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ABSTRACT 

This paper models and analyzes task allocation methodologies for multi­

agent systems. The evaluation process was implemented as a collection of 

simulated soccer matches. A soccer-simulation software package was used as 

the test-bed as it provided the necessary features for implementing and testing 

the methodologies. The methodologies were tested through competitions with 

a number of available soccer strategies. Soccer game scores, communication, 

robustness, fault-tolerance, and replanning capabilities were the parameters 

used as the evaluation criteria for the mul1i-agent systems. 
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1. INTRODUCTION 

The work presented in this paper is a study of dynamic task allocation 

methodologies for mobile multi-robot systems (Cao et al., 1995; Arkin & 

Balch, 1998) in a soccer environment. Soccer is chosen as the test-bed 

because it provides a very complex, dynamic and, at times, hostile 

environment. This dynamic environment is a fast paced environment that 
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allows limited time for each robot to act. Successful robotic teams must 

rapidly adapt to environmental changes, for which both individual robot 

behaviors and team strategy should be adaptive. The evaluation process was 

implemented as a collection of simulated soccer matches using the TeamBots 

software (TeamBots, 2007). G~e scores, communication (Corkill, 1991; 

Werner & Dyer, 1991; Yanco & Stein, 1993; Yanco, 1993), robustness, fault­

tolerance, and replanning required for dynamic techniques were used as the 

evaluation criteria. 

2. MULTI-ROBOT SYSTEMS 

One of the important recent trends in robotics is the study of teams of 

multi-robot systems. Research performed under such titles as distributed 

robotic systems, swarm robotics, socio-robotics, decentralized robotics, multi­

agent robotics, and cellular robotics has focused on the investigation of the 

issues and applications of systems composed of groups ofrobots. The general 

idea is that teams of robots, deployed to achieve a common goal, can only 

perform tasks that a single robot cannot but also can outperform systems of 

individual robot in terms of efficiency and quality. In addition, groups of 

robots provide a level of robustness, fault-tolerance, and flexibility, as the 

failure of one robot does not result in the unsuccessfulness of the mission, as 

long as the remaining robots share the tasks of the failed robot. Examples of 

tasks appropriate for robot teams are large area surveillance, environmental 

monitoring, autonomous reconnaissance, large object transportation, planetary 

exploration, and hazardous waste cleanup (Agah & Tanie, 1997; Fredslund & 

Mataric, 2001; Sukthankar, 2000; Sukthanker & Sycara, 2001). 

The most significant concept in multi-robot systems is cooperation. Only 

through cooperative task performance can the superiority of robot groups be 

demonstrated. The cooperation of robots in a group can be classified into two 

categories of implicit cooperation and explicit cooperation. In implicit 

cooperation, each robot performs individual tasks while the collection of 

these tasks is toward a unified mission. For example, when multiple robots 

are engaged in collecting rock samples and returning them to a common 

place, the team is accomplishing a global mission while cooperating 
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implicitly. This type of group behavior is also called asynchronous 

cooperation, as it requires no synchronization in time or space. Explicit 

cooperation is when robots in a team work synchronously with respect to time 

or space to achieve a goal. One example of such cooperation is the 

transportation of heavy objects by multiple robots, each having to contribute 

to the lifting and moving of the object. This task requires the robots to be 

positioned suitably with respect to each other and to function simultaneously. 

Regardless of the type of cooperation, the goal of the team must be 

transformed into tasks to be allocated to the individual robots. 

Multi-robot teamwork is a complex problem (Lerman, 2000; Lerman & 

Gastyan, 2001; Sgorbissa & Arkin, 2003; Werger & Mataric, 2001) 

consisting of task division, task allocation (Shehory & Kraus, 1998), 

coordination, and communication. Dudek et al. (1993) present a general 

taxonomy to characterize multi-agent systems, consisting of the number of 

agents, communication (range, bandwidth and topology, reconfigurability, 

processing mechanism, and differentiation). 

3. EVALUATION OF TASK ALLOCATION METHODOLOGIES 

One main issue in task allocation is the division of the tasks into 

homogeneous versus heterogeneous tasks. Another main issue in task 

allocation is the study of multi-robot systems in hardware with small 

population sizes (e.g., under 20), versus the study of issues in multi-robot 

systems in simulation with large population sizes. Task allocation 

methodologies for multi-robot systems include the following: Murdoch 

Publish/Subscribe System (Gerkey & Mataric, 2000, 2002a, 2002b), 

Broadcast of Local Eligibility (BLE) using Port Arbitration Behavior (P AB) 

(Werger & Mataric, 1999, 2000a, 2000b), A Free Market Architecture for 

Distributed Control of a Multi-Robot System (Dias & Stentz, 2000; Stentz & 

Dias, 1999), Auction Algorithm (Bertsekas, 1992), Alliance (Parker, 1993, 

1994, 1996, 1997a, 1999, 2001), Task Acquisition using Multiple Objective 

Behavior Coordination (Pirjanian & Christensen, 1998), Functionally-Accurate 

Cooperative (F A/C) Distributed Problem Solving (Lesser, 1991 ), Distributed 

Multi-Robot Task Allocation for Emergency Handling (Ostergaard et al., 
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2001), Team Formation-Based Task Allocation (Stone & Veloso, 1999), Ants 

Algorithms (Dorigo & Gambardella, 1996; Dorigo et al., 1996), and 

Territorial Task Division (Schneider-Fontan & Mataric, 1998). 

