KU ScholarWorks

Predetermined motion times

Item Type	Thesis
Authors	Butcher, Philip John
Publisher	University of Kansas
Rights	This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Download date	2024-07-30 22:36:48
Link to Item	http://hdl.handle.net/1808/19856

PREDETERMINED MOTION TIMES

A comparison of four recognised systems, a discussion of the basic arm motion times and the presentation of a new theory for $\frac{1}{2}$ to $3\frac{1}{2}$ inch hand motions

Ъу

Philip J. Butcher B.Sc.(Eng.) University of Bristol, England, 1946

Submitted to the Department of Mechanical Engineering and the Faculty of the Graduate School of the University of Kansas in partial fulfilment of the requirements for the degree of Master of Science.

Redacted Signature

Instructor in charge

Redacted Signature

For the department

Feb. 1953

TABLE OF CONTENTS

Page

PRECIS REPO	DRT	
Object .		1
Summary	• • • • • • • • • • • • • • • • • • • •	1
Summary	of Conclusions	2
DETAILED RI	EPORT	
Introduc	stion	5
Part I .	- General Comparison of Systems	6
1.	Historical background	6
	General	. 6
	Holmes	8
	Engstrom	8
	Work Factor	9
	Methods-Time Measurement	10
2.	Detail of Systems	12
	Holmes	12
	Engstrom	15
	Work-Factor	16
	Methods-Time Measurement	21
3.	Application examples of systems	24
4.	Comparison of results by normalised time	26
5.	Conclusions	30
Part II	- Detailed Comparison of MIM and Work-Factor Basic Arm Motions	33
1.	Introduction	33
2.	Basic arm movement times	34
3.	Measured distance effect on arm times	37

TABLE OF CONTENTS(Contd.)

		Page
4.	Weight effect on arm times	43
5.	Conclusions	45
Part II	I - MTM Short Motion Times, Logarithmic Theory.	47
1.	Introduction	47
2.	Procedure	48
3.	Film analysis	49
4.	Effect of individual fingers	51
5.	Analysis of results	53
6.	Logarithmic theory of short motions	53
7.	Proposed basic motion times	56
8.	Logarithmic theory applied to Reach, Case B	60
9.	Controlled motions	61
10.	Limitations of the measuring procedures	62
11.	Conclusions	64
B JBL IOGRAI	<u>2HY</u>	66:
APPENDIX :	I - Detailed analysis of "Assemble Bolt and Washers" by four systems	92
APPENDIX	II - Detail of Films analyzed	9 7
APPENDIX	<u>III -</u> Results of Film Analysis, Mean value per study	101
APPENDIX	<u>IV</u> - Statistical Analysis of Reach, Case Λ	106
Note:	Bibliographical references in the text are indicated by numbers, e.g. Maynard (3)	

LIST CH	TABLES
---------	--------

	LIST OF TABLES	•
		Page
1.	Holmes - Time of Movements Chart	68
2.	Engstrom - "Get" Table	69
3.	Engstrom - "Place" Table	70
4.	Work-Factor - Moving Time Table	71
5.	Work-Factor - Grasp and Assembly Tables	72
6.	Methods-Time Measurement Application Data	73
7.	Methods-Time Measurement Application Data	74
8.	Analysis of Fin Insertion by each System	75
9.	Results from Analysis of Pin Insertion	25
10.	Bolt and Washer Assembly Results	26
11.	Film Analysis Results by Normal Time	27
12.	Film Analysis Results by Number of Motions	28
13.	Percentage Variation from Average (Prof. R. Barnes)	29
14.	Seated Operator, Forward Reach	40
15.	Standing Operator, Forward Reach	41
16.	Standing Operator, Body Swivel Reach	42
17.	Film Analysis of Individual Finger Motions	76
18.	Statistical Analysis of Logarithmic Theory	54
19.	Proposed New Values for R-Am	58
20.	Proposed New Values for R-A	58
21.	Proposed New Values for R-E	59
22.	Proposed New Values for M-B	59
23.	Revised Values for Reach	54.
24.	Revised Values for Move	65

LIST OF TABLES(Contd.)

Page

25.	Film Analysis of R-Am	101
26.	Film Analysis of R_A	101
27.	Film Analysis of R-B and R-Acd	102
28.	Film Analysis of R_E	102
29.	Film Analysis of M_B	103
30.	Film Analysis of M-Am and mM-A	103
31.	Film Analysis of R-Em and mR-E	104
32.	Film Analysis of M-A	1 04
33.	Film Analysis of Controlled Moves	105
34.	Logarithmic Analysis of R-A by Single Points	106

		Page
1.	Comparison of Basic Arm Motions (no control)	77
2.	Comparison of Basic Arm Motions (partial control)	7 8
3.	Comparison of Basic Arm Motions (control)	7 9
4.	Comparison of Basic Arm Motions (control and weight).	80
5.	Actual Linear Distance (seated, forward Reach)	81
6.	Actual Linear Distance (standing, forward Reach)	82
7.	Actual Linear Distance (standing, body swivel)	81
8.	.ITM/WF Comparison of Weight Factors	83
9.	Film Analysis Results for R-Am	8 4
0.	Film Analysis Results for R_A	8 5
1.	Film Analysis Results for R_E	86
2.	Film Analysis Results for M_B	8 7
3.	Logarithmic Analysis of R_Am	88
4.	Logarithmic Analysis of R_A	88
5.	Logarithmic Analysis of R_E	89
6.	Logarithmic Analysis of M-B	89
7.	Film Analysis Results for R-B	90
8.	Film Analysis Results for Controlled Moves	91

(PRECIS REPORT)

OBJECT

The object of the studies conducted under this project was to investigate, examine and explain the use of some of the predetermined motion time systems that have evolved during the past fifteen years. Particular attention was to be paid to two systems, Work-Factor and Method 3-Time Measurement, which have achieved considerable industrial application. The time values assigned to the basic arm motions in the two systems were to be compared in a search for the <u>true</u> basic times for human motions. If the values were different, practical research was to be made into the short motion times of Methods-Time Measurement, some of which were known to be extrapolated and tentative.

SUMMARY

Four systems of predetermined basic motion times are considered, Holmes', Engstrom's, Work-Factor and Methods-Time Measurement (MTM). The basic and application principles of each system are briefly discussed, and a number of small operations analyzed in detail. The analyses are compared and discussed for accuracy and reproducibility.

The Work-Factor and MTM times for basic arm motions are analyzed in detail, to see if the base time is common to both. Curves are plotted for different groups of arm motions, depending on the initial and final conditions of the motion. The arm motions are reanalyzed, taking into

- 1 -

account the true measurement of the motion path; the effect of weight is also considered.

In order to check some short motion times in the MTM system, and also to establish firm values for others, a series of films on industrial operations were taken. These were analyzed frame by frame until a large quantity of data was established, giving levelled times at various distances for some of the basic hand motions. These values are examined statistically and graphically, and the Logarithmic Theory of short motions is developed.

SUMMARY OF CONCLUSIONS

- Holmes' system, evolved in the laboratory, is complex to apply, often requiring micromotion study. His treatment of "Eye and Sense" motions is of considerable interest but the basic movement theory is incorrect.
- 2. Engstrom's system permits rapid setting of standards on certain types of work. It is highly limited in its application and is standard data rather than basic data.
- 3. Both Work-Factor and MTM have achieved considerable industrial use and were established on industrial operations. They give a simple language for discussion, a precise definition of the method and closely comparing standards. Analysts must be properly trained.

- 2 -

- 4. The activity level of a Work-Factor standard is about 25% higher than the corresponding MTM value.
- 5. The Work-Factor arm times, using linear distance, include body assistance and are incorrect where this does not occur. The MTM measurement of actual arc is considered superior.
- 6. There are definite differences in the effect of weight on basic arm movement times between Work-Factor and MTM systems.
- 7. The basic arm movement times allowed by Work-Factor and MTM agree very closely for distances over four inches, excluding conditions covered by conclusions 5 and 6.
- 8. Certain revisions are required in the MTM system on the levelled times for short Reaches and Moves. For distances between $\frac{1}{2}$ " and $3\frac{1}{2}$ ", the time is given by the Logarithmic Theory equation

 $T = a \cdot D^b$ where T = Time, TMU

D = Distance, inches

a,b = Constants.

9. For basic motions without full control, the constant 'a' has a value of 2.6 TMU/in.; this value becomes 2.3 TMU/in. if the hand is in motion at beginning or end of the movement. The constant 'b' has values between 0.6 and 0.8, and decreases as the required control becomes less.

- 3 -

- 10. The minimum motion time is 1.8 TMU, becoming 1.5 TMU if the hand is in motion at beginning or end of the movement.
- 11. Evidence suggests a further basic MTM motion "Move with Control", the control being applied over the full path of the motion.

(DETAILED REPORT)

INTRODUCTION

The industrial use of predetermined motion times is growing daily. Many claims, both for and against, have been made by all concerned from top management to union leaders and shop stewards; some of them have been wild mis-statements, others have produced sound, critical analyses. The moving forces which have engendered and nurtured the various systems can be briefly summarized under two headings:

- (a) The Search for Better Methods
 - (i) Methods in advance of production.
 - (ii) Methods correction and improvement.
 - (iii) Methods comparison and evaluation.
 - (iv) Methods definition and control.
- (b) The Search for Better Standards
 - (i) Standards in advance of production.
 - (ii) Standards for plant, company, or even industry-wide use.
 - (iii) Precise standard data and formulae.
 - (iv) Standards set without stop watch or rating.
 - (v) Standards permitting more objective discussion.

Each of these aspects has played its part in bringing about the development of some predetermined mation time system; and the final scope of that system has depended on its versatility, simplicity and accuracy, as well as how closely it has helped in the search for better methods and standards.

PART I

GENERAL COMPARISON OF SYSTEMS

HISTORICAL BACKGROUND

General

The need for standard data, and of the most refined form known as predetermined motion times, was first expressed by Frederick Taylor The industrial engineer was endeavouring to eliminate wasted himself. time and inefficient methods on the plant scale; and yet, when considered on a national scale, the same element was being studied and timed over and over again in plants throughout the country. The engineer was thus practising the precise antithesis of his purpose. Taylor thought that a time value could be given to each industrial operation, and that each value, with its methods description, should be The final result was to be a dictionary of standard centrally filed. times for all operations which any qualified person could apply without The idea was fundamentally sound, but would have using a stop watch. involved a library rather than a distionary due to the macroscopic time elements.

Gilbreth gave part of the answer to the problem by proposing the use of therbligs, which he considered to be basic elements of motion. Some attempt was made to establish corresponding time values but it met with little success, for the elements were not truly basic. Within themselves, they contained a number of even more basic motions and the range of each element, though greatly reduced from Taylor's original concept, was still unwieldly for practical use.

The first fundamental system in this field was developed by A.B. Segur who made the initial installation as far back as 1912. The system achieved considerable popularity during the 1920's and 1930's, especially in the tyre and rubber industries where it was used to set standards and compare methods. It was during this time, in 1927, that the fundamental principle of predetermined basic motion times was first detailed. Segur, in an article (11) entitled "Labour Costs at the Lowest Figures", said: "Within practical limits, the time required for all experts to perform true fundamental motions is a constant."

Segur's system, though still used in a number of plants, has never been published, so no information or detail is available and further comment is impossible. However, a number of major companies and several firms of industrial consultants have developed their own systems of predetermined motion times since then. Men like Holmes, Engstrom and Olsen, (19,20), groups like Work-Factor, Methods-Time Measurement and Basic-Motion-Times, have each contributed to the knowledge in the field; and it is proposed to consider some of these systems for which sufficient information has been made available.

- 7 -

Holmes System

The first constructive table of basic motion times was published in "Applied Time and Motion Study" by W.G. Holmes in 1938 (1). In the preface, he stated "For a considerable period of time, perhaps some 10 to 15 years, time study engineers have discussed the possibility of determining time values for body member movements and nerve reactions. So far as the author is aware, such values, although they may have been found and used, hitherto have never been put into any organized form and published. In this book, the author's determinations appear and are the first published values of these fundamentals. Each value in this table was determined from a thousand or more creditable observations made by the author, and had been used in practice to a sufficient extent to establish its creditability."

Some interest was croused following publication of the book, and the table was reprinted in a number of handbooks (8). However, the system was cumbersome and difficult to apply, even though its analysis was extremely detailed and refined, with the result that few people, then or now, have used the system to any advantage. The original work was done at the Timken-Detroit Axle Company, where Holmes was Time Study Engineer.

Engstrom System

The system was developed by Harold Engstrom and his associates

- 8 -

while he was Motion Study Supervisor at the Bridgeport Plant of the General Electric Company. It was first used for the estimation of labour costs on new products, but was later used to establish time standards, both in the original plants and in others. The first reference to the work appeared as a reprint in a book by Ralph Barnes (33); reference was also made in an article by H.C. Geppinger (15). During the following years the data was expanded to cover such work as turret lathes, sensitive drills, soldering and general light machine assembly work (34). However, its use is still limited as it depends on certain special characteristics of the work, and it has not created very great interest.

Work Factor

Work-Factor had its origin at the Watsontown, Pa., plant of the Philco Radio Corporation in 1934. A group of time study engineers, headed by J.H. Quick, initiated the development of a system which would eliminate the necessity for human judgment in rating operators when taking studies and establishing standards.

Films, stroboscopic cameras and even a special photo-electric timing device were used to establish the basic time values, and over three years were spent in accumulating data from both the shop floor and the laboratory. A further two years were spent in checking and simplifying the data before the system was first put into general use in 1938, when

- 9 -

it was applied at the R.C.A. Victor Division of Radio Corporation of America in Camden, New Jersey.

The system was first brought to the notice of the general industrial public in May, 1945, when an article entitled "Motion-Time Standards" appeared in "Factory Management and Maintenance" (18), and aroused sufficient interest to result in the system being applied in other factories. In order to make the system available to all industries, and to concentrate on its development and application, three of the original Work-Factor investigators formed the Work-Factor Company in 1946 (6).

Since then, installations of the system have been made in a wide variety of plants. In-plant training has been given to selected personnel, who have then continued and maintained the system. In addition, appreciation training in the Work-Factor system has been offered at several universities.

Methods-Time Measurement

In contrast to Work-Factor, MTM originated as a methods analysis tool to develop the correct method before installation. Both systems resulted in a complete set of predetermined motion times, but their prime purposes were very different. The original research on MTM was carried out at the Westinghouse Plant, Pittsburgh, Pa., under the auspices of a consulting company, the Methods Engineering Council (MEC). The purpose was to set up formulae and standard data on drillpress work which could be used to compare the output of different methods. After considerable checking of the results, it was realized on December 8th, 1941, that a set of data had been obtained which not only applied to drillpress work but which appeared to be a basic standard time system. By 1943, the formulae were being tried out in a number of plants around Pittsburgh with excellent results. Some of the data had been further broken down and it was found that it applied not only to drillpress work, but to any operation involving basic human motions.

In 1948, the accumulated and refined data was made public through the book "Methods-Time Measurement" (5). The original work had been expanded to include most of the basic motions, and had reached a point far ahead of its original scope and concept. Articles in the technical press (22,26,27), evaluating and commenting on the system, gave it wider publicity and demands for training came from many widely differing industries, including such companies as duPont, Remington and the Celanese Corporation of America. In June, 1949, MEC started regular programmes of instruction in Pittsburgh, though J. Schwab had been teaching MTM at Bridgeport Engineering Institute as early as 1945 (26).

With the continuing increase in interest, MEC decided to license other industrial consultant firms so that they also could sell and use MTM as a service. In addition, the system began to spread abroad, Sweden and Australia receiving it first, and later Denmark, Canada,

- 11 -

Norway, Holland, and Great Britain by the end of 1951.

By the middle of 1951 over half a dozen different consulting firms were using MTM as a customer service, and the system had been installed in several hundred plants, covering almost every aspect of industry. In order to maintain the standard of instruction and also to extend the basic research work even further, a number of companies formed the MTM Association for Standards and Research (31). This was a non-profit organisation with wide representation, and MTM was no longer the private property of the originators but open and available to all interested.

DETAIL OF SYSTEMS

Holmes

Holmes did not trust films for his analysis, for he considered that no two cycles were exactly alike either in movement or in time value. He considered that it was impossible to say from a film analysis if an operator's nervousness or inability caused the additional time, or even whether one element overlapped another; in addition, it was almost impossible to obtain a work cycle without defective movements or sequences.

This argument has a certain validity when considered in the light of the rating system. Regardless of the way in which the data is obtained, it has to be levelled before it can be used. Under the pace rating system that was in use at the time, the time study man made a flat rating on the operator. This rating is in terms of effects: the speed of the motions is compared with a mental concept of normal and, at the same time, an assessment is made of the effectiveness of the method used. The rating factor thus combines a judgment of both speed of motion and effectiveness of method, and a downrating may be due to either low effort or fumbling and ineffective work resulting from poor In the latter case, the problem of obtaining basic motion method. times by film analysis is quite acute. The rating factor, lowered due to, and to compensate for, ineffective working, affects all the motions and will give a false result unless the ineffective working time is prorated through all the elements in the study - which would be In other words, to get a true result the rating almost impossible. system must be such that fumbling is neither included in the rating nor in the film analysis.

This problem was quite simply avoided by Holmes. His basic motion times were obtained by the regular repetition of the movement one thousand or more times. The timing was done with a stop watch and, after the necessary rating and fatigue corrections, the average time per basic motion distance was calculated. Additional data of a more approximate nature were obtained for eye motions, and the speed of the nerve reaction was set at a flat rate of 30 ft. per second, as determined by physiological studies on car drivers prorated over the various distances in the human body.

- 13 -

The Holmes system "Time of Movements Chart" is shown in Table 1. (p. 68). This chart gives the times for body member movements and also includes nerve reaction and mind decision times. Each motion is subdivided according to the type of movement, namely the joint and the direction about which the motion occurs. The analysis has some similarity to the original Work-Factor system; for example, Grasp is analyzed as a series of Finger motions. However, it is more complex than any other system and includes many movements which are grouped together under broader headings in the others.

The analysis is based, in general, upon therbligs, and the original purpose of the analysis was to give a check rating. To each therblig, obtained by micromotion study, a corresponding motion or set of motions could be ascribed, the total giving the normal time for the operation. By the judicious use and understanding of the eye, nerve and decision times, it was also possible to account for the slower time required by less experienced operators. The complete analysis is extremely cumbersome, as each activity requires the information, in separate columns, of: therblig, body member moved, type of movement, distance, occurrence, and hence the movement time. This has to be done not only for the left and right hands, but also for the eye and sense cycle, even though the latter is limited out by the former for normal, trained operators unless there is a specific inspection element.

