (Louey et al., 

2004; Westmeier and Steckel, 2008). For lecithin, there was a sharp melting endotherm at 

168.2 °C. A DSC scan of PVP K90 showed a shallow, broad endothermic peak at 75.29 °C 

with an enthalpy of −0.835 W/g. L-Leucine powders sublimed at 323.7 °C. The DSC curve 

of fluticasone nanoparticle agglomerates exhibited an endothermic peak of melting at 210.17 

°C with an enthalpy change of −2.447 W/g followed by subsequent degradation of the 

compound; however, the characteristic peaks of the excipients were not apparent (Fig. 11A). 

This may be indicative of some re-crystallization of the drug during the agglomeration 

process or some overlap of excipient peaks.
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Combination nanoparticle agglomerates included fluticasone NP with albuterol in solution 

and L-leucine having been freeze dried from solution. The DSC thermogram exhibited an 

endothermic peak at 228.65 °C, Fig. 11B. This may be a result of some overlap of albuterol 

and excipient peaks. This peak was also similar to that of fluticasone nanoparticle 

agglomerates with a slight shift that may be indicative of the same crystalline form in both 

single and combination fluticasone nanoparticle agglomerate formulations.

The DSC data of albuterol as received showed an endothermic peak at 206.49 °C with an 

enthalpy change of −2.209 W/g followed by subsequent degradation of the compound (Fig 

11C). It has been reported that this degradation could be explained by a possible dehydration 

of the alcoholic function (catalyzed by sulfuric acid present in the molecule) and then 

oxidation (Hadef et al., 2008; Raula et al., 2008; Xu et al., 2010). The DSC scans for both 

the drug as received and nanoparticles of albuterol were similar with no change in the 

melting points (Table 5). This indicated that creating nanoparticles by attrition may not 

affect the physical characteristics of albuterol. The sharpness of the peak seen in the 

nanoparticle formulation also suggested crystallinity. Albuterol in the nanoparticle 

agglomerates showed a shifted endothermic event that appeared at 259.22 °C with an 

enthalpy of −3.126 W/g. This may have resulted from some overlap with the sublimation 

peak of L-leucine that is usually observed at 323.7 °C (Raula et al., 2008). 

Thermogravimetric studies also support these findings (Supplementary Fig. 1 and 

Supplementary Text)

3.6. Fluticasone and albuterol nanoparticle agglomerate dissolution

All nanoparticle agglomerates were produced with a high yield (~86–96 %) and with low 

batch variation (Table 6). All prepared nanoparticle agglomerates exhibited high drug 

content which ranged from 82% to 92% (Table 6), indicating negligible loss of drug during 

formation. The cumulative percentage of fluticasone dissolved from nanoparticle 

agglomerates after 8 h (Q8h) was found to be slower than that of the nanoparticles and faster 

than that of the drug as received (Table 6 and Fig. 12A). This was the expected result of 

increasing the surface area by decreasing the particle size. There was no significant 

difference in the fluticasone dissolution from the combination nanoparticle agglomerates 

and nanoparticle agglomerates containing only fluticasone. There was a slight delay in the 

dissolution of albuterol from nanoparticle agglomerates in the first 90 min followed by 

dissolution behavior similar to that of the micronized drug as received. On the other hand, 

no significant difference was observed in the dissolution performance of albuterol from 

nanoparticles, drug as received and combination therapy over 8 h (Fig. 12B). These results 

were likely due to high solubility of albuterol. Fluticasone nanoparticles did not affect the 

dissolution of albuterol in the combination formula.

4. Conclusion

Inhaled dry powders represent a preferred formulation for first-line therapy treating asthma 

and chronic obstructive pulmonary diseases. Combination powders may provide 

simultaneous delivery to the same site of action increasing the potential synergistic effect of 

the drugs. A challenging task in engineering dry powders is achieving the aerosol particle 
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size that can avoid the physiological barriers of the lung and deliver the drug to the 

appropriate lung region. Here, fluticasone and albuterol were fabricated into nanoparticle 

suspensions. Agglomeration of these suspensions produced micrometer-sized nanoparticle 

agglomerate aerosols with a large fine particle fraction (particles ~1–5 µm in diameter) and 

nanostructure for improving the dissolution rate of poorly water soluble fluticasone. The 

powders reported here offer a novel formulation for localizing potent drugs as single agents 

or in combination for the treatment of asthma and chronic obstructive pulmonary disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The particle size distributions of A) fluticasone nanoparticle agglomerates, B) Flu/Albu 

combination and C) albuterol nanoparticle agglomerates in suspension after agglomeration 

and resuspended after lyophilization.
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Fig. 2. 
Transmission electron micrographs of A) fluticasone nanoparticles B) fluticasone 

nanoparticle agglomerates and C) Flu/Albu combination.
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Fig. 3. 
Transmission electron micrographs of albuterol sulfate A) nanoparticles and B) nanoparticle 

agglomerates.
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Fig. 4. 
Comparison in the density for the same mass between A) fluticasone powder as received, B) 

fluticasone nanoparticle agglomerates, C) Flu/Albu combination, D) albuterol nanoparticle 

agglomerates and E) albuterol powder as received.
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Fig. 5. 
Aerodynamic size distributions of A) fluticasone nanoparticle agglomerates, B) Flut/Albu 

combination and C) albuterol nanoparticle agglomerates after lyophilization determined by 

time-of-flight analysis.
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Fig. 6. 
The distribution of fluticasone nanoparticle agglomerates, Flu/Albu combination and 