Any evaluation study of multi-robot systems must be expressed 

quantitatively using suitable criteria. Because many approaches to multi­

robotic systems are focused on a special domain and application, there are no 

unified evaluation methods for comparing these approaches. However, a few 

patterns occur in all of these systems, which provide some mean to compare 

and justify each approach. These evaluation criteria can guide the selection of 

the most appropriate methods for new application domains for robot teams. 

Researchers (Balch & Arkin, 1994; Balch & Parker, 2000; Balch & Ram, 

1998) have categorized four metrics for comparing the effects of 

communication on performance of multi-robot systems in different 

applications: 

• Cost: It minimizes the number of deployed robots and the cost of 

building of each of them. 

• Time: The time required to complete the mission. 

• Energy: The total energy consumed by the robots. 

• Reliability/Survivability: The ability of team to survive and provide 

reliable performance. 

Parker (2001) reported a new set of metrics, which used eight parameters 

to evaluate a multi-robot system operating in a specific environment, 

performing a known set of tasks such as moving objects and observing 

targets. Such metrics introduced to evaluate multi-robot systems are not 

general purpose and cannot be applied to a wide range of applications. 

1. Time 

2. Energy 

3. Task per time 

4. Velocity (distance/ time. 

5. Number of objects moved per unit time 

6. Average number of targets observed 

7. Quantity of earth moved per unit time 

8. Cumulative formation error 
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Goldberg and Mataric (1997, 2000, 2002) used the three application­

based criteria for evaluating and comparing different multi-robot systems' 

performance: 

l. Inter-robot collision 

2. Distance traveled by each robot 

3. Time 

One of major characteristics of multi-robot systems is the heterogeneity 

versus homogeneity the distributed system. A number of factors have great 

influence on making a team of robots heterogeneous, such as sensor tuning, 

hardware design, software design, system wear-ability, or even different 

experiences of robots capable of learning (Parker, 2001 ). A team may include 

different number of robots of different types. A team made of different robots 

can benefit from the diversity of robots' capabilities. 

The heterogeneous robot teams can be divided in two major categories of 

functional heterogeneity, where all team members are not. capable of 

performing all the require tasks and some expert robots exist, and behavioral 

heterogeneity, where the robot behave differently. Another concept is pseudo­

heterogeneity, where during task allocation some tasks are assigned based on 

different initial condition of the robots such as their current location or speed. 

Additionally, by assigning tasks based on the priority of the robot or its ID, 

one can design a simple heterogeneous system composed of many robots. 

Goldberg and Mataric (2000) defmed robustness as the ability of 

completing the global task in presence of partial or complete failure of parts 

of the group. This is not a directly measurable quantity. One way for relating 

robustness to a measurable quantity is to compare time of completing a 

predefmed task with or without the presence of partial failure for a variety of 

different architectures. 

4. ROBOTIC SOCCER 

Robotic soccer, a challenging and difficult task, is a suitable domain for 

experimenting with new methodologies and concepts in multi-robotic 

systems. The important characteristics of robotic soccer are (1) its 
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deterministic character that provides measurable feedback about performance 

in contrast to vaguely defined domains, (2) its complexity, and (3) its 

dynamic features. Robotic soccer integrates works in research areas such as 

computer vision, intelligent con.trol, interaction and cooperation, robot 

mechanics, power systems, real-time systems, machine learning, planning and 

plan recognition, and competitie>n all in one domain. Many researchers 

choose to compete in robotic soccer simulator leagues, since physical robots 

can be expensive and complicated to design and build. Simulation of robots 

prior to their physical construction can help to evaluate, analyze, modify, and 

improve the designs. Since the foe us of the work presented in this paper is to 

evaluate different dynamic task allocation methodologies for multi-robot 

applications, soccer simulation provides a very suitable environment to 

experiment and analyze new ideas in multi-robot systems. Research areas in 

soccer simulation include the following: 

o Dynamic resource allocation for heterogeneous robots. Given the different 

skills that the robots possess, and given that robots use resources such as 

energy, how should they best divide their tasks among them? 

• Multi-robot modeling. How can one recognize its own team's and the 

opponent's strengths and weaknesses? How can the behaviors be 

modeled? 

• Machine learning (environment modeling). The system tries to model the 

behavior of other robots through observation and examination. The 

simulator can use a coach robot to build a model of the behavior of a 

team from observations of the team. 

• Machine learning (skills). How can a robot improve its performance using 

its own experiences gained through interactions with the environment? 

• Adjustable autonomy. How d<l robots decide on interpreting and acting 

on the coach's advice or supplied information? 

• Teamwork and coordination. How can a group of robots work together, 

collaborating and coordinating, as an effective team? How do small sub­

teams form dynamically, and how can they be made effective? 