- 14 -

The times for the body motions are basic, and do not include any control factors of any type, neither has the effect of weight been considered. In order to get the complete time for a motion, it is necessary to add in the terminal controlling factors which stop the body member at the correct place. For example:

Operation	Therblig	Body Member Movement
Pick up part	TE	14" Angular Arm
	PP	2" Hinge Finger
	Ģ	2" Hinge Finger

Thus, as each basic motion becomes more complex, the end conditions increase further, and may even require mind decision and nerve reaction before being complete.

Engstrom

In contrast to the other three systems considered in this work, the Engstrom system did not establish times for "basic" motions. Instead, the results were expressed in terms of the larger elements "Get" and "Place", with variables depending on the original and final states of the object and the method of holding it.

Extensive use was made of films on industrial operations during the analysis, together with comparison by stop watch studies. The film oycles were broken down into "gets", "places", "uses" and "disposes"

- 15 -

from which the final charts were built up. These are shown briefly in Tables 2 and 3 (p. 69,70). Further detail, with illustrations, can be found in Barnes' "Motion and Time Study" (2). The times are for use on a standard workplace layout, with parts being supplied from well-designed bins or hoppers, with a maximum working distance of 24" from the operator. Instead of giving times for each distance, a few representative distances are taken, usually 8", 12" and 24"; a small correction factor is given, but is not recommended by the originators of the system.

In addition to the basic element times, Engstrom also developed values for such "process" operations as soldering, cementing, spinning, power drivers and many others. Some of these values vere also further divided into small, medium and large. The first values for all motions are included on the "Stardard Times Computation Sheet", from which the standard for any operation which fits the rather narrow limits of the system can be computed. The process time values must be used with considerable care as they are necessarily only average times and large variations may be encountered on different jobs.

Work-Factor

This, the first really practical fundamental system of predetermined time data, took nearly ten years to appear in public. Part of this time was spent on the original research, but more than half was spent in

- 16 -

checking and refining the data until it was as correct as the accuracy of the checking procedure. At the same time, however, it had to be made into a usable system; one of the main dangers in all forms of analysis of this type is to make it so fundamentally accurate that it loses any value for practical application.

The original concept in the Work-Factor system was of a series of factors which would influence the times for the basic motions in identical fashion. The major variables of Body Member, Linear Distance between points, and Weight presented no problem; it was the fourth variable, that of Purpose or Difficulty of the motion, which complicated This variable could influence the motion at various the problem. stages - at the start, at the end, at some specific point or even over the whole path of the motion. Considerable research was pursued to isolate the various controlling factors, with especial attention to their influence on the basic motions by the Finger, Arm, Forearm Swivel, Leg, Foot and Trunk. From this work, four controlling factors on the time per motion distance were isolated, in addition to the original one of weight. These four factors were each considered to be equal to one degree of motion difficulty, and this degree was known as "One Work-Factor". An illustration of each is given below: Definite Stop - D : Reach to part lying on bench so as 1.

to grasp it.

3. Care - P : Care, or Precaution, for either the operator or the part, as in putting down a fragile part.

:. Change Direction - U : Abrupt, requiring muscular and mental control to get around an obstruction.

The fifth influencing factor is Weight, and the influence increases with each increase in weight, in definite steps which vary according to the body member used and the sex of the operator. The complete data are shown on the "Work-Factor" Moving Tire Table in Tables 4 and 5 (pp. 71,72).

To find the time for any one basic motion, the body member and distance are first determined; then the various influencing factors -Work-Factors - are picked out and added together. From the data table, the corresponding time according to member, distance and total factors is determined. Special tables have also been developed up to 8 Work-Factors for use with heavy weights, but these have not been made available for general use as yet. However, extrapolation from the existing figures has been found to give satisfactory results. Considerable attention was given later to the motions of Grasp and Align (Position). The motions are not basic in nature, since they consist of a series of very short finger and arm motions, plus the appropriate control factors. In the initial application on short cycle work, the Grasps and Aligns were broken down as required, and the time obtained; but, as the use of Work-Factor grew, this method was found to be cumbersome and slow, as well as difficult in many cases.

Howard Flicker, Production Superintendent of the Ideal Clamp Company found this difficulty an important factor in determining fair standards by Work-Factor. The company carried out a series of experiments and concluded "hat, instead of looking for a formula connecting Grasp times and Finger Motions, it would be better to break down Grasp in various groups, with the appropriate time for each. The initial theory was based on the degree to which the part is confined i.e. depending on the number of planes by which the part could be moved away, with a maximum of three for an object on a flat surface. The results were published in "Factory Management and Maintenance" (25). Further work was done by the Work-Factor Company and the ultimate result was the long, but simple to apply, table for "Complex Grasps from Random Piles".

Alignment, with or without engagement of one object with another, is one of the most complex motions encountered industrially. One of the best answers to the problem lies in the "Work-Factor" Assembly Tables.

- 19 -

A series of motion frequencies have been reduced to time values for various conditions. The target diameter, and the ratio of plug diameter to target diameter for open and closed targets, have been taken as the datum lines. To these values appropriate percentages are added for the special conditions of distance between targets if motions are simultaneous, blind targets, and the distance between the gripping point on the part and the point of alignment. The resulting tables are long, and the conditions are not easily expressed by symbols, but understanding and application are relatively simple.

Work-Factor units (1 unit = .006 sec.) do not contain any allowances for fatigue, personal or unavoidable delays. The final cumulative time obtained by a Work-Factor analysis must be multipled by the appropriate allowance to give a standard, to meet which "the erployees are working at a premium level with better than average skill and effort". According to Mr. Quick, one of the originators, the time values are for base rates in incentive programmes which have a starting normal at 75%. In day rate shops, it is necessary to include 25% additional time to compare with average, normal 100% or whatever normal is employed.

Thus, the level of activity as expressed by a Work-Factor standard is about the top of the normal industrial incentive range, which is near 25%. At a meeting with Mr. Duncan, Work-Factor Company, he agreed that a Work-Factor standard probably represented a 125% level of

- 20 -

output when compared with MTM 100%, which is based on the Westinghouse system of rating. Information on the rating system used in the original Work-Factor analysis is not available.

Methods-Time Measurement

Methods-Time Measurement (MTM) is a comparative newcomer in the field of predetermined motion times and yet, in the space of a few years, it has aroused more interest and is being used more than any system previously available. It combines accuracy with ease of application, instruction and explanation and appears to have given a simple language to the field of Work Study. The complete system and its simplified form are shown in Tables 6 and 7 (pp. 73,74).

In contrast to Work-Factor times for Arm Motion, which use similar time increments for widely different influencing factors, MTM developed times for separate groups of overall motions. Five classes of the Gilbreth element "Transport Empty", rechristened "Reach", were isolated, with variable times depending on the end conditions. Another five classes of "Transport Loaded", known as "Move", were also analyzed, but these were later reduced to three after it was found that some could be combined with others. In all cases, the distance recorded was the actual motion path, not the linear distance between points, Eight groups of basic motions were isolated in the original work:- Reach, Move, Turn, Apply Pressure, Grasp, Position, Release, Disengage and Body Motions. Later research work has also produced time values for such motions as Eye Travel and Eye Focus, and Cranking. Some of these groups were truly fundamental motions - namely Reach, Move, Turn and Apply Pressure; but others were combinations of very small fundamental motions, usually so small as to make separate analysis extremely difficult. Such a motion is found in Position, which actually can be broken into Aligns, Finger and Hand Moves and Reaches, Turns and Apply Pressures.

In order to make the final data easy to apply - whilst maintaining the required accuracy - some motions were broken down into broader groupings which included a range of possible values. There are only eighteen types of Position to cover an actual infinity of variations, but innumerable experimental applications have shown excellent results.

While the original analysis films were being taken, the operations were rated by a number of experienced time study engineers using the Westinghouse rating system, which is also known as the "Skill and Effort" system. The levelled time developed from this, after addition of the appropriate allowances, represents the time required "by an operator of average skill, working with average effort and under average conditions (3)". This system of rating is widely used

- 22 -

throughout the United States; an indication of its meaning can be judged from the fact that, based on 100% standards, the average output in many plants lies between 118% and 120%. This 100% represents the Westinghouse average rating, and also is the standard obtained by cumulating the MTM times for the basic motions of the operation.

Following the great public interest in the system, Professor Kendall C. White, Cornell University, undertock a research project into the validity of the MTM values (32). Starting completely anew in June 1949, he took films of industrial operations, having them rated at the same time, and then reanalyzing them for the basic motion times. The final results in September, 1950, showed that the time values could be reproduced for the great majority of the basic motions within reasonable limits, and the agreement was much closer where considerable data were available. Generally, values were within $1\frac{1}{2}$ % and only in isolated instances did this go as high as 10%. Differences were distributed very nearly uniformly between positive and negative, with a total check time of 2452.6 as against 2459.2 from the existing MTM data.

Similar checks have been carried out by the Singer Manufacturing Company, and their results are within 3-5% of the MTM figures. However, it is to be noted that neither of these experiments questioned the validity of the basic motion breakdown used by MTM. They only confirmed that the specific time values assigned to the motions as defined by MTM were correct.

- 23 -

APPLICATION EXAMPLES OF SYSTEMS

Each of the four systems of methods analysis treats the motions from different aspects. In spite of this, however, the ultimate results are usually very similar as long as the system is capable of application along the lines of the original analysis. No one system can claim to be the absolute answer to the problems of basic human motions. At the best, the result is a statistical average; at the worst, the system does not apply to the class of work under consideration.

To give a brief picture of each of the four systems under consideration, the breakdown of a very short operation has been made. The operation consists of reaching to a pile of flat-ended steel pins, 2" long $x \frac{1}{4}$ " dia., picking up one pin and inserting in to an unchamfered hole in a board so that the pin stands upright. The operation is considered to be on a continuous basis.

The analysis of the method is shown in Table 8 (p.75). The time units used are those relevant to the system concerned. A condensed form of the results is shown in Table 9, in which all time units have been reduced to units of .0001 minutes. In addition to this, the Work-Factor units have been multiplied by 1.25 to give a comparable level of activity with the other three systems.

- 24 -

Table 9

Element description	Total levelled time (.0001 min.) per element				
	M.T.M.	W.F.	Holmes	Engstrom	
1. Reach to pin	69	67	63		
2. Select and grasp one pin	54	45	51		
3. Move pin to board	71	87	63	2	
4. Align pin and insert	97	90	108	2190	
5. Release pin	10	10	17	3	
Total	301	299	302	300	

Pin insertion results

This example, short as it is, shows the close similarity in final results, as well as the variations between short elements. This variation is due to differences in the concept of each basic motion by each system, and a series of compensating factors are built up between elements.

The complete analysis of a normal industrial short-cycle operation is shown in Appendix I (pp.92-96). The operation is "Assemble bolt and washers, two-handed method" and has been analyzed by each system. The operator is seated in front of chute bins containing rubber, steel and lock washers. He in turn selects and slides two of each kind of washer along the bench and into a small fixture which is flush with the benchtop. Finally, the operator picks up two bolts from an open bin, pushes each one through an assembled stack of three washers, and disposes of the complete part through drop delivery while reaching for the next rubber washers.

The results from this analysis are shown in Table 10,

Table 10

System	Actual time	Normal minutes	No. of time elements
Holmes	0.1109 min.	0.111	36
Engstrom	0.1209 min	0.121	9
Work-Factor	0.910 WFTU	0.114	18
MIIM	179.1 TMU	0.107	23

Bolt and washer assembly results

COMPARISON OF RESULTS BY NORMALISED TIME

Comparison between the systems is not an easy matter, for each will have its own definition of normal performance, and differences in method may account for variations. In the ideal experiment to make this comparison, six trained analysts from each system would all study six actual plant operations, after which the results could be examined, both for consistency of application by each system and consistent comparison between the systems themselves. Until something of this nature can be done, comparison work has been limited to studying and analyzing films of the operation, which is a very unsatisfactory means of determining the exact method. Three operations were studied in this manner; the method was analyzed by each of the four systems and, in addition, the film was rated on the Westinghouse system by four trained time study observers. The results from the studies are shown in Table 11, the second operation is from Appendix I.

Table 11

Film analysis results

System	Bolt and washer assembly. One hand		Bolt and washer assembly. Two hands		Fold and flatten sheets of paper	
	Time	% diff.	Time	% diff.	Time	% diff.
Time study	0.0973		0.1097		0.0500	.
Houmes	0.1025	+5%	0,1109	+1%	0.0531	+6%
Engstrom	0.1006	+2%	0.1208	+10%		-)
WF	0.1048	+7%	0.1138	+4%	0.0513	+3%
MIM	0.0956	-2%	0.1063	-3%	0.0516	+3%

Time in normal minutes

No special significance can be given to these results, though they are indicative of the accuracy of each system when used on a class of work to which it is applicable. The Engstrom system could not be used for the third operation under any conditions known to the analyst. Of considerably greater interest are the results of the number of motions to which a specific time was assigned.

Table 12

Film analysis results

Number	of	basic	motions	with	an	assigne	1 time	value
		and the second sec			the second second second		and the second second	

System	Operation 1	Operation 2	Operation 3
Holmes	33	36	18
Engstrom	8	. 9	-
WF	16	18	10
MTM	23	23	11

It is these figures that give a reasonable assessment of the complexity of the systems. Holmes' analysis is extremely refined and detailed, but it requires considerable time to establish a standard by this method. In contrast, the Engstrom system uses broad groupings, each containing several basic motions; this allows rapid analysis, but also severely limits the analyst to certain specific conditions and to certain types of work. In other words, it is not truly basic time data.

Both Methods-Time Measurement and Work-Factor have similar numbers of basic motions assigned a specific time. There is a difference of five for Operations 1 and 2 in Table 12, but this comes from five Contact Grasps and Releases, to which a zero time is given under the MTM system. They are included in the analysis so as to define the method exactly, but have no equivalent symbol in the Work-Factor system.

Prof. Ralph Barnes (23) obtained some interesting results when he asked the head of the Standard Department of a large radio plant to undertake a special experiment. Five experienced analysts, using an unspecified system of predetermined motion time data, independently established standards on seven different jobs. Each job was on regular production, and the standards were set simultaneously. The results are considered to be of sufficient value to include here in tabular form.

Table 13

Operation		Analyst No.				
		2	3	4	5	
Assemble capacitor over coil form	0	+2	-1	+2	-3	
Assemble and solder leads to coil		-3	-1	+3	+1	
Test oscillator coil		- 3	-2	+3	+2	
Rivet capacitor to antenna loop back		+6	-3	-4	-3	
Rivet three capacitors to bracket		+3	+2	0	3	
Drill two holes in coil form		+2	-2	- 2	+4	
Press spindle to shaft		-4	+2	0	0	

Percentage variation from average

Although no general conclusions can be drawn from this one case,
the results are as good as, if not better than, the results which would be obtained by a similar set of stop watch studies.

CONCLUSIONS

Having considered each of the systems separately and together, certain facts and conclusions emerge. It is proposed to summarize these before attempting a more detailed analysis of the Work-Factor and MTM basic motion time values.

Holmes System

- 1. The system was developed under highly specialized laboratory conditions, not on the shop floor.
- 2. Each basic motion was analyzed separately, under repetitive conditions, without considering the effect of preceding or succeeding motions.
- 3. The methods analysis is by basic movements, plus the addition of further motions at the end to account for control (Holmes (1) recognized this inaccuracy in commenting on the slowing of "transport empty" by "select").
- 4. The "Eye and Sense" section in the analysis is of considerable interest. If the actual values could be checked and refined, they might well fill in gaps in the more widely used systems. This is especially true in considering learning times and untrained operator standards.

5. The system requires great detail to be used properly, often with prior application of micromotion study. It is complex beyond the errors in analysis due to personal limitations of an analyst.

Engstrom System

- 1. For establishing standards, this system is probably the fastest within its range of application.
- 2. There is a good breakdown of the various types of "Grasp" and "Position", although their basic times are included in those for "Get" and "Place".
- 3. Broad groupings are used to cover ranges of distances but, in many cases, the stationary times are greater than those involved in moving the parts concerned, and errors in time of travel may not be important.
- 4. The system is limited to specific types of workplace layouts, and operations in a narrow range. It is not basic data, but standard data.

MTM and Work-Factor

The following observations apply to either system and detailed comparison will be left until further data has been presented.

1. A number of plants, covering a wide range of industries, use the systems for methods analysis and for establishing standards.

- 31 -

- 2. The systems give the methods engineer a language in which to discuss and evaluate his work.
- 3. The systems give a precise description of the average method.
- 4. The original films were taken on industrial operations under normal operating conditions.
- 5. Analysts in either system must be properly trained and experienced before their results are trustworthy.
- 6. With proper training different analysts can set standards which will be within a close range of each other.
- 7. For ease of application, certain complex combinations of motions have been grouped together into classes which cover a specific range. The definitions of these combinations vary in range, making individual comparison doubtful.
- 8. The activity level of a Work-Factor normal time is about 25% higher than the corresponding value established by MTM.

- 32 -

DETAILED COMPARISON OF MIM AND WORK-FACTOR BASIC ARM MOTIONS

INTRODUCTION

Until the publication of the Work-Factor and MTM systems of predetermined time standards, the knowledge on this subject in industry was very limited. A number of people had obtained times for certain motions from micromotion analysis, suitably rated, but with little attention to such precise conditions as destination and distance. Holmes' published work in the field gave considerable information, in spite of the synthetic method of establishing the values but, again, little attention was paid to the effect of the "Purpose" of the motion on the time value. The work of Engstrom did not take basic motions as the datum line; instead, both Grasp and Move were included in the same total. Early work by Barnes and Mundel was only of indicative value as there were no rating assessments of the values.

By the end of 1949, two systems had been established which could replace the stop watch on manual operations. MTM and Work-Factor had both been applied in many widely differing industries, and repeated tests and successful applications showed that there was a fair guarantee of accuracy in the results. However, when the two systems were compared with each other, basic motion by basic motion, a considerable amount of difference was observed, even when the summations were identical. This fact has disturbed a number of people who feel that if both systems have really discovered the times for basic human motions - and assuming that a basic time actually does exist - then the two sets of data should correlate.

BASIC ARM MOVEMENT TIMES

In order to illustrate the differences between the values given by Work-Factor and MTM a series of ourves has been plotted for various combinations of motions. The basic definitions of each system are not the same, for a Work-Factor basic arm motion can be either reaching to an object or carrying it to some location, whereas the MTM system divides the motion into two specific types - Reach and Move - with subdivisions depending on the required control. Reach occurs when the predominant purpose is to move the hand to an object or location, Move occurs when the predominant purpose is to move an object with the hand to a destination.

For the purpose of comparison, all Work-Factor times have been multiplied by 125% so that they represent the same level of activity as MTM. The levelled results are plotted directly on Figures 1-8

Figure 1 Time against distance travelled for basic arm motions with (Page 77) minimum control during the motion.

 (a) Move, Case B, Type 2; moving an object to an approximate or indefinite location, hand in motion at the beginning or end - MTM.