albuterol nanoparticle agglomerates deposited on the stages of a cascade impactor at a flow 

rate of 28.3 L/min using a Monodose inhaler and compared to the drugs as received.
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Fig. 7. 
The percent of fluticasone and albuterol in Flu/Albu combination deposited on the stages of 

a cascade impactor at a flow rate of 28.3 L/min using Monodose inhaler.
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Fig. 8. 
Powder X-ray diffraction patterns: (a) L-leucine, (b) fluticasone as received, (c) fluticasone 

nanoparticles, and (d) fluticasone nanoparticle agglomerates.
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Fig. 9. 
Powder X-ray diffraction patterns: (a) L-leucine, (b) fluticasone as received, (c) fluticasone 

nanoparticles, (d) albuterol as received, and (e) Flu/Albu combination.
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Fig. 10. 
Powder X-ray diffraction patterns: (a) L-leucine, (b) albuterol as received, (c) albuterol 

nanoparticles, and (d) albuterol nanoparticle agglomerates.
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Fig. 11. 
Differential scanning calorimetry thermograms for A) fluticasone nanoparticle agglomerates 

(NA), B) Flu/Albu combination and C) albuterol nanoparticle agglomerates (NA).
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Fig. 12. 
Dissolution profiles of A) fluticasone and B) albuterol in PBS (pH 7.4) from drug powder as 

received, nanoparticle formulation (NP), nanoparticle agglomerate formulation (NA) and 

Flu/Albu combination.
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Table 1

Formulation composition and characterization of the selected fluticasone and albuterol nanoparticles (values = 

average ± S.D.; n =3).

Fluticasone nanoparticle
composition
(% w/w)

Fluticasone 1

Lecithin 0.05

PVP K90 0.1

Solvent ethanol

Process ultrasonication

Fluticasone nanoparticle
Characterization

Nanoparticle size (nm) 403.8 ± 3

Polydispersity 0.3 ± 0.01

Zeta-potential (mV) 12.4 ± 2

Albuterol nanoparticle
composition
(% w/w)

Conc. (mg/mL) 1

Process Ha

non-solvent acetone

Time (min.) 15

Albuterol nanoparticle
Characterization

Nanoparticle size (nm) 46 ± 2

Polydispersity 0.1 ± 0.04

Zeta-potential (mV) 10 ± 1

a
H = homogenization process at 25,000 rpm
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Table 2

Particle size characteristics of the nanoparticle agglomerates (values = average ± S.D., n = 3).

Characteristics

Formulations

Fluticasone
NAa

Albuterol
NAb

Flu/Albu
combination c

Geometric particle size (µm) of NCe before
lyophilization

3.8 ± 1.1 3.9 ± 1.3 4.1 ± 1.5

Geometric particle size (µm) of lyophilized
NCd

4.8 ± 1.0 5.4 ± 2.0 5 ± 0.9

MADA
e of lyophilized NCd 2.1 ± 0.1 3.2 ± 0.1 1.9 ± 0.02

MMADt
f of lyophilized NCd 0.98 ± 0.1 1.1 ± 0.01 0.8 ± 0.05

a
Fluticasone NC = 1: 0.05: 0.1: 1; Flu: Lec: PVP K90: Leu

b
Albuterol NC = 1: 1.5; Albu: Leu

c
Flu/Albu combination = 2: 1; Flu: Albu

d
NA = Nanoparticle agglomerates.

e
MADA = Median aerodynamic diameter obtained from Aerosizer.

f
MMADt = Theoretical mass mean aerodynamic diameter calculated from density measurements.
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Table 5

DSC peak integrations for materials as received as well as nanoparticles and nanoparticle agglomerates.

Samples Peak Temp.
(°C)

Enthalpy
(W/g)

Fluticasone powder as received ------ ------

Fluticasone NPd ------ ------

Fluticasone NAa 210.17 −2.447

Albuterol powder as received 206.49 −2.209

Albuterol NP 206.49 −2.2

Albuterol NA b 259.22 −3.126

Flu/Albu combination c 228.65 −3.273

Lecithin powder as received 168.2 −2.76

PVP K90 powder as received 75.29 −0.835

L-leucine powder as received 323.7 −6.914

a
Fluticasone NA = 1: 0.05: 0.1: 1; Flu: Lec: PVP K90: Leu

b
Albuterol NA = 1: 1.5; Albu: Leu

c
Flu/Albu combination = 2: 1; Flu: Albu

d
NP = Nanoparticles
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Table 6

Yield, content and dissolution behavior of fluticasone and albuterol nanoparticle agglomerates (values = 

average ± S.D., n = 3).

Characteristics Formulations

Fluticasone
NAa

Albuterol
NAb

Flu/Albu combination c

Fluticasone Albuterol

Process yield of lyophilized
NA (%) 86 ± 7 96 ± 2 90 ± 3

% Drug content of Flu & Albu
in the lyophilized NA 92 ± 5 85.3 ± 7 90 ± 3 82 ± 6

Q8h
d NP 96 ± 1 100 ± 0.4 n/a n/a

Q8h NA 75 ± 7 100 ± 8 73 ± 10 100 ± 6

a
Fluticasone NC = 1: 0.05: 0.1: 1; Flu: Lec: PVP K90: Leu

b
Albuterol NC = 1: 1.5; Albu: Leu

c
Flu/Albu combination = 2: 1; Flu: Albu

d
Q8h = % Fluticasone (Flu) and albuterol (Albu) dissolved after 8 hours.
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