• Adversarial planning. How can the robots plan to react to the opponents' 

behavior? 

• Robot architectures. What robot architectures are useful for dynamic, 

complex, multi-robot systems? 
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4.1 RoboCup 

RoboCup (2007) is an international research event to support research in 

artificial intelligence and robotics. RoboCup is a game of soccer in which robots 

are players. Teams that pass the qualification exam and enter the actual game 

show a great deal of pioneer technology in at least one of the following areas: 

new materials, sensors, artificial muscle, artificial intelligence, intelligent 

robotics, highly efficient battery, energy saving systems, control, multi-agent 

cooperation and coordination, etc. Communications between the robots is 

wireless and typically uses dedicated commercial FM transmitter and receiver 

units. RoboC1.1p includes four different competitions, including the simulation 

league, small-size robot league (field the size of a ping-pong table), middle-size 

robot league and the Sony legged robot league (four-legged robots). To 

compete in RoboCup, the robots must possess two general attributes of 

robustness and safety. This attribute ensures that the robots are not in danger 

of being damages as the result of collisions with legal objects in the field, and 

that the robots do not damage other robots. Global vision systems are not 

allowed and all components of the sensing system must be onboard the 

robots, and the robots cannot place any landmark on the field. 

One RoboCup competition is the simulation league, a league of simulated 

soccer matches. The official simulation software for RoboCup is called Soccer 

server. In Soccerserver, teams have 11 players, each has a specified robotic 

controller to provide its characteristic and to support the team's strategy, and 

every simulated team actually consists of a collection of these programs. 

Many computers are networked together for this competition to take place. 

The online coach competition is part of Soccerserver, for which coaches 

cooperate and guide different teams utilizing the standard coaching language 

(Werger & Mataric, 2001). The goal is to provide the required information 

for more adaptive teamwork by opponent modeling. The coaches have access 

to the history of each game played in the past and can analyze and observe them. 

4.2 FIRA 

FIRA (2007) is an international event for robotic soccer that includes 

different leagues, such as MiroSot (micro robot world cup soccer tournament), 
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NanoSot, HuroSot, and KheperaSot, in which each league indicates the different 

sizes of the robots participating. The simulation league is used for providing 

game training and strategy learning environment and for testing the feasibility 

and advancement of the game strategy. Simulation software uses kinematics and 

dynamics to simulate movements of the robots and the soccer ball. 

4.3 TeamBots 

TeamBots (2007) is a popular soccer simulation software. TeamBots is a 

collection of packages for mobile robot and multi-robotic programming. Its 

simulation software is written in Java and its source code is available. An 

important aspect of TeamBots is its capability to provide an interface similar 

to real robots' control system so that a program written for the simulation can 

run on actual mobile robots with minimal change. TeamBots applications can 

run on a variety of robots including the Nomadic Technologies' Nomad 150 

robot and Personal Robotics' Cye robots. The simulation environment can 

embed heterogeneous multi-robots and can run their control system 

simultaneously. TeamBots is portable and it can run on a variety of platforms 

such as Windows, Linux, MacOS. 

TeamBots was selected and used for the simulation of the experiments 

reported in this paper, because of its hardware interface that makes the code 

independent of low-level sensor fusion and motor control. In addition, it has 

the most similarity to real robotic development, which has resulted in 

TeamBots being a popular simulator in robotics research. 

TeamBots provides a group of Java classes called Clay that encapsulates 

the functional requirements of writing behavior-based control systems. Clay 

inherits the advantages of Java that enables it to combine, abstract, and mix 

behaviors. Clay is a powerful and flexible package for creating a broad range 

of complex controls. Clay was used to program robot controllers for the teams 

of simulated robots used in this paper. Perceptual schemas embedded in 

motor schemas, were developed to process sensory data. 

SoccerBots, a part of the TeamBots software distribution, is a research tool 

for multi-robot application in a soccer environment. SoccerBots is an attempt to 

integrate the software and hardware aspects of robotics technology. The 

software is also an attempt to separate robotics software control (behaviors, 

learning, etc.) from robotics hardware architecture. 
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4.4 Other Soccer Simulation Systems 

A number of other soccer simulation systems provide the users with the 

ability to play simulated soccer. 

MissionLab, developed at the Georgia Institute of Technology (Atlanta, 

GA, USA., provides unique features via its software components, including a 

console-like program for monitoring the progress of runs, a 'graphical tool for 

building robot behaviors, compilers, and a hardware server that directly 

controls all the robot hardware and provides a standard interface for all the 

robots and sensors. In addition, new concepts such as Q-learning and 

specialized reinforcement learning are supported. One interesting feature of 

this simulation is its real robot interface, which allows generated missions of 

simulation to compile and transform to C++ codes. The C++ programs are in 

a structure that can run on common robots such as ActivMedia Pioneer AT, 

RWI Urban Robot, and Nomadics Technologies Nomad 150 and 200. 

Stage is a scaleable multiple robot simulator, developed at the University 

of Southern California interactive lab (Los Angeles, CA, USA). Stage 

simulates a collection of mobile robots moving in and sensing a two­

dimensional bitmapped environment. Various sensor models are provided, 

including laser rangefinder, sonar, odometer, and pan-tilt-zoom camera. 