- (b) Reach, Case E; moving the hand to an indefinite location, no particular attention as to where it stops - MTM.
- (c) Move, Case A; moving an object against a stop, the object stopping the hand rather than the hand stopping the object. No particular control or care - MTM.
- (d) Basic angular arm time Holmes.
- (e) Arm time with zero control factors Work-Factor.
- Time against distance travelled for basic arm motions with (Page 78) some control or weight during the motion.
 - (a) Reach, Case B; reaching the hand to an object in an approximate location - MTM.
 - (b) Move, Case A, 6 lb. wt.; moving an object weighing six pounds against a stop, the object stopping the hand - MTM.
 - (c) Arm Time with one control factor Work Factor. This factor may be either a Definite Stop A-D to correspond with (a) or Weight A-W, corresponding with (b).
- Figure 3 Time against distance travelled for basic arm motions with (Page 79) definite control during the motion.
 - (a) Reach, Case D; reaching to a very small object or where an acourate grasp is required - MTM.
 - (b) Move, Case C; moving an object to an exact location with the hand - MIM.

Figure 2

- (c) Arm Time with two control factors Work-Factor. In
 both (a) and (b), the hand must be steered to the object
 and come to a definite stop, giving the equivalent of
 A-D.S.
- Figure 4 Time against distance travelled for basic arm motions with (Page 80) definite control and some weight, or some control and increased weight during the motion.
 - (a) Move, Case C, 6 lb. wt.; moving an object weighing six pounds to an exact location with the hand - MTM.
 - (b) Move, Case B, 11 lb. wt.; moving an object weighing eleven pounds to an approximate location - MTM.
 - (c) Arm Time with three control factors Work-Factor. In case (a), the Weight only requires one factor, but the Definite Stop and Steer impose two more to give A-D.W.S. In case (b), only a Definite Stop is needed, but the Weight factor is increased to two, A-D.W.W.

In each of these sets of diagrams, it is significant to note that the Work-Factor times start at a higher value than MTM, but then bend over and usually end up at a lower value as the distance gets greater. In addition, a straight line function is rarely reached until the linear distance between points exceeds twenty inches. The MTM curves, on the other hand, are usually straight line functions after four to six inches, and rapidly exceed Work-Factor values at longer distances. This is true in all cases except in Figure 4, for the Move, Case B, 11 lb.wt. All the basic MTM times start lower than and end higher than the Work-Factor times; it is only when weight is introduced that this rule breaks down. As a result, it is proposed to examine these two phenomena separately, under the question of distance and weight.

MEASURED DISTANCE EFFECT ON ARM TIMES

In the previous section, a direct comparison was made on the basis of time per unit distance. Each system recognizes that, in moving the hand from one point to another, the arm rarely makes an absolutely straight-line motion. Instead, it follows a natural arc, a slightly ourved path of a ballistic type which is less fatiguing than forcing the hand along a straight line. When the latter condition exists, a definite state of control appears and results in a higher time value under either system.

When the original data were set up two different methods of measurement were employed:

(a) The Work-Factor system assumed that the body member would always follow a natural arc, unless muscularly restrained, and that it would automatically choose the quickest path between two points. Thus, the time to perform an Arm motion, apart from end control factors, would vary according to the linear distance between the points, without considering the actual distance travelled along the curved path.

- 37 -

(b) The MTM system recognized that this would happen in most cases, but that different conditions would exist depending on the direction, weight and other physical factors. In some cases, the natural arc distance would be longer than in others for the same linear distance travelled, and a longer time should be allowed. Furthermore, movement of the hand about the wrist could either decrease or If the fingers moved from increase the distance moved by the arm. right to left while the arm performed a similar motion, the arm would not have to go as far to move an object between two fixed points as in the case where the hand moved in the reverse direction about the Taking these various arguments into consideration, MTM wrist. distance was measured as the actual aro distance, measured at 1st knuckle for arm motions, and discounting any assistance from other body members.

The result of these two different ideas was two totally different approaches, both in the setting up of the original data and in using them to establish output standards. MTM takes the total motion, splits it into component parts, measures each one along its natural arc and takes the longest time. Work-Factor measures the total time for each motion, with the assistance of the others included, and measures distance linearly between the two points concerned. The full implications of this can be brought out after considering Tables 14, 15 and 16 and corresponding curves, (Figures 5, 6 and 7.).

- 38 -

In each case, two simple motions have been taken. For MTM, Reach, Case B, to a single object in a slightly variable location; for Work-Factor, Arm motion with one control factor A-D, the operator deliberately exercising manual control to terminate the motion of the hand.

Distances have been measured linearly for Work-Factor and over the natural arc between the points for MTM, thus giving the time which each system would allow for motions with identical results. Body motion, a natural assistance, has also been measured and included. Under Work-Factor, it is evaluated separately; under MTM, body motion, which is grosser and slower than arm motions, is considered only to assist the arm for as long as there is time available. It is not limiting until certain muscular conditions exist, after which the complete time for a Bend is allowed.

1. Seated Bend, forward arc (Table 14)

The operator is seated in a chair in front of a table of normal height. He reaches forward without body twist, to pick up an object from the table. The normal times allowed over various distances are shown as follows:

Table 14

						3 000 0
Linear	Trunk	otual arm		W.F. Limit x 1.2	5 Trunk	MIM Reach time
(in.)	(in.)	(in.)		TMU	TMJ	TMU
2		2 <u>1</u>		6.0	1	4•7
4	-	4 1 2		7 •9	-	7.5
6	-	7		9.8	-	9.3
8		9		11.2	-	10.8
· 1 0	-	11		12.7	-	12.2
12	-	13		13.5	۲. ۲۰۰۰ (۱۹۹۰)	13.7
14	2 <u>4</u>	14		14•4	-	14•4
16	3 <u>1</u>	15		15.2	-	15 <u>.</u> 1
18	512	16		15.8	-	15.8
20	6 <u>1</u>	17	I	16.6	-	16,5
22	8 <u>1</u>	18	ĺ	17.3	(16.8)	17.2
24	104	18		(17.9)	18.5	17.2
28	$12\frac{1}{2}$	18		-	19.8	17.2

Seated	forward	read	h

These values have been plotted in Figure 5, (p. 81). The two curves are almost identical between 4" and 22", which is over the main range of distances commonly encountered in industry. There is a break away at the high values, and another one at the very low ones. The former may be due to differences of analysis of body motions, but the latter has no other explanation than that the two systems have different times for the same motion.

2. Standing Bend, forward are (Table 15)

The conditions are similar to Case 1, except that the operator is standing in front of the table, not seated. Normal times allowed are shown as follows:

Table 15

Linear distance (in.)	Trunk motion (in.)	Actual arm motion (in.)	Limiting W.F. x 1 Arm TMU	time - .25 Trunk TMU	MTM Reach time TMU
0 - 10	······································	As above	As above	-	As above
12	2 <u>1</u>	12	13.8	-	12.9
16	61/2	16	15.2	(13.5)	15.8
20	834	20	(16.6)	17.2	18.6
24	15 <u></u>	21	-	21.2	19.4
28	20	21 + bend	-	24.1	29.0

Standing, forward reach

These values have been plotted in Figure 6, (p. 82). Again, the ourves almost mated between 4" and 22", with discrepancies at either end. At high values, body motions come into the picture; at low values, the breakaway is still evident.

3. Standing, body swivel (Table 16)

The operator is standing at right angles to the same table so that, in reaching for an object on the table, the trunk is turned about the hips in order to assist the moving hand and arm. Normal times allowed at each linear distance are shown as follows:-

Table 16

Standing, body swivel reach

		MTM di	stonces (in	•)		
Linear	Trunk	а.	b. Trunk		W.F. arm	MTM
distance	motion	Knuckle	6" from	Actual	x 1,25	Reach
(in.)	(in.)	travel	spine	(a - 5.b)	TMU	TMU
12		13	-	13	13.5	13.7
15	1	17	12	14클	14.8	14•8
19	3 <u>1</u> 2	22	1	17	16.2	16.5
25	5	28	2	18	18.3	17.2
26	5 <u>1</u>	29	2	19	18.7	17.8
28	6	31	2	21	19.3	19.3
32	6 <u>1</u>	36	2 <mark>1</mark>	23 <u>1</u>	20.4	21.1

These values have been plotted in Figure 7, (p. 81). Even better agreement than in the previous cases has been obtained, and the maximum variation over the range between 4" and 22" is less than 6%. The difference below 4" remains unchanged as the body motions are insignificant at short hand distances.

In the three conditions analysed, there is body assistance with the arm motion, the body is either leaning or twisting at the same time; and the time values under each system check closely. The MTM system has "limited out" the assistance before measuring the distance and hence the time; the Work-Factor system has taken the two in combination and the slope of the curves decreases as the body assistance increases.

However, these conditions assume that body assistance is present, and that it occurs in its most favourable form. Very often these conditions are not fully met; motion about the wrist may retard rather than assist, more or less trunk motion may be required for balance prior to the next motion, and simultaneous, two-handed motions in opposite directions almost elimate body assistance. The easiest example to consider is the motion of the hand from above the head, dropped down to waist level. Linear distances up to 50" are quite possible without any body assistance except a small amount from hand motion about the wrist. These types of motions are not unusual, and the chargeable arc distances give wide variations in the final times.

If these motions were plotted, the curve would actually resemble Figure 2 (p. 78), equivalent time for equivalent distance. For the longer motions, the time allowed by Work-Factor would be low - and incorrectly low since the motion does not include body assistance - and, hence, should be allowed a longer time than the motion which does have body assistance to reduce the time to complete the motion.

WEIGHT EFFECT ON ARM TIMES

The moving of weight, with its consequent effects, has caused discussion and dissension for many decades. Not only do the motions

- 43 -

become slower, but they become more tiring if repeated, and the operator has to be allowed a higher time for the weight-carrying motion, as well as a high allowance for fatigue. The latter is outside the range of predetermined time analysis, and is dependent on plant policy and other regional factors. However, the retarding effect of weight on the basis motion time has to be included in any system that is to have a reasonable breadth of application.

Figure 8 (p. 83) shows the weight curves according to the definition of each system. A Move, Case B has been chosen for the MTM system, but the actual one selected is of no great significance since it is percentage variation.with weight that is important. For this reason, the curves have not been corrected to equivalent distance but have been plotted directly from the tables.

There is a very definite difference in the two sets of data as to the effect of weight. Over the range from zero weight to 25 lb., there is an increase in time by 25% for the Work-Factor values, compared with 11% for MTM. The effect of weights between 45 lb. and 50 lb. on the Work-Factor system is not known, but the additional time by MTM is only 25%.

These differences are highly significant, and cannot be easily explained. Both have been successfuly applied in practice and either there is an error in one of the systems or there is a difference in the motion analysis. The latter explanation becomes more probable when it is

- 44 -

realized that the Work-Factor system has no value for the MIM basic motion Apply Pressure. With heavy weights, wide changes in motion pattern occur; more and more body motions are used in place of arm motions and pressure, followed by jerking, may be needed to overcome initial inertia. If part of this is included within the Work-Factor time, then direct comparison is difficult and only overall study comparison can be used. So far, no particular difficulty in using weights has been encountered by practitioners of either system.

CONCLUSIONS

- 1. There are appreciable differences in time allowed by each system for the same accomplishment at distances under 4".
- 2. The Work-Factor Arm times include body assistance, and, hence, will be incorrect at longer distances in the cases where there is no body assistance.
- 3. The MTM system of measurement, using actual arc distance, is superior to the Work-Factor linear distance as it allows all motions to be considered separately. In addition, due allowance can be made for any increase in arc distance not sufficient to be covered by a Change of Direction (U) Work-Factor.

- 4. There are wide differences in the weight factors for the two systems which require investigation. Differences in motion concept, especially with respect to Apply Pressure in MTM, may be the explanation. If this is correct, then truly basic human motions have not been reached.
- 5. Excluding weight conditions, the arm movement times allowed by Work-Factor and MTM agree very closely for distances over 4" within the normal accuracy limits of measurement.

PART III

MTM SHORT MOTION TIMES - LOGARITHMIC THEORY

INTRODUCTION

The comparison curves in Part II between Work-Factor and MTM indicated definite differences in times for basic movements below 4" in linear distance. Not only did the time values differ, but the shapes of the curves joining the points were completely different: the MTM curve dropped straight to the origin while the Work-Factor curve had a definite point of inflexion. Furthermore, general experience on the part of MTM practitioners indicated that the time for a one inch motion was definitely low, and that it was necessary to use the two inch value if there was any possibility of the motion being slightly over one inch long. This situation was frequently encountered in screwing motions, using the fingers to rur a nut up or down, or a screwdriver on a light screw. In such cases the fingers perform very short motions, but at normal speeds of working the ballistic nature of the movement and the actual inertia of the fingers themselves usually results in a motion path something over one inch long, distances being measured at the finger-tips about the knuckle. In this class of work, various time study and production checks had indicated the need to use the two inch time values.

Further evidence was provided by a consideration of the initial research itself. This work was done with films taken at 16 frames/second, whence one frame is equal to 1.7 TMU. This represents between 80% and 100% of the total time for a 1" motion, and even if an operator took 50% longer than the observed time of one frame, it would not show up as two frames of film. There was a definite potential error here which was recognized by the originators of the system. Where the values were definitely in doubt, or obtained by extrapolation, the data card (Tables 6 and 7, pp. 73 and 74) gave them in light type. The validity of the extrapolation for time values - especially those close to the origin - was suspect.

PROCEDURE

In order to investigate the times required to perform short motions, as classified by the MTM analysis, a series of films was taken with a 16 mm. cine-camera. Most of the films were of actual industrial operations and were taken under normal operating conditions on the shop floor. In each case, the prior consent of management, union and employee was obtained, and representatives of each were present at all times. The exceptions to this occurred during the filming of clerical operations with typewriters and comptometers, normal office conditions prevailing during these sequences. Operation, layout, equipment, operator and rating details are given in Appendix II (pp. 97-100).

- 48 -

A 16 mm. Bell and Howell camera was used to film all operations. The camera drive was electric and periodic check films of a stop watch were taken to ensure that it remained correctly calibrated. All films used were taken at a shutter speed of 4000 frames per minute, so that one frame of film was equivalent to 0.417 multiplied by the overall levelling factor for that study, in TMU. In all cases, the TMU is the basic unit of measurement and is 0.00001 hours.

Some supplementary lighting was used while the films were being made, but it was always directed onto the operator's hands and carefully shielded to prevent interference with vision. The need for the precise analysis of the distance made a distinct record essential; and the paucity of operations with a high ratio of short motions gave little scope to find perfectly lit conditions. Nothing else changed on the layout and the method was similarly untouched. While the film was being made, at least three and usually four qualified observes rated the operator, using the Westinghouse (3) system. Average values were taken. Each operation was filmed for either 50 or 100 ft. of film, depending on the useful cycle time, and at least 10 cycles were obtained in each case.

FILM ANALYSIS

The films were analyzed frame by frame, in accordance with standard MTM nomenclature. A specially converted (2) electrically driven

- 49 -

projector was used, equipped with a reversible speed control as well as a reversible frame counter. This was an essential to the analysis as the breakpoints between one motion and the next were not always easy to determine. The best procedure was to take a reading as soon as the first motion was known to have stopped, and another one frame back from the visible start of the subsequent motion. If these coincided, this was the reading used; but where there was a difference, it was averaged between the two motions.

Distances were measured as accurately as possible, and usual accuracy was within 1/8" for distances up to 1", and $\frac{1}{4}"$ for distances up to 4". After each film was taken, all possible information about lengths of reference objects was recorded; this included the lengths of each joint on each of the operator's fingers as well as every dimension of the materials. When the film was later projected, the position of the projector was altered until the image of the operator's fingers was life size, after which direct measurement of distance could be made on the screen. Values were adjusted, if necessary, for motion perpendicular to the screen, usually by imitating and measuring them in practice.

After the number of frames corresponding to each motion had been determined, it was multiplied by the factor 0.417 and the levelling factors (see Appendix II), to give the levelled TMU over the distance. The completed figures were tabulated by motion class and distance, and

- 50 -

show the mean levelled time obtained from each study. The results are shown in Tables 17 to 25 inclusive (see Appendix III, pp. 101-105).

EFFECT OF INDIVIDUAL FINGERS

General research into typewriting and the work loading of individual fingers had revealed that some fingers are stronger than others and, hence, that they should carry a heavier load (35). However, no known work had been done on the relative speed of each digit. It was considered possible that the load capacities might have a significant effect on the time values at short distances.

During the analysis of the films on typewriting, the key depression motion was very frequently encountered. This motion was usually an $mM_2^1\Lambda$, a half-inch move of the key against a stop with the fingers in motion. The results are shown in Table 17 (p. 76), giving the levelled time values and the digit used.

For Finger No. 1: $\Sigma X = 61.59$: $\sigma_X = 0.28$ Hence, 95% confidence limits of $\overline{X}_1 = 1.94 \pm 0.15$ (Sample, n = 16, $t_n = 2.13$ for 95% confidence limits)

This means that the average levelled time for an mM_2^1A , as performed by the second and fourth fingers, is just significantly different from that of the first finger. This is only in the second decimal place. Calculation of the 95% confidence limits of the time for Finger No. 2 shows it to have a value of 2.14 ± 0.17 . This gives a 25% overlap between the limits of probability for the two means.

Further results were considered for other short motions during the analysis of the first three films. In each case, the values indicated that a small difference in average speed between the various digits was possible, but there was never less than a 25% overlap between the limits of probability at the 95% confidence limits. In addition, the maximum observed difference between the averages for any two digits was only 0.2 TMU for $\frac{1}{2}$ " motions, with no one finger consistently faster than another.

In view of these figures, it was concluded that no particular value was to be found in separating the various digits during the analysis of the results. The difference in average speeds was smaller than the inherent experimental errors in measurement of time and distance, as well as the cycle-to-cycle variations of any one operator. However, it is possible that further work would reveal a statistically significant difference in average speeds between the digits. The size of the difference will not be great and will certainly not be as great as the difference in capacity for work (35).

ANALYSIS OF RESULTS

When all the results had been completed and tabulated, statistically significant data had been found for four of the MTM basic motions. In addition, there was sufficient data for some of the other motions to demonstrate significant trends. The four motions investigated in considerable detail were:

R_Am	-	Reach to an object in a fixed location, hand in	
		motion at the end.	
R-A	-	Reach to an object in a fixed location.	
R-E	-	Reach to an indefinite location.	
MB		Move object to an approximate location.	

The mean of all levelled data at each distance was plotted, together with the arithmetic mean of these mean values. The results for each of the four motions are shown in Figures 9, 10, 11 and 12 (pp. 84, 85, 86 and 87). From these, it was immediately evident that the curves departed radically from the original MTM data, having a point of inflexion similar to that found in Work-Factor, though at lower values.

LOGARITHMIC THEORY OF SHORT MOTIONS

The shape of the curves suggested that a mathematical equation could be fitted over part of the range and, after several experiments, the general form chosen was:

 $T = aD^b$ where T = Time in TMU D = Distance in inches a and b = Constants for each motion

The means of the individual distances were plotted on log-log paper and showed that the points lay very close to a straight line (see Figures 13, 14, 15 and 16, pp. 88 and 89). Accordingly, the separate values from each study were taken, not the mean values, and analyzed completely to obtain the equations of the curves.

The form of analysis is shown in Appendix IV (pp. 106-109). The logarithms of distance and corresponding time are tabulated for Reach, Case A in Table 34 (pp. 106-107); following it are the complete calculations for the line equation and the 90% confidence limits.

The results from the four sets of significant data are given in Table 18 as follows:-

Table 18

Motion	Equation	T TMU	D in.	Correlation Coefficient	±3 o _r	<u>+</u> 3s _E	90% Con. Lts. of index
R_Am	$T = 2.38 D^{.61}$	2.96	1.44	0,909	<u>+</u> 0.09	<u>+</u> 0.17	<u>+</u> 0.08
R_A	$T = 2.57 D^{-64}$	2.87	1.21	0.931	<u>+</u> 0•08	<u>+</u> 0 .1 9	<u>+</u> 0.09
R_E	$T = 2.58 D^{-64}$	2.85	1.19	0,822	<u>+</u> 0.18	<u>+</u> 0.31	<u>+</u> 0 . 14
M-B	T = 2.61 D.73	3.21	1.33	0.955	<u>+</u> 0.06	<u>+</u> 0 . 18	<u>+</u> 0.10

Statistical analysis of Logarithmic Theory

Where \overline{T} = Mean time value

- D = Mean distance value
- σ_r = Standard deviation of the correlation coefficient
- $s_{\rm E}$ = Standard error of estimate

Thus, for the first curve, R_Am, the time is given by the expression $T = 2.38 \text{ D}^{61}$. The mean points have a correlation coefficient of .909 with respect to the ideal, or straight line, of 1.0 when plotted on log-log axes. The three standard deviations limit of accuracy on .909 is ± 0.09 , and the three standard deviations limit on the actual regression line is ± 0.17 i.e. 97% of all the values will lie within ± 0.17 of the value given by the curve. The final 90% confidence limits of ± 0.08 refer to the index value 0.61 in the equation for T.

The compiled results show a very high degree of correlation for M_B and R_A, a trustworthy degree for R_Am and a slightly doubtful value for R_E. The latter doubt is substantiated by the larger limits for the regression coefficient, regression line and D index. However, the variations, though significant statistically, have very little effect on the first decimal place, and a basic motion time for one inch of 2.6 TMU appears to have a strong probability. The corresponding figure for "hand in motion" motions is 2.3 TMU.

At very short distances, certainly at values of $\frac{1}{2}$ " and below, the theory will break down. The extremely short motions values from Tables 26, 28, 29 and 32 in Appendix III (pp.101-105) all point to a

minimum time value of 1.8-1.9 TMU for basic motions, with a similar minimum of 1.4-1.5 for "hand in motion" values from Tables 25, 30 and 31.

These two facts - the constant values at very short distances and also at one inch - suggest that for distances of one inch or less the motion classification is not important and has no effect on the time value. It is a true basic motion. This certainly applies to all motions, except Reach Case C and D, and Move Case C, for which no data have been obtained, and it also applies to Type II motions, known as "hand in motion" movements.

PROPOSED BASIC MOTION TIMES

From the results obtained by film analysis, two sources of proposed values are obtained. The first is by drawing a smooth curve through the mean of the means at each distance, the other is the Logarithmic Theory. Observed data gives constant values at $\frac{1}{2}$ " of 1.8 TMU, and both Theory and observation give 2.6 TMU at 1" distance for basic motion times. After that, the index derived from the Logarithmic Theory gives the required value from 1" to $3\frac{1}{2}$ ", following which the accepted values continue in the normal straight line relationship as given in the original MTM data (5).

- 56 -

For Type II motions, the Logarithmic Theory holds from $\frac{1}{2}$ " to 3", with a 1" value of 2.3 TMU and a minimum value of about 1.5 TMU. The range and the curves are similar to those for Type I, but are shifted towards the origin due to the "hand in motion" effect.

The following tables compare curve and Logarithmic Theory results and include the proposed new values. An asterisk denotes an extrapolated value in the present MTM data.

Table 19

Reach, Case A, Type II

Short motion line equation $T = 2.38 \times D^{61}$

1	Time - TMU						
Distance	Present	Curve	Line	Proposed			
(in.)	data	Fig. 9	equation	value			
1 2	1.3 *	1.5	1.5	1.5			
1	1.3 *	2.3	2.3	2.3			
1 1	2.1 *	· 2 . 9	3,0	3.0			
2	2.8 *	3.6	3.5	3.5			
2 <u>1</u>	3.3 *	4.1	4.1	4.1			
3	3.8 *	4.5	4.5	4.5			
3 ¹ / ₂	4.4 *	4•7	5.0	4.7			
4	4.9	4.9	-	4.9			

Table 20

Reach, Case A

Short motion line equation $T = 2.57 \times D^{-64}$

	t	Time	- TMU	
Distance	Present	Curve	Line	Proposed
(in.)	data	Fig. 10	equation	value
12	1.8 *	2.0	1.6	1.8
1	1.8 *	2.6	2.6	2.6
112	2.8*	3.3	3 <u>•3</u>	3.3
2	3.7 *	4.0	4.0	4.0
2 1 /2	4•4 *	4.7	4.6	4.6
3	5.0 *	5.2	5.2	5.2
3불	5.6 *	5.8	5.7	5.7
4	6.1	6.1	6.2	6.1

Table 21

Reach, Case E

	3,00,01					
· · · ·						. 64
Short motion	line	equation	T =	2,58	х	D• • • •

1		Time -	- TMU	
Distance	Present	Curve	Line	Proposed
(in.)	data	Fig. 11	equation	value
1 2	1.7 *	1.8	1.6	1.08
1	1.7 *	2.3	2.6	2.6
1호	2.8*	3.1	3.3	3.3
2	3.8*	4•2	4 . 0	4.1
2 <u>1</u>	4.6*	5.2	4.6	5.2
3	5.3 *	- 5.9	5.2	5.9
3 <u>1</u>	6.1 *	6.4	5.7	6.4
4	6.8 *	6.8	6.2	6.8

Table 22

Move, Case B

Short motion line equation $T = 2.61 \times 10^{-73}$

	Time - TMU						
Distance	Present	Curve	Line .	. Proposed			
(in.)	data	Fig. 12	equation	value			
1 2	1.7	1.8	1.6	1.8			
1	1.7	2•4	2.6	2.6			
112	2.9	3.6	3,5	3.5			
2	4.2	4.6	4.3	4.3			
2 1	4.9	5•3	5.1	5.1			
3	5.7	5.8	5.8	5.7			
31/2	6 .3	6.4	6.5	6.4			
4	6.9	. 6.9	7.1	6.9			

LOGARITHMIC THEORY APPLIED TO REACH, CASE B

If the Logarithmic Theory on short motions is correct, then it should be possible to obtain the complete equation if only two correct values are known. In the research work, a series of values for Reach Case B, as given in Table 27 (Appendix III, p.102) were obtained but the shortest distance encountered was $1\frac{3}{4}$ inches. Below this, the motion tends to become either Case A, by knowing instinctively where to reach, or else Case D, having to reach with care or exactitude so as to stop at the right place.

60 -

The values obtained in the range $1\frac{3}{4}$ " to 4" show close agreement with those already given on the MTM data card in heavy type. These values are plotted on Figure 17 (p. 90). The time values for 2" and 3" are both actual MTM data, and also appear to lie on the line developed by the experimental data. If the actual TMU values for 2" and 3" are substituted in the general logarithmic expression, $T = aD^b$, the equation becomes

$$T = 2.51 \times D^{-78}$$

This gives a unit distance of 2.5, which is extremely close to the proposed value of 2.6 and indicates the probable validity of the expression. Within the single decimal place limits of T as given on the data card, this value gives the closest agreement.

CONTROLLED MOTIONS

Litte data could be obtained from the films for motion of the type Reach Cases C and D, and Move Case C, and it is not known if the Logarithmic Theory is applicable in these cases. It is highly probable that the one inch times will not be 2.6 TMU but somewhat higher.

Several instances were encountered of "Controlled" Moves, when the control was exerted throughout the motion to guide the object. One case was steering a small nut along a narrow ledge to a hole, another involved painting a small object with lubricant. The levelled times for "Controlled" Moves have been plotted on Figure 18 (p. 91). There is a definite curve above the present MTM times for Moves Case C which corresponds more closely to the Work-Factor definition of "Care or Precaution" control throughout the motion.

From these results, it can be concluded that a further motion classification is required in the MTM data, that of a "Move with Control". However, it is not known if this condition will continue in a similar way at the longer distance values. It may be difficult to obtain and define such data into a usable grouping since control can have very variable effects. It may double or even quadruple the usual time for the motion in the case where the operator's speed becomes completely controlled and limited by the physical process. For cases where the operator has full control over the motion, but has to exercise continuous control throughout its duration, it should be possible to establish a specific motion time.

- 61 -

LIMITATIONS OF THE MEASURING PROCEDURES

Three limitations and one basic assumption must be taken into account when discussing any system of predetermined time data. When establishing this data from films, the camera speed itself imposes one limitation, the errors in measurement of distance impose the second, and the rating system the third.

Before discussing the basic assumption, the limitations should be considered first as they only result in mathematical error. All the films were taken at 4000 frames per minute, so that any reading is liable to an error of \pm half a frame. The distance error has already been discussed under Film Analysis (p. 49), and may give an error up to $\frac{1}{4}$ " at short distances. The rating of each study is a blanket or overall rating, not one on individual elements or cycles, and may lead to large errors in any one time measurement. The Westinghouse rating system allows an increase of 28% due to skill and effort on the part of the operator over normal, and there is no bottom limit on how slow the operator may perform one particular motion.

All these three limitations can and have been overcome by the accumulation of large quantities of data, followed by a statistical analysis to show if the figures are significant. This was done in the four main basic motion analyses, and it indicated that the values for Reach Case E were open to suspicion. The values for motions other than the four analyzed can only be used to indicate trends, and further work must be done before they can be considered statistically significant.

- 62 -

The analysis and use of predetermined motion times involves one basic assumption, and one that is common to all systems: namely, that a fundamental normal time does exist for the elements of human motion. If this is not true, then the psychological and physiological differences between each operator, depending on environment, heredity and education, make the results, at best, only an average from the group studied; an average from a set of unconnected data that should not be averaged. This means that the data has been drawn, not from a random sample, but from an indefinitely large number of separate units, each of which has an infinite number of variables. It is recognized that the differences may be small - and small enough to give the illusion of connection with only one variable, namely the rating factor - but very small increments of time are involved in these analyses and the experimental error may be as great as the actual difference from one worker to another.

It is impossible to resolve this paradox since it can only be done by measurement and comparison of the very factors that are in doubt. Working standards are essential to management, not only for incentive payments or employee control, but for such things as costing, estimating and scheduling. The vast store of knowledge that has been accumulated on all aspects of Work Study indicates without any doubt that time standards, however set, and even if not based on a correct theoretical assumption, are both practical and applicable. The increasing knowledge on predetermined time standards is demonstrating the same conclusion and it would appear, at least in industry, that a fundamental normal time exists for the average employee.

- 63 -

CONCLUSIONS

- 1. Not all the MTM data card times for short motions are correct, particularly the values known to be doubtful and derived by extrapolation.
- 2. For short motions, distances between $\frac{1}{2}$ " and $3\frac{1}{2}$ ", the equation of the motion time curve is given by

$$T = aD^b$$

- 3. The basic normal time for a one inch motion without full control is 2.6 TMU; and 2.3 TMU if "hand in motion".
- 4. The basic minimum normal time for any motion, however short, is
 1.8 TMU; and 1.5 TMU ir "hand in motion".
- 5. MTM data card values should be revised as follows (blanks indicate no further information available, brackets indicate present data not statistically conclusive):-

Table 23

Revised values for Reach

		Basic motion	- TMU		Hand i	n motion
Distance	Case	Case	Case	Case	Case	Case
(in.)	Δ	B	C.D.	E	<u>A</u>	B
1	2.6	2.6	-	2.6	2.3	(2.3)
2	4.0	4.3	-	4.1	3•5	
3	5.2	5.9	-	5.9	4•5	
4	6.1	7.1	-	6.8	4.9	4.3

Table 24

Revised values for Move

	Basic motion - IMU			Hand in motion	
Distance (in.)	Case A	Case B	Case C	Case A	Case B
1	2.6	2.6	-	(2.3)	(2.3)
2	(3.8)	4.3	`, 		-
3	4.9	5.7	-	-	-
4	6.1	6.9	-	7•3	4.3

6. Further research work is required on motions with control, and there appears to be a further basic motion: "Move with Control exerted throughout the Distance".
- 66 -

BIBLIOGRAPHY

1.	HOLMES, J., "Applied Motion and Time Study", Ronald Press
2.	BARNES, R.M., "Motion and Time Study", J. Wiley & Sons
3.	LOWRY, MAYNARD and STEGEMERTEN, "Time Study Practice", McGraw-Hill
4.	BARNES, R.M., "Work Measurement Manual", J. Wiley & Sons
5.	MAYNARD, STEGEMERTEN and SCHWAB, "Methods-Time Measurement", McGraw-Hill
6.	"Work-Factor" System of Labour Measurement, Company Brochure
7.	GOMBERG, W., "A Trade Union Analysis of Time Study", Science Research- Associates
8.	"Tool Engineer's Handbook", A.S.T.E., McGraw-Hill
∕ 9 ∙	SIMON, L.E., "Engineer's Manual of Statistical Methods", J.Wiley & Sons
10.	TAYLOR, F.W., "Scientific Management", Harper Bros.
11.	SEGUR, "Labour costs at the lowest figures", Manufacturing Analysis 1927, Vol. 13, p.273
12.	BARNES, "How the Hand behaves", Factory, Sept. 1937
13.	BARNES and MUNDEL, "Simultaneous hand motions", Factory, Dec. 1939
14.	BARNES and MACKENZIE, "Time to position small parts", Factory, March 1940
15.	GEPPINGER, "Planned time study standards in G.E.C.", Iron Age, October 29th 1942
16.	CYROL, "How to develop formulae for standard times", Factory, Feb. 1944
17.	SPOFFORD, "Standard time data means quick rates on new jobs", Factory, February 1945
18.	QUICK, SHEA and KOEHLER, "Motion-time standards", Factory, May 1945
19.	OLSEN, "Setting time standards without a stop watch", Factory, February 1946
20.	OLSEN, "Standard movement time approach to incentives", Factory, March 1946

ŧ

- 21. BARNES, "Effort can be measured", American Machinist, August 29th 1946
- 22. MAYNARD, "Methods-Time Measurement", Factory, February 1948
- 23. BARNES, "Stop watch time study v Standard Data for elemental motions", Modern Management, July 1948
- 24. DAVIS, "A proposal for the improvement of Time Study", Mech. Engineering, May 1949
- 25. FLICKER, "One-hand grasp improves our Work-Factor analysis", Factory, March 1949
- 26. "Timing a fair day's work", Editorial, Fortune, October 1949
- 27. BOYCE, "How good is MTM?", Factory, August 1950
- 28. TIEDEMANN, "MTM Applicable in apparel plants?", Apparel Manufacturer, November 1950
- 29. WHITE, "Predetermined Elemental Motion Times", A.S.M.E. Paper No.50-A-88
- 30. MCFALLS, "MTM, valuable tool when used wisely", Daily News Record, May 4th,1951
- 31. "MTM Association", Modern Industry, August 1951
- 32. WHITE, K.C., "A study of the extent to which MTM application data can be reproduced", Cornell University Press
- 33. BARNES, R.M., "Motion and Time Study Applications", J.Wiley & Sons
- 34. "Development and use of standard data", Engstrom Work Measurement Manual, 3rd ed. 1947
- 35. HOOKE, R.E., "Improvement of Speed and Accuracy in Typewriting", John Hopkins Studies in Education, No. 7, 1922