Slight change is required to move from simulation to hardware, and back. 

Several controllers designed in Stage have been demonstrated to work on real 

robots. 

Swarm, developed at the Santa Fe Institute (Santa Fe, NM, USA) using 

Objective C, is used for the simulation of complex systems. Its architecture 

allows simulating a set of robots interacting with others simultaneously 

(Swarm, 2007). 

TCA (Task Control Architecture), developed at CMU (Carnegie Mellon 

University, Pittsburgh, PA, USA), provides a general-purpose framework for 

building robot systems that combine deliberative and reactive control (TCA, 

2007). 
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5. RESEARCH APPROACH 

This section addresses the research approach reported in this paper and 

tackles the questions defined by Lesser (1995), with respect to the important 

aspects of multi-agent systems: 

l. How to formulate, decompose, and allocate the problem? 

2. What is the communication mechanism provided as part of a solution? 

3. How to provide effective teamwork and how to solve potential conflicts? 

Selected research approaches to generate cooperation in multi-robot 

soccer teams using dynamic task allocation m~thodologies are described in 

this section. Noteworthily, two decisions regarding the architecture in the 

design of multi-robot systems were made. At the group level, distributed 

·architecture was chosen because the nature of the selected application is 

distributed and requires more than one robot player. At the robot level, 

control was divided into two architectures. The schema-based approach was 

used for low-level parallel controls, and the behaviors as collection of simple 

behaviors using subsumption architecture were selected. Because each robot 

behavior can be viewed as an independent agent, behavior-based robotics 

(Brooks, 1986, 1990; Pirjanian, 1998a, 1998b) facilitates developing robotic 

controls to study multi-agent task allocation systems in robotic environment. 

This concept was used in the implementation of the selected task allocation 

systems. 

5.1 Robotic Architectures 

Robotic architectures are structures for developing robot controls that 

impose restrictions on the solution domain by limiting it to an architectural 

definition. One of the main approaches to robot control is the traditional 

deliberative strategy, a top-down design that utilizes a central model of the 

world. Each robot uses this model to process sensory input data and produce 

actions based on it. As the result of the actions, the robot updates its world 

model to match the new changes in the environment (Moravec & Cho, 1989). 

Dynamic environments such as real world applications are too uncertain, and 
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changes are too common so that replanning is always necessary. Additionally 

shown is that they cannot scale very well in dynamic applications (Brooks, 

1991). 

There is another mechanism for robotic control, called reactive. Unlike 

deliberative strategy, reactive controls are bottom-up designs that do not use 

world representations. Such designs are different from other artificial 

intelligence programs because they do not perform any search. However, 

reactive systems are designed to use a set of condition-action pairs, which is 

similar to some expert systems. Reactive systems use pairs of data that map 

sensory input to actuator output. This mapping can have different structures 

but they serve the same purpose (Brooks & Connell, 1986; Connell, 1990). 

The major weakness of the reactive control is its inflexibility. Complex and 

dynamic environments and even a complex robot control can overwhelm the 

adaptability and flexibility of its hard-coded rules (Mataric, 1997). Indeed, a 

trade-off between on-line computation and stored information distinguishes 

these two approaches from each other. 

There is a third approach called hybrid, which benefits from both reactive 

and deliberative methods. Hybrid uses a deliberative method for high-level 

tasks and uses reactive method for low-level and urgent tasks. This 

architecture has many sub-control systems like RAP (reactive planning). 

(Arkin, 1987), contingency plans (Connell, 1992), schemas (Balch & Arkin, 

l 998), and so on. Behavior-based control, and more specifically schema­

based architecture, was chosen because of its unique features that are 

explained in later sections. 

5.2 Behavior-Based Robotics 

Behavior-based robotics was selected as the robotic control paradigm in 

this paper. First introduced by Brooks (1986, 1990, 1991), behaviors are 

basic units for control, representation, and learning for abstracting robot 

architecture. These units of control law must satisfy a set of constrains to 

achieve and maintain their goals. Because of its close relation with multi­

agent systems, this approach facilitates developing robotic controls that 

enable the study of multi-agent task allocation systems in a robotic 

environment. This relation is rooted in the knowledge that each behavior can 
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be viewed as an independent agent. This concept has been used in the 

implementations of selected task allocation systems. Behavior-based control 

is an extension of reactive architecture, which also has certain features of the 

deliberative approach. It is possible to store world presentation and state in a 

behavior control. Nevertheless, that does not mean that it uses a central model 

or representation. Although, it has some reactive components, behavior-based 

control is usually more than just a table look-up like reactive methods. 

One of the main features of behavior-based control is the occurrence of 

emergent behaviors. Emergent behaviors are resulted as interaction of 

different lower-level behaviors. They are usually unpredicted and can be 

collective tasks. The conceptual approach of behavior-based robotic suggests 

a hierarchical and distributed control to solving behavior arbitration. The 

same concept was used in behavior-based approaches by running behavior 

validation tests in a top-down manner. 