BODY MCMEER TYPE OF AT MOVED AT MEASURE OVERNIT DISTANCE MOVED MOVED MOVED AT AT 6* 8* 1 1½ 2 ½½ MOVED MOVED MIND 5* 100 15* 20* 30* 45* 60* 90* FINGER HINGE KNUCKLE FINGER 11P .0027 .0022 .0022 .0022 .0024 .0027 .0032 .0026 .0027 .0027 .0028 <th>ADDED TOT EQUAL TO WORK CYCI</th> <th>ALS ARE) THE LE TIME</th> <th>TIME</th> <th>OF M</th> <th>OVE</th> <th>MEI</th> <th>NTS</th> <th>CH</th> <th>IAR7</th> <th>ſ</th> <th>TIM DEC.</th> <th>E IN MIN.</th> <th></th>	ADDED TOT EQUAL TO WORK CYCI	ALS ARE) THE LE TIME	TIME	OF M	OVE	MEI	NTS	CH	IAR7	ſ	TIM DEC.	E IN MIN.	
MEMBER MOVED I.O.F. AT MOVED. MOVEMENT MOVEMENT AT MOVEMENT MOVEMENT MOVEMENT RRM RSM 55 Go 8* 1 1½ 2' 2½' MOVED MOVED.MENT MOVED.LE FINGER HINGE KNUCKLE FINGER 10 105 200 300 45% 600 90% HAND HINGE KNUCKLE FINGER TIP .0022 .0023 .0023 .0023 .0024 .0023 .0023 .0024 .0023 .0024 .0022 .0023 .0024 .0023 .0024 .0023 .0024 .0023 .0024 .0023 .0024 .0024 .0023 .0024 .0024 <td>BODY</td> <td>TYPE</td> <td></td> <td>MEASURE</td> <td>IMPULSE</td> <td></td> <td></td> <td>D</td> <td>STANC</td> <td>E MOV</td> <td>'ED</td> <td></td> <td></td>	BODY	TYPE		MEASURE	IMPULSE			D	STANC	E MOV	'ED		
MOVED MOVEMENT AT OF MMU 55 10° 15° 20° 45° 60° 90° FINCER HINGE KNUCKLE FINCER 2022 022 0 45° 60° 90° FINCER SIDE KNUCKLE FINCER 0022 0022 0022 0022 0022 0022 0024 0027 0028 0028 0028 0028 0028 0028 0028 0028 0028 0027 0028 0028 0027 0028 0028 0027 0028 0028 0027 0028 0027 0028 0027 0028<	MEMBER	OF	MOVED	MOVEMENT	PRESS	0"TO 2"	4"	6"	8"	ľ	11/2'	2'	21/2'
FINGER HINGE KNUCKLE FINGER TIP .0015 .0027 .0021	MOVED	MOVEMENT	AT	OF	MIND	5°	.10°	15°	20°	30°	45°	60°	90°
FINGER SIDE KNUCKLE FINGER TIP D021 D021 D022 D023	FINGER	HINGE	KNUCKLE	FINGER TIP	.0015	.0017	.0021						
HAND HINGE WRIST FINGER TIP .0.020 .0.022 .0.025	FINGER	SIDE	KNUCKLE	FINGER TIP	.0021	.0032							
HAND ANGULAR WRIST FINGER TIP J022 J023 J023 <thj023< th=""> <thj023< th=""> <thj023< th=""> J023<td>HAND</td><td>HINGE</td><td>WRIST</td><td>FINGER TIP</td><td>0020</td><td>.0022</td><td>.0025</td><td></td><td></td><td></td><td></td><td></td><td></td></thj023<></thj023<></thj023<>	HAND	HINGE	WRIST	FINGER TIP	0020	.0022	.0025						
FOREARM ANGULAR ELBOW KNUCKLE .0021 .0023 .0033 .0036 .004/ FOREARM MINCE ELBOW KNUCKLE .0020 .0022 .0022 .0022 .0023	HAND	ANGULAR	WRIST	FINGER TIP	.0022	.0032	.0038						
FOREARM HINGE ELBOW KNUCKLE 0020 0022 0024 0027 0031 0031 FOREARM ROTATE ELBOW KNUCKLE 0020 0022 0024 0022 0023 0023 0033 0045 0033 0033 0045 0033 0043 0042 0023 0023 0033 0044 0043 0044 0043 0044 0043 0047 0032 0033 0034 0033 0034 0033 0034 0033 0034 0034 <td>FOREARM</td> <td>ANGULAR</td> <td>ELBOW</td> <td>KNUCKLE</td> <td>.0023</td> <td>.0027</td> <td>.0030</td> <td>.0033</td> <td>.0036</td> <td>.0041</td> <td></td> <td></td> <td>*****</td>	FOREARM	ANGULAR	ELBOW	KNUCKLE	.0023	.0027	.0030	.0033	.0036	.0041			*****
FOREARM ROTATE ELBOW KNUCKLE 0.022 0.024 0.026 0.023 0.032 0.033 0.032 0.032	FOREARM	HINGE	ELBOW	KNUCKLE	.0018	.0020	.0022	.0024	.0027	.0031			
FOREARM TWIST ELBOW KNUCKLE 0019 0019 0020 0021 0023	FOREARM	ROTATE	ELBOW	KNUCKLE	.0020	.0022	.0024	.0026	.0028	.0032	.0038	.0045	.0053
ARM ANGULAR SHOULDER KNUCKLE .0029 .0035 .0046 .0046 .0046 .0080 .0080 .0095 .0105 ARM ROTATE SHOULDER KNUCKLE .0022 .0022 .0025 .0025 .0027 .0026	FOREARM	TWIST	ELBOW	KNUCKLE	.0018	.0018	.0019	.0020	.0021	.0023	.0025	.0028	.0032
ARM ROTATE SHOULDER KNUCKLE 2032 2034 2035 2055 2057 2030 2017 2018 ARM TWIST SHOULDER KNUCKLE 2022 2022 2022 2023 <td>ARM</td> <td>ANGULAR</td> <td>SHOULDER</td> <td>KNUCKLE</td> <td>.0029</td> <td>.0030</td> <td>.0035</td> <td>.0040</td> <td>.0048</td> <td>.0060</td> <td>.0080</td> <td>.0095</td> <td>.0105</td>	ARM	ANGULAR	SHOULDER	KNUCKLE	.0029	.0030	.0035	.0040	.0048	.0060	.0080	.0095	.0105
ARM TWIST SHOULDER KNUCKLE 0022 0022 0023	ARM	ROTATE	SHOULDER	KNUCKLE	.0032	.0034	.0039	.0045	.0054	.0067	.0090	.0107	.0118
HEAD HINGE NECK NOSE ► 2059 2067 2025 2025 2027 <th2< td=""><td>ARM</td><td>TWIST</td><td>SHOULDER</td><td>KNUCKLE</td><td>.0020</td><td>.0022</td><td>.0025</td><td>.0027</td><td>.0028</td><td>.0029</td><td>.0030</td><td>.0032</td><td></td></th2<>	ARM	TWIST	SHOULDER	KNUCKLE	.0020	.0022	.0025	.0027	.0028	.0029	.0030	.0032	
HEAD TURN NECK NOSE ↓ J055 J055 J055 J055 J057 J072 J	HEAD	HINGE	NECK	NOSE	~	.0059	.0061	.0063	.0065	.0069	.0075	.0087	.0100
FOOT HINGE ANKLE TOE .0024 .0027 .0032	HEAD	TURN	NECK	NOSE	~	.0051	.0053	.0055	.0057	.0063	.0070	. <u>0078</u>	.0090
FOOT ANGULAR ANKLE TOE .0028 .0037 .0036	FOOT	HINGE	ANKLE	TOE	.0024	.0027	.0032						
FORELEG HINGE KNEE TOE .0036 .0040 .0047 .0032 FORELEG SIDE KNEE TOE .0040 .0045 .0035 .0036 .0044	FOOT	ANGULAR	ANKLE	TOE	.0028	.0031	.0036						
FORELEG SIDE KNEE TOE .0040 .0045 .0050 .0056 .0064 FORELEG ANGULAR KNEE TOE .0045 .0057 .0057 .0056 .0050 THIGH HINGE HIP KNEE .0040 .0042 .0050	FORELEG	HINGE	KNEE	TOE	.0036	.0040	.0043	.0047	.0052				
FORELEG ANGULAR KNEE TOE .0045 .0057 .0057 .0054 .0072 THIGH HINGE HIP KNEE .0040 .0044 .0056	FORELEG	SIDE	KNEE	TOE	.0040	.0045	.0050	.0056	.0064				
THIGH HINGE HIP KNEE .0036 .0036 .0040 .0042 .0050 THIGH SIDE HIP KNEE .0040 .0052 .0056 .0064	FORELEG	ANGULAR	KNEE	TOE	.0045	.0051	.0057	.0064	.0072				
THIGH SIDE HIP KNEE .0040 .0045 .0050 .0056 .0064 THIGH ANGULAR HIP KNEE .0046 .0032 .0038 .0048 .0030 .0031 LEG HINGE HIP TOE .0030 .0032 .0032 .0038 .0043 .0043 .0040 .0045 .0048 .0032 .0050 .0043 .0043 .0043 .0043 .0040 .0043 .0040 .0043 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020	THIGH	HINGE	HIP	KNEE	.0036	.0038	.0040	.0042	.0050				
THIGH ANGULAR HIP KNEE .0045 .0052 .0058 .0068 .0030 LEG HINGE HIP TOE .0030 .0032 .0034 .0036 .0038 .0043 .0050 .0058 .0050 .0058 .0050 </td <td>THIGH</td> <td>SIDE</td> <td>HIP</td> <td>KNEE</td> <td>.0040</td> <td>.0045</td> <td>.0050</td> <td>.0056</td> <td>.0064</td> <td></td> <td></td> <td></td> <td></td>	THIGH	SIDE	HIP	KNEE	.0040	.0045	.0050	.0056	.0064				
LEG HINGE HIP TOE .0030 .0032 .0036 .0036 .0038 .0043 .0050 .0058 .0050 .0058 .0050 .0058 .0050 .0058 .0050 .0058 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0056 .0056 .0050 .0056 .0050 .0056 .0050 .0056 .0026 .0026 .0026 .0026 .0026 .0026 .0026 .0026 .0026 .0026 .0026 .0026 .00210 .0016 .0010 .0010 .001	THIGH	ANGULAR	HIP	KNEE	.0046	.0052	.0058	.0068	.0080				
LEG SIDE HIP TOE .0045 .0048 .0052 .0056 .0060 .0068 .0080 LEG ANGULAR HIP TOE .0050 .0052 .0056 .0060 .0055 .0072 .0084 .0095 .0072 .0084 .0095 .0072 .0084 .0095 .0072 .0084 .0095 .0020 .0200	LEG	HINGE	HIP	TOE	.0030	.0032	.0034	.0036	.0038	.0043	.0050	.0058	.0065
LEG ANGULAR HIP TOE .0050 .0052 .0056 .0065 .0072 .0084 .0096 .0103 OPERATOR TURN HIP OR ANKLE SHOULDER - .0062 .0075 .0088 .0025 .0120 .0122 .0142 .0160 TO .0120 .01210 .0122 .0142 .0163 .0142 .0163 .0142 .0163 .0142 .0163 .0142 .0163 .0120 TO .0120 TO .0142 .0163 .0142 .0163 .0142 .0163 .0142 .0163 .0142 .0163 .0142 .0142 .0163 .0142 .0142 .0163 .0142 .0142 .0163 .0142 .0142 .0163 .015 .015 .016 <td>LEG</td> <td>SIDE</td> <td>HIP</td> <td>TOE</td> <td>.0045</td> <td>.0048</td> <td>.0052</td> <td>.0056</td> <td>.0060</td> <td>.0068</td> <td>.0080</td> <td></td> <td></td>	LEG	SIDE	HIP	TOE	.0045	.0048	.0052	.0056	.0060	.0068	.0080		
OPERATOR TURN HIP OR ANKLE SHOULDER Image: Constraint of the stress of the stres stress of the stress of th	LEG	ANGULAR	HIP	TOE	.0050	.0052	.0056	.0060	.0065	.0072	.0084	.0096	.0108
OPERATOR TURN MOVE FEET SHOULDER Image: Marking the state s	OPERATOR	TURN	HIP OR ANKLE	SHOULDER	~	.0062	.0076	.0088	.0095	. <u>0106</u>	.0/20	. <u>0136</u>	.0160
OPERATOR BEND HIP OR ANKLE SHOULDER	OPERATOR	TURN	MOVE FEET	SHOULDER	~	L	~	~	.0200	<u>.0210</u>	<u>.0220</u>	. <u>0226</u>	. <u>0230</u>
OPERATOR SIT HIP SHOULDER Image: Model of the state s	OPERATOR	BEND	HIP OR ANKLE	SHOULDER	~	<u>.0077</u>	<u>.0087</u>	<u>.0095</u>	. <u>0102</u>	.0111	.0125	. <u>0/42</u>	. <u>0168</u>
OPERATOR STAND HIP SHOULDER Image: constraint of the state	OPERATOR	SIT	HIP	SHOULDER	~			.018	<i>10</i> 0	.0210			
EYE MOVE SIGHT SOCKET PATH ANGLE	OPERATOR	STAND	HIP	SHOULDER	~			.022	<i>?0</i> TO	.0280)		
EYE FOCUS GET IMAGE CLEAR Image: clear <thimage: clear<="" th=""> Image: clear <</thimage:>	EYE	MOVE SIGHT	SOCKET	PATH ANGLE	~	.0050	. <u>0055</u>	<u>.0059</u>	.0062	.0066	<u>.0073</u>		
EYE INSPECT READ Image: model with a start s	EYE	FOCUS	GET IMAG	GE CLEAR	~	1		.002	20 TO	.0040)		
EYE INSPECT SEE PART Image: Mail of the state	EYE	INSPECT	RE	AD	-			.003	<u>15 to</u>	.0045			
EYE INSPECT OBSERVE (GLANCE) - .0015 TO .0025 NERVE REACTION EYE TO BRAIN : OR REVERSE .0024 .0015 TO .0025 NERVE REACTION HAND TO BRAIN : OR REVERSE .0024 .0076 TO .0025 NERVE REACTION HAND TO BRAIN : OR REVERSE .0026 .0076 TO .0025 NERVE REACTION KNEE TO BRAIN : OR REVERSE .0026 .0076 TO .0040 NERVE REACTION FOOT TO BRAIN : OR REVERSE .0025 TO .0040 .0040 NERVE REACTION REALIZE CONTACT .0010 TO .0040 .0040 NERVE REACTION HEAR OR SMELL .0025 TO .0040 .0000 MIND DECISION MENTAL PROCESS .0010 TO .0100 NOT OVER .0100 OPERATOR WALK HIP 6" STEP .0160 .0260 .0350 OPERATOR WALK HIP 12" STEP .0210 .0330 .0440 .0530 .0610 OPERATOR WALK HIP 18" STEP .0070 .0240 .0370 .0490 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0400 .0530 .0630 .0770 .0945 .1150 OPERATOR WALK HIP 24" STEP .0075 .0260 .0400 .0530 .0630 .0770 .0945 .1150	EYE	INSPECT	SEE	PART	-			.002	25 10	.0035			
NERVE REACTION EYE TO BRAIN : OR REVERSE .0003 NERVE REACTION HAND TO BRAIN : OR REVERSE .0024 NERVE REACTION KNEE TO BRAIN : OR REVERSE .0026 NERVE REACTION KNEE TO BRAIN : OR REVERSE .0026 NERVE REACTION FOOT TO BRAIN : OR REVERSE .0026 NERVE REACTION FOOT TO BRAIN : OR REVERSE .0030 NERVE REACTION REALIZE CONTACT .0010 TO .0040 NERVE REACTION HEAR OR SMELL .0025 TO .0040 NOT OVER .0100 MIND DECISION MENTAL PROCESS .0010 TO .0040 NOT OVER .0100 OPERATOR WALK MENTAL PROCESS .0010 NOT OVER .0100 OPERATOR WALK HIP 6" STEP .0160 .0260 .0330 .0640 .0850 .0990 OPERATOR WALK HIP 18" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 OPERATOR WALK HIP <	EYE	INSPECT	OBSERVE	(GLANCE)	~			.00	<u>5 TO</u>	.0025			
NERVE REACTION HAND TO BRAIN: OR REVERSE .0024 NERVE REACTION KNEE TO BRAIN: OR REVERSE .0026 NOTE:-USE CIRCULAR MEASURE NERVE REACTION FOOT TO BRAIN: OR REVERSE .0026 .0026 .056 CIRCULAR MEASURE NERVE REACTION FOOT TO BRAIN: OR REVERSE .0030 .0040 .0040 NERVE REACTION REALIZE CONTACT .0010 TO .0040 MIND DECISION MENTAL PROCESS .0010 TO .0040 OPERATOR WALK MENTAL PROCESS .0010 NOT OVER .0100 OPERATOR WALK HIP 6" STEP .0160 .0260 .0350 .0610 OPERATOR WALK HIP 12" STEP .0210 .0330 .0440 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 18" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 <td>NERVE F</td> <td>REACTION</td> <td>EYE TO BRAIN</td> <td>: OR REVERSE</td> <td>.0003</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NERVE F	REACTION	EYE TO BRAIN	: OR REVERSE	.0003		•						
NERVE REACTION KNEE TO BRAIN OR REVERSE .0026 USE CIRCULAR MEASURE NERVE REACTION FOOT TO BRAIN OR REVERSE .0030 USE CIRCULAR MEASURE NERVE REACTION REALIZE CONTACT .0010 TO .0040 NERVE REACTION REALIZE CONTACT .0010 TO .0040 NERVE REACTION HEAR OR SMELL .0025 TO .0040 MIND DECISION MENTAL PROCESS .0010 NOT OVER .0100 OPERATOR WALK AFTER 3 STEPS ST	NERVE F	REACTION	HAND TO BRAI	I : OR REVERSE	.0024			Г NO	TE:-				
NERVE REACTION FOOT TO BRAIN : OR REVERSE .0030 FOR UNDERLINED VALUES. NERVE REACTION REALIZE CONTACT .0010 TO .0040 NERVE REACTION HEAR OR SMELL .0025 TO .0040 MIND DECISION MENTAL PROCESS .0010 TO .0100 NOT OVER .0100 OPERATOR WALK AFTER STEPS	NERVE F	REACTION	KNEE TO BRAIN	. OR REVERSE	.0026			USI	E CIRC	ULAR	MEAS	SURE).
NERVE REACTION REALIZE CONTACT .00/0 to .0040 NERVE REACTION HEAR OR SMELL .0025 to .0040 MIND DECISION MENTAL PROCESS .00/0 to .0040 OPERATOR WALK MIP 6" STEP .0160 .0260 .0350 OPERATOR WALK HIP 6" STEP .0160 .0260 .0330 .0440 .0530 .0610 OPERATOR WALK HIP 12" STEP .0210 .0330 .0440 .0530 .0610 OPERATOR WALK HIP 18" STEP .0070 .0240 .0370 .0490 .0850 .0990 OPERATOR WALK HIP 18" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075	NERVE F	REACTION	FOOT TO BRAIN	I : OR REVERSE	.0030			FO	R UND	ERLIN	ED YA	LUES.)
NERVE REACTION HEAR OR SMELL .0025 TO .0040 MIND DECISION MENTAL PROCESS .00/0 TO .0100 NOT OVER .0100 OPERATOR WALK MIP 6" STEP .0160 .0260 .0350 .010 OPERATOR WALK HIP 6" STEP .0160 .0260 .0350 .0610 OPERATOR WALK HIP 12" STEP .0210 .0330 .0440 .0530 .0610 OPERATOR WALK HIP 18" STEP .0070 .0240 .0370 .0640 .0850 .0990 OPERATOR WALK HIP 18" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0400 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0400 .0530 .0630 .0720 .0945	NERVE F	REACTION	REALIZE	CONTACT	.0010	TO .C	0040						-
MIND DECISION MENTAL PROCESS .00/0 TO .0100 NOT OVER .0100 OPERATOR WALK AFTER 5 STEPS STEPS <td< td=""><td>NERVE F</td><td>LACTION</td><td>HEAR OF</td><td>K SMELL</td><td>.0025</td><td>to .0</td><td>1040</td><td>L</td><td></td><td></td><td></td><td></td><td></td></td<>	NERVE F	LACTION	HEAR OF	K SMELL	.0025	to .0	1040	L					
OPERATOR WALK AFTER 3 STEPS	MIND D	LCISION	MENTAL	PROCESS	.0010	TO . (1100		NOT O	VER .0	100	<u> </u>	
OPERATOR WALK HIP 6" STEP .0/60' .0260' .0350' OPERATOR WALK HIP 12" STEP .0210' .0330' .0440' .0530' .0610' OPERATOR WALK HIP 18" STEP .0070' .0240' .0370' .0490' .0580' .0640' .0850' .0990' OPERATOR WALK HIP 18" STEP .0075' .0260' .0400' .0530' .0630' .0720' .0945' .1150' OPERATOR WALK HIP 24" STEP .0075' .0260' .0400' .0530' .0530' .0720' .0945' .1150' OPERATOR WALK HIP 30" STEP .0080' .0220' .0420' .0520' .0570' .0770' .0945' .1150'	OPERATOR	WALK			AFTER	STEPS	STEPS	STEPS	STEPS	STEPS	STEPS	STEPS	STEPS
OPERATOR WALK HIP 12" STEP .0270 .0330 .0440 .0530 .0610 OPERATOR WALK HIP 18" STEP .0070 .0240 .0370 .0490 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0440 .0530 .0640 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0440 .0530 .0720 .0945 .1/50 OPERATOR WALK HIP 30" STEP .0080 .0270 .0420 .0530 .0720 .0945 .1/50	OPERATOR	WALK		6" STEP			.0/60	.0200	.0350	0.75.5			
OFERATOR WALK HIP 18" STEP .0010 .0240 .0310 .0490 .0580 .0850 .0990 OPERATOR WALK HIP 24" STEP .0075 .0260 .0490 .0530 .0720 .0945 .1/50 OPERATOR WALK HIP 30" STEP .0080 .0270 .0420 .0530 .0720 .0945 .1/50	OPERATOR	WALK		12" SILP		070	.0210	.0330	.0440	.0530	.0610		
OFERATOR WALK HIP 30" STEP 0080 0270 0420 0500 0770 000 0770 000 0770 000 0770 000 0770 000 0770	OPERATOR	WALK		10" SILP	.00	170	.0240	.03/0	.0490	.0000	.0040	.0850	.0990
	OPERATOR			24 SIEP	.00	180	1200	0400	0500	.0030	0120	.0345	.1150

-68-

.

Table 2

Engstrom system - Get

Distances up to 8", time in normal minutes

Condition of grasp	Medium (3F) 3 fingers and thumb	Large (H) Extended hand	Small (2F) 2 fingers and thumb	Very large (2H) Two hands
A. Very best grasp facility possible. The object is prepositioned for grasp or the grasp is not hindered by other objects in contact with the object grasped	.006 Get screw- driver from bench	•006 Get suspended power driver	.006 Get small bolt from other hand	.∞6 Get large open box
B. Good grasp facility but parts may be in quantities requiring some selection of a single part. No untangling or difficult separation	.006 Get 3" diso from pile	.011 Get book f r om pile	.011 Get small washer from bin	.011 Get large flat plate from bench
C. The design of parts or kind of finish prevents ready grasping. Parts may tangle, or be packed with separators or require special handling	.011 Get wired terminal plug from box. Some tangling	.017 Get large parts from box; paper separators	.019 Get small lockwashers from bin	.024 Get heavy parts from constricted area

Corrections for data

- 1. More than one Grasp per Get, multiply base time by 1.50
- 2. Simultaneous Gets in both hands, multiply base time by 1.30
- 3. Reach distance over 8", under 20", add .0004 minutes per extra inch. For additional distance over 20", add .0006 minutes per inch.

Table 3

Engstrom System - Place

Distances up to 8", time in normal minutes

Condition of place	Medium (3F) 3 fingers and thumb	Large (H) Extended hend	Small (2F) 2 fingers and thumb	Very large (2H) Two hands
A. Positioning is nor- mally little more than	.006	•006	.006	.011
releasing the object on the work place	Put part into other hand	Put medium sized box on table	Put small screw into other hand	Slide large part to rough position
B. On or into definite locations with ample	.006	.011	.011	•019
tolerances, simple open nests or fixtures, or assemblies with one point of location	Put screw- driver into funnel-type holder	Put medium sized box on pile	Place steel washer over stud, large tolerances	Large part to line or simple fixture
C. On or into difficult or complicated locations Assemblies or fixtures	.011 Fince scoket	.019 Flace power	•019 Flace screw	.030 Place large
requiring positioning of parts with respect to two definite points,or location in two directions	wrench over nut	driver on self-tapping screw	in tapped hole	part on locating pin
D. Much the same as in C, but in addition may	•019	Matanaa	•024	•042
greater care of finishes, three or more points or directions of location, or application of force to assemble	driver on	Not usea	terminal in limited or cramped space	plate over studded hole

Corrections for data

- 1. Simultaneous placing of identical parts, multiply base time by 1.40
- 2. Simultaneous placing of unlike parts, multiply base time by 1.50
- 3. Large parts obtained with one hand, placed with two, use 2H times and add .005 min.
- 4. Two or more parts assembled in the hands and then placed in a fixture require the sum of the times for the simultaneous places and the 2H place.
- 5. Reach distance over 8", under 20", add .0004 minutes per extra inch. For additional distance over 20", add .0006 minutes per inch.
- 6. If one hand "gets" and the other "places" simultaneously, use the higher value only.

			Work	-Factor	* MOV	ING TIME T	ABLE				
				DET	AILED	ANALYSIS	-			57	
			WORK F	ACTORS	IE IN W	OFF-TACTOR TUNTI	<u></u>	1	WORK	FACTORS	
DISTANCE MOVED	BASIC		2	3	4	DISTANCE MOVED	BASIC		2	3	4
(A) ARM -	Measur	ed at K	nuckles	ł	(L) LE	<u>-</u> G - меа	sured a	t Ankle	L
1	18	26	34	40	46	1"	21	30	39	46	53
2" 3" 4" 5"	20 22 26 29	29 32 38 43	37 41 48 55	44 50 58 65	50 57 66 75	2 3" 4" 5"	23 26 30 34	33 37 43 49	42 48 55 63	57 56 75	58 65 76 86
6" 7" 8" 9" 10"	32 35 38 40 42	47 51 54 58 61	60 65 70 74 78	72 78 84 89 93	83 90 96 102 107	6" 7" 8" 9" 10"	37 40 43 45 48	54 59 63 66 70	69 75 80 85 89	83 90 96 102 107	95 102 110 117 123
11" 12" 13" 14" 15"	44 46 47 49 51	63 65 67 69 71	81 85 88 90 92	98 102 105 109 113	112 117 121 125 129	11" 12" 13" 14" 15"	50 52 54 56 58	72 75 77 80 82	94 97 101 103 106	112 117 121 125 130	129 134 139 144 149
16" 17" 18" 19" 20"	52 54 55 56 58	73 75 76 78 80	94 96 98 100 102	115 118 120 122 124	133 137 140 142 144	16" 17" 18" 19" 20"	60 62 63 65 67	. 84 86 88 90 92	108 111 113 115 117	133 135 137 140 142	153 158 161 164 165
22** 24** 26** 28** 30**	61 63 66 68 70	83 86 90 93 96	106 109 113 115 119	128 131 135 139 142	148 152 156 159 163	22 ** 24 ** 26 ** 28 ** 30 **	70 73 75 78 81	96 99 103 107 110	121 126 130 134 137	147 151 155 159 163	171 175 179 183 187
35" 40"	76 81	103 109	128 • 135	151 159	171 179	35" 40"	37 93	118 126	147 155	173 182	197 206
Weight Male in Lls Fem.	2 1	7 3-1/2	13 6-1/2	20 10	UP UP	Weight - Male in Lls. Fem.	84	42 21	UP UP		-
(Т.) TRUNK	- Meas	ured at	Should	ler	(F,H) FINGE	R-HAN) - Mea	sured a	t Finger	- Tip
1 ** 2 ** 3 ** 5 **	26 29 32 38 43	38 42 47 55 62	49 53 60 70 79	58 64 72 84 95	67 73 82 96	1'' 2'' 3'' 4''	16 17 19 23	23 25 28 33	29 32 36 42	35 38 43 50	40 44 49 58
5 7 	47	68 7.1	87 95	105	120	Weight] Male in Lbs Fem.	2/3 1/3	2-1/2 1-1/4	4 2	UP UP	-
8" 9"	54 58 61	79 84 88	101 107	121 128 135	139 147	(F	T) F0	от – м	easured	at Toe	
11" 12" 13"	63 66 68	91 94 97	118 123 127	141 147 153	162 169 175	1 ··· 2 ··· 3 ··· 4 ··	20 22 24 29	29 32 35 41	37 40 45 53	44 48 55 64	51 55 63 73
15"	73	100	130 133	158 163	182 188	Height - Male in Lbs _ Fem.	5 2-1/2	22 11	UP L'P	-	-
16" 17" 18"	75 78 80	105 108 111	136 139 142	167 170 173	193 199 203	(FS) FOREA	RM SW	IVEL -	Measur	edat Kı	nuckle
19" 20"	82 84	113	145 148	176	206 209	45° 90° 135° 180°	17 23 28 31	22 30 36 40	28 37 44 49	32 13 52 57	37 49 58 65
in Lls Femi	5-1/2	58 29	1 P [][P]	-	-	Torque Male in "Lls Fem.	3 1-1/2	13 6-1/2	I!P UP	-	-
Work-Facto	SYME	IOLS	·		WALKIN	G TIME 30" PACES		Focus	SUAL IN	SPECTI	ON
5 DIRECTIONAL CO P CARE (PRECAUT U CHANGE DIRECT	UNTROL (S ION) ION	STEER)	TYPE GENERAL		1	2 OVER	2	INSPECT REACT	450 46	30/00	214 <u>7</u>
D DEFINITE STOP	GHT - 1952		RESTRICTED 180 300 120 100 PACE ADD 100 FOR 120° 180° TURN AT START					1 TIME UNIT - 000 SECONDS			
Copyright under Intern All Rights reserved under Pa b THE M. L. C	ational Copyri n American Co y	ght Union pyright Union 1910	UP STEP Down St	S (8" R) EPS	SE - 10*	"FLAT) 126		а.,	-	000001 000001	41NUTE: 167
* TRADE MARK	CIOF <u>* COM</u>	PAN I		Ta	able 4.	,00				PRINTED	HOURS

PRINTED IN U.S.A.

	Work-Factor GRASP TABLE																										
			СС) M	PL	ΕX	C	RA	SF	s s	FR	ROM RANDOM PILES															
				Τ	SOL	ns L	T	т	HIN F	LAT	OBJECT	s	T		CTL	INDER	S A	ND S	а. с	ROSS	SEC	TION	ED S	OLID	S		Add for Entangled,
	SIZE				BRAC	KETS NESS			Tł	пск	NESS			DIAMETER										Nested or Slippery			
(Major of	r dimension r length)	n			(over .046	3/64 9''	(less th	en 1/6	(4)	(1/64" t	o 3/64")	0 -	.0	626"- 125" (1/8)	.12	51"- 375" (16)		.187	6"- 00"			.50	01" up . 1/2)		*
				в	lind	Visua	1 B	lind	Visu	al	Blind	Visual		Blind	ві	lind	Bli	ind	Bli	nd	Vis	ual	Blir	nd Simo	Visu	ual Simo	- Simo
0635					- SIMO	- 31	no .	. 31110		mio	131 189	BB	Ť	- 51110 		SAILO S		s	s	s	5	s	s	s	s	s	17 26
0626''1250	over 1	a 16' 1/16'	' to 1/8''	1	9 111	в	B 10	108 154 B B 85 120 B			вв		85 120	s	s	s	s	s	s	s	5	s	s	s	s	12 18	
1251"1875	" over	1/8"	to 3/16"	1	4 88	в	в 11	102 145 B B 74 103 B B				79 111	74	103	s	S	s	s	s	s	s	S	s	S S 12 18			
1876''2500	" over 3	3/16	' to 1/4"	4	8 64	в	в	72 100 B B 56 76 B F				вв		79 111	68	94	64	88	s	5	s	S	s	s	s	s	8 12
2501"5000	over	1/4" 1/2"	to 1/2"		0 52	B 32	B (64 88 B B 48 64 B B 64 88 60 82 48 64 44 58					62 85 62 85	56	76	48	76 64	44	58 64	B 44	B 58	S 40	S 52	5 32	S 40	8 12	
0001" - 4.0000	" over	1'' to	4''		7 48	20	22	53 72	36	46	45 60	28 3	•	56 76	48	64	40	52	40	52	36	46	37	48	20	22	8 12
0001''& up	over	4		4	6 6 1	20	22	70 97	44	58	62 85	36 4	6	56 76	48	64	40	52	40	52	36	46	37	48	20	22	9 14
			• P	11 = Us	e Blind	colum	n since	visual	grasp	offer	l s no advai	itage.	s = t	Use Solid	Tab	ole.	<u> </u>				I		·		·		
	 Add the indicated allowances when objects: (a) are entangled (not requiring two hands to separate); (b) are nested together because of shape or film; (c) are slippery (as from oil or polished surface.) Note: When objects both entangle and are slippery, or both nest and are slippery, use double the value in the table. 																										
	Note: Special grasp conditions should be analyzed in detail.																										
	Work-factor Assembly TABLES																										
			AVE	R A	GE		NO	. ()F		ALIC	GNN	ΊE	NT	s_	(A	15	M	01	tio	n s	3)					
TARGET				Patia	CLOS	ED T	ARGET	s										tion of	OP	EN T	ARG	ETS	at Di				
DIAMETER	To	Т	.225 to	.2	90 to	g Dia.	15 to	.9	00 to		.935	to	·	То	Γ.	225 to		.290	to	.4	15 to	- I arg	.9	00 to		•	935 to
75" & vp	.224 D* (1	8)	.289 D* (18)	D*	(18)	1/4	(25)	1/4*	<u>.934</u>	51)	1/4***	(59)		.224		.289	81	41 D*	(18)	D+	. <u>899</u> ()	8)	1/4**	.934	51)	1/4*	1,000
25" to .874"	D * (1	8)	D* (18)	SD	(18)	1/4	(25)	1/4*	• (51)	1/4***	(59)		(18)	D	• (1	8)		(18)	SD	<u>(</u>)	8)	1/4**	(51)	1/4*	** (59)
⁷⁵ " to .624"	SD* (1	8)	SD* (18)	1/4	(25)	1/2	(31)	1/2*	• (57)	1/2***	(65)	SD	* (18)	SE)* (1	8)	SD*	(18)	1/2	(3	11)	1/2**	(57	1/2*	** (65)
^{25"} to .374"	1/2 (3	1)	1 (44)	1	(44)	1-1	/2 (57)	1-1/	2** (83)	1-1/2**	* (91)	1/4	4 (25)	1/	2 (3	1)	1/2	(31)	3/4	(3	8)	3/4**	(64)	3/4*	** (72)
25" to .174"	1 (4	4)	1-1/4 (51)	1-1	(44)	1-1	/2 (57)	1-1/	2 ** (83) 83)	1-1/2**	* (91) * (91)	3/4	2 (31) 4 (38)		'2 (3 (4-	4)	1/2	(31)	3/4	(3 (4	14)	3/4** 1**	(70)	3/4*	** (72) (78)
75" to .124**	2-1/2 (8	3)	2-1/2 (83)	2-1	/2 (83)	2-1	/2 (83)	2-1/	2** (1	09)	2-1/2**	*(117)	1-1	1/4 (51)	1-	1/4 (5	1)	1-1/4	(51)	1-1	/4 (!	51)	1-1/4	** (77)	1-1/	4*** (85)
^{(3)"} to .074"	3 (9	6)	3 (96)	3	(96)	3	(96)	3**	(1	22)	3***	(130)	1-1	1/2 (57)	1-	1/2 (5	7)	1-1/2	(57)	1-1	/2 (!	57)	1-1/2	** (83)	1-1/	2*** (91)
						1	'nita show nyolye ma Tudiyates	n in pare are than: . Work-Fa	nneses à Alignt	n der richten formalise	uses as the lo with S. Work-F	tal assembi la fors, bl	y tune AtS Up	when the as		or AlP or											
							volui Ad Lupri	els cancent elst to adi	(16. j. 9.). . 905. j. 91	- press - press	bed Extension Sector An	with SD W	ork-Fa	ert with P.W	/ork-F	Factor re	quired										
DIST	ANC	·E	BE	Т	NE:	ΕN	Т	AR	GE	ΞТ	S			G	R	IPI	ΡI	NG	ż	D	[S	ТА	N	CE	., 4	•	
Dist. Betw Tarr	ance veen gets		to ,	Addi Alignn	tion nents		e R	Me Ali	thod o: gnmen	f it			Di Gr to	stance fr ipping P Align, P	om				% to A	Additi lignm	on ents				Leng Upr Mo	gth of ight	,
ť.	.99''			Neg							·												-				
1 -	1.99''			10%				- Si	mo mo			J	0	- 1.	99''					Neg.					۰.		
2.	2.99"			30%				Si	mo				2	- 2.	99"					10%					1.	•	
- 3 -	4,99'			50%				Si	mo				3	- 4.	99''					20%			!		2'	•	
7	14.99"		Alig	n lst,	insert l	st. Ali	gn 2nd	Si (1)	mo				5	- 6.	99"					30%					2'	•	
15"	<u>ե</u> up		Inse Alig	rt 2nd	Insert 1	t For	us and	Increase			·		10	- 14.	99 ''					60%					5.	•	
(1)			Alig	n 2nd	(1), lns	rt 2nd	•						15	- 19.	99"					80%					6.	•	
		a, tr T		sembl	y as ope	n targ	er-with	no upri	ght.				20	& up						100%					7" &	up	
	<u>d</u>	<u>ц</u>		<u> </u>	A K Additio	GE	I S											•									
Dis Tar;	itance from let to Visit	n ole	(B)	Perma ind at al	nont It tanie so			1 emp	urary						Ċ	GEI	NE	R	AI		R	ŪL	E	5			
0	49''		<u> </u>	20%				0%																			
.5	99"		ļ	30%			·	10%					1.	. Add w	ork-	Factor	s to	Align	nents	for v	veigh	t, etc	. as r	equir	ed.		
2,0	- 1.99"	•		40%				20%						Alignr	nent	s.	is pe	riorm	eu by	inge	rsu	se 50%	~ 01 a	oove			
3.0	- 4.99"	,		130%				50%					3.	Where	Gri ch p	ipping I vercent	Dista age t	nce, T o Orig	wo T inal	arget Alignr	s, an nent,	d Blir Don'	nd Tau tpyra	rgets imid	are i perce	nvolve ntages	d,
5.0	- 6.99"		ļi	250%				70%										COPV	RIG	нт -	1952						
. 7.0	- 10.00"		1 :	380%				120%						A	C I Rig	Copyrig ghts res	ht un ervec	der In i unde	terna r Pan	tional Ame	Copy ican	right Copy	Unior right	n Unior	·	10	
	-		·													1	ŦН	Е Шог	ъу К-Га	ctor •	co	MP	ANY		19	10	
THE	UIn	R	k-Fa	- 7.	tnr	•	Ċ	ЭМ	PA	1N	'Y			MANAG	EM1	ENT C	ONS KEP	ULTA	NTS	AND 1	NDU	ISTRI	AL E	NGI	NEEF	RS .	
RADE MAR	Pable Da									Tab	.e 5	<u></u>															

TABLE I-REACH-R

METHODS-TIME MEASUREMENT APPLICATION DATA SIMPLIFIED DATA BODY, LEG, AND EYE HAND AND ARM MOTIONS MOTIONS REACH or MOVE TMU TMU 1″..... 2 Simple foot motion..... 10 Foot motion with pressure 20 3" to 12" 4 + length of motion Leg motion 10 over 12" 3 + length of motion (For TYPE 2 REACHES AND Side step case 1..... 20 MOVES use length of motion Side step case 2..... 40 only) Turn body case 1..... 20 POSITION Fit Symmetrical Other Turn body case 2..... 45 Loose 10 15 Eve time. 10. Close 20 25 Exact 50 55 Bend, stoop or kneel on one knee..... 35 TURN-APPLY PRESSURE Arise..... 35 APPLY PRESSURE 20 Kneel on both knees..... 80 Arise..... 90 GRASP Simple..... 2 Sit..... 40 Regrasp or Transfer... 6 Stand..... 50 Complex..... 10 Walk per pace..... 17 DISENGAGE (All times on this Simplified Close..... 10 Data Table include 15% allowance) 1 TMU = .00001 hour METHODS ENGINEERING COUNCIL =.0006 minute 718 Wallace Avenue =.036 second PITTSBURGH 21, PENNSYLVANIA 2854 Fairfield Avenue **BRIDGEPORT 5, CONNECTICUT**

Distance	Lev	releci T	'ime T	MU	Hand In Motion			CASE AND DESCRIPTION					
Inches	A	в	C or D	Е	A	в	A	Reach to object in fixed loca-					
1	1.8 3.7	2.1 4.3	3.6 5.9 7.3	1.7 3.8 5.3	1.3 2.8 3.8	1.5 2.7 3.6		hand or on which other hand rests.					
4	6.1 6.5	7.1 7.8	8.4 9.4	6.8 7.4	4.9	4.3	в	Reach to single object in location which may vary					
6 7	7.0 7.4	8.6 9.3	10.1 10.8	8.0 8.7	5.7 6.1	5.7 6.5		slightly from cycle to cycle					
8 9 10	7.9 8.3 8.7	10.1 10.8 11.5	11.5 12.2 12.9	9.3 9.9 10.5	6.5 6.9 7.3	7.2 7.9 8.6	С	Reach to object jumbled with other objects in a group so					
12	9.6 10.5	12.9 14.4	14.2 15.6	11.8 13.0	8.1 8.9	10.1 11.5	- -	that search and select occur.					
16 18 20	11.4 12.3 13.1	15.8 17.2 18.6	17.0 18.4 19.8	14.2 15.5 16.7	9.7 10.5 11.3	12.9 14.4 15.8		or where accurate grasp is required.					
22 24 26	14.0 14.9 15.8	20.1 21.5 22.9	21.2 22.5 23.9	18.0 19.2 20.4	12.1 12.9 13.7	17.3 18.8 20.2	E	Reach to indefinite location to get hand in position for					
28 30	16.7	24.4	25.3 26.7	21.7 22.9	14.5 15.3	21.7		or out of way.					