5.3 Motor-Schema 

Researchers in the field of psychology have originated the concepts of 

schemas, but in the present paper, the definition of schema from application 

of schemas in brain theory and robotics is used. Schemas are adaptive control 

systems that use their sensory data to update the systems behaviors. Arkin 

(1987) defines a schema as the basic unit of behavior from which complex 

actions can be constructed. A schema consists of the knowledge of how to act 

or perceive as well as the computational process by which it is enacted. 

Motor-Schema is a control architecture that has biological roots; it is a 

higher-level abstraction for robot control that is similar to subsumption 

architecture (Arkin, 1989). Schemas define behaviors as concurrent robot 

controls and they are stored as pairs of (sense, react) rules. According to 

Arkin, (1987, 1989), schema behaviors are large grain abstractions that can 

be reused as needed. Additionally, schema behaviors act distributed and 

concurrently and have cognitive support. 

Motor schemas are different fonn other behavioral controls in the 

following manners: 

• Behavior output is computed as vectors using potential fields approach. 

• Coordination can be achieved as a result of vector manipulations. 
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• Behaviors do not have a priori hierarchy. 

• Each behavior plays a rule to produce a global output. This share or 

strength is a scalar multiplier that is applied to the output vector. 

Perceptual schemas provide environmental data for individual behaviors 

and are usually included in motor-schemas. Perceptual schemas are defined 

recursively. It means that each of them is made of other sub-perceptual 

schemas. Integrated actuator output or global robot action is made of motor­

schemas running concurrently. Each schema's output (vector) is multiplied by 

a gain. Gain is a scalar value, which describes the importance of each 

behavior in the context of global robot action. All multiplied behaviors sum 

up to generate the global output of the robot. 

The schema output summation function was used in all the selected 

approaches in this paper. Except that, some of the task allocation 

methodologies required some changes in schema features. Behavioral 

assemblages were developed, which are groups of motor-schemas to produce 

behaviors that are more complex. These a-e explained in later sections. 

6. SELECTED TASK ALLOCATION METHODOLOGIES 

It was attempted to solve a complex, high-level, distributed and team-oriented 

task by proposing a few low-level local control systems. A few robot 

architectures were proposed for individual robots that could collectively 

perform complex tasks at multi-agent level. All the methodologies for task 

allocation have been adapted to the hostile and dynamic environment of a 

soccer match. Figure 1 shows the behaviors used in higher-level architecture 

behavior-based and in lower-level motor schema and subsumption architecture. 

Three methodologies, namely, Alliance, Territorial, and Reactive were chosen for 

soccer teams and are described in the following sections. 

6.1 Alliance 

Alliance is a fully distributed and fault-tolerant robotic architecture that 

allocates loosely coupled tasks to a team of heterogeneous robots (Parker, 
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Fig. 1: Architecture and basic behaviors for methodologies 

1993, 1994, 1996, l 997a, 1998, 1999). This approach is designed for small­

to-medium size teams. In addition, Alliance is a behavior-based architecture 

that assigns tasks dynamically. Its behavior-based controller uses different 

groups of behaviors, called behavior-set, for different tasks. Each of them 

represents a functionality required to finish the task. Each robot in the team 

has to run an Alliance process parallel to its original controller to cooperate 

with other robots in the team. The robots communicate explicitly and 
globally. An extended approach called L_Alliance (Parker, 1995, 1997b) 

incorporates the applications of learning in Alliance. 

The selection of a suitable task is based on a concept called motivation. 

Motivations in Alliance are mathematically modeled using two functions of 

impatience and acquiescence. Each robot has a partial knowledge of its own 

and other robots' state. This partial knowledge plus impatience and acquiesce 

is used to calculate the level of activation as a probability value computed for 

suitability of actions. Impatience happens when a robot perceives that another 

robot (considering its effect on the environment) has not achieved enough. 

Acquiesce happens when a robot understands its incapability to complete a 

task using its sensory feedback. 

Alliance was selected as one of the task-allocation methodologies 

because it enables a team of robots to react systematically to the changes of 

environment and to the modifications of the team. However, there are a few 

differences between Alliance in the contexts that the developers defined it and 

its use in soccer. It was necessary to adapt and incorporate additional features 

into the methodology. One difference between original Alliance algorithm 

and this implementation is the availability of free robots. The developers 
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assume that robot Rl will take over an uncompleted task Tl when robot R2 

acquiesces it and Rl has already completed its own task. Therefore, it was 

assumed that RI is idle and waiting for the result of R2. But in robot soccer, 

robot RI is never idle and therefore is never available to take over a task. In 

this implementation, a customized definition for motivation was used to 

adjust to this dynamic and competitive environment. Additionally, soccer 

simulation systems provide a sensible environment for vision sensors by using 

a global vision application. There are advantages to using this feature, which 

out-performs the incomplete and local sensory data used by developers. 