TABLE II-MOVE-M

ഫ്

	Lev	eled T	ime T	MU	Mult	-vial	
Distance Moved				Hand	ing F	actor	CASE AND DESCRIPTION
Inches	A	в	с	Motion B	Wt.	Factor	
1	1.7	1.7	1.7	1.5	Upto		
2	3.6	4.2	4.2	2.7	0#	1.00	
3	4.9	5.7	5.7	3.6			A Move object to other hand or
4	6.1	6.9	7.3	4.3	10#	1.03	A move object to biller hand of
5	7.3	8.0	8.7	5.0			against stop.
6	8.1	8.9	9.7	5.7	15#	1.05	
7	8.9	9.7	10.8	6.5			
8	9.7	10.6	11.8	7.2	20 <i>4</i>	1.08	
9	10.5	11.5	12.7	7.9	<u> </u>		
10	11.3	12.2	13.5	8.6	25#	1.11	B Move object to approximate
12	12.9	13.4	15.2	10.0			or indefinite location.
14	14.4	14.6	16.9	11.4	30#	1.14	
16	16.0	15.8	18.7	12.8			
18	17.6	17.0	20.4	14.2	35#	1.16	
20	19.2	18.2	22.1	15.6			
22	20.8	19.4	23.8	17.0	40 <i>‡</i> ·	1.19	C Mayo abject to sweet loss
24	22.4	20.6	25.5	18.4			vivove object to exact loca-
26	24.0	21.8	27.3	19.8	454	1.22	tion.
28	25.5	23.1	29.0	21.2			1
30	27.1	24.3	30.7	22.7	50#	1.25	

TABLE III-TURN AND APPLY PRESSURE-T AND AP

Walaka	Leveled Time TMU for Degrees Turned											
weight	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°	
Small— Oto 2 Pounds	2.8	3.5	4.1	4.8	5.4	6.1	6.8	7.4	8.1	8.7	9.4	
Medium-2.1 to 10 Pounds	4.4	5.5	6.5	7.5	8.5	9.6	10.6	11.6	12.7	13.7	14.8	
Large- 10.1 to 35 Pounds 8.4 10.5 12.3 14.4 16.2 18.3 20.4 22.2 24.3 26.1 28.										28.2		
APPLY PRESSURE CASE 1-16.2 TMU. APPLY PRESSURE CASE 2-10.6 TMU												

MEC FORM 204A 1

TABLE IV-GRASP-G

Case	Leveled Time TMU	DESCRIPTION
1A	1.7	Pick Up Grasp—Small, medium or large object by itself, easily grasped.
18	3.5	Very small object or object lying close against a flat surface.
1C1	7.3	Interference with grasp on bottom and one side of nearly cylindrical object. Diameter larger than $\frac{1}{2}$ ".
1C2	8.7	Interference with grasp on bottom and one side of nearly cylindrical object. Diameter $\frac{1}{2}$ to $\frac{1}{2}$.
1C3	10.8	Interference with grasp on bottom and one side of nearly cylindrical object. Diameter less than \mathcal{U}'' .
2	5.6	Regrasp.
3	5.6	Transfer Grasp.
4A	7.3	Object jumbled with other objects so search and select occur. Larger than 1" x 1" x 1".
4B	9.1	Object jumbled with other objects so search and select occur. $\frac{1}{4}$ x $\frac{1}{4}$ x $\frac{1}{4}$
4C	12.9	Object jumbled with other objects so search and select occur. Smaller than $\frac{1}{4}$ " x $\frac{1}{4}$ " x $\frac{1}{4}$ ".
5	0	Contact, sliding or hook grasp.

TABLE V-POSITION*-P

HANDLING		CLASS OF FIT	SYMMETRY						
inalibeling			S	SS	NS				
Easy	1-Loose	No pressure required.	5.6	9.1	10.4				
Το	2-Close	Light pressure required.	16.2	19.7	21.0				
Handle	3—Exact	Heavy pressure required.	43.0	46.5	47.8				
Difficult	1—Loose	No pressure required.	11.2	14.7	16.0				
То	2-Close	Light pressure required.	21.8	25.3	26.6				
Handle	3—Exact	Heavy pressure required.	48.6	52.1	53.4				

*Distance moved to engage-1" or less.

TABLE VI-RELEASE-RL

TABLE VII—DISENGAGE—D

Case	Leveled Time TMU	DESCRIPTION	Easy to Handle	Difficult to Handle	CLASS OF FIT
1	1.7	Normal release per- formed by opening	4.0	5.7	1-Loose Very slight effort, blends with subsequent move.
		motion.	7.5	11.8	2-Close-Normal effort, slight recoil.
2	0	Contact Release.	22.9	34.7	3— Tight — Consider- able effort, hand re- coils markedly.

TABLE VIII-EYE TRAVEL TIME AND EYE FOCUS-ET AND EF

Eye Travel Time = $15.2 \times \frac{T}{D}$ TMU. where T = the distance between points from and to which the eye travels. D = the perpendicular distance from the eye to the line of travel T, with a maximum value of 20 TMU. -Eye Focus Time =7.3 TMU.

TABLE IX-BODY, LEG, AND FOOT MOTIONS

DESCRIPTION	SYMBOL	DISTANCE	LEVELED TIME TMU
Foot Motion—Hinged at Ankle. With heavy pressure. Leg or Foreleg Motion.	FM FMP LM	Up to 4″ Up to 6″ Each add'l. inch	8.5 19.1 7.1 1.2
Sidestep—Case 1—Complete when lead- ing leg contacts floor. Case 2—Lagging leg must contact floor before next motion can be made.	SS-C1 SS-C2	Less than 12" 12" Each add'l. inch 12" Each add'l. inch	Use REACH or MOVE Time 17.0 .6 34.1 1.1
Bend, Stoop, or Kneel on One Knee. Arise. Kneel on Floor—Both Knees. Arise.	B,S,KOK AB,AS,AKOK KBK AKBK		29.0 31.9 69.4 76.7
Sit. Stand from Sitting Position. Turn Body 45 to 90 degrees— Case 1—Complete when leading leg contacts floor. Case 2—Lagging leg must contact floor before next motion can be made.	SIT STD TBC1 TBC2		34.7 43.4 18.6 37.2
Walk. Walk.	W-FT. W-P	Per Foot Per Pace	5.3 15.0

TABLE X-SIMULTANEOUS MOTIONS

- 74 -

	RE	AC	н			м	ov	5			G	RA	SP			۶	os	ITI	ON		DISE	SENGAGE			
A, E	8	•	;, D	۸.	Bm	'	B	-	c	G1A G2 G5	G	IB IC	G	•	P1	s	P19 P29	55 5	P1 P2 P2	NS SS NS	D1E D1D	D	2	CASE	MOTION
		١,	10	w	•	w	•	w	0			•		•	ε	D	E	0	,	D		ε	D		
E	٤	1	ε	E	E	ε	E	P	P	E	ε	ε	ε	E	ε	E	E	P	P	P	E	E	E	A, E	
	E	E	P	ε	E	E	P	P	D	ε	E	Р	Ρ	D	P	Р	P	D	D	D	ε	ε	P	В	REACH
l		Ŀ	P	P	D	P	D	D	D	E	P	D	D	D	D	D	D	D	D	D	Ρ	D	Þ	C, D	l
				E	ε	ε	E	E	E	E	£	ε	٤	E	E	E	E	P	P	Ρ	E	E	E	A, Bm	
Ι.						E	E	E	E	E	ε	P	P	D	Р	P	P	D	D	D	E	E	P	8	MOVE
1 *		=∎= p	AS erfo	n n	to 1			P	D	E	P	D	D	Þ	D	D	D	D	D	D	P	D	D	с	
simultaneously. $E E E E E E E E D D D E D D G$										G1A, G2, G5															
1	simultaneously with DDPDDDDDDDDDDCG1B, G1C GRASP								GRASP																
6) =	۲ Dء	HA IF	FI		38. 11.1	Г 1		her	form			٥	Þ	D	D	D	Þ	D	D	D	D	D	G4	
-		si	mu	Ita	ne	ou	sly		/en	afte	ir I	on	9		P	D	D	D	D	D	D	D	D	P15	
		p R	10	T14	י יי אר		N	0		NCI	,s. 11			-			D	D	D	D	σ	D	D	P155, P25	POSITION
					1	18	0	VE	т	ABI	Ē				•				D	D	D	D	D	PINS, P2SS, P2NS	
Т	U	R	N	Ne	orn D N	nal	ly	E/	AS	r wi	th	all	m	otio	ons		xce	ept	-		E	£	ε	DIE, DID	DISTNET
A	P	PL	.Y	PR	E	55	UF	RE	-1	/lay	be	E,	AS	Υ,	Pf	RA	CT		Ε.	or		Ε	E	D2	DISENGAGE
١.	DIFFICULT. Each case must be analyzed.																								
15	19	31 25					as:	53		-Na	ys 	וט ווני	rr Iv I	10	UL EE	ic.		т					•w	= Within the area of r	ormal vision.
R	E	LE	AS	E-	_A	lw	av	as: s l	EAS	SY.		an		- 11	٢			•••					تن ء*#	=Uulside the area of i FASY to boudle	Reimai Aiziea"
D	DISENGAGE—Any class may be DIFFICULT if care D=DIFFICULT to bandle. must be exercised to avoid injury or damage to object.																								

Table 7.

Table 8

Insert pin in board Illustration of analysis by each system

Element	M. 7	r.M.	W.F.		Holmes	• • •	Engstrom	
description Time Motion T.M.U. Motion		Time WFTU	Motion	Time min.	Motion	Time min		
Reach to pile of pins	R8C	11.5	<u>A</u> 8D	.54	Forcarm angular 8" " " 1"	.00 <u>36</u> .0027	Get	
Select and grasp one pin	G4B	9.1	Complex Grasp, 2" long x ½" dia., single, visible	36	Finger hinge 1" 2 Finger hinges 1"	•00 17 •0034	Condition B Group 2F	•011
Move pin to board	M8C	11.8	A8SD	7 0	Forearm angular 8" " 1"	•0036 •0027		
Align pin and insert	P2SE	16.2	Open target; ¹ / ₄ "dia. 0.95 plug/target ratio	72	2 Forearm ang.press 1 Hand hinge 1" 2 Hand hinge press	•0046 •0022 •0040	Place Condition C Grasp 2F	•019
Release pin	RL1	1.7	늘 FI	8	Finger hinge 1"	.0017		
Total		50.3		240		.0302		.030

3

Table 26

Individual finger times

Motion	mM_2^1A and M_2^1Am											
Digit	Т	1	2	3	4							
Normal time,	2.06	2.06	2.48	1.90	1.65							
TMU	2.06	2.06	2.06	1.42	2.36							
n An ann	2.06	1.9	1.90	2.36	2.36							
	1.9	1.9	1.83	1.90	2.29							
	2.36	1.9	2.29	1.90	2.29							
	1.9	1.42	2.29	1.83	2.29							
	1.9	1.9	2.29	2.29	2.29							
	1.29	1.9	1.83	1.83	1.83							
	2.75	1.42	2.29	1.83	1.83							
	2.29	1.83	r r	1.83								
	1.83	2.29		2.29								
	2.29	2.29		2.75								
	2.29	2.29										
	2.29	1.83										
	1.83	2.29										
	1.83	1.83										
Total, XX	32.93	31.11	19.26	24.13	19.19							
Readings	16	16	9	12	9							
Average, X	2.06	1.94	2.14	2,01	2.13							

R_Am Describe source for the source of the s

a.

creprize and the second s

4

769

DISTANCE IN INCHES

З,

INCHES

6

်င္ရ

APPENDIX I

MTM METHODS ANALYSIS CHART

Operation: Assemble bolt and washers - two-handed method. Ref. No.PB1 Analyst: P. Butcher Date: 16.10.50 Sheet No.1 of 1 Sheets

Description - Left hand	L.H.	TMU	R.H.	Description - Right hand
To rubber washer, left	mR9 C	9•3	mR9C	To rubber washer, right.
Washer	G5	0	G5	Washer
Slide along bench	M11C	14.3	M11.3	Washer to assy. point
Into hole	PISE	5.6	PISE	Into hole
Fingers off	RL2	о	RL2	Fingers off
To steel washers, left	R120	14.2	R12C	To steel washers, right.
	G5	0	G5	Steel washer
Slide along bench	м100	13.5	M10C	To assy. point
Fingers off	RL2	ο	RL2	Fingers off
To lock washer, left	R110	13.6	R11C	To lock washer, right.
Lock washer	G5	0 1	G5	Washer, lock
Slide along bench	MIOC	13.5	м1∞	To assy. point
To bolts, centre	R8C	11.5	R8 C	To bolts, centre
	•	9.1	G4B	Pick up one bolt
Pick up one bolt	G4B	.9.1		
To assy. point	м8с	11.8	/M8C	To assy. point
Grasp by head	52)	-	<u>,</u> 92	Grasp by head
To lock washer	PISE	5.6	PISE	To lock washer
To steel washer and	M1C	1.7	MIC	To steel washer and
		16.2	P2SE	through steel and rubber
through steel and rubber	P2SE	16.2		

Description - Left hand	L.H.	TMU	R.H.	Description - Right hand
Grasp head of bolt	G2	5.6	G2	Grasp head of bolt
Out of hole	DIE	4.0	DIE	Out of hole
Drop into left chute while reaching for next washer	M4Bm	4•3 -	(MABm RE1	Drop into right chute while reaching for next washer
Total time, mins.		179.1		

1 Time unit = .0006 mins.

ENGSTROM METHODS ANALYSIS

Ref.No.PB3

Operation: Assemble bolt and washers - two-handed method. Date: 30.10.50 Analyst: P. Butcher

Sheet No.1 of 1 Sheet

ć

Elements of the operation	Condi-	Class	Base time	Distance over 8"	Simo factor	Total mins.				
Dron completed assemblies			VIIII.							
down chute	в	3F	•006	-	1.40	0.0084				
Get rubber washers	A	2F	•006	2"	1.30	0.0088				
Place rubber washers	В	2F	.011	4"	1.40	0.0176				
Get steel washers	A	2F	•006	3"	1.30	0.0093				
Place steel washers	А	2F	•006	3"	1.40	0.0101				
Get lock washers	Δ	2F	•006	2"	1.30	0.0088				
Place look washers	В	2F	.011	1"	1.40	0.0160				
Get bolts	В	2F	.011	1"	1.30	0.0148				
Place bolts in washers	D	3F	.019	1"	1.40	0.0271				
Total time, mins.										

WORK FACTOR METHODS ANALYSIS

Operation: Assemble be	olt and wa	shers	- two-hai	nded method. Ref. No.PB
Analyst: P. Butcher	Dat	;e: 24	1 0 •5 0	Sheet No.1 of 1 Sheet
Elemental desc Left	Motion amalysis	Elem. time	Motion analysis	Elemental desc Right
To rubber washers	A10S	61	A10S	fo rubber washers
Slide along bench	A12SD	8 5	A12SD	Washer to hole
As for R.H.	P	20	P	Target .75" dia.,ratio .85" simo at 1.7/8" (10% additive)
To steel washers	A11DS	81	A11DS	To steel washers
To assy. point	A11D	63	A11D	To assy. point
As for R.H.	P	20	Ъ	Target .75" dia., contact ratio .35(approx.)simo at 1.7/8"
For lock washer	A10DS	7 8	A10DS	For lock washer
Slide along bench	A10D	61	A10D	To assy. point
As for R.H.	P	20	P	Target .75", contact ratio .25(approx.)simo at 1.7/8"
To bolts in centre	A9D	5 8	A9D	To bolts in centre
Pick up bolts	G	5 8	G	Visual-simo; 3/8" dia.,
Bolts to lock washers	A9DS	-74	A9DS	Bolts to lock washers
Bolts to washer, as for right hand	P	34	P	Target .375", ratio 0.8", simo at 1.7/8"(10%)
	F1SD	29	F1SD	Finger move to bring bolt over steel and rubber washers
Bolts to washers, as (for right hand	P	72	P	Target .375", ratio over .935"; blind for .25", simo at 1.7/8"
Fingers to bolt head	3F1	4 8	3F1	Fingers to bolt head
Out of assembly point	A2S	29	A2S	Out of assembly point
To left chute and drop	A2	20	Λ2	To right chute and drop
Total time	W.F.T.U.			

1 Time unit = .0001 mins.

HOLMES METHODS ANALYSIS

Operation: Assemble bolt and washers - two-handed method

Ref. No.PB4

у. 10

Analyst: P. Butcher

.

Date: 30.10.50

Sheet 1 of 2

	Member	Type of	Dis-	No.of	Time	No.of	Dis-	Type of	Member	
Left hand activity	moved	motion	tance	mvmts	mins.	mvmts	tance	notion	moved	Right hand activity
To rubber washers	For	Ang	10	1	• 003 8	1	10	Ang	For	To rubber washers
					•0027	1	1	Ang	For	To washer selected
To washer selected	For	Ang	1	1	.0027					
Press contact - 25% less	Fin	Hin	. 1	3/4	.0013	3/4	1	Hin	Fin	Press contact - 25% less
Washer to assy.	For	Ang	13	1	•0042	1	13	Ang	For	Washer to assy.
Set washer in hole	For For For	Ang Ang Hin	Pr. 1	2 1 1	•0046 •0027 •0017	2 1 1	Pr. 1 1	Ang Ang Ang	For For For) Set washer in hole
To steel washers	For	Ang	12	1	•0041	1	12	Ang	For	To steel washers
Get and contact washer	For Fin	Ang Hin	1	1 3/4	.0027 .0027 .0013	1 3/4	1	Ang Hin	For Fin) Get and contact washer
Washer to assy.	For	Ang	12	1	•0041	1	12	Ang	For	Washer to assy.
To hole	For	Ang	1	. 1	.0023	1	1	Ang	For	To hole
Down	Fin	Hin	1	1	•0017	1	1	Hin	Fin	Down
To lock washers	For	Ang	11	1	•004£	11	1	Ang	For	To lock washers
Get and contact washer	For Fin	Ang Hin	1 1	1	•0027 •0027 •0013	1	1 1	Ang Hin	For Fin	Get and contact washer

HOLMES METHODS ANALYSIS(contd.)

	Member	Type of	Dis-	No.of	Time	No.of	Dis-	Type of	Member	Dight hand activity
Left hand activity	moved	motion	tance	mymts	mins	Invincs	Tance	motion	movea	Right hand activity
Washer to assy.	For	Ang	1	1	•0040	11	1	Ang	For	washer to assy.
Set lock washer near { centre of hole }	For Fin Fin	Ang Hin Hin	1 1 Pr.	1 1 2	•0027 •0017 •0030	1 1 2	1 1 Pr.	Ang Hin Hin	For Fin Fin)Set lock washer near)centre of hole)
To bolts, front	Arm	Ang	9	1	.0049	1	9	Ang	Arm	To bolts, front
					•0021	1	2	Hin	Fin	Finger to bolt
			1		•0021	1	2	Hin	Fin	Grasp bolt
Finger to bolt	Fin	Hin	2	1	•0021					
Grasp bolt	Fin	Hin	2	1	•0021					
Bolt to assy.	Arm	Ang	9	1	•0049	1	9	Δng	Arm	Bolt to assy.
Set bolt to lock washer(and other washers (For For	Ang Ang	Pr. 1	3 2	•0069 •0054	3 2	Pr. 1	Ang Ang	For For)Set bolt to lock washer)and to other washers
Bolt through washers (and down (Han Han	Hin Hin	Pr. 2	1	.0020 .0022	1	Pr. 2	Hin Hin	Han Han)Bolt through washers)and down
Fingers to bolt head	Fin	Hin	3	1	•0051	3	1	Hin	Fin	Fingers to bolt head
Out of hole	For	Ang	3	1	•0030	1	3	Ang	For	Out of hole
Over to chute, left	For	Ang	3	1	₀ 0030	1	3	Ang	For	Over to chute, right
Total time, mins.										

96

APPENDIX II

- 97 -

DEFAIL OF FILMS ANALYSED

1. Typing

Film No. M.31. Camera located 2 ft. directly above centre of typewriter keyboard.

- a) <u>Operation:</u> Type sentence "The sly brown fox jumped quickly over the lazy dog."
- b) Equipment: Standard Royal No. KMM12-2834086.
- c) Operator: Woman; four years' typing experience; self-taught.
- d) Rating: Skill E-1, Effort C-2. Total factor 3%
- 2. Typing

Film No. M.32. Camera located 2 ft. directly above centre of typewriter keyboard.

a) <u>Operation</u>: Type sentence "The sly brown fox jumped quickly over the lazy sleeping dog."

b) Equipment: Standard Royal No. KMM12-2834086.

- c) <u>Operator</u>: Wonan; four years' typing experience; college instruction.
- d) Rating: Skill B, Effort C. Total factor + 13%
- 3. Typing

Film No. M.35. Camera located 2 ft. directly above centre of typewriter keyboard.

- a) <u>Operation</u>: Type sentence "The sly brown fox jumped quickly over the lazy sleeping dog."
- b) Equipment: Standard Royal No. KMM12-2834086
- c) <u>Operator</u>: Woman; three months' commercial typing; one and a half year's practice at High School.

d) Rating: Skill C-1, Effort C, Total factor + 9.5%

4. Wrap porcelain with wire

Film No. M.36. Camera located 2'6" directly in front of standing operator, at waist height.

- a) <u>Operation</u>: Wrap porcelain rod, 3¹/₂" long x 5/8" dia., with No.25A gauge resistance wire.
- b) Equipment: Wire spool mounting.
- c) <u>Operator</u>: Woman; eight years' experience on similar work; right handed.
- d) Rating: Skill D, Effort E. Total factor 6%
- 5. Wrap porcelain with wire

Film No. M.37. Camera located 3 ft. in front of and at 45° to the standing operator, at waist height.

- a) <u>Operation</u>: Wrap porcelain rod, $8\frac{1}{2}$ " long x 5/8" dia., with No.25A gauge resistance wire.
- b) Equipment: Wire spool mounting.
- c) Operator: Woman; two years' experience at work; right handed.
- d) Rating: Skill C-2, Effort C-1. Total factor + 8%.

6. Assemble connectors for spot welding

Film No. M.39. Camera located 1 ft. from fixture, 1'9" from pile of nuts, at same level and turned to follow hand. Film out during machine controlled element of cycle.

- a) <u>Operation</u>: Assemble four 3/16" nuts into fixture by sliding each one along the top bar and into the appropriate section.
- b) Equipment: Fixture in spot welder: 4.1/8" x 2.5/8" x 2".

Slide bar $3'' \ge \frac{1}{2}'' \ge \frac{1}{2}''$

- c) Operator: Man: fourteen years in industry, similar work.
- d) Rating: Skill C, Effort C. Total factor + 8%

7. Assemble heater elements

Film No. M.40. Camera located 2'6" directly in front of seated operator, at hand working level.

- a) <u>Operation</u>: Sorew a 4.1/8" long terminal into each end of the 6" long heater element, 3/16" dia., for a distance of $\frac{3}{4}$ ".
- b) Equipment: None
- c) Operator: Woman; eight years light assembly.
- d) Rating: Skill C, Effort C-1. Total factor + 9.5%

8. Assemble heater elements

Film No. M.41. Camera located 2'6" directly in front of seated operator, at hand working level.

- a) <u>Operation</u>: Sorew a 4.1/8" long terminal into each end of the 6" long heater element, 3/16" dia., for a distance of $\frac{3}{4}$ ".
- b) Equipment: None
- c) Operator: Woman; five years light assembly.
- d) Rating: Skill C-2, Effort C-2, Total factor + 5%.

9. <u>Lubricate valve cones</u>

Film No. M.45. Camera located 3 ft. to the right of and 45° behind the seated operator, at hand working level.

- a) <u>Operation</u>: Apply grease to value cones, 1" long, tapering from $\frac{3}{4}$ " dia. to 5/8" dia., stem length $1\frac{1}{4}$ ".
- b) Equipment: Brush, 5"long with bristle head 1" long x $\frac{1}{4}$ " x 1/8". Grease.
- c) Operator: Woman; fifteen years light assembly.
- d) Rating: Skill D, Effort E-1. Total factor 4%

10. Insert steel pins

Film No. M.48. Camera located 3'6" in front of standing operator, at waist length.

- a) <u>Operation</u>: From handful of $\frac{1}{2}$ " x 1/8" dia. pins in left hand, get one to finger tips, rub on lubricant pad, fix into driver in right hand and push into assembly.
- b) Equipment: Hollow driver, 1.1/8" shank, 3/16" dia. with rounded wooden handle.
- c) Operator: Man; three years light assembly.
- d) Rating: (On left hand) Skill C-1, Effort D. Total factor + 6%
- 11. Operate comptometer

Film No. M.49. Camera located 3 ft. in front of and 45° to the left of the seated operator, and 2 ft. above the level of the keyboard.

- a) Operation: Tabulating accounts figures.
- b) Equipment: Felt & Tarrant Elec. comptometer, K359755.
- o) Operator: Woman; two years' experience ; six months' training.
- d) Rating: Skill D, Effort E-1. Total factor 4%.

12. Operate adding machine

Film No. M.51. Camera located 2'6" to right side of seated operator, and 6" above the level of the keyboard.

- a) Operation: Add columns of figures.
- b) Equipment: Remington Rand Model 93.
- c) Operator: Woman; twelve years' experience.
- d) Rating: Skill C-1, Effort C-1. Total factor + 11%.

APTENDIX MI

RESULTS OF FILM ANALYSIS, MEAN VALUE PER STUDY

<u>Table 25</u>

Results from R-Am

•	Mean TMU											
Study No.	111	111	<u>3</u> 11	1"	1 <u>1</u> "	1 <u>1</u> "	1 <u>3</u> "	2"	$2\frac{1}{4}$ ",	2 <u>1</u> "	2 <u>3</u> "	
31					3.1 0	3.30	3.72	4. 14				
32				1.9	2.25		-					
· 35		1.71	2.29	2.82	2•75	3.36	3•49	4.13	3.82	4.35		
36					2.77	3.16	2.76					
49	1.21			2.01		2.95	3.02	3.61	3.81	4.02		
51	1.43	1.52	1.65	2.27	2.51	2.94	3.50	3.70	3.80	4.45	4.18	
Mean TMU	1.32	1.61	1.97	2.25	2.68	3.14	3.30	3.90	3.81	4.27	4.18	

Table 26

Re	sul	ts	from	R_A

	Mean TMU											
Study No.	¹ /8"	<u>1</u> " 2"	<u>3</u> "	1"	1 <u>1</u> "	1출"	1 <u>3</u> "	2"	2 <u>1</u> 7"	2 <mark>1</mark> "	3 <u>3</u> "	4"
31				3.30								
36			1.96				3.2		1			
37		1.54	1.87	1.81	16.ز							
40		2.02	2.39	2.30			2	3.68				
41		1.32	1.91	2.20	3.17	3.23						
48			2.7	3.1	2.83	3.5	4.0	4•4	4.0	4.4		
49											6.42	6.03
51	2.0											
Mean TMU	2.0	1.63	2.16	2.54	3.05	3.34	3.60	4.04	4.0	4.4	6.42	6.03
1				Me	an TM	J						
---	--------------	------	--------------	--------------	--------------	------	--------------	--------------				
	Study No.	131	2 <u>1</u> "	2 <u>1</u> "	2 <u>3</u> "	3".	3 <u>1</u> "	3 <u>3</u> "				
	36	3.13	4.31	5.23	5.36	6.11	7.05	7.0				
-	37	3.62										
	41	4.29	5.5									
-	Mean TMU	3.68	4.91	5.23	5.36	6.11	7.05	7.0				

Results from R-B and R-Acd

Table 28

Results from R_E

	-				Meat	n TMU			·····		
Study No.	1/ _{8"}	<u>1</u> 11 2	<u>3</u> 11 4	1"	1 <u>1</u> "	1 <u>1</u> "	1 <u>3</u> "	2"	2 <u>1</u> "	2 <u>1</u> "	2 <u>3</u> "
32				2.60							:
35		1.83									
36	, 		1.76	1.56	2.34	3.13					
37 ·			2.26	2.03	2.94			4.97	4.68	5.43	5.43
39		1.36	2.26				4•97				
40			1.83	2.58	2.30	3.45	3.83			ĸ	5.5 0
48		2.22	2.32	2.67	2 .7 0	3.10		4.40	4.0		
49		1.61	1 P								
51	1.9						3.7				
Mean TMU	1.9	1 .7 6	2.09	2.29	2.57	3.33	4.17	4.68	4.34	5.43	5.47

÷

Resul	ts	from	M-B
			the second second second

					Mean	TMJ					
Study No.	3/8"	1 <u>1</u> 11	<u>3</u> " 4"	1"	14"	1 <u>1</u> "	1를"	2 <mark>4</mark> "	2 <u>1</u> "	3"	3 <u>1</u> "
35	1.83								1	1 1 1 1	
36								4•73	5.27	5.5	6.4
40		2.07	2.25	2.76			19			5•95	
41		1.32	1.76	2.20	2.64						
48			2.2	2.70	2.90	3.75	4.2	5.3			
Mean TMU	1.83	1.70	2.07	2.55	2,77	3.75	4.2	5.01	5.27	5.72	6.4

Ż

- 1

Table 30

Results from M_Am and mM_A

	M	lean T	MU	
Study No•	1/ 8"	1 4	<u>1</u> 11 2	5/8"
31			2,03	2.34
35			2.13	2.01
49		1.37	1.61	
51	1.53			
Mean TMU	1.53	1.37	1.59	2.17

Γ				Mean	TMJ		
S	Study No•	<u>1</u> 11	<u>3</u> 11	1"	1 <u>1</u> 11	1=1	131
	31	1.65	e -				
	32		2.13	2.36			
	35		2.29	2.75	2,60	2.29	
	36			2.76	2.37	2.76	2.37
M	lean Mu	1.65	2.21	2.62	2.48	2.52	2.37

Results from R-Em and mR-E

Table 32

Results from M_A

					Mean	TMU				
Study No.	1/8"	3/8"	1 <u>1</u> 11 .	<u>3</u> 11 4	1"	1 <u>1</u> "	1 <u>1</u> "	2"	2 <u>3</u> "	31/2"
35	,	1.83								× .
39						1			4•97	5.87
48			2.2	2.45	2.45	2.82	3.1	4.0		
51	2.14									

Controlled moves

1		TMU											
	<u>1</u> 11 2	<u>3</u> 11 4	1"	1 <u>1</u> "	1 <u>1</u> "	13"	2"	2 <u>1</u> "	2 <u>1</u> "	2 <u>3</u> "	3"	3 <u>1</u> "	3 <u>3</u> "
	2.26	2.0	3.62	4.52	4.08	6.35	5.87	5.87	5.87	8.60	7.01	6.8	7.6
	1.60	2•4	2.8	2.8	4.52	5.2	6.80	7.25	7.25	7.25		6.4	
		2.8	3.2	3.6	5.42	4.8	4•97		.6.15	7.01			
			3.6	4•4	4.8	4.0			6.4	6.0			
				4.0	3.6					6.8			
					4.0								
					4.4			•			<u> </u>		

States and the

APPENDIX IV

STATISTICAL ANALYSIS OF REACH, CASE A

Table **54(**i)

Logarithmic values of single points

X Log ₁₀ (Distance x 10)	Y Log ₁₀ (TMU)	x ²	¥ ²	XY
.699	. 188	•489	•035	•131
.699	.305	• 489	•09 3	.213
•699	.121	•489	•015	•084
• ⁸⁷⁵	•292	•7 66	•085	.256
• ⁸⁷⁵	.272	•7 66	•074	.238
• ⁸⁷⁵	•378	.766	.143	•331
.875	.281	•766	•079	.246
•875	•431	•766	. 186	•378
1.000	•519	1.000	.269	•519
1.000	.25 8	1.000	•067	.25 8
1.000	.362	1.000	.131	.362
1.000	•342	1.000	.117	.342
1.000	.491	1.000	.241	.491
1.097	•500	1.203	.250	.548
1.097	.501	1.203	.251	.550
1.097	•452	1.203	.204	.495
1.176	•509	1.383	.259	• 5 98
1.176	•544	1.383	.296	.638

Table 34(ii)

1	X Log ₁₀ (distance x 10)	Y Log ₁₀ (TMU)	x ²	¥ ²	XY
	1.243	•505	1.545	• 255	.629
	1.243	.602	1.549	• 362	•749
	1,301	。 566	1,693	•320	•736
	1.301	•644	1.693	•415	. 836
	1.352	.602	1.828	.362	.814
	1.398	.644	1.954	•415	.899
	1.574	.808	2.477	•653	1.272
	1.602	.780	2.566	. 608 .	1.250
Total	28.129	11.897	31.973	6.175	13.863

Logarithmic values of single points

Results

ΣX	=	28.129		$\Sigma \lambda$	Ξ	11.897
Σ x ²	=	31.973		ΣY ²	=	6.175
		ΣΧΥ	=	13.863		

Number of readings, n = 26

Coefficients and errors

 $\overline{X} = \text{Average value of } X = \frac{28.129}{26} = 1.082$ $\overline{Y} = " " Y = \frac{11.897}{26} = 0.458$ Variance of X: $s_{x}^{2} = \frac{1}{n-1}$ $(\Sigma X^{2} = nX^{2}) = 0.0613$ Variance of Y: $s_{y}^{2} = \frac{1}{n-1}$ $(\Sigma Y^{2} - n\overline{Y}^{2}) = 0.0288$ Covariance of XY: Cov XY = $\frac{1}{n-1}$ $(\Sigma XY - n\overline{XY}) = 0.0392$

Correlation coefficient: $r = \frac{Cov XY}{s_x s_y} = 0.931$ Standard error of estimate: $s_E = \sqrt{\frac{n-1}{n-2} s_y^2 (1-r^2)} = 0.063$ 30 limits on regression $\pm 3 s_E = \pm 0.19$ line of Y on X Standard deviation of correlation coefficient $\sigma_r = \frac{1-r^2}{\sqrt{n-1}} = 0.027$ Logarithmic line equation Y = A + BX where $Y = Log_{10}$ (TMU)

 $X = Log_{10} \text{ (Distance x 10)}$ Regression coefficient of Y on X: $\hat{B} = \frac{s_{\perp}^2}{s_{\perp}^2}$

$$\hat{B} = 0.64$$

Solving the equation for A, by substituting known values of \overline{X} and \overline{Y} for X and Y

$$A = -0.232$$

: Logarithmic line equation Y = 0.64X - 0.232 (1) Short motion line equation

Let T = Time for the notion, TMU

D = Distance travelled during the time T, in inches

Substituting values for T and D in equation (1)

$$Log_{10} T = 0.64 Log_{10} 1CD - 0.232$$

$$T = 0.586 \times 10^{.64} \times D^{.64}$$

$$T = 2.56 D^{0.64}$$

Regression coefficient B of population, in terms of \hat{B} , coefficient for the sample, is given by the expression

$$B = B \pm \frac{s_E \cdot t_{\infty}}{s_x \sqrt{n-1}}$$
 where $t_x = 90\%$ confidence coefficient
for the unknown population
 $= 1.71$ when $n = 26$

$$B = 0.64 \pm 0.087$$