6.1.1 Methodology and representation. The concept of motivation is 

based on distinguishing other agents' behaviors and responsibilities, and 

therefore a blackboard algorithm was implemented to provide sufficient data 

to team members via communication. Communication mechanism was made 

simple where messages had a simple format. Message contents included four 

pieces of information, namely, which robot is sending the message, what task 

it does, the current time, and when it starts the task. The first thing each robot 

checks is its perceptual inputs. If the perceptual schemas confirm some 

actions, then other criteria will be checked in order to select a task. When a 

robot activates one of its behavior sets, it must inhibit all other tasks by 

changing their motivational impatience value to zero. 

When robot RI is doing task Tl for some time Jess than the threshold 

time, then robot R2 must calculate its impatience parameter for doing task Tl 

using a slow rate. Robot R2 is aware of this fact because it received a 

communication message indicating such. Other wise robot R2 must use a fast 

rate. In this modified version, a very aggressive version was used and fast rate 

passes the motivation threshold in two simulation time slices. Slow rate 

passes the threshold in less than eight time slices. If robot Ri receives the first 

message from another robot indicating the starting of a task, then Ri must 

reset the associated impatience value. A Tobot gives up its task when it has 

worked on it for some time (more than required limit) and another robot is 

willing to do the job, or if the robot has worked on a task for a very long time. 

To react robustly and coherently, teams of robots must provide two 

general strategies to win the game: defense and offense. In this 

implementation of Alliance, motivations were mathematically modeled to 
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express acquiescence and impatience based on these two situations: scoring 

and preventing the opponent from scoring. These situations have the top two 

priorities, while other activities support these main goals. 

The defense strategy is illustrated in Figure 2. The left (light) team 

defends its goal against the opponent, which is to the right (dark). The 

illustrated strategy is called man-2-man defense. Each agent blocks an 

opponent. The ball is in the opponent's control. 

In modeling the acquiescence, in a case where robot RI has tried 

unsuccessfully for some time to stop an opponent attacker that controls the 

ball, RI sends a signal claiming that it acquiescence the task of stopping the 

attacker. Yet, as this task has the top priority in the defense situation, it 

continues to do the task at least to slow the attack. Robot R2, the closest 

teammate, must also acquiescence its task to join RI to stop the danger. The 

tenn closest can be defined in different fonns depending on its concept. In 

defense closest means a point between the goal and the ball. Each robot based 

on the priority of its task must acquiescence its task and start the higher priority 

task. This chain continues until the least significant task will be left undone. 

Fig. 2: The left (light) team is in a defensive position, since the soccer ball is in their 
field and is closer to an opponent player 
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In modeling of the impatience, when robot R 1 has tried unsuccessfully 

for some time to stop an opponent attacker that controls the ball, robot R2, 

which has the best situation to defend the goal, becomes impatience. Robot 

R2 acquiescence its task and tries to stop the attacker, while RI will continue 

to stop the attacker. 

A typical offensive strategy is illustrated in the Figure 3, where the left 

(light) team is on the offensive against the opponent, which is the ,dark team. 

The ball is in light team's control. If another teammate has a better chance to 

score and it is possible to pass, then do the robot would not drive the ball 

(acquiescence) and instead steers toward the receiver and kicks the ball, i.e., 

passes the soccer ball. If a robot cannot dribble and drive the ball forward 

unless it places the control of the ball in danger, then the robot becomes 

acquiescence and safely passes it back to another teammate. If the robot is not 

driving the ball but the ball is in the team's control and the robot is not doing · 

an important part of the offensive plan like blocking the opponent's goalie, 

then the robot gets close to a good receiving point to be ready to receive a 

ball from the agent who controls the ball. In offensive position, a receiving 

position is called close if it is close enough to receive a clear and safe pass 

and drive ahead. 

Fig. 3: The left (light) team is in an offensive position, since the ball is in the 
opponent's field and is closer to a teammate 
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6.2 Territorial Task Division 

Schneider-Fontan and Mataric (1998) present a task allocation 

methodology to reduce robot interference by separating the robots' 

workspace. This technique introduces a territorial task allocation that enables 

the control system to assign an individual territory to each robot. The 

separated territories can be resized by adding and removing robots 

dynamically, which provides fault-tolerance capability for this methodology. 

This method can be applied to task allocations in soccer games. Indeed, in a 

real soccer game, each player has a very specific and spatially restricted play 

environment. This space-related characteristic separates goalie, defender 

(back), mid-field (halfback), and forward fr.om each other because each of 

these tasks has a pre-assigned spatial definition. For instance, the goalie is 

closer to the team's own goal and the forward is closer to the opponent's goal. 

This mapping between tasks and territories allows for a more systematic 

implementation. This methodology is founded based on the concept that 

interference is a key factor that prevents mobile robots from gaining their 

maximum performance when operating as a team. Abating interference and 

maximizing synergy are the foci of this selected approachto allocating tasks. 

6.2.1 Methodology and representation. A homogeneous team of robots 

was used to implement the concept of territorial task division, in which each 

robot was assigned equal space. The soccer field was divided into five 

territories, namely, goal, back, halfback, mid-forward, and forward. These 

territories are shown in Figure 4. The total workspace is rectangular area that 

is bounded by (xmin, ymin) and (xmax, ymax). Each robot has an individual a 

priori workspace. This workspace defmes 1he allocated task for the player. 

Each robot tries to go behind the soccer ball in its own Working Area to get 

the control of the ball. When it gets the control of the ball, the robot drives 

the ball to the Attacking Area, passes it to Positioning Area, and then returns 

to its Working Area. The Working Area is the area that a robot tries to gain 

the control of the ball and move it to the Attacking Area. The Attacking Area 

is one working area closer to opponent's goal and provides a better scoring 

chance for the team compared with the Working Area, unless the Working 

Area is immediately in an opponent's goal area. The scoring position is the 
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Fig. 4: A Possible territorial division and the tasks allocated to each related territory 

place that a teammate can receive a pass in its own Attacking Area from one; 

or a place that allows one to score. 

All the workspaces were assigned the same length, which was I Ymax -

Ymin I but the width of each workspace depended on the number of robots. 

This dependency on the number of robots allows the control system to apply a 

dynamic workspace to each robot to handle faulty situations. The workspace 

width was calculated as: 

llx = I X max - X min I 
#robots 

The geography of each behavior was changed, and each behavior was 

closely related to the robot's position. Therefore, the strategy that was used 

for Alliance was not suitable for Territorial approach. Additionally, in 

Alliance a heterogeneous team was implemented while the Territorial method 

required a homogenous team. The algorithm consisted of a sequence of 

commands: While the robot does not have the ball, it gets behind the ball. If the 

robot has the ball, if it can score, it scores otherwise drives it to next Working 

Area. If the robot is in the next Working Area and has the ball, it plays safe 

(passes it safely to the teammate) or leaves it in the Attacking Area position. If a 

robot can score, it scores. The robot returns to its own Working Area. This 

approach uses only one behavior. Each robot reacts to its environment by using 

this behavior. First, it uses a perceptual schema to find its territory. After that, it 
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tries to follow the ball and even get behind the ball in its territory. If the ball is 

not in its territory, the robot just tries to be in the best location inside its territory 

that can receive the ball. If the ball is inside the robot's territory, then the robot 

gets behind it. If the robot manages to get the control of the ball, it drives the 

ball to the next territory (Attack~g Area) and kicks the ball in the best direction, 

meaning that if the ball is inside the forward area, the robot shoots it toward the 

goal, otherwise the robot passes the ball to the best location. 

6.3 Static and Reactive Task Allocation 

Static and Reactive Task Allocation is a simple task allocation 

methodology that uses a static and reactive compiled algorithm for a schema­

based robotic soccer team. In this approach, the required tasks are mapped to 

robots during the design time. A team of five robots was tested in a series of 

soccer matches, for which where the following four tasks were used: (1) 

Goalie, (2) Defense, (3) Lead or attacker, and (4) Blocker. A robot was 

assigned to each of these tasks except the defense task, which had two robots. 

All robotic concepts that were discussed in previous sections were considered 

and implemented, including schemas and behavior-based robotics. The 

descriptions of the tasks are also the same as those defined in Alliance. 

7. EXPERIMENTAL RESULTS 

7.1 Applied Research Criteria 

To evaluate task allocation methodologies described in the previous 

section, we used the following parameters: 

• Score. It is usually argued that most of the time the better team is the 

winner. Additionally, score provide the capability to compare defensive 

versus offensive strategies of a team. A team that scores more has a better 

offensive capability; and a team that receives fewer goals has a better 

defensive capability. 

• Communication is usually expensive, as it includes the hardware required 

to provide it and the software for processing it. The total number of 

messages passed during a soccer match was used as a utility parameter 

because this number could be calculated during a soccer game. 
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• Fault-Tolerance involved studying the effects of removing agents from a 

cooperative team of soccer players. 

• Number of Behavior Changes. The average number of behavior changes 

for each agent was computed, as these changes could be related to cost. 

• Play against each other. The results of teams playing against each other 

provide a viable parameter for comparisons. 

7.2 Scores 

The selected methodologies were tested in a tournament with a league of 

16 soccer teams that played in a round robin fashion against each other. The 

calculations included the scores, number of wins, number of tie games, 

number of lost games, scored goals, and received goals. 

First, the teams were tested in the absence of failure by assuming that all 

robots perform their tasks completely without failure. For preventing and 

eliminating random (luck-based) wins, each team was allowed to play eight 

times with other teams. This resulted in each team playing 128 games in the 

tournament. In this section, the results of the experiments are depicted, 

comparing different methods based on goals and points. Similar to regular 

soccer leagues each win results in three points, each tie has one and each loss 

has zero points. The results are shown in Figure 5 through Figure 10 for each 

methodology in the tournament. 

7.3 Fault-Tolerant 

The fault-tolerance and robustness of selected methodologies were 

evaluated by studying the effect of removing agents from a cooperative team 

of players. The results, as score changes, are shown. Although the intent was 

to remove an agent from the team randomly, it was not possible because the 

simulator always removed the robot whose ID was 0. This reduces the amount 

of randomness in static and reactive task allocation methodologies. The 

Alliance methodology proved that its dynamic task allocation mechanism and 

subsumption architecture used for defining task priorities are very efficient 

especially in dynamic environments such as soccer. The results of fault­

tolerance experiments are shown in Figure 11 through Figure 16. 
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Figure 11 displays the number of points in fault-tolerance experiments, 

where Alliance has the highest and Territorial has the lowest. This is reflected 

in Figure 12, as Alliance has the most number of wins and Territorial has the 

least number. Figure 13 displays the number of tie games for completeness; 

however, the number of tie games by itself cannot be used to determine the 

overall performance of the algorithms in regards to fault-tolerance. The 

number of losses is further evidence for the fault-tolerance of the Alliance 

system. The total number of goals received also reflects the same 
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ordering of the techniques, with Alliance first, then Reactive, and finally 

Territorial. The total number of goals scored is the only fault-tolerance 

experiment where the ordering does not follow that of all the other 

experiments. Although Alliance has the highest number of goals scored, 

Territorial does not have the lowest, and instead Reactive scored the least 

number of goals. This may be a result of defensive versus offensive strategies 

employed by the techniques and how the removal of one robot agent can 

affect the goals scored and received. 
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Fig. 16: Total number of goals scored in fault-tolerance experiment 

7.4 Communication 

The effect of communication in the context of measuring the number of 

messages passed between agents in a team during a soccer match as a cost 

parameter is shown. The amount of communication in the Alliance 

methodology is almost 10 times more than the Territorial methodology. The 

Reactive methodology does not use any communication. Communication was 

not required for better performance but it could be beneficial if used properly. 

The results are shown in Figure 17. 
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7.5 Number of Behavior changes 

The average number of behavior changes was another criterion used for 

evaluating implemented methodologies. Such changes can increase the 

general cost as they contribute to the complexity of the controls. The changes 

require new planning steps and need to change motor parameter, which is an 

energy consumer. The average numbers of behavior changes for each robot 

were calculated and then the averages for the whole team were calculated. 

Finally, the average for the entire tournament was computed. As expected, the 

most dynamic approach changed behaviors most often. The dynamic task 

allocation property of Alliance provided the advantage of flexible behavior 

selection, which also makes it more expensive. Territorial approach also 

required behavior changes for robots when they were in working area or 

attacking area. The results are shown in Figure 18. 
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7.6 Comparing Competing Methodologies 

The results of matches between methodologies are included in this 

section. First, the teams competed in a fault-free environment and the results 

are shown in Table I. Next, the teams were tested by allowing them to 

compete while both teams were faulty through the loss of one of their players. 

The results are included in Table 2. 

Table 1: Methodology capability testing 

Alliance -Territorial Alliance - Reactive Reactive -Territorial 

1 0 0 0 0 0 

0 0 1 0 0 0 

1 0 0 0 0 0 

0 0 0 0 1 0 

0 1 0 0 1 0 

2 0 0 0 0 0 

2 0 0 0 0 0 

0 0 0 0 1 0 

Table 2: Fault-Tolerance adaptability testing 

Alliance - Territorial Alliance - Reactive Reactive - Territorial 

0 0 1 0 0 1 

0 0 1 0 2 2 

3 0 0 0 2 1 

0 0 1 0 0 0 

2 0 2 0 0 0 

0 0 2 1 1 0 

0 0 0 0 1 1 

0 0 0 0 1 1 
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8. CONCLUSION 

Three task allocation methodologies for multi-agent systems were 

evaluated and analyzed. Alliance using the adapted algorithm and strategy 

proved to be the winner algorithm in both normal and faulty situations. Not 

only it defeated both Reactive and Territorial in one-on-one games but also 

lost just three games of the whole 128 games it played against other 

methodologies. However, it was the most expensive one. The amount of 

communication required for an Alliance team was 800% more than a 

Territorial team and on average; it is 4500 messages more than a Reactive 

team. In addition, Alliance required 3000 times of behavior changes in each 

soccer match while a Reactive team needed none and a Territorial team 

needed 1000. Considering the results and efficiency, Reactive is the most 

efficient method. It just lost a game to Alliance in one-on-one games and it 

gained very good results in the tournament. Additionally, its cost was the 

smallest since it needed no behavior changes and no communication. Fault­

tolerance was tested by re~oving an active agent from teans. Alliance proved 

to be the best team by gaining 225 points of its normal performance and 

winning 47 games. In one-on-one games, Territorial showed that its dynamic 

task allocation capability can close the gap between its performance and that 

of Reactive. Territorial even improved its performance in the presence of 

fault 7% while Reactive lost about 33% of its performance and Alliance lost 

16% of its performance. We should point out that all the methodologies were 

application dependent and the results are only for the game of soccer within 

the described conditions, and other applications were not tested. 

Although Teambots provided a close similarity to real environment, a 

simulation system cannot be as good as real environment. Situated and 

embodiment are two main characteristic of mobile robot research that cannot 

exist in simulation systems. 

Because methodologies were application dependent, they had to be 

changed in order to adapt to their new environment. This adaptation was not 

the best modification and other versions may be more efficient. In addition, 

each methodology required different strategy based on their limitation and 

capabilities. Evaluation could be more precise if there was a canonical 

strategy that uniquely could be applied to all of them. 
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